• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <generated/utsrelease.h>
9 #include "ice.h"
10 #include "ice_base.h"
11 #include "ice_lib.h"
12 #include "ice_fltr.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_dcb_nl.h"
15 #include "ice_devlink.h"
16 
17 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
18 static const char ice_driver_string[] = DRV_SUMMARY;
19 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
20 
21 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
22 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
23 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
24 
25 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
26 MODULE_DESCRIPTION(DRV_SUMMARY);
27 MODULE_LICENSE("GPL v2");
28 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
29 
30 static int debug = -1;
31 module_param(debug, int, 0644);
32 #ifndef CONFIG_DYNAMIC_DEBUG
33 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
34 #else
35 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
36 #endif /* !CONFIG_DYNAMIC_DEBUG */
37 
38 static struct workqueue_struct *ice_wq;
39 static const struct net_device_ops ice_netdev_safe_mode_ops;
40 static const struct net_device_ops ice_netdev_ops;
41 static int ice_vsi_open(struct ice_vsi *vsi);
42 
43 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
44 
45 static void ice_vsi_release_all(struct ice_pf *pf);
46 
47 /**
48  * ice_get_tx_pending - returns number of Tx descriptors not processed
49  * @ring: the ring of descriptors
50  */
ice_get_tx_pending(struct ice_ring * ring)51 static u16 ice_get_tx_pending(struct ice_ring *ring)
52 {
53 	u16 head, tail;
54 
55 	head = ring->next_to_clean;
56 	tail = ring->next_to_use;
57 
58 	if (head != tail)
59 		return (head < tail) ?
60 			tail - head : (tail + ring->count - head);
61 	return 0;
62 }
63 
64 /**
65  * ice_check_for_hang_subtask - check for and recover hung queues
66  * @pf: pointer to PF struct
67  */
ice_check_for_hang_subtask(struct ice_pf * pf)68 static void ice_check_for_hang_subtask(struct ice_pf *pf)
69 {
70 	struct ice_vsi *vsi = NULL;
71 	struct ice_hw *hw;
72 	unsigned int i;
73 	int packets;
74 	u32 v;
75 
76 	ice_for_each_vsi(pf, v)
77 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
78 			vsi = pf->vsi[v];
79 			break;
80 		}
81 
82 	if (!vsi || test_bit(__ICE_DOWN, vsi->state))
83 		return;
84 
85 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
86 		return;
87 
88 	hw = &vsi->back->hw;
89 
90 	for (i = 0; i < vsi->num_txq; i++) {
91 		struct ice_ring *tx_ring = vsi->tx_rings[i];
92 
93 		if (tx_ring && tx_ring->desc) {
94 			/* If packet counter has not changed the queue is
95 			 * likely stalled, so force an interrupt for this
96 			 * queue.
97 			 *
98 			 * prev_pkt would be negative if there was no
99 			 * pending work.
100 			 */
101 			packets = tx_ring->stats.pkts & INT_MAX;
102 			if (tx_ring->tx_stats.prev_pkt == packets) {
103 				/* Trigger sw interrupt to revive the queue */
104 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
105 				continue;
106 			}
107 
108 			/* Memory barrier between read of packet count and call
109 			 * to ice_get_tx_pending()
110 			 */
111 			smp_rmb();
112 			tx_ring->tx_stats.prev_pkt =
113 			    ice_get_tx_pending(tx_ring) ? packets : -1;
114 		}
115 	}
116 }
117 
118 /**
119  * ice_init_mac_fltr - Set initial MAC filters
120  * @pf: board private structure
121  *
122  * Set initial set of MAC filters for PF VSI; configure filters for permanent
123  * address and broadcast address. If an error is encountered, netdevice will be
124  * unregistered.
125  */
ice_init_mac_fltr(struct ice_pf * pf)126 static int ice_init_mac_fltr(struct ice_pf *pf)
127 {
128 	enum ice_status status;
129 	struct ice_vsi *vsi;
130 	u8 *perm_addr;
131 
132 	vsi = ice_get_main_vsi(pf);
133 	if (!vsi)
134 		return -EINVAL;
135 
136 	perm_addr = vsi->port_info->mac.perm_addr;
137 	status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
138 	if (!status)
139 		return 0;
140 
141 	/* We aren't useful with no MAC filters, so unregister if we
142 	 * had an error
143 	 */
144 	if (vsi->netdev->reg_state == NETREG_REGISTERED) {
145 		dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %s. Unregistering device\n",
146 			ice_stat_str(status));
147 		unregister_netdev(vsi->netdev);
148 		free_netdev(vsi->netdev);
149 		vsi->netdev = NULL;
150 	}
151 
152 	return -EIO;
153 }
154 
155 /**
156  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
157  * @netdev: the net device on which the sync is happening
158  * @addr: MAC address to sync
159  *
160  * This is a callback function which is called by the in kernel device sync
161  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
162  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
163  * MAC filters from the hardware.
164  */
ice_add_mac_to_sync_list(struct net_device * netdev,const u8 * addr)165 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
166 {
167 	struct ice_netdev_priv *np = netdev_priv(netdev);
168 	struct ice_vsi *vsi = np->vsi;
169 
170 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
171 				     ICE_FWD_TO_VSI))
172 		return -EINVAL;
173 
174 	return 0;
175 }
176 
177 /**
178  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
179  * @netdev: the net device on which the unsync is happening
180  * @addr: MAC address to unsync
181  *
182  * This is a callback function which is called by the in kernel device unsync
183  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
184  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
185  * delete the MAC filters from the hardware.
186  */
ice_add_mac_to_unsync_list(struct net_device * netdev,const u8 * addr)187 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
188 {
189 	struct ice_netdev_priv *np = netdev_priv(netdev);
190 	struct ice_vsi *vsi = np->vsi;
191 
192 	/* Under some circumstances, we might receive a request to delete our
193 	 * own device address from our uc list. Because we store the device
194 	 * address in the VSI's MAC filter list, we need to ignore such
195 	 * requests and not delete our device address from this list.
196 	 */
197 	if (ether_addr_equal(addr, netdev->dev_addr))
198 		return 0;
199 
200 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
201 				     ICE_FWD_TO_VSI))
202 		return -EINVAL;
203 
204 	return 0;
205 }
206 
207 /**
208  * ice_vsi_fltr_changed - check if filter state changed
209  * @vsi: VSI to be checked
210  *
211  * returns true if filter state has changed, false otherwise.
212  */
ice_vsi_fltr_changed(struct ice_vsi * vsi)213 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
214 {
215 	return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
216 	       test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
217 	       test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
218 }
219 
220 /**
221  * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
222  * @vsi: the VSI being configured
223  * @promisc_m: mask of promiscuous config bits
224  * @set_promisc: enable or disable promisc flag request
225  *
226  */
ice_cfg_promisc(struct ice_vsi * vsi,u8 promisc_m,bool set_promisc)227 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
228 {
229 	struct ice_hw *hw = &vsi->back->hw;
230 	enum ice_status status = 0;
231 
232 	if (vsi->type != ICE_VSI_PF)
233 		return 0;
234 
235 	if (vsi->vlan_ena) {
236 		status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
237 						  set_promisc);
238 	} else {
239 		if (set_promisc)
240 			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
241 						     0);
242 		else
243 			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
244 						       0);
245 	}
246 
247 	if (status)
248 		return -EIO;
249 
250 	return 0;
251 }
252 
253 /**
254  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
255  * @vsi: ptr to the VSI
256  *
257  * Push any outstanding VSI filter changes through the AdminQ.
258  */
ice_vsi_sync_fltr(struct ice_vsi * vsi)259 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
260 {
261 	struct device *dev = ice_pf_to_dev(vsi->back);
262 	struct net_device *netdev = vsi->netdev;
263 	bool promisc_forced_on = false;
264 	struct ice_pf *pf = vsi->back;
265 	struct ice_hw *hw = &pf->hw;
266 	enum ice_status status = 0;
267 	u32 changed_flags = 0;
268 	u8 promisc_m;
269 	int err = 0;
270 
271 	if (!vsi->netdev)
272 		return -EINVAL;
273 
274 	while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
275 		usleep_range(1000, 2000);
276 
277 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
278 	vsi->current_netdev_flags = vsi->netdev->flags;
279 
280 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
281 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
282 
283 	if (ice_vsi_fltr_changed(vsi)) {
284 		clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
285 		clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
286 		clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
287 
288 		/* grab the netdev's addr_list_lock */
289 		netif_addr_lock_bh(netdev);
290 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
291 			      ice_add_mac_to_unsync_list);
292 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
293 			      ice_add_mac_to_unsync_list);
294 		/* our temp lists are populated. release lock */
295 		netif_addr_unlock_bh(netdev);
296 	}
297 
298 	/* Remove MAC addresses in the unsync list */
299 	status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
300 	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
301 	if (status) {
302 		netdev_err(netdev, "Failed to delete MAC filters\n");
303 		/* if we failed because of alloc failures, just bail */
304 		if (status == ICE_ERR_NO_MEMORY) {
305 			err = -ENOMEM;
306 			goto out;
307 		}
308 	}
309 
310 	/* Add MAC addresses in the sync list */
311 	status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
312 	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
313 	/* If filter is added successfully or already exists, do not go into
314 	 * 'if' condition and report it as error. Instead continue processing
315 	 * rest of the function.
316 	 */
317 	if (status && status != ICE_ERR_ALREADY_EXISTS) {
318 		netdev_err(netdev, "Failed to add MAC filters\n");
319 		/* If there is no more space for new umac filters, VSI
320 		 * should go into promiscuous mode. There should be some
321 		 * space reserved for promiscuous filters.
322 		 */
323 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
324 		    !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
325 				      vsi->state)) {
326 			promisc_forced_on = true;
327 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
328 				    vsi->vsi_num);
329 		} else {
330 			err = -EIO;
331 			goto out;
332 		}
333 	}
334 	/* check for changes in promiscuous modes */
335 	if (changed_flags & IFF_ALLMULTI) {
336 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
337 			if (vsi->vlan_ena)
338 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
339 			else
340 				promisc_m = ICE_MCAST_PROMISC_BITS;
341 
342 			err = ice_cfg_promisc(vsi, promisc_m, true);
343 			if (err) {
344 				netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
345 					   vsi->vsi_num);
346 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
347 				goto out_promisc;
348 			}
349 		} else {
350 			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
351 			if (vsi->vlan_ena)
352 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
353 			else
354 				promisc_m = ICE_MCAST_PROMISC_BITS;
355 
356 			err = ice_cfg_promisc(vsi, promisc_m, false);
357 			if (err) {
358 				netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
359 					   vsi->vsi_num);
360 				vsi->current_netdev_flags |= IFF_ALLMULTI;
361 				goto out_promisc;
362 			}
363 		}
364 	}
365 
366 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
367 	    test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
368 		clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
369 		if (vsi->current_netdev_flags & IFF_PROMISC) {
370 			/* Apply Rx filter rule to get traffic from wire */
371 			if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
372 				err = ice_set_dflt_vsi(pf->first_sw, vsi);
373 				if (err && err != -EEXIST) {
374 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
375 						   err, vsi->vsi_num);
376 					vsi->current_netdev_flags &=
377 						~IFF_PROMISC;
378 					goto out_promisc;
379 				}
380 				ice_cfg_vlan_pruning(vsi, false, false);
381 			}
382 		} else {
383 			/* Clear Rx filter to remove traffic from wire */
384 			if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
385 				err = ice_clear_dflt_vsi(pf->first_sw);
386 				if (err) {
387 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
388 						   err, vsi->vsi_num);
389 					vsi->current_netdev_flags |=
390 						IFF_PROMISC;
391 					goto out_promisc;
392 				}
393 				if (vsi->num_vlan > 1)
394 					ice_cfg_vlan_pruning(vsi, true, false);
395 			}
396 		}
397 	}
398 	goto exit;
399 
400 out_promisc:
401 	set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
402 	goto exit;
403 out:
404 	/* if something went wrong then set the changed flag so we try again */
405 	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
406 	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
407 exit:
408 	clear_bit(__ICE_CFG_BUSY, vsi->state);
409 	return err;
410 }
411 
412 /**
413  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
414  * @pf: board private structure
415  */
ice_sync_fltr_subtask(struct ice_pf * pf)416 static void ice_sync_fltr_subtask(struct ice_pf *pf)
417 {
418 	int v;
419 
420 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
421 		return;
422 
423 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
424 
425 	ice_for_each_vsi(pf, v)
426 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
427 		    ice_vsi_sync_fltr(pf->vsi[v])) {
428 			/* come back and try again later */
429 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
430 			break;
431 		}
432 }
433 
434 /**
435  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
436  * @pf: the PF
437  * @locked: is the rtnl_lock already held
438  */
ice_pf_dis_all_vsi(struct ice_pf * pf,bool locked)439 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
440 {
441 	int v;
442 
443 	ice_for_each_vsi(pf, v)
444 		if (pf->vsi[v])
445 			ice_dis_vsi(pf->vsi[v], locked);
446 }
447 
448 /**
449  * ice_prepare_for_reset - prep for the core to reset
450  * @pf: board private structure
451  *
452  * Inform or close all dependent features in prep for reset.
453  */
454 static void
ice_prepare_for_reset(struct ice_pf * pf)455 ice_prepare_for_reset(struct ice_pf *pf)
456 {
457 	struct ice_hw *hw = &pf->hw;
458 	unsigned int i;
459 
460 	/* already prepared for reset */
461 	if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
462 		return;
463 
464 	/* Notify VFs of impending reset */
465 	if (ice_check_sq_alive(hw, &hw->mailboxq))
466 		ice_vc_notify_reset(pf);
467 
468 	/* Disable VFs until reset is completed */
469 	ice_for_each_vf(pf, i)
470 		ice_set_vf_state_qs_dis(&pf->vf[i]);
471 
472 	/* clear SW filtering DB */
473 	ice_clear_hw_tbls(hw);
474 	/* disable the VSIs and their queues that are not already DOWN */
475 	ice_pf_dis_all_vsi(pf, false);
476 
477 	if (hw->port_info)
478 		ice_sched_clear_port(hw->port_info);
479 
480 	ice_shutdown_all_ctrlq(hw);
481 
482 	set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
483 }
484 
485 /**
486  * ice_do_reset - Initiate one of many types of resets
487  * @pf: board private structure
488  * @reset_type: reset type requested
489  * before this function was called.
490  */
ice_do_reset(struct ice_pf * pf,enum ice_reset_req reset_type)491 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
492 {
493 	struct device *dev = ice_pf_to_dev(pf);
494 	struct ice_hw *hw = &pf->hw;
495 
496 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
497 
498 	ice_prepare_for_reset(pf);
499 
500 	/* trigger the reset */
501 	if (ice_reset(hw, reset_type)) {
502 		dev_err(dev, "reset %d failed\n", reset_type);
503 		set_bit(__ICE_RESET_FAILED, pf->state);
504 		clear_bit(__ICE_RESET_OICR_RECV, pf->state);
505 		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
506 		clear_bit(__ICE_PFR_REQ, pf->state);
507 		clear_bit(__ICE_CORER_REQ, pf->state);
508 		clear_bit(__ICE_GLOBR_REQ, pf->state);
509 		return;
510 	}
511 
512 	/* PFR is a bit of a special case because it doesn't result in an OICR
513 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
514 	 * associated state bits.
515 	 */
516 	if (reset_type == ICE_RESET_PFR) {
517 		pf->pfr_count++;
518 		ice_rebuild(pf, reset_type);
519 		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
520 		clear_bit(__ICE_PFR_REQ, pf->state);
521 		ice_reset_all_vfs(pf, true);
522 	}
523 }
524 
525 /**
526  * ice_reset_subtask - Set up for resetting the device and driver
527  * @pf: board private structure
528  */
ice_reset_subtask(struct ice_pf * pf)529 static void ice_reset_subtask(struct ice_pf *pf)
530 {
531 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
532 
533 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
534 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
535 	 * of reset is pending and sets bits in pf->state indicating the reset
536 	 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set
537 	 * prepare for pending reset if not already (for PF software-initiated
538 	 * global resets the software should already be prepared for it as
539 	 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
540 	 * by firmware or software on other PFs, that bit is not set so prepare
541 	 * for the reset now), poll for reset done, rebuild and return.
542 	 */
543 	if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
544 		/* Perform the largest reset requested */
545 		if (test_and_clear_bit(__ICE_CORER_RECV, pf->state))
546 			reset_type = ICE_RESET_CORER;
547 		if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state))
548 			reset_type = ICE_RESET_GLOBR;
549 		if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state))
550 			reset_type = ICE_RESET_EMPR;
551 		/* return if no valid reset type requested */
552 		if (reset_type == ICE_RESET_INVAL)
553 			return;
554 		ice_prepare_for_reset(pf);
555 
556 		/* make sure we are ready to rebuild */
557 		if (ice_check_reset(&pf->hw)) {
558 			set_bit(__ICE_RESET_FAILED, pf->state);
559 		} else {
560 			/* done with reset. start rebuild */
561 			pf->hw.reset_ongoing = false;
562 			ice_rebuild(pf, reset_type);
563 			/* clear bit to resume normal operations, but
564 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
565 			 */
566 			clear_bit(__ICE_RESET_OICR_RECV, pf->state);
567 			clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
568 			clear_bit(__ICE_PFR_REQ, pf->state);
569 			clear_bit(__ICE_CORER_REQ, pf->state);
570 			clear_bit(__ICE_GLOBR_REQ, pf->state);
571 			ice_reset_all_vfs(pf, true);
572 		}
573 
574 		return;
575 	}
576 
577 	/* No pending resets to finish processing. Check for new resets */
578 	if (test_bit(__ICE_PFR_REQ, pf->state))
579 		reset_type = ICE_RESET_PFR;
580 	if (test_bit(__ICE_CORER_REQ, pf->state))
581 		reset_type = ICE_RESET_CORER;
582 	if (test_bit(__ICE_GLOBR_REQ, pf->state))
583 		reset_type = ICE_RESET_GLOBR;
584 	/* If no valid reset type requested just return */
585 	if (reset_type == ICE_RESET_INVAL)
586 		return;
587 
588 	/* reset if not already down or busy */
589 	if (!test_bit(__ICE_DOWN, pf->state) &&
590 	    !test_bit(__ICE_CFG_BUSY, pf->state)) {
591 		ice_do_reset(pf, reset_type);
592 	}
593 }
594 
595 /**
596  * ice_print_topo_conflict - print topology conflict message
597  * @vsi: the VSI whose topology status is being checked
598  */
ice_print_topo_conflict(struct ice_vsi * vsi)599 static void ice_print_topo_conflict(struct ice_vsi *vsi)
600 {
601 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
602 	case ICE_AQ_LINK_TOPO_CONFLICT:
603 	case ICE_AQ_LINK_MEDIA_CONFLICT:
604 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
605 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
606 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
607 		netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n");
608 		break;
609 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
610 		netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
611 		break;
612 	default:
613 		break;
614 	}
615 }
616 
617 /**
618  * ice_print_link_msg - print link up or down message
619  * @vsi: the VSI whose link status is being queried
620  * @isup: boolean for if the link is now up or down
621  */
ice_print_link_msg(struct ice_vsi * vsi,bool isup)622 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
623 {
624 	struct ice_aqc_get_phy_caps_data *caps;
625 	const char *an_advertised;
626 	enum ice_status status;
627 	const char *fec_req;
628 	const char *speed;
629 	const char *fec;
630 	const char *fc;
631 	const char *an;
632 
633 	if (!vsi)
634 		return;
635 
636 	if (vsi->current_isup == isup)
637 		return;
638 
639 	vsi->current_isup = isup;
640 
641 	if (!isup) {
642 		netdev_info(vsi->netdev, "NIC Link is Down\n");
643 		return;
644 	}
645 
646 	switch (vsi->port_info->phy.link_info.link_speed) {
647 	case ICE_AQ_LINK_SPEED_100GB:
648 		speed = "100 G";
649 		break;
650 	case ICE_AQ_LINK_SPEED_50GB:
651 		speed = "50 G";
652 		break;
653 	case ICE_AQ_LINK_SPEED_40GB:
654 		speed = "40 G";
655 		break;
656 	case ICE_AQ_LINK_SPEED_25GB:
657 		speed = "25 G";
658 		break;
659 	case ICE_AQ_LINK_SPEED_20GB:
660 		speed = "20 G";
661 		break;
662 	case ICE_AQ_LINK_SPEED_10GB:
663 		speed = "10 G";
664 		break;
665 	case ICE_AQ_LINK_SPEED_5GB:
666 		speed = "5 G";
667 		break;
668 	case ICE_AQ_LINK_SPEED_2500MB:
669 		speed = "2.5 G";
670 		break;
671 	case ICE_AQ_LINK_SPEED_1000MB:
672 		speed = "1 G";
673 		break;
674 	case ICE_AQ_LINK_SPEED_100MB:
675 		speed = "100 M";
676 		break;
677 	default:
678 		speed = "Unknown";
679 		break;
680 	}
681 
682 	switch (vsi->port_info->fc.current_mode) {
683 	case ICE_FC_FULL:
684 		fc = "Rx/Tx";
685 		break;
686 	case ICE_FC_TX_PAUSE:
687 		fc = "Tx";
688 		break;
689 	case ICE_FC_RX_PAUSE:
690 		fc = "Rx";
691 		break;
692 	case ICE_FC_NONE:
693 		fc = "None";
694 		break;
695 	default:
696 		fc = "Unknown";
697 		break;
698 	}
699 
700 	/* Get FEC mode based on negotiated link info */
701 	switch (vsi->port_info->phy.link_info.fec_info) {
702 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
703 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
704 		fec = "RS-FEC";
705 		break;
706 	case ICE_AQ_LINK_25G_KR_FEC_EN:
707 		fec = "FC-FEC/BASE-R";
708 		break;
709 	default:
710 		fec = "NONE";
711 		break;
712 	}
713 
714 	/* check if autoneg completed, might be false due to not supported */
715 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
716 		an = "True";
717 	else
718 		an = "False";
719 
720 	/* Get FEC mode requested based on PHY caps last SW configuration */
721 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
722 	if (!caps) {
723 		fec_req = "Unknown";
724 		an_advertised = "Unknown";
725 		goto done;
726 	}
727 
728 	status = ice_aq_get_phy_caps(vsi->port_info, false,
729 				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
730 	if (status)
731 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
732 
733 	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
734 
735 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
736 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
737 		fec_req = "RS-FEC";
738 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
739 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
740 		fec_req = "FC-FEC/BASE-R";
741 	else
742 		fec_req = "NONE";
743 
744 	kfree(caps);
745 
746 done:
747 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
748 		    speed, fec_req, fec, an_advertised, an, fc);
749 	ice_print_topo_conflict(vsi);
750 }
751 
752 /**
753  * ice_vsi_link_event - update the VSI's netdev
754  * @vsi: the VSI on which the link event occurred
755  * @link_up: whether or not the VSI needs to be set up or down
756  */
ice_vsi_link_event(struct ice_vsi * vsi,bool link_up)757 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
758 {
759 	if (!vsi)
760 		return;
761 
762 	if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev)
763 		return;
764 
765 	if (vsi->type == ICE_VSI_PF) {
766 		if (link_up == netif_carrier_ok(vsi->netdev))
767 			return;
768 
769 		if (link_up) {
770 			netif_carrier_on(vsi->netdev);
771 			netif_tx_wake_all_queues(vsi->netdev);
772 		} else {
773 			netif_carrier_off(vsi->netdev);
774 			netif_tx_stop_all_queues(vsi->netdev);
775 		}
776 	}
777 }
778 
779 /**
780  * ice_set_dflt_mib - send a default config MIB to the FW
781  * @pf: private PF struct
782  *
783  * This function sends a default configuration MIB to the FW.
