1 //
2 // Copyright 2019 The Abseil Authors.
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 // https://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15
16 #ifndef ABSL_FLAGS_INTERNAL_FLAG_H_
17 #define ABSL_FLAGS_INTERNAL_FLAG_H_
18
19 #include <stddef.h>
20 #include <stdint.h>
21
22 #include <atomic>
23 #include <cstring>
24 #include <memory>
25 #include <new>
26 #include <string>
27 #include <type_traits>
28 #include <typeinfo>
29
30 #include "absl/base/attributes.h"
31 #include "absl/base/call_once.h"
32 #include "absl/base/casts.h"
33 #include "absl/base/config.h"
34 #include "absl/base/optimization.h"
35 #include "absl/base/thread_annotations.h"
36 #include "absl/flags/commandlineflag.h"
37 #include "absl/flags/config.h"
38 #include "absl/flags/internal/commandlineflag.h"
39 #include "absl/flags/internal/registry.h"
40 #include "absl/flags/internal/sequence_lock.h"
41 #include "absl/flags/marshalling.h"
42 #include "absl/meta/type_traits.h"
43 #include "absl/strings/string_view.h"
44 #include "absl/synchronization/mutex.h"
45 #include "absl/utility/utility.h"
46
47 namespace absl {
48 ABSL_NAMESPACE_BEGIN
49
50 ///////////////////////////////////////////////////////////////////////////////
51 // Forward declaration of absl::Flag<T> public API.
52 namespace flags_internal {
53 template <typename T>
54 class Flag;
55 } // namespace flags_internal
56
57 #if defined(_MSC_VER) && !defined(__clang__)
58 template <typename T>
59 class Flag;
60 #else
61 template <typename T>
62 using Flag = flags_internal::Flag<T>;
63 #endif
64
65 template <typename T>
66 ABSL_MUST_USE_RESULT T GetFlag(const absl::Flag<T>& flag);
67
68 template <typename T>
69 void SetFlag(absl::Flag<T>* flag, const T& v);
70
71 template <typename T, typename V>
72 void SetFlag(absl::Flag<T>* flag, const V& v);
73
74 template <typename U>
75 const CommandLineFlag& GetFlagReflectionHandle(const absl::Flag<U>& f);
76
77 ///////////////////////////////////////////////////////////////////////////////
78 // Flag value type operations, eg., parsing, copying, etc. are provided
79 // by function specific to that type with a signature matching FlagOpFn.
80
81 namespace flags_internal {
82
83 enum class FlagOp {
84 kAlloc,
85 kDelete,
86 kCopy,
87 kCopyConstruct,
88 kSizeof,
89 kFastTypeId,
90 kRuntimeTypeId,
91 kParse,
92 kUnparse,
93 kValueOffset,
94 };
95 using FlagOpFn = void* (*)(FlagOp, const void*, void*, void*);
96
97 // Forward declaration for Flag value specific operations.
98 template <typename T>
99 void* FlagOps(FlagOp op, const void* v1, void* v2, void* v3);
100
101 // Allocate aligned memory for a flag value.
Alloc(FlagOpFn op)102 inline void* Alloc(FlagOpFn op) {
103 return op(FlagOp::kAlloc, nullptr, nullptr, nullptr);
104 }
105 // Deletes memory interpreting obj as flag value type pointer.
Delete(FlagOpFn op,void * obj)106 inline void Delete(FlagOpFn op, void* obj) {
107 op(FlagOp::kDelete, nullptr, obj, nullptr);
108 }
109 // Copies src to dst interpreting as flag value type pointers.
Copy(FlagOpFn op,const void * src,void * dst)110 inline void Copy(FlagOpFn op, const void* src, void* dst) {
111 op(FlagOp::kCopy, src, dst, nullptr);
112 }
113 // Construct a copy of flag value in a location pointed by dst
114 // based on src - pointer to the flag's value.
CopyConstruct(FlagOpFn op,const void * src,void * dst)115 inline void CopyConstruct(FlagOpFn op, const void* src, void* dst) {
116 op(FlagOp::kCopyConstruct, src, dst, nullptr);
117 }
118 // Makes a copy of flag value pointed by obj.
