1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/rfkill.h>
30 #include <linux/debugfs.h>
31 #include <linux/crypto.h>
32 #include <linux/property.h>
33 #include <linux/suspend.h>
34 #include <linux/wait.h>
35 #include <asm/unaligned.h>
36
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
39 #include <net/bluetooth/l2cap.h>
40 #include <net/bluetooth/mgmt.h>
41
42 #include "hci_request.h"
43 #include "hci_debugfs.h"
44 #include "smp.h"
45 #include "leds.h"
46 #include "msft.h"
47
48 static void hci_rx_work(struct work_struct *work);
49 static void hci_cmd_work(struct work_struct *work);
50 static void hci_tx_work(struct work_struct *work);
51
52 /* HCI device list */
53 LIST_HEAD(hci_dev_list);
54 DEFINE_RWLOCK(hci_dev_list_lock);
55
56 /* HCI callback list */
57 LIST_HEAD(hci_cb_list);
58 DEFINE_MUTEX(hci_cb_list_lock);
59
60 /* HCI ID Numbering */
61 static DEFINE_IDA(hci_index_ida);
62
63 /* ---- HCI debugfs entries ---- */
64
dut_mode_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)65 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
66 size_t count, loff_t *ppos)
67 {
68 struct hci_dev *hdev = file->private_data;
69 char buf[3];
70
71 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
72 buf[1] = '\n';
73 buf[2] = '\0';
74 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
75 }
76
dut_mode_write(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)77 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
78 size_t count, loff_t *ppos)
79 {
80 struct hci_dev *hdev = file->private_data;
81 struct sk_buff *skb;
82 bool enable;
83 int err;
84
85 if (!test_bit(HCI_UP, &hdev->flags))
86 return -ENETDOWN;
87
88 err = kstrtobool_from_user(user_buf, count, &enable);
89 if (err)
90 return err;
91
92 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
93 return -EALREADY;
94
95 hci_req_sync_lock(hdev);
96 if (enable)
97 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
98 HCI_CMD_TIMEOUT);
99 else
100 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
101 HCI_CMD_TIMEOUT);
102 hci_req_sync_unlock(hdev);
103
104 if (IS_ERR(skb))
105 return PTR_ERR(skb);
106
107 kfree_skb(skb);
108
109 hci_dev_change_flag(hdev, HCI_DUT_MODE);
110
111 return count;
112 }
113
114 static const struct file_operations dut_mode_fops = {
115 .open = simple_open,
116 .read = dut_mode_read,
117 .write = dut_mode_write,
118 .llseek = default_llseek,
119 };
120
vendor_diag_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)121 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
122 size_t count, loff_t *ppos)
123 {
124 struct hci_dev *hdev = file->private_data;
125 char buf[3];
126
127 buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
128 buf[1] = '\n';
129 buf[2] = '\0';
130 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
131 }
132
vendor_diag_write(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)133 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
134 size_t count, loff_t *ppos)
135 {
136 struct hci_dev *hdev = file->private_data;
137 bool enable;
138 int err;
139
140 err = kstrtobool_from_user(user_buf, count, &enable);
141 if (err)
142 return err;
143
144 /* When the diagnostic flags are not persistent and the transport
145 * is not active or in user channel operation, then there is no need
146 * for the vendor callback. Instead just store the desired value and
147 * the setting will be programmed when the controller gets powered on.
148 */
149 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
150 (!test_bit(HCI_RUNNING, &hdev->flags) ||
151 hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
152 goto done;
153
154 hci_req_sync_lock(hdev);
155 err = hdev->set_diag(hdev, enable);
156 hci_req_sync_unlock(hdev);
157
158 if (err < 0)
159 return err;
160
161 done:
162 if (enable)
163 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
164 else
165 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
166
167 return count;
168 }
169
170 static const struct file_operations vendor_diag_fops = {
171 .open = simple_open,
172 .read = vendor_diag_read,
173 .write = vendor_diag_write,
174 .llseek = default_llseek,
175 };
176
hci_debugfs_create_basic(struct hci_dev * hdev)177 static void hci_debugfs_create_basic(struct hci_dev *hdev)
178 {
179 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
180 &dut_mode_fops);
181
182 if (hdev->set_diag)
183 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
184 &vendor_diag_fops);
185 }
186
hci_reset_req(struct hci_request * req,unsigned long opt)187 static int hci_reset_req(struct hci_request *req, unsigned long opt)
188 {
189 BT_DBG("%s %ld", req->hdev->name, opt);
190
191 /* Reset device */
192 set_bit(HCI_RESET, &req->hdev->flags);
193 hci_req_add(req, HCI_OP_RESET, 0, NULL);
194 return 0;
195 }
196
bredr_init(struct hci_request * req)197 static void bredr_init(struct hci_request *req)
198 {
199 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
200
201 /* Read Local Supported Features */
202 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
203
204 /* Read Local Version */
205 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
206
207 /* Read BD Address */
208 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
209 }
210
amp_init1(struct hci_request * req)211 static void amp_init1(struct hci_request *req)
212 {
213 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
214
215 /* Read Local Version */
216 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
217
218 /* Read Local Supported Commands */
219 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
220
221 /* Read Local AMP Info */
222 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
223
224 /* Read Data Blk size */
225 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
226
227 /* Read Flow Control Mode */
228 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
229
230 /* Read Location Data */
231 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
232 }
233
amp_init2(struct hci_request * req)234 static int amp_init2(struct hci_request *req)
235 {
236 /* Read Local Supported Features. Not all AMP controllers
237 * support this so it's placed conditionally in the second
238 * stage init.
239 */
240 if (req->hdev->commands[14] & 0x20)
241 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
242
243 return 0;
244 }
245
hci_init1_req(struct hci_request * req,unsigned long opt)246 static int hci_init1_req(struct hci_request *req, unsigned long opt)
247 {
248 struct hci_dev *hdev = req->hdev;
249
250 BT_DBG("%s %ld", hdev->name, opt);
251
252 /* Reset */
253 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
254 hci_reset_req(req, 0);
255
256 switch (hdev->dev_type) {
257 case HCI_PRIMARY:
258 bredr_init(req);
259 break;
260 case HCI_AMP:
261 amp_init1(req);
262 break;
263 default:
264 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
265 break;
266 }
267
268 return 0;
269 }
270
bredr_setup(struct hci_request * req)271 static void bredr_setup(struct hci_request *req)
272 {
273 __le16 param;
274 __u8 flt_type;
275
276 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
277 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
278
279 /* Read Class of Device */
280 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
281
282 /* Read Local Name */
283 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
284
285 /* Read Voice Setting */
286 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
287
288 /* Read Number of Supported IAC */
289 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
290
291 /* Read Current IAC LAP */
292 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
293
294 /* Clear Event Filters */
295 flt_type = HCI_FLT_CLEAR_ALL;
296 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
297
298 /* Connection accept timeout ~20 secs */
299 param = cpu_to_le16(0x7d00);
300 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, ¶m);
301 }
302
le_setup(struct hci_request * req)303 static void le_setup(struct hci_request *req)
304 {
305 struct hci_dev *hdev = req->hdev;
306
307 /* Read LE Buffer Size */
308 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
309
310 /* Read LE Local Supported Features */
311 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
312
313 /* Read LE Supported States */
314 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
315
316 /* LE-only controllers have LE implicitly enabled */
317 if (!lmp_bredr_capable(hdev))
318 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
319 }
320
hci_setup_event_mask(struct hci_request * req)321 static void hci_setup_event_mask(struct hci_request *req)
322 {
323 struct hci_dev *hdev = req->hdev;
324
325 /* The second byte is 0xff instead of 0x9f (two reserved bits
326 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
327 * command otherwise.
328 */
329 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
330
331 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
332 * any event mask for pre 1.2 devices.
333 */
334 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
335 return;
336
337 if (lmp_bredr_capable(hdev)) {
338 events[4] |= 0x01; /* Flow Specification Complete */
339 } else {
340 /* Use a different default for LE-only devices */
341 memset(events, 0, sizeof(events));
342 events[1] |= 0x20; /* Command Complete */
343 events[1] |= 0x40; /* Command Status */
344 events[1] |= 0x80; /* Hardware Error */
345
346 /* If the controller supports the Disconnect command, enable
347 * the corresponding event. In addition enable packet flow
348 * control related events.
349 */
350 if (hdev->commands[0] & 0x20) {
351 events[0] |= 0x10; /* Disconnection Complete */
352 events[2] |= 0x04; /* Number of Completed Packets */
353 events[3] |= 0x02; /* Data Buffer Overflow */
354 }
355
356 /* If the controller supports the Read Remote Version
357 * Information command, enable the corresponding event.
358 */
359 if (hdev->commands[2] & 0x80)
360 events[1] |= 0x08; /* Read Remote Version Information
361 * Complete
362 */
363
364 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
365 events[0] |= 0x80; /* Encryption Change */
366 events[5] |= 0x80; /* Encryption Key Refresh Complete */
367 }
368 }
369
370 if (lmp_inq_rssi_capable(hdev) ||
371 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
372 events[4] |= 0x02; /* Inquiry Result with RSSI */
373
374 if (lmp_ext_feat_capable(hdev))
375 events[4] |= 0x04; /* Read Remote Extended Features Complete */
376
377 if (lmp_esco_capable(hdev)) {
378 events[5] |= 0x08; /* Synchronous Connection Complete */
379 events[5] |= 0x10; /* Synchronous Connection Changed */
380 }
381
382 if (lmp_sniffsubr_capable(hdev))
383 events[5] |= 0x20; /* Sniff Subrating */
384
385 if (lmp_pause_enc_capable(hdev))
386 events[5] |= 0x80; /* Encryption Key Refresh Complete */
387
388 if (lmp_ext_inq_capable(hdev))
389 events[5] |= 0x40; /* Extended Inquiry Result */
390
391 if (lmp_no_flush_capable(hdev))
392 events[7] |= 0x01; /* Enhanced Flush Complete */
393
394 if (lmp_lsto_capable(hdev))
395 events[6] |= 0x80; /* Link Supervision Timeout Changed */
396
397 if (lmp_ssp_capable(hdev)) {
398 events[6] |= 0x01; /* IO Capability Request */
399 events[6] |= 0x02; /* IO Capability Response */
400 events[6] |= 0x04; /* User Confirmation Request */
401 events[6] |= 0x08; /* User Passkey Request */
402 events[6] |= 0x10; /* Remote OOB Data Request */
403 events[6] |= 0x20; /* Simple Pairing Complete */
404 events[7] |= 0x04; /* User Passkey Notification */
405 events[7] |= 0x08; /* Keypress Notification */
406 events[7] |= 0x10; /* Remote Host Supported
407 * Features Notification
408 */
409 }
410
411 if (lmp_le_capable(hdev))
412 events[7] |= 0x20; /* LE Meta-Event */
413
414 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
415 }
416
hci_init2_req(struct hci_request * req,unsigned long opt)417 static int hci_init2_req(struct hci_request *req, unsigned long opt)
418 {
419 struct hci_dev *hdev = req->hdev;
420
421 if (hdev->dev_type == HCI_AMP)
422 return amp_init2(req);
423
424 if (lmp_bredr_capable(hdev))
425 bredr_setup(req);
426 else
427 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
428
429 if (lmp_le_capable(hdev))
430 le_setup(req);
431
432 /* All Bluetooth 1.2 and later controllers should support the
433 * HCI command for reading the local supported commands.
434 *
435 * Unfortunately some controllers indicate Bluetooth 1.2 support,
436 * but do not have support for this command. If that is the case,
437 * the driver can quirk the behavior and skip reading the local
438 * supported commands.
439 */
440 if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
441 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
442 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
443
444 if (lmp_ssp_capable(hdev)) {
445 /* When SSP is available, then the host features page
446 * should also be available as well. However some
447 * controllers list the max_page as 0 as long as SSP
448 * has not been enabled. To achieve proper debugging
449 * output, force the minimum max_page to 1 at least.
450 */
451 hdev->max_page = 0x01;
452
453 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
454 u8 mode = 0x01;
455
456 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
457 sizeof(mode), &mode);
458 } else {
459 struct hci_cp_write_eir cp;
460
461 memset(hdev->eir, 0, sizeof(hdev->eir));
462 memset(&cp, 0, sizeof(cp));
463
464 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
465 }
466 }
467
468 if (lmp_inq_rssi_capable(hdev) ||
469 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
470 u8 mode;
471
472 /* If Extended Inquiry Result events are supported, then
473 * they are clearly preferred over Inquiry Result with RSSI
474 * events.
475 */
476 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
477
478 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
479 }
480
481 if (lmp_inq_tx_pwr_capable(hdev))
482 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
483
484 if (lmp_ext_feat_capable(hdev)) {
485 struct hci_cp_read_local_ext_features cp;
486
487 cp.page = 0x01;
488 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
489 sizeof(cp), &cp);
490 }
491
492 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
493 u8 enable = 1;
494 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
495 &enable);
496 }
497
498 return 0;
499 }
500
hci_setup_link_policy(struct hci_request * req)501 static void hci_setup_link_policy(struct hci_request *req)
502 {
503 struct hci_dev *hdev = req->hdev;
504 struct hci_cp_write_def_link_policy cp;
505 u16 link_policy = 0;
506
507 if (lmp_rswitch_capable(hdev))
508 link_policy |= HCI_LP_RSWITCH;
509 if (lmp_hold_capable(hdev))
510 link_policy |= HCI_LP_HOLD;
511 if (lmp_sniff_capable(hdev))
512 link_policy |= HCI_LP_SNIFF;
513 if (lmp_park_capable(hdev))
514 link_policy |= HCI_LP_PARK;
515
516 cp.policy = cpu_to_le16(link_policy);
517 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
518 }
519
hci_set_le_support(struct hci_request * req)520 static void hci_set_le_support(struct hci_request *req)
521 {
522 struct hci_dev *hdev = req->hdev;
523 struct hci_cp_write_le_host_supported cp;
524
525 /* LE-only devices do not support explicit enablement */
526 if (!lmp_bredr_capable(hdev))
527 return;
528
529 memset(&cp, 0, sizeof(cp));
530
531 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
532 cp.le = 0x01;
533 cp.simul = 0x00;
534 }
535
536 if (cp.le != lmp_host_le_capable(hdev))
537 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
538 &cp);
539 }
540
hci_set_event_mask_page_2(struct hci_request * req)541 static void hci_set_event_mask_page_2(struct hci_request *req)
542 {
543 struct hci_dev *hdev = req->hdev;
544 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
545 bool changed = false;
546
547 /* If Connectionless Slave Broadcast master role is supported
548 * enable all necessary events for it.
549 */
550 if (lmp_csb_master_capable(hdev)) {
551 events[1] |= 0x40; /* Triggered Clock Capture */
552 events[1] |= 0x80; /* Synchronization Train Complete */
553 events[2] |= 0x10; /* Slave Page Response Timeout */
554 events[2] |= 0x20; /* CSB Channel Map Change */
555 changed = true;
556 }
557
558 /* If Connectionless Slave Broadcast slave role is supported
559 * enable all necessary events for it.
560 */
561 if (lmp_csb_slave_capable(hdev)) {
562 events[2] |= 0x01; /* Synchronization Train Received */
563 events[2] |= 0x02; /* CSB Receive */
564 events[2] |= 0x04; /* CSB Timeout */
565 events[2] |= 0x08; /* Truncated Page Complete */
566 changed = true;
567 }
568
569 /* Enable Authenticated Payload Timeout Expired event if supported */
570 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
571 events[2] |= 0x80;
572 changed = true;
573 }
574
575 /* Some Broadcom based controllers indicate support for Set Event
576 * Mask Page 2 command, but then actually do not support it. Since
577 * the default value is all bits set to zero, the command is only
578 * required if the event mask has to be changed. In case no change
579 * to the event mask is needed, skip this command.
580 */
581 if (changed)
582 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
583 sizeof(events), events);
584 }
585
hci_init3_req(struct hci_request * req,unsigned long opt)586 static int hci_init3_req(struct hci_request *req, unsigned long opt)
587 {
588 struct hci_dev *hdev = req->hdev;
589 u8 p;
590
591 hci_setup_event_mask(req);
592
593 if (hdev->commands[6] & 0x20 &&
594 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
595 struct hci_cp_read_stored_link_key cp;
596
597 bacpy(&cp.bdaddr, BDADDR_ANY);
598 cp.read_all = 0x01;
599 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
600 }
601
602 if (hdev->commands[5] & 0x10)
603 hci_setup_link_policy(req);
604
605 if (hdev->commands[8] & 0x01)
606 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
607
608 if (hdev->commands[18] & 0x04 &&
609 !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
610 hci_req_add(req, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 0, NULL);
611
612 /* Some older Broadcom based Bluetooth 1.2 controllers do not
613 * support the Read Page Scan Type command. Check support for
614 * this command in the bit mask of supported commands.
615 */
616 if (hdev->commands[13] & 0x01)
617 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
618
619 if (lmp_le_capable(hdev)) {
620 u8 events[8];
621
622 memset(events, 0, sizeof(events));
623
624 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
625 events[0] |= 0x10; /* LE Long Term Key Request */
626
627 /* If controller supports the Connection Parameters Request
628 * Link Layer Procedure, enable the corresponding event.
629 */
630 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
631 events[0] |= 0x20; /* LE Remote Connection
632 * Parameter Request
633 */
634
635 /* If the controller supports the Data Length Extension
636 * feature, enable the corresponding event.
637 */
638 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
639 events[0] |= 0x40; /* LE Data Length Change */
640
641 /* If the controller supports LL Privacy feature, enable
642 * the corresponding event.
643 */
644 if (hdev->le_features[0] & HCI_LE_LL_PRIVACY)
645 events[1] |= 0x02; /* LE Enhanced Connection
646 * Complete
647 */
648
649 /* If the controller supports Extended Scanner Filter
650 * Policies, enable the correspondig event.
651 */
652 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
653 events[1] |= 0x04; /* LE Direct Advertising
654 * Report
655 */
656
657 /* If the controller supports Channel Selection Algorithm #2
658 * feature, enable the corresponding event.
659 */
660 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
661 events[2] |= 0x08; /* LE Channel Selection
662 * Algorithm
663 */
664
665 /* If the controller supports the LE Set Scan Enable command,
666 * enable the corresponding advertising report event.
667 */
668 if (hdev->commands[26] & 0x08)
669 events[0] |= 0x02; /* LE Advertising Report */
670
671 /* If the controller supports the LE Create Connection
672 * command, enable the corresponding event.
673 */
674 if (hdev->commands[26] & 0x10)
675 events[0] |= 0x01; /* LE Connection Complete */
676
677 /* If the controller supports the LE Connection Update
678 * command, enable the corresponding event.
679 */
680 if (hdev->commands[27] & 0x04)
681 events[0] |= 0x04; /* LE Connection Update
682 * Complete
683 */
684
685 /* If the controller supports the LE Read Remote Used Features
686 * command, enable the corresponding event.
