• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5 
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11 
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25 
26 /* Bluetooth HCI core. */
27 
28 #include <linux/export.h>
29 #include <linux/rfkill.h>
30 #include <linux/debugfs.h>
31 #include <linux/crypto.h>
32 #include <linux/property.h>
33 #include <linux/suspend.h>
34 #include <linux/wait.h>
35 #include <asm/unaligned.h>
36 
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
39 #include <net/bluetooth/l2cap.h>
40 #include <net/bluetooth/mgmt.h>
41 
42 #include "hci_request.h"
43 #include "hci_debugfs.h"
44 #include "smp.h"
45 #include "leds.h"
46 #include "msft.h"
47 
48 static void hci_rx_work(struct work_struct *work);
49 static void hci_cmd_work(struct work_struct *work);
50 static void hci_tx_work(struct work_struct *work);
51 
52 /* HCI device list */
53 LIST_HEAD(hci_dev_list);
54 DEFINE_RWLOCK(hci_dev_list_lock);
55 
56 /* HCI callback list */
57 LIST_HEAD(hci_cb_list);
58 DEFINE_MUTEX(hci_cb_list_lock);
59 
60 /* HCI ID Numbering */
61 static DEFINE_IDA(hci_index_ida);
62 
63 /* ---- HCI debugfs entries ---- */
64 
dut_mode_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)65 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
66 			     size_t count, loff_t *ppos)
67 {
68 	struct hci_dev *hdev = file->private_data;
69 	char buf[3];
70 
71 	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
72 	buf[1] = '\n';
73 	buf[2] = '\0';
74 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
75 }
76 
dut_mode_write(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)77 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
78 			      size_t count, loff_t *ppos)
79 {
80 	struct hci_dev *hdev = file->private_data;
81 	struct sk_buff *skb;
82 	bool enable;
83 	int err;
84 
85 	if (!test_bit(HCI_UP, &hdev->flags))
86 		return -ENETDOWN;
87 
88 	err = kstrtobool_from_user(user_buf, count, &enable);
89 	if (err)
90 		return err;
91 
92 	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
93 		return -EALREADY;
94 
95 	hci_req_sync_lock(hdev);
96 	if (enable)
97 		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
98 				     HCI_CMD_TIMEOUT);
99 	else
100 		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
101 				     HCI_CMD_TIMEOUT);
102 	hci_req_sync_unlock(hdev);
103 
104 	if (IS_ERR(skb))
105 		return PTR_ERR(skb);
106 
107 	kfree_skb(skb);
108 
109 	hci_dev_change_flag(hdev, HCI_DUT_MODE);
110 
111 	return count;
112 }
113 
114 static const struct file_operations dut_mode_fops = {
115 	.open		= simple_open,
116 	.read		= dut_mode_read,
117 	.write		= dut_mode_write,
118 	.llseek		= default_llseek,
119 };
120 
vendor_diag_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)121 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
122 				size_t count, loff_t *ppos)
123 {
124 	struct hci_dev *hdev = file->private_data;
125 	char buf[3];
126 
127 	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
128 	buf[1] = '\n';
129 	buf[2] = '\0';
130 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
131 }
132 
vendor_diag_write(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)133 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
134 				 size_t count, loff_t *ppos)
135 {
136 	struct hci_dev *hdev = file->private_data;
137 	bool enable;
138 	int err;
139 
140 	err = kstrtobool_from_user(user_buf, count, &enable);
141 	if (err)
142 		return err;
143 
144 	/* When the diagnostic flags are not persistent and the transport
145 	 * is not active or in user channel operation, then there is no need
146 	 * for the vendor callback. Instead just store the desired value and
147 	 * the setting will be programmed when the controller gets powered on.
148 	 */
149 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
150 	    (!test_bit(HCI_RUNNING, &hdev->flags) ||
151 	     hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
152 		goto done;
153 
154 	hci_req_sync_lock(hdev);
155 	err = hdev->set_diag(hdev, enable);
156 	hci_req_sync_unlock(hdev);
157 
158 	if (err < 0)
159 		return err;
160 
161 done:
162 	if (enable)
163 		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
164 	else
165 		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
166 
167 	return count;
168 }
169 
170 static const struct file_operations vendor_diag_fops = {
171 	.open		= simple_open,
172 	.read		= vendor_diag_read,
173 	.write		= vendor_diag_write,
174 	.llseek		= default_llseek,
175 };
176 
hci_debugfs_create_basic(struct hci_dev * hdev)177 static void hci_debugfs_create_basic(struct hci_dev *hdev)
178 {
179 	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
180 			    &dut_mode_fops);
181 
182 	if (hdev->set_diag)
183 		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
184 				    &vendor_diag_fops);
185 }
186 
hci_reset_req(struct hci_request * req,unsigned long opt)187 static int hci_reset_req(struct hci_request *req, unsigned long opt)
188 {
189 	BT_DBG("%s %ld", req->hdev->name, opt);
190 
191 	/* Reset device */
192 	set_bit(HCI_RESET, &req->hdev->flags);
193 	hci_req_add(req, HCI_OP_RESET, 0, NULL);
194 	return 0;
195 }
196 
bredr_init(struct hci_request * req)197 static void bredr_init(struct hci_request *req)
198 {
199 	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
200 
201 	/* Read Local Supported Features */
202 	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
203 
204 	/* Read Local Version */
205 	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
206 
207 	/* Read BD Address */
208 	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
209 }
210 
amp_init1(struct hci_request * req)211 static void amp_init1(struct hci_request *req)
212 {
213 	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
214 
215 	/* Read Local Version */
216 	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
217 
218 	/* Read Local Supported Commands */
219 	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
220 
221 	/* Read Local AMP Info */
222 	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
223 
224 	/* Read Data Blk size */
225 	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
226 
227 	/* Read Flow Control Mode */
228 	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
229 
230 	/* Read Location Data */
231 	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
232 }
233 
amp_init2(struct hci_request * req)234 static int amp_init2(struct hci_request *req)
235 {
236 	/* Read Local Supported Features. Not all AMP controllers
237 	 * support this so it's placed conditionally in the second
238 	 * stage init.
239 	 */
240 	if (req->hdev->commands[14] & 0x20)
241 		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
242 
243 	return 0;
244 }
245 
hci_init1_req(struct hci_request * req,unsigned long opt)246 static int hci_init1_req(struct hci_request *req, unsigned long opt)
247 {
248 	struct hci_dev *hdev = req->hdev;
249 
250 	BT_DBG("%s %ld", hdev->name, opt);
251 
252 	/* Reset */
253 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
254 		hci_reset_req(req, 0);
255 
256 	switch (hdev->dev_type) {
257 	case HCI_PRIMARY:
258 		bredr_init(req);
259 		break;
260 	case HCI_AMP:
261 		amp_init1(req);
262 		break;
263 	default:
264 		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
265 		break;
266 	}
267 
268 	return 0;
269 }
270 
bredr_setup(struct hci_request * req)271 static void bredr_setup(struct hci_request *req)
272 {
273 	__le16 param;
274 	__u8 flt_type;
275 
276 	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
277 	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
278 
279 	/* Read Class of Device */
280 	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
281 
282 	/* Read Local Name */
283 	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
284 
285 	/* Read Voice Setting */
286 	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
287 
288 	/* Read Number of Supported IAC */
289 	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
290 
291 	/* Read Current IAC LAP */
292 	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
293 
294 	/* Clear Event Filters */
295 	flt_type = HCI_FLT_CLEAR_ALL;
296 	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
297 
298 	/* Connection accept timeout ~20 secs */
299 	param = cpu_to_le16(0x7d00);
300 	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
301 }
302 
le_setup(struct hci_request * req)303 static void le_setup(struct hci_request *req)
304 {
305 	struct hci_dev *hdev = req->hdev;
306 
307 	/* Read LE Buffer Size */
308 	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
309 
310 	/* Read LE Local Supported Features */
311 	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
312 
313 	/* Read LE Supported States */
314 	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
315 
316 	/* LE-only controllers have LE implicitly enabled */
317 	if (!lmp_bredr_capable(hdev))
318 		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
319 }
320 
hci_setup_event_mask(struct hci_request * req)321 static void hci_setup_event_mask(struct hci_request *req)
322 {
323 	struct hci_dev *hdev = req->hdev;
324 
325 	/* The second byte is 0xff instead of 0x9f (two reserved bits
326 	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
327 	 * command otherwise.
328 	 */
329 	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
330 
331 	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
332 	 * any event mask for pre 1.2 devices.
333 	 */
334 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
335 		return;
336 
337 	if (lmp_bredr_capable(hdev)) {
338 		events[4] |= 0x01; /* Flow Specification Complete */
339 	} else {
340 		/* Use a different default for LE-only devices */
341 		memset(events, 0, sizeof(events));
342 		events[1] |= 0x20; /* Command Complete */
343 		events[1] |= 0x40; /* Command Status */
344 		events[1] |= 0x80; /* Hardware Error */
345 
346 		/* If the controller supports the Disconnect command, enable
347 		 * the corresponding event. In addition enable packet flow
348 		 * control related events.
349 		 */
350 		if (hdev->commands[0] & 0x20) {
351 			events[0] |= 0x10; /* Disconnection Complete */
352 			events[2] |= 0x04; /* Number of Completed Packets */
353 			events[3] |= 0x02; /* Data Buffer Overflow */
354 		}
355 
356 		/* If the controller supports the Read Remote Version
357 		 * Information command, enable the corresponding event.
358 		 */
359 		if (hdev->commands[2] & 0x80)
360 			events[1] |= 0x08; /* Read Remote Version Information
361 					    * Complete
362 					    */
363 
364 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
365 			events[0] |= 0x80; /* Encryption Change */
366 			events[5] |= 0x80; /* Encryption Key Refresh Complete */
367 		}
368 	}
369 
370 	if (lmp_inq_rssi_capable(hdev) ||
371 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
372 		events[4] |= 0x02; /* Inquiry Result with RSSI */
373 
374 	if (lmp_ext_feat_capable(hdev))
375 		events[4] |= 0x04; /* Read Remote Extended Features Complete */
376 
377 	if (lmp_esco_capable(hdev)) {
378 		events[5] |= 0x08; /* Synchronous Connection Complete */
379 		events[5] |= 0x10; /* Synchronous Connection Changed */
380 	}
381 
382 	if (lmp_sniffsubr_capable(hdev))
383 		events[5] |= 0x20; /* Sniff Subrating */
384 
385 	if (lmp_pause_enc_capable(hdev))
386 		events[5] |= 0x80; /* Encryption Key Refresh Complete */
387 
388 	if (lmp_ext_inq_capable(hdev))
389 		events[5] |= 0x40; /* Extended Inquiry Result */
390 
391 	if (lmp_no_flush_capable(hdev))
392 		events[7] |= 0x01; /* Enhanced Flush Complete */
393 
394 	if (lmp_lsto_capable(hdev))
395 		events[6] |= 0x80; /* Link Supervision Timeout Changed */
396 
397 	if (lmp_ssp_capable(hdev)) {
398 		events[6] |= 0x01;	/* IO Capability Request */
399 		events[6] |= 0x02;	/* IO Capability Response */
400 		events[6] |= 0x04;	/* User Confirmation Request */
401 		events[6] |= 0x08;	/* User Passkey Request */
402 		events[6] |= 0x10;	/* Remote OOB Data Request */
403 		events[6] |= 0x20;	/* Simple Pairing Complete */
404 		events[7] |= 0x04;	/* User Passkey Notification */
405 		events[7] |= 0x08;	/* Keypress Notification */
406 		events[7] |= 0x10;	/* Remote Host Supported
407 					 * Features Notification
408 					 */
409 	}
410 
411 	if (lmp_le_capable(hdev))
412 		events[7] |= 0x20;	/* LE Meta-Event */
413 
414 	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
415 }
416 
hci_init2_req(struct hci_request * req,unsigned long opt)417 static int hci_init2_req(struct hci_request *req, unsigned long opt)
418 {
419 	struct hci_dev *hdev = req->hdev;
420 
421 	if (hdev->dev_type == HCI_AMP)
422 		return amp_init2(req);
423 
424 	if (lmp_bredr_capable(hdev))
425 		bredr_setup(req);
426 	else
427 		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
428 
429 	if (lmp_le_capable(hdev))
430 		le_setup(req);
431 
432 	/* All Bluetooth 1.2 and later controllers should support the
433 	 * HCI command for reading the local supported commands.
434 	 *
435 	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
436 	 * but do not have support for this command. If that is the case,
437 	 * the driver can quirk the behavior and skip reading the local
438 	 * supported commands.
439 	 */
440 	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
441 	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
442 		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
443 
444 	if (lmp_ssp_capable(hdev)) {
445 		/* When SSP is available, then the host features page
446 		 * should also be available as well. However some
447 		 * controllers list the max_page as 0 as long as SSP
448 		 * has not been enabled. To achieve proper debugging
449 		 * output, force the minimum max_page to 1 at least.
450 		 */
451 		hdev->max_page = 0x01;
452 
453 		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
454 			u8 mode = 0x01;
455 
456 			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
457 				    sizeof(mode), &mode);
458 		} else {
459 			struct hci_cp_write_eir cp;
460 
461 			memset(hdev->eir, 0, sizeof(hdev->eir));
462 			memset(&cp, 0, sizeof(cp));
463 
464 			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
465 		}
466 	}
467 
468 	if (lmp_inq_rssi_capable(hdev) ||
469 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
470 		u8 mode;
471 
472 		/* If Extended Inquiry Result events are supported, then
473 		 * they are clearly preferred over Inquiry Result with RSSI
474 		 * events.
475 		 */
476 		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
477 
478 		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
479 	}
480 
481 	if (lmp_inq_tx_pwr_capable(hdev))
482 		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
483 
484 	if (lmp_ext_feat_capable(hdev)) {
485 		struct hci_cp_read_local_ext_features cp;
486 
487 		cp.page = 0x01;
488 		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
489 			    sizeof(cp), &cp);
490 	}
491 
492 	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
493 		u8 enable = 1;
494 		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
495 			    &enable);
496 	}
497 
498 	return 0;
499 }
500 
hci_setup_link_policy(struct hci_request * req)501 static void hci_setup_link_policy(struct hci_request *req)
502 {
503 	struct hci_dev *hdev = req->hdev;
504 	struct hci_cp_write_def_link_policy cp;
505 	u16 link_policy = 0;
506 
507 	if (lmp_rswitch_capable(hdev))
508 		link_policy |= HCI_LP_RSWITCH;
509 	if (lmp_hold_capable(hdev))
510 		link_policy |= HCI_LP_HOLD;
511 	if (lmp_sniff_capable(hdev))
512 		link_policy |= HCI_LP_SNIFF;
513 	if (lmp_park_capable(hdev))
514 		link_policy |= HCI_LP_PARK;
515 
516 	cp.policy = cpu_to_le16(link_policy);
517 	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
518 }
519 
hci_set_le_support(struct hci_request * req)520 static void hci_set_le_support(struct hci_request *req)
521 {
522 	struct hci_dev *hdev = req->hdev;
523 	struct hci_cp_write_le_host_supported cp;
524 
525 	/* LE-only devices do not support explicit enablement */
526 	if (!lmp_bredr_capable(hdev))
527 		return;
528 
529 	memset(&cp, 0, sizeof(cp));
530 
531 	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
532 		cp.le = 0x01;
533 		cp.simul = 0x00;
534 	}
535 
536 	if (cp.le != lmp_host_le_capable(hdev))
537 		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
538 			    &cp);
539 }
540 
hci_set_event_mask_page_2(struct hci_request * req)541 static void hci_set_event_mask_page_2(struct hci_request *req)
542 {
543 	struct hci_dev *hdev = req->hdev;
544 	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
545 	bool changed = false;
546 
547 	/* If Connectionless Slave Broadcast master role is supported
548 	 * enable all necessary events for it.
549 	 */
550 	if (lmp_csb_master_capable(hdev)) {
551 		events[1] |= 0x40;	/* Triggered Clock Capture */
552 		events[1] |= 0x80;	/* Synchronization Train Complete */
553 		events[2] |= 0x10;	/* Slave Page Response Timeout */
554 		events[2] |= 0x20;	/* CSB Channel Map Change */
555 		changed = true;
556 	}
557 
558 	/* If Connectionless Slave Broadcast slave role is supported
559 	 * enable all necessary events for it.
560 	 */
561 	if (lmp_csb_slave_capable(hdev)) {
562 		events[2] |= 0x01;	/* Synchronization Train Received */
563 		events[2] |= 0x02;	/* CSB Receive */
564 		events[2] |= 0x04;	/* CSB Timeout */
565 		events[2] |= 0x08;	/* Truncated Page Complete */
566 		changed = true;
567 	}
568 
569 	/* Enable Authenticated Payload Timeout Expired event if supported */
570 	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
571 		events[2] |= 0x80;
572 		changed = true;
573 	}
574 
575 	/* Some Broadcom based controllers indicate support for Set Event
576 	 * Mask Page 2 command, but then actually do not support it. Since
577 	 * the default value is all bits set to zero, the command is only
578 	 * required if the event mask has to be changed. In case no change
579 	 * to the event mask is needed, skip this command.
580 	 */
581 	if (changed)
582 		hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
583 			    sizeof(events), events);
584 }
585 
hci_init3_req(struct hci_request * req,unsigned long opt)586 static int hci_init3_req(struct hci_request *req, unsigned long opt)
587 {
588 	struct hci_dev *hdev = req->hdev;
589 	u8 p;
590 
591 	hci_setup_event_mask(req);
592 
593 	if (hdev->commands[6] & 0x20 &&
594 	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
595 		struct hci_cp_read_stored_link_key cp;
596 
597 		bacpy(&cp.bdaddr, BDADDR_ANY);
598 		cp.read_all = 0x01;
599 		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
600 	}
601 
602 	if (hdev->commands[5] & 0x10)
603 		hci_setup_link_policy(req);
604 
605 	if (hdev->commands[8] & 0x01)
606 		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
607 
608 	if (hdev->commands[18] & 0x04 &&
609 	    !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
610 		hci_req_add(req, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 0, NULL);
611 
612 	/* Some older Broadcom based Bluetooth 1.2 controllers do not
613 	 * support the Read Page Scan Type command. Check support for
614 	 * this command in the bit mask of supported commands.
615 	 */
616 	if (hdev->commands[13] & 0x01)
617 		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
618 
619 	if (lmp_le_capable(hdev)) {
620 		u8 events[8];
621 
622 		memset(events, 0, sizeof(events));
623 
624 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
625 			events[0] |= 0x10;	/* LE Long Term Key Request */
626 
627 		/* If controller supports the Connection Parameters Request
628 		 * Link Layer Procedure, enable the corresponding event.
629 		 */
630 		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
631 			events[0] |= 0x20;	/* LE Remote Connection
632 						 * Parameter Request
633 						 */
634 
635 		/* If the controller supports the Data Length Extension
636 		 * feature, enable the corresponding event.
637 		 */
638 		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
639 			events[0] |= 0x40;	/* LE Data Length Change */
640 
641 		/* If the controller supports LL Privacy feature, enable
642 		 * the corresponding event.
643 		 */
644 		if (hdev->le_features[0] & HCI_LE_LL_PRIVACY)
645 			events[1] |= 0x02;	/* LE Enhanced Connection
646 						 * Complete
647 						 */
648 
649 		/* If the controller supports Extended Scanner Filter
650 		 * Policies, enable the correspondig event.
651 		 */
652 		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
653 			events[1] |= 0x04;	/* LE Direct Advertising
654 						 * Report
655 						 */
656 
657 		/* If the controller supports Channel Selection Algorithm #2
658 		 * feature, enable the corresponding event.
659 		 */
660 		if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
661 			events[2] |= 0x08;	/* LE Channel Selection
662 						 * Algorithm
663 						 */
664 
665 		/* If the controller supports the LE Set Scan Enable command,
666 		 * enable the corresponding advertising report event.
667 		 */
668 		if (hdev->commands[26] & 0x08)
669 			events[0] |= 0x02;	/* LE Advertising Report */
670 
671 		/* If the controller supports the LE Create Connection
672 		 * command, enable the corresponding event.