Clone(FlagOpFn op,const void * obj)119 inline void* Clone(FlagOpFn op, const void* obj) {
120 void* res = flags_internal::Alloc(op);
121 flags_internal::CopyConstruct(op, obj, res);
122 return res;
123 }
124 // Returns true if parsing of input text is successfull.
Parse(FlagOpFn op,absl::string_view text,void * dst,std::string * error)125 inline bool Parse(FlagOpFn op, absl::string_view text, void* dst,
126 std::string* error) {
127 return op(FlagOp::kParse, &text, dst, error) != nullptr;
128 }
129 // Returns string representing supplied value.
Unparse(FlagOpFn op,const void * val)130 inline std::string Unparse(FlagOpFn op, const void* val) {
131 std::string result;
132 op(FlagOp::kUnparse, val, &result, nullptr);
133 return result;
134 }
135 // Returns size of flag value type.
Sizeof(FlagOpFn op)136 inline size_t Sizeof(FlagOpFn op) {
137 // This sequence of casts reverses the sequence from
138 // `flags_internal::FlagOps()`
139 return static_cast<size_t>(reinterpret_cast<intptr_t>(
140 op(FlagOp::kSizeof, nullptr, nullptr, nullptr)));
141 }
142 // Returns fast type id coresponding to the value type.
FastTypeId(FlagOpFn op)143 inline FlagFastTypeId FastTypeId(FlagOpFn op) {
144 return reinterpret_cast<FlagFastTypeId>(
145 op(FlagOp::kFastTypeId, nullptr, nullptr, nullptr));
146 }
147 // Returns fast type id coresponding to the value type.
RuntimeTypeId(FlagOpFn op)148 inline const std::type_info* RuntimeTypeId(FlagOpFn op) {
149 return reinterpret_cast<const std::type_info*>(
150 op(FlagOp::kRuntimeTypeId, nullptr, nullptr, nullptr));
151 }
152 // Returns offset of the field value_ from the field impl_ inside of
153 // absl::Flag<T> data. Given FlagImpl pointer p you can get the
154 // location of the corresponding value as:
155 // reinterpret_cast<char*>(p) + ValueOffset().
ValueOffset(FlagOpFn op)156 inline ptrdiff_t ValueOffset(FlagOpFn op) {
157 // This sequence of casts reverses the sequence from
158 // `flags_internal::FlagOps()`
159 return static_cast<ptrdiff_t>(reinterpret_cast<intptr_t>(
160 op(FlagOp::kValueOffset, nullptr, nullptr, nullptr)));
161 }
162
163 // Returns an address of RTTI's typeid(T).
164 template <typename T>
GenRuntimeTypeId()165 inline const std::type_info* GenRuntimeTypeId() {
166 #if defined(ABSL_FLAGS_INTERNAL_HAS_RTTI)
167 return &typeid(T);
168 #else
169 return nullptr;
170 #endif
171 }
172
173 ///////////////////////////////////////////////////////////////////////////////
174 // Flag help auxiliary structs.
175
176 // This is help argument for absl::Flag encapsulating the string literal pointer
177 // or pointer to function generating it as well as enum descriminating two
178 // cases.