687 */
688 if (hdev->commands[27] & 0x20)
689 events[0] |= 0x08; /* LE Read Remote Used
690 * Features Complete
691 */
692
693 /* If the controller supports the LE Read Local P-256
694 * Public Key command, enable the corresponding event.
695 */
696 if (hdev->commands[34] & 0x02)
697 events[0] |= 0x80; /* LE Read Local P-256
698 * Public Key Complete
699 */
700
701 /* If the controller supports the LE Generate DHKey
702 * command, enable the corresponding event.
703 */
704 if (hdev->commands[34] & 0x04)
705 events[1] |= 0x01; /* LE Generate DHKey Complete */
706
707 /* If the controller supports the LE Set Default PHY or
708 * LE Set PHY commands, enable the corresponding event.
709 */
710 if (hdev->commands[35] & (0x20 | 0x40))
711 events[1] |= 0x08; /* LE PHY Update Complete */
712
713 /* If the controller supports LE Set Extended Scan Parameters
714 * and LE Set Extended Scan Enable commands, enable the
715 * corresponding event.
716 */
717 if (use_ext_scan(hdev))
718 events[1] |= 0x10; /* LE Extended Advertising
719 * Report
720 */
721
722 /* If the controller supports the LE Extended Advertising
723 * command, enable the corresponding event.
724 */
725 if (ext_adv_capable(hdev))
726 events[2] |= 0x02; /* LE Advertising Set
727 * Terminated
728 */
729
730 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
731 events);
732
733 /* Read LE Advertising Channel TX Power */
734 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
735 /* HCI TS spec forbids mixing of legacy and extended
736 * advertising commands wherein READ_ADV_TX_POWER is
737 * also included. So do not call it if extended adv
738 * is supported otherwise controller will return
739 * COMMAND_DISALLOWED for extended commands.
740 */
741 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
742 }
743
744 if (hdev->commands[26] & 0x40) {
745 /* Read LE Accept List Size */
746 hci_req_add(req, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
747 0, NULL);
748 }
749
750 if (hdev->commands[26] & 0x80) {
751 /* Clear LE Accept List */
752 hci_req_add(req, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL);
753 }
754
755 if (hdev->commands[34] & 0x40) {
756 /* Read LE Resolving List Size */
757 hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
758 0, NULL);
759 }
760
761 if (hdev->commands[34] & 0x20) {
762 /* Clear LE Resolving List */
763 hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
764 }
765
766 if (hdev->commands[35] & 0x04) {
767 __le16 rpa_timeout = cpu_to_le16(hdev->rpa_timeout);
768
769 /* Set RPA timeout */
770 hci_req_add(req, HCI_OP_LE_SET_RPA_TIMEOUT, 2,
771 &rpa_timeout);
772 }
773
774 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
775 /* Read LE Maximum Data Length */
776 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
777
778 /* Read LE Suggested Default Data Length */
779 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
780 }
781
782 if (ext_adv_capable(hdev)) {
783 /* Read LE Number of Supported Advertising Sets */
784 hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
785 0, NULL);
786 }
787
788 hci_set_le_support(req);
789 }
790
791 /* Read features beyond page 1 if available */
792 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
793 struct hci_cp_read_local_ext_features cp;
794
795 cp.page = p;
796 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
797 sizeof(cp), &cp);
798 }
799
800 return 0;
801 }
802
hci_init4_req(struct hci_request * req,unsigned long opt)803 static int hci_init4_req(struct hci_request *req, unsigned long opt)
804 {
805 struct hci_dev *hdev = req->hdev;
806
807 /* Some Broadcom based Bluetooth controllers do not support the
808 * Delete Stored Link Key command. They are clearly indicating its
809 * absence in the bit mask of supported commands.
810 *
811 * Check the supported commands and only if the command is marked
812 * as supported send it. If not supported assume that the controller
813 * does not have actual support for stored link keys which makes this
814 * command redundant anyway.
815 *
816 * Some controllers indicate that they support handling deleting
817 * stored link keys, but they don't. The quirk lets a driver
818 * just disable this command.
819 */
820 if (hdev->commands[6] & 0x80 &&
821 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
822 struct hci_cp_delete_stored_link_key cp;
823
824 bacpy(&cp.bdaddr, BDADDR_ANY);
825 cp.delete_all = 0x01;
826 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
827 sizeof(cp), &cp);
828 }
829
830 /* Set event mask page 2 if the HCI command for it is supported */
831 if (hdev->commands[22] & 0x04)
832 hci_set_event_mask_page_2(req);
833
834 /* Read local codec list if the HCI command is supported */
835 if (hdev->commands[29] & 0x20)
836 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
837
838 /* Read local pairing options if the HCI command is supported */
839 if (hdev->commands[41] & 0x08)
840 hci_req_add(req, HCI_OP_READ_LOCAL_PAIRING_OPTS, 0, NULL);
841
842 /* Get MWS transport configuration if the HCI command is supported */
843 if (hdev->commands[30] & 0x08)
844 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
845
846 /* Check for Synchronization Train support */
847 if (lmp_sync_train_capable(hdev))
848 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
849
850 /* Enable Secure Connections if supported and configured */
851 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
852 bredr_sc_enabled(hdev)) {
853 u8 support = 0x01;
854
855 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
856 sizeof(support), &support);
857 }
858
859 /* Set erroneous data reporting if supported to the wideband speech
860 * setting value
861 */
862 if (hdev->commands[18] & 0x08 &&
863 !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) {
864 bool enabled = hci_dev_test_flag(hdev,
865 HCI_WIDEBAND_SPEECH_ENABLED);
866
867 if (enabled !=
868 (hdev->err_data_reporting == ERR_DATA_REPORTING_ENABLED)) {
869 struct hci_cp_write_def_err_data_reporting cp;
870
871 cp.err_data_reporting = enabled ?
872 ERR_DATA_REPORTING_ENABLED :
873 ERR_DATA_REPORTING_DISABLED;
874
875 hci_req_add(req, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
876 sizeof(cp), &cp);
877 }
878 }
879
880 /* Set Suggested Default Data Length to maximum if supported */
881 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
882 struct hci_cp_le_write_def_data_len cp;
883
884 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
885 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
886 hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
887 }
888
889 /* Set Default PHY parameters if command is supported */
890 if (hdev->commands[35] & 0x20) {
891 struct hci_cp_le_set_default_phy cp;
892
893 cp.all_phys = 0x00;
894 cp.tx_phys = hdev->le_tx_def_phys;
895 cp.rx_phys = hdev->le_rx_def_phys;
896
897 hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
898 }
899
900 return 0;
901 }
902
__hci_init(struct hci_dev * hdev)903 static int __hci_init(struct hci_dev *hdev)
904 {
905 int err;
906
907 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
908 if (err < 0)
909 return err;
910
911 if (hci_dev_test_flag(hdev, HCI_SETUP))
912 hci_debugfs_create_basic(hdev);
913
914 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
915 if (err < 0)
916 return err;
917
918 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
919 * BR/EDR/LE type controllers. AMP controllers only need the
920 * first two stages of init.
921 */
922 if (hdev->dev_type != HCI_PRIMARY)
923 return 0;
924
925 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
926 if (err < 0)
927 return err;
928
929 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
930 if (err < 0)
931 return err;
932
933 /* This function is only called when the controller is actually in
934 * configured state. When the controller is marked as unconfigured,
935 * this initialization procedure is not run.
936 *
937 * It means that it is possible that a controller runs through its
938 * setup phase and then discovers missing settings. If that is the
939 * case, then this function will not be called. It then will only
940 * be called during the config phase.
941 *
942 * So only when in setup phase or config phase, create the debugfs
943 * entries and register the SMP channels.
944 */
945 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
946 !hci_dev_test_flag(hdev, HCI_CONFIG))
947 return 0;
948
949 hci_debugfs_create_common(hdev);
950
951 if (lmp_bredr_capable(hdev))
952 hci_debugfs_create_bredr(hdev);
953
954 if (lmp_le_capable(hdev))
955 hci_debugfs_create_le(hdev);
956
957 return 0;
958 }
959
hci_init0_req(struct hci_request * req,unsigned long opt)960 static int hci_init0_req(struct hci_request *req, unsigned long opt)
961 {
962 struct hci_dev *hdev = req->hdev;
963
964 BT_DBG("%s %ld", hdev->name, opt);
965
966 /* Reset */
967 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
968 hci_reset_req(req, 0);
969
970 /* Read Local Version */
971 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
972
973 /* Read BD Address */
974 if (hdev->set_bdaddr)
975 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
976
977 return 0;
978 }
979
__hci_unconf_init(struct hci_dev * hdev)980 static int __hci_unconf_init(struct hci_dev *hdev)
981 {
982 int err;
983
984 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
985 return 0;
986
987 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
988 if (err < 0)
989 return err;
990
991 if (hci_dev_test_flag(hdev, HCI_SETUP))
992 hci_debugfs_create_basic(hdev);
993
994 return 0;
995 }
996
hci_scan_req(struct hci_request * req,unsigned long opt)997 static int hci_scan_req(struct hci_request *req, unsigned long opt)
998 {
999 __u8 scan = opt;
1000
1001 BT_DBG("%s %x", req->hdev->name, scan);
1002
1003 /* Inquiry and Page scans */
1004 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1005 return 0;
1006 }
1007
hci_auth_req(struct hci_request * req,unsigned long opt)1008 static int hci_auth_req(struct hci_request *req, unsigned long opt)
1009 {
1010 __u8 auth = opt;
1011
1012 BT_DBG("%s %x", req->hdev->name, auth);
1013
1014 /* Authentication */
1015 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
1016 return 0;
1017 }
1018
hci_encrypt_req(struct hci_request * req,unsigned long opt)1019 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
1020 {
1021 __u8 encrypt = opt;
1022
1023 BT_DBG("%s %x", req->hdev->name, encrypt);
1024
1025 /* Encryption */
1026 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
1027 return 0;
1028 }
1029
hci_linkpol_req(struct hci_request * req,unsigned long opt)1030 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
1031 {
1032 __le16 policy = cpu_to_le16(opt);
1033
1034 BT_DBG("%s %x", req->hdev->name, policy);
1035
1036 /* Default link policy */
1037 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
1038 return 0;
1039 }
1040
1041 /* Get HCI device by index.
1042 * Device is held on return. */
hci_dev_get(int index)1043 struct hci_dev *hci_dev_get(int index)
1044 {
1045 struct hci_dev *hdev = NULL, *d;
1046
1047 BT_DBG("%d", index);
1048
1049 if (index < 0)
1050 return NULL;
1051
1052 read_lock(&hci_dev_list_lock);
1053 list_for_each_entry(d, &hci_dev_list, list) {
1054 if (d->id == index) {
1055 hdev = hci_dev_hold(d);
1056 break;
1057 }
1058 }
1059 read_unlock(&hci_dev_list_lock);
1060 return hdev;
1061 }
1062
1063 /* ---- Inquiry support ---- */
1064
hci_discovery_active(struct hci_dev * hdev)1065 bool hci_discovery_active(struct hci_dev *hdev)
1066 {
1067 struct discovery_state *discov = &hdev->discovery;
1068
1069 switch (discov->state) {
1070 case DISCOVERY_FINDING:
1071 case DISCOVERY_RESOLVING:
1072 return true;
1073
1074 default:
1075 return false;
1076 }
1077 }
1078
hci_discovery_set_state(struct hci_dev * hdev,int state)1079 void hci_discovery_set_state(struct hci_dev *hdev, int state)
1080 {
1081 int old_state = hdev->discovery.state;
1082
1083 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1084
1085 if (old_state == state)
1086 return;
1087
1088 hdev->discovery.state = state;
1089
1090 switch (state) {
1091 case DISCOVERY_STOPPED:
1092 hci_update_background_scan(hdev);
1093
1094 if (old_state != DISCOVERY_STARTING)
1095 mgmt_discovering(hdev, 0);
1096 break;
1097 case DISCOVERY_STARTING:
1098 break;
1099 case DISCOVERY_FINDING:
1100 mgmt_discovering(hdev, 1);
1101 break;
1102 case DISCOVERY_RESOLVING:
1103 break;
1104 case DISCOVERY_STOPPING:
1105 break;
1106 }
1107 }
1108
hci_inquiry_cache_flush(struct hci_dev * hdev)1109 void hci_inquiry_cache_flush(struct hci_dev *hdev)
1110 {
1111 struct discovery_state *cache = &hdev->discovery;
1112 struct inquiry_entry *p, *n;
1113
1114 list_for_each_entry_safe(p, n, &cache->all, all) {
1115 list_del(&p->all);
1116 kfree(p);
1117 }
1118
1119 INIT_LIST_HEAD(&cache->unknown);
1120 INIT_LIST_HEAD(&cache->resolve);
1121 }
1122
hci_inquiry_cache_lookup(struct hci_dev * hdev,bdaddr_t * bdaddr)1123 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1124 bdaddr_t *bdaddr)
1125 {
1126 struct discovery_state *cache = &hdev->discovery;
1127 struct inquiry_entry *e;
1128
1129 BT_DBG("cache %p, %pMR", cache, bdaddr);
1130
1131 list_for_each_entry(e, &cache->all, all) {
1132 if (!bacmp(&e->data.bdaddr, bdaddr))
1133 return e;
1134 }
1135
1136 return NULL;
1137 }
1138
hci_inquiry_cache_lookup_unknown(struct hci_dev * hdev,bdaddr_t * bdaddr)1139 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1140 bdaddr_t *bdaddr)
1141 {
1142 struct discovery_state *cache = &hdev->discovery;
1143 struct inquiry_entry *e;
1144
1145 BT_DBG("cache %p, %pMR", cache, bdaddr);
1146
1147 list_for_each_entry(e, &cache->unknown, list) {
1148 if (!bacmp(&e->data.bdaddr, bdaddr))
1149 return e;
1150 }
1151
1152 return NULL;
1153 }
1154
hci_inquiry_cache_lookup_resolve(struct hci_dev * hdev,bdaddr_t * bdaddr,int state)1155 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1156 bdaddr_t *bdaddr,
1157 int state)
1158 {
1159 struct discovery_state *cache = &hdev->discovery;
1160 struct inquiry_entry *e;
1161
1162 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1163
1164 list_for_each_entry(e, &cache->resolve, list) {
1165 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1166 return e;
1167 if (!bacmp(&e->data.bdaddr, bdaddr))
1168 return e;
1169 }
1170
1171 return NULL;
1172 }
1173
hci_inquiry_cache_update_resolve(struct hci_dev * hdev,struct inquiry_entry * ie)1174 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1175 struct inquiry_entry *ie)
1176 {
1177 struct discovery_state *cache = &hdev->discovery;
1178 struct list_head *pos = &cache->resolve;
1179 struct inquiry_entry *p;
1180
1181 list_del(&ie->list);
1182
1183 list_for_each_entry(p, &cache->resolve, list) {
1184 if (p->name_state != NAME_PENDING &&
1185 abs(p->data.rssi) >= abs(ie->data.rssi))
1186 break;
1187 pos = &p->list;
1188 }
1189
1190 list_add(&ie->list, pos);
1191 }
1192
hci_inquiry_cache_update(struct hci_dev * hdev,struct inquiry_data * data,bool name_known)1193 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1194 bool name_known)
1195 {
1196 struct discovery_state *cache = &hdev->discovery;
1197 struct inquiry_entry *ie;
1198 u32 flags = 0;
1199
1200 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1201
1202 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1203
1204 if (!data->ssp_mode)
1205 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1206
1207 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1208 if (ie) {
1209 if (!ie->data.ssp_mode)
1210 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1211
1212 if (ie->name_state == NAME_NEEDED &&
1213 data->rssi != ie->data.rssi) {
1214 ie->data.rssi = data->rssi;
1215 hci_inquiry_cache_update_resolve(hdev, ie);
1216 }
1217
1218 goto update;
1219 }
1220
1221 /* Entry not in the cache. Add new one. */
1222 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1223 if (!ie) {
1224 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1225 goto done;
1226 }
1227
1228 list_add(&ie->all, &cache->all);
1229
1230 if (name_known) {
1231 ie->name_state = NAME_KNOWN;
1232 } else {
1233 ie->name_state = NAME_NOT_KNOWN;
1234 list_add(&ie->list, &cache->unknown);
1235 }
1236
1237 update:
1238 if (name_known && ie->name_state != NAME_KNOWN &&
1239 ie->name_state != NAME_PENDING) {
1240 ie->name_state = NAME_KNOWN;
1241 list_del(&ie->list);
1242 }
1243
1244 memcpy(&ie->data, data, sizeof(*data));
1245 ie->timestamp = jiffies;
1246 cache->timestamp = jiffies;
1247
1248 if (ie->name_state == NAME_NOT_KNOWN)
1249 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1250
1251 done:
1252 return flags;
1253 }
1254
inquiry_cache_dump(struct hci_dev * hdev,int num,__u8 * buf)1255 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1256 {
1257 struct discovery_state *cache = &hdev->discovery;
1258 struct inquiry_info *info = (struct inquiry_info *) buf;
1259 struct inquiry_entry *e;
1260 int copied = 0;
1261
1262 list_for_each_entry(e, &cache->all, all) {
1263 struct inquiry_data *data = &e->data;
1264
1265 if (copied >= num)
1266 break;
1267
1268 bacpy(&info->bdaddr, &data->bdaddr);
1269 info->pscan_rep_mode = data->pscan_rep_mode;
1270 info->pscan_period_mode = data->pscan_period_mode;
1271 info->pscan_mode = data->pscan_mode;
1272 memcpy(info->dev_class, data->dev_class, 3);
1273 info->clock_offset = data->clock_offset;
1274
1275 info++;
1276 copied++;
1277 }
1278
1279 BT_DBG("cache %p, copied %d", cache, copied);
1280 return copied;
1281 }
1282
hci_inq_req(struct hci_request * req,unsigned long opt)1283 static int hci_inq_req(struct hci_request *req, unsigned long opt)
1284 {
1285 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1286 struct hci_dev *hdev = req->hdev;
1287 struct hci_cp_inquiry cp;
1288
1289 BT_DBG("%s", hdev->name);
1290
1291 if (test_bit(HCI_INQUIRY, &hdev->flags))
1292 return 0;
1293
1294 /* Start Inquiry */
1295 memcpy(&cp.lap, &ir->lap, 3);
1296 cp.length = ir->length;
1297 cp.num_rsp = ir->num_rsp;
1298 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1299
1300 return 0;
1301 }
1302
hci_inquiry(void __user * arg)1303 int hci_inquiry(void __user *arg)
1304 {
1305 __u8 __user *ptr = arg;
1306 struct hci_inquiry_req ir;
1307 struct hci_dev *hdev;
1308 int err = 0, do_inquiry = 0, max_rsp;
1309 long timeo;
1310 __u8 *buf;
1311
1312 if (copy_from_user(&ir, ptr, sizeof(ir)))
1313 return -EFAULT;
1314
1315 hdev = hci_dev_get(ir.dev_id);
1316 if (!hdev)
1317 return -ENODEV;
1318
1319 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1320 err = -EBUSY;
1321 goto done;
1322 }
1323
1324 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1325 err = -EOPNOTSUPP;
1326 goto done;
1327 }
1328
1329 if (hdev->dev_type != HCI_PRIMARY) {
1330 err = -EOPNOTSUPP;
1331 goto done;
1332 }
1333
1334 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1335 err = -EOPNOTSUPP;
1336 goto done;
1337 }
1338
1339 /* Restrict maximum inquiry length to 60 seconds */
1340 if (ir.length > 60) {
1341 err = -EINVAL;
1342 goto done;
1343 }
1344
1345 hci_dev_lock(hdev);
1346 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1347 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1348 hci_inquiry_cache_flush(hdev);
1349 do_inquiry = 1;
1350 }
1351 hci_dev_unlock(hdev);
1352
1353 timeo = ir.length * msecs_to_jiffies(2000);
1354
1355 if (do_inquiry) {
1356 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1357 timeo, NULL);
1358 if (err < 0)
1359 goto done;
1360
1361 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1362 * cleared). If it is interrupted by a signal, return -EINTR.