673 		 */
674 		if (hdev->commands[26] & 0x10)
675 			events[0] |= 0x01;	/* LE Connection Complete */
676 
677 		/* If the controller supports the LE Connection Update
678 		 * command, enable the corresponding event.
679 		 */
680 		if (hdev->commands[27] & 0x04)
681 			events[0] |= 0x04;	/* LE Connection Update
682 						 * Complete
683 						 */
684 
685 		/* If the controller supports the LE Read Remote Used Features
686 		 * command, enable the corresponding event.
687 		 */
688 		if (hdev->commands[27] & 0x20)
689 			events[0] |= 0x08;	/* LE Read Remote Used
690 						 * Features Complete
691 						 */
692 
693 		/* If the controller supports the LE Read Local P-256
694 		 * Public Key command, enable the corresponding event.
695 		 */
696 		if (hdev->commands[34] & 0x02)
697 			events[0] |= 0x80;	/* LE Read Local P-256
698 						 * Public Key Complete
699 						 */
700 
701 		/* If the controller supports the LE Generate DHKey
702 		 * command, enable the corresponding event.
703 		 */
704 		if (hdev->commands[34] & 0x04)
705 			events[1] |= 0x01;	/* LE Generate DHKey Complete */
706 
707 		/* If the controller supports the LE Set Default PHY or
708 		 * LE Set PHY commands, enable the corresponding event.
709 		 */
710 		if (hdev->commands[35] & (0x20 | 0x40))
711 			events[1] |= 0x08;        /* LE PHY Update Complete */
712 
713 		/* If the controller supports LE Set Extended Scan Parameters
714 		 * and LE Set Extended Scan Enable commands, enable the
715 		 * corresponding event.
716 		 */
717 		if (use_ext_scan(hdev))
718 			events[1] |= 0x10;	/* LE Extended Advertising
719 						 * Report
720 						 */
721 
722 		/* If the controller supports the LE Extended Advertising
723 		 * command, enable the corresponding event.
724 		 */
725 		if (ext_adv_capable(hdev))
726 			events[2] |= 0x02;	/* LE Advertising Set
727 						 * Terminated
728 						 */
729 
730 		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
731 			    events);
732 
733 		/* Read LE Advertising Channel TX Power */
734 		if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
735 			/* HCI TS spec forbids mixing of legacy and extended
736 			 * advertising commands wherein READ_ADV_TX_POWER is
737 			 * also included. So do not call it if extended adv
738 			 * is supported otherwise controller will return
739 			 * COMMAND_DISALLOWED for extended commands.
740 			 */
741 			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
742 		}
743 
744 		if (hdev->commands[26] & 0x40) {
745 			/* Read LE Accept List Size */
746 			hci_req_add(req, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
747 				    0, NULL);
748 		}
749 
750 		if (hdev->commands[26] & 0x80) {
751 			/* Clear LE Accept List */
752 			hci_req_add(req, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL);
753 		}
754 
755 		if (hdev->commands[34] & 0x40) {
756 			/* Read LE Resolving List Size */
757 			hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
758 				    0, NULL);
759 		}
760 
761 		if (hdev->commands[34] & 0x20) {
762 			/* Clear LE Resolving List */
763 			hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
764 		}
765 
766 		if (hdev->commands[35] & 0x04) {
767 			__le16 rpa_timeout = cpu_to_le16(hdev->rpa_timeout);
768 
769 			/* Set RPA timeout */
770 			hci_req_add(req, HCI_OP_LE_SET_RPA_TIMEOUT, 2,
771 				    &rpa_timeout);
772 		}
773 
774 		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
775 			/* Read LE Maximum Data Length */
776 			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
777 
778 			/* Read LE Suggested Default Data Length */
779 			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
780 		}
781 
782 		if (ext_adv_capable(hdev)) {
783 			/* Read LE Number of Supported Advertising Sets */
784 			hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
785 				    0, NULL);
786 		}
787 
788 		hci_set_le_support(req);
789 	}
790 
791 	/* Read features beyond page 1 if available */
792 	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
793 		struct hci_cp_read_local_ext_features cp;
794 
795 		cp.page = p;
796 		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
797 			    sizeof(cp), &cp);
798 	}
799 
800 	return 0;
801 }
802 
hci_init4_req(struct hci_request * req,unsigned long opt)803 static int hci_init4_req(struct hci_request *req, unsigned long opt)
804 {
805 	struct hci_dev *hdev = req->hdev;
806 
807 	/* Some Broadcom based Bluetooth controllers do not support the
808 	 * Delete Stored Link Key command. They are clearly indicating its
809 	 * absence in the bit mask of supported commands.
810 	 *
811 	 * Check the supported commands and only if the command is marked
812 	 * as supported send it. If not supported assume that the controller
813 	 * does not have actual support for stored link keys which makes this
814 	 * command redundant anyway.
815 	 *
816 	 * Some controllers indicate that they support handling deleting
817 	 * stored link keys, but they don't. The quirk lets a driver
818 	 * just disable this command.
819 	 */
820 	if (hdev->commands[6] & 0x80 &&
821 	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
822 		struct hci_cp_delete_stored_link_key cp;
823 
824 		bacpy(&cp.bdaddr, BDADDR_ANY);
825 		cp.delete_all = 0x01;
826 		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
827 			    sizeof(cp), &cp);
828 	}
829 
830 	/* Set event mask page 2 if the HCI command for it is supported */
831 	if (hdev->commands[22] & 0x04)
832 		hci_set_event_mask_page_2(req);
833 
834 	/* Read local codec list if the HCI command is supported */
835 	if (hdev->commands[29] & 0x20)
836 		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
837 
838 	/* Read local pairing options if the HCI command is supported */
839 	if (hdev->commands[41] & 0x08)
840 		hci_req_add(req, HCI_OP_READ_LOCAL_PAIRING_OPTS, 0, NULL);
841 
842 	/* Get MWS transport configuration if the HCI command is supported */
843 	if (hdev->commands[30] & 0x08)
844 		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
845 
846 	/* Check for Synchronization Train support */
847 	if (lmp_sync_train_capable(hdev))
848 		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
849 
850 	/* Enable Secure Connections if supported and configured */
851 	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
852 	    bredr_sc_enabled(hdev)) {
853 		u8 support = 0x01;
854 
855 		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
856 			    sizeof(support), &support);
857 	}
858 
859 	/* Set erroneous data reporting if supported to the wideband speech
860 	 * setting value
861 	 */
862 	if (hdev->commands[18] & 0x08 &&
863 	    !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) {
864 		bool enabled = hci_dev_test_flag(hdev,
865 						 HCI_WIDEBAND_SPEECH_ENABLED);
866 
867 		if (enabled !=
868 		    (hdev->err_data_reporting == ERR_DATA_REPORTING_ENABLED)) {
869 			struct hci_cp_write_def_err_data_reporting cp;
870 
871 			cp.err_data_reporting = enabled ?
872 						ERR_DATA_REPORTING_ENABLED :
873 						ERR_DATA_REPORTING_DISABLED;
874 
875 			hci_req_add(req, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
876 				    sizeof(cp), &cp);
877 		}
878 	}
879 
880 	/* Set Suggested Default Data Length to maximum if supported */
881 	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
882 		struct hci_cp_le_write_def_data_len cp;
883 
884 		cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
885 		cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
886 		hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
887 	}
888 
889 	/* Set Default PHY parameters if command is supported */
890 	if (hdev->commands[35] & 0x20) {
891 		struct hci_cp_le_set_default_phy cp;
892 
893 		cp.all_phys = 0x00;
894 		cp.tx_phys = hdev->le_tx_def_phys;
895 		cp.rx_phys = hdev->le_rx_def_phys;
896 
897 		hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
898 	}
899 
900 	return 0;
901 }
902 
__hci_init(struct hci_dev * hdev)903 static int __hci_init(struct hci_dev *hdev)
904 {
905 	int err;
906 
907 	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
908 	if (err < 0)
909 		return err;
910 
911 	if (hci_dev_test_flag(hdev, HCI_SETUP))
912 		hci_debugfs_create_basic(hdev);
913 
914 	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
915 	if (err < 0)
916 		return err;
917 
918 	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
919 	 * BR/EDR/LE type controllers. AMP controllers only need the
920 	 * first two stages of init.
921 	 */
922 	if (hdev->dev_type != HCI_PRIMARY)
923 		return 0;
924 
925 	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
926 	if (err < 0)
927 		return err;
928 
929 	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
930 	if (err < 0)
931 		return err;
932 
933 	/* This function is only called when the controller is actually in
934 	 * configured state. When the controller is marked as unconfigured,
935 	 * this initialization procedure is not run.
936 	 *
937 	 * It means that it is possible that a controller runs through its
938 	 * setup phase and then discovers missing settings. If that is the
939 	 * case, then this function will not be called. It then will only
940 	 * be called during the config phase.
941 	 *
942 	 * So only when in setup phase or config phase, create the debugfs
943 	 * entries and register the SMP channels.
944 	 */
945 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
946 	    !hci_dev_test_flag(hdev, HCI_CONFIG))
947 		return 0;
948 
949 	hci_debugfs_create_common(hdev);
950 
951 	if (lmp_bredr_capable(hdev))
952 		hci_debugfs_create_bredr(hdev);
953 
954 	if (lmp_le_capable(hdev))
955 		hci_debugfs_create_le(hdev);
956 
957 	return 0;
958 }
959 
hci_init0_req(struct hci_request * req,unsigned long opt)960 static int hci_init0_req(struct hci_request *req, unsigned long opt)
961 {
962 	struct hci_dev *hdev = req->hdev;
963 
964 	BT_DBG("%s %ld", hdev->name, opt);
965 
966 	/* Reset */
967 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
968 		hci_reset_req(req, 0);
969 
970 	/* Read Local Version */
971 	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
972 
973 	/* Read BD Address */
974 	if (hdev->set_bdaddr)
975 		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
976 
977 	return 0;
978 }
979 
__hci_unconf_init(struct hci_dev * hdev)980 static int __hci_unconf_init(struct hci_dev *hdev)
981 {
982 	int err;
983 
984 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
985 		return 0;
986 
987 	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
988 	if (err < 0)
989 		return err;
990 
991 	if (hci_dev_test_flag(hdev, HCI_SETUP))
992 		hci_debugfs_create_basic(hdev);
993 
994 	return 0;
995 }
996 
hci_scan_req(struct hci_request * req,unsigned long opt)997 static int hci_scan_req(struct hci_request *req, unsigned long opt)
998 {
999 	__u8 scan = opt;
1000 
1001 	BT_DBG("%s %x", req->hdev->name, scan);
1002 
1003 	/* Inquiry and Page scans */
1004 	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1005 	return 0;
1006 }
1007 
hci_auth_req(struct hci_request * req,unsigned long opt)1008 static int hci_auth_req(struct hci_request *req, unsigned long opt)
1009 {
1010 	__u8 auth = opt;
1011 
1012 	BT_DBG("%s %x", req->hdev->name, auth);
1013 
1014 	/* Authentication */
1015 	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
1016 	return 0;
1017 }
1018 
hci_encrypt_req(struct hci_request * req,unsigned long opt)1019 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
1020 {
1021 	__u8 encrypt = opt;
1022 
1023 	BT_DBG("%s %x", req->hdev->name, encrypt);
1024 
1025 	/* Encryption */
1026 	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
1027 	return 0;
1028 }
1029 
hci_linkpol_req(struct hci_request * req,unsigned long opt)1030 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
1031 {
1032 	__le16 policy = cpu_to_le16(opt);
1033 
1034 	BT_DBG("%s %x", req->hdev->name, policy);
1035 
1036 	/* Default link policy */
1037 	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
1038 	return 0;
1039 }
1040 
1041 /* Get HCI device by index.
1042  * Device is held on return. */
hci_dev_get(int index)1043 struct hci_dev *hci_dev_get(int index)
1044 {
1045 	struct hci_dev *hdev = NULL, *d;
1046 
1047 	BT_DBG("%d", index);
1048 
1049 	if (index < 0)
1050 		return NULL;
1051 
1052 	read_lock(&hci_dev_list_lock);
1053 	list_for_each_entry(d, &hci_dev_list, list) {
1054 		if (d->id == index) {
1055 			hdev = hci_dev_hold(d);
1056 			break;
1057 		}
1058 	}
1059 	read_unlock(&hci_dev_list_lock);
1060 	return hdev;
1061 }
1062 
1063 /* ---- Inquiry support ---- */
1064 
hci_discovery_active(struct hci_dev * hdev)1065 bool hci_discovery_active(struct hci_dev *hdev)
1066 {
1067 	struct discovery_state *discov = &hdev->discovery;
1068 
1069 	switch (discov->state) {
1070 	case DISCOVERY_FINDING:
1071 	case DISCOVERY_RESOLVING:
1072 		return true;
1073 
1074 	default:
1075 		return false;
1076 	}
1077 }
1078 
hci_discovery_set_state(struct hci_dev * hdev,int state)1079 void hci_discovery_set_state(struct hci_dev *hdev, int state)
1080 {
1081 	int old_state = hdev->discovery.state;
1082 
1083 	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1084 
1085 	if (old_state == state)
1086 		return;
1087 
1088 	hdev->discovery.state = state;
1089 
1090 	switch (state) {
1091 	case DISCOVERY_STOPPED:
1092 		hci_update_background_scan(hdev);
1093 
1094 		if (old_state != DISCOVERY_STARTING)
1095 			mgmt_discovering(hdev, 0);
1096 		break;
1097 	case DISCOVERY_STARTING:
1098 		break;
1099 	case DISCOVERY_FINDING:
1100 		mgmt_discovering(hdev, 1);
1101 		break;
1102 	case DISCOVERY_RESOLVING:
1103 		break;
1104 	case DISCOVERY_STOPPING:
1105 		break;
1106 	}
1107 }
1108 
hci_inquiry_cache_flush(struct hci_dev * hdev)1109 void hci_inquiry_cache_flush(struct hci_dev *hdev)
1110 {
1111 	struct discovery_state *cache = &hdev->discovery;
1112 	struct inquiry_entry *p, *n;
1113 
1114 	list_for_each_entry_safe(p, n, &cache->all, all) {
1115 		list_del(&p->all);
1116 		kfree(p);
1117 	}
1118 
1119 	INIT_LIST_HEAD(&cache->unknown);
1120 	INIT_LIST_HEAD(&cache->resolve);
1121 }
1122 
hci_inquiry_cache_lookup(struct hci_dev * hdev,bdaddr_t * bdaddr)1123 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1124 					       bdaddr_t *bdaddr)
1125 {
1126 	struct discovery_state *cache = &hdev->discovery;
1127 	struct inquiry_entry *e;
1128 
1129 	BT_DBG("cache %p, %pMR", cache, bdaddr);
1130 
1131 	list_for_each_entry(e, &cache->all, all) {
1132 		if (!bacmp(&e->data.bdaddr, bdaddr))
1133 			return e;
1134 	}
1135 
1136 	return NULL;
1137 }
1138 
hci_inquiry_cache_lookup_unknown(struct hci_dev * hdev,bdaddr_t * bdaddr)1139 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1140 						       bdaddr_t *bdaddr)
1141 {
1142 	struct discovery_state *cache = &hdev->discovery;
1143 	struct inquiry_entry *e;
1144 
1145 	BT_DBG("cache %p, %pMR", cache, bdaddr);
1146 
1147 	list_for_each_entry(e, &cache->unknown, list) {
1148 		if (!bacmp(&e->data.bdaddr, bdaddr))
1149 			return e;
1150 	}
1151 
1152 	return NULL;
1153 }
1154 
hci_inquiry_cache_lookup_resolve(struct hci_dev * hdev,bdaddr_t * bdaddr,int state)1155 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1156 						       bdaddr_t *bdaddr,
1157 						       int state)
1158 {
1159 	struct discovery_state *cache = &hdev->discovery;
1160 	struct inquiry_entry *e;
1161 
1162 	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1163 
1164 	list_for_each_entry(e, &cache->resolve, list) {
1165 		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1166 			return e;
1167 		if (!bacmp(&e->data.bdaddr, bdaddr))
1168 			return e;
1169 	}
1170 
1171 	return NULL;
1172 }
1173 
hci_inquiry_cache_update_resolve(struct hci_dev * hdev,struct inquiry_entry * ie)1174 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1175 				      struct inquiry_entry *ie)
1176 {
1177 	struct discovery_state *cache = &hdev->discovery;
1178 	struct list_head *pos = &cache->resolve;
1179 	struct inquiry_entry *p;
1180 
1181 	list_del(&ie->list);
1182 
1183 	list_for_each_entry(p, &cache->resolve, list) {
1184 		if (p->name_state != NAME_PENDING &&
1185 		    abs(p->data.rssi) >= abs(ie->data.rssi))
1186 			break;
1187 		pos = &p->list;
1188 	}
1189 
1190 	list_add(&ie->list, pos);
1191 }
1192 
hci_inquiry_cache_update(struct hci_dev * hdev,struct inquiry_data * data,bool name_known)1193 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1194 			     bool name_known)
1195 {
1196 	struct discovery_state *cache = &hdev->discovery;
1197 	struct inquiry_entry *ie;
1198 	u32 flags = 0;
1199 
1200 	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1201 
1202 	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1203 
1204 	if (!data->ssp_mode)
1205 		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1206 
1207 	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1208 	if (ie) {
1209 		if (!ie->data.ssp_mode)
1210 			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1211 
1212 		if (ie->name_state == NAME_NEEDED &&
1213 		    data->rssi != ie->data.rssi) {
1214 			ie->data.rssi = data->rssi;
1215 			hci_inquiry_cache_update_resolve(hdev, ie);
1216 		}
1217 
1218 		goto update;
1219 	}
1220 
1221 	/* Entry not in the cache. Add new one. */
1222 	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1223 	if (!ie) {
1224 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1225 		goto done;
1226 	}
1227 
1228 	list_add(&ie->all, &cache->all);
1229 
1230 	if (name_known) {
1231 		ie->name_state = NAME_KNOWN;
1232 	} else {
1233 		ie->name_state = NAME_NOT_KNOWN;
1234 		list_add(&ie->list, &cache->unknown);
1235 	}
1236 
1237 update:
1238 	if (name_known && ie->name_state != NAME_KNOWN &&
1239 	    ie->name_state != NAME_PENDING) {
1240 		ie->name_state = NAME_KNOWN;
1241 		list_del(&ie->list);
1242 	}
1243 
1244 	memcpy(&ie->data, data, sizeof(*data));
1245 	ie->timestamp = jiffies;
1246 	cache->timestamp = jiffies;
1247 
1248 	if (ie->name_state == NAME_NOT_KNOWN)
1249 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1250 
1251 done:
1252 	return flags;
1253 }
1254 
inquiry_cache_dump(struct hci_dev * hdev,int num,__u8 * buf)1255 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1256 {
1257 	struct discovery_state *cache = &hdev->discovery;
1258 	struct inquiry_info *info = (struct inquiry_info *) buf;
1259 	struct inquiry_entry *e;
1260 	int copied = 0;
1261 
1262 	list_for_each_entry(e, &cache->all, all) {
1263 		struct inquiry_data *data = &e->data;
1264 
1265 		if (copied >= num)
1266 			break;
1267 
1268 		bacpy(&info->bdaddr, &data->bdaddr);
1269 		info->pscan_rep_mode	= data->pscan_rep_mode;
1270 		info->pscan_period_mode	= data->pscan_period_mode;
1271 		info->pscan_mode	= data->pscan_mode;
1272 		memcpy(info->dev_class, data->dev_class, 3);
1273 		info->clock_offset	= data->clock_offset;
1274 
1275 		info++;
1276 		copied++;
1277 	}
1278 
1279 	BT_DBG("cache %p, copied %d", cache, copied);
1280 	return copied;
1281 }
1282 
hci_inq_req(struct hci_request * req,unsigned long opt)1283 static int hci_inq_req(struct hci_request *req, unsigned long opt)
1284 {
1285 	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1286 	struct hci_dev *hdev = req->hdev;
1287 	struct hci_cp_inquiry cp;
1288 
1289 	BT_DBG("%s", hdev->name);
1290 
1291 	if (test_bit(HCI_INQUIRY, &hdev->flags))
1292 		return 0;
1293 
1294 	/* Start Inquiry */
1295 	memcpy(&cp.lap, &ir->lap, 3);
1296 	cp.length  = ir->length;
1297 	cp.num_rsp = ir->num_rsp;
1298 	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1299 
1300 	return 0;
1301 }
1302 
hci_inquiry(void __user * arg)1303 int hci_inquiry(void __user *arg)
1304 {
1305 	__u8 __user *ptr = arg;
1306 	struct hci_inquiry_req ir;
1307 	struct hci_dev *hdev;
1308 	int err = 0, do_inquiry = 0, max_rsp;
1309 	long timeo;
1310 	__u8 *buf;
1311 
1312 	if (copy_from_user(&ir, ptr, sizeof(ir)))
1313 		return -EFAULT;
1314 
1315 	hdev = hci_dev_get(ir.dev_id);
1316 	if (!hdev)
1317 		return -ENODEV;
1318 
1319 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1320 		err = -EBUSY;
1321 		goto done;
1322 	}
1323 
1324 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1325 		err = -EOPNOTSUPP;
1326 		goto done;
1327 	}
1328 
1329 	if (hdev->dev_type != HCI_PRIMARY) {
1330 		err = -EOPNOTSUPP;
1331 		goto done;
1332 	}
1333 
1334 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1335 		err = -EOPNOTSUPP;
1336 		goto done;
1337 	}
1338 
1339 	/* Restrict maximum inquiry length to 60 seconds */
1340 	if (ir.length > 60) {
1341 		err = -EINVAL;
1342 		goto done;
1343 	}
1344 
1345 	hci_dev_lock(hdev);
1346 	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1347 	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1348 		hci_inquiry_cache_flush(hdev);
1349 		do_inquiry = 1;
1350 	}
1351 	hci_dev_unlock(hdev);
1352 
1353 	timeo = ir.length * msecs_to_jiffies(2000);
1354 
1355 	if (do_inquiry) {
1356 		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1357 				   timeo, NULL);
1358 		if (err < 0)
1359 			goto done;
1360 
1361 		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1362 		 * cleared). If it is interrupted by a signal, return -EINTR.