179 using HelpGenFunc = std::string (*)();
180
181 template <size_t N>
182 struct FixedCharArray {
183 char value[N];
184
185 template <size_t... I>
FromLiteralStringFixedCharArray186 static constexpr FixedCharArray<N> FromLiteralString(
187 absl::string_view str, absl::index_sequence<I...>) {
188 return (void)str, FixedCharArray<N>({{str[I]..., '\0'}});
189 }
190 };
191
192 template <typename Gen, size_t N = Gen::Value().size()>
HelpStringAsArray(int)193 constexpr FixedCharArray<N + 1> HelpStringAsArray(int) {
194 return FixedCharArray<N + 1>::FromLiteralString(
195 Gen::Value(), absl::make_index_sequence<N>{});
196 }
197
198 template <typename Gen>
HelpStringAsArray(char)199 constexpr std::false_type HelpStringAsArray(char) {
200 return std::false_type{};
201 }
202
203 union FlagHelpMsg {
FlagHelpMsg(const char * help_msg)204 constexpr explicit FlagHelpMsg(const char* help_msg) : literal(help_msg) {}
FlagHelpMsg(HelpGenFunc help_gen)205 constexpr explicit FlagHelpMsg(HelpGenFunc help_gen) : gen_func(help_gen) {}
206
207 const char* literal;
208 HelpGenFunc gen_func;
209 };
210
211 enum class FlagHelpKind : uint8_t { kLiteral = 0, kGenFunc = 1 };
212
213 struct FlagHelpArg {
214 FlagHelpMsg source;
215 FlagHelpKind kind;
216 };
217
218 extern const char kStrippedFlagHelp[];
219
220 // These two HelpArg overloads allows us to select at compile time one of two
221 // way to pass Help argument to absl::Flag. We'll be passing
222 // AbslFlagHelpGenFor##name as Gen and integer 0 as a single argument to prefer
223 // first overload if possible. If help message is evaluatable on constexpr
224 // context We'll be able to make FixedCharArray out of it and we'll choose first
225 // overload. In this case the help message expression is immediately evaluated
226 // and is used to construct the absl::Flag. No additionl code is generated by
227 // ABSL_FLAG Otherwise SFINAE kicks in and first overload is dropped from the
228 // consideration, in which case the second overload will be used. The second
229 // overload does not attempt to evaluate the help message expression
230 // immediately and instead delays the evaluation by returing the function
231 // pointer (&T::NonConst) genering the help message when necessary. This is
232 // evaluatable in constexpr context, but the cost is an extra function being
233 // generated in the ABSL_FLAG code.
234 template <typename Gen, size_t N>
HelpArg(const FixedCharArray<N> & value)235 constexpr FlagHelpArg HelpArg(const FixedCharArray<N>& value) {
236 return {FlagHelpMsg(value.value), FlagHelpKind::kLiteral};
237 }
238
239 template <typename Gen>
HelpArg(std::false_type)240 constexpr FlagHelpArg HelpArg(std::false_type) {
241 return {FlagHelpMsg(&Gen::NonConst), FlagHelpKind::kGenFunc};
242 }
243
244 ///////////////////////////////////////////////////////////////////////////////
245 // Flag default value auxiliary structs.
246
247 // Signature for the function generating the initial flag value (usually
248 // based on default value supplied in flag's definition)
249 using FlagDfltGenFunc = void (*)(void*);
250
251 union FlagDefaultSrc {
FlagDefaultSrc(FlagDfltGenFunc gen_func_arg)252 constexpr explicit FlagDefaultSrc(FlagDfltGenFunc gen_func_arg)
253 : gen_func(gen_func_arg) {}
254
255 #define ABSL_FLAGS_INTERNAL_DFLT_FOR_TYPE(T, name) \
256 T name##_value; \
257 constexpr explicit FlagDefaultSrc(T value) : name##_value(value) {} // NOLINT
258 ABSL_FLAGS_INTERNAL_BUILTIN_TYPES(ABSL_FLAGS_INTERNAL_DFLT_FOR_TYPE)
259 #undef ABSL_FLAGS_INTERNAL_DFLT_FOR_TYPE
260
261 void* dynamic_value;
262 FlagDfltGenFunc gen_func;
263 };
264
265 enum class FlagDefaultKind : uint8_t {
266 kDynamicValue = 0,
267 kGenFunc = 1,
268 kOneWord = 2 // for default values UP to one word in size
269 };
270
271 struct FlagDefaultArg {
272 FlagDefaultSrc source;
273 FlagDefaultKind kind;
274 };
275
276 // This struct and corresponding overload to InitDefaultValue are used to
277 // facilitate usage of {} as default value in ABSL_FLAG macro.
278 // TODO(rogeeff): Fix handling types with explicit constructors.
279 struct EmptyBraces {};
280
281 template <typename T>
InitDefaultValue(T t)282 constexpr T InitDefaultValue(T t) {
283 return t;
284 }
285
286 template <typename T>
InitDefaultValue(EmptyBraces)287 constexpr T InitDefaultValue(EmptyBraces) {
288 return T{};
289 }
290
291 template <typename ValueT, typename GenT,
292 typename std::enable_if<std::is_integral<ValueT>::value, int>::type =
293 (GenT{}, 0)>
DefaultArg(int)294 constexpr FlagDefaultArg DefaultArg(int) {
295 return {FlagDefaultSrc(GenT{}.value), FlagDefaultKind::kOneWord};
296 }
297
298 template <typename ValueT, typename GenT>
DefaultArg(char)299 constexpr FlagDefaultArg DefaultArg(char) {
300 return {FlagDefaultSrc(&GenT::Gen), FlagDefaultKind::kGenFunc};
301 }
302
303 ///////////////////////////////////////////////////////////////////////////////
304 // Flag current value auxiliary structs.
