1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2019, Intel Corporation.
4 *
5 * Heterogeneous Memory Attributes Table (HMAT) representation
6 *
7 * This program parses and reports the platform's HMAT tables, and registers
8 * the applicable attributes with the node's interfaces.
9 */
10
11 #define pr_fmt(fmt) "acpi/hmat: " fmt
12 #define dev_fmt(fmt) "acpi/hmat: " fmt
13
14 #include <linux/acpi.h>
15 #include <linux/bitops.h>
16 #include <linux/device.h>
17 #include <linux/init.h>
18 #include <linux/list.h>
19 #include <linux/mm.h>
20 #include <linux/platform_device.h>
21 #include <linux/list_sort.h>
22 #include <linux/memregion.h>
23 #include <linux/memory.h>
24 #include <linux/mutex.h>
25 #include <linux/node.h>
26 #include <linux/sysfs.h>
27 #include <linux/dax.h>
28
29 static u8 hmat_revision;
30 static int hmat_disable __initdata;
31
disable_hmat(void)32 void __init disable_hmat(void)
33 {
34 hmat_disable = 1;
35 }
36
37 static LIST_HEAD(targets);
38 static LIST_HEAD(initiators);
39 static LIST_HEAD(localities);
40
41 static DEFINE_MUTEX(target_lock);
42
43 /*
44 * The defined enum order is used to prioritize attributes to break ties when
45 * selecting the best performing node.
46 */
47 enum locality_types {
48 WRITE_LATENCY,
49 READ_LATENCY,
50 WRITE_BANDWIDTH,
51 READ_BANDWIDTH,
52 };
53
54 static struct memory_locality *localities_types[4];
55
56 struct target_cache {
57 struct list_head node;
58 struct node_cache_attrs cache_attrs;
59 };
60
61 struct memory_target {
62 struct list_head node;
63 unsigned int memory_pxm;
64 unsigned int processor_pxm;
65 struct resource memregions;
66 struct node_hmem_attrs hmem_attrs[2];
67 struct list_head caches;
68 struct node_cache_attrs cache_attrs;
69 bool registered;
70 };
71
72 struct memory_initiator {
73 struct list_head node;
74 unsigned int processor_pxm;
75 bool has_cpu;
76 };
77
78 struct memory_locality {
79 struct list_head node;
80 struct acpi_hmat_locality *hmat_loc;
81 };
82
find_mem_initiator(unsigned int cpu_pxm)83 static struct memory_initiator *find_mem_initiator(unsigned int cpu_pxm)
84 {
85 struct memory_initiator *initiator;
86
87 list_for_each_entry(initiator, &initiators, node)
88 if (initiator->processor_pxm == cpu_pxm)
89 return initiator;
90 return NULL;
91 }
92
find_mem_target(unsigned int mem_pxm)93 static struct memory_target *find_mem_target(unsigned int mem_pxm)
94 {
95 struct memory_target *target;
96
97 list_for_each_entry(target, &targets, node)
98 if (target->memory_pxm == mem_pxm)
99 return target;
100 return NULL;
101 }
102
alloc_memory_initiator(unsigned int cpu_pxm)103 static __init void alloc_memory_initiator(unsigned int cpu_pxm)
104 {
105 struct memory_initiator *initiator;
106
107 if (pxm_to_node(cpu_pxm) == NUMA_NO_NODE)
108 return;
109
110 initiator = find_mem_initiator(cpu_pxm);
111 if (initiator)
112 return;
113
114 initiator = kzalloc(sizeof(*initiator), GFP_KERNEL);
115 if (!initiator)
116 return;
117
118 initiator->processor_pxm = cpu_pxm;
119 initiator->has_cpu = node_state(pxm_to_node(cpu_pxm), N_CPU);
120 list_add_tail(&initiator->node, &initiators);
121 }
122
alloc_memory_target(unsigned int mem_pxm,resource_size_t start,resource_size_t len)123 static __init void alloc_memory_target(unsigned int mem_pxm,
124 resource_size_t start, resource_size_t len)
125 {
126 struct memory_target *target;
127
128 target = find_mem_target(mem_pxm);
129 if (!target) {
130 target = kzalloc(sizeof(*target), GFP_KERNEL);
131 if (!target)
132 return;
133 target->memory_pxm = mem_pxm;
134 target->processor_pxm = PXM_INVAL;
135 target->memregions = (struct resource) {
136 .name = "ACPI mem",
137 .start = 0,
138 .end = -1,
139 .flags = IORESOURCE_MEM,
140 };
141 list_add_tail(&target->node, &targets);
142 INIT_LIST_HEAD(&target->caches);
143 }
144
145 /*
146 * There are potentially multiple ranges per PXM, so record each
147 * in the per-target memregions resource tree.