1363 */
1364 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1365 TASK_INTERRUPTIBLE)) {
1366 err = -EINTR;
1367 goto done;
1368 }
1369 }
1370
1371 /* for unlimited number of responses we will use buffer with
1372 * 255 entries
1373 */
1374 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1375
1376 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1377 * copy it to the user space.
1378 */
1379 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1380 if (!buf) {
1381 err = -ENOMEM;
1382 goto done;
1383 }
1384
1385 hci_dev_lock(hdev);
1386 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1387 hci_dev_unlock(hdev);
1388
1389 BT_DBG("num_rsp %d", ir.num_rsp);
1390
1391 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1392 ptr += sizeof(ir);
1393 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1394 ir.num_rsp))
1395 err = -EFAULT;
1396 } else
1397 err = -EFAULT;
1398
1399 kfree(buf);
1400
1401 done:
1402 hci_dev_put(hdev);
1403 return err;
1404 }
1405
1406 /**
1407 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1408 * (BD_ADDR) for a HCI device from
1409 * a firmware node property.
1410 * @hdev: The HCI device
1411 *
1412 * Search the firmware node for 'local-bd-address'.
1413 *
1414 * All-zero BD addresses are rejected, because those could be properties
1415 * that exist in the firmware tables, but were not updated by the firmware. For
1416 * example, the DTS could define 'local-bd-address', with zero BD addresses.
1417 */
hci_dev_get_bd_addr_from_property(struct hci_dev * hdev)1418 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1419 {
1420 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1421 bdaddr_t ba;
1422 int ret;
1423
1424 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1425 (u8 *)&ba, sizeof(ba));
1426 if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1427 return;
1428
1429 bacpy(&hdev->public_addr, &ba);
1430 }
1431
hci_dev_do_open(struct hci_dev * hdev)1432 static int hci_dev_do_open(struct hci_dev *hdev)
1433 {
1434 int ret = 0;
1435
1436 BT_DBG("%s %p", hdev->name, hdev);
1437
1438 hci_req_sync_lock(hdev);
1439
1440 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1441 ret = -ENODEV;
1442 goto done;
1443 }
1444
1445 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1446 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1447 /* Check for rfkill but allow the HCI setup stage to
1448 * proceed (which in itself doesn't cause any RF activity).
1449 */
1450 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1451 ret = -ERFKILL;
1452 goto done;
1453 }
1454
1455 /* Check for valid public address or a configured static
1456 * random adddress, but let the HCI setup proceed to
1457 * be able to determine if there is a public address
1458 * or not.
1459 *
1460 * In case of user channel usage, it is not important
1461 * if a public address or static random address is
1462 * available.
1463 *
1464 * This check is only valid for BR/EDR controllers
1465 * since AMP controllers do not have an address.
1466 */
1467 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1468 hdev->dev_type == HCI_PRIMARY &&
1469 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1470 !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1471 ret = -EADDRNOTAVAIL;
1472 goto done;
1473 }
1474 }
1475
1476 if (test_bit(HCI_UP, &hdev->flags)) {
1477 ret = -EALREADY;
1478 goto done;
1479 }
1480
1481 if (hdev->open(hdev)) {
1482 ret = -EIO;
1483 goto done;
1484 }
1485
1486 set_bit(HCI_RUNNING, &hdev->flags);
1487 hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1488
1489 atomic_set(&hdev->cmd_cnt, 1);
1490 set_bit(HCI_INIT, &hdev->flags);
1491
1492 if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1493 test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
1494 bool invalid_bdaddr;
1495
1496 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1497
1498 if (hdev->setup)
1499 ret = hdev->setup(hdev);
1500
1501 /* The transport driver can set the quirk to mark the
1502 * BD_ADDR invalid before creating the HCI device or in
1503 * its setup callback.
1504 */
1505 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR,
1506 &hdev->quirks);
1507
1508 if (ret)
1509 goto setup_failed;
1510
1511 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1512 if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1513 hci_dev_get_bd_addr_from_property(hdev);
1514
1515 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1516 hdev->set_bdaddr) {
1517 ret = hdev->set_bdaddr(hdev,
1518 &hdev->public_addr);
1519
1520 /* If setting of the BD_ADDR from the device
1521 * property succeeds, then treat the address
1522 * as valid even if the invalid BD_ADDR
1523 * quirk indicates otherwise.
1524 */
1525 if (!ret)
1526 invalid_bdaddr = false;
1527 }
1528 }
1529
1530 setup_failed:
1531 /* The transport driver can set these quirks before
1532 * creating the HCI device or in its setup callback.
1533 *
1534 * For the invalid BD_ADDR quirk it is possible that
1535 * it becomes a valid address if the bootloader does
1536 * provide it (see above).
1537 *
1538 * In case any of them is set, the controller has to
1539 * start up as unconfigured.
1540 */
1541 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1542 invalid_bdaddr)
1543 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1544
1545 /* For an unconfigured controller it is required to
1546 * read at least the version information provided by
1547 * the Read Local Version Information command.
1548 *
1549 * If the set_bdaddr driver callback is provided, then
1550 * also the original Bluetooth public device address
1551 * will be read using the Read BD Address command.
1552 */
1553 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1554 ret = __hci_unconf_init(hdev);
1555 }
1556
1557 if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1558 /* If public address change is configured, ensure that
1559 * the address gets programmed. If the driver does not
1560 * support changing the public address, fail the power
1561 * on procedure.
1562 */
1563 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1564 hdev->set_bdaddr)
1565 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1566 else
1567 ret = -EADDRNOTAVAIL;
1568 }
1569
1570 if (!ret) {
1571 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1572 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1573 ret = __hci_init(hdev);
1574 if (!ret && hdev->post_init)
1575 ret = hdev->post_init(hdev);
1576 }
1577 }
1578
1579 /* If the HCI Reset command is clearing all diagnostic settings,
1580 * then they need to be reprogrammed after the init procedure
1581 * completed.
1582 */
1583 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1584 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1585 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1586 ret = hdev->set_diag(hdev, true);
1587
1588 msft_do_open(hdev);
1589
1590 clear_bit(HCI_INIT, &hdev->flags);
1591
1592 if (!ret) {
1593 hci_dev_hold(hdev);
1594 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1595 hci_adv_instances_set_rpa_expired(hdev, true);
1596 set_bit(HCI_UP, &hdev->flags);
1597 hci_sock_dev_event(hdev, HCI_DEV_UP);
1598 hci_leds_update_powered(hdev, true);
1599 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1600 !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1601 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1602 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1603 hci_dev_test_flag(hdev, HCI_MGMT) &&
1604 hdev->dev_type == HCI_PRIMARY) {
1605 ret = __hci_req_hci_power_on(hdev);
1606 mgmt_power_on(hdev, ret);
1607 }
1608 } else {
1609 /* Init failed, cleanup */
1610 flush_work(&hdev->tx_work);
1611
1612 /* Since hci_rx_work() is possible to awake new cmd_work
1613 * it should be flushed first to avoid unexpected call of
1614 * hci_cmd_work()
1615 */
1616 flush_work(&hdev->rx_work);
1617 flush_work(&hdev->cmd_work);
1618
1619 skb_queue_purge(&hdev->cmd_q);
1620 skb_queue_purge(&hdev->rx_q);
1621
1622 if (hdev->flush)
1623 hdev->flush(hdev);
1624
1625 if (hdev->sent_cmd) {
1626 cancel_delayed_work_sync(&hdev->cmd_timer);
1627 kfree_skb(hdev->sent_cmd);
1628 hdev->sent_cmd = NULL;
1629 }
1630
1631 clear_bit(HCI_RUNNING, &hdev->flags);
1632 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1633
1634 hdev->close(hdev);
1635 hdev->flags &= BIT(HCI_RAW);
1636 }
1637
1638 done:
1639 hci_req_sync_unlock(hdev);
1640 return ret;
1641 }
1642
1643 /* ---- HCI ioctl helpers ---- */
1644
hci_dev_open(__u16 dev)1645 int hci_dev_open(__u16 dev)
1646 {
1647 struct hci_dev *hdev;
1648 int err;
1649
1650 hdev = hci_dev_get(dev);
1651 if (!hdev)
1652 return -ENODEV;
1653
1654 /* Devices that are marked as unconfigured can only be powered
1655 * up as user channel. Trying to bring them up as normal devices
1656 * will result into a failure. Only user channel operation is
1657 * possible.
1658 *
1659 * When this function is called for a user channel, the flag
1660 * HCI_USER_CHANNEL will be set first before attempting to
1661 * open the device.
1662 */
1663 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1664 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1665 err = -EOPNOTSUPP;
1666 goto done;
1667 }
1668
1669 /* We need to ensure that no other power on/off work is pending
1670 * before proceeding to call hci_dev_do_open. This is
1671 * particularly important if the setup procedure has not yet
1672 * completed.
1673 */
1674 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1675 cancel_delayed_work(&hdev->power_off);
1676
1677 /* After this call it is guaranteed that the setup procedure
1678 * has finished. This means that error conditions like RFKILL
1679 * or no valid public or static random address apply.
1680 */
1681 flush_workqueue(hdev->req_workqueue);
1682
1683 /* For controllers not using the management interface and that
1684 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1685 * so that pairing works for them. Once the management interface
1686 * is in use this bit will be cleared again and userspace has
1687 * to explicitly enable it.
1688 */
1689 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1690 !hci_dev_test_flag(hdev, HCI_MGMT))
1691 hci_dev_set_flag(hdev, HCI_BONDABLE);
1692
1693 err = hci_dev_do_open(hdev);
1694
1695 done:
1696 hci_dev_put(hdev);
1697 return err;
1698 }
1699
1700 /* This function requires the caller holds hdev->lock */
hci_pend_le_actions_clear(struct hci_dev * hdev)1701 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1702 {
1703 struct hci_conn_params *p;
1704
1705 list_for_each_entry(p, &hdev->le_conn_params, list) {
1706 if (p->conn) {
1707 hci_conn_drop(p->conn);
1708 hci_conn_put(p->conn);
1709 p->conn = NULL;
1710 }
1711 list_del_init(&p->action);
1712 }
1713
1714 BT_DBG("All LE pending actions cleared");
1715 }
1716
hci_dev_do_close(struct hci_dev * hdev)1717 int hci_dev_do_close(struct hci_dev *hdev)
1718 {
1719 bool auto_off;
1720
1721 BT_DBG("%s %p", hdev->name, hdev);
1722
1723 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1724 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1725 test_bit(HCI_UP, &hdev->flags)) {
1726 /* Execute vendor specific shutdown routine */
1727 if (hdev->shutdown)
1728 hdev->shutdown(hdev);
1729 }
1730
1731 cancel_delayed_work(&hdev->power_off);
1732
1733 hci_request_cancel_all(hdev);
1734 hci_req_sync_lock(hdev);
1735
1736 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1737 cancel_delayed_work_sync(&hdev->cmd_timer);
1738 hci_req_sync_unlock(hdev);
1739 return 0;
1740 }
1741
1742 hci_leds_update_powered(hdev, false);
1743
1744 /* Flush RX and TX works */
1745 flush_work(&hdev->tx_work);
1746 flush_work(&hdev->rx_work);
1747
1748 if (hdev->discov_timeout > 0) {
1749 hdev->discov_timeout = 0;
1750 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1751 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1752 }
1753
1754 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1755 cancel_delayed_work(&hdev->service_cache);
1756
1757 if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1758 struct adv_info *adv_instance;
1759
1760 cancel_delayed_work_sync(&hdev->rpa_expired);
1761
1762 list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1763 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1764 }
1765
1766 /* Avoid potential lockdep warnings from the *_flush() calls by
1767 * ensuring the workqueue is empty up front.
1768 */
1769 drain_workqueue(hdev->workqueue);
1770
1771 hci_dev_lock(hdev);
1772
1773 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1774
1775 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1776
1777 if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1778 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1779 hci_dev_test_flag(hdev, HCI_MGMT))
1780 __mgmt_power_off(hdev);
1781
1782 hci_inquiry_cache_flush(hdev);
1783 hci_pend_le_actions_clear(hdev);
1784 hci_conn_hash_flush(hdev);
1785 hci_dev_unlock(hdev);
1786
1787 smp_unregister(hdev);
1788
1789 hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1790
1791 msft_do_close(hdev);
1792
1793 if (hdev->flush)
1794 hdev->flush(hdev);
1795
1796 /* Reset device */
1797 skb_queue_purge(&hdev->cmd_q);
1798 atomic_set(&hdev->cmd_cnt, 1);
1799 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1800 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1801 set_bit(HCI_INIT, &hdev->flags);
1802 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1803 clear_bit(HCI_INIT, &hdev->flags);
1804 }
1805
1806 /* flush cmd work */
1807 flush_work(&hdev->cmd_work);
1808
1809 /* Drop queues */
1810 skb_queue_purge(&hdev->rx_q);
1811 skb_queue_purge(&hdev->cmd_q);
1812 skb_queue_purge(&hdev->raw_q);
1813
1814 /* Drop last sent command */
1815 if (hdev->sent_cmd) {
1816 cancel_delayed_work_sync(&hdev->cmd_timer);
1817 kfree_skb(hdev->sent_cmd);
1818 hdev->sent_cmd = NULL;
1819 }
1820
1821 clear_bit(HCI_RUNNING, &hdev->flags);
1822 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1823
1824 if (test_and_clear_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks))
1825 wake_up(&hdev->suspend_wait_q);
1826
1827 /* After this point our queues are empty
1828 * and no tasks are scheduled. */
1829 hdev->close(hdev);
1830
1831 /* Clear flags */
1832 hdev->flags &= BIT(HCI_RAW);
1833 hci_dev_clear_volatile_flags(hdev);
1834
1835 /* Controller radio is available but is currently powered down */
1836 hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1837
1838 memset(hdev->eir, 0, sizeof(hdev->eir));
1839 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1840 bacpy(&hdev->random_addr, BDADDR_ANY);
1841
1842 hci_req_sync_unlock(hdev);
1843
1844 hci_dev_put(hdev);
1845 return 0;
1846 }
1847
hci_dev_close(__u16 dev)1848 int hci_dev_close(__u16 dev)
1849 {
1850 struct hci_dev *hdev;
1851 int err;
1852
1853 hdev = hci_dev_get(dev);
1854 if (!hdev)
1855 return -ENODEV;
1856
1857 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1858 err = -EBUSY;
1859 goto done;
1860 }
1861
1862 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1863 cancel_delayed_work(&hdev->power_off);
1864
1865 err = hci_dev_do_close(hdev);
1866
1867 done:
1868 hci_dev_put(hdev);
1869 return err;
1870 }
1871
hci_dev_do_reset(struct hci_dev * hdev)1872 static int hci_dev_do_reset(struct hci_dev *hdev)
1873 {
1874 int ret;
1875
1876 BT_DBG("%s %p", hdev->name, hdev);
1877
1878 hci_req_sync_lock(hdev);
1879
1880 /* Drop queues */
1881 skb_queue_purge(&hdev->rx_q);
1882 skb_queue_purge(&hdev->cmd_q);
1883
1884 /* Avoid potential lockdep warnings from the *_flush() calls by
1885 * ensuring the workqueue is empty up front.
1886 */
1887 drain_workqueue(hdev->workqueue);
1888
1889 hci_dev_lock(hdev);
1890 hci_inquiry_cache_flush(hdev);
1891 hci_conn_hash_flush(hdev);
1892 hci_dev_unlock(hdev);
1893
1894 if (hdev->flush)
1895 hdev->flush(hdev);
1896
1897 atomic_set(&hdev->cmd_cnt, 1);
1898 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1899
1900 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1901
1902 hci_req_sync_unlock(hdev);
1903 return ret;
1904 }
1905
hci_dev_reset(__u16 dev)1906 int hci_dev_reset(__u16 dev)
1907 {
1908 struct hci_dev *hdev;
1909 int err;
1910
1911 hdev = hci_dev_get(dev);
1912 if (!hdev)
1913 return -ENODEV;
1914
1915 if (!test_bit(HCI_UP, &hdev->flags)) {
1916 err = -ENETDOWN;
1917 goto done;
1918 }
1919
1920 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1921 err = -EBUSY;
1922 goto done;
1923 }
1924
1925 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1926 err = -EOPNOTSUPP;
1927 goto done;
1928 }
1929
1930 err = hci_dev_do_reset(hdev);
1931
1932 done:
1933 hci_dev_put(hdev);
1934 return err;
1935 }
1936
hci_dev_reset_stat(__u16 dev)1937 int hci_dev_reset_stat(__u16 dev)
1938 {
1939 struct hci_dev *hdev;
1940 int ret = 0;
1941
1942 hdev = hci_dev_get(dev);
1943 if (!hdev)
1944 return -ENODEV;
1945
1946 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1947 ret = -EBUSY;
1948 goto done;
1949 }
1950
1951 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1952 ret = -EOPNOTSUPP;
1953 goto done;
1954 }
1955
1956 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1957
1958 done:
1959 hci_dev_put(hdev);
1960 return ret;
1961 }
1962
hci_update_scan_state(struct hci_dev * hdev,u8 scan)1963 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1964 {
1965 bool conn_changed, discov_changed;
1966
1967 BT_DBG("%s scan 0x%02x", hdev->name, scan);
1968
1969 if ((scan & SCAN_PAGE))
1970 conn_changed = !hci_dev_test_and_set_flag(hdev,
1971 HCI_CONNECTABLE);
1972 else
1973 conn_changed = hci_dev_test_and_clear_flag(hdev,
1974 HCI_CONNECTABLE);
1975
1976 if ((scan & SCAN_INQUIRY)) {
1977 discov_changed = !hci_dev_test_and_set_flag(hdev,
1978 HCI_DISCOVERABLE);
1979 } else {
1980 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1981 discov_changed = hci_dev_test_and_clear_flag(hdev,
1982 HCI_DISCOVERABLE);
1983 }
1984
1985 if (!hci_dev_test_flag(hdev, HCI_MGMT))
1986 return;
1987
1988 if (conn_changed || discov_changed) {
1989 /* In case this was disabled through mgmt */
1990 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1991
1992 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1993 hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1994
1995 mgmt_new_settings(hdev);
1996 }
1997 }
1998
hci_dev_cmd(unsigned int cmd,void __user * arg)1999 int hci_dev_cmd(unsigned int cmd, void __user *arg)
2000 {
2001 struct hci_dev *hdev;
2002 struct hci_dev_req dr;
2003 int err = 0;
2004
2005 if (copy_from_user(&dr, arg, sizeof(dr)))
2006 return -EFAULT;
2007
2008 hdev = hci_dev_get(dr.dev_id);
2009 if (!hdev)
2010 return -ENODEV;
2011
2012 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
2013 err = -EBUSY;
2014 goto done;
2015 }
2016
2017 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
2018 err = -EOPNOTSUPP;
2019 goto done;
2020 }
2021
2022 if (hdev->dev_type != HCI_PRIMARY) {
2023 err = -EOPNOTSUPP;
2024 goto done;
2025 }
2026
2027 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2028 err = -EOPNOTSUPP;
2029 goto done;
2030 }
2031
2032 switch (cmd) {
2033 case HCISETAUTH:
2034 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2035 HCI_INIT_TIMEOUT, NULL);
2036 break;
2037
2038 case HCISETENCRYPT:
2039 if (!lmp_encrypt_capable(hdev)) {
2040 err = -EOPNOTSUPP;
2041 break;
2042 }
2043
2044 if (!test_bit(HCI_AUTH, &hdev->flags)) {
2045 /* Auth must be enabled first */
2046 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2047 HCI_INIT_TIMEOUT, NULL);
2048 if (err)
2049 break;
2050 }
2051
2052 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
2053 HCI_INIT_TIMEOUT, NULL);
2054 break;
2055
2056 case HCISETSCAN:
2057 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
2058 HCI_INIT_TIMEOUT, NULL);
2059
2060 /* Ensure that the connectable and discoverable states
2061 * get correctly modified as this was a non-mgmt change.