784  *
785  * If this function errors out at any point, the driver is still able to
786  * function.  The main impact is that LFC may not operate as expected.
787  * Therefore an error state in this function should be treated with a DBG
788  * message and continue on with driver rebuild/reenable.
789  */
ice_set_dflt_mib(struct ice_pf * pf)790 static void ice_set_dflt_mib(struct ice_pf *pf)
791 {
792 	struct device *dev = ice_pf_to_dev(pf);
793 	u8 mib_type, *buf, *lldpmib = NULL;
794 	u16 len, typelen, offset = 0;
795 	struct ice_lldp_org_tlv *tlv;
796 	struct ice_hw *hw;
797 	u32 ouisubtype;
798 
799 	if (!pf) {
800 		dev_dbg(dev, "%s NULL pf pointer\n", __func__);
801 		return;
802 	}
803 
804 	hw = &pf->hw;
805 	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
806 	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
807 	if (!lldpmib) {
808 		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
809 			__func__);
810 		return;
811 	}
812 
813 	/* Add ETS CFG TLV */
814 	tlv = (struct ice_lldp_org_tlv *)lldpmib;
815 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
816 		   ICE_IEEE_ETS_TLV_LEN);
817 	tlv->typelen = htons(typelen);
818 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
819 		      ICE_IEEE_SUBTYPE_ETS_CFG);
820 	tlv->ouisubtype = htonl(ouisubtype);
821 
822 	buf = tlv->tlvinfo;
823 	buf[0] = 0;
824 
825 	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
826 	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
827 	 * Octets 13 - 20 are TSA values - leave as zeros
828 	 */
829 	buf[5] = 0x64;
830 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
831 	offset += len + 2;
832 	tlv = (struct ice_lldp_org_tlv *)
833 		((char *)tlv + sizeof(tlv->typelen) + len);
834 
835 	/* Add ETS REC TLV */
836 	buf = tlv->tlvinfo;
837 	tlv->typelen = htons(typelen);
838 
839 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
840 		      ICE_IEEE_SUBTYPE_ETS_REC);
841 	tlv->ouisubtype = htonl(ouisubtype);
842 
843 	/* First octet of buf is reserved
844 	 * Octets 1 - 4 map UP to TC - all UPs map to zero
845 	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
846 	 * Octets 13 - 20 are TSA value - leave as zeros
847 	 */
848 	buf[5] = 0x64;
849 	offset += len + 2;
850 	tlv = (struct ice_lldp_org_tlv *)
851 		((char *)tlv + sizeof(tlv->typelen) + len);
852 
853 	/* Add PFC CFG TLV */
854 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
855 		   ICE_IEEE_PFC_TLV_LEN);
856 	tlv->typelen = htons(typelen);
857 
858 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
859 		      ICE_IEEE_SUBTYPE_PFC_CFG);
860 	tlv->ouisubtype = htonl(ouisubtype);
861 
862 	/* Octet 1 left as all zeros - PFC disabled */
863 	buf[0] = 0x08;
864 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
865 	offset += len + 2;
866 
867 	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
868 		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
869 
870 	kfree(lldpmib);
871 }
872 
873 /**
874  * ice_link_event - process the link event
875  * @pf: PF that the link event is associated with
876  * @pi: port_info for the port that the link event is associated with
877  * @link_up: true if the physical link is up and false if it is down
878  * @link_speed: current link speed received from the link event
879  *
880  * Returns 0 on success and negative on failure
881  */
882 static int
ice_link_event(struct ice_pf * pf,struct ice_port_info * pi,bool link_up,u16 link_speed)883 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
884 	       u16 link_speed)
885 {
886 	struct device *dev = ice_pf_to_dev(pf);
887 	struct ice_phy_info *phy_info;
888 	struct ice_vsi *vsi;
889 	u16 old_link_speed;
890 	bool old_link;
891 	int result;
892 
893 	phy_info = &pi->phy;
894 	phy_info->link_info_old = phy_info->link_info;
895 
896 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
897 	old_link_speed = phy_info->link_info_old.link_speed;
898 
899 	/* update the link info structures and re-enable link events,
900 	 * don't bail on failure due to other book keeping needed
901 	 */
902 	result = ice_update_link_info(pi);
903 	if (result)
904 		dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n",
905 			pi->lport);
906 
907 	/* Check if the link state is up after updating link info, and treat
908 	 * this event as an UP event since the link is actually UP now.
909 	 */
910 	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
911 		link_up = true;
912 
913 	vsi = ice_get_main_vsi(pf);
914 	if (!vsi || !vsi->port_info)
915 		return -EINVAL;
916 
917 	/* turn off PHY if media was removed */
918 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
919 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
920 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
921 
922 		result = ice_aq_set_link_restart_an(pi, false, NULL);
923 		if (result) {
924 			dev_dbg(dev, "Failed to set link down, VSI %d error %d\n",
925 				vsi->vsi_num, result);
926 			return result;
927 		}
928 	}
929 
930 	/* if the old link up/down and speed is the same as the new */
931 	if (link_up == old_link && link_speed == old_link_speed)
932 		return result;
933 
934 	if (ice_is_dcb_active(pf)) {
935 		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
936 			ice_dcb_rebuild(pf);
937 	} else {
938 		if (link_up)
939 			ice_set_dflt_mib(pf);
940 	}
941 	ice_vsi_link_event(vsi, link_up);
942 	ice_print_link_msg(vsi, link_up);
943 
944 	ice_vc_notify_link_state(pf);
945 
946 	return result;
947 }
948 
949 /**
950  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
951  * @pf: board private structure
952  */
ice_watchdog_subtask(struct ice_pf * pf)953 static void ice_watchdog_subtask(struct ice_pf *pf)
954 {
955 	int i;
956 
957 	/* if interface is down do nothing */
958 	if (test_bit(__ICE_DOWN, pf->state) ||
959 	    test_bit(__ICE_CFG_BUSY, pf->state))
960 		return;
961 
962 	/* make sure we don't do these things too often */
963 	if (time_before(jiffies,
964 			pf->serv_tmr_prev + pf->serv_tmr_period))
965 		return;
966 
967 	pf->serv_tmr_prev = jiffies;
968 
969 	/* Update the stats for active netdevs so the network stack
970 	 * can look at updated numbers whenever it cares to
971 	 */
972 	ice_update_pf_stats(pf);
973 	ice_for_each_vsi(pf, i)
974 		if (pf->vsi[i] && pf->vsi[i]->netdev)
975 			ice_update_vsi_stats(pf->vsi[i]);
976 }
977 
978 /**
979  * ice_init_link_events - enable/initialize link events
980  * @pi: pointer to the port_info instance
981  *
982  * Returns -EIO on failure, 0 on success
983  */
ice_init_link_events(struct ice_port_info * pi)984 static int ice_init_link_events(struct ice_port_info *pi)
985 {
986 	u16 mask;
987 
988 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
989 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
990 
991 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
992 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
993 			pi->lport);
994 		return -EIO;
995 	}
996 
997 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
998 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
999 			pi->lport);
1000 		return -EIO;
1001 	}
1002 
1003 	return 0;
1004 }
1005 
1006 /**
1007  * ice_handle_link_event - handle link event via ARQ
1008  * @pf: PF that the link event is associated with
1009  * @event: event structure containing link status info
1010  */
1011 static int
ice_handle_link_event(struct ice_pf * pf,struct ice_rq_event_info * event)1012 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1013 {
1014 	struct ice_aqc_get_link_status_data *link_data;
1015 	struct ice_port_info *port_info;
1016 	int status;
1017 
1018 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1019 	port_info = pf->hw.port_info;
1020 	if (!port_info)
1021 		return -EINVAL;
1022 
1023 	status = ice_link_event(pf, port_info,
1024 				!!(link_data->link_info & ICE_AQ_LINK_UP),
1025 				le16_to_cpu(link_data->link_speed));
1026 	if (status)
1027 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1028 			status);
1029 
1030 	return status;
1031 }
1032 
1033 enum ice_aq_task_state {
1034 	ICE_AQ_TASK_WAITING = 0,
1035 	ICE_AQ_TASK_COMPLETE,
1036 	ICE_AQ_TASK_CANCELED,
1037 };
1038 
1039 struct ice_aq_task {
1040 	struct hlist_node entry;
1041 
1042 	u16 opcode;
1043 	struct ice_rq_event_info *event;
1044 	enum ice_aq_task_state state;
1045 };
1046 
1047 /**
1048  * ice_wait_for_aq_event - Wait for an AdminQ event from firmware
1049  * @pf: pointer to the PF private structure
1050  * @opcode: the opcode to wait for
1051  * @timeout: how long to wait, in jiffies
1052  * @event: storage for the event info
1053  *
1054  * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1055  * current thread will be put to sleep until the specified event occurs or
1056  * until the given timeout is reached.
1057  *
1058  * To obtain only the descriptor contents, pass an event without an allocated
1059  * msg_buf. If the complete data buffer is desired, allocate the
1060  * event->msg_buf with enough space ahead of time.
1061  *
1062  * Returns: zero on success, or a negative error code on failure.
1063  */
ice_aq_wait_for_event(struct ice_pf * pf,u16 opcode,unsigned long timeout,struct ice_rq_event_info * event)1064 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1065 			  struct ice_rq_event_info *event)
1066 {
1067 	struct device *dev = ice_pf_to_dev(pf);
1068 	struct ice_aq_task *task;
1069 	unsigned long start;
1070 	long ret;
1071 	int err;
1072 
1073 	task = kzalloc(sizeof(*task), GFP_KERNEL);
1074 	if (!task)
1075 		return -ENOMEM;
1076 
1077 	INIT_HLIST_NODE(&task->entry);
1078 	task->opcode = opcode;
1079 	task->event = event;
1080 	task->state = ICE_AQ_TASK_WAITING;
1081 
1082 	spin_lock_bh(&pf->aq_wait_lock);
1083 	hlist_add_head(&task->entry, &pf->aq_wait_list);
1084 	spin_unlock_bh(&pf->aq_wait_lock);
1085 
1086 	start = jiffies;
1087 
1088 	ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1089 					       timeout);
1090 	switch (task->state) {
1091 	case ICE_AQ_TASK_WAITING:
1092 		err = ret < 0 ? ret : -ETIMEDOUT;
1093 		break;
1094 	case ICE_AQ_TASK_CANCELED:
1095 		err = ret < 0 ? ret : -ECANCELED;
1096 		break;
1097 	case ICE_AQ_TASK_COMPLETE:
1098 		err = ret < 0 ? ret : 0;
1099 		break;
1100 	default:
1101 		WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1102 		err = -EINVAL;
1103 		break;
1104 	}
1105 
1106 	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1107 		jiffies_to_msecs(jiffies - start),
1108 		jiffies_to_msecs(timeout),
1109 		opcode);
1110 
1111 	spin_lock_bh(&pf->aq_wait_lock);
1112 	hlist_del(&task->entry);
1113 	spin_unlock_bh(&pf->aq_wait_lock);
1114 	kfree(task);
1115 
1116 	return err;
1117 }
1118 
1119 /**
1120  * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1121  * @pf: pointer to the PF private structure
1122  * @opcode: the opcode of the event
1123  * @event: the event to check
1124  *
1125  * Loops over the current list of pending threads waiting for an AdminQ event.
1126  * For each matching task, copy the contents of the event into the task
1127  * structure and wake up the thread.
1128  *
1129  * If multiple threads wait for the same opcode, they will all be woken up.
1130  *
1131  * Note that event->msg_buf will only be duplicated if the event has a buffer
1132  * with enough space already allocated. Otherwise, only the descriptor and
1133  * message length will be copied.
1134  *
1135  * Returns: true if an event was found, false otherwise
1136  */
ice_aq_check_events(struct ice_pf * pf,u16 opcode,struct ice_rq_event_info * event)1137 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1138 				struct ice_rq_event_info *event)
1139 {
1140 	struct ice_aq_task *task;
1141 	bool found = false;
1142 
1143 	spin_lock_bh(&pf->aq_wait_lock);
1144 	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1145 		if (task->state || task->opcode != opcode)
1146 			continue;
1147 
1148 		memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1149 		task->event->msg_len = event->msg_len;
1150 
1151 		/* Only copy the data buffer if a destination was set */
1152 		if (task->event->msg_buf &&
1153 		    task->event->buf_len > event->buf_len) {
1154 			memcpy(task->event->msg_buf, event->msg_buf,
1155 			       event->buf_len);
1156 			task->event->buf_len = event->buf_len;
1157 		}
1158 
1159 		task->state = ICE_AQ_TASK_COMPLETE;
1160 		found = true;
1161 	}
1162 	spin_unlock_bh(&pf->aq_wait_lock);
1163 
1164 	if (found)
1165 		wake_up(&pf->aq_wait_queue);
1166 }
1167 
1168 /**
1169  * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1170  * @pf: the PF private structure
1171  *
1172  * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1173  * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1174  */
ice_aq_cancel_waiting_tasks(struct ice_pf * pf)1175 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1176 {
1177 	struct ice_aq_task *task;
1178 
1179 	spin_lock_bh(&pf->aq_wait_lock);
1180 	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1181 		task->state = ICE_AQ_TASK_CANCELED;
1182 	spin_unlock_bh(&pf->aq_wait_lock);
1183 
1184 	wake_up(&pf->aq_wait_queue);
1185 }
1186 
1187 /**
1188  * __ice_clean_ctrlq - helper function to clean controlq rings
1189  * @pf: ptr to struct ice_pf
1190  * @q_type: specific Control queue type
1191  */
__ice_clean_ctrlq(struct ice_pf * pf,enum ice_ctl_q q_type)1192 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1193 {
1194 	struct device *dev = ice_pf_to_dev(pf);
1195 	struct ice_rq_event_info event;
1196 	struct ice_hw *hw = &pf->hw;
1197 	struct ice_ctl_q_info *cq;
1198 	u16 pending, i = 0;
1199 	const char *qtype;
1200 	u32 oldval, val;
1201 
1202 	/* Do not clean control queue if/when PF reset fails */
1203 	if (test_bit(__ICE_RESET_FAILED, pf->state))
1204 		return 0;
1205 
1206 	switch (q_type) {
1207 	case ICE_CTL_Q_ADMIN:
1208 		cq = &hw->adminq;
1209 		qtype = "Admin";
1210 		break;
1211 	case ICE_CTL_Q_MAILBOX:
1212 		cq = &hw->mailboxq;
1213 		qtype = "Mailbox";
1214 		break;
1215 	default:
1216 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1217 		return 0;
1218 	}
1219 
1220 	/* check for error indications - PF_xx_AxQLEN register layout for
1221 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1222 	 */
1223 	val = rd32(hw, cq->rq.len);
1224 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1225 		   PF_FW_ARQLEN_ARQCRIT_M)) {
1226 		oldval = val;
1227 		if (val & PF_FW_ARQLEN_ARQVFE_M)
1228 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1229 				qtype);
1230 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1231 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1232 				qtype);
1233 		}
1234 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1235 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1236 				qtype);
1237 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1238 			 PF_FW_ARQLEN_ARQCRIT_M);
1239 		if (oldval != val)
1240 			wr32(hw, cq->rq.len, val);
1241 	}
1242 
1243 	val = rd32(hw, cq->sq.len);
1244 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1245 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1246 		oldval = val;
1247 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1248 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1249 				qtype);
1250 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1251 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1252 				qtype);
1253 		}
1254 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1255 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1256 				qtype);
1257 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1258 			 PF_FW_ATQLEN_ATQCRIT_M);
1259 		if (oldval != val)
1260 			wr32(hw, cq->sq.len, val);
1261 	}
1262 
1263 	event.buf_len = cq->rq_buf_size;
1264 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1265 	if (!event.msg_buf)
1266 		return 0;
1267 
1268 	do {
1269 		enum ice_status ret;
1270 		u16 opcode;
1271 
1272 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1273 		if (ret == ICE_ERR_AQ_NO_WORK)
1274 			break;
1275 		if (ret) {
1276 			dev_err(dev, "%s Receive Queue event error %s\n", qtype,
1277 				ice_stat_str(ret));
1278 			break;
1279 		}
1280 
1281 		opcode = le16_to_cpu(event.desc.opcode);
1282 
1283 		/* Notify any thread that might be waiting for this event */
1284 		ice_aq_check_events(pf, opcode, &event);
1285 
1286 		switch (opcode) {
1287 		case ice_aqc_opc_get_link_status:
1288 			if (ice_handle_link_event(pf, &event))
1289 				dev_err(dev, "Could not handle link event\n");
1290 			break;
1291 		case ice_aqc_opc_event_lan_overflow:
1292 			ice_vf_lan_overflow_event(pf, &event);
1293 			break;
1294 		case ice_mbx_opc_send_msg_to_pf:
1295 			ice_vc_process_vf_msg(pf, &event);
1296 			break;
1297 		case ice_aqc_opc_fw_logging:
1298 			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1299 			break;
1300 		case ice_aqc_opc_lldp_set_mib_change:
1301 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1302 			break;
1303 		default:
1304 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1305 				qtype, opcode);
1306 			break;
1307 		}
1308 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1309 
1310 	kfree(event.msg_buf);
1311 
1312 	return pending && (i == ICE_DFLT_IRQ_WORK);
1313 }
1314 
1315 /**
1316  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1317  * @hw: pointer to hardware info
1318  * @cq: control queue information
1319  *
1320  * returns true if there are pending messages in a queue, false if there aren't
1321  */
ice_ctrlq_pending(struct ice_hw * hw,struct ice_ctl_q_info * cq)1322 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1323 {
1324 	u16 ntu;
1325 
1326 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1327 	return cq->rq.next_to_clean != ntu;
1328 }
1329 
1330 /**
1331  * ice_clean_adminq_subtask - clean the AdminQ rings
1332  * @pf: board private structure
1333  */
ice_clean_adminq_subtask(struct ice_pf * pf)1334 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1335 {
1336 	struct ice_hw *hw = &pf->hw;
1337 
1338 	if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1339 		return;
1340 
1341 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1342 		return;
1343 
1344 	clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1345 
1346 	/* There might be a situation where new messages arrive to a control
1347 	 * queue between processing the last message and clearing the
1348 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1349 	 * ice_ctrlq_pending) and process new messages if any.