148 */
149 if (!__request_region(&target->memregions, start, len, "memory target",
150 IORESOURCE_MEM))
151 pr_warn("failed to reserve %#llx - %#llx in pxm: %d\n",
152 start, start + len, mem_pxm);
153 }
154
hmat_data_type(u8 type)155 static __init const char *hmat_data_type(u8 type)
156 {
157 switch (type) {
158 case ACPI_HMAT_ACCESS_LATENCY:
159 return "Access Latency";
160 case ACPI_HMAT_READ_LATENCY:
161 return "Read Latency";
162 case ACPI_HMAT_WRITE_LATENCY:
163 return "Write Latency";
164 case ACPI_HMAT_ACCESS_BANDWIDTH:
165 return "Access Bandwidth";
166 case ACPI_HMAT_READ_BANDWIDTH:
167 return "Read Bandwidth";
168 case ACPI_HMAT_WRITE_BANDWIDTH:
169 return "Write Bandwidth";
170 default:
171 return "Reserved";
172 }
173 }
174
hmat_data_type_suffix(u8 type)175 static __init const char *hmat_data_type_suffix(u8 type)
176 {
177 switch (type) {
178 case ACPI_HMAT_ACCESS_LATENCY:
179 case ACPI_HMAT_READ_LATENCY:
180 case ACPI_HMAT_WRITE_LATENCY:
181 return " nsec";
182 case ACPI_HMAT_ACCESS_BANDWIDTH:
183 case ACPI_HMAT_READ_BANDWIDTH:
184 case ACPI_HMAT_WRITE_BANDWIDTH:
185 return " MB/s";
186 default:
187 return "";
188 }
189 }
190
hmat_normalize(u16 entry,u64 base,u8 type)191 static u32 hmat_normalize(u16 entry, u64 base, u8 type)
192 {
193 u32 value;
194
195 /*
196 * Check for invalid and overflow values
197 */
198 if (entry == 0xffff || !entry)
199 return 0;
200 else if (base > (UINT_MAX / (entry)))
201 return 0;
202
203 /*
204 * Divide by the base unit for version 1, convert latency from
205 * picosenonds to nanoseconds if revision 2.