2062 */
2063 if (!err)
2064 hci_update_scan_state(hdev, dr.dev_opt);
2065 break;
2066
2067 case HCISETLINKPOL:
2068 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
2069 HCI_INIT_TIMEOUT, NULL);
2070 break;
2071
2072 case HCISETLINKMODE:
2073 hdev->link_mode = ((__u16) dr.dev_opt) &
2074 (HCI_LM_MASTER | HCI_LM_ACCEPT);
2075 break;
2076
2077 case HCISETPTYPE:
2078 if (hdev->pkt_type == (__u16) dr.dev_opt)
2079 break;
2080
2081 hdev->pkt_type = (__u16) dr.dev_opt;
2082 mgmt_phy_configuration_changed(hdev, NULL);
2083 break;
2084
2085 case HCISETACLMTU:
2086 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
2087 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2088 break;
2089
2090 case HCISETSCOMTU:
2091 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
2092 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2093 break;
2094
2095 default:
2096 err = -EINVAL;
2097 break;
2098 }
2099
2100 done:
2101 hci_dev_put(hdev);
2102 return err;
2103 }
2104
hci_get_dev_list(void __user * arg)2105 int hci_get_dev_list(void __user *arg)
2106 {
2107 struct hci_dev *hdev;
2108 struct hci_dev_list_req *dl;
2109 struct hci_dev_req *dr;
2110 int n = 0, size, err;
2111 __u16 dev_num;
2112
2113 if (get_user(dev_num, (__u16 __user *) arg))
2114 return -EFAULT;
2115
2116 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2117 return -EINVAL;
2118
2119 size = sizeof(*dl) + dev_num * sizeof(*dr);
2120
2121 dl = kzalloc(size, GFP_KERNEL);
2122 if (!dl)
2123 return -ENOMEM;
2124
2125 dr = dl->dev_req;
2126
2127 read_lock(&hci_dev_list_lock);
2128 list_for_each_entry(hdev, &hci_dev_list, list) {
2129 unsigned long flags = hdev->flags;
2130
2131 /* When the auto-off is configured it means the transport
2132 * is running, but in that case still indicate that the
2133 * device is actually down.
2134 */
2135 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2136 flags &= ~BIT(HCI_UP);
2137
2138 (dr + n)->dev_id = hdev->id;
2139 (dr + n)->dev_opt = flags;
2140
2141 if (++n >= dev_num)
2142 break;
2143 }
2144 read_unlock(&hci_dev_list_lock);
2145
2146 dl->dev_num = n;
2147 size = sizeof(*dl) + n * sizeof(*dr);
2148
2149 err = copy_to_user(arg, dl, size);
2150 kfree(dl);
2151
2152 return err ? -EFAULT : 0;
2153 }
2154
hci_get_dev_info(void __user * arg)2155 int hci_get_dev_info(void __user *arg)
2156 {
2157 struct hci_dev *hdev;
2158 struct hci_dev_info di;
2159 unsigned long flags;
2160 int err = 0;
2161
2162 if (copy_from_user(&di, arg, sizeof(di)))
2163 return -EFAULT;
2164
2165 hdev = hci_dev_get(di.dev_id);
2166 if (!hdev)
2167 return -ENODEV;
2168
2169 /* When the auto-off is configured it means the transport
2170 * is running, but in that case still indicate that the
2171 * device is actually down.
2172 */
2173 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2174 flags = hdev->flags & ~BIT(HCI_UP);
2175 else
2176 flags = hdev->flags;
2177
2178 strcpy(di.name, hdev->name);
2179 di.bdaddr = hdev->bdaddr;
2180 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2181 di.flags = flags;
2182 di.pkt_type = hdev->pkt_type;
2183 if (lmp_bredr_capable(hdev)) {
2184 di.acl_mtu = hdev->acl_mtu;
2185 di.acl_pkts = hdev->acl_pkts;
2186 di.sco_mtu = hdev->sco_mtu;
2187 di.sco_pkts = hdev->sco_pkts;
2188 } else {
2189 di.acl_mtu = hdev->le_mtu;
2190 di.acl_pkts = hdev->le_pkts;
2191 di.sco_mtu = 0;
2192 di.sco_pkts = 0;
2193 }
2194 di.link_policy = hdev->link_policy;
2195 di.link_mode = hdev->link_mode;
2196
2197 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2198 memcpy(&di.features, &hdev->features, sizeof(di.features));
2199
2200 if (copy_to_user(arg, &di, sizeof(di)))
2201 err = -EFAULT;
2202
2203 hci_dev_put(hdev);
2204
2205 return err;
2206 }
2207
2208 /* ---- Interface to HCI drivers ---- */
2209
hci_rfkill_set_block(void * data,bool blocked)2210 static int hci_rfkill_set_block(void *data, bool blocked)
2211 {
2212 struct hci_dev *hdev = data;
2213
2214 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2215
2216 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2217 return -EBUSY;
2218
2219 if (blocked) {
2220 hci_dev_set_flag(hdev, HCI_RFKILLED);
2221 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2222 !hci_dev_test_flag(hdev, HCI_CONFIG))
2223 hci_dev_do_close(hdev);
2224 } else {
2225 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2226 }
2227
2228 return 0;
2229 }
2230
2231 static const struct rfkill_ops hci_rfkill_ops = {
2232 .set_block = hci_rfkill_set_block,
2233 };
2234
hci_power_on(struct work_struct * work)2235 static void hci_power_on(struct work_struct *work)
2236 {
2237 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2238 int err;
2239
2240 BT_DBG("%s", hdev->name);
2241
2242 if (test_bit(HCI_UP, &hdev->flags) &&
2243 hci_dev_test_flag(hdev, HCI_MGMT) &&
2244 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2245 cancel_delayed_work(&hdev->power_off);
2246 hci_req_sync_lock(hdev);
2247 err = __hci_req_hci_power_on(hdev);
2248 hci_req_sync_unlock(hdev);
2249 mgmt_power_on(hdev, err);
2250 return;
2251 }
2252
2253 err = hci_dev_do_open(hdev);
2254 if (err < 0) {
2255 hci_dev_lock(hdev);
2256 mgmt_set_powered_failed(hdev, err);
2257 hci_dev_unlock(hdev);
2258 return;
2259 }
2260
2261 /* During the HCI setup phase, a few error conditions are
2262 * ignored and they need to be checked now. If they are still
2263 * valid, it is important to turn the device back off.
2264 */
2265 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2266 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2267 (hdev->dev_type == HCI_PRIMARY &&
2268 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2269 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2270 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2271 hci_dev_do_close(hdev);
2272 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2273 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2274 HCI_AUTO_OFF_TIMEOUT);
2275 }
2276
2277 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2278 /* For unconfigured devices, set the HCI_RAW flag
2279 * so that userspace can easily identify them.
2280 */
2281 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2282 set_bit(HCI_RAW, &hdev->flags);
2283
2284 /* For fully configured devices, this will send
2285 * the Index Added event. For unconfigured devices,
2286 * it will send Unconfigued Index Added event.
2287 *
2288 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2289 * and no event will be send.
2290 */
2291 mgmt_index_added(hdev);
2292 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2293 /* When the controller is now configured, then it
2294 * is important to clear the HCI_RAW flag.
2295 */
2296 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2297 clear_bit(HCI_RAW, &hdev->flags);
2298
2299 /* Powering on the controller with HCI_CONFIG set only
2300 * happens with the transition from unconfigured to
2301 * configured. This will send the Index Added event.
2302 */
2303 mgmt_index_added(hdev);
2304 }
2305 }
2306
hci_power_off(struct work_struct * work)2307 static void hci_power_off(struct work_struct *work)
2308 {
2309 struct hci_dev *hdev = container_of(work, struct hci_dev,
2310 power_off.work);
2311
2312 BT_DBG("%s", hdev->name);
2313
2314 hci_dev_do_close(hdev);
2315 }
2316
hci_error_reset(struct work_struct * work)2317 static void hci_error_reset(struct work_struct *work)
2318 {
2319 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2320
2321 BT_DBG("%s", hdev->name);
2322
2323 if (hdev->hw_error)
2324 hdev->hw_error(hdev, hdev->hw_error_code);
2325 else
2326 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2327
2328 if (hci_dev_do_close(hdev))
2329 return;
2330
2331 hci_dev_do_open(hdev);
2332 }
2333
hci_uuids_clear(struct hci_dev * hdev)2334 void hci_uuids_clear(struct hci_dev *hdev)
2335 {
2336 struct bt_uuid *uuid, *tmp;
2337
2338 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2339 list_del(&uuid->list);
2340 kfree(uuid);
2341 }
2342 }
2343
hci_link_keys_clear(struct hci_dev * hdev)2344 void hci_link_keys_clear(struct hci_dev *hdev)
2345 {
2346 struct link_key *key;
2347
2348 list_for_each_entry(key, &hdev->link_keys, list) {
2349 list_del_rcu(&key->list);
2350 kfree_rcu(key, rcu);
2351 }
2352 }
2353
hci_smp_ltks_clear(struct hci_dev * hdev)2354 void hci_smp_ltks_clear(struct hci_dev *hdev)
2355 {
2356 struct smp_ltk *k;
2357
2358 list_for_each_entry(k, &hdev->long_term_keys, list) {
2359 list_del_rcu(&k->list);
2360 kfree_rcu(k, rcu);
2361 }
2362 }
2363
hci_smp_irks_clear(struct hci_dev * hdev)2364 void hci_smp_irks_clear(struct hci_dev *hdev)
2365 {
2366 struct smp_irk *k;
2367
2368 list_for_each_entry(k, &hdev->identity_resolving_keys, list) {
2369 list_del_rcu(&k->list);
2370 kfree_rcu(k, rcu);
2371 }
2372 }
2373
hci_blocked_keys_clear(struct hci_dev * hdev)2374 void hci_blocked_keys_clear(struct hci_dev *hdev)
2375 {
2376 struct blocked_key *b;
2377
2378 list_for_each_entry(b, &hdev->blocked_keys, list) {
2379 list_del_rcu(&b->list);
2380 kfree_rcu(b, rcu);
2381 }
2382 }
2383
hci_is_blocked_key(struct hci_dev * hdev,u8 type,u8 val[16])2384 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
2385 {
2386 bool blocked = false;
2387 struct blocked_key *b;
2388
2389 rcu_read_lock();
2390 list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
2391 if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
2392 blocked = true;
2393 break;
2394 }
2395 }
2396
2397 rcu_read_unlock();
2398 return blocked;
2399 }
2400
hci_find_link_key(struct hci_dev * hdev,bdaddr_t * bdaddr)2401 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2402 {
2403 struct link_key *k;
2404
2405 rcu_read_lock();
2406 list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2407 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2408 rcu_read_unlock();
2409
2410 if (hci_is_blocked_key(hdev,
2411 HCI_BLOCKED_KEY_TYPE_LINKKEY,
2412 k->val)) {
2413 bt_dev_warn_ratelimited(hdev,
2414 "Link key blocked for %pMR",
2415 &k->bdaddr);
2416 return NULL;
2417 }
2418
2419 return k;
2420 }
2421 }
2422 rcu_read_unlock();
2423
2424 return NULL;
2425 }
2426
hci_persistent_key(struct hci_dev * hdev,struct hci_conn * conn,u8 key_type,u8 old_key_type)2427 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2428 u8 key_type, u8 old_key_type)
2429 {
2430 /* Legacy key */
2431 if (key_type < 0x03)
2432 return true;
2433
2434 /* Debug keys are insecure so don't store them persistently */
2435 if (key_type == HCI_LK_DEBUG_COMBINATION)
2436 return false;
2437
2438 /* Changed combination key and there's no previous one */
2439 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2440 return false;
2441
2442 /* Security mode 3 case */
2443 if (!conn)
2444 return true;
2445
2446 /* BR/EDR key derived using SC from an LE link */
2447 if (conn->type == LE_LINK)
2448 return true;
2449
2450 /* Neither local nor remote side had no-bonding as requirement */
2451 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2452 return true;
2453
2454 /* Local side had dedicated bonding as requirement */
2455 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2456 return true;
2457
2458 /* Remote side had dedicated bonding as requirement */
2459 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2460 return true;
2461
2462 /* If none of the above criteria match, then don't store the key
2463 * persistently */
2464 return false;
2465 }
2466
ltk_role(u8 type)2467 static u8 ltk_role(u8 type)
2468 {
2469 if (type == SMP_LTK)
2470 return HCI_ROLE_MASTER;
2471
2472 return HCI_ROLE_SLAVE;
2473 }
2474
hci_find_ltk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type,u8 role)2475 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2476 u8 addr_type, u8 role)
2477 {
2478 struct smp_ltk *k;
2479
2480 rcu_read_lock();
2481 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2482 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2483 continue;
2484
2485 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2486 rcu_read_unlock();
2487
2488 if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
2489 k->val)) {
2490 bt_dev_warn_ratelimited(hdev,
2491 "LTK blocked for %pMR",
2492 &k->bdaddr);
2493 return NULL;
2494 }
2495
2496 return k;
2497 }
2498 }
2499 rcu_read_unlock();
2500
2501 return NULL;
2502 }
2503
hci_find_irk_by_rpa(struct hci_dev * hdev,bdaddr_t * rpa)2504 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2505 {
2506 struct smp_irk *irk_to_return = NULL;
2507 struct smp_irk *irk;
2508
2509 rcu_read_lock();
2510 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2511 if (!bacmp(&irk->rpa, rpa)) {
2512 irk_to_return = irk;
2513 goto done;
2514 }
2515 }
2516
2517 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2518 if (smp_irk_matches(hdev, irk->val, rpa)) {
2519 bacpy(&irk->rpa, rpa);
2520 irk_to_return = irk;
2521 goto done;
2522 }
2523 }
2524
2525 done:
2526 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2527 irk_to_return->val)) {
2528 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2529 &irk_to_return->bdaddr);
2530 irk_to_return = NULL;
2531 }
2532
2533 rcu_read_unlock();
2534
2535 return irk_to_return;
2536 }
2537
hci_find_irk_by_addr(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type)2538 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2539 u8 addr_type)
2540 {
2541 struct smp_irk *irk_to_return = NULL;
2542 struct smp_irk *irk;
2543
2544 /* Identity Address must be public or static random */
2545 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2546 return NULL;
2547
2548 rcu_read_lock();
2549 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2550 if (addr_type == irk->addr_type &&
2551 bacmp(bdaddr, &irk->bdaddr) == 0) {
2552 irk_to_return = irk;
2553 goto done;
2554 }
2555 }
2556
2557 done:
2558
2559 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2560 irk_to_return->val)) {
2561 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2562 &irk_to_return->bdaddr);
2563 irk_to_return = NULL;
2564 }
2565
2566 rcu_read_unlock();
2567
2568 return irk_to_return;
2569 }
2570
hci_add_link_key(struct hci_dev * hdev,struct hci_conn * conn,bdaddr_t * bdaddr,u8 * val,u8 type,u8 pin_len,bool * persistent)2571 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2572 bdaddr_t *bdaddr, u8 *val, u8 type,
2573 u8 pin_len, bool *persistent)
2574 {
2575 struct link_key *key, *old_key;
2576 u8 old_key_type;
2577
2578 old_key = hci_find_link_key(hdev, bdaddr);
2579 if (old_key) {
2580 old_key_type = old_key->type;
2581 key = old_key;
2582 } else {
2583 old_key_type = conn ? conn->key_type : 0xff;
2584 key = kzalloc(sizeof(*key), GFP_KERNEL);
2585 if (!key)
2586 return NULL;
2587 list_add_rcu(&key->list, &hdev->link_keys);
2588 }
2589
2590 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2591
2592 /* Some buggy controller combinations generate a changed
2593 * combination key for legacy pairing even when there's no
2594 * previous key */
2595 if (type == HCI_LK_CHANGED_COMBINATION &&
2596 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2597 type = HCI_LK_COMBINATION;
2598 if (conn)
2599 conn->key_type = type;
2600 }
2601
2602 bacpy(&key->bdaddr, bdaddr);
2603 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2604 key->pin_len = pin_len;
2605
2606 if (type == HCI_LK_CHANGED_COMBINATION)
2607 key->type = old_key_type;
2608 else
2609 key->type = type;
2610
2611 if (persistent)
2612 *persistent = hci_persistent_key(hdev, conn, type,
2613 old_key_type);
2614
2615 return key;
2616 }
2617
hci_add_ltk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type,u8 type,u8 authenticated,u8 tk[16],u8 enc_size,__le16 ediv,__le64 rand)2618 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2619 u8 addr_type, u8 type, u8 authenticated,
2620 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2621 {
2622 struct smp_ltk *key, *old_key;
2623 u8 role = ltk_role(type);
2624
2625 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2626 if (old_key)
2627 key = old_key;
2628 else {
2629 key = kzalloc(sizeof(*key), GFP_KERNEL);
2630 if (!key)
2631 return NULL;
2632 list_add_rcu(&key->list, &hdev->long_term_keys);
2633 }
2634
2635 bacpy(&key->bdaddr, bdaddr);
2636 key->bdaddr_type = addr_type;
2637 memcpy(key->val, tk, sizeof(key->val));
2638 key->authenticated = authenticated;
2639 key->ediv = ediv;
2640 key->rand = rand;
2641 key->enc_size = enc_size;
2642 key->type = type;
2643
2644 return key;
2645 }
2646
hci_add_irk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type,u8 val[16],bdaddr_t * rpa)2647 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2648 u8 addr_type, u8 val[16], bdaddr_t *rpa)
2649 {
2650 struct smp_irk *irk;
2651
2652 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2653 if (!irk) {
2654 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2655 if (!irk)
2656 return NULL;
2657
2658 bacpy(&irk->bdaddr, bdaddr);
2659 irk->addr_type = addr_type;
2660
2661 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2662 }
2663
2664 memcpy(irk->val, val, 16);
2665 bacpy(&irk->rpa, rpa);
2666
2667 return irk;
2668 }
2669
hci_remove_link_key(struct hci_dev * hdev,bdaddr_t * bdaddr)2670 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2671 {
2672 struct link_key *key;
2673
2674 key = hci_find_link_key(hdev, bdaddr);
2675 if (!key)
2676 return -ENOENT;
2677
2678 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2679
2680 list_del_rcu(&key->list);
2681 kfree_rcu(key, rcu);
2682
2683 return 0;
2684 }
2685
hci_remove_ltk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type)2686 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2687 {
2688 struct smp_ltk *k, *tmp;
2689 int removed = 0;
2690
2691 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
2692 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2693 continue;
2694
2695 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2696
2697 list_del_rcu(&k->list);
2698 kfree_rcu(k, rcu);
2699 removed++;
2700 }
2701
2702 return removed ? 0 : -ENOENT;
2703 }
2704
hci_remove_irk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type)2705 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2706 {
2707 struct smp_irk *k, *tmp;
2708
2709 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
2710 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2711 continue;
2712
2713 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2714
2715 list_del_rcu(&k->list);
2716 kfree_rcu(k, rcu);
2717 }
2718 }
2719
hci_bdaddr_is_paired(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 type)2720 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2721 {
2722 struct smp_ltk *k;
2723 struct smp_irk *irk;
2724 u8 addr_type;
2725
2726 if (type == BDADDR_BREDR) {
2727 if (hci_find_link_key(hdev, bdaddr))
2728 return true;
2729 return false;
2730 }
2731
2732 /* Convert to HCI addr type which struct smp_ltk uses */
2733 if (type == BDADDR_LE_PUBLIC)
2734 addr_type = ADDR_LE_DEV_PUBLIC;
2735 else
2736 addr_type = ADDR_LE_DEV_RANDOM;
2737
2738 irk = hci_get_irk(hdev, bdaddr, addr_type);
2739 if (irk) {
2740 bdaddr = &irk->bdaddr;
2741 addr_type = irk->addr_type;
2742 }
2743
2744 rcu_read_lock();
2745 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2746 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2747 rcu_read_unlock();
2748 return true;
2749 }
2750 }
2751 rcu_read_unlock();
2752
2753 return false;
2754 }
2755
2756 /* HCI command timer function */