1363 		 */
1364 		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1365 				TASK_INTERRUPTIBLE)) {
1366 			err = -EINTR;
1367 			goto done;
1368 		}
1369 	}
1370 
1371 	/* for unlimited number of responses we will use buffer with
1372 	 * 255 entries
1373 	 */
1374 	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1375 
1376 	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1377 	 * copy it to the user space.
1378 	 */
1379 	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1380 	if (!buf) {
1381 		err = -ENOMEM;
1382 		goto done;
1383 	}
1384 
1385 	hci_dev_lock(hdev);
1386 	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1387 	hci_dev_unlock(hdev);
1388 
1389 	BT_DBG("num_rsp %d", ir.num_rsp);
1390 
1391 	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1392 		ptr += sizeof(ir);
1393 		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1394 				 ir.num_rsp))
1395 			err = -EFAULT;
1396 	} else
1397 		err = -EFAULT;
1398 
1399 	kfree(buf);
1400 
1401 done:
1402 	hci_dev_put(hdev);
1403 	return err;
1404 }
1405 
1406 /**
1407  * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1408  *				       (BD_ADDR) for a HCI device from
1409  *				       a firmware node property.
1410  * @hdev:	The HCI device
1411  *
1412  * Search the firmware node for 'local-bd-address'.
1413  *
1414  * All-zero BD addresses are rejected, because those could be properties
1415  * that exist in the firmware tables, but were not updated by the firmware. For
1416  * example, the DTS could define 'local-bd-address', with zero BD addresses.
1417  */
hci_dev_get_bd_addr_from_property(struct hci_dev * hdev)1418 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1419 {
1420 	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1421 	bdaddr_t ba;
1422 	int ret;
1423 
1424 	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1425 					    (u8 *)&ba, sizeof(ba));
1426 	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1427 		return;
1428 
1429 	bacpy(&hdev->public_addr, &ba);
1430 }
1431 
hci_dev_do_open(struct hci_dev * hdev)1432 static int hci_dev_do_open(struct hci_dev *hdev)
1433 {
1434 	int ret = 0;
1435 
1436 	BT_DBG("%s %p", hdev->name, hdev);
1437 
1438 	hci_req_sync_lock(hdev);
1439 
1440 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1441 		ret = -ENODEV;
1442 		goto done;
1443 	}
1444 
1445 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1446 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1447 		/* Check for rfkill but allow the HCI setup stage to
1448 		 * proceed (which in itself doesn't cause any RF activity).
1449 		 */
1450 		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1451 			ret = -ERFKILL;
1452 			goto done;
1453 		}
1454 
1455 		/* Check for valid public address or a configured static
1456 		 * random adddress, but let the HCI setup proceed to
1457 		 * be able to determine if there is a public address
1458 		 * or not.
1459 		 *
1460 		 * In case of user channel usage, it is not important
1461 		 * if a public address or static random address is
1462 		 * available.
1463 		 *
1464 		 * This check is only valid for BR/EDR controllers
1465 		 * since AMP controllers do not have an address.
1466 		 */
1467 		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1468 		    hdev->dev_type == HCI_PRIMARY &&
1469 		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1470 		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1471 			ret = -EADDRNOTAVAIL;
1472 			goto done;
1473 		}
1474 	}
1475 
1476 	if (test_bit(HCI_UP, &hdev->flags)) {
1477 		ret = -EALREADY;
1478 		goto done;
1479 	}
1480 
1481 	if (hdev->open(hdev)) {
1482 		ret = -EIO;
1483 		goto done;
1484 	}
1485 
1486 	set_bit(HCI_RUNNING, &hdev->flags);
1487 	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1488 
1489 	atomic_set(&hdev->cmd_cnt, 1);
1490 	set_bit(HCI_INIT, &hdev->flags);
1491 
1492 	if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1493 	    test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
1494 		bool invalid_bdaddr;
1495 
1496 		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1497 
1498 		if (hdev->setup)
1499 			ret = hdev->setup(hdev);
1500 
1501 		/* The transport driver can set the quirk to mark the
1502 		 * BD_ADDR invalid before creating the HCI device or in
1503 		 * its setup callback.
1504 		 */
1505 		invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR,
1506 					  &hdev->quirks);
1507 
1508 		if (ret)
1509 			goto setup_failed;
1510 
1511 		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1512 			if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1513 				hci_dev_get_bd_addr_from_property(hdev);
1514 
1515 			if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1516 			    hdev->set_bdaddr) {
1517 				ret = hdev->set_bdaddr(hdev,
1518 						       &hdev->public_addr);
1519 
1520 				/* If setting of the BD_ADDR from the device
1521 				 * property succeeds, then treat the address
1522 				 * as valid even if the invalid BD_ADDR
1523 				 * quirk indicates otherwise.
1524 				 */
1525 				if (!ret)
1526 					invalid_bdaddr = false;
1527 			}
1528 		}
1529 
1530 setup_failed:
1531 		/* The transport driver can set these quirks before
1532 		 * creating the HCI device or in its setup callback.
1533 		 *
1534 		 * For the invalid BD_ADDR quirk it is possible that
1535 		 * it becomes a valid address if the bootloader does
1536 		 * provide it (see above).
1537 		 *
1538 		 * In case any of them is set, the controller has to
1539 		 * start up as unconfigured.
1540 		 */
1541 		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1542 		    invalid_bdaddr)
1543 			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1544 
1545 		/* For an unconfigured controller it is required to
1546 		 * read at least the version information provided by
1547 		 * the Read Local Version Information command.
1548 		 *
1549 		 * If the set_bdaddr driver callback is provided, then
1550 		 * also the original Bluetooth public device address
1551 		 * will be read using the Read BD Address command.
1552 		 */
1553 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1554 			ret = __hci_unconf_init(hdev);
1555 	}
1556 
1557 	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1558 		/* If public address change is configured, ensure that
1559 		 * the address gets programmed. If the driver does not
1560 		 * support changing the public address, fail the power
1561 		 * on procedure.
1562 		 */
1563 		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1564 		    hdev->set_bdaddr)
1565 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1566 		else
1567 			ret = -EADDRNOTAVAIL;
1568 	}
1569 
1570 	if (!ret) {
1571 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1572 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1573 			ret = __hci_init(hdev);
1574 			if (!ret && hdev->post_init)
1575 				ret = hdev->post_init(hdev);
1576 		}
1577 	}
1578 
1579 	/* If the HCI Reset command is clearing all diagnostic settings,
1580 	 * then they need to be reprogrammed after the init procedure
1581 	 * completed.
1582 	 */
1583 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1584 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1585 	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1586 		ret = hdev->set_diag(hdev, true);
1587 
1588 	msft_do_open(hdev);
1589 
1590 	clear_bit(HCI_INIT, &hdev->flags);
1591 
1592 	if (!ret) {
1593 		hci_dev_hold(hdev);
1594 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1595 		hci_adv_instances_set_rpa_expired(hdev, true);
1596 		set_bit(HCI_UP, &hdev->flags);
1597 		hci_sock_dev_event(hdev, HCI_DEV_UP);
1598 		hci_leds_update_powered(hdev, true);
1599 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1600 		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1601 		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1602 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1603 		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1604 		    hdev->dev_type == HCI_PRIMARY) {
1605 			ret = __hci_req_hci_power_on(hdev);
1606 			mgmt_power_on(hdev, ret);
1607 		}
1608 	} else {
1609 		/* Init failed, cleanup */
1610 		flush_work(&hdev->tx_work);
1611 
1612 		/* Since hci_rx_work() is possible to awake new cmd_work
1613 		 * it should be flushed first to avoid unexpected call of
1614 		 * hci_cmd_work()
1615 		 */
1616 		flush_work(&hdev->rx_work);
1617 		flush_work(&hdev->cmd_work);
1618 
1619 		skb_queue_purge(&hdev->cmd_q);
1620 		skb_queue_purge(&hdev->rx_q);
1621 
1622 		if (hdev->flush)
1623 			hdev->flush(hdev);
1624 
1625 		if (hdev->sent_cmd) {
1626 			cancel_delayed_work_sync(&hdev->cmd_timer);
1627 			kfree_skb(hdev->sent_cmd);
1628 			hdev->sent_cmd = NULL;
1629 		}
1630 
1631 		clear_bit(HCI_RUNNING, &hdev->flags);
1632 		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1633 
1634 		hdev->close(hdev);
1635 		hdev->flags &= BIT(HCI_RAW);
1636 	}
1637 
1638 done:
1639 	hci_req_sync_unlock(hdev);
1640 	return ret;
1641 }
1642 
1643 /* ---- HCI ioctl helpers ---- */
1644 
hci_dev_open(__u16 dev)1645 int hci_dev_open(__u16 dev)
1646 {
1647 	struct hci_dev *hdev;
1648 	int err;
1649 
1650 	hdev = hci_dev_get(dev);
1651 	if (!hdev)
1652 		return -ENODEV;
1653 
1654 	/* Devices that are marked as unconfigured can only be powered
1655 	 * up as user channel. Trying to bring them up as normal devices
1656 	 * will result into a failure. Only user channel operation is
1657 	 * possible.
1658 	 *
1659 	 * When this function is called for a user channel, the flag
1660 	 * HCI_USER_CHANNEL will be set first before attempting to
1661 	 * open the device.
1662 	 */
1663 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1664 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1665 		err = -EOPNOTSUPP;
1666 		goto done;
1667 	}
1668 
1669 	/* We need to ensure that no other power on/off work is pending
1670 	 * before proceeding to call hci_dev_do_open. This is
1671 	 * particularly important if the setup procedure has not yet
1672 	 * completed.
1673 	 */
1674 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1675 		cancel_delayed_work(&hdev->power_off);
1676 
1677 	/* After this call it is guaranteed that the setup procedure
1678 	 * has finished. This means that error conditions like RFKILL
1679 	 * or no valid public or static random address apply.
1680 	 */
1681 	flush_workqueue(hdev->req_workqueue);
1682 
1683 	/* For controllers not using the management interface and that
1684 	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1685 	 * so that pairing works for them. Once the management interface
1686 	 * is in use this bit will be cleared again and userspace has
1687 	 * to explicitly enable it.
1688 	 */
1689 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1690 	    !hci_dev_test_flag(hdev, HCI_MGMT))
1691 		hci_dev_set_flag(hdev, HCI_BONDABLE);
1692 
1693 	err = hci_dev_do_open(hdev);
1694 
1695 done:
1696 	hci_dev_put(hdev);
1697 	return err;
1698 }
1699 
1700 /* This function requires the caller holds hdev->lock */
hci_pend_le_actions_clear(struct hci_dev * hdev)1701 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1702 {
1703 	struct hci_conn_params *p;
1704 
1705 	list_for_each_entry(p, &hdev->le_conn_params, list) {
1706 		if (p->conn) {
1707 			hci_conn_drop(p->conn);
1708 			hci_conn_put(p->conn);
1709 			p->conn = NULL;
1710 		}
1711 		list_del_init(&p->action);
1712 	}
1713 
1714 	BT_DBG("All LE pending actions cleared");
1715 }
1716 
hci_dev_do_close(struct hci_dev * hdev)1717 int hci_dev_do_close(struct hci_dev *hdev)
1718 {
1719 	bool auto_off;
1720 
1721 	BT_DBG("%s %p", hdev->name, hdev);
1722 
1723 	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1724 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1725 	    test_bit(HCI_UP, &hdev->flags)) {
1726 		/* Execute vendor specific shutdown routine */
1727 		if (hdev->shutdown)
1728 			hdev->shutdown(hdev);
1729 	}
1730 
1731 	cancel_delayed_work(&hdev->power_off);
1732 
1733 	hci_request_cancel_all(hdev);
1734 	hci_req_sync_lock(hdev);
1735 
1736 	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1737 		cancel_delayed_work_sync(&hdev->cmd_timer);
1738 		hci_req_sync_unlock(hdev);
1739 		return 0;
1740 	}
1741 
1742 	hci_leds_update_powered(hdev, false);
1743 
1744 	/* Flush RX and TX works */
1745 	flush_work(&hdev->tx_work);
1746 	flush_work(&hdev->rx_work);
1747 
1748 	if (hdev->discov_timeout > 0) {
1749 		hdev->discov_timeout = 0;
1750 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1751 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1752 	}
1753 
1754 	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1755 		cancel_delayed_work(&hdev->service_cache);
1756 
1757 	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1758 		struct adv_info *adv_instance;
1759 
1760 		cancel_delayed_work_sync(&hdev->rpa_expired);
1761 
1762 		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1763 			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1764 	}
1765 
1766 	/* Avoid potential lockdep warnings from the *_flush() calls by
1767 	 * ensuring the workqueue is empty up front.
1768 	 */
1769 	drain_workqueue(hdev->workqueue);
1770 
1771 	hci_dev_lock(hdev);
1772 
1773 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1774 
1775 	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1776 
1777 	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1778 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1779 	    hci_dev_test_flag(hdev, HCI_MGMT))
1780 		__mgmt_power_off(hdev);
1781 
1782 	hci_inquiry_cache_flush(hdev);
1783 	hci_pend_le_actions_clear(hdev);
1784 	hci_conn_hash_flush(hdev);
1785 	hci_dev_unlock(hdev);
1786 
1787 	smp_unregister(hdev);
1788 
1789 	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1790 
1791 	msft_do_close(hdev);
1792 
1793 	if (hdev->flush)
1794 		hdev->flush(hdev);
1795 
1796 	/* Reset device */
1797 	skb_queue_purge(&hdev->cmd_q);
1798 	atomic_set(&hdev->cmd_cnt, 1);
1799 	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1800 	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1801 		set_bit(HCI_INIT, &hdev->flags);
1802 		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1803 		clear_bit(HCI_INIT, &hdev->flags);
1804 	}
1805 
1806 	/* flush cmd  work */
1807 	flush_work(&hdev->cmd_work);
1808 
1809 	/* Drop queues */
1810 	skb_queue_purge(&hdev->rx_q);
1811 	skb_queue_purge(&hdev->cmd_q);
1812 	skb_queue_purge(&hdev->raw_q);
1813 
1814 	/* Drop last sent command */
1815 	if (hdev->sent_cmd) {
1816 		cancel_delayed_work_sync(&hdev->cmd_timer);
1817 		kfree_skb(hdev->sent_cmd);
1818 		hdev->sent_cmd = NULL;
1819 	}
1820 
1821 	clear_bit(HCI_RUNNING, &hdev->flags);
1822 	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1823 
1824 	if (test_and_clear_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks))
1825 		wake_up(&hdev->suspend_wait_q);
1826 
1827 	/* After this point our queues are empty
1828 	 * and no tasks are scheduled. */
1829 	hdev->close(hdev);
1830 
1831 	/* Clear flags */
1832 	hdev->flags &= BIT(HCI_RAW);
1833 	hci_dev_clear_volatile_flags(hdev);
1834 
1835 	/* Controller radio is available but is currently powered down */
1836 	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1837 
1838 	memset(hdev->eir, 0, sizeof(hdev->eir));
1839 	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1840 	bacpy(&hdev->random_addr, BDADDR_ANY);
1841 
1842 	hci_req_sync_unlock(hdev);
1843 
1844 	hci_dev_put(hdev);
1845 	return 0;
1846 }
1847 
hci_dev_close(__u16 dev)1848 int hci_dev_close(__u16 dev)
1849 {
1850 	struct hci_dev *hdev;
1851 	int err;
1852 
1853 	hdev = hci_dev_get(dev);
1854 	if (!hdev)
1855 		return -ENODEV;
1856 
1857 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1858 		err = -EBUSY;
1859 		goto done;
1860 	}
1861 
1862 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1863 		cancel_delayed_work(&hdev->power_off);
1864 
1865 	err = hci_dev_do_close(hdev);
1866 
1867 done:
1868 	hci_dev_put(hdev);
1869 	return err;
1870 }
1871 
hci_dev_do_reset(struct hci_dev * hdev)1872 static int hci_dev_do_reset(struct hci_dev *hdev)
1873 {
1874 	int ret;
1875 
1876 	BT_DBG("%s %p", hdev->name, hdev);
1877 
1878 	hci_req_sync_lock(hdev);
1879 
1880 	/* Drop queues */
1881 	skb_queue_purge(&hdev->rx_q);
1882 	skb_queue_purge(&hdev->cmd_q);
1883 
1884 	/* Avoid potential lockdep warnings from the *_flush() calls by
1885 	 * ensuring the workqueue is empty up front.