1350 	 */
1351 	if (ice_ctrlq_pending(hw, &hw->adminq))
1352 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1353 
1354 	ice_flush(hw);
1355 }
1356 
1357 /**
1358  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1359  * @pf: board private structure
1360  */
ice_clean_mailboxq_subtask(struct ice_pf * pf)1361 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1362 {
1363 	struct ice_hw *hw = &pf->hw;
1364 
1365 	if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1366 		return;
1367 
1368 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1369 		return;
1370 
1371 	clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1372 
1373 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1374 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1375 
1376 	ice_flush(hw);
1377 }
1378 
1379 /**
1380  * ice_service_task_schedule - schedule the service task to wake up
1381  * @pf: board private structure
1382  *
1383  * If not already scheduled, this puts the task into the work queue.
1384  */
ice_service_task_schedule(struct ice_pf * pf)1385 void ice_service_task_schedule(struct ice_pf *pf)
1386 {
1387 	if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
1388 	    !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
1389 	    !test_bit(__ICE_NEEDS_RESTART, pf->state))
1390 		queue_work(ice_wq, &pf->serv_task);
1391 }
1392 
1393 /**
1394  * ice_service_task_complete - finish up the service task
1395  * @pf: board private structure
1396  */
ice_service_task_complete(struct ice_pf * pf)1397 static void ice_service_task_complete(struct ice_pf *pf)
1398 {
1399 	WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
1400 
1401 	/* force memory (pf->state) to sync before next service task */
1402 	smp_mb__before_atomic();
1403 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1404 }
1405 
1406 /**
1407  * ice_service_task_stop - stop service task and cancel works
1408  * @pf: board private structure
1409  *
1410  * Return 0 if the __ICE_SERVICE_DIS bit was not already set,
1411  * 1 otherwise.
1412  */
ice_service_task_stop(struct ice_pf * pf)1413 static int ice_service_task_stop(struct ice_pf *pf)
1414 {
1415 	int ret;
1416 
1417 	ret = test_and_set_bit(__ICE_SERVICE_DIS, pf->state);
1418 
1419 	if (pf->serv_tmr.function)
1420 		del_timer_sync(&pf->serv_tmr);
1421 	if (pf->serv_task.func)
1422 		cancel_work_sync(&pf->serv_task);
1423 
1424 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1425 	return ret;
1426 }
1427 
1428 /**
1429  * ice_service_task_restart - restart service task and schedule works
1430  * @pf: board private structure
1431  *
1432  * This function is needed for suspend and resume works (e.g WoL scenario)
1433  */
ice_service_task_restart(struct ice_pf * pf)1434 static void ice_service_task_restart(struct ice_pf *pf)
1435 {
1436 	clear_bit(__ICE_SERVICE_DIS, pf->state);
1437 	ice_service_task_schedule(pf);
1438 }
1439 
1440 /**
1441  * ice_service_timer - timer callback to schedule service task
1442  * @t: pointer to timer_list
1443  */
ice_service_timer(struct timer_list * t)1444 static void ice_service_timer(struct timer_list *t)
1445 {
1446 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1447 
1448 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1449 	ice_service_task_schedule(pf);
1450 }
1451 
1452 /**
1453  * ice_handle_mdd_event - handle malicious driver detect event
1454  * @pf: pointer to the PF structure
1455  *
1456  * Called from service task. OICR interrupt handler indicates MDD event.
1457  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1458  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1459  * disable the queue, the PF can be configured to reset the VF using ethtool
1460  * private flag mdd-auto-reset-vf.
1461  */
ice_handle_mdd_event(struct ice_pf * pf)1462 static void ice_handle_mdd_event(struct ice_pf *pf)
1463 {
1464 	struct device *dev = ice_pf_to_dev(pf);
1465 	struct ice_hw *hw = &pf->hw;
1466 	unsigned int i;
1467 	u32 reg;
1468 
1469 	if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) {
1470 		/* Since the VF MDD event logging is rate limited, check if
1471 		 * there are pending MDD events.
1472 		 */
1473 		ice_print_vfs_mdd_events(pf);
1474 		return;
1475 	}
1476 
1477 	/* find what triggered an MDD event */
1478 	reg = rd32(hw, GL_MDET_TX_PQM);
1479 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1480 		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1481 				GL_MDET_TX_PQM_PF_NUM_S;
1482 		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1483 				GL_MDET_TX_PQM_VF_NUM_S;
1484 		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1485 				GL_MDET_TX_PQM_MAL_TYPE_S;
1486 		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1487 				GL_MDET_TX_PQM_QNUM_S);
1488 
1489 		if (netif_msg_tx_err(pf))
1490 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1491 				 event, queue, pf_num, vf_num);
1492 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1493 	}
1494 
1495 	reg = rd32(hw, GL_MDET_TX_TCLAN);
1496 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1497 		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1498 				GL_MDET_TX_TCLAN_PF_NUM_S;
1499 		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1500 				GL_MDET_TX_TCLAN_VF_NUM_S;
1501 		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1502 				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1503 		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1504 				GL_MDET_TX_TCLAN_QNUM_S);
1505 
1506 		if (netif_msg_tx_err(pf))
1507 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1508 				 event, queue, pf_num, vf_num);
1509 		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1510 	}
1511 
1512 	reg = rd32(hw, GL_MDET_RX);
1513 	if (reg & GL_MDET_RX_VALID_M) {
1514 		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1515 				GL_MDET_RX_PF_NUM_S;
1516 		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1517 				GL_MDET_RX_VF_NUM_S;
1518 		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1519 				GL_MDET_RX_MAL_TYPE_S;
1520 		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1521 				GL_MDET_RX_QNUM_S);
1522 
1523 		if (netif_msg_rx_err(pf))
1524 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1525 				 event, queue, pf_num, vf_num);
1526 		wr32(hw, GL_MDET_RX, 0xffffffff);
1527 	}
1528 
1529 	/* check to see if this PF caused an MDD event */
1530 	reg = rd32(hw, PF_MDET_TX_PQM);
1531 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1532 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1533 		if (netif_msg_tx_err(pf))
1534 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1535 	}
1536 
1537 	reg = rd32(hw, PF_MDET_TX_TCLAN);
1538 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1539 		wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1540 		if (netif_msg_tx_err(pf))
1541 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1542 	}
1543 
1544 	reg = rd32(hw, PF_MDET_RX);
1545 	if (reg & PF_MDET_RX_VALID_M) {
1546 		wr32(hw, PF_MDET_RX, 0xFFFF);
1547 		if (netif_msg_rx_err(pf))
1548 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1549 	}
1550 
1551 	/* Check to see if one of the VFs caused an MDD event, and then
1552 	 * increment counters and set print pending
1553 	 */
1554 	ice_for_each_vf(pf, i) {
1555 		struct ice_vf *vf = &pf->vf[i];
1556 
1557 		reg = rd32(hw, VP_MDET_TX_PQM(i));
1558 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1559 			wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1560 			vf->mdd_tx_events.count++;
1561 			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1562 			if (netif_msg_tx_err(pf))
1563 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1564 					 i);
1565 		}
1566 
1567 		reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1568 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1569 			wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1570 			vf->mdd_tx_events.count++;
1571 			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1572 			if (netif_msg_tx_err(pf))
1573 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1574 					 i);
1575 		}
1576 
1577 		reg = rd32(hw, VP_MDET_TX_TDPU(i));
1578 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1579 			wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1580 			vf->mdd_tx_events.count++;
1581 			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1582 			if (netif_msg_tx_err(pf))
1583 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1584 					 i);
1585 		}
1586 
1587 		reg = rd32(hw, VP_MDET_RX(i));
1588 		if (reg & VP_MDET_RX_VALID_M) {
1589 			wr32(hw, VP_MDET_RX(i), 0xFFFF);
1590 			vf->mdd_rx_events.count++;
1591 			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1592 			if (netif_msg_rx_err(pf))
1593 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1594 					 i);
1595 
1596 			/* Since the queue is disabled on VF Rx MDD events, the
1597 			 * PF can be configured to reset the VF through ethtool
1598 			 * private flag mdd-auto-reset-vf.
1599 			 */
1600 			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1601 				/* VF MDD event counters will be cleared by
1602 				 * reset, so print the event prior to reset.
1603 				 */
1604 				ice_print_vf_rx_mdd_event(vf);
1605 				mutex_lock(&pf->vf[i].cfg_lock);
1606 				ice_reset_vf(&pf->vf[i], false);
1607 				mutex_unlock(&pf->vf[i].cfg_lock);
1608 			}
1609 		}
1610 	}
1611 
1612 	ice_print_vfs_mdd_events(pf);
1613 }
1614 
1615 /**
1616  * ice_force_phys_link_state - Force the physical link state
1617  * @vsi: VSI to force the physical link state to up/down
1618  * @link_up: true/false indicates to set the physical link to up/down
1619  *
1620  * Force the physical link state by getting the current PHY capabilities from
1621  * hardware and setting the PHY config based on the determined capabilities. If
1622  * link changes a link event will be triggered because both the Enable Automatic
1623  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1624  *
1625  * Returns 0 on success, negative on failure
1626  */
ice_force_phys_link_state(struct ice_vsi * vsi,bool link_up)1627 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1628 {
1629 	struct ice_aqc_get_phy_caps_data *pcaps;
1630 	struct ice_aqc_set_phy_cfg_data *cfg;
1631 	struct ice_port_info *pi;
1632 	struct device *dev;
1633 	int retcode;
1634 
1635 	if (!vsi || !vsi->port_info || !vsi->back)
1636 		return -EINVAL;
1637 	if (vsi->type != ICE_VSI_PF)
1638 		return 0;
1639 
1640 	dev = ice_pf_to_dev(vsi->back);
1641 
1642 	pi = vsi->port_info;
1643 
1644 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1645 	if (!pcaps)
1646 		return -ENOMEM;
1647 
1648 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1649 				      NULL);
1650 	if (retcode) {
1651 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1652 			vsi->vsi_num, retcode);
1653 		retcode = -EIO;
1654 		goto out;
1655 	}
1656 
1657 	/* No change in link */
1658 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1659 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1660 		goto out;
1661 
1662 	/* Use the current user PHY configuration. The current user PHY
1663 	 * configuration is initialized during probe from PHY capabilities
1664 	 * software mode, and updated on set PHY configuration.
1665 	 */
1666 	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1667 	if (!cfg) {
1668 		retcode = -ENOMEM;
1669 		goto out;
1670 	}
1671 
1672 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1673 	if (link_up)
1674 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1675 	else
1676 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1677 
1678 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1679 	if (retcode) {
1680 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1681 			vsi->vsi_num, retcode);
1682 		retcode = -EIO;
1683 	}
1684 
1685 	kfree(cfg);
1686 out:
1687 	kfree(pcaps);
1688 	return retcode;
1689 }
1690 
1691 /**
1692  * ice_init_nvm_phy_type - Initialize the NVM PHY type
1693  * @pi: port info structure
1694  *
1695  * Initialize nvm_phy_type_[low|high] for link lenient mode support
1696  */
ice_init_nvm_phy_type(struct ice_port_info * pi)1697 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1698 {
1699 	struct ice_aqc_get_phy_caps_data *pcaps;
1700 	struct ice_pf *pf = pi->hw->back;
1701 	enum ice_status status;
1702 	int err = 0;
1703 
1704 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1705 	if (!pcaps)
1706 		return -ENOMEM;
1707 
1708 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, pcaps,
1709 				     NULL);
1710 
1711 	if (status) {
1712 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1713 		err = -EIO;
1714 		goto out;
1715 	}
1716 
1717 	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1718 	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1719 
1720 out:
1721 	kfree(pcaps);
1722 	return err;
1723 }
1724 
1725 /**
1726  * ice_init_link_dflt_override - Initialize link default override
1727  * @pi: port info structure
1728  *
1729  * Initialize link default override and PHY total port shutdown during probe
1730  */
ice_init_link_dflt_override(struct ice_port_info * pi)1731 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1732 {
1733 	struct ice_link_default_override_tlv *ldo;
1734 	struct ice_pf *pf = pi->hw->back;
1735 
1736 	ldo = &pf->link_dflt_override;
1737 	if (ice_get_link_default_override(ldo, pi))
1738 		return;
1739 
1740 	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1741 		return;
1742 
1743 	/* Enable Total Port Shutdown (override/replace link-down-on-close
1744 	 * ethtool private flag) for ports with Port Disable bit set.
1745 	 */
1746 	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1747 	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1748 }
1749 
1750 /**
1751  * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1752  * @pi: port info structure
1753  *
1754  * If default override is enabled, initialized the user PHY cfg speed and FEC
1755  * settings using the default override mask from the NVM.
1756  *
1757  * The PHY should only be configured with the default override settings the
1758  * first time media is available. The __ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1759  * is used to indicate that the user PHY cfg default override is initialized
1760  * and the PHY has not been configured with the default override settings. The
1761  * state is set here, and cleared in ice_configure_phy the first time the PHY is
1762  * configured.
1763  */
ice_init_phy_cfg_dflt_override(struct ice_port_info * pi)1764 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1765 {
1766 	struct ice_link_default_override_tlv *ldo;
1767 	struct ice_aqc_set_phy_cfg_data *cfg;
1768 	struct ice_phy_info *phy = &pi->phy;
1769 	struct ice_pf *pf = pi->hw->back;
1770 
1771 	ldo = &pf->link_dflt_override;
1772 
1773 	/* If link default override is enabled, use to mask NVM PHY capabilities
1774 	 * for speed and FEC default configuration.
1775 	 */
1776 	cfg = &phy->curr_user_phy_cfg;
1777 
1778 	if (ldo->phy_type_low || ldo->phy_type_high) {
1779 		cfg->phy_type_low = pf->nvm_phy_type_lo &
1780 				    cpu_to_le64(ldo->phy_type_low);
1781 		cfg->phy_type_high = pf->nvm_phy_type_hi &
1782 				     cpu_to_le64(ldo->phy_type_high);
1783 	}
1784 	cfg->link_fec_opt = ldo->fec_options;
1785 	phy->curr_user_fec_req = ICE_FEC_AUTO;
1786 
1787 	set_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
1788 }
1789 
1790 /**
1791  * ice_init_phy_user_cfg - Initialize the PHY user configuration
1792  * @pi: port info structure
1793  *
1794  * Initialize the current user PHY configuration, speed, FEC, and FC requested
1795  * mode to default. The PHY defaults are from get PHY capabilities topology
1796  * with media so call when media is first available. An error is returned if
1797  * called when media is not available. The PHY initialization completed state is
1798  * set here.
1799  *
1800  * These configurations are used when setting PHY
1801  * configuration. The user PHY configuration is updated on set PHY
1802  * configuration. Returns 0 on success, negative on failure
1803  */
ice_init_phy_user_cfg(struct ice_port_info * pi)1804 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
1805 {
1806 	struct ice_aqc_get_phy_caps_data *pcaps;
1807 	struct ice_phy_info *phy = &pi->phy;
1808 	struct ice_pf *pf = pi->hw->back;
1809 	enum ice_status status;
1810 	struct ice_vsi *vsi;
1811 	int err = 0;
1812 
1813 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1814 		return -EIO;
1815 
1816 	vsi = ice_get_main_vsi(pf);
1817 	if (!vsi)
1818 		return -EINVAL;
1819 
1820 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1821 	if (!pcaps)
1822 		return -ENOMEM;
1823 
1824 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1825 				     NULL);
1826 	if (status) {
1827 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1828 		err = -EIO;
1829 		goto err_out;
1830 	}
1831 
1832 	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
1833 
1834 	/* check if lenient mode is supported and enabled */
1835 	if (ice_fw_supports_link_override(&vsi->back->hw) &&
1836 	    !(pcaps->module_compliance_enforcement &
1837 	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
1838 		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
1839 
1840 		/* if link default override is enabled, initialize user PHY
1841 		 * configuration with link default override values
1842 		 */
1843 		if (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN) {
1844 			ice_init_phy_cfg_dflt_override(pi);
1845 			goto out;
1846 		}
1847 	}
1848 
1849 	/* if link default override is not enabled, initialize PHY using
1850 	 * topology with media
1851 	 */
1852 	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
1853 						      pcaps->link_fec_options);
1854 	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
1855 
1856 out:
1857 	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
1858 	set_bit(__ICE_PHY_INIT_COMPLETE, pf->state);
1859 err_out:
1860 	kfree(pcaps);
1861 	return err;
1862 }
1863 
1864 /**
1865  * ice_configure_phy - configure PHY
1866  * @vsi: VSI of PHY
1867  *
1868  * Set the PHY configuration. If the current PHY configuration is the same as
1869  * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
1870  * configure the based get PHY capabilities for topology with media.
1871  */
ice_configure_phy(struct ice_vsi * vsi)1872 static int ice_configure_phy(struct ice_vsi *vsi)
1873 {
1874 	struct device *dev = ice_pf_to_dev(vsi->back);
1875 	struct ice_aqc_get_phy_caps_data *pcaps;
1876 	struct ice_aqc_set_phy_cfg_data *cfg;
1877 	struct ice_port_info *pi;
1878 	enum ice_status status;
1879 	int err = 0;
1880 
1881 	pi = vsi->port_info;
1882 	if (!pi)
1883 		return -EINVAL;
1884 
1885 	/* Ensure we have media as we cannot configure a medialess port */
1886 	if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1887 		return -EPERM;
1888 
1889 	ice_print_topo_conflict(vsi);
1890 
1891 	if (vsi->port_info->phy.link_info.topo_media_conflict ==
1892 	    ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
1893 		return -EPERM;
1894 
1895 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
1896 		return ice_force_phys_link_state(vsi, true);
1897 
1898 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1899 	if (!pcaps)
1900 		return -ENOMEM;
1901 
1902 	/* Get current PHY config */
1903 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1904 				     NULL);
1905 	if (status) {
1906 		dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n",
1907 			vsi->vsi_num, ice_stat_str(status));
1908 		err = -EIO;
1909 		goto done;
1910 	}
1911 
1912 	/* If PHY enable link is configured and configuration has not changed,
1913 	 * there's nothing to do
1914 	 */
1915 	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
1916 	    ice_phy_caps_equals_cfg(pcaps, &pi->phy.curr_user_phy_cfg))
1917 		goto done;
1918 
1919 	/* Use PHY topology as baseline for configuration */
1920 	memset(pcaps, 0, sizeof(*pcaps));
1921 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1922 				     NULL);
1923 	if (status) {
1924 		dev_err(dev, "Failed to get PHY topology, VSI %d error %s\n",
1925 			vsi->vsi_num, ice_stat_str(status));
1926 		err = -EIO;
1927 		goto done;
1928 	}
1929 
1930 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1931 	if (!cfg) {
1932 		err = -ENOMEM;
1933 		goto done;
1934 	}
1935 
1936 	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
1937 
1938 	/* Speed - If default override pending, use curr_user_phy_cfg set in
1939 	 * ice_init_phy_user_cfg_ldo.
1940 	 */
1941 	if (test_and_clear_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING,
1942 			       vsi->back->state)) {
1943 		cfg->phy_type_low = pi->phy.curr_user_phy_cfg.phy_type_low;
1944 		cfg->phy_type_high = pi->phy.curr_user_phy_cfg.phy_type_high;
1945 	} else {
1946 		u64 phy_low = 0, phy_high = 0;
1947 
1948 		ice_update_phy_type(&phy_low, &phy_high,
1949 				    pi->phy.curr_user_speed_req);
1950 		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
1951 		cfg->phy_type_high = pcaps->phy_type_high &
1952 				     cpu_to_le64(phy_high);
1953 	}
1954 
1955 	/* Can't provide what was requested; use PHY capabilities */
1956 	if (!cfg->phy_type_low && !cfg->phy_type_high) {
1957 		cfg->phy_type_low = pcaps->phy_type_low;
1958 		cfg->phy_type_high = pcaps->phy_type_high;
1959 	}
1960 
1961 	/* FEC */
1962 	ice_cfg_phy_fec(pi, cfg, pi->phy.curr_user_fec_req);
1963 
1964 	/* Can't provide what was requested; use PHY capabilities */
1965 	if (cfg->link_fec_opt !=
1966 	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
1967 		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
1968 		cfg->link_fec_opt = pcaps->link_fec_options;
1969 	}
1970 
1971 	/* Flow Control - always supported; no need to check against
1972 	 * capabilities
1973 	 */
1974 	ice_cfg_phy_fc(pi, cfg, pi->phy.curr_user_fc_req);
1975 
1976 	/* Enable link and link update */
1977 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
1978 
1979 	status = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1980 	if (status) {
1981 		dev_err(dev, "Failed to set phy config, VSI %d error %s\n",
1982 			vsi->vsi_num, ice_stat_str(status));
1983 		err = -EIO;
1984 	}
1985 
1986 	kfree(cfg);
1987 done:
1988 	kfree(pcaps);
1989 	return err;
1990 }
1991 
1992 /**
1993  * ice_check_media_subtask - Check for media
1994  * @pf: pointer to PF struct
1995  *
1996  * If media is available, then initialize PHY user configuration if it is not
1997  * been, and configure the PHY if the interface is up.