hci_cmd_timeout(struct work_struct * work)2757 static void hci_cmd_timeout(struct work_struct *work)
2758 {
2759 struct hci_dev *hdev = container_of(work, struct hci_dev,
2760 cmd_timer.work);
2761
2762 if (hdev->sent_cmd) {
2763 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2764 u16 opcode = __le16_to_cpu(sent->opcode);
2765
2766 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2767 } else {
2768 bt_dev_err(hdev, "command tx timeout");
2769 }
2770
2771 if (hdev->cmd_timeout)
2772 hdev->cmd_timeout(hdev);
2773
2774 atomic_set(&hdev->cmd_cnt, 1);
2775 queue_work(hdev->workqueue, &hdev->cmd_work);
2776 }
2777
hci_find_remote_oob_data(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type)2778 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2779 bdaddr_t *bdaddr, u8 bdaddr_type)
2780 {
2781 struct oob_data *data;
2782
2783 list_for_each_entry(data, &hdev->remote_oob_data, list) {
2784 if (bacmp(bdaddr, &data->bdaddr) != 0)
2785 continue;
2786 if (data->bdaddr_type != bdaddr_type)
2787 continue;
2788 return data;
2789 }
2790
2791 return NULL;
2792 }
2793
hci_remove_remote_oob_data(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type)2794 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2795 u8 bdaddr_type)
2796 {
2797 struct oob_data *data;
2798
2799 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2800 if (!data)
2801 return -ENOENT;
2802
2803 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2804
2805 list_del(&data->list);
2806 kfree(data);
2807
2808 return 0;
2809 }
2810
hci_remote_oob_data_clear(struct hci_dev * hdev)2811 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2812 {
2813 struct oob_data *data, *n;
2814
2815 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2816 list_del(&data->list);
2817 kfree(data);
2818 }
2819 }
2820
hci_add_remote_oob_data(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type,u8 * hash192,u8 * rand192,u8 * hash256,u8 * rand256)2821 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2822 u8 bdaddr_type, u8 *hash192, u8 *rand192,
2823 u8 *hash256, u8 *rand256)
2824 {
2825 struct oob_data *data;
2826
2827 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2828 if (!data) {
2829 data = kmalloc(sizeof(*data), GFP_KERNEL);
2830 if (!data)
2831 return -ENOMEM;
2832
2833 bacpy(&data->bdaddr, bdaddr);
2834 data->bdaddr_type = bdaddr_type;
2835 list_add(&data->list, &hdev->remote_oob_data);
2836 }
2837
2838 if (hash192 && rand192) {
2839 memcpy(data->hash192, hash192, sizeof(data->hash192));
2840 memcpy(data->rand192, rand192, sizeof(data->rand192));
2841 if (hash256 && rand256)
2842 data->present = 0x03;
2843 } else {
2844 memset(data->hash192, 0, sizeof(data->hash192));
2845 memset(data->rand192, 0, sizeof(data->rand192));
2846 if (hash256 && rand256)
2847 data->present = 0x02;
2848 else
2849 data->present = 0x00;
2850 }
2851
2852 if (hash256 && rand256) {
2853 memcpy(data->hash256, hash256, sizeof(data->hash256));
2854 memcpy(data->rand256, rand256, sizeof(data->rand256));
2855 } else {
2856 memset(data->hash256, 0, sizeof(data->hash256));
2857 memset(data->rand256, 0, sizeof(data->rand256));
2858 if (hash192 && rand192)
2859 data->present = 0x01;
2860 }
2861
2862 BT_DBG("%s for %pMR", hdev->name, bdaddr);
2863
2864 return 0;
2865 }
2866
2867 /* This function requires the caller holds hdev->lock */
hci_find_adv_instance(struct hci_dev * hdev,u8 instance)2868 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2869 {
2870 struct adv_info *adv_instance;
2871
2872 list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2873 if (adv_instance->instance == instance)
2874 return adv_instance;
2875 }
2876
2877 return NULL;
2878 }
2879
2880 /* This function requires the caller holds hdev->lock */
hci_get_next_instance(struct hci_dev * hdev,u8 instance)2881 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2882 {
2883 struct adv_info *cur_instance;
2884
2885 cur_instance = hci_find_adv_instance(hdev, instance);
2886 if (!cur_instance)
2887 return NULL;
2888
2889 if (cur_instance == list_last_entry(&hdev->adv_instances,
2890 struct adv_info, list))
2891 return list_first_entry(&hdev->adv_instances,
2892 struct adv_info, list);
2893 else
2894 return list_next_entry(cur_instance, list);
2895 }
2896
2897 /* This function requires the caller holds hdev->lock */
hci_remove_adv_instance(struct hci_dev * hdev,u8 instance)2898 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2899 {
2900 struct adv_info *adv_instance;
2901
2902 adv_instance = hci_find_adv_instance(hdev, instance);
2903 if (!adv_instance)
2904 return -ENOENT;
2905
2906 BT_DBG("%s removing %dMR", hdev->name, instance);
2907
2908 if (hdev->cur_adv_instance == instance) {
2909 if (hdev->adv_instance_timeout) {
2910 cancel_delayed_work(&hdev->adv_instance_expire);
2911 hdev->adv_instance_timeout = 0;
2912 }
2913 hdev->cur_adv_instance = 0x00;
2914 }
2915
2916 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2917
2918 list_del(&adv_instance->list);
2919 kfree(adv_instance);
2920
2921 hdev->adv_instance_cnt--;
2922
2923 return 0;
2924 }
2925
hci_adv_instances_set_rpa_expired(struct hci_dev * hdev,bool rpa_expired)2926 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2927 {
2928 struct adv_info *adv_instance, *n;
2929
2930 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2931 adv_instance->rpa_expired = rpa_expired;
2932 }
2933
2934 /* This function requires the caller holds hdev->lock */
hci_adv_instances_clear(struct hci_dev * hdev)2935 void hci_adv_instances_clear(struct hci_dev *hdev)
2936 {
2937 struct adv_info *adv_instance, *n;
2938
2939 if (hdev->adv_instance_timeout) {
2940 cancel_delayed_work(&hdev->adv_instance_expire);
2941 hdev->adv_instance_timeout = 0;
2942 }
2943
2944 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2945 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2946 list_del(&adv_instance->list);
2947 kfree(adv_instance);
2948 }
2949
2950 hdev->adv_instance_cnt = 0;
2951 hdev->cur_adv_instance = 0x00;
2952 }
2953
adv_instance_rpa_expired(struct work_struct * work)2954 static void adv_instance_rpa_expired(struct work_struct *work)
2955 {
2956 struct adv_info *adv_instance = container_of(work, struct adv_info,
2957 rpa_expired_cb.work);
2958
2959 BT_DBG("");
2960
2961 adv_instance->rpa_expired = true;
2962 }
2963
2964 /* This function requires the caller holds hdev->lock */
hci_add_adv_instance(struct hci_dev * hdev,u8 instance,u32 flags,u16 adv_data_len,u8 * adv_data,u16 scan_rsp_len,u8 * scan_rsp_data,u16 timeout,u16 duration)2965 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2966 u16 adv_data_len, u8 *adv_data,
2967 u16 scan_rsp_len, u8 *scan_rsp_data,
2968 u16 timeout, u16 duration)
2969 {
2970 struct adv_info *adv_instance;
2971
2972 adv_instance = hci_find_adv_instance(hdev, instance);
2973 if (adv_instance) {
2974 memset(adv_instance->adv_data, 0,
2975 sizeof(adv_instance->adv_data));
2976 memset(adv_instance->scan_rsp_data, 0,
2977 sizeof(adv_instance->scan_rsp_data));
2978 } else {
2979 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
2980 instance < 1 || instance > hdev->le_num_of_adv_sets)
2981 return -EOVERFLOW;
2982
2983 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2984 if (!adv_instance)
2985 return -ENOMEM;
2986
2987 adv_instance->pending = true;
2988 adv_instance->instance = instance;
2989 list_add(&adv_instance->list, &hdev->adv_instances);
2990 hdev->adv_instance_cnt++;
2991 }
2992
2993 adv_instance->flags = flags;
2994 adv_instance->adv_data_len = adv_data_len;
2995 adv_instance->scan_rsp_len = scan_rsp_len;
2996
2997 if (adv_data_len)
2998 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2999
3000 if (scan_rsp_len)
3001 memcpy(adv_instance->scan_rsp_data,
3002 scan_rsp_data, scan_rsp_len);
3003
3004 adv_instance->timeout = timeout;
3005 adv_instance->remaining_time = timeout;
3006
3007 if (duration == 0)
3008 adv_instance->duration = hdev->def_multi_adv_rotation_duration;
3009 else
3010 adv_instance->duration = duration;
3011
3012 adv_instance->tx_power = HCI_TX_POWER_INVALID;
3013
3014 INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
3015 adv_instance_rpa_expired);
3016
3017 BT_DBG("%s for %dMR", hdev->name, instance);
3018
3019 return 0;
3020 }
3021
3022 /* This function requires the caller holds hdev->lock */
hci_adv_monitors_clear(struct hci_dev * hdev)3023 void hci_adv_monitors_clear(struct hci_dev *hdev)
3024 {
3025 struct adv_monitor *monitor;
3026 int handle;
3027
3028 idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
3029 hci_free_adv_monitor(monitor);
3030
3031 idr_destroy(&hdev->adv_monitors_idr);
3032 }
3033
hci_free_adv_monitor(struct adv_monitor * monitor)3034 void hci_free_adv_monitor(struct adv_monitor *monitor)
3035 {
3036 struct adv_pattern *pattern;
3037 struct adv_pattern *tmp;
3038
3039 if (!monitor)
3040 return;
3041
3042 list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list)
3043 kfree(pattern);
3044
3045 kfree(monitor);
3046 }
3047
3048 /* This function requires the caller holds hdev->lock */
hci_add_adv_monitor(struct hci_dev * hdev,struct adv_monitor * monitor)3049 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
3050 {
3051 int min, max, handle;
3052
3053 if (!monitor)
3054 return -EINVAL;
3055
3056 min = HCI_MIN_ADV_MONITOR_HANDLE;
3057 max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
3058 handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
3059 GFP_KERNEL);
3060 if (handle < 0)
3061 return handle;
3062
3063 hdev->adv_monitors_cnt++;
3064 monitor->handle = handle;
3065
3066 hci_update_background_scan(hdev);
3067
3068 return 0;
3069 }
3070
free_adv_monitor(int id,void * ptr,void * data)3071 static int free_adv_monitor(int id, void *ptr, void *data)
3072 {
3073 struct hci_dev *hdev = data;
3074 struct adv_monitor *monitor = ptr;
3075
3076 idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3077 hci_free_adv_monitor(monitor);
3078 hdev->adv_monitors_cnt--;
3079
3080 return 0;
3081 }
3082
3083 /* This function requires the caller holds hdev->lock */
hci_remove_adv_monitor(struct hci_dev * hdev,u16 handle)3084 int hci_remove_adv_monitor(struct hci_dev *hdev, u16 handle)
3085 {
3086 struct adv_monitor *monitor;
3087
3088 if (handle) {
3089 monitor = idr_find(&hdev->adv_monitors_idr, handle);
3090 if (!monitor)
3091 return -ENOENT;
3092
3093 idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3094 hci_free_adv_monitor(monitor);
3095 hdev->adv_monitors_cnt--;
3096 } else {
3097 /* Remove all monitors if handle is 0. */
3098 idr_for_each(&hdev->adv_monitors_idr, &free_adv_monitor, hdev);
3099 }
3100
3101 hci_update_background_scan(hdev);
3102
3103 return 0;
3104 }
3105
3106 /* This function requires the caller holds hdev->lock */
hci_is_adv_monitoring(struct hci_dev * hdev)3107 bool hci_is_adv_monitoring(struct hci_dev *hdev)
3108 {
3109 return !idr_is_empty(&hdev->adv_monitors_idr);
3110 }
3111
hci_bdaddr_list_lookup(struct list_head * bdaddr_list,bdaddr_t * bdaddr,u8 type)3112 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
3113 bdaddr_t *bdaddr, u8 type)
3114 {
3115 struct bdaddr_list *b;
3116
3117 list_for_each_entry(b, bdaddr_list, list) {
3118 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3119 return b;
3120 }
3121
3122 return NULL;
3123 }
3124
hci_bdaddr_list_lookup_with_irk(struct list_head * bdaddr_list,bdaddr_t * bdaddr,u8 type)3125 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
3126 struct list_head *bdaddr_list, bdaddr_t *bdaddr,
3127 u8 type)
3128 {
3129 struct bdaddr_list_with_irk *b;
3130
3131 list_for_each_entry(b, bdaddr_list, list) {
3132 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3133 return b;
3134 }
3135
3136 return NULL;
3137 }
3138
3139 struct bdaddr_list_with_flags *
hci_bdaddr_list_lookup_with_flags(struct list_head * bdaddr_list,bdaddr_t * bdaddr,u8 type)3140 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
3141 bdaddr_t *bdaddr, u8 type)
3142 {
3143 struct bdaddr_list_with_flags *b;
3144
3145 list_for_each_entry(b, bdaddr_list, list) {
3146 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3147 return b;
3148 }
3149
3150 return NULL;
3151 }
3152
hci_bdaddr_list_clear(struct list_head * bdaddr_list)3153 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
3154 {
3155 struct bdaddr_list *b, *n;
3156
3157 list_for_each_entry_safe(b, n, bdaddr_list, list) {
3158 list_del(&b->list);
3159 kfree(b);
3160 }
3161 }
3162
hci_bdaddr_list_add(struct list_head * list,bdaddr_t * bdaddr,u8 type)3163 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3164 {
3165 struct bdaddr_list *entry;
3166
3167 if (!bacmp(bdaddr, BDADDR_ANY))
3168 return -EBADF;
3169
3170 if (hci_bdaddr_list_lookup(list, bdaddr, type))
3171 return -EEXIST;
3172
3173 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3174 if (!entry)
3175 return -ENOMEM;
3176
3177 bacpy(&entry->bdaddr, bdaddr);
3178 entry->bdaddr_type = type;
3179
3180 list_add(&entry->list, list);
3181
3182 return 0;
3183 }
3184
hci_bdaddr_list_add_with_irk(struct list_head * list,bdaddr_t * bdaddr,u8 type,u8 * peer_irk,u8 * local_irk)3185 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3186 u8 type, u8 *peer_irk, u8 *local_irk)
3187 {
3188 struct bdaddr_list_with_irk *entry;
3189
3190 if (!bacmp(bdaddr, BDADDR_ANY))
3191 return -EBADF;
3192
3193 if (hci_bdaddr_list_lookup(list, bdaddr, type))
3194 return -EEXIST;
3195
3196 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3197 if (!entry)
3198 return -ENOMEM;
3199
3200 bacpy(&entry->bdaddr, bdaddr);
3201 entry->bdaddr_type = type;
3202
3203 if (peer_irk)
3204 memcpy(entry->peer_irk, peer_irk, 16);
3205
3206 if (local_irk)
3207 memcpy(entry->local_irk, local_irk, 16);
3208
3209 list_add(&entry->list, list);
3210
3211 return 0;
3212 }
3213
hci_bdaddr_list_add_with_flags(struct list_head * list,bdaddr_t * bdaddr,u8 type,u32 flags)3214 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3215 u8 type, u32 flags)
3216 {
3217 struct bdaddr_list_with_flags *entry;
3218
3219 if (!bacmp(bdaddr, BDADDR_ANY))
3220 return -EBADF;
3221
3222 if (hci_bdaddr_list_lookup(list, bdaddr, type))
3223 return -EEXIST;
3224
3225 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3226 if (!entry)
3227 return -ENOMEM;
3228
3229 bacpy(&entry->bdaddr, bdaddr);
3230 entry->bdaddr_type = type;
3231 entry->current_flags = flags;
3232
3233 list_add(&entry->list, list);
3234
3235 return 0;
3236 }
3237
hci_bdaddr_list_del(struct list_head * list,bdaddr_t * bdaddr,u8 type)3238 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3239 {
3240 struct bdaddr_list *entry;
3241
3242 if (!bacmp(bdaddr, BDADDR_ANY)) {
3243 hci_bdaddr_list_clear(list);
3244 return 0;
3245 }
3246
3247 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
3248 if (!entry)
3249 return -ENOENT;
3250
3251 list_del(&entry->list);
3252 kfree(entry);
3253
3254 return 0;
3255 }
3256
hci_bdaddr_list_del_with_irk(struct list_head * list,bdaddr_t * bdaddr,u8 type)3257 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3258 u8 type)
3259 {
3260 struct bdaddr_list_with_irk *entry;
3261
3262 if (!bacmp(bdaddr, BDADDR_ANY)) {
3263 hci_bdaddr_list_clear(list);
3264 return 0;
3265 }
3266
3267 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
3268 if (!entry)
3269 return -ENOENT;
3270
3271 list_del(&entry->list);
3272 kfree(entry);
3273
3274 return 0;
3275 }
3276
hci_bdaddr_list_del_with_flags(struct list_head * list,bdaddr_t * bdaddr,u8 type)3277 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3278 u8 type)
3279 {
3280 struct bdaddr_list_with_flags *entry;
3281
3282 if (!bacmp(bdaddr, BDADDR_ANY)) {
3283 hci_bdaddr_list_clear(list);
3284 return 0;
3285 }
3286
3287 entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
3288 if (!entry)
3289 return -ENOENT;
3290
3291 list_del(&entry->list);
3292 kfree(entry);
3293
3294 return 0;
3295 }
3296
3297 /* This function requires the caller holds hdev->lock */
hci_conn_params_lookup(struct hci_dev * hdev,bdaddr_t * addr,u8 addr_type)3298 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3299 bdaddr_t *addr, u8 addr_type)
3300 {
3301 struct hci_conn_params *params;
3302
3303 list_for_each_entry(params, &hdev->le_conn_params, list) {
3304 if (bacmp(¶ms->addr, addr) == 0 &&
3305 params->addr_type == addr_type) {
3306 return params;
3307 }
3308 }
3309
3310 return NULL;
3311 }
3312
3313 /* This function requires the caller holds hdev->lock */
hci_pend_le_action_lookup(struct list_head * list,bdaddr_t * addr,u8 addr_type)3314 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3315 bdaddr_t *addr, u8 addr_type)
3316 {
3317 struct hci_conn_params *param;
3318
3319 switch (addr_type) {
3320 case ADDR_LE_DEV_PUBLIC_RESOLVED:
3321 addr_type = ADDR_LE_DEV_PUBLIC;
3322 break;
3323 case ADDR_LE_DEV_RANDOM_RESOLVED:
3324 addr_type = ADDR_LE_DEV_RANDOM;
3325 break;
3326 }
3327
3328 list_for_each_entry(param, list, action) {
3329 if (bacmp(¶m->addr, addr) == 0 &&
3330 param->addr_type == addr_type)
3331 return param;
3332 }
3333
3334 return NULL;
3335 }
3336
3337 /* This function requires the caller holds hdev->lock */
hci_conn_params_add(struct hci_dev * hdev,bdaddr_t * addr,u8 addr_type)3338 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3339 bdaddr_t *addr, u8 addr_type)
3340 {
3341 struct hci_conn_params *params;
3342
3343 params = hci_conn_params_lookup(hdev, addr, addr_type);
3344 if (params)
3345 return params;
3346
3347 params = kzalloc(sizeof(*params), GFP_KERNEL);
3348 if (!params) {
3349 bt_dev_err(hdev, "out of memory");
3350 return NULL;
3351 }
3352
3353 bacpy(¶ms->addr, addr);
3354 params->addr_type = addr_type;
3355
3356 list_add(¶ms->list, &hdev->le_conn_params);
3357 INIT_LIST_HEAD(¶ms->action);
3358
3359 params->conn_min_interval = hdev->le_conn_min_interval;
3360 params->conn_max_interval = hdev->le_conn_max_interval;
3361 params->conn_latency = hdev->le_conn_latency;
3362 params->supervision_timeout = hdev->le_supv_timeout;
3363 params->auto_connect = HCI_AUTO_CONN_DISABLED;
3364
3365 BT_DBG("addr %pMR (type %u)", addr, addr_type);
3366
3367 return params;
3368 }
3369
hci_conn_params_free(struct hci_conn_params * params)3370 static void hci_conn_params_free(struct hci_conn_params *params)
3371 {
3372 if (params->conn) {
3373 hci_conn_drop(params->conn);
3374 hci_conn_put(params->conn);
3375 }
3376
3377 list_del(¶ms->action);
3378 list_del(¶ms->list);
3379 kfree(params);
3380 }
3381
3382 /* This function requires the caller holds hdev->lock */
hci_conn_params_del(struct hci_dev * hdev,bdaddr_t * addr,u8 addr_type)3383 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3384 {
3385 struct hci_conn_params *params;
3386
3387 params = hci_conn_params_lookup(hdev, addr, addr_type);
3388 if (!params)
3389 return;
3390
3391 hci_conn_params_free(params);
3392
3393 hci_update_background_scan(hdev);
3394
3395 BT_DBG("addr %pMR (type %u)", addr, addr_type);
3396 }
3397
3398 /* This function requires the caller holds hdev->lock */
hci_conn_params_clear_disabled(struct hci_dev * hdev)3399 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3400 {
3401 struct hci_conn_params *params, *tmp;
3402
3403 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3404 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3405 continue;
3406
3407 /* If trying to estabilish one time connection to disabled
3408 * device, leave the params, but mark them as just once.