1886 	 */
1887 	drain_workqueue(hdev->workqueue);
1888 
1889 	hci_dev_lock(hdev);
1890 	hci_inquiry_cache_flush(hdev);
1891 	hci_conn_hash_flush(hdev);
1892 	hci_dev_unlock(hdev);
1893 
1894 	if (hdev->flush)
1895 		hdev->flush(hdev);
1896 
1897 	atomic_set(&hdev->cmd_cnt, 1);
1898 	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1899 
1900 	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1901 
1902 	hci_req_sync_unlock(hdev);
1903 	return ret;
1904 }
1905 
hci_dev_reset(__u16 dev)1906 int hci_dev_reset(__u16 dev)
1907 {
1908 	struct hci_dev *hdev;
1909 	int err;
1910 
1911 	hdev = hci_dev_get(dev);
1912 	if (!hdev)
1913 		return -ENODEV;
1914 
1915 	if (!test_bit(HCI_UP, &hdev->flags)) {
1916 		err = -ENETDOWN;
1917 		goto done;
1918 	}
1919 
1920 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1921 		err = -EBUSY;
1922 		goto done;
1923 	}
1924 
1925 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1926 		err = -EOPNOTSUPP;
1927 		goto done;
1928 	}
1929 
1930 	err = hci_dev_do_reset(hdev);
1931 
1932 done:
1933 	hci_dev_put(hdev);
1934 	return err;
1935 }
1936 
hci_dev_reset_stat(__u16 dev)1937 int hci_dev_reset_stat(__u16 dev)
1938 {
1939 	struct hci_dev *hdev;
1940 	int ret = 0;
1941 
1942 	hdev = hci_dev_get(dev);
1943 	if (!hdev)
1944 		return -ENODEV;
1945 
1946 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1947 		ret = -EBUSY;
1948 		goto done;
1949 	}
1950 
1951 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1952 		ret = -EOPNOTSUPP;
1953 		goto done;
1954 	}
1955 
1956 	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1957 
1958 done:
1959 	hci_dev_put(hdev);
1960 	return ret;
1961 }
1962 
hci_update_scan_state(struct hci_dev * hdev,u8 scan)1963 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1964 {
1965 	bool conn_changed, discov_changed;
1966 
1967 	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1968 
1969 	if ((scan & SCAN_PAGE))
1970 		conn_changed = !hci_dev_test_and_set_flag(hdev,
1971 							  HCI_CONNECTABLE);
1972 	else
1973 		conn_changed = hci_dev_test_and_clear_flag(hdev,
1974 							   HCI_CONNECTABLE);
1975 
1976 	if ((scan & SCAN_INQUIRY)) {
1977 		discov_changed = !hci_dev_test_and_set_flag(hdev,
1978 							    HCI_DISCOVERABLE);
1979 	} else {
1980 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1981 		discov_changed = hci_dev_test_and_clear_flag(hdev,
1982 							     HCI_DISCOVERABLE);
1983 	}
1984 
1985 	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1986 		return;
1987 
1988 	if (conn_changed || discov_changed) {
1989 		/* In case this was disabled through mgmt */
1990 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1991 
1992 		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1993 			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1994 
1995 		mgmt_new_settings(hdev);
1996 	}
1997 }
1998 
hci_dev_cmd(unsigned int cmd,void __user * arg)1999 int hci_dev_cmd(unsigned int cmd, void __user *arg)
2000 {
2001 	struct hci_dev *hdev;
2002 	struct hci_dev_req dr;
2003 	int err = 0;
2004 
2005 	if (copy_from_user(&dr, arg, sizeof(dr)))
2006 		return -EFAULT;
2007 
2008 	hdev = hci_dev_get(dr.dev_id);
2009 	if (!hdev)
2010 		return -ENODEV;
2011 
2012 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
2013 		err = -EBUSY;
2014 		goto done;
2015 	}
2016 
2017 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
2018 		err = -EOPNOTSUPP;
2019 		goto done;
2020 	}
2021 
2022 	if (hdev->dev_type != HCI_PRIMARY) {
2023 		err = -EOPNOTSUPP;
2024 		goto done;
2025 	}
2026 
2027 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2028 		err = -EOPNOTSUPP;
2029 		goto done;
2030 	}
2031 
2032 	switch (cmd) {
2033 	case HCISETAUTH:
2034 		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2035 				   HCI_INIT_TIMEOUT, NULL);
2036 		break;
2037 
2038 	case HCISETENCRYPT:
2039 		if (!lmp_encrypt_capable(hdev)) {
2040 			err = -EOPNOTSUPP;
2041 			break;
2042 		}
2043 
2044 		if (!test_bit(HCI_AUTH, &hdev->flags)) {
2045 			/* Auth must be enabled first */
2046 			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2047 					   HCI_INIT_TIMEOUT, NULL);
2048 			if (err)
2049 				break;
2050 		}
2051 
2052 		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
2053 				   HCI_INIT_TIMEOUT, NULL);
2054 		break;
2055 
2056 	case HCISETSCAN:
2057 		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
2058 				   HCI_INIT_TIMEOUT, NULL);
2059 
2060 		/* Ensure that the connectable and discoverable states
2061 		 * get correctly modified as this was a non-mgmt change.
2062 		 */
2063 		if (!err)
2064 			hci_update_scan_state(hdev, dr.dev_opt);
2065 		break;
2066 
2067 	case HCISETLINKPOL:
2068 		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
2069 				   HCI_INIT_TIMEOUT, NULL);
2070 		break;
2071 
2072 	case HCISETLINKMODE:
2073 		hdev->link_mode = ((__u16) dr.dev_opt) &
2074 					(HCI_LM_MASTER | HCI_LM_ACCEPT);
2075 		break;
2076 
2077 	case HCISETPTYPE:
2078 		if (hdev->pkt_type == (__u16) dr.dev_opt)
2079 			break;
2080 
2081 		hdev->pkt_type = (__u16) dr.dev_opt;
2082 		mgmt_phy_configuration_changed(hdev, NULL);
2083 		break;
2084 
2085 	case HCISETACLMTU:
2086 		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
2087 		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2088 		break;
2089 
2090 	case HCISETSCOMTU:
2091 		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
2092 		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2093 		break;
2094 
2095 	default:
2096 		err = -EINVAL;
2097 		break;
2098 	}
2099 
2100 done:
2101 	hci_dev_put(hdev);
2102 	return err;
2103 }
2104 
hci_get_dev_list(void __user * arg)2105 int hci_get_dev_list(void __user *arg)
2106 {
2107 	struct hci_dev *hdev;
2108 	struct hci_dev_list_req *dl;
2109 	struct hci_dev_req *dr;
2110 	int n = 0, size, err;
2111 	__u16 dev_num;
2112 
2113 	if (get_user(dev_num, (__u16 __user *) arg))
2114 		return -EFAULT;
2115 
2116 	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2117 		return -EINVAL;
2118 
2119 	size = sizeof(*dl) + dev_num * sizeof(*dr);
2120 
2121 	dl = kzalloc(size, GFP_KERNEL);
2122 	if (!dl)
2123 		return -ENOMEM;
2124 
2125 	dr = dl->dev_req;
2126 
2127 	read_lock(&hci_dev_list_lock);
2128 	list_for_each_entry(hdev, &hci_dev_list, list) {
2129 		unsigned long flags = hdev->flags;
2130 
2131 		/* When the auto-off is configured it means the transport
2132 		 * is running, but in that case still indicate that the
2133 		 * device is actually down.
2134 		 */
2135 		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2136 			flags &= ~BIT(HCI_UP);
2137 
2138 		(dr + n)->dev_id  = hdev->id;
2139 		(dr + n)->dev_opt = flags;
2140 
2141 		if (++n >= dev_num)
2142 			break;
2143 	}
2144 	read_unlock(&hci_dev_list_lock);
2145 
2146 	dl->dev_num = n;
2147 	size = sizeof(*dl) + n * sizeof(*dr);
2148 
2149 	err = copy_to_user(arg, dl, size);
2150 	kfree(dl);
2151 
2152 	return err ? -EFAULT : 0;
2153 }
2154 
hci_get_dev_info(void __user * arg)2155 int hci_get_dev_info(void __user *arg)
2156 {
2157 	struct hci_dev *hdev;
2158 	struct hci_dev_info di;
2159 	unsigned long flags;
2160 	int err = 0;
2161 
2162 	if (copy_from_user(&di, arg, sizeof(di)))
2163 		return -EFAULT;
2164 
2165 	hdev = hci_dev_get(di.dev_id);
2166 	if (!hdev)
2167 		return -ENODEV;
2168 
2169 	/* When the auto-off is configured it means the transport
2170 	 * is running, but in that case still indicate that the
2171 	 * device is actually down.
2172 	 */
2173 	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2174 		flags = hdev->flags & ~BIT(HCI_UP);
2175 	else
2176 		flags = hdev->flags;
2177 
2178 	strcpy(di.name, hdev->name);
2179 	di.bdaddr   = hdev->bdaddr;
2180 	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2181 	di.flags    = flags;
2182 	di.pkt_type = hdev->pkt_type;
2183 	if (lmp_bredr_capable(hdev)) {
2184 		di.acl_mtu  = hdev->acl_mtu;
2185 		di.acl_pkts = hdev->acl_pkts;
2186 		di.sco_mtu  = hdev->sco_mtu;
2187 		di.sco_pkts = hdev->sco_pkts;
2188 	} else {
2189 		di.acl_mtu  = hdev->le_mtu;
2190 		di.acl_pkts = hdev->le_pkts;
2191 		di.sco_mtu  = 0;
2192 		di.sco_pkts = 0;
2193 	}
2194 	di.link_policy = hdev->link_policy;
2195 	di.link_mode   = hdev->link_mode;
2196 
2197 	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2198 	memcpy(&di.features, &hdev->features, sizeof(di.features));
2199 
2200 	if (copy_to_user(arg, &di, sizeof(di)))
2201 		err = -EFAULT;
2202 
2203 	hci_dev_put(hdev);
2204 
2205 	return err;
2206 }
2207 
2208 /* ---- Interface to HCI drivers ---- */
2209 
hci_rfkill_set_block(void * data,bool blocked)2210 static int hci_rfkill_set_block(void *data, bool blocked)
2211 {
2212 	struct hci_dev *hdev = data;
2213 
2214 	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2215 
2216 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2217 		return -EBUSY;
2218 
2219 	if (blocked) {
2220 		hci_dev_set_flag(hdev, HCI_RFKILLED);
2221 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2222 		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2223 			hci_dev_do_close(hdev);
2224 	} else {
2225 		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2226 	}
2227 
2228 	return 0;
2229 }
2230 
2231 static const struct rfkill_ops hci_rfkill_ops = {
2232 	.set_block = hci_rfkill_set_block,
2233 };
2234 
hci_power_on(struct work_struct * work)2235 static void hci_power_on(struct work_struct *work)
2236 {
2237 	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2238 	int err;
2239 
2240 	BT_DBG("%s", hdev->name);
2241 
2242 	if (test_bit(HCI_UP, &hdev->flags) &&
2243 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2244 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2245 		cancel_delayed_work(&hdev->power_off);
2246 		hci_req_sync_lock(hdev);
2247 		err = __hci_req_hci_power_on(hdev);
2248 		hci_req_sync_unlock(hdev);
2249 		mgmt_power_on(hdev, err);
2250 		return;
2251 	}
2252 
2253 	err = hci_dev_do_open(hdev);
2254 	if (err < 0) {
2255 		hci_dev_lock(hdev);
2256 		mgmt_set_powered_failed(hdev, err);
2257 		hci_dev_unlock(hdev);
2258 		return;
2259 	}
2260 
2261 	/* During the HCI setup phase, a few error conditions are
2262 	 * ignored and they need to be checked now. If they are still
2263 	 * valid, it is important to turn the device back off.
2264 	 */
2265 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2266 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2267 	    (hdev->dev_type == HCI_PRIMARY &&
2268 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2269 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2270 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2271 		hci_dev_do_close(hdev);
2272 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2273 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2274 				   HCI_AUTO_OFF_TIMEOUT);
2275 	}
2276 
2277 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2278 		/* For unconfigured devices, set the HCI_RAW flag
2279 		 * so that userspace can easily identify them.
2280 		 */
2281 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2282 			set_bit(HCI_RAW, &hdev->flags);
2283 
2284 		/* For fully configured devices, this will send
2285 		 * the Index Added event. For unconfigured devices,
2286 		 * it will send Unconfigued Index Added event.
2287 		 *
2288 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2289 		 * and no event will be send.
2290 		 */
2291 		mgmt_index_added(hdev);
2292 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2293 		/* When the controller is now configured, then it
2294 		 * is important to clear the HCI_RAW flag.
2295 		 */
2296 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2297 			clear_bit(HCI_RAW, &hdev->flags);
2298 
2299 		/* Powering on the controller with HCI_CONFIG set only
2300 		 * happens with the transition from unconfigured to
2301 		 * configured. This will send the Index Added event.
2302 		 */
2303 		mgmt_index_added(hdev);
2304 	}
2305 }
2306 
hci_power_off(struct work_struct * work)2307 static void hci_power_off(struct work_struct *work)
2308 {
2309 	struct hci_dev *hdev = container_of(work, struct hci_dev,
2310 					    power_off.work);
2311 
2312 	BT_DBG("%s", hdev->name);
2313 
2314 	hci_dev_do_close(hdev);
2315 }
2316 
hci_error_reset(struct work_struct * work)2317 static void hci_error_reset(struct work_struct *work)
2318 {
2319 	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2320 
2321 	BT_DBG("%s", hdev->name);
2322 
2323 	if (hdev->hw_error)
2324 		hdev->hw_error(hdev, hdev->hw_error_code);
2325 	else
2326 		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2327 
2328 	if (hci_dev_do_close(hdev))
2329 		return;
2330 
2331 	hci_dev_do_open(hdev);
2332 }
2333 
hci_uuids_clear(struct hci_dev * hdev)2334 void hci_uuids_clear(struct hci_dev *hdev)
2335 {
2336 	struct bt_uuid *uuid, *tmp;
2337 
2338 	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2339 		list_del(&uuid->list);
2340 		kfree(uuid);
2341 	}
2342 }
2343 
hci_link_keys_clear(struct hci_dev * hdev)2344 void hci_link_keys_clear(struct hci_dev *hdev)
2345 {
2346 	struct link_key *key;
2347 
2348 	list_for_each_entry(key, &hdev->link_keys, list) {
2349 		list_del_rcu(&key->list);
2350 		kfree_rcu(key, rcu);
2351 	}
2352 }
2353 
hci_smp_ltks_clear(struct hci_dev * hdev)2354 void hci_smp_ltks_clear(struct hci_dev *hdev)
2355 {
2356 	struct smp_ltk *k;
2357 
2358 	list_for_each_entry(k, &hdev->long_term_keys, list) {
2359 		list_del_rcu(&k->list);
2360 		kfree_rcu(k, rcu);
2361 	}
2362 }
2363 
hci_smp_irks_clear(struct hci_dev * hdev)2364 void hci_smp_irks_clear(struct hci_dev *hdev)
2365 {
2366 	struct smp_irk *k;
2367 
2368 	list_for_each_entry(k, &hdev->identity_resolving_keys, list) {
2369 		list_del_rcu(&k->list);
2370 		kfree_rcu(k, rcu);
2371 	}
2372 }
2373 
hci_blocked_keys_clear(struct hci_dev * hdev)2374 void hci_blocked_keys_clear(struct hci_dev *hdev)
2375 {
2376 	struct blocked_key *b;
2377 
2378 	list_for_each_entry(b, &hdev->blocked_keys, list) {
2379 		list_del_rcu(&b->list);
2380 		kfree_rcu(b, rcu);
2381 	}
2382 }
2383 
hci_is_blocked_key(struct hci_dev * hdev,u8 type,u8 val[16])2384 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
2385 {
2386 	bool blocked = false;
2387 	struct blocked_key *b;
2388 
2389 	rcu_read_lock();
2390 	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
2391 		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
2392 			blocked = true;
2393 			break;
2394 		}
2395 	}
2396 
2397 	rcu_read_unlock();
2398 	return blocked;
2399 }
2400 
hci_find_link_key(struct hci_dev * hdev,bdaddr_t * bdaddr)2401 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2402 {
2403 	struct link_key *k;
2404 
2405 	rcu_read_lock();
2406 	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2407 		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2408 			rcu_read_unlock();
2409 
2410 			if (hci_is_blocked_key(hdev,
2411 					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
2412 					       k->val)) {
2413 				bt_dev_warn_ratelimited(hdev,
2414 							"Link key blocked for %pMR",
2415 							&k->bdaddr);
2416 				return NULL;
2417 			}
2418 
2419 			return k;
2420 		}
2421 	}
2422 	rcu_read_unlock();
2423 
2424 	return NULL;
2425 }
2426 
hci_persistent_key(struct hci_dev * hdev,struct hci_conn * conn,u8 key_type,u8 old_key_type)2427 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2428 			       u8 key_type, u8 old_key_type)
2429 {
2430 	/* Legacy key */
2431 	if (key_type < 0x03)
2432 		return true;
2433 
2434 	/* Debug keys are insecure so don't store them persistently */
2435 	if (key_type == HCI_LK_DEBUG_COMBINATION)
2436 		return false;
2437 
2438 	/* Changed combination key and there's no previous one */
2439 	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2440 		return false;
2441 
2442 	/* Security mode 3 case */
2443 	if (!conn)
2444 		return true;
2445 
2446 	/* BR/EDR key derived using SC from an LE link */
2447 	if (conn->type == LE_LINK)
2448 		return true;
2449 
2450 	/* Neither local nor remote side had no-bonding as requirement */
2451 	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2452 		return true;
2453 
2454 	/* Local side had dedicated bonding as requirement */
2455 	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2456 		return true;
2457 
2458 	/* Remote side had dedicated bonding as requirement */
2459 	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2460 		return true;
2461 
2462 	/* If none of the above criteria match, then don't store the key
2463 	 * persistently */
2464 	return false;
2465 }
2466 
ltk_role(u8 type)2467 static u8 ltk_role(u8 type)
2468 {
2469 	if (type == SMP_LTK)
2470 		return HCI_ROLE_MASTER;
2471 
2472 	return HCI_ROLE_SLAVE;
2473 }
2474 
hci_find_ltk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type,u8 role)2475 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2476 			     u8 addr_type, u8 role)
2477 {
2478 	struct smp_ltk *k;
2479 
2480 	rcu_read_lock();
2481 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2482 		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2483 			continue;
2484 
2485 		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2486 			rcu_read_unlock();
2487 
2488 			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
2489 					       k->val)) {
2490 				bt_dev_warn_ratelimited(hdev,
2491 							"LTK blocked for %pMR",
2492 							&k->bdaddr);
2493 				return NULL;
2494 			}
2495 
2496 			return k;
2497 		}
2498 	}
2499 	rcu_read_unlock();
2500 
2501 	return NULL;
2502 }
2503 
hci_find_irk_by_rpa(struct hci_dev * hdev,bdaddr_t * rpa)2504 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2505 {
2506 	struct smp_irk *irk_to_return = NULL;
2507 	struct smp_irk *irk;
2508 
2509 	rcu_read_lock();
2510 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2511 		if (!bacmp(&irk->rpa, rpa)) {
2512 			irk_to_return = irk;
2513 			goto done;
2514 		}
2515 	}
2516 
2517 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2518 		if (smp_irk_matches(hdev, irk->val, rpa)) {
2519 			bacpy(&irk->rpa, rpa);
2520 			irk_to_return = irk;
2521 			goto done;
2522 		}
2523 	}
2524 
2525 done:
2526 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2527 						irk_to_return->val)) {
2528 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2529 					&irk_to_return->bdaddr);
2530 		irk_to_return = NULL;
2531 	}
2532 
2533 	rcu_read_unlock();
2534 
2535 	return irk_to_return;
2536 }
2537 
hci_find_irk_by_addr(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type)2538 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2539 				     u8 addr_type)
2540 {
2541 	struct smp_irk *irk_to_return = NULL;
2542 	struct smp_irk *irk;
2543 
2544 	/* Identity Address must be public or static random */
2545 	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2546 		return NULL;
2547 
2548 	rcu_read_lock();
2549 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2550 		if (addr_type == irk->addr_type &&
2551 		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2552 			irk_to_return = irk;
2553 			goto done;
2554 		}
2555 	}
2556 
2557 done:
2558 
2559 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2560 						irk_to_return->val)) {
2561 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2562 					&irk_to_return->bdaddr);
2563 		irk_to_return = NULL;
2564 	}
2565 
2566 	rcu_read_unlock();
2567 
2568 	return irk_to_return;
2569 }
2570 