206 */
207 value = entry * base;
208 if (hmat_revision == 1) {
209 if (value < 10)
210 return 0;
211 value = DIV_ROUND_UP(value, 10);
212 } else if (hmat_revision == 2) {
213 switch (type) {
214 case ACPI_HMAT_ACCESS_LATENCY:
215 case ACPI_HMAT_READ_LATENCY:
216 case ACPI_HMAT_WRITE_LATENCY:
217 value = DIV_ROUND_UP(value, 1000);
218 break;
219 default:
220 break;
221 }
222 }
223 return value;
224 }
225
hmat_update_target_access(struct memory_target * target,u8 type,u32 value,int access)226 static void hmat_update_target_access(struct memory_target *target,
227 u8 type, u32 value, int access)
228 {
229 switch (type) {
230 case ACPI_HMAT_ACCESS_LATENCY:
231 target->hmem_attrs[access].read_latency = value;
232 target->hmem_attrs[access].write_latency = value;
233 break;
234 case ACPI_HMAT_READ_LATENCY:
235 target->hmem_attrs[access].read_latency = value;
236 break;
237 case ACPI_HMAT_WRITE_LATENCY:
238 target->hmem_attrs[access].write_latency = value;
239 break;
240 case ACPI_HMAT_ACCESS_BANDWIDTH:
241 target->hmem_attrs[access].read_bandwidth = value;
242 target->hmem_attrs[access].write_bandwidth = value;
243 break;
244 case ACPI_HMAT_READ_BANDWIDTH:
245 target->hmem_attrs[access].read_bandwidth = value;
246 break;
247 case ACPI_HMAT_WRITE_BANDWIDTH:
248 target->hmem_attrs[access].write_bandwidth = value;
249 break;
250 default:
251 break;
252 }
253 }
254
hmat_add_locality(struct acpi_hmat_locality * hmat_loc)255 static __init void hmat_add_locality(struct acpi_hmat_locality *hmat_loc)
256 {
257 struct memory_locality *loc;
258
259 loc = kzalloc(sizeof(*loc), GFP_KERNEL);
260 if (!loc) {
261 pr_notice_once("Failed to allocate HMAT locality\n");
262 return;
263 }
264
265 loc->hmat_loc = hmat_loc;
266 list_add_tail(&loc->node, &localities);
267
268 switch (hmat_loc->data_type) {
269 case ACPI_HMAT_ACCESS_LATENCY:
270 localities_types[READ_LATENCY] = loc;
271 localities_types[WRITE_LATENCY] = loc;
272 break;
273 case ACPI_HMAT_READ_LATENCY:
274 localities_types[READ_LATENCY] = loc;
275 break;
276 case ACPI_HMAT_WRITE_LATENCY:
277 localities_types[WRITE_LATENCY] = loc;
278 break;
279 case ACPI_HMAT_ACCESS_BANDWIDTH:
280 localities_types[READ_BANDWIDTH] = loc;
281 localities_types[WRITE_BANDWIDTH] = loc;
282 break;
283 case ACPI_HMAT_READ_BANDWIDTH:
284 localities_types[READ_BANDWIDTH] = loc;
285 break;
286 case ACPI_HMAT_WRITE_BANDWIDTH:
287 localities_types[WRITE_BANDWIDTH] = loc;
288 break;
289 default:
290 break;
291 }
292 }
293
hmat_parse_locality(union acpi_subtable_headers * header,const unsigned long end)294 static __init int hmat_parse_locality(union acpi_subtable_headers *header,
295 const unsigned long end)
296 {
297 struct acpi_hmat_locality *hmat_loc = (void *)header;
298 struct memory_target *target;
299 unsigned int init, targ, total_size, ipds, tpds;
300 u32 *inits, *targs, value;
301 u16 *entries;
302 u8 type, mem_hier;
303
304 if (hmat_loc->header.length < sizeof(*hmat_loc)) {
305 pr_notice("HMAT: Unexpected locality header length: %u\n",
306 hmat_loc->header.length);
307 return -EINVAL;
308 }
309
310 type = hmat_loc->data_type;
311 mem_hier = hmat_loc->flags & ACPI_HMAT_MEMORY_HIERARCHY;
312 ipds = hmat_loc->number_of_initiator_Pds;