3409 */
3410 if (params->explicit_connect) {
3411 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3412 continue;
3413 }
3414
3415 list_del(¶ms->list);
3416 kfree(params);
3417 }
3418
3419 BT_DBG("All LE disabled connection parameters were removed");
3420 }
3421
3422 /* This function requires the caller holds hdev->lock */
hci_conn_params_clear_all(struct hci_dev * hdev)3423 static void hci_conn_params_clear_all(struct hci_dev *hdev)
3424 {
3425 struct hci_conn_params *params, *tmp;
3426
3427 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3428 hci_conn_params_free(params);
3429
3430 BT_DBG("All LE connection parameters were removed");
3431 }
3432
3433 /* Copy the Identity Address of the controller.
3434 *
3435 * If the controller has a public BD_ADDR, then by default use that one.
3436 * If this is a LE only controller without a public address, default to
3437 * the static random address.
3438 *
3439 * For debugging purposes it is possible to force controllers with a
3440 * public address to use the static random address instead.
3441 *
3442 * In case BR/EDR has been disabled on a dual-mode controller and
3443 * userspace has configured a static address, then that address
3444 * becomes the identity address instead of the public BR/EDR address.
3445 */
hci_copy_identity_address(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 * bdaddr_type)3446 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3447 u8 *bdaddr_type)
3448 {
3449 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3450 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3451 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3452 bacmp(&hdev->static_addr, BDADDR_ANY))) {
3453 bacpy(bdaddr, &hdev->static_addr);
3454 *bdaddr_type = ADDR_LE_DEV_RANDOM;
3455 } else {
3456 bacpy(bdaddr, &hdev->bdaddr);
3457 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
3458 }
3459 }
3460
hci_suspend_clear_tasks(struct hci_dev * hdev)3461 static void hci_suspend_clear_tasks(struct hci_dev *hdev)
3462 {
3463 int i;
3464
3465 for (i = 0; i < __SUSPEND_NUM_TASKS; i++)
3466 clear_bit(i, hdev->suspend_tasks);
3467
3468 wake_up(&hdev->suspend_wait_q);
3469 }
3470
hci_suspend_wait_event(struct hci_dev * hdev)3471 static int hci_suspend_wait_event(struct hci_dev *hdev)
3472 {
3473 #define WAKE_COND \
3474 (find_first_bit(hdev->suspend_tasks, __SUSPEND_NUM_TASKS) == \
3475 __SUSPEND_NUM_TASKS)
3476
3477 int i;
3478 int ret = wait_event_timeout(hdev->suspend_wait_q,
3479 WAKE_COND, SUSPEND_NOTIFIER_TIMEOUT);
3480
3481 if (ret == 0) {
3482 bt_dev_err(hdev, "Timed out waiting for suspend events");
3483 for (i = 0; i < __SUSPEND_NUM_TASKS; ++i) {
3484 if (test_bit(i, hdev->suspend_tasks))
3485 bt_dev_err(hdev, "Suspend timeout bit: %d", i);
3486 clear_bit(i, hdev->suspend_tasks);
3487 }
3488
3489 ret = -ETIMEDOUT;
3490 } else {
3491 ret = 0;
3492 }
3493
3494 return ret;
3495 }
3496
hci_prepare_suspend(struct work_struct * work)3497 static void hci_prepare_suspend(struct work_struct *work)
3498 {
3499 struct hci_dev *hdev =
3500 container_of(work, struct hci_dev, suspend_prepare);
3501
3502 hci_dev_lock(hdev);
3503 hci_req_prepare_suspend(hdev, hdev->suspend_state_next);
3504 hci_dev_unlock(hdev);
3505 }
3506
hci_change_suspend_state(struct hci_dev * hdev,enum suspended_state next)3507 static int hci_change_suspend_state(struct hci_dev *hdev,
3508 enum suspended_state next)
3509 {
3510 hdev->suspend_state_next = next;
3511 set_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
3512 queue_work(hdev->req_workqueue, &hdev->suspend_prepare);
3513 return hci_suspend_wait_event(hdev);
3514 }
3515
hci_clear_wake_reason(struct hci_dev * hdev)3516 static void hci_clear_wake_reason(struct hci_dev *hdev)
3517 {
3518 hci_dev_lock(hdev);
3519
3520 hdev->wake_reason = 0;
3521 bacpy(&hdev->wake_addr, BDADDR_ANY);
3522 hdev->wake_addr_type = 0;
3523
3524 hci_dev_unlock(hdev);
3525 }
3526
hci_suspend_notifier(struct notifier_block * nb,unsigned long action,void * data)3527 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
3528 void *data)
3529 {
3530 struct hci_dev *hdev =
3531 container_of(nb, struct hci_dev, suspend_notifier);
3532 int ret = 0;
3533 u8 state = BT_RUNNING;
3534
3535 /* If powering down, wait for completion. */
3536 if (mgmt_powering_down(hdev)) {
3537 set_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks);
3538 ret = hci_suspend_wait_event(hdev);
3539 if (ret)
3540 goto done;
3541 }
3542
3543 /* Suspend notifier should only act on events when powered. */
3544 if (!hdev_is_powered(hdev) ||
3545 hci_dev_test_flag(hdev, HCI_UNREGISTER))
3546 goto done;
3547
3548 if (action == PM_SUSPEND_PREPARE) {
3549 /* Suspend consists of two actions:
3550 * - First, disconnect everything and make the controller not
3551 * connectable (disabling scanning)
3552 * - Second, program event filter/accept list and enable scan
3553 */
3554 ret = hci_change_suspend_state(hdev, BT_SUSPEND_DISCONNECT);
3555 if (!ret)
3556 state = BT_SUSPEND_DISCONNECT;
3557
3558 /* Only configure accept list if disconnect succeeded and wake
3559 * isn't being prevented.
3560 */
3561 if (!ret && !(hdev->prevent_wake && hdev->prevent_wake(hdev))) {
3562 ret = hci_change_suspend_state(hdev,
3563 BT_SUSPEND_CONFIGURE_WAKE);
3564 if (!ret)
3565 state = BT_SUSPEND_CONFIGURE_WAKE;
3566 }
3567
3568 hci_clear_wake_reason(hdev);
3569 mgmt_suspending(hdev, state);
3570
3571 } else if (action == PM_POST_SUSPEND) {
3572 ret = hci_change_suspend_state(hdev, BT_RUNNING);
3573
3574 mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
3575 hdev->wake_addr_type);
3576 }
3577
3578 done:
3579 /* We always allow suspend even if suspend preparation failed and
3580 * attempt to recover in resume.
3581 */
3582 if (ret)
3583 bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
3584 action, ret);
3585
3586 return NOTIFY_DONE;
3587 }
3588
3589 /* Alloc HCI device */
hci_alloc_dev(void)3590 struct hci_dev *hci_alloc_dev(void)
3591 {
3592 struct hci_dev *hdev;
3593
3594 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3595 if (!hdev)
3596 return NULL;
3597
3598 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3599 hdev->esco_type = (ESCO_HV1);
3600 hdev->link_mode = (HCI_LM_ACCEPT);
3601 hdev->num_iac = 0x01; /* One IAC support is mandatory */
3602 hdev->io_capability = 0x03; /* No Input No Output */
3603 hdev->manufacturer = 0xffff; /* Default to internal use */
3604 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3605 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3606 hdev->adv_instance_cnt = 0;
3607 hdev->cur_adv_instance = 0x00;
3608 hdev->adv_instance_timeout = 0;
3609
3610 hdev->advmon_allowlist_duration = 300;
3611 hdev->advmon_no_filter_duration = 500;
3612
3613 hdev->sniff_max_interval = 800;
3614 hdev->sniff_min_interval = 80;
3615
3616 hdev->le_adv_channel_map = 0x07;
3617 hdev->le_adv_min_interval = 0x0800;
3618 hdev->le_adv_max_interval = 0x0800;
3619 hdev->le_scan_interval = 0x0060;
3620 hdev->le_scan_window = 0x0030;
3621 hdev->le_scan_int_suspend = 0x0400;
3622 hdev->le_scan_window_suspend = 0x0012;
3623 hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
3624 hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
3625 hdev->le_scan_int_connect = 0x0060;
3626 hdev->le_scan_window_connect = 0x0060;
3627 hdev->le_conn_min_interval = 0x0018;
3628 hdev->le_conn_max_interval = 0x0028;
3629 hdev->le_conn_latency = 0x0000;
3630 hdev->le_supv_timeout = 0x002a;
3631 hdev->le_def_tx_len = 0x001b;
3632 hdev->le_def_tx_time = 0x0148;
3633 hdev->le_max_tx_len = 0x001b;
3634 hdev->le_max_tx_time = 0x0148;
3635 hdev->le_max_rx_len = 0x001b;
3636 hdev->le_max_rx_time = 0x0148;
3637 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3638 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3639 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3640 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3641 hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
3642 hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
3643 hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
3644
3645 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3646 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3647 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3648 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3649 hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
3650 hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
3651
3652 /* default 1.28 sec page scan */
3653 hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
3654 hdev->def_page_scan_int = 0x0800;
3655 hdev->def_page_scan_window = 0x0012;
3656
3657 mutex_init(&hdev->lock);
3658 mutex_init(&hdev->req_lock);
3659
3660 INIT_LIST_HEAD(&hdev->mgmt_pending);
3661 INIT_LIST_HEAD(&hdev->reject_list);
3662 INIT_LIST_HEAD(&hdev->accept_list);
3663 INIT_LIST_HEAD(&hdev->uuids);
3664 INIT_LIST_HEAD(&hdev->link_keys);
3665 INIT_LIST_HEAD(&hdev->long_term_keys);
3666 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3667 INIT_LIST_HEAD(&hdev->remote_oob_data);
3668 INIT_LIST_HEAD(&hdev->le_accept_list);
3669 INIT_LIST_HEAD(&hdev->le_resolv_list);
3670 INIT_LIST_HEAD(&hdev->le_conn_params);
3671 INIT_LIST_HEAD(&hdev->pend_le_conns);
3672 INIT_LIST_HEAD(&hdev->pend_le_reports);
3673 INIT_LIST_HEAD(&hdev->conn_hash.list);
3674 INIT_LIST_HEAD(&hdev->adv_instances);
3675 INIT_LIST_HEAD(&hdev->blocked_keys);
3676
3677 INIT_WORK(&hdev->rx_work, hci_rx_work);
3678 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3679 INIT_WORK(&hdev->tx_work, hci_tx_work);
3680 INIT_WORK(&hdev->power_on, hci_power_on);
3681 INIT_WORK(&hdev->error_reset, hci_error_reset);
3682 INIT_WORK(&hdev->suspend_prepare, hci_prepare_suspend);
3683
3684 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3685
3686 skb_queue_head_init(&hdev->rx_q);
3687 skb_queue_head_init(&hdev->cmd_q);
3688 skb_queue_head_init(&hdev->raw_q);
3689
3690 init_waitqueue_head(&hdev->req_wait_q);
3691 init_waitqueue_head(&hdev->suspend_wait_q);
3692
3693 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3694
3695 hci_request_setup(hdev);
3696
3697 hci_init_sysfs(hdev);
3698 discovery_init(hdev);
3699
3700 return hdev;
3701 }
3702 EXPORT_SYMBOL(hci_alloc_dev);
3703
3704 /* Free HCI device */
hci_free_dev(struct hci_dev * hdev)3705 void hci_free_dev(struct hci_dev *hdev)
3706 {
3707 /* will free via device release */
3708 put_device(&hdev->dev);
3709 }
3710 EXPORT_SYMBOL(hci_free_dev);
3711
3712 /* Register HCI device */
hci_register_dev(struct hci_dev * hdev)3713 int hci_register_dev(struct hci_dev *hdev)
3714 {
3715 int id, error;
3716
3717 if (!hdev->open || !hdev->close || !hdev->send)
3718 return -EINVAL;
3719
3720 /* Do not allow HCI_AMP devices to register at index 0,
3721 * so the index can be used as the AMP controller ID.
3722 */
3723 switch (hdev->dev_type) {
3724 case HCI_PRIMARY:
3725 id = ida_simple_get(&hci_index_ida, 0, HCI_MAX_ID, GFP_KERNEL);
3726 break;
3727 case HCI_AMP:
3728 id = ida_simple_get(&hci_index_ida, 1, HCI_MAX_ID, GFP_KERNEL);
3729 break;
3730 default:
3731 return -EINVAL;
3732 }
3733
3734 if (id < 0)
3735 return id;
3736
3737 snprintf(hdev->name, sizeof(hdev->name), "hci%d", id);
3738 hdev->id = id;
3739
3740 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3741
3742 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3743 if (!hdev->workqueue) {
3744 error = -ENOMEM;
3745 goto err;
3746 }
3747
3748 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3749 hdev->name);
3750 if (!hdev->req_workqueue) {
3751 destroy_workqueue(hdev->workqueue);
3752 error = -ENOMEM;
3753 goto err;
3754 }
3755
3756 if (!IS_ERR_OR_NULL(bt_debugfs))
3757 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3758
3759 dev_set_name(&hdev->dev, "%s", hdev->name);
3760
3761 error = device_add(&hdev->dev);
3762 if (error < 0)
3763 goto err_wqueue;
3764
3765 hci_leds_init(hdev);
3766
3767 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3768 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3769 hdev);
3770 if (hdev->rfkill) {
3771 if (rfkill_register(hdev->rfkill) < 0) {
3772 rfkill_destroy(hdev->rfkill);
3773 hdev->rfkill = NULL;
3774 }
3775 }
3776
3777 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3778 hci_dev_set_flag(hdev, HCI_RFKILLED);
3779
3780 hci_dev_set_flag(hdev, HCI_SETUP);
3781 hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3782
3783 if (hdev->dev_type == HCI_PRIMARY) {
3784 /* Assume BR/EDR support until proven otherwise (such as
3785 * through reading supported features during init.