305
UninitializedFlagValue()306 constexpr int64_t UninitializedFlagValue() { return 0xababababababababll; }
307
308 template <typename T>
309 using FlagUseValueAndInitBitStorage = std::integral_constant<
310 bool, absl::type_traits_internal::is_trivially_copyable<T>::value &&
311 std::is_default_constructible<T>::value && (sizeof(T) < 8)>;
312
313 template <typename T>
314 using FlagUseOneWordStorage = std::integral_constant<
315 bool, absl::type_traits_internal::is_trivially_copyable<T>::value &&
316 (sizeof(T) <= 8)>;
317
318 template <class T>
319 using FlagUseSequenceLockStorage = std::integral_constant<
320 bool, absl::type_traits_internal::is_trivially_copyable<T>::value &&
321 (sizeof(T) > 8)>;
322
323 enum class FlagValueStorageKind : uint8_t {
324 kValueAndInitBit = 0,
325 kOneWordAtomic = 1,
326 kSequenceLocked = 2,
327 kAlignedBuffer = 3,
328 };
329
330 template <typename T>
StorageKind()331 static constexpr FlagValueStorageKind StorageKind() {
332 return FlagUseValueAndInitBitStorage<T>::value
333 ? FlagValueStorageKind::kValueAndInitBit
334 : FlagUseOneWordStorage<T>::value
335 ? FlagValueStorageKind::kOneWordAtomic
336 : FlagUseSequenceLockStorage<T>::value
337 ? FlagValueStorageKind::kSequenceLocked
338 : FlagValueStorageKind::kAlignedBuffer;
339 }
340
341 struct FlagOneWordValue {
FlagOneWordValueFlagOneWordValue342 constexpr explicit FlagOneWordValue(int64_t v) : value(v) {}
343 std::atomic<int64_t> value;
344 };
345
346 template <typename T>
347 struct alignas(8) FlagValueAndInitBit {
348 T value;
349 // Use an int instead of a bool to guarantee that a non-zero value has
350 // a bit set.
351 uint8_t init;
352 };
353
354 template <typename T,
355 FlagValueStorageKind Kind = flags_internal::StorageKind<T>()>
356 struct FlagValue;
357
358 template <typename T>
359 struct FlagValue<T, FlagValueStorageKind::kValueAndInitBit> : FlagOneWordValue {
360 constexpr FlagValue() : FlagOneWordValue(0) {}
361 bool Get(const SequenceLock&, T& dst) const {
362 int64_t storage = value.load(std::memory_order_acquire);
363 if (ABSL_PREDICT_FALSE(storage == 0)) {
364 return false;
365 }
366 dst = absl::bit_cast<FlagValueAndInitBit<T>>(storage).value;
367 return true;
368 }
369 };
370
371 template <typename T>
372 struct FlagValue<T, FlagValueStorageKind::kOneWordAtomic> : FlagOneWordValue {
373 constexpr FlagValue() : FlagOneWordValue(UninitializedFlagValue()) {}
374 bool Get(const SequenceLock&, T& dst) const {
375 int64_t one_word_val = value.load(std::memory_order_acquire);
376 if (ABSL_PREDICT_FALSE(one_word_val == UninitializedFlagValue())) {
377 return false;
378 }
379 std::memcpy(&dst, static_cast<const void*>(&one_word_val), sizeof(T));
380 return true;
381 }
382 };
383
384 template <typename T>
385 struct FlagValue<T, FlagValueStorageKind::kSequenceLocked> {
386 bool Get(const SequenceLock& lock, T& dst) const {
387 return lock.TryRead(&dst, value_words, sizeof(T));
388 }
389
390 static constexpr int kNumWords =
391 flags_internal::AlignUp(sizeof(T), sizeof(uint64_t)) / sizeof(uint64_t);
392
393 alignas(T) alignas(
394 std::atomic<uint64_t>) std::atomic<uint64_t> value_words[kNumWords];
395 };
396
397 template <typename T>
398 struct FlagValue<T, FlagValueStorageKind::kAlignedBuffer> {
399 bool Get(const SequenceLock&, T&) const { return false; }
400
401 alignas(T) char value[sizeof(T)];
402 };
403
404 ///////////////////////////////////////////////////////////////////////////////
405 // Flag callback auxiliary structs.