313 tpds = hmat_loc->number_of_target_Pds;
314 total_size = sizeof(*hmat_loc) + sizeof(*entries) * ipds * tpds +
315 sizeof(*inits) * ipds + sizeof(*targs) * tpds;
316 if (hmat_loc->header.length < total_size) {
317 pr_notice("HMAT: Unexpected locality header length:%u, minimum required:%u\n",
318 hmat_loc->header.length, total_size);
319 return -EINVAL;
320 }
321
322 pr_info("HMAT: Locality: Flags:%02x Type:%s Initiator Domains:%u Target Domains:%u Base:%lld\n",
323 hmat_loc->flags, hmat_data_type(type), ipds, tpds,
324 hmat_loc->entry_base_unit);
325
326 inits = (u32 *)(hmat_loc + 1);
327 targs = inits + ipds;
328 entries = (u16 *)(targs + tpds);
329 for (init = 0; init < ipds; init++) {
330 alloc_memory_initiator(inits[init]);
331 for (targ = 0; targ < tpds; targ++) {
332 value = hmat_normalize(entries[init * tpds + targ],
333 hmat_loc->entry_base_unit,
334 type);
335 pr_info(" Initiator-Target[%u-%u]:%u%s\n",
336 inits[init], targs[targ], value,
337 hmat_data_type_suffix(type));
338
339 if (mem_hier == ACPI_HMAT_MEMORY) {
340 target = find_mem_target(targs[targ]);
341 if (target && target->processor_pxm == inits[init]) {
342 hmat_update_target_access(target, type, value, 0);
343 /* If the node has a CPU, update access 1 */
344 if (node_state(pxm_to_node(inits[init]), N_CPU))
345 hmat_update_target_access(target, type, value, 1);
346 }
347 }
348 }
349 }
350
351 if (mem_hier == ACPI_HMAT_MEMORY)
352 hmat_add_locality(hmat_loc);
353
354 return 0;
355 }
356
hmat_parse_cache(union acpi_subtable_headers * header,const unsigned long end)357 static __init int hmat_parse_cache(union acpi_subtable_headers *header,
358 const unsigned long end)
359 {
360 struct acpi_hmat_cache *cache = (void *)header;
361 struct memory_target *target;
362 struct target_cache *tcache;
363 u32 attrs;
364
365 if (cache->header.length < sizeof(*cache)) {
366 pr_notice("HMAT: Unexpected cache header length: %u\n",
367 cache->header.length);
368 return -EINVAL;
369 }
370
371 attrs = cache->cache_attributes;
372 pr_info("HMAT: Cache: Domain:%u Size:%llu Attrs:%08x SMBIOS Handles:%d\n",
373 cache->memory_PD, cache->cache_size, attrs,
374 cache->number_of_SMBIOShandles);
375
376 target = find_mem_target(cache->memory_PD);
377 if (!target)
378 return 0;
379
380 tcache = kzalloc(sizeof(*tcache), GFP_KERNEL);
381 if (!tcache) {
382 pr_notice_once("Failed to allocate HMAT cache info\n");
383 return 0;
384 }
385
386 tcache->cache_attrs.size = cache->cache_size;
387 tcache->cache_attrs.level = (attrs & ACPI_HMAT_CACHE_LEVEL) >> 4;
388 tcache->cache_attrs.line_size = (attrs & ACPI_HMAT_CACHE_LINE_SIZE) >> 16;
389
390 switch ((attrs & ACPI_HMAT_CACHE_ASSOCIATIVITY) >> 8) {
391 case ACPI_HMAT_CA_DIRECT_MAPPED:
392 tcache->cache_attrs.indexing = NODE_CACHE_DIRECT_MAP;
393 break;
394 case ACPI_HMAT_CA_COMPLEX_CACHE_INDEXING:
395 tcache->cache_attrs.indexing = NODE_CACHE_INDEXED;
396 break;
397 case ACPI_HMAT_CA_NONE:
398 default:
399 tcache->cache_attrs.indexing = NODE_CACHE_OTHER;
400 break;
401 }
402
403 switch ((attrs & ACPI_HMAT_WRITE_POLICY) >> 12) {
404 case ACPI_HMAT_CP_WB:
405 tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_BACK;
406 break;