3786 */
3787 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3788 }
3789
3790 write_lock(&hci_dev_list_lock);
3791 list_add(&hdev->list, &hci_dev_list);
3792 write_unlock(&hci_dev_list_lock);
3793
3794 /* Devices that are marked for raw-only usage are unconfigured
3795 * and should not be included in normal operation.
3796 */
3797 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3798 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3799
3800 hci_sock_dev_event(hdev, HCI_DEV_REG);
3801 hci_dev_hold(hdev);
3802
3803 if (!hdev->suspend_notifier.notifier_call &&
3804 !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
3805 hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
3806 error = register_pm_notifier(&hdev->suspend_notifier);
3807 if (error)
3808 goto err_wqueue;
3809 }
3810
3811 queue_work(hdev->req_workqueue, &hdev->power_on);
3812
3813 idr_init(&hdev->adv_monitors_idr);
3814
3815 return id;
3816
3817 err_wqueue:
3818 debugfs_remove_recursive(hdev->debugfs);
3819 destroy_workqueue(hdev->workqueue);
3820 destroy_workqueue(hdev->req_workqueue);
3821 err:
3822 ida_simple_remove(&hci_index_ida, hdev->id);
3823
3824 return error;
3825 }
3826 EXPORT_SYMBOL(hci_register_dev);
3827
3828 /* Unregister HCI device */
hci_unregister_dev(struct hci_dev * hdev)3829 void hci_unregister_dev(struct hci_dev *hdev)
3830 {
3831 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3832
3833 hci_dev_set_flag(hdev, HCI_UNREGISTER);
3834
3835 write_lock(&hci_dev_list_lock);
3836 list_del(&hdev->list);
3837 write_unlock(&hci_dev_list_lock);
3838
3839 cancel_work_sync(&hdev->power_on);
3840
3841 if (!test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
3842 hci_suspend_clear_tasks(hdev);
3843 unregister_pm_notifier(&hdev->suspend_notifier);
3844 cancel_work_sync(&hdev->suspend_prepare);
3845 }
3846
3847 hci_dev_do_close(hdev);
3848
3849 if (!test_bit(HCI_INIT, &hdev->flags) &&
3850 !hci_dev_test_flag(hdev, HCI_SETUP) &&
3851 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3852 hci_dev_lock(hdev);
3853 mgmt_index_removed(hdev);
3854 hci_dev_unlock(hdev);
3855 }
3856
3857 /* mgmt_index_removed should take care of emptying the
3858 * pending list */
3859 BUG_ON(!list_empty(&hdev->mgmt_pending));
3860
3861 hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3862
3863 if (hdev->rfkill) {
3864 rfkill_unregister(hdev->rfkill);
3865 rfkill_destroy(hdev->rfkill);
3866 }
3867
3868 device_del(&hdev->dev);
3869 /* Actual cleanup is deferred until hci_cleanup_dev(). */
3870 hci_dev_put(hdev);
3871 }
3872 EXPORT_SYMBOL(hci_unregister_dev);
3873
3874 /* Cleanup HCI device */
hci_cleanup_dev(struct hci_dev * hdev)3875 void hci_cleanup_dev(struct hci_dev *hdev)
3876 {
3877 debugfs_remove_recursive(hdev->debugfs);
3878 kfree_const(hdev->hw_info);
3879 kfree_const(hdev->fw_info);
3880
3881 destroy_workqueue(hdev->workqueue);
3882 destroy_workqueue(hdev->req_workqueue);
3883
3884 hci_dev_lock(hdev);
3885 hci_bdaddr_list_clear(&hdev->reject_list);
3886 hci_bdaddr_list_clear(&hdev->accept_list);
3887 hci_uuids_clear(hdev);
3888 hci_link_keys_clear(hdev);
3889 hci_smp_ltks_clear(hdev);
3890 hci_smp_irks_clear(hdev);
3891 hci_remote_oob_data_clear(hdev);
3892 hci_adv_instances_clear(hdev);
3893 hci_adv_monitors_clear(hdev);
3894 hci_bdaddr_list_clear(&hdev->le_accept_list);
3895 hci_bdaddr_list_clear(&hdev->le_resolv_list);
3896 hci_conn_params_clear_all(hdev);
3897 hci_discovery_filter_clear(hdev);
3898 hci_blocked_keys_clear(hdev);
3899 hci_dev_unlock(hdev);
3900
3901 ida_simple_remove(&hci_index_ida, hdev->id);
3902 }
3903
3904 /* Suspend HCI device */
hci_suspend_dev(struct hci_dev * hdev)3905 int hci_suspend_dev(struct hci_dev *hdev)
3906 {
3907 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3908 return 0;
3909 }
3910 EXPORT_SYMBOL(hci_suspend_dev);
3911
3912 /* Resume HCI device */
hci_resume_dev(struct hci_dev * hdev)3913 int hci_resume_dev(struct hci_dev *hdev)
3914 {
3915 hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3916 return 0;
3917 }
3918 EXPORT_SYMBOL(hci_resume_dev);
3919
3920 /* Reset HCI device */
hci_reset_dev(struct hci_dev * hdev)3921 int hci_reset_dev(struct hci_dev *hdev)
3922 {
3923 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3924 struct sk_buff *skb;
3925
3926 skb = bt_skb_alloc(3, GFP_ATOMIC);
3927 if (!skb)
3928 return -ENOMEM;
3929
3930 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3931 skb_put_data(skb, hw_err, 3);
3932
3933 /* Send Hardware Error to upper stack */
3934 return hci_recv_frame(hdev, skb);
3935 }
3936 EXPORT_SYMBOL(hci_reset_dev);
3937
3938 /* Receive frame from HCI drivers */
hci_recv_frame(struct hci_dev * hdev,struct sk_buff * skb)3939 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3940 {
3941 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3942 && !test_bit(HCI_INIT, &hdev->flags))) {
3943 kfree_skb(skb);
3944 return -ENXIO;
3945 }
3946
3947 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3948 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3949 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
3950 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
3951 kfree_skb(skb);
3952 return -EINVAL;
3953 }
3954
3955 /* Incoming skb */
3956 bt_cb(skb)->incoming = 1;
3957
3958 /* Time stamp */
3959 __net_timestamp(skb);
3960
3961 skb_queue_tail(&hdev->rx_q, skb);
3962 queue_work(hdev->workqueue, &hdev->rx_work);
3963
3964 return 0;
3965 }
3966 EXPORT_SYMBOL(hci_recv_frame);
3967
3968 /* Receive diagnostic message from HCI drivers */
hci_recv_diag(struct hci_dev * hdev,struct sk_buff * skb)3969 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3970 {
3971 /* Mark as diagnostic packet */
3972 hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3973
3974 /* Time stamp */
3975 __net_timestamp(skb);
3976
3977 skb_queue_tail(&hdev->rx_q, skb);
3978 queue_work(hdev->workqueue, &hdev->rx_work);
3979
3980 return 0;
3981 }
3982 EXPORT_SYMBOL(hci_recv_diag);
3983
hci_set_hw_info(struct hci_dev * hdev,const char * fmt,...)3984 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3985 {
3986 va_list vargs;
3987
3988 va_start(vargs, fmt);
3989 kfree_const(hdev->hw_info);
3990 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3991 va_end(vargs);
3992 }
3993 EXPORT_SYMBOL(hci_set_hw_info);
3994
hci_set_fw_info(struct hci_dev * hdev,const char * fmt,...)3995 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3996 {
3997 va_list vargs;
3998
3999 va_start(vargs, fmt);
4000 kfree_const(hdev->fw_info);
4001 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
4002 va_end(vargs);
4003 }
4004 EXPORT_SYMBOL(hci_set_fw_info);
4005
4006 /* ---- Interface to upper protocols ---- */
4007
hci_register_cb(struct hci_cb * cb)4008 int hci_register_cb(struct hci_cb *cb)
4009 {
4010 BT_DBG("%p name %s", cb, cb->name);
4011
4012 mutex_lock(&hci_cb_list_lock);
4013 list_add_tail(&cb->list, &hci_cb_list);
4014 mutex_unlock(&hci_cb_list_lock);
4015
4016 return 0;
4017 }
4018 EXPORT_SYMBOL(hci_register_cb);
4019
hci_unregister_cb(struct hci_cb * cb)4020 int hci_unregister_cb(struct hci_cb *cb)
4021 {
4022 BT_DBG("%p name %s", cb, cb->name);
4023
4024 mutex_lock(&hci_cb_list_lock);
4025 list_del(&cb->list);
4026 mutex_unlock(&hci_cb_list_lock);
4027
4028 return 0;
4029 }
4030 EXPORT_SYMBOL(hci_unregister_cb);
4031
hci_send_frame(struct hci_dev * hdev,struct sk_buff * skb)4032 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
4033 {
4034 int err;
4035
4036 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
4037 skb->len);
4038
4039 /* Time stamp */
4040 __net_timestamp(skb);
4041
4042 /* Send copy to monitor */
4043 hci_send_to_monitor(hdev, skb);
4044
4045 if (atomic_read(&hdev->promisc)) {
4046 /* Send copy to the sockets */
4047 hci_send_to_sock(hdev, skb);
4048 }
4049
4050 /* Get rid of skb owner, prior to sending to the driver. */
4051 skb_orphan(skb);
4052
4053 if (!test_bit(HCI_RUNNING, &hdev->flags)) {
4054 kfree_skb(skb);
4055 return;
4056 }
4057
4058 err = hdev->send(hdev, skb);
4059 if (err < 0) {
4060 bt_dev_err(hdev, "sending frame failed (%d)", err);
4061 kfree_skb(skb);
4062 }
4063 }
4064
4065 /* Send HCI command */
hci_send_cmd(struct hci_dev * hdev,__u16 opcode,__u32 plen,const void * param)4066 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
4067 const void *param)
4068 {
4069 struct sk_buff *skb;
4070
4071 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
4072
4073 skb = hci_prepare_cmd(hdev, opcode, plen, param);
4074 if (!skb) {
4075 bt_dev_err(hdev, "no memory for command");
4076 return -ENOMEM;
4077 }
4078
4079 /* Stand-alone HCI commands must be flagged as
4080 * single-command requests.
4081 */
4082 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
4083
4084 skb_queue_tail(&hdev->cmd_q, skb);
4085 queue_work(hdev->workqueue, &hdev->cmd_work);
4086
4087 return 0;
4088 }
4089
__hci_cmd_send(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param)4090 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
4091 const void *param)
4092 {
4093 struct sk_buff *skb;
4094
4095 if (hci_opcode_ogf(opcode) != 0x3f) {
4096 /* A controller receiving a command shall respond with either
4097 * a Command Status Event or a Command Complete Event.
4098 * Therefore, all standard HCI commands must be sent via the
4099 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
4100 * Some vendors do not comply with this rule for vendor-specific
4101 * commands and do not return any event. We want to support
4102 * unresponded commands for such cases only.
4103 */
4104 bt_dev_err(hdev, "unresponded command not supported");
4105 return -EINVAL;
4106 }
4107
4108 skb = hci_prepare_cmd(hdev, opcode, plen, param);
4109 if (!skb) {
4110 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
4111 opcode);
4112 return -ENOMEM;
4113 }
4114
4115 hci_send_frame(hdev, skb);
4116
4117 return 0;
4118 }
4119 EXPORT_SYMBOL(__hci_cmd_send);
4120
4121 /* Get data from the previously sent command */
hci_sent_cmd_data(struct hci_dev * hdev,__u16 opcode)4122 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
4123 {
4124 struct hci_command_hdr *hdr;
4125
4126 if (!hdev->sent_cmd)
4127 return NULL;
4128
4129 hdr = (void *) hdev->sent_cmd->data;
4130
4131 if (hdr->opcode != cpu_to_le16(opcode))
4132 return NULL;
4133
4134 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
4135
4136 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
4137 }
4138
4139 /* Send HCI command and wait for command commplete event */
hci_cmd_sync(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u32 timeout)4140 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
4141 const void *param, u32 timeout)
4142 {
4143 struct sk_buff *skb;
4144
4145 if (!test_bit(HCI_UP, &hdev->flags))
4146 return ERR_PTR(-ENETDOWN);
4147
4148 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
4149
4150 hci_req_sync_lock(hdev);
4151 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
4152 hci_req_sync_unlock(hdev);
4153
4154 return skb;
4155 }
4156 EXPORT_SYMBOL(hci_cmd_sync);
4157
4158 /* Send ACL data */
hci_add_acl_hdr(struct sk_buff * skb,__u16 handle,__u16 flags)4159 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
4160 {
4161 struct hci_acl_hdr *hdr;
4162 int len = skb->len;
4163
4164 skb_push(skb, HCI_ACL_HDR_SIZE);
4165 skb_reset_transport_header(skb);
4166 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
4167 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
4168 hdr->dlen = cpu_to_le16(len);
4169 }
4170
hci_queue_acl(struct hci_chan * chan,struct sk_buff_head * queue,struct sk_buff * skb,__u16 flags)4171 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
4172 struct sk_buff *skb, __u16 flags)
4173 {
4174 struct hci_conn *conn = chan->conn;
4175 struct hci_dev *hdev = conn->hdev;
4176 struct sk_buff *list;
4177
4178 skb->len = skb_headlen(skb);
4179 skb->data_len = 0;
4180
4181 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4182
4183 switch (hdev->dev_type) {
4184 case HCI_PRIMARY:
4185 hci_add_acl_hdr(skb, conn->handle, flags);
4186 break;
4187 case HCI_AMP:
4188 hci_add_acl_hdr(skb, chan->handle, flags);
4189 break;
4190 default:
4191 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
4192 return;
4193 }
4194
4195 list = skb_shinfo(skb)->frag_list;
4196 if (!list) {
4197 /* Non fragmented */
4198 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
4199
4200 skb_queue_tail(queue, skb);
4201 } else {
4202 /* Fragmented */
4203 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4204
4205 skb_shinfo(skb)->frag_list = NULL;
4206
4207 /* Queue all fragments atomically. We need to use spin_lock_bh
4208 * here because of 6LoWPAN links, as there this function is
4209 * called from softirq and using normal spin lock could cause
4210 * deadlocks.