406
407 // Signature for the mutation callback used by watched Flags
408 // The callback is noexcept.
409 // TODO(rogeeff): add noexcept after C++17 support is added.
410 using FlagCallbackFunc = void (*)();
411
412 struct FlagCallback {
413 FlagCallbackFunc func;
414 absl::Mutex guard; // Guard for concurrent callback invocations.
415 };
416
417 ///////////////////////////////////////////////////////////////////////////////
418 // Flag implementation, which does not depend on flag value type.
419 // The class encapsulates the Flag's data and access to it.
420
421 struct DynValueDeleter {
422 explicit DynValueDeleter(FlagOpFn op_arg = nullptr);
423 void operator()(void* ptr) const;
424
425 FlagOpFn op;
426 };
427
428 class FlagState;
429
430 class FlagImpl final : public CommandLineFlag {
431 public:
432 constexpr FlagImpl(const char* name, const char* filename, FlagOpFn op,
433 FlagHelpArg help, FlagValueStorageKind value_kind,
434 FlagDefaultArg default_arg)
435 : name_(name),
436 filename_(filename),
437 op_(op),
438 help_(help.source),
439 help_source_kind_(static_cast<uint8_t>(help.kind)),
440 value_storage_kind_(static_cast<uint8_t>(value_kind)),
441 def_kind_(static_cast<uint8_t>(default_arg.kind)),
442 modified_(false),
443 on_command_line_(false),
444 callback_(nullptr),
445 default_value_(default_arg.source),
446 data_guard_{} {}
447
448 // Constant access methods
449 int64_t ReadOneWord() const ABSL_LOCKS_EXCLUDED(*DataGuard());
450 bool ReadOneBool() const ABSL_LOCKS_EXCLUDED(*DataGuard());
451 void Read(void* dst) const override ABSL_LOCKS_EXCLUDED(*DataGuard());
452 void Read(bool* value) const ABSL_LOCKS_EXCLUDED(*DataGuard()) {
453 *value = ReadOneBool();
454 }
455 template <typename T,
456 absl::enable_if_t<flags_internal::StorageKind<T>() ==
457 FlagValueStorageKind::kOneWordAtomic,
458 int> = 0>
459 void Read(T* value) const ABSL_LOCKS_EXCLUDED(*DataGuard()) {
460 int64_t v = ReadOneWord();
461 std::memcpy(value, static_cast<const void*>(&v), sizeof(T));
462 }
463 template <typename T,
464 typename std::enable_if<flags_internal::StorageKind<T>() ==
465 FlagValueStorageKind::kValueAndInitBit,
466 int>::type = 0>
467 void Read(T* value) const ABSL_LOCKS_EXCLUDED(*DataGuard()) {
468 *value = absl::bit_cast<FlagValueAndInitBit<T>>(ReadOneWord()).value;
469 }
470
471 // Mutating access methods
472 void Write(const void* src) ABSL_LOCKS_EXCLUDED(*DataGuard());
473
474 // Interfaces to operate on callbacks.
475 void SetCallback(const FlagCallbackFunc mutation_callback)
476 ABSL_LOCKS_EXCLUDED(*DataGuard());
477 void InvokeCallback() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
478
479 // Used in read/write operations to validate source/target has correct type.
480 // For example if flag is declared as absl::Flag<int> FLAGS_foo, a call to
481 // absl::GetFlag(FLAGS_foo) validates that the type of FLAGS_foo is indeed
482 // int. To do that we pass the "assumed" type id (which is deduced from type
483 // int) as an argument `type_id`, which is in turn is validated against the
484 // type id stored in flag object by flag definition statement.
485 void AssertValidType(FlagFastTypeId type_id,
486 const std::type_info* (*gen_rtti)()) const;
487
488 private:
489 template <typename T>
490 friend class Flag;
491 friend class FlagState;
492
493 // Ensures that `data_guard_` is initialized and returns it.