407 case ACPI_HMAT_CP_WT:
408 tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_THROUGH;
409 break;
410 case ACPI_HMAT_CP_NONE:
411 default:
412 tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_OTHER;
413 break;
414 }
415 list_add_tail(&tcache->node, &target->caches);
416
417 return 0;
418 }
419
hmat_parse_proximity_domain(union acpi_subtable_headers * header,const unsigned long end)420 static int __init hmat_parse_proximity_domain(union acpi_subtable_headers *header,
421 const unsigned long end)
422 {
423 struct acpi_hmat_proximity_domain *p = (void *)header;
424 struct memory_target *target = NULL;
425
426 if (p->header.length != sizeof(*p)) {
427 pr_notice("HMAT: Unexpected address range header length: %u\n",
428 p->header.length);
429 return -EINVAL;
430 }
431
432 if (hmat_revision == 1)
433 pr_info("HMAT: Memory (%#llx length %#llx) Flags:%04x Processor Domain:%u Memory Domain:%u\n",
434 p->reserved3, p->reserved4, p->flags, p->processor_PD,
435 p->memory_PD);
436 else
437 pr_info("HMAT: Memory Flags:%04x Processor Domain:%u Memory Domain:%u\n",
438 p->flags, p->processor_PD, p->memory_PD);
439
440 if ((hmat_revision == 1 && p->flags & ACPI_HMAT_MEMORY_PD_VALID) ||
441 hmat_revision > 1) {
442 target = find_mem_target(p->memory_PD);
443 if (!target) {
444 pr_debug("HMAT: Memory Domain missing from SRAT\n");
445 return -EINVAL;
446 }
447 }
448 if (target && p->flags & ACPI_HMAT_PROCESSOR_PD_VALID) {
449 int p_node = pxm_to_node(p->processor_PD);
450
451 if (p_node == NUMA_NO_NODE) {
452 pr_debug("HMAT: Invalid Processor Domain\n");
453 return -EINVAL;
454 }
455 target->processor_pxm = p->processor_PD;
456 }
457
458 return 0;
459 }
460
hmat_parse_subtable(union acpi_subtable_headers * header,const unsigned long end)461 static int __init hmat_parse_subtable(union acpi_subtable_headers *header,
462 const unsigned long end)
463 {
464 struct acpi_hmat_structure *hdr = (void *)header;
465
466 if (!hdr)
467 return -EINVAL;
468
469 switch (hdr->type) {
470 case ACPI_HMAT_TYPE_PROXIMITY:
471 return hmat_parse_proximity_domain(header, end);
472 case ACPI_HMAT_TYPE_LOCALITY:
473 return hmat_parse_locality(header, end);
474 case ACPI_HMAT_TYPE_CACHE:
475 return hmat_parse_cache(header, end);
476 default:
477 return -EINVAL;
478 }
479 }
480
srat_parse_mem_affinity(union acpi_subtable_headers * header,const unsigned long end)481 static __init int srat_parse_mem_affinity(union acpi_subtable_headers *header,
482 const unsigned long end)
483 {
484 struct acpi_srat_mem_affinity *ma = (void *)header;
485
486 if (!ma)
487 return -EINVAL;
488 if (!(ma->flags & ACPI_SRAT_MEM_ENABLED))
489 return 0;
490 alloc_memory_target(ma->proximity_domain, ma->base_address, ma->length);
491 return 0;
492 }
493
hmat_initiator_perf(struct memory_target * target,struct memory_initiator * initiator,struct acpi_hmat_locality * hmat_loc)494 static u32 hmat_initiator_perf(struct memory_target *target,
495 struct memory_initiator *initiator,
496 struct acpi_hmat_locality *hmat_loc)
497 {
498 unsigned int ipds, tpds, i, idx = 0, tdx = 0;
499 u32 *inits, *targs;
500 u16 *entries;
501
502 ipds = hmat_loc->number_of_initiator_Pds;
503 tpds = hmat_loc->number_of_target_Pds;