1998  */
ice_check_media_subtask(struct ice_pf * pf)1999 static void ice_check_media_subtask(struct ice_pf *pf)
2000 {
2001 	struct ice_port_info *pi;
2002 	struct ice_vsi *vsi;
2003 	int err;
2004 
2005 	/* No need to check for media if it's already present */
2006 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2007 		return;
2008 
2009 	vsi = ice_get_main_vsi(pf);
2010 	if (!vsi)
2011 		return;
2012 
2013 	/* Refresh link info and check if media is present */
2014 	pi = vsi->port_info;
2015 	err = ice_update_link_info(pi);
2016 	if (err)
2017 		return;
2018 
2019 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2020 		if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state))
2021 			ice_init_phy_user_cfg(pi);
2022 
2023 		/* PHY settings are reset on media insertion, reconfigure
2024 		 * PHY to preserve settings.
2025 		 */
2026 		if (test_bit(__ICE_DOWN, vsi->state) &&
2027 		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2028 			return;
2029 
2030 		err = ice_configure_phy(vsi);
2031 		if (!err)
2032 			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2033 
2034 		/* A Link Status Event will be generated; the event handler
2035 		 * will complete bringing the interface up
2036 		 */
2037 	}
2038 }
2039 
2040 /**
2041  * ice_service_task - manage and run subtasks
2042  * @work: pointer to work_struct contained by the PF struct
2043  */
ice_service_task(struct work_struct * work)2044 static void ice_service_task(struct work_struct *work)
2045 {
2046 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2047 	unsigned long start_time = jiffies;
2048 
2049 	/* subtasks */
2050 
2051 	/* process reset requests first */
2052 	ice_reset_subtask(pf);
2053 
2054 	/* bail if a reset/recovery cycle is pending or rebuild failed */
2055 	if (ice_is_reset_in_progress(pf->state) ||
2056 	    test_bit(__ICE_SUSPENDED, pf->state) ||
2057 	    test_bit(__ICE_NEEDS_RESTART, pf->state)) {
2058 		ice_service_task_complete(pf);
2059 		return;
2060 	}
2061 
2062 	ice_clean_adminq_subtask(pf);
2063 	ice_check_media_subtask(pf);
2064 	ice_check_for_hang_subtask(pf);
2065 	ice_sync_fltr_subtask(pf);
2066 	ice_handle_mdd_event(pf);
2067 	ice_watchdog_subtask(pf);
2068 
2069 	if (ice_is_safe_mode(pf)) {
2070 		ice_service_task_complete(pf);
2071 		return;
2072 	}
2073 
2074 	ice_process_vflr_event(pf);
2075 	ice_clean_mailboxq_subtask(pf);
2076 	ice_sync_arfs_fltrs(pf);
2077 	/* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
2078 	ice_service_task_complete(pf);
2079 
2080 	/* If the tasks have taken longer than one service timer period
2081 	 * or there is more work to be done, reset the service timer to
2082 	 * schedule the service task now.
2083 	 */
2084 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2085 	    test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
2086 	    test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
2087 	    test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2088 	    test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
2089 		mod_timer(&pf->serv_tmr, jiffies);
2090 }
2091 
2092 /**
2093  * ice_set_ctrlq_len - helper function to set controlq length
2094  * @hw: pointer to the HW instance
2095  */
ice_set_ctrlq_len(struct ice_hw * hw)2096 static void ice_set_ctrlq_len(struct ice_hw *hw)
2097 {
2098 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2099 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2100 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2101 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2102 	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2103 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2104 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2105 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2106 }
2107 
2108 /**
2109  * ice_schedule_reset - schedule a reset
2110  * @pf: board private structure
2111  * @reset: reset being requested
2112  */
ice_schedule_reset(struct ice_pf * pf,enum ice_reset_req reset)2113 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2114 {
2115 	struct device *dev = ice_pf_to_dev(pf);
2116 
2117 	/* bail out if earlier reset has failed */
2118 	if (test_bit(__ICE_RESET_FAILED, pf->state)) {
2119 		dev_dbg(dev, "earlier reset has failed\n");
2120 		return -EIO;
2121 	}
2122 	/* bail if reset/recovery already in progress */
2123 	if (ice_is_reset_in_progress(pf->state)) {
2124 		dev_dbg(dev, "Reset already in progress\n");
2125 		return -EBUSY;
2126 	}
2127 
2128 	switch (reset) {
2129 	case ICE_RESET_PFR:
2130 		set_bit(__ICE_PFR_REQ, pf->state);
2131 		break;
2132 	case ICE_RESET_CORER:
2133 		set_bit(__ICE_CORER_REQ, pf->state);
2134 		break;
2135 	case ICE_RESET_GLOBR:
2136 		set_bit(__ICE_GLOBR_REQ, pf->state);
2137 		break;
2138 	default:
2139 		return -EINVAL;
2140 	}
2141 
2142 	ice_service_task_schedule(pf);
2143 	return 0;
2144 }
2145 
2146 /**
2147  * ice_irq_affinity_notify - Callback for affinity changes
2148  * @notify: context as to what irq was changed
2149  * @mask: the new affinity mask
2150  *
2151  * This is a callback function used by the irq_set_affinity_notifier function
2152  * so that we may register to receive changes to the irq affinity masks.
2153  */
2154 static void
ice_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)2155 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2156 			const cpumask_t *mask)
2157 {
2158 	struct ice_q_vector *q_vector =
2159 		container_of(notify, struct ice_q_vector, affinity_notify);
2160 
2161 	cpumask_copy(&q_vector->affinity_mask, mask);
2162 }
2163 
2164 /**
2165  * ice_irq_affinity_release - Callback for affinity notifier release
2166  * @ref: internal core kernel usage
2167  *
2168  * This is a callback function used by the irq_set_affinity_notifier function
2169  * to inform the current notification subscriber that they will no longer
2170  * receive notifications.
2171  */
ice_irq_affinity_release(struct kref __always_unused * ref)2172 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2173 
2174 /**
2175  * ice_vsi_ena_irq - Enable IRQ for the given VSI
2176  * @vsi: the VSI being configured
2177  */
ice_vsi_ena_irq(struct ice_vsi * vsi)2178 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2179 {
2180 	struct ice_hw *hw = &vsi->back->hw;
2181 	int i;
2182 
2183 	ice_for_each_q_vector(vsi, i)
2184 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2185 
2186 	ice_flush(hw);
2187 	return 0;
2188 }
2189 
2190 /**
2191  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2192  * @vsi: the VSI being configured
2193  * @basename: name for the vector
2194  */
ice_vsi_req_irq_msix(struct ice_vsi * vsi,char * basename)2195 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2196 {
2197 	int q_vectors = vsi->num_q_vectors;
2198 	struct ice_pf *pf = vsi->back;
2199 	int base = vsi->base_vector;
2200 	struct device *dev;
2201 	int rx_int_idx = 0;
2202 	int tx_int_idx = 0;
2203 	int vector, err;
2204 	int irq_num;
2205 
2206 	dev = ice_pf_to_dev(pf);
2207 	for (vector = 0; vector < q_vectors; vector++) {
2208 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2209 
2210 		irq_num = pf->msix_entries[base + vector].vector;
2211 
2212 		if (q_vector->tx.ring && q_vector->rx.ring) {
2213 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2214 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2215 			tx_int_idx++;
2216 		} else if (q_vector->rx.ring) {
2217 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2218 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2219 		} else if (q_vector->tx.ring) {
2220 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2221 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2222 		} else {
2223 			/* skip this unused q_vector */
2224 			continue;
2225 		}
2226 		err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0,
2227 				       q_vector->name, q_vector);
2228 		if (err) {
2229 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2230 				   err);
2231 			goto free_q_irqs;
2232 		}
2233 
2234 		/* register for affinity change notifications */
2235 		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2236 			struct irq_affinity_notify *affinity_notify;
2237 
2238 			affinity_notify = &q_vector->affinity_notify;
2239 			affinity_notify->notify = ice_irq_affinity_notify;
2240 			affinity_notify->release = ice_irq_affinity_release;
2241 			irq_set_affinity_notifier(irq_num, affinity_notify);
2242 		}
2243 
2244 		/* assign the mask for this irq */
2245 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2246 	}
2247 
2248 	vsi->irqs_ready = true;
2249 	return 0;
2250 
2251 free_q_irqs:
2252 	while (vector) {
2253 		vector--;
2254 		irq_num = pf->msix_entries[base + vector].vector;
2255 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2256 			irq_set_affinity_notifier(irq_num, NULL);
2257 		irq_set_affinity_hint(irq_num, NULL);
2258 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2259 	}
2260 	return err;
2261 }
2262 
2263 /**
2264  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2265  * @vsi: VSI to setup Tx rings used by XDP
2266  *
2267  * Return 0 on success and negative value on error
2268  */
ice_xdp_alloc_setup_rings(struct ice_vsi * vsi)2269 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2270 {
2271 	struct device *dev = ice_pf_to_dev(vsi->back);
2272 	int i;
2273 
2274 	for (i = 0; i < vsi->num_xdp_txq; i++) {
2275 		u16 xdp_q_idx = vsi->alloc_txq + i;
2276 		struct ice_ring *xdp_ring;
2277 
2278 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2279 
2280 		if (!xdp_ring)
2281 			goto free_xdp_rings;
2282 
2283 		xdp_ring->q_index = xdp_q_idx;
2284 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2285 		xdp_ring->ring_active = false;
2286 		xdp_ring->vsi = vsi;
2287 		xdp_ring->netdev = NULL;
2288 		xdp_ring->dev = dev;
2289 		xdp_ring->count = vsi->num_tx_desc;
2290 		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2291 		if (ice_setup_tx_ring(xdp_ring))
2292 			goto free_xdp_rings;
2293 		ice_set_ring_xdp(xdp_ring);
2294 		xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring);
2295 	}
2296 
2297 	return 0;
2298 
2299 free_xdp_rings:
2300 	for (; i >= 0; i--)
2301 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2302 			ice_free_tx_ring(vsi->xdp_rings[i]);
2303 	return -ENOMEM;
2304 }
2305 
2306 /**
2307  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2308  * @vsi: VSI to set the bpf prog on
2309  * @prog: the bpf prog pointer
2310  */
ice_vsi_assign_bpf_prog(struct ice_vsi * vsi,struct bpf_prog * prog)2311 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2312 {
2313 	struct bpf_prog *old_prog;
2314 	int i;
2315 
2316 	old_prog = xchg(&vsi->xdp_prog, prog);
2317 	if (old_prog)
2318 		bpf_prog_put(old_prog);
2319 
2320 	ice_for_each_rxq(vsi, i)
2321 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2322 }
2323 
2324 /**
2325  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2326  * @vsi: VSI to bring up Tx rings used by XDP
2327  * @prog: bpf program that will be assigned to VSI
2328  *
2329  * Return 0 on success and negative value on error
2330  */
ice_prepare_xdp_rings(struct ice_vsi * vsi,struct bpf_prog * prog)2331 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2332 {
2333 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2334 	int xdp_rings_rem = vsi->num_xdp_txq;
2335 	struct ice_pf *pf = vsi->back;
2336 	struct ice_qs_cfg xdp_qs_cfg = {
2337 		.qs_mutex = &pf->avail_q_mutex,
2338 		.pf_map = pf->avail_txqs,
2339 		.pf_map_size = pf->max_pf_txqs,
2340 		.q_count = vsi->num_xdp_txq,
2341 		.scatter_count = ICE_MAX_SCATTER_TXQS,
2342 		.vsi_map = vsi->txq_map,
2343 		.vsi_map_offset = vsi->alloc_txq,
2344 		.mapping_mode = ICE_VSI_MAP_CONTIG
2345 	};
2346 	enum ice_status status;
2347 	struct device *dev;
2348 	int i, v_idx;
2349 
2350 	dev = ice_pf_to_dev(pf);
2351 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2352 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2353 	if (!vsi->xdp_rings)
2354 		return -ENOMEM;
2355 
2356 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2357 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2358 		goto err_map_xdp;
2359 
2360 	if (ice_xdp_alloc_setup_rings(vsi))
2361 		goto clear_xdp_rings;
2362 
2363 	/* follow the logic from ice_vsi_map_rings_to_vectors */
2364 	ice_for_each_q_vector(vsi, v_idx) {
2365 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2366 		int xdp_rings_per_v, q_id, q_base;
2367 
2368 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2369 					       vsi->num_q_vectors - v_idx);
2370 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2371 
2372 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2373 			struct ice_ring *xdp_ring = vsi->xdp_rings[q_id];
2374 
2375 			xdp_ring->q_vector = q_vector;
2376 			xdp_ring->next = q_vector->tx.ring;
2377 			q_vector->tx.ring = xdp_ring;
2378 		}
2379 		xdp_rings_rem -= xdp_rings_per_v;
2380 	}
2381 
2382 	/* omit the scheduler update if in reset path; XDP queues will be
2383 	 * taken into account at the end of ice_vsi_rebuild, where
2384 	 * ice_cfg_vsi_lan is being called
2385 	 */
2386 	if (ice_is_reset_in_progress(pf->state))
2387 		return 0;
2388 
2389 	/* tell the Tx scheduler that right now we have
2390 	 * additional queues
2391 	 */
2392 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2393 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2394 
2395 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2396 				 max_txqs);
2397 	if (status) {
2398 		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n",
2399 			ice_stat_str(status));
2400 		goto clear_xdp_rings;
2401 	}
2402 
2403 	/* assign the prog only when it's not already present on VSI;
2404 	 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2405 	 * VSI rebuild that happens under ethtool -L can expose us to
2406 	 * the bpf_prog refcount issues as we would be swapping same
2407 	 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2408 	 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2409 	 * this is not harmful as dev_xdp_install bumps the refcount
2410 	 * before calling the op exposed by the driver;
2411 	 */
2412 	if (!ice_is_xdp_ena_vsi(vsi))
2413 		ice_vsi_assign_bpf_prog(vsi, prog);
2414 
2415 	return 0;
2416 clear_xdp_rings:
2417 	for (i = 0; i < vsi->num_xdp_txq; i++)
2418 		if (vsi->xdp_rings[i]) {
2419 			kfree_rcu(vsi->xdp_rings[i], rcu);
2420 			vsi->xdp_rings[i] = NULL;
2421 		}
2422 
2423 err_map_xdp:
2424 	mutex_lock(&pf->avail_q_mutex);
2425 	for (i = 0; i < vsi->num_xdp_txq; i++) {
2426 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2427 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2428 	}
2429 	mutex_unlock(&pf->avail_q_mutex);
2430 
2431 	devm_kfree(dev, vsi->xdp_rings);
2432 	return -ENOMEM;
2433 }
2434 
2435 /**
2436  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2437  * @vsi: VSI to remove XDP rings
2438  *
2439  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2440  * resources
2441  */
ice_destroy_xdp_rings(struct ice_vsi * vsi)2442 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2443 {
2444 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2445 	struct ice_pf *pf = vsi->back;
2446 	int i, v_idx;
2447 
2448 	/* q_vectors are freed in reset path so there's no point in detaching
2449 	 * rings; in case of rebuild being triggered not from reset bits
2450 	 * in pf->state won't be set, so additionally check first q_vector
2451 	 * against NULL
2452 	 */
2453 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2454 		goto free_qmap;
2455 
2456 	ice_for_each_q_vector(vsi, v_idx) {
2457 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2458 		struct ice_ring *ring;
2459 
2460 		ice_for_each_ring(ring, q_vector->tx)
2461 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2462 				break;
2463 
2464 		/* restore the value of last node prior to XDP setup */
2465 		q_vector->tx.ring = ring;
2466 	}
2467 
2468 free_qmap:
2469 	mutex_lock(&pf->avail_q_mutex);
2470 	for (i = 0; i < vsi->num_xdp_txq; i++) {
2471 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2472 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2473 	}
2474 	mutex_unlock(&pf->avail_q_mutex);
2475 
2476 	for (i = 0; i < vsi->num_xdp_txq; i++)
2477 		if (vsi->xdp_rings[i]) {
2478 			if (vsi->xdp_rings[i]->desc) {
2479 				synchronize_rcu();
2480 				ice_free_tx_ring(vsi->xdp_rings[i]);
2481 			}
2482 			kfree_rcu(vsi->xdp_rings[i], rcu);
2483 			vsi->xdp_rings[i] = NULL;
2484 		}
2485 
2486 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2487 	vsi->xdp_rings = NULL;
2488 
2489 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2490 		return 0;
2491 
2492 	ice_vsi_assign_bpf_prog(vsi, NULL);
2493 
2494 	/* notify Tx scheduler that we destroyed XDP queues and bring
2495 	 * back the old number of child nodes
2496 	 */
2497 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2498 		max_txqs[i] = vsi->num_txq;
2499 
2500 	/* change number of XDP Tx queues to 0 */
2501 	vsi->num_xdp_txq = 0;
2502 
2503 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2504 			       max_txqs);
2505 }
2506 
2507 /**
2508  * ice_xdp_setup_prog - Add or remove XDP eBPF program
2509  * @vsi: VSI to setup XDP for
2510  * @prog: XDP program
2511  * @extack: netlink extended ack
2512  */
2513 static int
ice_xdp_setup_prog(struct ice_vsi * vsi,struct bpf_prog * prog,struct netlink_ext_ack * extack)2514 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2515 		   struct netlink_ext_ack *extack)
2516 {
2517 	int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2518 	bool if_running = netif_running(vsi->netdev);
2519 	int ret = 0, xdp_ring_err = 0;
2520 
2521 	if (frame_size > vsi->rx_buf_len) {
2522 		NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2523 		return -EOPNOTSUPP;
2524 	}
2525 
2526 	/* need to stop netdev while setting up the program for Rx rings */
2527 	if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) {
2528 		ret = ice_down(vsi);
2529 		if (ret) {
2530 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2531 			return ret;
2532 		}
2533 	}
2534 
2535 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2536 		vsi->num_xdp_txq = vsi->alloc_rxq;
2537 		xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2538 		if (xdp_ring_err)
2539 			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2540 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2541 		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2542 		if (xdp_ring_err)
2543 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2544 	} else {
2545 		/* safe to call even when prog == vsi->xdp_prog as
2546 		 * dev_xdp_install in net/core/dev.c incremented prog's
2547 		 * refcount so corresponding bpf_prog_put won't cause
2548 		 * underflow
2549 		 */
2550 		ice_vsi_assign_bpf_prog(vsi, prog);
2551 	}
2552 
2553 	if (if_running)
2554 		ret = ice_up(vsi);
2555 
2556 	if (!ret && prog && vsi->xsk_pools) {
2557 		int i;
2558 
2559 		ice_for_each_rxq(vsi, i) {
2560 			struct ice_ring *rx_ring = vsi->rx_rings[i];
2561 
2562 			if (rx_ring->xsk_pool)
2563 				napi_schedule(&rx_ring->q_vector->napi);
2564 		}
2565 	}
2566 
2567 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
2568 }
2569 
2570 /**
2571  * ice_xdp_safe_mode - XDP handler for safe mode
2572  * @dev: netdevice
2573  * @xdp: XDP command
2574  */
ice_xdp_safe_mode(struct net_device __always_unused * dev,struct netdev_bpf * xdp)2575 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2576 			     struct netdev_bpf *xdp)
2577 {
2578 	NL_SET_ERR_MSG_MOD(xdp->extack,
2579 			   "Please provide working DDP firmware package in order to use XDP\n"
2580 			   "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2581 	return -EOPNOTSUPP;
2582 }
2583 
2584 /**
2585  * ice_xdp - implements XDP handler
2586  * @dev: netdevice
2587  * @xdp: XDP command
2588  */
ice_xdp(struct net_device * dev,struct netdev_bpf * xdp)2589 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2590 {
2591 	struct ice_netdev_priv *np = netdev_priv(dev);
2592 	struct ice_vsi *vsi = np->vsi;
2593 
2594 	if (vsi->type != ICE_VSI_PF) {
2595 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2596 		return -EINVAL;
2597 	}
2598 
2599 	switch (xdp->command) {
2600 	case XDP_SETUP_PROG:
2601 		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2602 	case XDP_SETUP_XSK_POOL:
2603 		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2604 					  xdp->xsk.queue_id);
2605 	default:
2606 		return -EINVAL;
2607 	}
2608 }
2609 
2610 /**
2611  * ice_ena_misc_vector - enable the non-queue interrupts
2612  * @pf: board private structure
2613  */
ice_ena_misc_vector(struct ice_pf * pf)2614 static void ice_ena_misc_vector(struct ice_pf *pf)
2615 {
2616 	struct ice_hw *hw = &pf->hw;
2617 	u32 val;
2618 
2619 	/* Disable anti-spoof detection interrupt to prevent spurious event
2620 	 * interrupts during a function reset. Anti-spoof functionally is
2621 	 * still supported.