494 absl::Mutex* DataGuard() const
495 ABSL_LOCK_RETURNED(reinterpret_cast<absl::Mutex*>(data_guard_));
496 // Returns heap allocated value of type T initialized with default value.
497 std::unique_ptr<void, DynValueDeleter> MakeInitValue() const
498 ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
499 // Flag initialization called via absl::call_once.
500 void Init();
501
502 // Offset value access methods. One per storage kind. These methods to not
503 // respect const correctness, so be very carefull using them.
504
505 // This is a shared helper routine which encapsulates most of the magic. Since
506 // it is only used inside the three routines below, which are defined in
507 // flag.cc, we can define it in that file as well.
508 template <typename StorageT>
509 StorageT* OffsetValue() const;
510 // This is an accessor for a value stored in an aligned buffer storage
511 // used for non-trivially-copyable data types.
512 // Returns a mutable pointer to the start of a buffer.
513 void* AlignedBufferValue() const;
514
515 // The same as above, but used for sequencelock-protected storage.
516 std::atomic<uint64_t>* AtomicBufferValue() const;
517
518 // This is an accessor for a value stored as one word atomic. Returns a
519 // mutable reference to an atomic value.
520 std::atomic<int64_t>& OneWordValue() const;
521
522 // Attempts to parse supplied `value` string. If parsing is successful,
523 // returns new value. Otherwise returns nullptr.
524 std::unique_ptr<void, DynValueDeleter> TryParse(absl::string_view value,
525 std::string& err) const
526 ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
527 // Stores the flag value based on the pointer to the source.
528 void StoreValue(const void* src) ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
529
530 // Copy the flag data, protected by `seq_lock_` into `dst`.
531 //
532 // REQUIRES: ValueStorageKind() == kSequenceLocked.
533 void ReadSequenceLockedData(void* dst) const
534 ABSL_LOCKS_EXCLUDED(*DataGuard());
535
536 FlagHelpKind HelpSourceKind() const {
537 return static_cast<FlagHelpKind>(help_source_kind_);
538 }
539 FlagValueStorageKind ValueStorageKind() const {
540 return static_cast<FlagValueStorageKind>(value_storage_kind_);
541 }
542 FlagDefaultKind DefaultKind() const
543 ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard()) {
544 return static_cast<FlagDefaultKind>(def_kind_);
545 }
546
547 // CommandLineFlag interface implementation
548 absl::string_view Name() const override;
549 std::string Filename() const override;
550 std::string Help() const override;
551 FlagFastTypeId TypeId() const override;
552 bool IsSpecifiedOnCommandLine() const override
553 ABSL_LOCKS_EXCLUDED(*DataGuard());
554 std::string DefaultValue() const override ABSL_LOCKS_EXCLUDED(*DataGuard());
555 std::string CurrentValue() const override ABSL_LOCKS_EXCLUDED(*DataGuard());
556 bool ValidateInputValue(absl::string_view value) const override
557 ABSL_LOCKS_EXCLUDED(*DataGuard());
558 void CheckDefaultValueParsingRoundtrip() const override
559 ABSL_LOCKS_EXCLUDED(*DataGuard());
560
561 int64_t ModificationCount() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
562
563 // Interfaces to save and restore flags to/from persistent state.
564 // Returns current flag state or nullptr if flag does not support
565 // saving and restoring a state.
566 std::unique_ptr<FlagStateInterface> SaveState() override
567 ABSL_LOCKS_EXCLUDED(*DataGuard());
568
569 // Restores the flag state to the supplied state object. If there is
570 // nothing to restore returns false. Otherwise returns true.
571 bool RestoreState(const FlagState& flag_state)
572 ABSL_LOCKS_EXCLUDED(*DataGuard());
573
574 bool ParseFrom(absl::string_view value, FlagSettingMode set_mode,
575 ValueSource source, std::string& error) override
576 ABSL_LOCKS_EXCLUDED(*DataGuard());
577
578 // Immutable flag's state.
579
580 // Flags name passed to ABSL_FLAG as second arg.
581 const char* const name_;
582 // The file name where ABSL_FLAG resides.
583 const char* const filename_;
584 // Type-specific operations "vtable".
585 const FlagOpFn op_;
586 // Help message literal or function to generate it.
587 const FlagHelpMsg help_;
588 // Indicates if help message was supplied as literal or generator func.