hci_add_link_key(struct hci_dev * hdev,struct hci_conn * conn,bdaddr_t * bdaddr,u8 * val,u8 type,u8 pin_len,bool * persistent)2571 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2572 				  bdaddr_t *bdaddr, u8 *val, u8 type,
2573 				  u8 pin_len, bool *persistent)
2574 {
2575 	struct link_key *key, *old_key;
2576 	u8 old_key_type;
2577 
2578 	old_key = hci_find_link_key(hdev, bdaddr);
2579 	if (old_key) {
2580 		old_key_type = old_key->type;
2581 		key = old_key;
2582 	} else {
2583 		old_key_type = conn ? conn->key_type : 0xff;
2584 		key = kzalloc(sizeof(*key), GFP_KERNEL);
2585 		if (!key)
2586 			return NULL;
2587 		list_add_rcu(&key->list, &hdev->link_keys);
2588 	}
2589 
2590 	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2591 
2592 	/* Some buggy controller combinations generate a changed
2593 	 * combination key for legacy pairing even when there's no
2594 	 * previous key */
2595 	if (type == HCI_LK_CHANGED_COMBINATION &&
2596 	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2597 		type = HCI_LK_COMBINATION;
2598 		if (conn)
2599 			conn->key_type = type;
2600 	}
2601 
2602 	bacpy(&key->bdaddr, bdaddr);
2603 	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2604 	key->pin_len = pin_len;
2605 
2606 	if (type == HCI_LK_CHANGED_COMBINATION)
2607 		key->type = old_key_type;
2608 	else
2609 		key->type = type;
2610 
2611 	if (persistent)
2612 		*persistent = hci_persistent_key(hdev, conn, type,
2613 						 old_key_type);
2614 
2615 	return key;
2616 }
2617 
hci_add_ltk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type,u8 type,u8 authenticated,u8 tk[16],u8 enc_size,__le16 ediv,__le64 rand)2618 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2619 			    u8 addr_type, u8 type, u8 authenticated,
2620 			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2621 {
2622 	struct smp_ltk *key, *old_key;
2623 	u8 role = ltk_role(type);
2624 
2625 	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2626 	if (old_key)
2627 		key = old_key;
2628 	else {
2629 		key = kzalloc(sizeof(*key), GFP_KERNEL);
2630 		if (!key)
2631 			return NULL;
2632 		list_add_rcu(&key->list, &hdev->long_term_keys);
2633 	}
2634 
2635 	bacpy(&key->bdaddr, bdaddr);
2636 	key->bdaddr_type = addr_type;
2637 	memcpy(key->val, tk, sizeof(key->val));
2638 	key->authenticated = authenticated;
2639 	key->ediv = ediv;
2640 	key->rand = rand;
2641 	key->enc_size = enc_size;
2642 	key->type = type;
2643 
2644 	return key;
2645 }
2646 
hci_add_irk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type,u8 val[16],bdaddr_t * rpa)2647 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2648 			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2649 {
2650 	struct smp_irk *irk;
2651 
2652 	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2653 	if (!irk) {
2654 		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2655 		if (!irk)
2656 			return NULL;
2657 
2658 		bacpy(&irk->bdaddr, bdaddr);
2659 		irk->addr_type = addr_type;
2660 
2661 		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2662 	}
2663 
2664 	memcpy(irk->val, val, 16);
2665 	bacpy(&irk->rpa, rpa);
2666 
2667 	return irk;
2668 }
2669 
hci_remove_link_key(struct hci_dev * hdev,bdaddr_t * bdaddr)2670 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2671 {
2672 	struct link_key *key;
2673 
2674 	key = hci_find_link_key(hdev, bdaddr);
2675 	if (!key)
2676 		return -ENOENT;
2677 
2678 	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2679 
2680 	list_del_rcu(&key->list);
2681 	kfree_rcu(key, rcu);
2682 
2683 	return 0;
2684 }
2685 
hci_remove_ltk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type)2686 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2687 {
2688 	struct smp_ltk *k, *tmp;
2689 	int removed = 0;
2690 
2691 	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
2692 		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2693 			continue;
2694 
2695 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2696 
2697 		list_del_rcu(&k->list);
2698 		kfree_rcu(k, rcu);
2699 		removed++;
2700 	}
2701 
2702 	return removed ? 0 : -ENOENT;
2703 }
2704 
hci_remove_irk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type)2705 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2706 {
2707 	struct smp_irk *k, *tmp;
2708 
2709 	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
2710 		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2711 			continue;
2712 
2713 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2714 
2715 		list_del_rcu(&k->list);
2716 		kfree_rcu(k, rcu);
2717 	}
2718 }
2719 
hci_bdaddr_is_paired(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 type)2720 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2721 {
2722 	struct smp_ltk *k;
2723 	struct smp_irk *irk;
2724 	u8 addr_type;
2725 
2726 	if (type == BDADDR_BREDR) {
2727 		if (hci_find_link_key(hdev, bdaddr))
2728 			return true;
2729 		return false;
2730 	}
2731 
2732 	/* Convert to HCI addr type which struct smp_ltk uses */
2733 	if (type == BDADDR_LE_PUBLIC)
2734 		addr_type = ADDR_LE_DEV_PUBLIC;
2735 	else
2736 		addr_type = ADDR_LE_DEV_RANDOM;
2737 
2738 	irk = hci_get_irk(hdev, bdaddr, addr_type);
2739 	if (irk) {
2740 		bdaddr = &irk->bdaddr;
2741 		addr_type = irk->addr_type;
2742 	}
2743 
2744 	rcu_read_lock();
2745 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2746 		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2747 			rcu_read_unlock();
2748 			return true;
2749 		}
2750 	}
2751 	rcu_read_unlock();
2752 
2753 	return false;
2754 }
2755 
2756 /* HCI command timer function */
hci_cmd_timeout(struct work_struct * work)2757 static void hci_cmd_timeout(struct work_struct *work)
2758 {
2759 	struct hci_dev *hdev = container_of(work, struct hci_dev,
2760 					    cmd_timer.work);
2761 
2762 	if (hdev->sent_cmd) {
2763 		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2764 		u16 opcode = __le16_to_cpu(sent->opcode);
2765 
2766 		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2767 	} else {
2768 		bt_dev_err(hdev, "command tx timeout");
2769 	}
2770 
2771 	if (hdev->cmd_timeout)
2772 		hdev->cmd_timeout(hdev);
2773 
2774 	atomic_set(&hdev->cmd_cnt, 1);
2775 	queue_work(hdev->workqueue, &hdev->cmd_work);
2776 }
2777 
hci_find_remote_oob_data(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type)2778 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2779 					  bdaddr_t *bdaddr, u8 bdaddr_type)
2780 {
2781 	struct oob_data *data;
2782 
2783 	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2784 		if (bacmp(bdaddr, &data->bdaddr) != 0)
2785 			continue;
2786 		if (data->bdaddr_type != bdaddr_type)
2787 			continue;
2788 		return data;
2789 	}
2790 
2791 	return NULL;
2792 }
2793 
hci_remove_remote_oob_data(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type)2794 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2795 			       u8 bdaddr_type)
2796 {
2797 	struct oob_data *data;
2798 
2799 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2800 	if (!data)
2801 		return -ENOENT;
2802 
2803 	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2804 
2805 	list_del(&data->list);
2806 	kfree(data);
2807 
2808 	return 0;
2809 }
2810 
hci_remote_oob_data_clear(struct hci_dev * hdev)2811 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2812 {
2813 	struct oob_data *data, *n;
2814 
2815 	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2816 		list_del(&data->list);
2817 		kfree(data);
2818 	}
2819 }
2820 
hci_add_remote_oob_data(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type,u8 * hash192,u8 * rand192,u8 * hash256,u8 * rand256)2821 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2822 			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2823 			    u8 *hash256, u8 *rand256)
2824 {
2825 	struct oob_data *data;
2826 
2827 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2828 	if (!data) {
2829 		data = kmalloc(sizeof(*data), GFP_KERNEL);
2830 		if (!data)
2831 			return -ENOMEM;
2832 
2833 		bacpy(&data->bdaddr, bdaddr);
2834 		data->bdaddr_type = bdaddr_type;
2835 		list_add(&data->list, &hdev->remote_oob_data);
2836 	}
2837 
2838 	if (hash192 && rand192) {
2839 		memcpy(data->hash192, hash192, sizeof(data->hash192));
2840 		memcpy(data->rand192, rand192, sizeof(data->rand192));
2841 		if (hash256 && rand256)
2842 			data->present = 0x03;
2843 	} else {
2844 		memset(data->hash192, 0, sizeof(data->hash192));
2845 		memset(data->rand192, 0, sizeof(data->rand192));
2846 		if (hash256 && rand256)
2847 			data->present = 0x02;
2848 		else
2849 			data->present = 0x00;
2850 	}
2851 
2852 	if (hash256 && rand256) {
2853 		memcpy(data->hash256, hash256, sizeof(data->hash256));
2854 		memcpy(data->rand256, rand256, sizeof(data->rand256));
2855 	} else {
2856 		memset(data->hash256, 0, sizeof(data->hash256));
2857 		memset(data->rand256, 0, sizeof(data->rand256));
2858 		if (hash192 && rand192)
2859 			data->present = 0x01;
2860 	}
2861 
2862 	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2863 
2864 	return 0;
2865 }
2866 
2867 /* This function requires the caller holds hdev->lock */
hci_find_adv_instance(struct hci_dev * hdev,u8 instance)2868 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2869 {
2870 	struct adv_info *adv_instance;
2871 
2872 	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2873 		if (adv_instance->instance == instance)
2874 			return adv_instance;
2875 	}
2876 
2877 	return NULL;
2878 }
2879 
2880 /* This function requires the caller holds hdev->lock */
hci_get_next_instance(struct hci_dev * hdev,u8 instance)2881 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2882 {
2883 	struct adv_info *cur_instance;
2884 
2885 	cur_instance = hci_find_adv_instance(hdev, instance);
2886 	if (!cur_instance)
2887 		return NULL;
2888 
2889 	if (cur_instance == list_last_entry(&hdev->adv_instances,
2890 					    struct adv_info, list))
2891 		return list_first_entry(&hdev->adv_instances,
2892 						 struct adv_info, list);
2893 	else
2894 		return list_next_entry(cur_instance, list);
2895 }
2896 
2897 /* This function requires the caller holds hdev->lock */
hci_remove_adv_instance(struct hci_dev * hdev,u8 instance)2898 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2899 {
2900 	struct adv_info *adv_instance;
2901 
2902 	adv_instance = hci_find_adv_instance(hdev, instance);
2903 	if (!adv_instance)
2904 		return -ENOENT;
2905 
2906 	BT_DBG("%s removing %dMR", hdev->name, instance);
2907 
2908 	if (hdev->cur_adv_instance == instance) {
2909 		if (hdev->adv_instance_timeout) {
2910 			cancel_delayed_work(&hdev->adv_instance_expire);
2911 			hdev->adv_instance_timeout = 0;
2912 		}
2913 		hdev->cur_adv_instance = 0x00;
2914 	}
2915 
2916 	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2917 
2918 	list_del(&adv_instance->list);
2919 	kfree(adv_instance);
2920 
2921 	hdev->adv_instance_cnt--;
2922 
2923 	return 0;
2924 }
2925 
hci_adv_instances_set_rpa_expired(struct hci_dev * hdev,bool rpa_expired)2926 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2927 {
2928 	struct adv_info *adv_instance, *n;
2929 
2930 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2931 		adv_instance->rpa_expired = rpa_expired;
2932 }
2933 
2934 /* This function requires the caller holds hdev->lock */
hci_adv_instances_clear(struct hci_dev * hdev)2935 void hci_adv_instances_clear(struct hci_dev *hdev)
2936 {
2937 	struct adv_info *adv_instance, *n;
2938 
2939 	if (hdev->adv_instance_timeout) {
2940 		cancel_delayed_work(&hdev->adv_instance_expire);
2941 		hdev->adv_instance_timeout = 0;
2942 	}
2943 
2944 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2945 		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2946 		list_del(&adv_instance->list);
2947 		kfree(adv_instance);
2948 	}
2949 
2950 	hdev->adv_instance_cnt = 0;
2951 	hdev->cur_adv_instance = 0x00;
2952 }
2953 
adv_instance_rpa_expired(struct work_struct * work)2954 static void adv_instance_rpa_expired(struct work_struct *work)
2955 {
2956 	struct adv_info *adv_instance = container_of(work, struct adv_info,
2957 						     rpa_expired_cb.work);
2958 
2959 	BT_DBG("");
2960 
2961 	adv_instance->rpa_expired = true;
2962 }
2963 
2964 /* This function requires the caller holds hdev->lock */
hci_add_adv_instance(struct hci_dev * hdev,u8 instance,u32 flags,u16 adv_data_len,u8 * adv_data,u16 scan_rsp_len,u8 * scan_rsp_data,u16 timeout,u16 duration)2965 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2966 			 u16 adv_data_len, u8 *adv_data,
2967 			 u16 scan_rsp_len, u8 *scan_rsp_data,
2968 			 u16 timeout, u16 duration)
2969 {
2970 	struct adv_info *adv_instance;
2971 
2972 	adv_instance = hci_find_adv_instance(hdev, instance);
2973 	if (adv_instance) {
2974 		memset(adv_instance->adv_data, 0,
2975 		       sizeof(adv_instance->adv_data));
2976 		memset(adv_instance->scan_rsp_data, 0,
2977 		       sizeof(adv_instance->scan_rsp_data));
2978 	} else {
2979 		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
2980 		    instance < 1 || instance > hdev->le_num_of_adv_sets)
2981 			return -EOVERFLOW;
2982 
2983 		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2984 		if (!adv_instance)
2985 			return -ENOMEM;
2986 
2987 		adv_instance->pending = true;
2988 		adv_instance->instance = instance;
2989 		list_add(&adv_instance->list, &hdev->adv_instances);
2990 		hdev->adv_instance_cnt++;
2991 	}
2992 
2993 	adv_instance->flags = flags;
2994 	adv_instance->adv_data_len = adv_data_len;
2995 	adv_instance->scan_rsp_len = scan_rsp_len;
2996 
2997 	if (adv_data_len)
2998 		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2999 
3000 	if (scan_rsp_len)
3001 		memcpy(adv_instance->scan_rsp_data,
3002 		       scan_rsp_data, scan_rsp_len);
3003 
3004 	adv_instance->timeout = timeout;
3005 	adv_instance->remaining_time = timeout;
3006 
3007 	if (duration == 0)
3008 		adv_instance->duration = hdev->def_multi_adv_rotation_duration;
3009 	else
3010 		adv_instance->duration = duration;
3011 
3012 	adv_instance->tx_power = HCI_TX_POWER_INVALID;
3013 
3014 	INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
3015 			  adv_instance_rpa_expired);
3016 
3017 	BT_DBG("%s for %dMR", hdev->name, instance);
3018 
3019 	return 0;
3020 }
3021 
3022 /* This function requires the caller holds hdev->lock */
hci_adv_monitors_clear(struct hci_dev * hdev)3023 void hci_adv_monitors_clear(struct hci_dev *hdev)
3024 {
3025 	struct adv_monitor *monitor;
3026 	int handle;
3027 
3028 	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
3029 		hci_free_adv_monitor(monitor);
3030 
3031 	idr_destroy(&hdev->adv_monitors_idr);
3032 }
3033 
hci_free_adv_monitor(struct adv_monitor * monitor)3034 void hci_free_adv_monitor(struct adv_monitor *monitor)
3035 {
3036 	struct adv_pattern *pattern;
3037 	struct adv_pattern *tmp;
3038 
3039 	if (!monitor)
3040 		return;
3041 
3042 	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list)
3043 		kfree(pattern);
3044 
3045 	kfree(monitor);
3046 }
3047 
3048 /* This function requires the caller holds hdev->lock */
hci_add_adv_monitor(struct hci_dev * hdev,struct adv_monitor * monitor)3049 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
3050 {
3051 	int min, max, handle;
3052 
3053 	if (!monitor)
3054 		return -EINVAL;
3055 
3056 	min = HCI_MIN_ADV_MONITOR_HANDLE;
3057 	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
3058 	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
3059 			   GFP_KERNEL);
3060 	if (handle < 0)
3061 		return handle;
3062 
3063 	hdev->adv_monitors_cnt++;
3064 	monitor->handle = handle;
3065 
3066 	hci_update_background_scan(hdev);
3067 
3068 	return 0;
3069 }
3070 
free_adv_monitor(int id,void * ptr,void * data)3071 static int free_adv_monitor(int id, void *ptr, void *data)
3072 {
3073 	struct hci_dev *hdev = data;
3074 	struct adv_monitor *monitor = ptr;
3075 
3076 	idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3077 	hci_free_adv_monitor(monitor);
3078 	hdev->adv_monitors_cnt--;
3079 
3080 	return 0;
3081 }
3082 
3083 /* This function requires the caller holds hdev->lock */
hci_remove_adv_monitor(struct hci_dev * hdev,u16 handle)3084 int hci_remove_adv_monitor(struct hci_dev *hdev, u16 handle)
3085 {
3086 	struct adv_monitor *monitor;
3087 
3088 	if (handle) {
3089 		monitor = idr_find(&hdev->adv_monitors_idr, handle);
3090 		if (!monitor)
3091 			return -ENOENT;
3092 
3093 		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3094 		hci_free_adv_monitor(monitor);
3095 		hdev->adv_monitors_cnt--;
3096 	} else {
3097 		/* Remove all monitors if handle is 0. */
3098 		idr_for_each(&hdev->adv_monitors_idr, &free_adv_monitor, hdev);
3099 	}
3100 
3101 	hci_update_background_scan(hdev);
3102 
3103 	return 0;
3104 }
3105 
3106 /* This function requires the caller holds hdev->lock */
hci_is_adv_monitoring(struct hci_dev * hdev)3107 bool hci_is_adv_monitoring(struct hci_dev *hdev)
3108 {
3109 	return !idr_is_empty(&hdev->adv_monitors_idr);
3110 }
3111 
hci_bdaddr_list_lookup(struct list_head * bdaddr_list,bdaddr_t * bdaddr,u8 type)3112 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
3113 					 bdaddr_t *bdaddr, u8 type)
3114 {
3115 	struct bdaddr_list *b;
3116 
3117 	list_for_each_entry(b, bdaddr_list, list) {
3118 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3119 			return b;
3120 	}
3121 
3122 	return NULL;
3123 }
3124 
hci_bdaddr_list_lookup_with_irk(struct list_head * bdaddr_list,bdaddr_t * bdaddr,u8 type)3125 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
3126 				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
3127 				u8 type)
3128 {
3129 	struct bdaddr_list_with_irk *b;
3130 
3131 	list_for_each_entry(b, bdaddr_list, list) {
3132 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3133 			return b;
3134 	}
3135 
3136 	return NULL;
3137 }
3138 
3139 struct bdaddr_list_with_flags *
hci_bdaddr_list_lookup_with_flags(struct list_head * bdaddr_list,bdaddr_t * bdaddr,u8 type)3140 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
3141 				  bdaddr_t *bdaddr, u8 type)
3142 {
3143 	struct bdaddr_list_with_flags *b;
3144 
3145 	list_for_each_entry(b, bdaddr_list, list) {
3146 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3147 			return b;
3148 	}
3149 
3150 	return NULL;
3151 }
3152 
hci_bdaddr_list_clear(struct list_head * bdaddr_list)3153 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
3154 {
3155 	struct bdaddr_list *b, *n;
3156 
3157 	list_for_each_entry_safe(b, n, bdaddr_list, list) {
3158 		list_del(&b->list);
3159 		kfree(b);
3160 	}
3161 }
3162 
hci_bdaddr_list_add(struct list_head * list,bdaddr_t * bdaddr,u8 type)3163 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3164 {
3165 	struct bdaddr_list *entry;
3166 
3167 	if (!bacmp(bdaddr, BDADDR_ANY))
3168 		return -EBADF;
3169 
3170 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3171 		return -EEXIST;
3172 
3173 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3174 	if (!entry)
3175 		return -ENOMEM;
3176 
3177 	bacpy(&entry->bdaddr, bdaddr);
3178 	entry->bdaddr_type = type;
3179 
3180 	list_add(&entry->list, list);
3181 
3182 	return 0;
3183 }
3184 
hci_bdaddr_list_add_with_irk(struct list_head * list,bdaddr_t * bdaddr,u8 type,u8 * peer_irk,u8 * local_irk)3185 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3186 					u8 type, u8 *peer_irk, u8 *local_irk)
3187 {
3188 	struct bdaddr_list_with_irk *entry;
3189 
3190 	if (!bacmp(bdaddr, BDADDR_ANY))
3191 		return -EBADF;
3192 
3193 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3194 		return -EEXIST;