504 inits = (u32 *)(hmat_loc + 1);
505 targs = inits + ipds;
506 entries = (u16 *)(targs + tpds);
507
508 for (i = 0; i < ipds; i++) {
509 if (inits[i] == initiator->processor_pxm) {
510 idx = i;
511 break;
512 }
513 }
514
515 if (i == ipds)
516 return 0;
517
518 for (i = 0; i < tpds; i++) {
519 if (targs[i] == target->memory_pxm) {
520 tdx = i;
521 break;
522 }
523 }
524 if (i == tpds)
525 return 0;
526
527 return hmat_normalize(entries[idx * tpds + tdx],
528 hmat_loc->entry_base_unit,
529 hmat_loc->data_type);
530 }
531
hmat_update_best(u8 type,u32 value,u32 * best)532 static bool hmat_update_best(u8 type, u32 value, u32 *best)
533 {
534 bool updated = false;
535
536 if (!value)
537 return false;
538
539 switch (type) {
540 case ACPI_HMAT_ACCESS_LATENCY:
541 case ACPI_HMAT_READ_LATENCY:
542 case ACPI_HMAT_WRITE_LATENCY:
543 if (!*best || *best > value) {
544 *best = value;
545 updated = true;
546 }
547 break;
548 case ACPI_HMAT_ACCESS_BANDWIDTH:
549 case ACPI_HMAT_READ_BANDWIDTH:
550 case ACPI_HMAT_WRITE_BANDWIDTH:
551 if (!*best || *best < value) {
552 *best = value;
553 updated = true;
554 }
555 break;
556 }
557
558 return updated;
559 }
560
initiator_cmp(void * priv,const struct list_head * a,const struct list_head * b)561 static int initiator_cmp(void *priv, const struct list_head *a,
562 const struct list_head *b)
563 {
564 struct memory_initiator *ia;
565 struct memory_initiator *ib;
566
567 ia = list_entry(a, struct memory_initiator, node);
568 ib = list_entry(b, struct memory_initiator, node);
569
570 return ia->processor_pxm - ib->processor_pxm;
571 }
572
initiators_to_nodemask(unsigned long * p_nodes)573 static int initiators_to_nodemask(unsigned long *p_nodes)
574 {
575 struct memory_initiator *initiator;
576
577 if (list_empty(&initiators))
578 return -ENXIO;
579
580 list_for_each_entry(initiator, &initiators, node)
581 set_bit(initiator->processor_pxm, p_nodes);
582
583 return 0;
584 }
585
hmat_register_target_initiators(struct memory_target * target)586 static void hmat_register_target_initiators(struct memory_target *target)
587 {
588 static DECLARE_BITMAP(p_nodes, MAX_NUMNODES);
589 struct memory_initiator *initiator;
590 unsigned int mem_nid, cpu_nid;
591 struct memory_locality *loc = NULL;
592 u32 best = 0;
593 bool access0done = false;
594 int i;
595
596 mem_nid = pxm_to_node(target->memory_pxm);
597 /*
598 * If the Address Range Structure provides a local processor pxm, link
599 * only that one. Otherwise, find the best performance attributes and
600 * register all initiators that match.
601 */
602 if (target->processor_pxm != PXM_INVAL) {
603 cpu_nid = pxm_to_node(target->processor_pxm);
604 register_memory_node_under_compute_node(mem_nid, cpu_nid, 0);
605 access0done = true;
606 if (node_state(cpu_nid, N_CPU)) {
607 register_memory_node_under_compute_node(mem_nid, cpu_nid, 1);
608 return;
609 }
610 }
611
612 if (list_empty(&localities))
613 return;
614
615 /*
616 * We need the initiator list sorted so we can use bitmap_clear for
617 * previously set initiators when we find a better memory accessor.
618 * We'll also use the sorting to prime the candidate nodes with known
619 * initiators.