4211 */
4212 spin_lock_bh(&queue->lock);
4213
4214 __skb_queue_tail(queue, skb);
4215
4216 flags &= ~ACL_START;
4217 flags |= ACL_CONT;
4218 do {
4219 skb = list; list = list->next;
4220
4221 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4222 hci_add_acl_hdr(skb, conn->handle, flags);
4223
4224 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4225
4226 __skb_queue_tail(queue, skb);
4227 } while (list);
4228
4229 spin_unlock_bh(&queue->lock);
4230 }
4231 }
4232
hci_send_acl(struct hci_chan * chan,struct sk_buff * skb,__u16 flags)4233 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
4234 {
4235 struct hci_dev *hdev = chan->conn->hdev;
4236
4237 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
4238
4239 hci_queue_acl(chan, &chan->data_q, skb, flags);
4240
4241 queue_work(hdev->workqueue, &hdev->tx_work);
4242 }
4243
4244 /* Send SCO data */
hci_send_sco(struct hci_conn * conn,struct sk_buff * skb)4245 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
4246 {
4247 struct hci_dev *hdev = conn->hdev;
4248 struct hci_sco_hdr hdr;
4249
4250 BT_DBG("%s len %d", hdev->name, skb->len);
4251
4252 hdr.handle = cpu_to_le16(conn->handle);
4253 hdr.dlen = skb->len;
4254
4255 skb_push(skb, HCI_SCO_HDR_SIZE);
4256 skb_reset_transport_header(skb);
4257 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
4258
4259 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
4260
4261 skb_queue_tail(&conn->data_q, skb);
4262 queue_work(hdev->workqueue, &hdev->tx_work);
4263 }
4264
4265 /* ---- HCI TX task (outgoing data) ---- */
4266
4267 /* HCI Connection scheduler */
hci_low_sent(struct hci_dev * hdev,__u8 type,int * quote)4268 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
4269 int *quote)
4270 {
4271 struct hci_conn_hash *h = &hdev->conn_hash;
4272 struct hci_conn *conn = NULL, *c;
4273 unsigned int num = 0, min = ~0;
4274
4275 /* We don't have to lock device here. Connections are always
4276 * added and removed with TX task disabled. */
4277
4278 rcu_read_lock();
4279
4280 list_for_each_entry_rcu(c, &h->list, list) {
4281 if (c->type != type || skb_queue_empty(&c->data_q))
4282 continue;
4283
4284 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
4285 continue;
4286
4287 num++;
4288
4289 if (c->sent < min) {
4290 min = c->sent;
4291 conn = c;
4292 }
4293
4294 if (hci_conn_num(hdev, type) == num)
4295 break;
4296 }
4297
4298 rcu_read_unlock();
4299
4300 if (conn) {
4301 int cnt, q;
4302
4303 switch (conn->type) {
4304 case ACL_LINK:
4305 cnt = hdev->acl_cnt;
4306 break;
4307 case SCO_LINK:
4308 case ESCO_LINK:
4309 cnt = hdev->sco_cnt;
4310 break;
4311 case LE_LINK:
4312 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4313 break;
4314 default:
4315 cnt = 0;
4316 bt_dev_err(hdev, "unknown link type %d", conn->type);
4317 }
4318
4319 q = cnt / num;
4320 *quote = q ? q : 1;
4321 } else
4322 *quote = 0;
4323
4324 BT_DBG("conn %p quote %d", conn, *quote);
4325 return conn;
4326 }
4327
hci_link_tx_to(struct hci_dev * hdev,__u8 type)4328 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
4329 {
4330 struct hci_conn_hash *h = &hdev->conn_hash;
4331 struct hci_conn *c;
4332
4333 bt_dev_err(hdev, "link tx timeout");
4334
4335 rcu_read_lock();
4336
4337 /* Kill stalled connections */
4338 list_for_each_entry_rcu(c, &h->list, list) {
4339 if (c->type == type && c->sent) {
4340 bt_dev_err(hdev, "killing stalled connection %pMR",
4341 &c->dst);
4342 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
4343 }
4344 }
4345
4346 rcu_read_unlock();
4347 }
4348
hci_chan_sent(struct hci_dev * hdev,__u8 type,int * quote)4349 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
4350 int *quote)
4351 {
4352 struct hci_conn_hash *h = &hdev->conn_hash;
4353 struct hci_chan *chan = NULL;
4354 unsigned int num = 0, min = ~0, cur_prio = 0;
4355 struct hci_conn *conn;
4356 int cnt, q, conn_num = 0;
4357
4358 BT_DBG("%s", hdev->name);
4359
4360 rcu_read_lock();
4361
4362 list_for_each_entry_rcu(conn, &h->list, list) {
4363 struct hci_chan *tmp;
4364
4365 if (conn->type != type)
4366 continue;
4367
4368 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4369 continue;
4370
4371 conn_num++;
4372
4373 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
4374 struct sk_buff *skb;
4375
4376 if (skb_queue_empty(&tmp->data_q))
4377 continue;
4378
4379 skb = skb_peek(&tmp->data_q);
4380 if (skb->priority < cur_prio)
4381 continue;
4382
4383 if (skb->priority > cur_prio) {
4384 num = 0;
4385 min = ~0;
4386 cur_prio = skb->priority;
4387 }
4388
4389 num++;
4390
4391 if (conn->sent < min) {
4392 min = conn->sent;
4393 chan = tmp;
4394 }
4395 }
4396
4397 if (hci_conn_num(hdev, type) == conn_num)
4398 break;
4399 }
4400
4401 rcu_read_unlock();
4402
4403 if (!chan)
4404 return NULL;
4405
4406 switch (chan->conn->type) {
4407 case ACL_LINK:
4408 cnt = hdev->acl_cnt;
4409 break;
4410 case AMP_LINK:
4411 cnt = hdev->block_cnt;
4412 break;
4413 case SCO_LINK:
4414 case ESCO_LINK:
4415 cnt = hdev->sco_cnt;
4416 break;
4417 case LE_LINK:
4418 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4419 break;
4420 default:
4421 cnt = 0;
4422 bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
4423 }
4424
4425 q = cnt / num;
4426 *quote = q ? q : 1;
4427 BT_DBG("chan %p quote %d", chan, *quote);
4428 return chan;
4429 }
4430
hci_prio_recalculate(struct hci_dev * hdev,__u8 type)4431 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
4432 {
4433 struct hci_conn_hash *h = &hdev->conn_hash;
4434 struct hci_conn *conn;
4435 int num = 0;
4436
4437 BT_DBG("%s", hdev->name);
4438
4439 rcu_read_lock();
4440
4441 list_for_each_entry_rcu(conn, &h->list, list) {
4442 struct hci_chan *chan;
4443
4444 if (conn->type != type)
4445 continue;
4446
4447 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4448 continue;
4449
4450 num++;
4451
4452 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
4453 struct sk_buff *skb;
4454
4455 if (chan->sent) {
4456 chan->sent = 0;
4457 continue;
4458 }
4459
4460 if (skb_queue_empty(&chan->data_q))
4461 continue;
4462
4463 skb = skb_peek(&chan->data_q);
4464 if (skb->priority >= HCI_PRIO_MAX - 1)
4465 continue;
4466
4467 skb->priority = HCI_PRIO_MAX - 1;
4468
4469 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
4470 skb->priority);
4471 }
4472
4473 if (hci_conn_num(hdev, type) == num)
4474 break;
4475 }
4476
4477 rcu_read_unlock();
4478
4479 }
4480
__get_blocks(struct hci_dev * hdev,struct sk_buff * skb)4481 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4482 {
4483 /* Calculate count of blocks used by this packet */
4484 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4485 }
4486
__check_timeout(struct hci_dev * hdev,unsigned int cnt,u8 type)4487 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
4488 {
4489 unsigned long last_tx;
4490
4491 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4492 return;
4493
4494 switch (type) {
4495 case LE_LINK:
4496 last_tx = hdev->le_last_tx;
4497 break;
4498 default:
4499 last_tx = hdev->acl_last_tx;
4500 break;
4501 }
4502
4503 /* tx timeout must be longer than maximum link supervision timeout
4504 * (40.9 seconds)
4505 */
4506 if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
4507 hci_link_tx_to(hdev, type);
4508 }
4509
4510 /* Schedule SCO */
hci_sched_sco(struct hci_dev * hdev)4511 static void hci_sched_sco(struct hci_dev *hdev)
4512 {
4513 struct hci_conn *conn;
4514 struct sk_buff *skb;
4515 int quote;
4516
4517 BT_DBG("%s", hdev->name);
4518
4519 if (!hci_conn_num(hdev, SCO_LINK))
4520 return;
4521
4522 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) {
4523 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4524 BT_DBG("skb %p len %d", skb, skb->len);
4525 hci_send_frame(hdev, skb);
4526
4527 conn->sent++;
4528 if (conn->sent == ~0)
4529 conn->sent = 0;
4530 }
4531 }
4532 }
4533
hci_sched_esco(struct hci_dev * hdev)4534 static void hci_sched_esco(struct hci_dev *hdev)
4535 {
4536 struct hci_conn *conn;
4537 struct sk_buff *skb;
4538 int quote;
4539
4540 BT_DBG("%s", hdev->name);
4541
4542 if (!hci_conn_num(hdev, ESCO_LINK))
4543 return;
4544
4545 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4546 "e))) {
4547 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4548 BT_DBG("skb %p len %d", skb, skb->len);
4549 hci_send_frame(hdev, skb);
4550
4551 conn->sent++;
4552 if (conn->sent == ~0)
4553 conn->sent = 0;
4554 }
4555 }
4556 }
4557
hci_sched_acl_pkt(struct hci_dev * hdev)4558 static void hci_sched_acl_pkt(struct hci_dev *hdev)
4559 {
4560 unsigned int cnt = hdev->acl_cnt;
4561 struct hci_chan *chan;
4562 struct sk_buff *skb;
4563 int quote;
4564
4565 __check_timeout(hdev, cnt, ACL_LINK);
4566
4567 while (hdev->acl_cnt &&
4568 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) {
4569 u32 priority = (skb_peek(&chan->data_q))->priority;
4570 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4571 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4572 skb->len, skb->priority);
4573
4574 /* Stop if priority has changed */
4575 if (skb->priority < priority)
4576 break;
4577
4578 skb = skb_dequeue(&chan->data_q);
4579
4580 hci_conn_enter_active_mode(chan->conn,
4581 bt_cb(skb)->force_active);
4582
4583 hci_send_frame(hdev, skb);
4584 hdev->acl_last_tx = jiffies;
4585
4586 hdev->acl_cnt--;
4587 chan->sent++;
4588 chan->conn->sent++;
4589
4590 /* Send pending SCO packets right away */
4591 hci_sched_sco(hdev);
4592 hci_sched_esco(hdev);
4593 }
4594 }
4595
4596 if (cnt != hdev->acl_cnt)
4597 hci_prio_recalculate(hdev, ACL_LINK);
4598 }
4599
hci_sched_acl_blk(struct hci_dev * hdev)4600 static void hci_sched_acl_blk(struct hci_dev *hdev)
4601 {
4602 unsigned int cnt = hdev->block_cnt;
4603 struct hci_chan *chan;
4604 struct sk_buff *skb;
4605 int quote;
4606 u8 type;
4607
4608 BT_DBG("%s", hdev->name);
4609
4610 if (hdev->dev_type == HCI_AMP)
4611 type = AMP_LINK;
4612 else
4613 type = ACL_LINK;
4614
4615 __check_timeout(hdev, cnt, type);
4616
4617 while (hdev->block_cnt > 0 &&
4618 (chan = hci_chan_sent(hdev, type, "e))) {
4619 u32 priority = (skb_peek(&chan->data_q))->priority;
4620 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4621 int blocks;
4622
4623 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4624 skb->len, skb->priority);
4625
4626 /* Stop if priority has changed */
4627 if (skb->priority < priority)
4628 break;
4629
4630 skb = skb_dequeue(&chan->data_q);
4631
4632 blocks = __get_blocks(hdev, skb);
4633 if (blocks > hdev->block_cnt)
4634 return;
4635
4636 hci_conn_enter_active_mode(chan->conn,
4637 bt_cb(skb)->force_active);
4638
4639 hci_send_frame(hdev, skb);
4640 hdev->acl_last_tx = jiffies;
4641
4642 hdev->block_cnt -= blocks;
4643 quote -= blocks;
4644
4645 chan->sent += blocks;
4646 chan->conn->sent += blocks;
4647 }
4648 }
4649
4650 if (cnt != hdev->block_cnt)
4651 hci_prio_recalculate(hdev, type);
4652 }
4653
hci_sched_acl(struct hci_dev * hdev)4654 static void hci_sched_acl(struct hci_dev *hdev)
4655 {
4656 BT_DBG("%s", hdev->name);
4657
4658 /* No ACL link over BR/EDR controller */
4659 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4660 return;
4661
4662 /* No AMP link over AMP controller */
4663 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4664 return;
4665
4666 switch (hdev->flow_ctl_mode) {
4667 case HCI_FLOW_CTL_MODE_PACKET_BASED:
4668 hci_sched_acl_pkt(hdev);
4669 break;
4670
4671 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4672 hci_sched_acl_blk(hdev);
4673 break;
4674 }
4675 }
4676
hci_sched_le(struct hci_dev * hdev)4677 static void hci_sched_le(struct hci_dev *hdev)
4678 {
4679 struct hci_chan *chan;
4680 struct sk_buff *skb;
4681 int quote, cnt, tmp;
4682
4683 BT_DBG("%s", hdev->name);
4684
4685 if (!hci_conn_num(hdev, LE_LINK))
4686 return;
4687
4688 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4689
4690 __check_timeout(hdev, cnt, LE_LINK);
4691
4692 tmp = cnt;
4693 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) {
4694 u32 priority = (skb_peek(&chan->data_q))->priority;
4695 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4696 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4697 skb->len, skb->priority);
4698
4699 /* Stop if priority has changed */
4700 if (skb->priority < priority)
4701 break;
4702
4703 skb = skb_dequeue(&chan->data_q);
4704
4705 hci_send_frame(hdev, skb);
4706 hdev->le_last_tx = jiffies;
4707
4708 cnt--;
4709 chan->sent++;
4710 chan->conn->sent++;
4711
4712 /* Send pending SCO packets right away */
4713 hci_sched_sco(hdev);
4714 hci_sched_esco(hdev);
4715 }
4716 }
4717
4718 if (hdev->le_pkts)
4719 hdev->le_cnt = cnt;
4720 else
4721 hdev->acl_cnt = cnt;
4722
4723 if (cnt != tmp)
4724 hci_prio_recalculate(hdev, LE_LINK);
4725 }
4726
hci_tx_work(struct work_struct * work)4727 static void hci_tx_work(struct work_struct *work)
4728 {
4729 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4730 struct sk_buff *skb;
4731
4732 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4733 hdev->sco_cnt, hdev->le_cnt);
4734
4735 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4736 /* Schedule queues and send stuff to HCI driver */
4737 hci_sched_sco(hdev);
4738 hci_sched_esco(hdev);
4739 hci_sched_acl(hdev);
4740 hci_sched_le(hdev);
4741 }
4742
4743 /* Send next queued raw (unknown type) packet */
4744 while ((skb = skb_dequeue(&hdev->raw_q)))
4745 hci_send_frame(hdev, skb);
4746 }
4747
4748 /* ----- HCI RX task (incoming data processing) ----- */
4749
4750 /* ACL data packet */
hci_acldata_packet(struct hci_dev * hdev,struct sk_buff * skb)4751 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4752 {
4753 struct hci_acl_hdr *hdr = (void *) skb->data;
4754 struct hci_conn *conn;
4755 __u16 handle, flags;
4756
4757 skb_pull(skb, HCI_ACL_HDR_SIZE);
4758
4759 handle = __le16_to_cpu(hdr->handle);
4760 flags = hci_flags(handle);
4761 handle = hci_handle(handle);
4762
4763 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4764 handle, flags);
4765
4766 hdev->stat.acl_rx++;
4767
4768 hci_dev_lock(hdev);
4769 conn = hci_conn_hash_lookup_handle(hdev, handle);
4770 hci_dev_unlock(hdev);
4771
4772 if (conn) {
4773 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4774
4775 /* Send to upper protocol */
4776 l2cap_recv_acldata(conn, skb, flags);
4777 return;
4778 } else {
4779 bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4780 handle);
4781 }
4782
4783 kfree_skb(skb);
4784 }
4785
4786 /* SCO data packet */
hci_scodata_packet(struct hci_dev * hdev,struct sk_buff * skb)4787 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4788 {
4789 struct hci_sco_hdr *hdr = (void *) skb->data;
4790 struct hci_conn *conn;
4791 __u16 handle, flags;
4792
4793 skb_pull(skb, HCI_SCO_HDR_SIZE);
4794
4795 handle = __le16_to_cpu(hdr->handle);
4796 flags = hci_flags(handle);
4797 handle = hci_handle(handle);
4798
4799 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4800 handle, flags);
4801
4802 hdev->stat.sco_rx++;
4803
4804 hci_dev_lock(hdev);
4805 conn = hci_conn_hash_lookup_handle(hdev, handle);
4806 hci_dev_unlock(hdev);
4807
4808 if (conn) {
4809 /* Send to upper protocol */
4810 bt_cb(skb)->sco.pkt_status = flags & 0x03;
4811 sco_recv_scodata(conn, skb);
4812 return;
4813 } else {
4814 bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
4815 handle);
4816 }
4817
4818 kfree_skb(skb);
4819 }
4820
hci_req_is_complete(struct hci_dev * hdev)4821 static bool hci_req_is_complete(struct hci_dev *hdev)
4822 {
4823 struct sk_buff *skb;
4824
4825 skb = skb_peek(&hdev->cmd_q);
4826 if (!skb)
4827 return true;
4828
4829 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4830 }
4831
hci_resend_last(struct hci_dev * hdev)4832 static void hci_resend_last(struct hci_dev *hdev)
4833 {
4834 struct hci_command_hdr *sent;
4835 struct sk_buff *skb;
4836 u16 opcode;
4837
4838 if (!hdev->sent_cmd)
4839 return;
4840
4841 sent = (void *) hdev->sent_cmd->data;
4842 opcode = __le16_to_cpu(sent->opcode);
4843 if (opcode == HCI_OP_RESET)
4844 return;
4845
4846 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4847 if (!skb)
4848 return;
4849
4850 skb_queue_head(&hdev->cmd_q, skb);
4851 queue_work(hdev->workqueue, &hdev->cmd_work);
4852 }
4853
hci_req_cmd_complete(struct hci_dev * hdev,u16 opcode,u8 status,hci_req_complete_t * req_complete,hci_req_complete_skb_t * req_complete_skb)4854 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4855 hci_req_complete_t *req_complete,
4856 hci_req_complete_skb_t *req_complete_skb)
4857 {
4858 struct sk_buff *skb;
4859 unsigned long flags;
4860
4861 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4862
4863 /* If the completed command doesn't match the last one that was
4864 * sent we need to do special handling of it.
4865 */
4866 if (!hci_sent_cmd_data(hdev, opcode)) {
4867 /* Some CSR based controllers generate a spontaneous
4868 * reset complete event during init and any pending
4869 * command will never be completed. In such a case we
4870 * need to resend whatever was the last sent
4871 * command.
4872 */
4873 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4874 hci_resend_last(hdev);
4875
4876 return;
4877 }
4878
4879 /* If we reach this point this event matches the last command sent */
4880 hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4881
4882 /* If the command succeeded and there's still more commands in
4883 * this request the request is not yet complete.
4884 */
4885 if (!status && !hci_req_is_complete(hdev))
4886 return;
4887
4888 /* If this was the last command in a request the complete
4889 * callback would be found in hdev->sent_cmd instead of the
4890 * command queue (hdev->cmd_q).
4891 */
4892 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4893 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4894 return;
4895 }
4896
4897 if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4898 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4899 return;
4900 }
4901
4902 /* Remove all pending commands belonging to this request */
4903 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4904 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4905 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4906 __skb_queue_head(&hdev->cmd_q, skb);
4907 break;
4908 }
4909
4910 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4911 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4912 else
4913 *req_complete = bt_cb(skb)->hci.req_complete;
4914 dev_kfree_skb_irq(skb);
4915 }
4916 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4917 }
4918
hci_rx_work(struct work_struct * work)4919 static void hci_rx_work(struct work_struct *work)
4920 {
4921 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4922 struct sk_buff *skb;
4923
4924 BT_DBG("%s", hdev->name);
4925
4926 while ((skb = skb_dequeue(&hdev->rx_q))) {
4927 /* Send copy to monitor */
4928 hci_send_to_monitor(hdev, skb);
4929
4930 if (atomic_read(&hdev->promisc)) {
4931 /* Send copy to the sockets */
4932 hci_send_to_sock(hdev, skb);
4933 }
4934
4935 /* If the device has been opened in HCI_USER_CHANNEL,
4936 * the userspace has exclusive access to device.
4937 * When device is HCI_INIT, we still need to process
4938 * the data packets to the driver in order
4939 * to complete its setup().
4940 */
4941 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4942 !test_bit(HCI_INIT, &hdev->flags)) {
4943 kfree_skb(skb);
4944 continue;
4945 }
4946
4947 if (test_bit(HCI_INIT, &hdev->flags)) {
4948 /* Don't process data packets in this states. */
4949 switch (hci_skb_pkt_type(skb)) {
4950 case HCI_ACLDATA_PKT:
4951 case HCI_SCODATA_PKT:
4952 case HCI_ISODATA_PKT:
4953 kfree_skb(skb);
4954 continue;
4955 }
4956 }
4957
4958 /* Process frame */
4959 switch (hci_skb_pkt_type(skb)) {
4960 case HCI_EVENT_PKT:
4961 BT_DBG("%s Event packet", hdev->name);
4962 hci_event_packet(hdev, skb);
4963 break;
4964
4965 case HCI_ACLDATA_PKT:
4966 BT_DBG("%s ACL data packet", hdev->name);
4967 hci_acldata_packet(hdev, skb);
4968 break;
4969
4970 case HCI_SCODATA_PKT:
4971 BT_DBG("%s SCO data packet", hdev->name);
4972 hci_scodata_packet(hdev, skb);
4973 break;
4974
4975 default:
4976 kfree_skb(skb);
4977 break;
4978 }
4979 }
4980 }
4981
hci_cmd_work(struct work_struct * work)4982 static void hci_cmd_work(struct work_struct *work)
4983 {
4984 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4985 struct sk_buff *skb;
4986
4987 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4988 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4989
4990 /* Send queued commands */
4991 if (atomic_read(&hdev->cmd_cnt)) {
4992 skb = skb_dequeue(&hdev->cmd_q);
4993 if (!skb)
4994 return;
4995
4996 kfree_skb(hdev->sent_cmd);
4997
4998 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4999 if (hdev->sent_cmd) {
5000 if (hci_req_status_pend(hdev))
5001 hci_dev_set_flag(hdev, HCI_CMD_PENDING);
5002 atomic_dec(&hdev->cmd_cnt);
5003 hci_send_frame(hdev, skb);
5004 if (test_bit(HCI_RESET, &hdev->flags))
5005 cancel_delayed_work(&hdev->cmd_timer);
5006 else
5007 schedule_delayed_work(&hdev->cmd_timer,
5008 HCI_CMD_TIMEOUT);
5009 } else {
5010 skb_queue_head(&hdev->cmd_q, skb);
5011 queue_work(hdev->workqueue, &hdev->cmd_work);
5012 }
5013 }
5014 }
5015