3195 
3196 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3197 	if (!entry)
3198 		return -ENOMEM;
3199 
3200 	bacpy(&entry->bdaddr, bdaddr);
3201 	entry->bdaddr_type = type;
3202 
3203 	if (peer_irk)
3204 		memcpy(entry->peer_irk, peer_irk, 16);
3205 
3206 	if (local_irk)
3207 		memcpy(entry->local_irk, local_irk, 16);
3208 
3209 	list_add(&entry->list, list);
3210 
3211 	return 0;
3212 }
3213 
hci_bdaddr_list_add_with_flags(struct list_head * list,bdaddr_t * bdaddr,u8 type,u32 flags)3214 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3215 				   u8 type, u32 flags)
3216 {
3217 	struct bdaddr_list_with_flags *entry;
3218 
3219 	if (!bacmp(bdaddr, BDADDR_ANY))
3220 		return -EBADF;
3221 
3222 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3223 		return -EEXIST;
3224 
3225 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3226 	if (!entry)
3227 		return -ENOMEM;
3228 
3229 	bacpy(&entry->bdaddr, bdaddr);
3230 	entry->bdaddr_type = type;
3231 	entry->current_flags = flags;
3232 
3233 	list_add(&entry->list, list);
3234 
3235 	return 0;
3236 }
3237 
hci_bdaddr_list_del(struct list_head * list,bdaddr_t * bdaddr,u8 type)3238 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3239 {
3240 	struct bdaddr_list *entry;
3241 
3242 	if (!bacmp(bdaddr, BDADDR_ANY)) {
3243 		hci_bdaddr_list_clear(list);
3244 		return 0;
3245 	}
3246 
3247 	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
3248 	if (!entry)
3249 		return -ENOENT;
3250 
3251 	list_del(&entry->list);
3252 	kfree(entry);
3253 
3254 	return 0;
3255 }
3256 
hci_bdaddr_list_del_with_irk(struct list_head * list,bdaddr_t * bdaddr,u8 type)3257 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3258 							u8 type)
3259 {
3260 	struct bdaddr_list_with_irk *entry;
3261 
3262 	if (!bacmp(bdaddr, BDADDR_ANY)) {
3263 		hci_bdaddr_list_clear(list);
3264 		return 0;
3265 	}
3266 
3267 	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
3268 	if (!entry)
3269 		return -ENOENT;
3270 
3271 	list_del(&entry->list);
3272 	kfree(entry);
3273 
3274 	return 0;
3275 }
3276 
hci_bdaddr_list_del_with_flags(struct list_head * list,bdaddr_t * bdaddr,u8 type)3277 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3278 				   u8 type)
3279 {
3280 	struct bdaddr_list_with_flags *entry;
3281 
3282 	if (!bacmp(bdaddr, BDADDR_ANY)) {
3283 		hci_bdaddr_list_clear(list);
3284 		return 0;
3285 	}
3286 
3287 	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
3288 	if (!entry)
3289 		return -ENOENT;
3290 
3291 	list_del(&entry->list);
3292 	kfree(entry);
3293 
3294 	return 0;
3295 }
3296 
3297 /* This function requires the caller holds hdev->lock */
hci_conn_params_lookup(struct hci_dev * hdev,bdaddr_t * addr,u8 addr_type)3298 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3299 					       bdaddr_t *addr, u8 addr_type)
3300 {
3301 	struct hci_conn_params *params;
3302 
3303 	list_for_each_entry(params, &hdev->le_conn_params, list) {
3304 		if (bacmp(&params->addr, addr) == 0 &&
3305 		    params->addr_type == addr_type) {
3306 			return params;
3307 		}
3308 	}
3309 
3310 	return NULL;
3311 }
3312 
3313 /* This function requires the caller holds hdev->lock */
hci_pend_le_action_lookup(struct list_head * list,bdaddr_t * addr,u8 addr_type)3314 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3315 						  bdaddr_t *addr, u8 addr_type)
3316 {
3317 	struct hci_conn_params *param;
3318 
3319 	switch (addr_type) {
3320 	case ADDR_LE_DEV_PUBLIC_RESOLVED:
3321 		addr_type = ADDR_LE_DEV_PUBLIC;
3322 		break;
3323 	case ADDR_LE_DEV_RANDOM_RESOLVED:
3324 		addr_type = ADDR_LE_DEV_RANDOM;
3325 		break;
3326 	}
3327 
3328 	list_for_each_entry(param, list, action) {
3329 		if (bacmp(&param->addr, addr) == 0 &&
3330 		    param->addr_type == addr_type)
3331 			return param;
3332 	}
3333 
3334 	return NULL;
3335 }
3336 
3337 /* This function requires the caller holds hdev->lock */
hci_conn_params_add(struct hci_dev * hdev,bdaddr_t * addr,u8 addr_type)3338 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3339 					    bdaddr_t *addr, u8 addr_type)
3340 {
3341 	struct hci_conn_params *params;
3342 
3343 	params = hci_conn_params_lookup(hdev, addr, addr_type);
3344 	if (params)
3345 		return params;
3346 
3347 	params = kzalloc(sizeof(*params), GFP_KERNEL);
3348 	if (!params) {
3349 		bt_dev_err(hdev, "out of memory");
3350 		return NULL;
3351 	}
3352 
3353 	bacpy(&params->addr, addr);
3354 	params->addr_type = addr_type;
3355 
3356 	list_add(&params->list, &hdev->le_conn_params);
3357 	INIT_LIST_HEAD(&params->action);
3358 
3359 	params->conn_min_interval = hdev->le_conn_min_interval;
3360 	params->conn_max_interval = hdev->le_conn_max_interval;
3361 	params->conn_latency = hdev->le_conn_latency;
3362 	params->supervision_timeout = hdev->le_supv_timeout;
3363 	params->auto_connect = HCI_AUTO_CONN_DISABLED;
3364 
3365 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3366 
3367 	return params;
3368 }
3369 
hci_conn_params_free(struct hci_conn_params * params)3370 static void hci_conn_params_free(struct hci_conn_params *params)
3371 {
3372 	if (params->conn) {
3373 		hci_conn_drop(params->conn);
3374 		hci_conn_put(params->conn);
3375 	}
3376 
3377 	list_del(&params->action);
3378 	list_del(&params->list);
3379 	kfree(params);
3380 }
3381 
3382 /* This function requires the caller holds hdev->lock */
hci_conn_params_del(struct hci_dev * hdev,bdaddr_t * addr,u8 addr_type)3383 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3384 {
3385 	struct hci_conn_params *params;
3386 
3387 	params = hci_conn_params_lookup(hdev, addr, addr_type);
3388 	if (!params)
3389 		return;
3390 
3391 	hci_conn_params_free(params);
3392 
3393 	hci_update_background_scan(hdev);
3394 
3395 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3396 }
3397 
3398 /* This function requires the caller holds hdev->lock */
hci_conn_params_clear_disabled(struct hci_dev * hdev)3399 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3400 {
3401 	struct hci_conn_params *params, *tmp;
3402 
3403 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3404 		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3405 			continue;
3406 
3407 		/* If trying to estabilish one time connection to disabled
3408 		 * device, leave the params, but mark them as just once.
3409 		 */
3410 		if (params->explicit_connect) {
3411 			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3412 			continue;
3413 		}
3414 
3415 		list_del(&params->list);
3416 		kfree(params);
3417 	}
3418 
3419 	BT_DBG("All LE disabled connection parameters were removed");
3420 }
3421 
3422 /* This function requires the caller holds hdev->lock */
hci_conn_params_clear_all(struct hci_dev * hdev)3423 static void hci_conn_params_clear_all(struct hci_dev *hdev)
3424 {
3425 	struct hci_conn_params *params, *tmp;
3426 
3427 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3428 		hci_conn_params_free(params);
3429 
3430 	BT_DBG("All LE connection parameters were removed");
3431 }
3432 
3433 /* Copy the Identity Address of the controller.
3434  *
3435  * If the controller has a public BD_ADDR, then by default use that one.
3436  * If this is a LE only controller without a public address, default to
3437  * the static random address.
3438  *
3439  * For debugging purposes it is possible to force controllers with a
3440  * public address to use the static random address instead.
3441  *
3442  * In case BR/EDR has been disabled on a dual-mode controller and
3443  * userspace has configured a static address, then that address
3444  * becomes the identity address instead of the public BR/EDR address.
3445  */
hci_copy_identity_address(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 * bdaddr_type)3446 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3447 			       u8 *bdaddr_type)
3448 {
3449 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3450 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3451 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3452 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
3453 		bacpy(bdaddr, &hdev->static_addr);
3454 		*bdaddr_type = ADDR_LE_DEV_RANDOM;
3455 	} else {
3456 		bacpy(bdaddr, &hdev->bdaddr);
3457 		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
3458 	}
3459 }
3460 
hci_suspend_clear_tasks(struct hci_dev * hdev)3461 static void hci_suspend_clear_tasks(struct hci_dev *hdev)
3462 {
3463 	int i;
3464 
3465 	for (i = 0; i < __SUSPEND_NUM_TASKS; i++)
3466 		clear_bit(i, hdev->suspend_tasks);
3467 
3468 	wake_up(&hdev->suspend_wait_q);
3469 }
3470 
hci_suspend_wait_event(struct hci_dev * hdev)3471 static int hci_suspend_wait_event(struct hci_dev *hdev)
3472 {
3473 #define WAKE_COND                                                              \
3474 	(find_first_bit(hdev->suspend_tasks, __SUSPEND_NUM_TASKS) ==           \
3475 	 __SUSPEND_NUM_TASKS)
3476 
3477 	int i;
3478 	int ret = wait_event_timeout(hdev->suspend_wait_q,
3479 				     WAKE_COND, SUSPEND_NOTIFIER_TIMEOUT);
3480 
3481 	if (ret == 0) {
3482 		bt_dev_err(hdev, "Timed out waiting for suspend events");
3483 		for (i = 0; i < __SUSPEND_NUM_TASKS; ++i) {
3484 			if (test_bit(i, hdev->suspend_tasks))
3485 				bt_dev_err(hdev, "Suspend timeout bit: %d", i);
3486 			clear_bit(i, hdev->suspend_tasks);
3487 		}
3488 
3489 		ret = -ETIMEDOUT;
3490 	} else {
3491 		ret = 0;
3492 	}
3493 
3494 	return ret;
3495 }
3496 
hci_prepare_suspend(struct work_struct * work)3497 static void hci_prepare_suspend(struct work_struct *work)
3498 {
3499 	struct hci_dev *hdev =
3500 		container_of(work, struct hci_dev, suspend_prepare);
3501 
3502 	hci_dev_lock(hdev);
3503 	hci_req_prepare_suspend(hdev, hdev->suspend_state_next);
3504 	hci_dev_unlock(hdev);
3505 }
3506 
hci_change_suspend_state(struct hci_dev * hdev,enum suspended_state next)3507 static int hci_change_suspend_state(struct hci_dev *hdev,
3508 				    enum suspended_state next)
3509 {
3510 	hdev->suspend_state_next = next;
3511 	set_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
3512 	queue_work(hdev->req_workqueue, &hdev->suspend_prepare);
3513 	return hci_suspend_wait_event(hdev);
3514 }
3515 
hci_clear_wake_reason(struct hci_dev * hdev)3516 static void hci_clear_wake_reason(struct hci_dev *hdev)
3517 {
3518 	hci_dev_lock(hdev);
3519 
3520 	hdev->wake_reason = 0;
3521 	bacpy(&hdev->wake_addr, BDADDR_ANY);
3522 	hdev->wake_addr_type = 0;
3523 
3524 	hci_dev_unlock(hdev);
3525 }
3526 
hci_suspend_notifier(struct notifier_block * nb,unsigned long action,void * data)3527 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
3528 				void *data)
3529 {
3530 	struct hci_dev *hdev =
3531 		container_of(nb, struct hci_dev, suspend_notifier);
3532 	int ret = 0;
3533 	u8 state = BT_RUNNING;
3534 
3535 	/* If powering down, wait for completion. */
3536 	if (mgmt_powering_down(hdev)) {
3537 		set_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks);
3538 		ret = hci_suspend_wait_event(hdev);
3539 		if (ret)
3540 			goto done;
3541 	}
3542 
3543 	/* Suspend notifier should only act on events when powered. */
3544 	if (!hdev_is_powered(hdev) ||
3545 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
3546 		goto done;
3547 
3548 	if (action == PM_SUSPEND_PREPARE) {
3549 		/* Suspend consists of two actions:
3550 		 *  - First, disconnect everything and make the controller not
3551 		 *    connectable (disabling scanning)
3552 		 *  - Second, program event filter/accept list and enable scan
3553 		 */
3554 		ret = hci_change_suspend_state(hdev, BT_SUSPEND_DISCONNECT);
3555 		if (!ret)
3556 			state = BT_SUSPEND_DISCONNECT;
3557 
3558 		/* Only configure accept list if disconnect succeeded and wake
3559 		 * isn't being prevented.
3560 		 */
3561 		if (!ret && !(hdev->prevent_wake && hdev->prevent_wake(hdev))) {
3562 			ret = hci_change_suspend_state(hdev,
3563 						BT_SUSPEND_CONFIGURE_WAKE);
3564 			if (!ret)
3565 				state = BT_SUSPEND_CONFIGURE_WAKE;
3566 		}
3567 
3568 		hci_clear_wake_reason(hdev);
3569 		mgmt_suspending(hdev, state);
3570 
3571 	} else if (action == PM_POST_SUSPEND) {
3572 		ret = hci_change_suspend_state(hdev, BT_RUNNING);
3573 
3574 		mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
3575 			      hdev->wake_addr_type);
3576 	}
3577 
3578 done:
3579 	/* We always allow suspend even if suspend preparation failed and
3580 	 * attempt to recover in resume.
3581 	 */
3582 	if (ret)
3583 		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
3584 			   action, ret);
3585 
3586 	return NOTIFY_DONE;
3587 }
3588 
3589 /* Alloc HCI device */
hci_alloc_dev(void)3590 struct hci_dev *hci_alloc_dev(void)
3591 {
3592 	struct hci_dev *hdev;
3593 
3594 	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3595 	if (!hdev)
3596 		return NULL;
3597 
3598 	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3599 	hdev->esco_type = (ESCO_HV1);
3600 	hdev->link_mode = (HCI_LM_ACCEPT);
3601 	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
3602 	hdev->io_capability = 0x03;	/* No Input No Output */
3603 	hdev->manufacturer = 0xffff;	/* Default to internal use */
3604 	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3605 	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3606 	hdev->adv_instance_cnt = 0;
3607 	hdev->cur_adv_instance = 0x00;
3608 	hdev->adv_instance_timeout = 0;
3609 
3610 	hdev->advmon_allowlist_duration = 300;
3611 	hdev->advmon_no_filter_duration = 500;
3612 
3613 	hdev->sniff_max_interval = 800;
3614 	hdev->sniff_min_interval = 80;
3615 
3616 	hdev->le_adv_channel_map = 0x07;
3617 	hdev->le_adv_min_interval = 0x0800;
3618 	hdev->le_adv_max_interval = 0x0800;
3619 	hdev->le_scan_interval = 0x0060;
3620 	hdev->le_scan_window = 0x0030;
3621 	hdev->le_scan_int_suspend = 0x0400;
3622 	hdev->le_scan_window_suspend = 0x0012;
3623 	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
3624 	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
3625 	hdev->le_scan_int_connect = 0x0060;
3626 	hdev->le_scan_window_connect = 0x0060;
3627 	hdev->le_conn_min_interval = 0x0018;
3628 	hdev->le_conn_max_interval = 0x0028;
3629 	hdev->le_conn_latency = 0x0000;
3630 	hdev->le_supv_timeout = 0x002a;
3631 	hdev->le_def_tx_len = 0x001b;
3632 	hdev->le_def_tx_time = 0x0148;
3633 	hdev->le_max_tx_len = 0x001b;
3634 	hdev->le_max_tx_time = 0x0148;
3635 	hdev->le_max_rx_len = 0x001b;
3636 	hdev->le_max_rx_time = 0x0148;
3637 	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3638 	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3639 	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3640 	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3641 	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
3642 	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
3643 	hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
3644 
3645 	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3646 	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3647 	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3648 	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3649 	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
3650 	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
3651 
3652 	/* default 1.28 sec page scan */
3653 	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
3654 	hdev->def_page_scan_int = 0x0800;
3655 	hdev->def_page_scan_window = 0x0012;
3656 
3657 	mutex_init(&hdev->lock);
3658 	mutex_init(&hdev->req_lock);
3659 
3660 	INIT_LIST_HEAD(&hdev->mgmt_pending);
3661 	INIT_LIST_HEAD(&hdev->reject_list);
3662 	INIT_LIST_HEAD(&hdev->accept_list);
3663 	INIT_LIST_HEAD(&hdev->uuids);
3664 	INIT_LIST_HEAD(&hdev->link_keys);
3665 	INIT_LIST_HEAD(&hdev->long_term_keys);
3666 	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3667 	INIT_LIST_HEAD(&hdev->remote_oob_data);
3668 	INIT_LIST_HEAD(&hdev->le_accept_list);
3669 	INIT_LIST_HEAD(&hdev->le_resolv_list);
3670 	INIT_LIST_HEAD(&hdev->le_conn_params);
3671 	INIT_LIST_HEAD(&hdev->pend_le_conns);
3672 	INIT_LIST_HEAD(&hdev->pend_le_reports);
3673 	INIT_LIST_HEAD(&hdev->conn_hash.list);
3674 	INIT_LIST_HEAD(&hdev->adv_instances);
3675 	INIT_LIST_HEAD(&hdev->blocked_keys);
3676 
3677 	INIT_WORK(&hdev->rx_work, hci_rx_work);
3678 	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3679 	INIT_WORK(&hdev->tx_work, hci_tx_work);
3680 	INIT_WORK(&hdev->power_on, hci_power_on);
3681 	INIT_WORK(&hdev->error_reset, hci_error_reset);
3682 	INIT_WORK(&hdev->suspend_prepare, hci_prepare_suspend);
3683 
3684 	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3685 
3686 	skb_queue_head_init(&hdev->rx_q);
3687 	skb_queue_head_init(&hdev->cmd_q);
3688 	skb_queue_head_init(&hdev->raw_q);
3689 
3690 	init_waitqueue_head(&hdev->req_wait_q);
3691 	init_waitqueue_head(&hdev->suspend_wait_q);
3692 
3693 	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3694 
3695 	hci_request_setup(hdev);
3696 
3697 	hci_init_sysfs(hdev);
3698 	discovery_init(hdev);
3699 
3700 	return hdev;
3701 }
3702 EXPORT_SYMBOL(hci_alloc_dev);
3703 
3704 /* Free HCI device */
hci_free_dev(struct hci_dev * hdev)3705 void hci_free_dev(struct hci_dev *hdev)
3706 {
3707 	/* will free via device release */
3708 	put_device(&hdev->dev);
3709 }
3710 EXPORT_SYMBOL(hci_free_dev);
3711 
3712 /* Register HCI device */
hci_register_dev(struct hci_dev * hdev)3713 int hci_register_dev(struct hci_dev *hdev)
3714 {
3715 	int id, error;
3716 
3717 	if (!hdev->open || !hdev->close || !hdev->send)
3718 		return -EINVAL;
3719 
3720 	/* Do not allow HCI_AMP devices to register at index 0,
3721 	 * so the index can be used as the AMP controller ID.
3722 	 */
3723 	switch (hdev->dev_type) {
3724 	case HCI_PRIMARY:
3725 		id = ida_simple_get(&hci_index_ida, 0, HCI_MAX_ID, GFP_KERNEL);
3726 		break;
3727 	case HCI_AMP:
3728 		id = ida_simple_get(&hci_index_ida, 1, HCI_MAX_ID, GFP_KERNEL);
3729 		break;
3730 	default:
3731 		return -EINVAL;
3732 	}
3733 
3734 	if (id < 0)
3735 		return id;
3736 
3737 	snprintf(hdev->name, sizeof(hdev->name), "hci%d", id);
3738 	hdev->id = id;
3739 
3740 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3741 
3742 	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3743 	if (!hdev->workqueue) {
3744 		error = -ENOMEM;
3745 		goto err;
3746 	}
3747 
3748 	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3749 						      hdev->name);
3750 	if (!hdev->req_workqueue) {
3751 		destroy_workqueue(hdev->workqueue);
3752 		error = -ENOMEM;
3753 		goto err;
3754 	}
3755 
3756 	if (!IS_ERR_OR_NULL(bt_debugfs))
3757 		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3758 
3759 	dev_set_name(&hdev->dev, "%s", hdev->name);
3760 
3761 	error = device_add(&hdev->dev);
3762 	if (error < 0)
3763 		goto err_wqueue;
3764 
3765 	hci_leds_init(hdev);
3766 
3767 	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3768 				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3769 				    hdev);
3770 	if (hdev->rfkill) {
3771 		if (rfkill_register(hdev->rfkill) < 0) {
3772 			rfkill_destroy(hdev->rfkill);
3773 			hdev->rfkill = NULL;
3774 		}
3775 	}
3776 
3777 	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3778 		hci_dev_set_flag(hdev, HCI_RFKILLED);
3779 
3780 	hci_dev_set_flag(hdev, HCI_SETUP);
3781 	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3782 
3783 	if (hdev->dev_type == HCI_PRIMARY) {
3784 		/* Assume BR/EDR support until proven otherwise (such as
3785 		 * through reading supported features during init.