589 const uint8_t help_source_kind_ : 1;
590 // Kind of storage this flag is using for the flag's value.
591 const uint8_t value_storage_kind_ : 2;
592
593 uint8_t : 0; // The bytes containing the const bitfields must not be
594 // shared with bytes containing the mutable bitfields.
595
596 // Mutable flag's state (guarded by `data_guard_`).
597
598 // def_kind_ is not guard by DataGuard() since it is accessed in Init without
599 // locks.
600 uint8_t def_kind_ : 2;
601 // Has this flag's value been modified?
602 bool modified_ : 1 ABSL_GUARDED_BY(*DataGuard());
603 // Has this flag been specified on command line.
604 bool on_command_line_ : 1 ABSL_GUARDED_BY(*DataGuard());
605
606 // Unique tag for absl::call_once call to initialize this flag.
607 absl::once_flag init_control_;
608
609 // Sequence lock / mutation counter.
610 flags_internal::SequenceLock seq_lock_;
611
612 // Optional flag's callback and absl::Mutex to guard the invocations.
613 FlagCallback* callback_ ABSL_GUARDED_BY(*DataGuard());
614 // Either a pointer to the function generating the default value based on the
615 // value specified in ABSL_FLAG or pointer to the dynamically set default
616 // value via SetCommandLineOptionWithMode. def_kind_ is used to distinguish
617 // these two cases.
618 FlagDefaultSrc default_value_;
619
620 // This is reserved space for an absl::Mutex to guard flag data. It will be
621 // initialized in FlagImpl::Init via placement new.
622 // We can't use "absl::Mutex data_guard_", since this class is not literal.
623 // We do not want to use "absl::Mutex* data_guard_", since this would require
624 // heap allocation during initialization, which is both slows program startup
625 // and can fail. Using reserved space + placement new allows us to avoid both
626 // problems.
627 alignas(absl::Mutex) mutable char data_guard_[sizeof(absl::Mutex)];
628 };
629
630 ///////////////////////////////////////////////////////////////////////////////
631 // The Flag object parameterized by the flag's value type. This class implements
632 // flag reflection handle interface.
633
634 template <typename T>
635 class Flag {
636 public:
637 constexpr Flag(const char* name, const char* filename, FlagHelpArg help,
638 const FlagDefaultArg default_arg)
639 : impl_(name, filename, &FlagOps<T>, help,
640 flags_internal::StorageKind<T>(), default_arg),
641 value_() {}
642
643 // CommandLineFlag interface
644 absl::string_view Name() const { return impl_.Name(); }
645 std::string Filename() const { return impl_.Filename(); }
646 std::string Help() const { return impl_.Help(); }
647 // Do not use. To be removed.
648 bool IsSpecifiedOnCommandLine() const {
649 return impl_.IsSpecifiedOnCommandLine();
650 }
651 std::string DefaultValue() const { return impl_.DefaultValue(); }
652 std::string CurrentValue() const { return impl_.CurrentValue(); }
653
654 private:
655 template <typename, bool>
656 friend class FlagRegistrar;
657 friend class FlagImplPeer;
658
659 T Get() const {
660 // See implementation notes in CommandLineFlag::Get().
661 union U {
662 T value;
663 U() {}
664 ~U() { value.~T(); }
665 };
666 U u;
667
668 #if !defined(NDEBUG)
669 impl_.AssertValidType(base_internal::FastTypeId<T>(), &GenRuntimeTypeId<T>);
670 #endif
671
672 if (ABSL_PREDICT_FALSE(!value_.Get(impl_.seq_lock_, u.value))) {
673 impl_.Read(&u.value);
674 }
675 return std::move(u.value);
676 }
677 void Set(const T& v) {
678 impl_.AssertValidType(base_internal::FastTypeId<T>(), &GenRuntimeTypeId<T>);
679 impl_.Write(&v);
680 }
681
682 // Access to the reflection.
683 const CommandLineFlag& Reflect() const { return impl_; }
684
685 // Flag's data
686 // The implementation depends on value_ field to be placed exactly after the
687 // impl_ field, so that impl_ can figure out the offset to the value and
688 // access it.