2622 	 */
2623 	val = rd32(hw, GL_MDCK_TX_TDPU);
2624 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2625 	wr32(hw, GL_MDCK_TX_TDPU, val);
2626 
2627 	/* clear things first */
2628 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
2629 	rd32(hw, PFINT_OICR);		/* read to clear */
2630 
2631 	val = (PFINT_OICR_ECC_ERR_M |
2632 	       PFINT_OICR_MAL_DETECT_M |
2633 	       PFINT_OICR_GRST_M |
2634 	       PFINT_OICR_PCI_EXCEPTION_M |
2635 	       PFINT_OICR_VFLR_M |
2636 	       PFINT_OICR_HMC_ERR_M |
2637 	       PFINT_OICR_PE_CRITERR_M);
2638 
2639 	wr32(hw, PFINT_OICR_ENA, val);
2640 
2641 	/* SW_ITR_IDX = 0, but don't change INTENA */
2642 	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2643 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2644 }
2645 
2646 /**
2647  * ice_misc_intr - misc interrupt handler
2648  * @irq: interrupt number
2649  * @data: pointer to a q_vector
2650  */
ice_misc_intr(int __always_unused irq,void * data)2651 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2652 {
2653 	struct ice_pf *pf = (struct ice_pf *)data;
2654 	struct ice_hw *hw = &pf->hw;
2655 	irqreturn_t ret = IRQ_NONE;
2656 	struct device *dev;
2657 	u32 oicr, ena_mask;
2658 
2659 	dev = ice_pf_to_dev(pf);
2660 	set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
2661 	set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
2662 
2663 	oicr = rd32(hw, PFINT_OICR);
2664 	ena_mask = rd32(hw, PFINT_OICR_ENA);
2665 
2666 	if (oicr & PFINT_OICR_SWINT_M) {
2667 		ena_mask &= ~PFINT_OICR_SWINT_M;
2668 		pf->sw_int_count++;
2669 	}
2670 
2671 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
2672 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2673 		set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
2674 	}
2675 	if (oicr & PFINT_OICR_VFLR_M) {
2676 		/* disable any further VFLR event notifications */
2677 		if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) {
2678 			u32 reg = rd32(hw, PFINT_OICR_ENA);
2679 
2680 			reg &= ~PFINT_OICR_VFLR_M;
2681 			wr32(hw, PFINT_OICR_ENA, reg);
2682 		} else {
2683 			ena_mask &= ~PFINT_OICR_VFLR_M;
2684 			set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
2685 		}
2686 	}
2687 
2688 	if (oicr & PFINT_OICR_GRST_M) {
2689 		u32 reset;
2690 
2691 		/* we have a reset warning */
2692 		ena_mask &= ~PFINT_OICR_GRST_M;
2693 		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2694 			GLGEN_RSTAT_RESET_TYPE_S;
2695 
2696 		if (reset == ICE_RESET_CORER)
2697 			pf->corer_count++;
2698 		else if (reset == ICE_RESET_GLOBR)
2699 			pf->globr_count++;
2700 		else if (reset == ICE_RESET_EMPR)
2701 			pf->empr_count++;
2702 		else
2703 			dev_dbg(dev, "Invalid reset type %d\n", reset);
2704 
2705 		/* If a reset cycle isn't already in progress, we set a bit in
2706 		 * pf->state so that the service task can start a reset/rebuild.
2707 		 * We also make note of which reset happened so that peer
2708 		 * devices/drivers can be informed.
2709 		 */
2710 		if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
2711 			if (reset == ICE_RESET_CORER)
2712 				set_bit(__ICE_CORER_RECV, pf->state);
2713 			else if (reset == ICE_RESET_GLOBR)
2714 				set_bit(__ICE_GLOBR_RECV, pf->state);
2715 			else
2716 				set_bit(__ICE_EMPR_RECV, pf->state);
2717 
2718 			/* There are couple of different bits at play here.
2719 			 * hw->reset_ongoing indicates whether the hardware is
2720 			 * in reset. This is set to true when a reset interrupt
2721 			 * is received and set back to false after the driver
2722 			 * has determined that the hardware is out of reset.
2723 			 *
2724 			 * __ICE_RESET_OICR_RECV in pf->state indicates
2725 			 * that a post reset rebuild is required before the
2726 			 * driver is operational again. This is set above.
2727 			 *
2728 			 * As this is the start of the reset/rebuild cycle, set
2729 			 * both to indicate that.
2730 			 */
2731 			hw->reset_ongoing = true;
2732 		}
2733 	}
2734 
2735 	if (oicr & PFINT_OICR_HMC_ERR_M) {
2736 		ena_mask &= ~PFINT_OICR_HMC_ERR_M;
2737 		dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n",
2738 			rd32(hw, PFHMC_ERRORINFO),
2739 			rd32(hw, PFHMC_ERRORDATA));
2740 	}
2741 
2742 	/* Report any remaining unexpected interrupts */
2743 	oicr &= ena_mask;
2744 	if (oicr) {
2745 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
2746 		/* If a critical error is pending there is no choice but to
2747 		 * reset the device.
2748 		 */
2749 		if (oicr & (PFINT_OICR_PE_CRITERR_M |
2750 			    PFINT_OICR_PCI_EXCEPTION_M |
2751 			    PFINT_OICR_ECC_ERR_M)) {
2752 			set_bit(__ICE_PFR_REQ, pf->state);
2753 			ice_service_task_schedule(pf);
2754 		}
2755 	}
2756 	ret = IRQ_HANDLED;
2757 
2758 	ice_service_task_schedule(pf);
2759 	ice_irq_dynamic_ena(hw, NULL, NULL);
2760 
2761 	return ret;
2762 }
2763 
2764 /**
2765  * ice_dis_ctrlq_interrupts - disable control queue interrupts
2766  * @hw: pointer to HW structure
2767  */
ice_dis_ctrlq_interrupts(struct ice_hw * hw)2768 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
2769 {
2770 	/* disable Admin queue Interrupt causes */
2771 	wr32(hw, PFINT_FW_CTL,
2772 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
2773 
2774 	/* disable Mailbox queue Interrupt causes */
2775 	wr32(hw, PFINT_MBX_CTL,
2776 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
2777 
2778 	/* disable Control queue Interrupt causes */
2779 	wr32(hw, PFINT_OICR_CTL,
2780 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
2781 
2782 	ice_flush(hw);
2783 }
2784 
2785 /**
2786  * ice_free_irq_msix_misc - Unroll misc vector setup
2787  * @pf: board private structure
2788  */
ice_free_irq_msix_misc(struct ice_pf * pf)2789 static void ice_free_irq_msix_misc(struct ice_pf *pf)
2790 {
2791 	struct ice_hw *hw = &pf->hw;
2792 
2793 	ice_dis_ctrlq_interrupts(hw);
2794 
2795 	/* disable OICR interrupt */
2796 	wr32(hw, PFINT_OICR_ENA, 0);
2797 	ice_flush(hw);
2798 
2799 	if (pf->msix_entries) {
2800 		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2801 		devm_free_irq(ice_pf_to_dev(pf),
2802 			      pf->msix_entries[pf->oicr_idx].vector, pf);
2803 	}
2804 
2805 	pf->num_avail_sw_msix += 1;
2806 	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
2807 }
2808 
2809 /**
2810  * ice_ena_ctrlq_interrupts - enable control queue interrupts
2811  * @hw: pointer to HW structure
2812  * @reg_idx: HW vector index to associate the control queue interrupts with
2813  */
ice_ena_ctrlq_interrupts(struct ice_hw * hw,u16 reg_idx)2814 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
2815 {
2816 	u32 val;
2817 
2818 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2819 	       PFINT_OICR_CTL_CAUSE_ENA_M);
2820 	wr32(hw, PFINT_OICR_CTL, val);
2821 
2822 	/* enable Admin queue Interrupt causes */
2823 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2824 	       PFINT_FW_CTL_CAUSE_ENA_M);
2825 	wr32(hw, PFINT_FW_CTL, val);
2826 
2827 	/* enable Mailbox queue Interrupt causes */
2828 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
2829 	       PFINT_MBX_CTL_CAUSE_ENA_M);
2830 	wr32(hw, PFINT_MBX_CTL, val);
2831 
2832 	ice_flush(hw);
2833 }
2834 
2835 /**
2836  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2837  * @pf: board private structure
2838  *
2839  * This sets up the handler for MSIX 0, which is used to manage the
2840  * non-queue interrupts, e.g. AdminQ and errors. This is not used
2841  * when in MSI or Legacy interrupt mode.
2842  */
ice_req_irq_msix_misc(struct ice_pf * pf)2843 static int ice_req_irq_msix_misc(struct ice_pf *pf)
2844 {
2845 	struct device *dev = ice_pf_to_dev(pf);
2846 	struct ice_hw *hw = &pf->hw;
2847 	int oicr_idx, err = 0;
2848 
2849 	if (!pf->int_name[0])
2850 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2851 			 dev_driver_string(dev), dev_name(dev));
2852 
2853 	/* Do not request IRQ but do enable OICR interrupt since settings are
2854 	 * lost during reset. Note that this function is called only during
2855 	 * rebuild path and not while reset is in progress.
2856 	 */
2857 	if (ice_is_reset_in_progress(pf->state))
2858 		goto skip_req_irq;
2859 
2860 	/* reserve one vector in irq_tracker for misc interrupts */
2861 	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2862 	if (oicr_idx < 0)
2863 		return oicr_idx;
2864 
2865 	pf->num_avail_sw_msix -= 1;
2866 	pf->oicr_idx = (u16)oicr_idx;
2867 
2868 	err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
2869 			       ice_misc_intr, 0, pf->int_name, pf);
2870 	if (err) {
2871 		dev_err(dev, "devm_request_irq for %s failed: %d\n",
2872 			pf->int_name, err);
2873 		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2874 		pf->num_avail_sw_msix += 1;
2875 		return err;
2876 	}
2877 
2878 skip_req_irq:
2879 	ice_ena_misc_vector(pf);
2880 
2881 	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
2882 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
2883 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
2884 
2885 	ice_flush(hw);
2886 	ice_irq_dynamic_ena(hw, NULL, NULL);
2887 
2888 	return 0;
2889 }
2890 
2891 /**
2892  * ice_napi_add - register NAPI handler for the VSI
2893  * @vsi: VSI for which NAPI handler is to be registered
2894  *
2895  * This function is only called in the driver's load path. Registering the NAPI
2896  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2897  * reset/rebuild, etc.)
2898  */
ice_napi_add(struct ice_vsi * vsi)2899 static void ice_napi_add(struct ice_vsi *vsi)
2900 {
2901 	int v_idx;
2902 
2903 	if (!vsi->netdev)
2904 		return;
2905 
2906 	ice_for_each_q_vector(vsi, v_idx)
2907 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
2908 			       ice_napi_poll, NAPI_POLL_WEIGHT);
2909 }
2910 
2911 /**
2912  * ice_set_ops - set netdev and ethtools ops for the given netdev
2913  * @netdev: netdev instance
2914  */
ice_set_ops(struct net_device * netdev)2915 static void ice_set_ops(struct net_device *netdev)
2916 {
2917 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2918 
2919 	if (ice_is_safe_mode(pf)) {
2920 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
2921 		ice_set_ethtool_safe_mode_ops(netdev);
2922 		return;
2923 	}
2924 
2925 	netdev->netdev_ops = &ice_netdev_ops;
2926 	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
2927 	ice_set_ethtool_ops(netdev);
2928 }
2929 
2930 /**
2931  * ice_set_netdev_features - set features for the given netdev
2932  * @netdev: netdev instance
2933  */
ice_set_netdev_features(struct net_device * netdev)2934 static void ice_set_netdev_features(struct net_device *netdev)
2935 {
2936 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2937 	netdev_features_t csumo_features;
2938 	netdev_features_t vlano_features;
2939 	netdev_features_t dflt_features;
2940 	netdev_features_t tso_features;
2941 
2942 	if (ice_is_safe_mode(pf)) {
2943 		/* safe mode */
2944 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
2945 		netdev->hw_features = netdev->features;
2946 		return;
2947 	}
2948 
2949 	dflt_features = NETIF_F_SG	|
2950 			NETIF_F_HIGHDMA	|
2951 			NETIF_F_NTUPLE	|
2952 			NETIF_F_RXHASH;
2953 
2954 	csumo_features = NETIF_F_RXCSUM	  |
2955 			 NETIF_F_IP_CSUM  |
2956 			 NETIF_F_SCTP_CRC |
2957 			 NETIF_F_IPV6_CSUM;
2958 
2959 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
2960 			 NETIF_F_HW_VLAN_CTAG_TX     |
2961 			 NETIF_F_HW_VLAN_CTAG_RX;
2962 
2963 	tso_features = NETIF_F_TSO			|
2964 		       NETIF_F_TSO_ECN			|
2965 		       NETIF_F_TSO6			|
2966 		       NETIF_F_GSO_GRE			|
2967 		       NETIF_F_GSO_UDP_TUNNEL		|
2968 		       NETIF_F_GSO_GRE_CSUM		|
2969 		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
2970 		       NETIF_F_GSO_PARTIAL		|
2971 		       NETIF_F_GSO_IPXIP4		|
2972 		       NETIF_F_GSO_IPXIP6		|
2973 		       NETIF_F_GSO_UDP_L4;
2974 
2975 	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
2976 					NETIF_F_GSO_GRE_CSUM;
2977 	/* set features that user can change */
2978 	netdev->hw_features = dflt_features | csumo_features |
2979 			      vlano_features | tso_features;
2980 
2981 	/* add support for HW_CSUM on packets with MPLS header */
2982 	netdev->mpls_features =  NETIF_F_HW_CSUM;
2983 
2984 	/* enable features */
2985 	netdev->features |= netdev->hw_features;
2986 	/* encap and VLAN devices inherit default, csumo and tso features */
2987 	netdev->hw_enc_features |= dflt_features | csumo_features |
2988 				   tso_features;
2989 	netdev->vlan_features |= dflt_features | csumo_features |
2990 				 tso_features;
2991 }
2992 
2993 /**
2994  * ice_cfg_netdev - Allocate, configure and register a netdev
2995  * @vsi: the VSI associated with the new netdev
2996  *
2997  * Returns 0 on success, negative value on failure
2998  */
ice_cfg_netdev(struct ice_vsi * vsi)2999 static int ice_cfg_netdev(struct ice_vsi *vsi)
3000 {
3001 	struct ice_pf *pf = vsi->back;
3002 	struct ice_netdev_priv *np;
3003 	struct net_device *netdev;
3004 	u8 mac_addr[ETH_ALEN];
3005 	int err;
3006 
3007 	err = ice_devlink_create_port(vsi);
3008 	if (err)
3009 		return err;
3010 
3011 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
3012 				    vsi->alloc_rxq);
3013 	if (!netdev) {
3014 		err = -ENOMEM;
3015 		goto err_destroy_devlink_port;
3016 	}
3017 
3018 	vsi->netdev = netdev;
3019 	np = netdev_priv(netdev);
3020 	np->vsi = vsi;
3021 
3022 	ice_set_netdev_features(netdev);
3023 
3024 	ice_set_ops(netdev);
3025 
3026 	if (vsi->type == ICE_VSI_PF) {
3027 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf));
3028 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3029 		ether_addr_copy(netdev->dev_addr, mac_addr);
3030 		ether_addr_copy(netdev->perm_addr, mac_addr);
3031 	}
3032 
3033 	netdev->priv_flags |= IFF_UNICAST_FLT;
3034 
3035 	/* Setup netdev TC information */
3036 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3037 
3038 	/* setup watchdog timeout value to be 5 second */
3039 	netdev->watchdog_timeo = 5 * HZ;
3040 
3041 	netdev->min_mtu = ETH_MIN_MTU;
3042 	netdev->max_mtu = ICE_MAX_MTU;
3043 
3044 	err = register_netdev(vsi->netdev);
3045 	if (err)
3046 		goto err_free_netdev;
3047 
3048 	devlink_port_type_eth_set(&vsi->devlink_port, vsi->netdev);
3049 
3050 	netif_carrier_off(vsi->netdev);
3051 
3052 	/* make sure transmit queues start off as stopped */
3053 	netif_tx_stop_all_queues(vsi->netdev);
3054 
3055 	return 0;
3056 
3057 err_free_netdev:
3058 	free_netdev(vsi->netdev);
3059 	vsi->netdev = NULL;
3060 err_destroy_devlink_port:
3061 	ice_devlink_destroy_port(vsi);
3062 	return err;
3063 }
3064 
3065 /**
3066  * ice_fill_rss_lut - Fill the RSS lookup table with default values
3067  * @lut: Lookup table
3068  * @rss_table_size: Lookup table size
3069  * @rss_size: Range of queue number for hashing
3070  */
ice_fill_rss_lut(u8 * lut,u16 rss_table_size,u16 rss_size)3071 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3072 {
3073 	u16 i;
3074 
3075 	for (i = 0; i < rss_table_size; i++)
3076 		lut[i] = i % rss_size;
3077 }
3078 
3079 /**
3080  * ice_pf_vsi_setup - Set up a PF VSI
3081  * @pf: board private structure
3082  * @pi: pointer to the port_info instance
3083  *
3084  * Returns pointer to the successfully allocated VSI software struct
3085  * on success, otherwise returns NULL on failure.
3086  */
3087 static struct ice_vsi *
ice_pf_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3088 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3089 {
3090 	return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
3091 }
3092 
3093 /**
3094  * ice_ctrl_vsi_setup - Set up a control VSI
3095  * @pf: board private structure
3096  * @pi: pointer to the port_info instance
3097  *
3098  * Returns pointer to the successfully allocated VSI software struct
3099  * on success, otherwise returns NULL on failure.
3100  */
3101 static struct ice_vsi *
ice_ctrl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3102 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3103 {
3104 	return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID);
3105 }
3106 
3107 /**
3108  * ice_lb_vsi_setup - Set up a loopback VSI
3109  * @pf: board private structure
3110  * @pi: pointer to the port_info instance
3111  *
3112  * Returns pointer to the successfully allocated VSI software struct
3113  * on success, otherwise returns NULL on failure.