3786 		 */
3787 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3788 	}
3789 
3790 	write_lock(&hci_dev_list_lock);
3791 	list_add(&hdev->list, &hci_dev_list);
3792 	write_unlock(&hci_dev_list_lock);
3793 
3794 	/* Devices that are marked for raw-only usage are unconfigured
3795 	 * and should not be included in normal operation.
3796 	 */
3797 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3798 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3799 
3800 	hci_sock_dev_event(hdev, HCI_DEV_REG);
3801 	hci_dev_hold(hdev);
3802 
3803 	if (!hdev->suspend_notifier.notifier_call &&
3804 	    !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
3805 		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
3806 		error = register_pm_notifier(&hdev->suspend_notifier);
3807 		if (error)
3808 			goto err_wqueue;
3809 	}
3810 
3811 	queue_work(hdev->req_workqueue, &hdev->power_on);
3812 
3813 	idr_init(&hdev->adv_monitors_idr);
3814 
3815 	return id;
3816 
3817 err_wqueue:
3818 	debugfs_remove_recursive(hdev->debugfs);
3819 	destroy_workqueue(hdev->workqueue);
3820 	destroy_workqueue(hdev->req_workqueue);
3821 err:
3822 	ida_simple_remove(&hci_index_ida, hdev->id);
3823 
3824 	return error;
3825 }
3826 EXPORT_SYMBOL(hci_register_dev);
3827 
3828 /* Unregister HCI device */
hci_unregister_dev(struct hci_dev * hdev)3829 void hci_unregister_dev(struct hci_dev *hdev)
3830 {
3831 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3832 
3833 	hci_dev_set_flag(hdev, HCI_UNREGISTER);
3834 
3835 	write_lock(&hci_dev_list_lock);
3836 	list_del(&hdev->list);
3837 	write_unlock(&hci_dev_list_lock);
3838 
3839 	cancel_work_sync(&hdev->power_on);
3840 
3841 	if (!test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
3842 		hci_suspend_clear_tasks(hdev);
3843 		unregister_pm_notifier(&hdev->suspend_notifier);
3844 		cancel_work_sync(&hdev->suspend_prepare);
3845 	}
3846 
3847 	hci_dev_do_close(hdev);
3848 
3849 	if (!test_bit(HCI_INIT, &hdev->flags) &&
3850 	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
3851 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3852 		hci_dev_lock(hdev);
3853 		mgmt_index_removed(hdev);
3854 		hci_dev_unlock(hdev);
3855 	}
3856 
3857 	/* mgmt_index_removed should take care of emptying the
3858 	 * pending list */
3859 	BUG_ON(!list_empty(&hdev->mgmt_pending));
3860 
3861 	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3862 
3863 	if (hdev->rfkill) {
3864 		rfkill_unregister(hdev->rfkill);
3865 		rfkill_destroy(hdev->rfkill);
3866 	}
3867 
3868 	device_del(&hdev->dev);
3869 	/* Actual cleanup is deferred until hci_cleanup_dev(). */
3870 	hci_dev_put(hdev);
3871 }
3872 EXPORT_SYMBOL(hci_unregister_dev);
3873 
3874 /* Cleanup HCI device */
hci_cleanup_dev(struct hci_dev * hdev)3875 void hci_cleanup_dev(struct hci_dev *hdev)
3876 {
3877 	debugfs_remove_recursive(hdev->debugfs);
3878 	kfree_const(hdev->hw_info);
3879 	kfree_const(hdev->fw_info);
3880 
3881 	destroy_workqueue(hdev->workqueue);
3882 	destroy_workqueue(hdev->req_workqueue);
3883 
3884 	hci_dev_lock(hdev);
3885 	hci_bdaddr_list_clear(&hdev->reject_list);
3886 	hci_bdaddr_list_clear(&hdev->accept_list);
3887 	hci_uuids_clear(hdev);
3888 	hci_link_keys_clear(hdev);
3889 	hci_smp_ltks_clear(hdev);
3890 	hci_smp_irks_clear(hdev);
3891 	hci_remote_oob_data_clear(hdev);
3892 	hci_adv_instances_clear(hdev);
3893 	hci_adv_monitors_clear(hdev);
3894 	hci_bdaddr_list_clear(&hdev->le_accept_list);
3895 	hci_bdaddr_list_clear(&hdev->le_resolv_list);
3896 	hci_conn_params_clear_all(hdev);
3897 	hci_discovery_filter_clear(hdev);
3898 	hci_blocked_keys_clear(hdev);
3899 	hci_dev_unlock(hdev);
3900 
3901 	ida_simple_remove(&hci_index_ida, hdev->id);
3902 }
3903 
3904 /* Suspend HCI device */
hci_suspend_dev(struct hci_dev * hdev)3905 int hci_suspend_dev(struct hci_dev *hdev)
3906 {
3907 	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3908 	return 0;
3909 }
3910 EXPORT_SYMBOL(hci_suspend_dev);
3911 
3912 /* Resume HCI device */
hci_resume_dev(struct hci_dev * hdev)3913 int hci_resume_dev(struct hci_dev *hdev)
3914 {
3915 	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3916 	return 0;
3917 }
3918 EXPORT_SYMBOL(hci_resume_dev);
3919 
3920 /* Reset HCI device */
hci_reset_dev(struct hci_dev * hdev)3921 int hci_reset_dev(struct hci_dev *hdev)
3922 {
3923 	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3924 	struct sk_buff *skb;
3925 
3926 	skb = bt_skb_alloc(3, GFP_ATOMIC);
3927 	if (!skb)
3928 		return -ENOMEM;
3929 
3930 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3931 	skb_put_data(skb, hw_err, 3);
3932 
3933 	/* Send Hardware Error to upper stack */
3934 	return hci_recv_frame(hdev, skb);
3935 }
3936 EXPORT_SYMBOL(hci_reset_dev);
3937 
3938 /* Receive frame from HCI drivers */
hci_recv_frame(struct hci_dev * hdev,struct sk_buff * skb)3939 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3940 {
3941 	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3942 		      && !test_bit(HCI_INIT, &hdev->flags))) {
3943 		kfree_skb(skb);
3944 		return -ENXIO;
3945 	}
3946 
3947 	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3948 	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3949 	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
3950 	    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
3951 		kfree_skb(skb);
3952 		return -EINVAL;
3953 	}
3954 
3955 	/* Incoming skb */
3956 	bt_cb(skb)->incoming = 1;
3957 
3958 	/* Time stamp */
3959 	__net_timestamp(skb);
3960 
3961 	skb_queue_tail(&hdev->rx_q, skb);
3962 	queue_work(hdev->workqueue, &hdev->rx_work);
3963 
3964 	return 0;
3965 }
3966 EXPORT_SYMBOL(hci_recv_frame);
3967 
3968 /* Receive diagnostic message from HCI drivers */
hci_recv_diag(struct hci_dev * hdev,struct sk_buff * skb)3969 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3970 {
3971 	/* Mark as diagnostic packet */
3972 	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3973 
3974 	/* Time stamp */
3975 	__net_timestamp(skb);
3976 
3977 	skb_queue_tail(&hdev->rx_q, skb);
3978 	queue_work(hdev->workqueue, &hdev->rx_work);
3979 
3980 	return 0;
3981 }
3982 EXPORT_SYMBOL(hci_recv_diag);
3983 
hci_set_hw_info(struct hci_dev * hdev,const char * fmt,...)3984 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3985 {
3986 	va_list vargs;
3987 
3988 	va_start(vargs, fmt);
3989 	kfree_const(hdev->hw_info);
3990 	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3991 	va_end(vargs);
3992 }
3993 EXPORT_SYMBOL(hci_set_hw_info);
3994 
hci_set_fw_info(struct hci_dev * hdev,const char * fmt,...)3995 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3996 {
3997 	va_list vargs;
3998 
3999 	va_start(vargs, fmt);
4000 	kfree_const(hdev->fw_info);
4001 	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
4002 	va_end(vargs);
4003 }
4004 EXPORT_SYMBOL(hci_set_fw_info);
4005 
4006 /* ---- Interface to upper protocols ---- */
4007 
hci_register_cb(struct hci_cb * cb)4008 int hci_register_cb(struct hci_cb *cb)
4009 {
4010 	BT_DBG("%p name %s", cb, cb->name);
4011 
4012 	mutex_lock(&hci_cb_list_lock);
4013 	list_add_tail(&cb->list, &hci_cb_list);
4014 	mutex_unlock(&hci_cb_list_lock);
4015 
4016 	return 0;
4017 }
4018 EXPORT_SYMBOL(hci_register_cb);
4019 
hci_unregister_cb(struct hci_cb * cb)4020 int hci_unregister_cb(struct hci_cb *cb)
4021 {
4022 	BT_DBG("%p name %s", cb, cb->name);
4023 
4024 	mutex_lock(&hci_cb_list_lock);
4025 	list_del(&cb->list);
4026 	mutex_unlock(&hci_cb_list_lock);
4027 
4028 	return 0;
4029 }
4030 EXPORT_SYMBOL(hci_unregister_cb);
4031 
hci_send_frame(struct hci_dev * hdev,struct sk_buff * skb)4032 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
4033 {
4034 	int err;
4035 
4036 	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
4037 	       skb->len);
4038 
4039 	/* Time stamp */
4040 	__net_timestamp(skb);
4041 
4042 	/* Send copy to monitor */
4043 	hci_send_to_monitor(hdev, skb);
4044 
4045 	if (atomic_read(&hdev->promisc)) {
4046 		/* Send copy to the sockets */
4047 		hci_send_to_sock(hdev, skb);
4048 	}
4049 
4050 	/* Get rid of skb owner, prior to sending to the driver. */
4051 	skb_orphan(skb);
4052 
4053 	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
4054 		kfree_skb(skb);
4055 		return;
4056 	}
4057 
4058 	err = hdev->send(hdev, skb);
4059 	if (err < 0) {
4060 		bt_dev_err(hdev, "sending frame failed (%d)", err);
4061 		kfree_skb(skb);
4062 	}
4063 }
4064 
4065 /* Send HCI command */
hci_send_cmd(struct hci_dev * hdev,__u16 opcode,__u32 plen,const void * param)4066 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
4067 		 const void *param)
4068 {
4069 	struct sk_buff *skb;
4070 
4071 	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
4072 
4073 	skb = hci_prepare_cmd(hdev, opcode, plen, param);
4074 	if (!skb) {
4075 		bt_dev_err(hdev, "no memory for command");
4076 		return -ENOMEM;
4077 	}
4078 
4079 	/* Stand-alone HCI commands must be flagged as
4080 	 * single-command requests.
4081 	 */
4082 	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
4083 
4084 	skb_queue_tail(&hdev->cmd_q, skb);
4085 	queue_work(hdev->workqueue, &hdev->cmd_work);
4086 
4087 	return 0;
4088 }
4089 
__hci_cmd_send(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param)4090 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
4091 		   const void *param)
4092 {
4093 	struct sk_buff *skb;
4094 
4095 	if (hci_opcode_ogf(opcode) != 0x3f) {
4096 		/* A controller receiving a command shall respond with either
4097 		 * a Command Status Event or a Command Complete Event.
4098 		 * Therefore, all standard HCI commands must be sent via the
4099 		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
4100 		 * Some vendors do not comply with this rule for vendor-specific
4101 		 * commands and do not return any event. We want to support
4102 		 * unresponded commands for such cases only.
4103 		 */
4104 		bt_dev_err(hdev, "unresponded command not supported");
4105 		return -EINVAL;
4106 	}
4107 
4108 	skb = hci_prepare_cmd(hdev, opcode, plen, param);
4109 	if (!skb) {
4110 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
4111 			   opcode);
4112 		return -ENOMEM;
4113 	}
4114 
4115 	hci_send_frame(hdev, skb);
4116 
4117 	return 0;
4118 }
4119 EXPORT_SYMBOL(__hci_cmd_send);
4120 
4121 /* Get data from the previously sent command */
hci_sent_cmd_data(struct hci_dev * hdev,__u16 opcode)4122 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
4123 {
4124 	struct hci_command_hdr *hdr;
4125 
4126 	if (!hdev->sent_cmd)
4127 		return NULL;
4128 
4129 	hdr = (void *) hdev->sent_cmd->data;
4130 
4131 	if (hdr->opcode != cpu_to_le16(opcode))
4132 		return NULL;
4133 
4134 	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
4135 
4136 	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
4137 }
4138 
4139 /* Send HCI command and wait for command commplete event */
hci_cmd_sync(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u32 timeout)4140 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
4141 			     const void *param, u32 timeout)
4142 {
4143 	struct sk_buff *skb;
4144 
4145 	if (!test_bit(HCI_UP, &hdev->flags))
4146 		return ERR_PTR(-ENETDOWN);
4147 
4148 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
4149 
4150 	hci_req_sync_lock(hdev);
4151 	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
4152 	hci_req_sync_unlock(hdev);
4153 
4154 	return skb;
4155 }
4156 EXPORT_SYMBOL(hci_cmd_sync);
4157 
4158 /* Send ACL data */
hci_add_acl_hdr(struct sk_buff * skb,__u16 handle,__u16 flags)4159 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
4160 {
4161 	struct hci_acl_hdr *hdr;
4162 	int len = skb->len;
4163 
4164 	skb_push(skb, HCI_ACL_HDR_SIZE);
4165 	skb_reset_transport_header(skb);
4166 	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
4167 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
4168 	hdr->dlen   = cpu_to_le16(len);
4169 }
4170 
hci_queue_acl(struct hci_chan * chan,struct sk_buff_head * queue,struct sk_buff * skb,__u16 flags)4171 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
4172 			  struct sk_buff *skb, __u16 flags)
4173 {
4174 	struct hci_conn *conn = chan->conn;
4175 	struct hci_dev *hdev = conn->hdev;
4176 	struct sk_buff *list;
4177 
4178 	skb->len = skb_headlen(skb);
4179 	skb->data_len = 0;
4180 
4181 	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4182 
4183 	switch (hdev->dev_type) {
4184 	case HCI_PRIMARY:
4185 		hci_add_acl_hdr(skb, conn->handle, flags);
4186 		break;
4187 	case HCI_AMP:
4188 		hci_add_acl_hdr(skb, chan->handle, flags);
4189 		break;
4190 	default:
4191 		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
4192 		return;
4193 	}
4194 
4195 	list = skb_shinfo(skb)->frag_list;
4196 	if (!list) {
4197 		/* Non fragmented */
4198 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
4199 
4200 		skb_queue_tail(queue, skb);
4201 	} else {
4202 		/* Fragmented */
4203 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4204 
4205 		skb_shinfo(skb)->frag_list = NULL;
4206 
4207 		/* Queue all fragments atomically. We need to use spin_lock_bh
4208 		 * here because of 6LoWPAN links, as there this function is
4209 		 * called from softirq and using normal spin lock could cause
4210 		 * deadlocks.