620 */
621 bitmap_zero(p_nodes, MAX_NUMNODES);
622 list_sort(NULL, &initiators, initiator_cmp);
623 if (initiators_to_nodemask(p_nodes) < 0)
624 return;
625
626 if (!access0done) {
627 for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) {
628 loc = localities_types[i];
629 if (!loc)
630 continue;
631
632 best = 0;
633 list_for_each_entry(initiator, &initiators, node) {
634 u32 value;
635
636 if (!test_bit(initiator->processor_pxm, p_nodes))
637 continue;
638
639 value = hmat_initiator_perf(target, initiator,
640 loc->hmat_loc);
641 if (hmat_update_best(loc->hmat_loc->data_type, value, &best))
642 bitmap_clear(p_nodes, 0, initiator->processor_pxm);
643 if (value != best)
644 clear_bit(initiator->processor_pxm, p_nodes);
645 }
646 if (best)
647 hmat_update_target_access(target, loc->hmat_loc->data_type,
648 best, 0);
649 }
650
651 for_each_set_bit(i, p_nodes, MAX_NUMNODES) {
652 cpu_nid = pxm_to_node(i);
653 register_memory_node_under_compute_node(mem_nid, cpu_nid, 0);
654 }
655 }
656
657 /* Access 1 ignores Generic Initiators */
658 bitmap_zero(p_nodes, MAX_NUMNODES);
659 if (initiators_to_nodemask(p_nodes) < 0)
660 return;
661
662 for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) {
663 loc = localities_types[i];
664 if (!loc)
665 continue;
666
667 best = 0;
668 list_for_each_entry(initiator, &initiators, node) {
669 u32 value;
670
671 if (!initiator->has_cpu) {
672 clear_bit(initiator->processor_pxm, p_nodes);
673 continue;
674 }
675 if (!test_bit(initiator->processor_pxm, p_nodes))
676 continue;
677
678 value = hmat_initiator_perf(target, initiator, loc->hmat_loc);
679 if (hmat_update_best(loc->hmat_loc->data_type, value, &best))
680 bitmap_clear(p_nodes, 0, initiator->processor_pxm);
681 if (value != best)
682 clear_bit(initiator->processor_pxm, p_nodes);
683 }
684 if (best)
685 hmat_update_target_access(target, loc->hmat_loc->data_type, best, 1);
686 }
687 for_each_set_bit(i, p_nodes, MAX_NUMNODES) {
688 cpu_nid = pxm_to_node(i);
689 register_memory_node_under_compute_node(mem_nid, cpu_nid, 1);
690 }
691 }
692
hmat_register_target_cache(struct memory_target * target)693 static void hmat_register_target_cache(struct memory_target *target)
694 {
695 unsigned mem_nid = pxm_to_node(target->memory_pxm);
696 struct target_cache *tcache;
697
698 list_for_each_entry(tcache, &target->caches, node)
699 node_add_cache(mem_nid, &tcache->cache_attrs);
700 }
701
hmat_register_target_perf(struct memory_target * target,int access)702 static void hmat_register_target_perf(struct memory_target *target, int access)
703 {
704 unsigned mem_nid = pxm_to_node(target->memory_pxm);
705 node_set_perf_attrs(mem_nid, &target->hmem_attrs[access], access);
706 }
707
hmat_register_target_devices(struct memory_target * target)708 static void hmat_register_target_devices(struct memory_target *target)
709 {
710 struct resource *res;
711
712 /*
713 * Do not bother creating devices if no driver is available to
714 * consume them.
715 */
716 if (!IS_ENABLED(CONFIG_DEV_DAX_HMEM))
717 return;
718
719 for (res = target->memregions.child; res; res = res->sibling) {
720 int target_nid = pxm_to_node(target->memory_pxm);
721
722 hmem_register_device(target_nid, res);
723 }
724 }
725
hmat_register_target(struct memory_target * target)726 static void hmat_register_target(struct memory_target *target)
727 {
728 int nid = pxm_to_node(target->memory_pxm);
729
730 /*
731 * Devices may belong to either an offline or online
732 * node, so unconditionally add them.
733 */
734 hmat_register_target_devices(target);
735
736 /*
737 * Skip offline nodes. This can happen when memory
738 * marked EFI_MEMORY_SP, "specific purpose", is applied
739 * to all the memory in a promixity domain leading to
740 * the node being marked offline / unplugged, or if
741 * memory-only "hotplug" node is offline.