3114  */
3115 struct ice_vsi *
ice_lb_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3116 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3117 {
3118 	return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
3119 }
3120 
3121 /**
3122  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3123  * @netdev: network interface to be adjusted
3124  * @proto: unused protocol
3125  * @vid: VLAN ID to be added
3126  *
3127  * net_device_ops implementation for adding VLAN IDs
3128  */
3129 static int
ice_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)3130 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
3131 		    u16 vid)
3132 {
3133 	struct ice_netdev_priv *np = netdev_priv(netdev);
3134 	struct ice_vsi *vsi = np->vsi;
3135 	int ret;
3136 
3137 	if (vid >= VLAN_N_VID) {
3138 		netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
3139 			   vid, VLAN_N_VID);
3140 		return -EINVAL;
3141 	}
3142 
3143 	if (vsi->info.pvid)
3144 		return -EINVAL;
3145 
3146 	/* VLAN 0 is added by default during load/reset */
3147 	if (!vid)
3148 		return 0;
3149 
3150 	/* Enable VLAN pruning when a VLAN other than 0 is added */
3151 	if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
3152 		ret = ice_cfg_vlan_pruning(vsi, true, false);
3153 		if (ret)
3154 			return ret;
3155 	}
3156 
3157 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3158 	 * packets aren't pruned by the device's internal switch on Rx
3159 	 */
3160 	ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
3161 	if (!ret) {
3162 		vsi->vlan_ena = true;
3163 		set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3164 	}
3165 
3166 	return ret;
3167 }
3168 
3169 /**
3170  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3171  * @netdev: network interface to be adjusted
3172  * @proto: unused protocol
3173  * @vid: VLAN ID to be removed
3174  *
3175  * net_device_ops implementation for removing VLAN IDs
3176  */
3177 static int
ice_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)3178 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
3179 		     u16 vid)
3180 {
3181 	struct ice_netdev_priv *np = netdev_priv(netdev);
3182 	struct ice_vsi *vsi = np->vsi;
3183 	int ret;
3184 
3185 	if (vsi->info.pvid)
3186 		return -EINVAL;
3187 
3188 	/* don't allow removal of VLAN 0 */
3189 	if (!vid)
3190 		return 0;
3191 
3192 	/* Make sure ice_vsi_kill_vlan is successful before updating VLAN
3193 	 * information
3194 	 */
3195 	ret = ice_vsi_kill_vlan(vsi, vid);
3196 	if (ret)
3197 		return ret;
3198 
3199 	/* Disable pruning when VLAN 0 is the only VLAN rule */
3200 	if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
3201 		ret = ice_cfg_vlan_pruning(vsi, false, false);
3202 
3203 	vsi->vlan_ena = false;
3204 	set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3205 	return ret;
3206 }
3207 
3208 /**
3209  * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3210  * @pf: board private structure
3211  *
3212  * Returns 0 on success, negative value on failure
3213  */
ice_setup_pf_sw(struct ice_pf * pf)3214 static int ice_setup_pf_sw(struct ice_pf *pf)
3215 {
3216 	struct ice_vsi *vsi;
3217 	int status = 0;
3218 
3219 	if (ice_is_reset_in_progress(pf->state))
3220 		return -EBUSY;
3221 
3222 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3223 	if (!vsi)
3224 		return -ENOMEM;
3225 
3226 	status = ice_cfg_netdev(vsi);
3227 	if (status) {
3228 		status = -ENODEV;
3229 		goto unroll_vsi_setup;
3230 	}
3231 	/* netdev has to be configured before setting frame size */
3232 	ice_vsi_cfg_frame_size(vsi);
3233 
3234 	/* Setup DCB netlink interface */
3235 	ice_dcbnl_setup(vsi);
3236 
3237 	/* registering the NAPI handler requires both the queues and
3238 	 * netdev to be created, which are done in ice_pf_vsi_setup()
3239 	 * and ice_cfg_netdev() respectively
3240 	 */
3241 	ice_napi_add(vsi);
3242 
3243 	status = ice_set_cpu_rx_rmap(vsi);
3244 	if (status) {
3245 		dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n",
3246 			vsi->vsi_num, status);
3247 		status = -EINVAL;
3248 		goto unroll_napi_add;
3249 	}
3250 	status = ice_init_mac_fltr(pf);
3251 	if (status)
3252 		goto free_cpu_rx_map;
3253 
3254 	return status;
3255 
3256 free_cpu_rx_map:
3257 	ice_free_cpu_rx_rmap(vsi);
3258 
3259 unroll_napi_add:
3260 	if (vsi) {
3261 		ice_napi_del(vsi);
3262 		if (vsi->netdev) {
3263 			if (vsi->netdev->reg_state == NETREG_REGISTERED)
3264 				unregister_netdev(vsi->netdev);
3265 			free_netdev(vsi->netdev);
3266 			vsi->netdev = NULL;
3267 		}
3268 	}
3269 
3270 unroll_vsi_setup:
3271 	ice_vsi_release(vsi);
3272 	return status;
3273 }
3274 
3275 /**
3276  * ice_get_avail_q_count - Get count of queues in use
3277  * @pf_qmap: bitmap to get queue use count from
3278  * @lock: pointer to a mutex that protects access to pf_qmap
3279  * @size: size of the bitmap
3280  */
3281 static u16
ice_get_avail_q_count(unsigned long * pf_qmap,struct mutex * lock,u16 size)3282 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3283 {
3284 	unsigned long bit;
3285 	u16 count = 0;
3286 
3287 	mutex_lock(lock);
3288 	for_each_clear_bit(bit, pf_qmap, size)
3289 		count++;
3290 	mutex_unlock(lock);
3291 
3292 	return count;
3293 }
3294 
3295 /**
3296  * ice_get_avail_txq_count - Get count of Tx queues in use
3297  * @pf: pointer to an ice_pf instance
3298  */
ice_get_avail_txq_count(struct ice_pf * pf)3299 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3300 {
3301 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3302 				     pf->max_pf_txqs);
3303 }
3304 
3305 /**
3306  * ice_get_avail_rxq_count - Get count of Rx queues in use
3307  * @pf: pointer to an ice_pf instance
3308  */
ice_get_avail_rxq_count(struct ice_pf * pf)3309 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3310 {
3311 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3312 				     pf->max_pf_rxqs);
3313 }
3314 
3315 /**
3316  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3317  * @pf: board private structure to initialize
3318  */
ice_deinit_pf(struct ice_pf * pf)3319 static void ice_deinit_pf(struct ice_pf *pf)
3320 {
3321 	ice_service_task_stop(pf);
3322 	mutex_destroy(&pf->sw_mutex);
3323 	mutex_destroy(&pf->tc_mutex);
3324 	mutex_destroy(&pf->avail_q_mutex);
3325 
3326 	if (pf->avail_txqs) {
3327 		bitmap_free(pf->avail_txqs);
3328 		pf->avail_txqs = NULL;
3329 	}
3330 
3331 	if (pf->avail_rxqs) {
3332 		bitmap_free(pf->avail_rxqs);
3333 		pf->avail_rxqs = NULL;
3334 	}
3335 }
3336 
3337 /**
3338  * ice_set_pf_caps - set PFs capability flags
3339  * @pf: pointer to the PF instance
3340  */
ice_set_pf_caps(struct ice_pf * pf)3341 static void ice_set_pf_caps(struct ice_pf *pf)
3342 {
3343 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3344 
3345 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3346 	if (func_caps->common_cap.dcb)
3347 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3348 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3349 	if (func_caps->common_cap.sr_iov_1_1) {
3350 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3351 		pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
3352 					      ICE_MAX_VF_COUNT);
3353 	}
3354 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3355 	if (func_caps->common_cap.rss_table_size)
3356 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3357 
3358 	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3359 	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3360 		u16 unused;
3361 
3362 		/* ctrl_vsi_idx will be set to a valid value when flow director
3363 		 * is setup by ice_init_fdir
3364 		 */
3365 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3366 		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3367 		/* force guaranteed filter pool for PF */
3368 		ice_alloc_fd_guar_item(&pf->hw, &unused,
3369 				       func_caps->fd_fltr_guar);
3370 		/* force shared filter pool for PF */
3371 		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3372 				       func_caps->fd_fltr_best_effort);
3373 	}
3374 
3375 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3376 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3377 }
3378 
3379 /**
3380  * ice_init_pf - Initialize general software structures (struct ice_pf)
3381  * @pf: board private structure to initialize
3382  */
ice_init_pf(struct ice_pf * pf)3383 static int ice_init_pf(struct ice_pf *pf)
3384 {
3385 	ice_set_pf_caps(pf);
3386 
3387 	mutex_init(&pf->sw_mutex);
3388 	mutex_init(&pf->tc_mutex);
3389 
3390 	INIT_HLIST_HEAD(&pf->aq_wait_list);
3391 	spin_lock_init(&pf->aq_wait_lock);
3392 	init_waitqueue_head(&pf->aq_wait_queue);
3393 
3394 	/* setup service timer and periodic service task */
3395 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3396 	pf->serv_tmr_period = HZ;
3397 	INIT_WORK(&pf->serv_task, ice_service_task);
3398 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
3399 
3400 	mutex_init(&pf->avail_q_mutex);
3401 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3402 	if (!pf->avail_txqs)
3403 		return -ENOMEM;
3404 
3405 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3406 	if (!pf->avail_rxqs) {
3407 		bitmap_free(pf->avail_txqs);
3408 		pf->avail_txqs = NULL;
3409 		return -ENOMEM;
3410 	}
3411 
3412 	return 0;
3413 }
3414 
3415 /**
3416  * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3417  * @pf: board private structure
3418  *
3419  * compute the number of MSIX vectors required (v_budget) and request from
3420  * the OS. Return the number of vectors reserved or negative on failure
3421  */
ice_ena_msix_range(struct ice_pf * pf)3422 static int ice_ena_msix_range(struct ice_pf *pf)
3423 {
3424 	struct device *dev = ice_pf_to_dev(pf);
3425 	int v_left, v_actual, v_budget = 0;
3426 	int needed, err, i;
3427 
3428 	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3429 
3430 	/* reserve one vector for miscellaneous handler */
3431 	needed = 1;
3432 	if (v_left < needed)
3433 		goto no_hw_vecs_left_err;
3434 	v_budget += needed;
3435 	v_left -= needed;
3436 
3437 	/* reserve vectors for LAN traffic */
3438 	needed = min_t(int, num_online_cpus(), v_left);
3439 	if (v_left < needed)
3440 		goto no_hw_vecs_left_err;
3441 	pf->num_lan_msix = needed;
3442 	v_budget += needed;
3443 	v_left -= needed;
3444 
3445 	/* reserve one vector for flow director */
3446 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3447 		needed = ICE_FDIR_MSIX;
3448 		if (v_left < needed)
3449 			goto no_hw_vecs_left_err;
3450 		v_budget += needed;
3451 		v_left -= needed;
3452 	}
3453 
3454 	pf->msix_entries = devm_kcalloc(dev, v_budget,
3455 					sizeof(*pf->msix_entries), GFP_KERNEL);
3456 
3457 	if (!pf->msix_entries) {
3458 		err = -ENOMEM;
3459 		goto exit_err;
3460 	}
3461 
3462 	for (i = 0; i < v_budget; i++)
3463 		pf->msix_entries[i].entry = i;
3464 
3465 	/* actually reserve the vectors */
3466 	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3467 					 ICE_MIN_MSIX, v_budget);
3468 
3469 	if (v_actual < 0) {
3470 		dev_err(dev, "unable to reserve MSI-X vectors\n");
3471 		err = v_actual;
3472 		goto msix_err;
3473 	}
3474 
3475 	if (v_actual < v_budget) {
3476 		dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
3477 			 v_budget, v_actual);
3478 
3479 		if (v_actual < ICE_MIN_MSIX) {
3480 			/* error if we can't get minimum vectors */
3481 			pci_disable_msix(pf->pdev);
3482 			err = -ERANGE;
3483 			goto msix_err;
3484 		} else {
3485 			pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
3486 		}
3487 	}
3488 
3489 	return v_actual;
3490 
3491 msix_err:
3492 	devm_kfree(dev, pf->msix_entries);
3493 	goto exit_err;
3494 
3495 no_hw_vecs_left_err:
3496 	dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
3497 		needed, v_left);
3498 	err = -ERANGE;
3499 exit_err:
3500 	pf->num_lan_msix = 0;
3501 	return err;
3502 }
3503 
3504 /**
3505  * ice_dis_msix - Disable MSI-X interrupt setup in OS
3506  * @pf: board private structure
3507  */
ice_dis_msix(struct ice_pf * pf)3508 static void ice_dis_msix(struct ice_pf *pf)
3509 {
3510 	pci_disable_msix(pf->pdev);
3511 	devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
3512 	pf->msix_entries = NULL;
3513 }
3514 
3515 /**
3516  * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3517  * @pf: board private structure
3518  */
ice_clear_interrupt_scheme(struct ice_pf * pf)3519 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3520 {
3521 	ice_dis_msix(pf);
3522 
3523 	if (pf->irq_tracker) {
3524 		devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
3525 		pf->irq_tracker = NULL;
3526 	}
3527 }
3528 
3529 /**
3530  * ice_init_interrupt_scheme - Determine proper interrupt scheme
3531  * @pf: board private structure to initialize
3532  */
ice_init_interrupt_scheme(struct ice_pf * pf)3533 static int ice_init_interrupt_scheme(struct ice_pf *pf)
3534 {
3535 	int vectors;
3536 
3537 	vectors = ice_ena_msix_range(pf);
3538 
3539 	if (vectors < 0)
3540 		return vectors;
3541 
3542 	/* set up vector assignment tracking */
3543 	pf->irq_tracker =
3544 		devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) +
3545 			     (sizeof(u16) * vectors), GFP_KERNEL);
3546 	if (!pf->irq_tracker) {
3547 		ice_dis_msix(pf);
3548 		return -ENOMEM;
3549 	}
3550 
3551 	/* populate SW interrupts pool with number of OS granted IRQs. */
3552 	pf->num_avail_sw_msix = (u16)vectors;
3553 	pf->irq_tracker->num_entries = (u16)vectors;
3554 	pf->irq_tracker->end = pf->irq_tracker->num_entries;
3555 
3556 	return 0;
3557 }
3558 
3559 /**
3560  * ice_is_wol_supported - check if WoL is supported
3561  * @hw: pointer to hardware info
3562  *
3563  * Check if WoL is supported based on the HW configuration.
3564  * Returns true if NVM supports and enables WoL for this port, false otherwise
3565  */
ice_is_wol_supported(struct ice_hw * hw)3566 bool ice_is_wol_supported(struct ice_hw *hw)
3567 {
3568 	u16 wol_ctrl;
3569 
3570 	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3571 	 * word) indicates WoL is not supported on the corresponding PF ID.
3572 	 */
3573 	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3574 		return false;
3575 
3576 	return !(BIT(hw->port_info->lport) & wol_ctrl);
3577 }
3578 
3579 /**
3580  * ice_vsi_recfg_qs - Change the number of queues on a VSI
3581  * @vsi: VSI being changed
3582  * @new_rx: new number of Rx queues
3583  * @new_tx: new number of Tx queues
3584  *
3585  * Only change the number of queues if new_tx, or new_rx is non-0.
3586  *
3587  * Returns 0 on success.
3588  */
ice_vsi_recfg_qs(struct ice_vsi * vsi,int new_rx,int new_tx)3589 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
3590 {
3591 	struct ice_pf *pf = vsi->back;
3592 	int err = 0, timeout = 50;
3593 
3594 	if (!new_rx && !new_tx)
3595 		return -EINVAL;
3596 
3597 	while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) {
3598 		timeout--;
3599 		if (!timeout)
3600 			return -EBUSY;
3601 		usleep_range(1000, 2000);
3602 	}
3603 
3604 	if (new_tx)
3605 		vsi->req_txq = (u16)new_tx;
3606 	if (new_rx)
3607 		vsi->req_rxq = (u16)new_rx;
3608 
3609 	/* set for the next time the netdev is started */
3610 	if (!netif_running(vsi->netdev)) {
3611 		ice_vsi_rebuild(vsi, false);
3612 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3613 		goto done;
3614 	}
3615 
3616 	ice_vsi_close(vsi);
3617 	ice_vsi_rebuild(vsi, false);
3618 	ice_pf_dcb_recfg(pf);
3619 	ice_vsi_open(vsi);
3620 done:
3621 	clear_bit(__ICE_CFG_BUSY, pf->state);
3622 	return err;
3623 }
3624 
3625 /**
3626  * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
3627  * @pf: PF to configure
3628  *
3629  * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
3630  * VSI can still Tx/Rx VLAN tagged packets.
3631  */
ice_set_safe_mode_vlan_cfg(struct ice_pf * pf)3632 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
3633 {
3634 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
3635 	struct ice_vsi_ctx *ctxt;
3636 	enum ice_status status;
3637 	struct ice_hw *hw;
3638 
3639 	if (!vsi)
3640 		return;
3641 
3642 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
3643 	if (!ctxt)
3644 		return;
3645 
3646 	hw = &pf->hw;
3647 	ctxt->info = vsi->info;
3648 
3649 	ctxt->info.valid_sections =
3650 		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
3651 			    ICE_AQ_VSI_PROP_SECURITY_VALID |
3652 			    ICE_AQ_VSI_PROP_SW_VALID);
3653 
3654 	/* disable VLAN anti-spoof */
3655 	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3656 				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3657 
3658 	/* disable VLAN pruning and keep all other settings */
3659 	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
3660 
3661 	/* allow all VLANs on Tx and don't strip on Rx */
3662 	ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL |
3663 		ICE_AQ_VSI_VLAN_EMOD_NOTHING;
3664 
3665 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
3666 	if (status) {
3667 		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n",
3668 			ice_stat_str(status),
3669 			ice_aq_str(hw->adminq.sq_last_status));
3670 	} else {
3671 		vsi->info.sec_flags = ctxt->info.sec_flags;
3672 		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
3673 		vsi->info.vlan_flags = ctxt->info.vlan_flags;
3674 	}
3675 
3676 	kfree(ctxt);
3677 }
3678 
3679 /**
3680  * ice_log_pkg_init - log result of DDP package load
3681  * @hw: pointer to hardware info
3682  * @status: status of package load
3683  */
3684 static void
ice_log_pkg_init(struct ice_hw * hw,enum ice_status * status)3685 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
3686 {
3687 	struct ice_pf *pf = (struct ice_pf *)hw->back;
3688 	struct device *dev = ice_pf_to_dev(pf);
3689 
3690 	switch (*status) {
3691 	case ICE_SUCCESS:
3692 		/* The package download AdminQ command returned success because
3693 		 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
3694 		 * already a package loaded on the device.
3695 		 */
3696 		if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
3697 		    hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
3698 		    hw->pkg_ver.update == hw->active_pkg_ver.update &&
3699 		    hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
3700 		    !memcmp(hw->pkg_name, hw->active_pkg_name,
3701 			    sizeof(hw->pkg_name))) {
3702 			if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
3703 				dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
3704 					 hw->active_pkg_name,
3705 					 hw->active_pkg_ver.major,
3706 					 hw->active_pkg_ver.minor,
3707 					 hw->active_pkg_ver.update,
3708 					 hw->active_pkg_ver.draft);
3709 			else
3710 				dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
3711 					 hw->active_pkg_name,
3712 					 hw->active_pkg_ver.major,
3713 					 hw->active_pkg_ver.minor,
3714 					 hw->active_pkg_ver.update,
3715 					 hw->active_pkg_ver.draft);
3716 		} else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
3717 			   hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
3718 			dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
3719 				hw->active_pkg_name,
3720 				hw->active_pkg_ver.major,
3721 				hw->active_pkg_ver.minor,
3722 				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3723 			*status = ICE_ERR_NOT_SUPPORTED;
3724 		} else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3725 			   hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
3726 			dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
3727 				 hw->active_pkg_name,
3728 				 hw->active_pkg_ver.major,
3729 				 hw->active_pkg_ver.minor,
3730 				 hw->active_pkg_ver.update,
3731 				 hw->active_pkg_ver.draft,
3732 				 hw->pkg_name,
3733 				 hw->pkg_ver.major,
3734 				 hw->pkg_ver.minor,
3735 				 hw->pkg_ver.update,
3736 				 hw->pkg_ver.draft);
3737 		} else {
3738 			dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system.  If the problem persists, update the NVM.  Entering Safe Mode.\n");
3739 			*status = ICE_ERR_NOT_SUPPORTED;
3740 		}
3741 		break;
3742 	case ICE_ERR_FW_DDP_MISMATCH:
3743 		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
3744 		break;
3745 	case ICE_ERR_BUF_TOO_SHORT:
3746 	case ICE_ERR_CFG:
3747 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
3748 		break;
3749 	case ICE_ERR_NOT_SUPPORTED:
3750 		/* Package File version not supported */
3751 		if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
3752 		    (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3753 		     hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
3754 			dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
3755 		else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
3756 			 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3757 			  hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
3758 			dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
3759 				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3760 		break;
3761 	case ICE_ERR_AQ_ERROR:
3762 		switch (hw->pkg_dwnld_status) {
3763 		case ICE_AQ_RC_ENOSEC:
3764 		case ICE_AQ_RC_EBADSIG:
3765 			dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
3766 			return;
3767 		case ICE_AQ_RC_ESVN:
3768 			dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
3769 			return;
3770 		case ICE_AQ_RC_EBADMAN:
3771 		case ICE_AQ_RC_EBADBUF:
3772 			dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
3773 			/* poll for reset to complete */
3774 			if (ice_check_reset(hw))
3775 				dev_err(dev, "Error resetting device. Please reload the driver\n");
3776 			return;
3777 		default:
3778 			break;
3779 		}
3780 		fallthrough;
3781 	default:
3782 		dev_err(dev, "An unknown error (%d) occurred when loading the DDP package.  Entering Safe Mode.\n",
3783 			*status);
3784 		break;
3785 	}
3786 }
3787 
3788 /**
3789  * ice_load_pkg - load/reload the DDP Package file
3790  * @firmware: firmware structure when firmware requested or NULL for reload
3791  * @pf: pointer to the PF instance
3792  *
3793  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
3794  * initialize HW tables.
3795  */
3796 static void
ice_load_pkg(const struct firmware * firmware,struct ice_pf * pf)3797 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
3798 {
3799 	enum ice_status status = ICE_ERR_PARAM;
3800 	struct device *dev = ice_pf_to_dev(pf);
3801 	struct ice_hw *hw = &pf->hw;
3802 
3803 	/* Load DDP Package */
3804 	if (firmware && !hw->pkg_copy) {
3805 		status = ice_copy_and_init_pkg(hw, firmware->data,
3806 					       firmware->size);
3807 		ice_log_pkg_init(hw, &status);
3808 	} else if (!firmware && hw->pkg_copy) {
3809 		/* Reload package during rebuild after CORER/GLOBR reset */
3810 		status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
3811 		ice_log_pkg_init(hw, &status);
3812 	} else {
3813 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
3814 	}
3815 
3816 	if (status) {
3817 		/* Safe Mode */
3818 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3819 		return;
3820 	}
3821 
3822 	/* Successful download package is the precondition for advanced
3823 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
3824 	 */
3825 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3826 }
3827 
3828 /**
3829  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
3830  * @pf: pointer to the PF structure
3831  *
3832  * There is no error returned here because the driver should be able to handle
3833  * 128 Byte cache lines, so we only print a warning in case issues are seen,
3834  * specifically with Tx.
3835  */
ice_verify_cacheline_size(struct ice_pf * pf)3836 static void ice_verify_cacheline_size(struct ice_pf *pf)
3837 {
3838 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
3839 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
3840 			 ICE_CACHE_LINE_BYTES);
3841 }
3842 
3843 /**
3844  * ice_send_version - update firmware with driver version
3845  * @pf: PF struct
3846  *
3847  * Returns ICE_SUCCESS on success, else error code
3848  */
ice_send_version(struct ice_pf * pf)3849 static enum ice_status ice_send_version(struct ice_pf *pf)
3850 {
3851 	struct ice_driver_ver dv;
3852 
3853 	dv.major_ver = 0xff;
3854 	dv.minor_ver = 0xff;
3855 	dv.build_ver = 0xff;
3856 	dv.subbuild_ver = 0;
3857 	strscpy((char *)dv.driver_string, UTS_RELEASE,
3858 		sizeof(dv.driver_string));
3859 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
3860 }
3861 
3862 /**
3863  * ice_init_fdir - Initialize flow director VSI and configuration
3864  * @pf: pointer to the PF instance
3865  *
3866  * returns 0 on success, negative on error
3867  */
ice_init_fdir(struct ice_pf * pf)3868 static int ice_init_fdir(struct ice_pf *pf)
3869 {
3870 	struct device *dev = ice_pf_to_dev(pf);
3871 	struct ice_vsi *ctrl_vsi;
3872 	int err;
3873 
3874 	/* Side Band Flow Director needs to have a control VSI.