689 FlagImpl impl_;
690 FlagValue<T> value_;
691 };
692
693 ///////////////////////////////////////////////////////////////////////////////
694 // Trampoline for friend access
695
696 class FlagImplPeer {
697 public:
698 template <typename T, typename FlagType>
699 static T InvokeGet(const FlagType& flag) {
700 return flag.Get();
701 }
702 template <typename FlagType, typename T>
703 static void InvokeSet(FlagType& flag, const T& v) {
704 flag.Set(v);
705 }
706 template <typename FlagType>
707 static const CommandLineFlag& InvokeReflect(const FlagType& f) {
708 return f.Reflect();
709 }
710 };
711
712 ///////////////////////////////////////////////////////////////////////////////
713 // Implementation of Flag value specific operations routine.
714 template <typename T>
715 void* FlagOps(FlagOp op, const void* v1, void* v2, void* v3) {
716 switch (op) {
717 case FlagOp::kAlloc: {
718 std::allocator<T> alloc;
719 return std::allocator_traits<std::allocator<T>>::allocate(alloc, 1);
720 }
721 case FlagOp::kDelete: {
722 T* p = static_cast<T*>(v2);
723 p->~T();
724 std::allocator<T> alloc;
725 std::allocator_traits<std::allocator<T>>::deallocate(alloc, p, 1);
726 return nullptr;
727 }
728 case FlagOp::kCopy:
729 *static_cast<T*>(v2) = *static_cast<const T*>(v1);
730 return nullptr;
731 case FlagOp::kCopyConstruct:
732 new (v2) T(*static_cast<const T*>(v1));
733 return nullptr;
734 case FlagOp::kSizeof:
735 return reinterpret_cast<void*>(static_cast<uintptr_t>(sizeof(T)));
736 case FlagOp::kFastTypeId:
737 return const_cast<void*>(base_internal::FastTypeId<T>());
738 case FlagOp::kRuntimeTypeId:
739 return const_cast<std::type_info*>(GenRuntimeTypeId<T>());
740 case FlagOp::kParse: {
741 // Initialize the temporary instance of type T based on current value in
742 // destination (which is going to be flag's default value).
743 T temp(*static_cast<T*>(v2));
744 if (!absl::ParseFlag<T>(*static_cast<const absl::string_view*>(v1), &temp,
745 static_cast<std::string*>(v3))) {
746 return nullptr;
747 }
748 *static_cast<T*>(v2) = std::move(temp);
749 return v2;
750 }
751 case FlagOp::kUnparse:
752 *static_cast<std::string*>(v2) =
753 absl::UnparseFlag<T>(*static_cast<const T*>(v1));
754 return nullptr;
755 case FlagOp::kValueOffset: {
756 // Round sizeof(FlagImp) to a multiple of alignof(FlagValue<T>) to get the
757 // offset of the data.
758 ptrdiff_t round_to = alignof(FlagValue<T>);
759 ptrdiff_t offset =
760 (sizeof(FlagImpl) + round_to - 1) / round_to * round_to;
761 return reinterpret_cast<void*>(offset);
762 }
763 }
764 return nullptr;
765 }
766
767 ///////////////////////////////////////////////////////////////////////////////
768 // This class facilitates Flag object registration and tail expression-based
769 // flag definition, for example:
770 // ABSL_FLAG(int, foo, 42, "Foo help").OnUpdate(NotifyFooWatcher);
771 struct FlagRegistrarEmpty {};
772 template <typename T, bool do_register>
773 class FlagRegistrar {
774 public:
775 explicit FlagRegistrar(Flag<T>& flag, const char* filename) : flag_(flag) {
776 if (do_register)
777 flags_internal::RegisterCommandLineFlag(flag_.impl_, filename);
778 }
779
780 FlagRegistrar OnUpdate(FlagCallbackFunc cb) && {
781 flag_.impl_.SetCallback(cb);
782 return *this;
783 }
784
785 // Make the registrar "die" gracefully as an empty struct on a line where
786 // registration happens. Registrar objects are intended to live only as
787 // temporary.
788 operator FlagRegistrarEmpty() const { return {}; } // NOLINT
789
790 private:
791 Flag<T>& flag_; // Flag being registered (not owned).
792 };
793
794 } // namespace flags_internal
795 ABSL_NAMESPACE_END
796 } // namespace absl
797
798 #endif // ABSL_FLAGS_INTERNAL_FLAG_H_
799