4211 		 */
4212 		spin_lock_bh(&queue->lock);
4213 
4214 		__skb_queue_tail(queue, skb);
4215 
4216 		flags &= ~ACL_START;
4217 		flags |= ACL_CONT;
4218 		do {
4219 			skb = list; list = list->next;
4220 
4221 			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4222 			hci_add_acl_hdr(skb, conn->handle, flags);
4223 
4224 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4225 
4226 			__skb_queue_tail(queue, skb);
4227 		} while (list);
4228 
4229 		spin_unlock_bh(&queue->lock);
4230 	}
4231 }
4232 
hci_send_acl(struct hci_chan * chan,struct sk_buff * skb,__u16 flags)4233 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
4234 {
4235 	struct hci_dev *hdev = chan->conn->hdev;
4236 
4237 	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
4238 
4239 	hci_queue_acl(chan, &chan->data_q, skb, flags);
4240 
4241 	queue_work(hdev->workqueue, &hdev->tx_work);
4242 }
4243 
4244 /* Send SCO data */
hci_send_sco(struct hci_conn * conn,struct sk_buff * skb)4245 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
4246 {
4247 	struct hci_dev *hdev = conn->hdev;
4248 	struct hci_sco_hdr hdr;
4249 
4250 	BT_DBG("%s len %d", hdev->name, skb->len);
4251 
4252 	hdr.handle = cpu_to_le16(conn->handle);
4253 	hdr.dlen   = skb->len;
4254 
4255 	skb_push(skb, HCI_SCO_HDR_SIZE);
4256 	skb_reset_transport_header(skb);
4257 	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
4258 
4259 	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
4260 
4261 	skb_queue_tail(&conn->data_q, skb);
4262 	queue_work(hdev->workqueue, &hdev->tx_work);
4263 }
4264 
4265 /* ---- HCI TX task (outgoing data) ---- */
4266 
4267 /* HCI Connection scheduler */
hci_low_sent(struct hci_dev * hdev,__u8 type,int * quote)4268 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
4269 				     int *quote)
4270 {
4271 	struct hci_conn_hash *h = &hdev->conn_hash;
4272 	struct hci_conn *conn = NULL, *c;
4273 	unsigned int num = 0, min = ~0;
4274 
4275 	/* We don't have to lock device here. Connections are always
4276 	 * added and removed with TX task disabled. */
4277 
4278 	rcu_read_lock();
4279 
4280 	list_for_each_entry_rcu(c, &h->list, list) {
4281 		if (c->type != type || skb_queue_empty(&c->data_q))
4282 			continue;
4283 
4284 		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
4285 			continue;
4286 
4287 		num++;
4288 
4289 		if (c->sent < min) {
4290 			min  = c->sent;
4291 			conn = c;
4292 		}
4293 
4294 		if (hci_conn_num(hdev, type) == num)
4295 			break;
4296 	}
4297 
4298 	rcu_read_unlock();
4299 
4300 	if (conn) {
4301 		int cnt, q;
4302 
4303 		switch (conn->type) {
4304 		case ACL_LINK:
4305 			cnt = hdev->acl_cnt;
4306 			break;
4307 		case SCO_LINK:
4308 		case ESCO_LINK:
4309 			cnt = hdev->sco_cnt;
4310 			break;
4311 		case LE_LINK:
4312 			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4313 			break;
4314 		default:
4315 			cnt = 0;
4316 			bt_dev_err(hdev, "unknown link type %d", conn->type);
4317 		}
4318 
4319 		q = cnt / num;
4320 		*quote = q ? q : 1;
4321 	} else
4322 		*quote = 0;
4323 
4324 	BT_DBG("conn %p quote %d", conn, *quote);
4325 	return conn;
4326 }
4327 
hci_link_tx_to(struct hci_dev * hdev,__u8 type)4328 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
4329 {
4330 	struct hci_conn_hash *h = &hdev->conn_hash;
4331 	struct hci_conn *c;
4332 
4333 	bt_dev_err(hdev, "link tx timeout");
4334 
4335 	rcu_read_lock();
4336 
4337 	/* Kill stalled connections */
4338 	list_for_each_entry_rcu(c, &h->list, list) {
4339 		if (c->type == type && c->sent) {
4340 			bt_dev_err(hdev, "killing stalled connection %pMR",
4341 				   &c->dst);
4342 			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
4343 		}
4344 	}
4345 
4346 	rcu_read_unlock();
4347 }
4348 
hci_chan_sent(struct hci_dev * hdev,__u8 type,int * quote)4349 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
4350 				      int *quote)
4351 {
4352 	struct hci_conn_hash *h = &hdev->conn_hash;
4353 	struct hci_chan *chan = NULL;
4354 	unsigned int num = 0, min = ~0, cur_prio = 0;
4355 	struct hci_conn *conn;
4356 	int cnt, q, conn_num = 0;
4357 
4358 	BT_DBG("%s", hdev->name);
4359 
4360 	rcu_read_lock();
4361 
4362 	list_for_each_entry_rcu(conn, &h->list, list) {
4363 		struct hci_chan *tmp;
4364 
4365 		if (conn->type != type)
4366 			continue;
4367 
4368 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4369 			continue;
4370 
4371 		conn_num++;
4372 
4373 		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
4374 			struct sk_buff *skb;
4375 
4376 			if (skb_queue_empty(&tmp->data_q))
4377 				continue;
4378 
4379 			skb = skb_peek(&tmp->data_q);
4380 			if (skb->priority < cur_prio)
4381 				continue;
4382 
4383 			if (skb->priority > cur_prio) {
4384 				num = 0;
4385 				min = ~0;
4386 				cur_prio = skb->priority;
4387 			}
4388 
4389 			num++;
4390 
4391 			if (conn->sent < min) {
4392 				min  = conn->sent;
4393 				chan = tmp;
4394 			}
4395 		}
4396 
4397 		if (hci_conn_num(hdev, type) == conn_num)
4398 			break;
4399 	}
4400 
4401 	rcu_read_unlock();
4402 
4403 	if (!chan)
4404 		return NULL;
4405 
4406 	switch (chan->conn->type) {
4407 	case ACL_LINK:
4408 		cnt = hdev->acl_cnt;
4409 		break;
4410 	case AMP_LINK:
4411 		cnt = hdev->block_cnt;
4412 		break;
4413 	case SCO_LINK:
4414 	case ESCO_LINK:
4415 		cnt = hdev->sco_cnt;
4416 		break;
4417 	case LE_LINK:
4418 		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4419 		break;
4420 	default:
4421 		cnt = 0;
4422 		bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
4423 	}
4424 
4425 	q = cnt / num;
4426 	*quote = q ? q : 1;
4427 	BT_DBG("chan %p quote %d", chan, *quote);
4428 	return chan;
4429 }
4430 
hci_prio_recalculate(struct hci_dev * hdev,__u8 type)4431 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
4432 {
4433 	struct hci_conn_hash *h = &hdev->conn_hash;
4434 	struct hci_conn *conn;
4435 	int num = 0;
4436 
4437 	BT_DBG("%s", hdev->name);
4438 
4439 	rcu_read_lock();
4440 
4441 	list_for_each_entry_rcu(conn, &h->list, list) {
4442 		struct hci_chan *chan;
4443 
4444 		if (conn->type != type)
4445 			continue;
4446 
4447 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4448 			continue;
4449 
4450 		num++;
4451 
4452 		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
4453 			struct sk_buff *skb;
4454 
4455 			if (chan->sent) {
4456 				chan->sent = 0;
4457 				continue;
4458 			}
4459 
4460 			if (skb_queue_empty(&chan->data_q))
4461 				continue;
4462 
4463 			skb = skb_peek(&chan->data_q);
4464 			if (skb->priority >= HCI_PRIO_MAX - 1)
4465 				continue;
4466 
4467 			skb->priority = HCI_PRIO_MAX - 1;
4468 
4469 			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
4470 			       skb->priority);
4471 		}
4472 
4473 		if (hci_conn_num(hdev, type) == num)
4474 			break;
4475 	}
4476 
4477 	rcu_read_unlock();
4478 
4479 }
4480 
__get_blocks(struct hci_dev * hdev,struct sk_buff * skb)4481 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4482 {
4483 	/* Calculate count of blocks used by this packet */
4484 	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4485 }
4486 
__check_timeout(struct hci_dev * hdev,unsigned int cnt,u8 type)4487 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
4488 {
4489 	unsigned long last_tx;
4490 
4491 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4492 		return;
4493 
4494 	switch (type) {
4495 	case LE_LINK:
4496 		last_tx = hdev->le_last_tx;
4497 		break;
4498 	default:
4499 		last_tx = hdev->acl_last_tx;
4500 		break;
4501 	}
4502 
4503 	/* tx timeout must be longer than maximum link supervision timeout
4504 	 * (40.9 seconds)
4505 	 */
4506 	if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
4507 		hci_link_tx_to(hdev, type);
4508 }
4509 
4510 /* Schedule SCO */
hci_sched_sco(struct hci_dev * hdev)4511 static void hci_sched_sco(struct hci_dev *hdev)
4512 {
4513 	struct hci_conn *conn;
4514 	struct sk_buff *skb;
4515 	int quote;
4516 
4517 	BT_DBG("%s", hdev->name);
4518 
4519 	if (!hci_conn_num(hdev, SCO_LINK))
4520 		return;
4521 
4522 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
4523 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4524 			BT_DBG("skb %p len %d", skb, skb->len);
4525 			hci_send_frame(hdev, skb);
4526 
4527 			conn->sent++;
4528 			if (conn->sent == ~0)
4529 				conn->sent = 0;
4530 		}
4531 	}
4532 }
4533 
hci_sched_esco(struct hci_dev * hdev)4534 static void hci_sched_esco(struct hci_dev *hdev)
4535 {
4536 	struct hci_conn *conn;
4537 	struct sk_buff *skb;
4538 	int quote;
4539 
4540 	BT_DBG("%s", hdev->name);
4541 
4542 	if (!hci_conn_num(hdev, ESCO_LINK))
4543 		return;
4544 
4545 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4546 						     &quote))) {
4547 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4548 			BT_DBG("skb %p len %d", skb, skb->len);
4549 			hci_send_frame(hdev, skb);
4550 
4551 			conn->sent++;
4552 			if (conn->sent == ~0)
4553 				conn->sent = 0;
4554 		}
4555 	}
4556 }
4557 
hci_sched_acl_pkt(struct hci_dev * hdev)4558 static void hci_sched_acl_pkt(struct hci_dev *hdev)
4559 {
4560 	unsigned int cnt = hdev->acl_cnt;
4561 	struct hci_chan *chan;
4562 	struct sk_buff *skb;
4563 	int quote;
4564 
4565 	__check_timeout(hdev, cnt, ACL_LINK);
4566 
4567 	while (hdev->acl_cnt &&
4568 	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
4569 		u32 priority = (skb_peek(&chan->data_q))->priority;
4570 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4571 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4572 			       skb->len, skb->priority);
4573 
4574 			/* Stop if priority has changed */
4575 			if (skb->priority < priority)
4576 				break;
4577 
4578 			skb = skb_dequeue(&chan->data_q);
4579 
4580 			hci_conn_enter_active_mode(chan->conn,
4581 						   bt_cb(skb)->force_active);
4582 
4583 			hci_send_frame(hdev, skb);
4584 			hdev->acl_last_tx = jiffies;
4585 
4586 			hdev->acl_cnt--;
4587 			chan->sent++;
4588 			chan->conn->sent++;
4589 
4590 			/* Send pending SCO packets right away */
4591 			hci_sched_sco(hdev);
4592 			hci_sched_esco(hdev);
4593 		}
4594 	}
4595 
4596 	if (cnt != hdev->acl_cnt)
4597 		hci_prio_recalculate(hdev, ACL_LINK);
4598 }
4599 
hci_sched_acl_blk(struct hci_dev * hdev)4600 static void hci_sched_acl_blk(struct hci_dev *hdev)
4601 {
4602 	unsigned int cnt = hdev->block_cnt;
4603 	struct hci_chan *chan;
4604 	struct sk_buff *skb;
4605 	int quote;
4606 	u8 type;
4607 
4608 	BT_DBG("%s", hdev->name);
4609 
4610 	if (hdev->dev_type == HCI_AMP)
4611 		type = AMP_LINK;
4612 	else
4613 		type = ACL_LINK;
4614 
4615 	__check_timeout(hdev, cnt, type);
4616 
4617 	while (hdev->block_cnt > 0 &&
4618 	       (chan = hci_chan_sent(hdev, type, &quote))) {
4619 		u32 priority = (skb_peek(&chan->data_q))->priority;
4620 		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4621 			int blocks;
4622 
4623 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4624 			       skb->len, skb->priority);
4625 
4626 			/* Stop if priority has changed */
4627 			if (skb->priority < priority)
4628 				break;
4629 
4630 			skb = skb_dequeue(&chan->data_q);
4631 
4632 			blocks = __get_blocks(hdev, skb);
4633 			if (blocks > hdev->block_cnt)
4634 				return;
4635 
4636 			hci_conn_enter_active_mode(chan->conn,
4637 						   bt_cb(skb)->force_active);
4638 
4639 			hci_send_frame(hdev, skb);
4640 			hdev->acl_last_tx = jiffies;
4641 
4642 			hdev->block_cnt -= blocks;
4643 			quote -= blocks;
4644 
4645 			chan->sent += blocks;
4646 			chan->conn->sent += blocks;
4647 		}
4648 	}
4649 
4650 	if (cnt != hdev->block_cnt)
4651 		hci_prio_recalculate(hdev, type);
4652 }
4653 
hci_sched_acl(struct hci_dev * hdev)4654 static void hci_sched_acl(struct hci_dev *hdev)
4655 {
4656 	BT_DBG("%s", hdev->name);
4657 
4658 	/* No ACL link over BR/EDR controller */
4659 	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4660 		return;
4661 
4662 	/* No AMP link over AMP controller */
4663 	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4664 		return;
4665 
4666 	switch (hdev->flow_ctl_mode) {
4667 	case HCI_FLOW_CTL_MODE_PACKET_BASED:
4668 		hci_sched_acl_pkt(hdev);
4669 		break;
4670 
4671 	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4672 		hci_sched_acl_blk(hdev);
4673 		break;
4674 	}
4675 }
4676 
hci_sched_le(struct hci_dev * hdev)4677 static void hci_sched_le(struct hci_dev *hdev)
4678 {
4679 	struct hci_chan *chan;
4680 	struct sk_buff *skb;
4681 	int quote, cnt, tmp;
4682 
4683 	BT_DBG("%s", hdev->name);
4684 
4685 	if (!hci_conn_num(hdev, LE_LINK))
4686 		return;
4687 
4688 	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4689 
4690 	__check_timeout(hdev, cnt, LE_LINK);
4691 
4692 	tmp = cnt;
4693 	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
4694 		u32 priority = (skb_peek(&chan->data_q))->priority;
4695 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4696 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4697 			       skb->len, skb->priority);
4698 
4699 			/* Stop if priority has changed */
4700 			if (skb->priority < priority)
4701 				break;
4702 
4703 			skb = skb_dequeue(&chan->data_q);
4704 
4705 			hci_send_frame(hdev, skb);
4706 			hdev->le_last_tx = jiffies;
4707 
4708 			cnt--;
4709 			chan->sent++;
4710 			chan->conn->sent++;
4711 
4712 			/* Send pending SCO packets right away */
4713 			hci_sched_sco(hdev);
4714 			hci_sched_esco(hdev);
4715 		}
4716 	}
4717 
4718 	if (hdev->le_pkts)
4719 		hdev->le_cnt = cnt;
4720 	else
4721 		hdev->acl_cnt = cnt;
4722 
4723 	if (cnt != tmp)
4724 		hci_prio_recalculate(hdev, LE_LINK);
4725 }
4726 
hci_tx_work(struct work_struct * work)4727 static void hci_tx_work(struct work_struct *work)
4728 {
4729 	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4730 	struct sk_buff *skb;
4731 
4732 	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4733 	       hdev->sco_cnt, hdev->le_cnt);
4734 
4735 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4736 		/* Schedule queues and send stuff to HCI driver */
4737 		hci_sched_sco(hdev);
4738 		hci_sched_esco(hdev);
4739 		hci_sched_acl(hdev);
4740 		hci_sched_le(hdev);
4741 	}
4742 
4743 	/* Send next queued raw (unknown type) packet */
4744 	while ((skb = skb_dequeue(&hdev->raw_q)))
4745 		hci_send_frame(hdev, skb);
4746 }
4747 
4748 /* ----- HCI RX task (incoming data processing) ----- */
4749 
4750 /* ACL data packet */
hci_acldata_packet(struct hci_dev * hdev,struct sk_buff * skb)4751 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4752 {
4753 	struct hci_acl_hdr *hdr = (void *) skb->data;
4754 	struct hci_conn *conn;
4755 	__u16 handle, flags;
4756 
4757 	skb_pull(skb, HCI_ACL_HDR_SIZE);
4758 
4759 	handle = __le16_to_cpu(hdr->handle);
4760 	flags  = hci_flags(handle);
4761 	handle = hci_handle(handle);
4762 
4763 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4764 	       handle, flags);
4765 
4766 	hdev->stat.acl_rx++;
4767 
4768 	hci_dev_lock(hdev);
4769 	conn = hci_conn_hash_lookup_handle(hdev, handle);
4770 	hci_dev_unlock(hdev);
4771 
4772 	if (conn) {
4773 		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4774 
4775 		/* Send to upper protocol */
4776 		l2cap_recv_acldata(conn, skb, flags);
4777 		return;
4778 	} else {
4779 		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4780 			   handle);
4781 	}
4782 
4783 	kfree_skb(skb);
4784 }
4785 
4786 /* SCO data packet */
hci_scodata_packet(struct hci_dev * hdev,struct sk_buff * skb)4787 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4788 {
4789 	struct hci_sco_hdr *hdr = (void *) skb->data;
4790 	struct hci_conn *conn;
4791 	__u16 handle, flags;
4792 
4793 	skb_pull(skb, HCI_SCO_HDR_SIZE);
4794 
4795 	handle = __le16_to_cpu(hdr->handle);
4796 	flags  = hci_flags(handle);
4797 	handle = hci_handle(handle);
4798 
4799 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4800 	       handle, flags);
4801 
4802 	hdev->stat.sco_rx++;
4803 
4804 	hci_dev_lock(hdev);
4805 	conn = hci_conn_hash_lookup_handle(hdev, handle);
4806 	hci_dev_unlock(hdev);
4807 
4808 	if (conn) {
4809 		/* Send to upper protocol */
4810 		bt_cb(skb)->sco.pkt_status = flags & 0x03;
4811 		sco_recv_scodata(conn, skb);
4812 		return;
4813 	} else {
4814 		bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
4815 			   handle);
4816 	}
4817 
4818 	kfree_skb(skb);
4819 }
4820 
hci_req_is_complete(struct hci_dev * hdev)4821 static bool hci_req_is_complete(struct hci_dev *hdev)
4822 {
4823 	struct sk_buff *skb;
4824 
4825 	skb = skb_peek(&hdev->cmd_q);
4826 	if (!skb)
4827 		return true;
4828 
4829 	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4830 }
4831 
hci_resend_last(struct hci_dev * hdev)4832 static void hci_resend_last(struct hci_dev *hdev)
4833 {
4834 	struct hci_command_hdr *sent;
4835 	struct sk_buff *skb;
4836 	u16 opcode;
4837 
4838 	if (!hdev->sent_cmd)
4839 		return;
4840 
4841 	sent = (void *) hdev->sent_cmd->data;
4842 	opcode = __le16_to_cpu(sent->opcode);
4843 	if (opcode == HCI_OP_RESET)
4844 		return;
4845 
4846 	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4847 	if (!skb)
4848 		return;
4849 
4850 	skb_queue_head(&hdev->cmd_q, skb);
4851 	queue_work(hdev->workqueue, &hdev->cmd_work);
4852 }
4853 
hci_req_cmd_complete(struct hci_dev * hdev,u16 opcode,u8 status,hci_req_complete_t * req_complete,hci_req_complete_skb_t * req_complete_skb)4854 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4855 			  hci_req_complete_t *req_complete,
4856 			  hci_req_complete_skb_t *req_complete_skb)
4857 {
4858 	struct sk_buff *skb;
4859 	unsigned long flags;
4860 
4861 	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4862 
4863 	/* If the completed command doesn't match the last one that was
4864 	 * sent we need to do special handling of it.
4865 	 */
4866 	if (!hci_sent_cmd_data(hdev, opcode)) {
4867 		/* Some CSR based controllers generate a spontaneous
4868 		 * reset complete event during init and any pending
4869 		 * command will never be completed. In such a case we
4870 		 * need to resend whatever was the last sent
4871 		 * command.
4872 		 */
4873 		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4874 			hci_resend_last(hdev);
4875 
4876 		return;
4877 	}
4878 
4879 	/* If we reach this point this event matches the last command sent */
4880 	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4881 
4882 	/* If the command succeeded and there's still more commands in
4883 	 * this request the request is not yet complete.
4884 	 */
4885 	if (!status && !hci_req_is_complete(hdev))
4886 		return;
4887 
4888 	/* If this was the last command in a request the complete
4889 	 * callback would be found in hdev->sent_cmd instead of the
4890 	 * command queue (hdev->cmd_q).
4891 	 */
4892 	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4893 		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4894 		return;
4895 	}
4896 
4897 	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4898 		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4899 		return;
4900 	}
4901 
4902 	/* Remove all pending commands belonging to this request */
4903 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4904 	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4905 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4906 			__skb_queue_head(&hdev->cmd_q, skb);
4907 			break;
4908 		}
4909 
4910 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4911 			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4912 		else
4913 			*req_complete = bt_cb(skb)->hci.req_complete;
4914 		dev_kfree_skb_irq(skb);
4915 	}
4916 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4917 }
4918 
hci_rx_work(struct work_struct * work)4919 static void hci_rx_work(struct work_struct *work)
4920 {
4921 	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4922 	struct sk_buff *skb;
4923 
4924 	BT_DBG("%s", hdev->name);
4925 
4926 	while ((skb = skb_dequeue(&hdev->rx_q))) {
4927 		/* Send copy to monitor */
4928 		hci_send_to_monitor(hdev, skb);
4929 
4930 		if (atomic_read(&hdev->promisc)) {
4931 			/* Send copy to the sockets */
4932 			hci_send_to_sock(hdev, skb);
4933 		}
4934 
4935 		/* If the device has been opened in HCI_USER_CHANNEL,
4936 		 * the userspace has exclusive access to device.
4937 		 * When device is HCI_INIT, we still need to process
4938 		 * the data packets to the driver in order
4939 		 * to complete its setup().
4940 		 */
4941 		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4942 		    !test_bit(HCI_INIT, &hdev->flags)) {
4943 			kfree_skb(skb);
4944 			continue;
4945 		}
4946 
4947 		if (test_bit(HCI_INIT, &hdev->flags)) {
4948 			/* Don't process data packets in this states. */
4949 			switch (hci_skb_pkt_type(skb)) {
4950 			case HCI_ACLDATA_PKT:
4951 			case HCI_SCODATA_PKT:
4952 			case HCI_ISODATA_PKT:
4953 				kfree_skb(skb);
4954 				continue;
4955 			}
4956 		}
4957 
4958 		/* Process frame */
4959 		switch (hci_skb_pkt_type(skb)) {
4960 		case HCI_EVENT_PKT:
4961 			BT_DBG("%s Event packet", hdev->name);
4962 			hci_event_packet(hdev, skb);
4963 			break;
4964 
4965 		case HCI_ACLDATA_PKT:
4966 			BT_DBG("%s ACL data packet", hdev->name);
4967 			hci_acldata_packet(hdev, skb);
4968 			break;
4969 
4970 		case HCI_SCODATA_PKT:
4971 			BT_DBG("%s SCO data packet", hdev->name);
4972 			hci_scodata_packet(hdev, skb);
4973 			break;
4974 
4975 		default:
4976 			kfree_skb(skb);
4977 			break;
4978 		}
4979 	}
4980 }
4981 
hci_cmd_work(struct work_struct * work)4982 static void hci_cmd_work(struct work_struct *work)
4983 {
4984 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4985 	struct sk_buff *skb;
4986 
4987 	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4988 	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4989 
4990 	/* Send queued commands */
4991 	if (atomic_read(&hdev->cmd_cnt)) {
4992 		skb = skb_dequeue(&hdev->cmd_q);
4993 		if (!skb)
4994 			return;
4995 
4996 		kfree_skb(hdev->sent_cmd);
4997 
4998 		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4999 		if (hdev->sent_cmd) {
5000 			if (hci_req_status_pend(hdev))
5001 				hci_dev_set_flag(hdev, HCI_CMD_PENDING);
5002 			atomic_dec(&hdev->cmd_cnt);
5003 			hci_send_frame(hdev, skb);
5004 			if (test_bit(HCI_RESET, &hdev->flags))
5005 				cancel_delayed_work(&hdev->cmd_timer);
5006 			else
5007 				schedule_delayed_work(&hdev->cmd_timer,
5008 						      HCI_CMD_TIMEOUT);
5009 		} else {
5010 			skb_queue_head(&hdev->cmd_q, skb);
5011 			queue_work(hdev->workqueue, &hdev->cmd_work);
5012 		}
5013 	}
5014 }
5015