3875 	 * Allocate it and store it in the PF.
3876 	 */
3877 	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
3878 	if (!ctrl_vsi) {
3879 		dev_dbg(dev, "could not create control VSI\n");
3880 		return -ENOMEM;
3881 	}
3882 
3883 	err = ice_vsi_open_ctrl(ctrl_vsi);
3884 	if (err) {
3885 		dev_dbg(dev, "could not open control VSI\n");
3886 		goto err_vsi_open;
3887 	}
3888 
3889 	mutex_init(&pf->hw.fdir_fltr_lock);
3890 
3891 	err = ice_fdir_create_dflt_rules(pf);
3892 	if (err)
3893 		goto err_fdir_rule;
3894 
3895 	return 0;
3896 
3897 err_fdir_rule:
3898 	ice_fdir_release_flows(&pf->hw);
3899 	ice_vsi_close(ctrl_vsi);
3900 err_vsi_open:
3901 	ice_vsi_release(ctrl_vsi);
3902 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
3903 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
3904 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3905 	}
3906 	return err;
3907 }
3908 
3909 /**
3910  * ice_get_opt_fw_name - return optional firmware file name or NULL
3911  * @pf: pointer to the PF instance
3912  */
ice_get_opt_fw_name(struct ice_pf * pf)3913 static char *ice_get_opt_fw_name(struct ice_pf *pf)
3914 {
3915 	/* Optional firmware name same as default with additional dash
3916 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
3917 	 */
3918 	struct pci_dev *pdev = pf->pdev;
3919 	char *opt_fw_filename;
3920 	u64 dsn;
3921 
3922 	/* Determine the name of the optional file using the DSN (two
3923 	 * dwords following the start of the DSN Capability).
3924 	 */
3925 	dsn = pci_get_dsn(pdev);
3926 	if (!dsn)
3927 		return NULL;
3928 
3929 	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
3930 	if (!opt_fw_filename)
3931 		return NULL;
3932 
3933 	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
3934 		 ICE_DDP_PKG_PATH, dsn);
3935 
3936 	return opt_fw_filename;
3937 }
3938 
3939 /**
3940  * ice_request_fw - Device initialization routine
3941  * @pf: pointer to the PF instance
3942  */
ice_request_fw(struct ice_pf * pf)3943 static void ice_request_fw(struct ice_pf *pf)
3944 {
3945 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
3946 	const struct firmware *firmware = NULL;
3947 	struct device *dev = ice_pf_to_dev(pf);
3948 	int err = 0;
3949 
3950 	/* optional device-specific DDP (if present) overrides the default DDP
3951 	 * package file. kernel logs a debug message if the file doesn't exist,
3952 	 * and warning messages for other errors.
3953 	 */
3954 	if (opt_fw_filename) {
3955 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
3956 		if (err) {
3957 			kfree(opt_fw_filename);
3958 			goto dflt_pkg_load;
3959 		}
3960 
3961 		/* request for firmware was successful. Download to device */
3962 		ice_load_pkg(firmware, pf);
3963 		kfree(opt_fw_filename);
3964 		release_firmware(firmware);
3965 		return;
3966 	}
3967 
3968 dflt_pkg_load:
3969 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
3970 	if (err) {
3971 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
3972 		return;
3973 	}
3974 
3975 	/* request for firmware was successful. Download to device */
3976 	ice_load_pkg(firmware, pf);
3977 	release_firmware(firmware);
3978 }
3979 
3980 /**
3981  * ice_print_wake_reason - show the wake up cause in the log
3982  * @pf: pointer to the PF struct
3983  */
ice_print_wake_reason(struct ice_pf * pf)3984 static void ice_print_wake_reason(struct ice_pf *pf)
3985 {
3986 	u32 wus = pf->wakeup_reason;
3987 	const char *wake_str;
3988 
3989 	/* if no wake event, nothing to print */
3990 	if (!wus)
3991 		return;
3992 
3993 	if (wus & PFPM_WUS_LNKC_M)
3994 		wake_str = "Link\n";
3995 	else if (wus & PFPM_WUS_MAG_M)
3996 		wake_str = "Magic Packet\n";
3997 	else if (wus & PFPM_WUS_MNG_M)
3998 		wake_str = "Management\n";
3999 	else if (wus & PFPM_WUS_FW_RST_WK_M)
4000 		wake_str = "Firmware Reset\n";
4001 	else
4002 		wake_str = "Unknown\n";
4003 
4004 	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4005 }
4006 
4007 /**
4008  * ice_probe - Device initialization routine
4009  * @pdev: PCI device information struct
4010  * @ent: entry in ice_pci_tbl
4011  *
4012  * Returns 0 on success, negative on failure
4013  */
4014 static int
ice_probe(struct pci_dev * pdev,const struct pci_device_id __always_unused * ent)4015 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
4016 {
4017 	struct device *dev = &pdev->dev;
4018 	struct ice_pf *pf;
4019 	struct ice_hw *hw;
4020 	int i, err;
4021 
4022 	if (pdev->is_virtfn) {
4023 		dev_err(dev, "can't probe a virtual function\n");
4024 		return -EINVAL;
4025 	}
4026 
4027 	/* this driver uses devres, see
4028 	 * Documentation/driver-api/driver-model/devres.rst
4029 	 */
4030 	err = pcim_enable_device(pdev);
4031 	if (err)
4032 		return err;
4033 
4034 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
4035 	if (err) {
4036 		dev_err(dev, "BAR0 I/O map error %d\n", err);
4037 		return err;
4038 	}
4039 
4040 	pf = ice_allocate_pf(dev);
4041 	if (!pf)
4042 		return -ENOMEM;
4043 
4044 	/* set up for high or low DMA */
4045 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4046 	if (err)
4047 		err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
4048 	if (err) {
4049 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4050 		return err;
4051 	}
4052 
4053 	pci_enable_pcie_error_reporting(pdev);
4054 	pci_set_master(pdev);
4055 
4056 	pf->pdev = pdev;
4057 	pci_set_drvdata(pdev, pf);
4058 	set_bit(__ICE_DOWN, pf->state);
4059 	/* Disable service task until DOWN bit is cleared */
4060 	set_bit(__ICE_SERVICE_DIS, pf->state);
4061 
4062 	hw = &pf->hw;
4063 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4064 	pci_save_state(pdev);
4065 
4066 	hw->back = pf;
4067 	hw->vendor_id = pdev->vendor;
4068 	hw->device_id = pdev->device;
4069 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4070 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4071 	hw->subsystem_device_id = pdev->subsystem_device;
4072 	hw->bus.device = PCI_SLOT(pdev->devfn);
4073 	hw->bus.func = PCI_FUNC(pdev->devfn);
4074 	ice_set_ctrlq_len(hw);
4075 
4076 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4077 
4078 	err = ice_devlink_register(pf);
4079 	if (err) {
4080 		dev_err(dev, "ice_devlink_register failed: %d\n", err);
4081 		goto err_exit_unroll;
4082 	}
4083 
4084 #ifndef CONFIG_DYNAMIC_DEBUG
4085 	if (debug < -1)
4086 		hw->debug_mask = debug;
4087 #endif
4088 
4089 	err = ice_init_hw(hw);
4090 	if (err) {
4091 		dev_err(dev, "ice_init_hw failed: %d\n", err);
4092 		err = -EIO;
4093 		goto err_exit_unroll;
4094 	}
4095 
4096 	ice_request_fw(pf);
4097 
4098 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4099 	 * set in pf->state, which will cause ice_is_safe_mode to return
4100 	 * true
4101 	 */
4102 	if (ice_is_safe_mode(pf)) {
4103 		dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n");
4104 		/* we already got function/device capabilities but these don't
4105 		 * reflect what the driver needs to do in safe mode. Instead of
4106 		 * adding conditional logic everywhere to ignore these
4107 		 * device/function capabilities, override them.
4108 		 */
4109 		ice_set_safe_mode_caps(hw);
4110 	}
4111 
4112 	err = ice_init_pf(pf);
4113 	if (err) {
4114 		dev_err(dev, "ice_init_pf failed: %d\n", err);
4115 		goto err_init_pf_unroll;
4116 	}
4117 
4118 	ice_devlink_init_regions(pf);
4119 
4120 	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4121 	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4122 	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4123 	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4124 	i = 0;
4125 	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4126 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4127 			pf->hw.tnl.valid_count[TNL_VXLAN];
4128 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4129 			UDP_TUNNEL_TYPE_VXLAN;
4130 		i++;
4131 	}
4132 	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4133 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4134 			pf->hw.tnl.valid_count[TNL_GENEVE];
4135 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4136 			UDP_TUNNEL_TYPE_GENEVE;
4137 		i++;
4138 	}
4139 
4140 	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4141 	if (!pf->num_alloc_vsi) {
4142 		err = -EIO;
4143 		goto err_init_pf_unroll;
4144 	}
4145 	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4146 		dev_warn(&pf->pdev->dev,
4147 			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4148 			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4149 		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4150 	}
4151 
4152 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4153 			       GFP_KERNEL);
4154 	if (!pf->vsi) {
4155 		err = -ENOMEM;
4156 		goto err_init_pf_unroll;
4157 	}
4158 
4159 	err = ice_init_interrupt_scheme(pf);
4160 	if (err) {
4161 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4162 		err = -EIO;
4163 		goto err_init_vsi_unroll;
4164 	}
4165 
4166 	/* In case of MSIX we are going to setup the misc vector right here
4167 	 * to handle admin queue events etc. In case of legacy and MSI
4168 	 * the misc functionality and queue processing is combined in
4169 	 * the same vector and that gets setup at open.
4170 	 */
4171 	err = ice_req_irq_msix_misc(pf);
4172 	if (err) {
4173 		dev_err(dev, "setup of misc vector failed: %d\n", err);
4174 		goto err_init_interrupt_unroll;
4175 	}
4176 
4177 	/* create switch struct for the switch element created by FW on boot */
4178 	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4179 	if (!pf->first_sw) {
4180 		err = -ENOMEM;
4181 		goto err_msix_misc_unroll;
4182 	}
4183 
4184 	if (hw->evb_veb)
4185 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4186 	else
4187 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4188 
4189 	pf->first_sw->pf = pf;
4190 
4191 	/* record the sw_id available for later use */
4192 	pf->first_sw->sw_id = hw->port_info->sw_id;
4193 
4194 	err = ice_setup_pf_sw(pf);
4195 	if (err) {
4196 		dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4197 		goto err_alloc_sw_unroll;
4198 	}
4199 
4200 	clear_bit(__ICE_SERVICE_DIS, pf->state);
4201 
4202 	/* tell the firmware we are up */
4203 	err = ice_send_version(pf);
4204 	if (err) {
4205 		dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4206 			UTS_RELEASE, err);
4207 		goto err_send_version_unroll;
4208 	}
4209 
4210 	/* since everything is good, start the service timer */
4211 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4212 
4213 	err = ice_init_link_events(pf->hw.port_info);
4214 	if (err) {
4215 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4216 		goto err_send_version_unroll;
4217 	}
4218 
4219 	/* not a fatal error if this fails */
4220 	err = ice_init_nvm_phy_type(pf->hw.port_info);
4221 	if (err)
4222 		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4223 
4224 	/* not a fatal error if this fails */
4225 	err = ice_update_link_info(pf->hw.port_info);
4226 	if (err)
4227 		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4228 
4229 	ice_init_link_dflt_override(pf->hw.port_info);
4230 
4231 	/* if media available, initialize PHY settings */
4232 	if (pf->hw.port_info->phy.link_info.link_info &
4233 	    ICE_AQ_MEDIA_AVAILABLE) {
4234 		/* not a fatal error if this fails */
4235 		err = ice_init_phy_user_cfg(pf->hw.port_info);
4236 		if (err)
4237 			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4238 
4239 		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4240 			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4241 
4242 			if (vsi)
4243 				ice_configure_phy(vsi);
4244 		}
4245 	} else {
4246 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4247 	}
4248 
4249 	ice_verify_cacheline_size(pf);
4250 
4251 	/* Save wakeup reason register for later use */
4252 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4253 
4254 	/* check for a power management event */
4255 	ice_print_wake_reason(pf);
4256 
4257 	/* clear wake status, all bits */
4258 	wr32(hw, PFPM_WUS, U32_MAX);
4259 
4260 	/* Disable WoL at init, wait for user to enable */
4261 	device_set_wakeup_enable(dev, false);
4262 
4263 	if (ice_is_safe_mode(pf)) {
4264 		ice_set_safe_mode_vlan_cfg(pf);
4265 		goto probe_done;
4266 	}
4267 
4268 	/* initialize DDP driven features */
4269 
4270 	/* Note: Flow director init failure is non-fatal to load */
4271 	if (ice_init_fdir(pf))
4272 		dev_err(dev, "could not initialize flow director\n");
4273 
4274 	/* Note: DCB init failure is non-fatal to load */
4275 	if (ice_init_pf_dcb(pf, false)) {
4276 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4277 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4278 	} else {
4279 		ice_cfg_lldp_mib_change(&pf->hw, true);
4280 	}
4281 
4282 	/* print PCI link speed and width */
4283 	pcie_print_link_status(pf->pdev);
4284 
4285 probe_done:
4286 	/* ready to go, so clear down state bit */
4287 	clear_bit(__ICE_DOWN, pf->state);
4288 	return 0;
4289 
4290 err_send_version_unroll:
4291 	ice_vsi_release_all(pf);
4292 err_alloc_sw_unroll:
4293 	set_bit(__ICE_SERVICE_DIS, pf->state);
4294 	set_bit(__ICE_DOWN, pf->state);
4295 	devm_kfree(dev, pf->first_sw);
4296 err_msix_misc_unroll:
4297 	ice_free_irq_msix_misc(pf);
4298 err_init_interrupt_unroll:
4299 	ice_clear_interrupt_scheme(pf);
4300 err_init_vsi_unroll:
4301 	devm_kfree(dev, pf->vsi);
4302 err_init_pf_unroll:
4303 	ice_deinit_pf(pf);
4304 	ice_devlink_destroy_regions(pf);
4305 	ice_deinit_hw(hw);
4306 err_exit_unroll:
4307 	ice_devlink_unregister(pf);
4308 	pci_disable_pcie_error_reporting(pdev);
4309 	pci_disable_device(pdev);
4310 	return err;
4311 }
4312 
4313 /**
4314  * ice_set_wake - enable or disable Wake on LAN
4315  * @pf: pointer to the PF struct
4316  *
4317  * Simple helper for WoL control
4318  */
ice_set_wake(struct ice_pf * pf)4319 static void ice_set_wake(struct ice_pf *pf)
4320 {
4321 	struct ice_hw *hw = &pf->hw;
4322 	bool wol = pf->wol_ena;
4323 
4324 	/* clear wake state, otherwise new wake events won't fire */
4325 	wr32(hw, PFPM_WUS, U32_MAX);
4326 
4327 	/* enable / disable APM wake up, no RMW needed */
4328 	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4329 
4330 	/* set magic packet filter enabled */
4331 	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4332 }
4333 
4334 /**
4335  * ice_setup_magic_mc_wake - setup device to wake on multicast magic packet
4336  * @pf: pointer to the PF struct
4337  *
4338  * Issue firmware command to enable multicast magic wake, making
4339  * sure that any locally administered address (LAA) is used for
4340  * wake, and that PF reset doesn't undo the LAA.
4341  */
ice_setup_mc_magic_wake(struct ice_pf * pf)4342 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4343 {
4344 	struct device *dev = ice_pf_to_dev(pf);
4345 	struct ice_hw *hw = &pf->hw;
4346 	enum ice_status status;
4347 	u8 mac_addr[ETH_ALEN];
4348 	struct ice_vsi *vsi;
4349 	u8 flags;
4350 
4351 	if (!pf->wol_ena)
4352 		return;
4353 
4354 	vsi = ice_get_main_vsi(pf);
4355 	if (!vsi)
4356 		return;
4357 
4358 	/* Get current MAC address in case it's an LAA */
4359 	if (vsi->netdev)
4360 		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4361 	else
4362 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4363 
4364 	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4365 		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4366 		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4367 
4368 	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4369 	if (status)
4370 		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n",
4371 			ice_stat_str(status),
4372 			ice_aq_str(hw->adminq.sq_last_status));
4373 }
4374 
4375 /**
4376  * ice_remove - Device removal routine
4377  * @pdev: PCI device information struct
4378  */
ice_remove(struct pci_dev * pdev)4379 static void ice_remove(struct pci_dev *pdev)
4380 {
4381 	struct ice_pf *pf = pci_get_drvdata(pdev);
4382 	int i;
4383 
4384 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4385 		if (!ice_is_reset_in_progress(pf->state))
4386 			break;
4387 		msleep(100);
4388 	}
4389 
4390 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4391 		set_bit(__ICE_VF_RESETS_DISABLED, pf->state);
4392 		ice_free_vfs(pf);
4393 	}
4394 
4395 	set_bit(__ICE_DOWN, pf->state);
4396 	ice_service_task_stop(pf);
4397 
4398 	ice_aq_cancel_waiting_tasks(pf);
4399 
4400 	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4401 	if (!ice_is_safe_mode(pf))
4402 		ice_remove_arfs(pf);
4403 	ice_setup_mc_magic_wake(pf);
4404 	ice_vsi_release_all(pf);
4405 	ice_set_wake(pf);
4406 	ice_free_irq_msix_misc(pf);
4407 	ice_for_each_vsi(pf, i) {
4408 		if (!pf->vsi[i])
4409 			continue;
4410 		ice_vsi_free_q_vectors(pf->vsi[i]);
4411 	}
4412 	ice_deinit_pf(pf);
4413 	ice_devlink_destroy_regions(pf);
4414 	ice_deinit_hw(&pf->hw);
4415 	ice_devlink_unregister(pf);
4416 
4417 	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
4418 	 * do it via ice_schedule_reset() since there is no need to rebuild
4419 	 * and the service task is already stopped.
4420 	 */
4421 	ice_reset(&pf->hw, ICE_RESET_PFR);
4422 	pci_wait_for_pending_transaction(pdev);
4423 	ice_clear_interrupt_scheme(pf);
4424 	pci_disable_pcie_error_reporting(pdev);
4425 	pci_disable_device(pdev);
4426 }
4427 
4428 /**
4429  * ice_shutdown - PCI callback for shutting down device
4430  * @pdev: PCI device information struct
4431  */
ice_shutdown(struct pci_dev * pdev)4432 static void ice_shutdown(struct pci_dev *pdev)
4433 {
4434 	struct ice_pf *pf = pci_get_drvdata(pdev);
4435 
4436 	ice_remove(pdev);
4437 
4438 	if (system_state == SYSTEM_POWER_OFF) {
4439 		pci_wake_from_d3(pdev, pf->wol_ena);
4440 		pci_set_power_state(pdev, PCI_D3hot);
4441 	}
4442 }
4443 
4444 #ifdef CONFIG_PM
4445 /**
4446  * ice_prepare_for_shutdown - prep for PCI shutdown
4447  * @pf: board private structure
4448  *
4449  * Inform or close all dependent features in prep for PCI device shutdown
4450  */
ice_prepare_for_shutdown(struct ice_pf * pf)4451 static void ice_prepare_for_shutdown(struct ice_pf *pf)
4452 {
4453 	struct ice_hw *hw = &pf->hw;
4454 	u32 v;
4455 
4456 	/* Notify VFs of impending reset */
4457 	if (ice_check_sq_alive(hw, &hw->mailboxq))
4458 		ice_vc_notify_reset(pf);
4459 
4460 	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
4461 
4462 	/* disable the VSIs and their queues that are not already DOWN */
4463 	ice_pf_dis_all_vsi(pf, false);
4464 
4465 	ice_for_each_vsi(pf, v)
4466 		if (pf->vsi[v])
4467 			pf->vsi[v]->vsi_num = 0;
4468 
4469 	ice_shutdown_all_ctrlq(hw);
4470 }
4471 
4472 /**
4473  * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
4474  * @pf: board private structure to reinitialize
4475  *
4476  * This routine reinitialize interrupt scheme that was cleared during
4477  * power management suspend callback.
4478  *
4479  * This should be called during resume routine to re-allocate the q_vectors
4480  * and reacquire interrupts.
4481  */
ice_reinit_interrupt_scheme(struct ice_pf * pf)4482 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
4483 {
4484 	struct device *dev = ice_pf_to_dev(pf);
4485 	int ret, v;
4486 
4487 	/* Since we clear MSIX flag during suspend, we need to
4488 	 * set it back during resume...