742 */
743 if (nid == NUMA_NO_NODE || !node_online(nid))
744 return;
745
746 mutex_lock(&target_lock);
747 if (!target->registered) {
748 hmat_register_target_initiators(target);
749 hmat_register_target_cache(target);
750 hmat_register_target_perf(target, 0);
751 hmat_register_target_perf(target, 1);
752 target->registered = true;
753 }
754 mutex_unlock(&target_lock);
755 }
756
hmat_register_targets(void)757 static void hmat_register_targets(void)
758 {
759 struct memory_target *target;
760
761 list_for_each_entry(target, &targets, node)
762 hmat_register_target(target);
763 }
764
hmat_callback(struct notifier_block * self,unsigned long action,void * arg)765 static int hmat_callback(struct notifier_block *self,
766 unsigned long action, void *arg)
767 {
768 struct memory_target *target;
769 struct memory_notify *mnb = arg;
770 int pxm, nid = mnb->status_change_nid;
771
772 if (nid == NUMA_NO_NODE || action != MEM_ONLINE)
773 return NOTIFY_OK;
774
775 pxm = node_to_pxm(nid);
776 target = find_mem_target(pxm);
777 if (!target)
778 return NOTIFY_OK;
779
780 hmat_register_target(target);
781 return NOTIFY_OK;
782 }
783
784 static struct notifier_block hmat_callback_nb = {
785 .notifier_call = hmat_callback,
786 .priority = 2,
787 };
788
hmat_free_structures(void)789 static __init void hmat_free_structures(void)
790 {
791 struct memory_target *target, *tnext;
792 struct memory_locality *loc, *lnext;
793 struct memory_initiator *initiator, *inext;
794 struct target_cache *tcache, *cnext;
795
796 list_for_each_entry_safe(target, tnext, &targets, node) {
797 struct resource *res, *res_next;
798
799 list_for_each_entry_safe(tcache, cnext, &target->caches, node) {
800 list_del(&tcache->node);
801 kfree(tcache);
802 }
803
804 list_del(&target->node);
805 res = target->memregions.child;
806 while (res) {
807 res_next = res->sibling;
808 __release_region(&target->memregions, res->start,
809 resource_size(res));
810 res = res_next;
811 }
812 kfree(target);
813 }
814
815 list_for_each_entry_safe(initiator, inext, &initiators, node) {
816 list_del(&initiator->node);
817 kfree(initiator);
818 }
819
820 list_for_each_entry_safe(loc, lnext, &localities, node) {
821 list_del(&loc->node);
822 kfree(loc);
823 }
824 }
825
hmat_init(void)826 static __init int hmat_init(void)
827 {
828 struct acpi_table_header *tbl;
829 enum acpi_hmat_type i;
830 acpi_status status;
831
832 if (srat_disabled() || hmat_disable)
833 return 0;
834
835 status = acpi_get_table(ACPI_SIG_SRAT, 0, &tbl);
836 if (ACPI_FAILURE(status))
837 return 0;
838
839 if (acpi_table_parse_entries(ACPI_SIG_SRAT,
840 sizeof(struct acpi_table_srat),
841 ACPI_SRAT_TYPE_MEMORY_AFFINITY,
842 srat_parse_mem_affinity, 0) < 0)
843 goto out_put;
844 acpi_put_table(tbl);
845
846 status = acpi_get_table(ACPI_SIG_HMAT, 0, &tbl);
847 if (ACPI_FAILURE(status))
848 goto out_put;
849
850 hmat_revision = tbl->revision;
851 switch (hmat_revision) {
852 case 1:
853 case 2:
854 break;
855 default:
856 pr_notice("Ignoring HMAT: Unknown revision:%d\n", hmat_revision);
857 goto out_put;
858 }
859
860 for (i = ACPI_HMAT_TYPE_PROXIMITY; i < ACPI_HMAT_TYPE_RESERVED; i++) {
861 if (acpi_table_parse_entries(ACPI_SIG_HMAT,
862 sizeof(struct acpi_table_hmat), i,
863 hmat_parse_subtable, 0) < 0) {
864 pr_notice("Ignoring HMAT: Invalid table");
865 goto out_put;
866 }
867 }
868 hmat_register_targets();
869
870 /* Keep the table and structures if the notifier may use them */
871 if (!register_hotmemory_notifier(&hmat_callback_nb))
872 return 0;
873 out_put:
874 hmat_free_structures();
875 acpi_put_table(tbl);
876 return 0;
877 }
878 device_initcall(hmat_init);
879