4489 	 */
4490 
4491 	ret = ice_init_interrupt_scheme(pf);
4492 	if (ret) {
4493 		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
4494 		return ret;
4495 	}
4496 
4497 	/* Remap vectors and rings, after successful re-init interrupts */
4498 	ice_for_each_vsi(pf, v) {
4499 		if (!pf->vsi[v])
4500 			continue;
4501 
4502 		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
4503 		if (ret)
4504 			goto err_reinit;
4505 		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
4506 	}
4507 
4508 	ret = ice_req_irq_msix_misc(pf);
4509 	if (ret) {
4510 		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
4511 			ret);
4512 		goto err_reinit;
4513 	}
4514 
4515 	return 0;
4516 
4517 err_reinit:
4518 	while (v--)
4519 		if (pf->vsi[v])
4520 			ice_vsi_free_q_vectors(pf->vsi[v]);
4521 
4522 	return ret;
4523 }
4524 
4525 /**
4526  * ice_suspend
4527  * @dev: generic device information structure
4528  *
4529  * Power Management callback to quiesce the device and prepare
4530  * for D3 transition.
4531  */
ice_suspend(struct device * dev)4532 static int __maybe_unused ice_suspend(struct device *dev)
4533 {
4534 	struct pci_dev *pdev = to_pci_dev(dev);
4535 	struct ice_pf *pf;
4536 	int disabled, v;
4537 
4538 	pf = pci_get_drvdata(pdev);
4539 
4540 	if (!ice_pf_state_is_nominal(pf)) {
4541 		dev_err(dev, "Device is not ready, no need to suspend it\n");
4542 		return -EBUSY;
4543 	}
4544 
4545 	/* Stop watchdog tasks until resume completion.
4546 	 * Even though it is most likely that the service task is
4547 	 * disabled if the device is suspended or down, the service task's
4548 	 * state is controlled by a different state bit, and we should
4549 	 * store and honor whatever state that bit is in at this point.
4550 	 */
4551 	disabled = ice_service_task_stop(pf);
4552 
4553 	/* Already suspended?, then there is nothing to do */
4554 	if (test_and_set_bit(__ICE_SUSPENDED, pf->state)) {
4555 		if (!disabled)
4556 			ice_service_task_restart(pf);
4557 		return 0;
4558 	}
4559 
4560 	if (test_bit(__ICE_DOWN, pf->state) ||
4561 	    ice_is_reset_in_progress(pf->state)) {
4562 		dev_err(dev, "can't suspend device in reset or already down\n");
4563 		if (!disabled)
4564 			ice_service_task_restart(pf);
4565 		return 0;
4566 	}
4567 
4568 	ice_setup_mc_magic_wake(pf);
4569 
4570 	ice_prepare_for_shutdown(pf);
4571 
4572 	ice_set_wake(pf);
4573 
4574 	/* Free vectors, clear the interrupt scheme and release IRQs
4575 	 * for proper hibernation, especially with large number of CPUs.
4576 	 * Otherwise hibernation might fail when mapping all the vectors back
4577 	 * to CPU0.
4578 	 */
4579 	ice_free_irq_msix_misc(pf);
4580 	ice_for_each_vsi(pf, v) {
4581 		if (!pf->vsi[v])
4582 			continue;
4583 		ice_vsi_free_q_vectors(pf->vsi[v]);
4584 	}
4585 	ice_free_cpu_rx_rmap(ice_get_main_vsi(pf));
4586 	ice_clear_interrupt_scheme(pf);
4587 
4588 	pci_save_state(pdev);
4589 	pci_wake_from_d3(pdev, pf->wol_ena);
4590 	pci_set_power_state(pdev, PCI_D3hot);
4591 	return 0;
4592 }
4593 
4594 /**
4595  * ice_resume - PM callback for waking up from D3
4596  * @dev: generic device information structure
4597  */
ice_resume(struct device * dev)4598 static int __maybe_unused ice_resume(struct device *dev)
4599 {
4600 	struct pci_dev *pdev = to_pci_dev(dev);
4601 	enum ice_reset_req reset_type;
4602 	struct ice_pf *pf;
4603 	struct ice_hw *hw;
4604 	int ret;
4605 
4606 	pci_set_power_state(pdev, PCI_D0);
4607 	pci_restore_state(pdev);
4608 	pci_save_state(pdev);
4609 
4610 	if (!pci_device_is_present(pdev))
4611 		return -ENODEV;
4612 
4613 	ret = pci_enable_device_mem(pdev);
4614 	if (ret) {
4615 		dev_err(dev, "Cannot enable device after suspend\n");
4616 		return ret;
4617 	}
4618 
4619 	pf = pci_get_drvdata(pdev);
4620 	hw = &pf->hw;
4621 
4622 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4623 	ice_print_wake_reason(pf);
4624 
4625 	/* We cleared the interrupt scheme when we suspended, so we need to
4626 	 * restore it now to resume device functionality.
4627 	 */
4628 	ret = ice_reinit_interrupt_scheme(pf);
4629 	if (ret)
4630 		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
4631 
4632 	clear_bit(__ICE_DOWN, pf->state);
4633 	/* Now perform PF reset and rebuild */
4634 	reset_type = ICE_RESET_PFR;
4635 	/* re-enable service task for reset, but allow reset to schedule it */
4636 	clear_bit(__ICE_SERVICE_DIS, pf->state);
4637 
4638 	if (ice_schedule_reset(pf, reset_type))
4639 		dev_err(dev, "Reset during resume failed.\n");
4640 
4641 	clear_bit(__ICE_SUSPENDED, pf->state);
4642 	ice_service_task_restart(pf);
4643 
4644 	/* Restart the service task */
4645 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4646 
4647 	return 0;
4648 }
4649 #endif /* CONFIG_PM */
4650 
4651 /**
4652  * ice_pci_err_detected - warning that PCI error has been detected
4653  * @pdev: PCI device information struct
4654  * @err: the type of PCI error
4655  *
4656  * Called to warn that something happened on the PCI bus and the error handling
4657  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
4658  */
4659 static pci_ers_result_t
ice_pci_err_detected(struct pci_dev * pdev,pci_channel_state_t err)4660 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
4661 {
4662 	struct ice_pf *pf = pci_get_drvdata(pdev);
4663 
4664 	if (!pf) {
4665 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
4666 			__func__, err);
4667 		return PCI_ERS_RESULT_DISCONNECT;
4668 	}
4669 
4670 	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4671 		ice_service_task_stop(pf);
4672 
4673 		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4674 			set_bit(__ICE_PFR_REQ, pf->state);
4675 			ice_prepare_for_reset(pf);
4676 		}
4677 	}
4678 
4679 	return PCI_ERS_RESULT_NEED_RESET;
4680 }
4681 
4682 /**
4683  * ice_pci_err_slot_reset - a PCI slot reset has just happened
4684  * @pdev: PCI device information struct
4685  *
4686  * Called to determine if the driver can recover from the PCI slot reset by
4687  * using a register read to determine if the device is recoverable.
4688  */
ice_pci_err_slot_reset(struct pci_dev * pdev)4689 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
4690 {
4691 	struct ice_pf *pf = pci_get_drvdata(pdev);
4692 	pci_ers_result_t result;
4693 	int err;
4694 	u32 reg;
4695 
4696 	err = pci_enable_device_mem(pdev);
4697 	if (err) {
4698 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
4699 			err);
4700 		result = PCI_ERS_RESULT_DISCONNECT;
4701 	} else {
4702 		pci_set_master(pdev);
4703 		pci_restore_state(pdev);
4704 		pci_save_state(pdev);
4705 		pci_wake_from_d3(pdev, false);
4706 
4707 		/* Check for life */
4708 		reg = rd32(&pf->hw, GLGEN_RTRIG);
4709 		if (!reg)
4710 			result = PCI_ERS_RESULT_RECOVERED;
4711 		else
4712 			result = PCI_ERS_RESULT_DISCONNECT;
4713 	}
4714 
4715 	err = pci_aer_clear_nonfatal_status(pdev);
4716 	if (err)
4717 		dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
4718 			err);
4719 		/* non-fatal, continue */
4720 
4721 	return result;
4722 }
4723 
4724 /**
4725  * ice_pci_err_resume - restart operations after PCI error recovery
4726  * @pdev: PCI device information struct
4727  *
4728  * Called to allow the driver to bring things back up after PCI error and/or
4729  * reset recovery have finished
4730  */
ice_pci_err_resume(struct pci_dev * pdev)4731 static void ice_pci_err_resume(struct pci_dev *pdev)
4732 {
4733 	struct ice_pf *pf = pci_get_drvdata(pdev);
4734 
4735 	if (!pf) {
4736 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
4737 			__func__);
4738 		return;
4739 	}
4740 
4741 	if (test_bit(__ICE_SUSPENDED, pf->state)) {
4742 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
4743 			__func__);
4744 		return;
4745 	}
4746 
4747 	ice_restore_all_vfs_msi_state(pdev);
4748 
4749 	ice_do_reset(pf, ICE_RESET_PFR);
4750 	ice_service_task_restart(pf);
4751 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4752 }
4753 
4754 /**
4755  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
4756  * @pdev: PCI device information struct
4757  */
ice_pci_err_reset_prepare(struct pci_dev * pdev)4758 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
4759 {
4760 	struct ice_pf *pf = pci_get_drvdata(pdev);
4761 
4762 	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4763 		ice_service_task_stop(pf);
4764 
4765 		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4766 			set_bit(__ICE_PFR_REQ, pf->state);
4767 			ice_prepare_for_reset(pf);
4768 		}
4769 	}
4770 }
4771 
4772 /**
4773  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
4774  * @pdev: PCI device information struct
4775  */
ice_pci_err_reset_done(struct pci_dev * pdev)4776 static void ice_pci_err_reset_done(struct pci_dev *pdev)
4777 {
4778 	ice_pci_err_resume(pdev);
4779 }
4780 
4781 /* ice_pci_tbl - PCI Device ID Table
4782  *
4783  * Wildcard entries (PCI_ANY_ID) should come last
4784  * Last entry must be all 0s
4785  *
4786  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
4787  *   Class, Class Mask, private data (not used) }
4788  */
4789 static const struct pci_device_id ice_pci_tbl[] = {
4790 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
4791 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
4792 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
4793 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
4794 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
4795 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
4796 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
4797 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
4798 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
4799 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
4800 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
4801 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
4802 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
4803 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
4804 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
4805 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
4806 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
4807 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
4808 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
4809 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
4810 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
4811 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
4812 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
4813 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
4814 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
4815 	/* required last entry */
4816 	{ 0, }
4817 };
4818 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
4819 
4820 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
4821 
4822 static const struct pci_error_handlers ice_pci_err_handler = {
4823 	.error_detected = ice_pci_err_detected,
4824 	.slot_reset = ice_pci_err_slot_reset,
4825 	.reset_prepare = ice_pci_err_reset_prepare,
4826 	.reset_done = ice_pci_err_reset_done,
4827 	.resume = ice_pci_err_resume
4828 };
4829 
4830 static struct pci_driver ice_driver = {
4831 	.name = KBUILD_MODNAME,
4832 	.id_table = ice_pci_tbl,
4833 	.probe = ice_probe,
4834 	.remove = ice_remove,
4835 #ifdef CONFIG_PM
4836 	.driver.pm = &ice_pm_ops,
4837 #endif /* CONFIG_PM */
4838 	.shutdown = ice_shutdown,
4839 	.sriov_configure = ice_sriov_configure,
4840 	.err_handler = &ice_pci_err_handler
4841 };
4842 
4843 /**
4844  * ice_module_init - Driver registration routine
4845  *
4846  * ice_module_init is the first routine called when the driver is
4847  * loaded. All it does is register with the PCI subsystem.
4848  */
ice_module_init(void)4849 static int __init ice_module_init(void)
4850 {
4851 	int status;
4852 
4853 	pr_info("%s\n", ice_driver_string);
4854 	pr_info("%s\n", ice_copyright);
4855 
4856 	ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME);
4857 	if (!ice_wq) {
4858 		pr_err("Failed to create workqueue\n");
4859 		return -ENOMEM;
4860 	}
4861 
4862 	status = pci_register_driver(&ice_driver);
4863 	if (status) {
4864 		pr_err("failed to register PCI driver, err %d\n", status);
4865 		destroy_workqueue(ice_wq);
4866 	}
4867 
4868 	return status;
4869 }
4870 module_init(ice_module_init);
4871 
4872 /**
4873  * ice_module_exit - Driver exit cleanup routine
4874  *
4875  * ice_module_exit is called just before the driver is removed
4876  * from memory.
4877  */
ice_module_exit(void)4878 static void __exit ice_module_exit(void)
4879 {
4880 	pci_unregister_driver(&ice_driver);
4881 	destroy_workqueue(ice_wq);
4882 	pr_info("module unloaded\n");
4883 }
4884 module_exit(ice_module_exit);
4885 
4886 /**
4887  * ice_set_mac_address - NDO callback to set MAC address
4888  * @netdev: network interface device structure
4889  * @pi: pointer to an address structure
4890  *
4891  * Returns 0 on success, negative on failure
4892  */
ice_set_mac_address(struct net_device * netdev,void * pi)4893 static int ice_set_mac_address(struct net_device *netdev, void *pi)
4894 {
4895 	struct ice_netdev_priv *np = netdev_priv(netdev);
4896 	struct ice_vsi *vsi = np->vsi;
4897 	struct ice_pf *pf = vsi->back;
4898 	struct ice_hw *hw = &pf->hw;
4899 	struct sockaddr *addr = pi;
4900 	enum ice_status status;
4901 	u8 old_mac[ETH_ALEN];
4902 	u8 flags = 0;
4903 	int err = 0;
4904 	u8 *mac;
4905 
4906 	mac = (u8 *)addr->sa_data;
4907 
4908 	if (!is_valid_ether_addr(mac))
4909 		return -EADDRNOTAVAIL;
4910 
4911 	if (ether_addr_equal(netdev->dev_addr, mac)) {
4912 		netdev_dbg(netdev, "already using mac %pM\n", mac);
4913 		return 0;
4914 	}
4915 
4916 	if (test_bit(__ICE_DOWN, pf->state) ||
4917 	    ice_is_reset_in_progress(pf->state)) {
4918 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
4919 			   mac);
4920 		return -EBUSY;
4921 	}
4922 
4923 	netif_addr_lock_bh(netdev);
4924 	ether_addr_copy(old_mac, netdev->dev_addr);
4925 	/* change the netdev's MAC address */
4926 	memcpy(netdev->dev_addr, mac, netdev->addr_len);
4927 	netif_addr_unlock_bh(netdev);
4928 
4929 	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
4930 	status = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
4931 	if (status && status != ICE_ERR_DOES_NOT_EXIST) {
4932 		err = -EADDRNOTAVAIL;
4933 		goto err_update_filters;
4934 	}
4935 
4936 	/* Add filter for new MAC. If filter exists, return success */
4937 	status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
4938 	if (status == ICE_ERR_ALREADY_EXISTS)
4939 		/* Although this MAC filter is already present in hardware it's
4940 		 * possible in some cases (e.g. bonding) that dev_addr was
4941 		 * modified outside of the driver and needs to be restored back
4942 		 * to this value.
4943 		 */
4944 		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
4945 	else if (status)
4946 		/* error if the new filter addition failed */
4947 		err = -EADDRNOTAVAIL;
4948 
4949 err_update_filters:
4950 	if (err) {
4951 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
4952 			   mac);
4953 		netif_addr_lock_bh(netdev);
4954 		ether_addr_copy(netdev->dev_addr, old_mac);
4955 		netif_addr_unlock_bh(netdev);
4956 		return err;
4957 	}
4958 
4959 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
4960 		   netdev->dev_addr);
4961 
4962 	/* write new MAC address to the firmware */
4963 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
4964 	status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
4965 	if (status) {
4966 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n",
4967 			   mac, ice_stat_str(status));
4968 	}
4969 	return 0;
4970 }
4971 
4972 /**
4973  * ice_set_rx_mode - NDO callback to set the netdev filters
4974  * @netdev: network interface device structure
4975  */
ice_set_rx_mode(struct net_device * netdev)4976 static void ice_set_rx_mode(struct net_device *netdev)
4977 {
4978 	struct ice_netdev_priv *np = netdev_priv(netdev);
4979 	struct ice_vsi *vsi = np->vsi;
4980 
4981 	if (!vsi)
4982 		return;
4983 
4984 	/* Set the flags to synchronize filters
4985 	 * ndo_set_rx_mode may be triggered even without a change in netdev
4986 	 * flags
4987 	 */
4988 	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
4989 	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
4990 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
4991 
4992 	/* schedule our worker thread which will take care of
4993 	 * applying the new filter changes
4994 	 */
4995 	ice_service_task_schedule(vsi->back);
4996 }
4997 
4998 /**
4999  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5000  * @netdev: network interface device structure
5001  * @queue_index: Queue ID
5002  * @maxrate: maximum bandwidth in Mbps
5003  */
5004 static int
ice_set_tx_maxrate(struct net_device * netdev,int queue_index,u32 maxrate)5005 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5006 {
5007 	struct ice_netdev_priv *np = netdev_priv(netdev);
5008 	struct ice_vsi *vsi = np->vsi;
5009 	enum ice_status status;
5010 	u16 q_handle;
5011 	u8 tc;
5012 
5013 	/* Validate maxrate requested is within permitted range */
5014 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5015 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5016 			   maxrate, queue_index);
5017 		return -EINVAL;
5018 	}
5019 
5020 	q_handle = vsi->tx_rings[queue_index]->q_handle;
5021 	tc = ice_dcb_get_tc(vsi, queue_index);
5022 
5023 	/* Set BW back to default, when user set maxrate to 0 */
5024 	if (!maxrate)
5025 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5026 					       q_handle, ICE_MAX_BW);
5027 	else
5028 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5029 					  q_handle, ICE_MAX_BW, maxrate * 1000);
5030 	if (status) {
5031 		netdev_err(netdev, "Unable to set Tx max rate, error %s\n",
5032 			   ice_stat_str(status));
5033 		return -EIO;
5034 	}
5035 
5036 	return 0;
5037 }
5038 
5039 /**
5040  * ice_fdb_add - add an entry to the hardware database
5041  * @ndm: the input from the stack
5042  * @tb: pointer to array of nladdr (unused)
5043  * @dev: the net device pointer
5044  * @addr: the MAC address entry being added
5045  * @vid: VLAN ID
5046  * @flags: instructions from stack about fdb operation
5047  * @extack: netlink extended ack
5048  */
5049 static int
ice_fdb_add(struct ndmsg * ndm,struct nlattr __always_unused * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,struct netlink_ext_ack __always_unused * extack)5050 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5051 	    struct net_device *dev, const unsigned char *addr, u16 vid,
5052 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
5053 {
5054 	int err;
5055 
5056 	if (vid) {
5057 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5058 		return -EINVAL;
5059 	}
5060 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5061 		netdev_err(dev, "FDB only supports static addresses\n");
5062 		return -EINVAL;
5063 	}
5064 
5065 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5066 		err = dev_uc_add_excl(dev, addr);
5067 	else if (is_multicast_ether_addr(addr))
5068 		err = dev_mc_add_excl(dev, addr);
5069 	else
5070 		err = -EINVAL;
5071 
5072 	/* Only return duplicate errors if NLM_F_EXCL is set */
5073 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
5074 		err = 0;
5075 
5076 	return err;
5077 }
5078 
5079 /**
5080  * ice_fdb_del - delete an entry from the hardware database
5081  * @ndm: the input from the stack
5082  * @tb: pointer to array of nladdr (unused)
5083  * @dev: the net device pointer
5084  * @addr: the MAC address entry being added
5085  * @vid: VLAN ID
5086  */
5087 static int
ice_fdb_del(struct ndmsg * ndm,__always_unused struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,__always_unused u16 vid)5088 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5089 	    struct net_device *dev, const unsigned char *addr,
5090 	    __always_unused u16 vid)
5091 {
5092 	int err;
5093 
5094 	if (ndm->ndm_state & NUD_PERMANENT) {
5095 		netdev_err(dev, "FDB only supports static addresses\n");
5096 		return -EINVAL;
5097 	}
5098 
5099 	if (is_unicast_ether_addr(addr))
5100 		err = dev_uc_del(dev, addr);
5101 	else if (is_multicast_ether_addr(addr))
5102 		err = dev_mc_del(dev, addr);
5103 	else
5104 		err = -EINVAL;
5105 
5106 	return err;
5107 }
5108 
5109 /**
5110  * ice_set_features - set the netdev feature flags
5111  * @netdev: ptr to the netdev being adjusted
5112  * @features: the feature set that the stack is suggesting
5113  */
5114 static int
ice_set_features(struct net_device * netdev,netdev_features_t features)5115 ice_set_features(struct net_device *netdev, netdev_features_t features)
5116 {
5117 	struct ice_netdev_priv *np = netdev_priv(netdev);
5118 	struct ice_vsi *vsi = np->vsi;
5119 	struct ice_pf *pf = vsi->back;
5120 	int ret = 0;
5121 
5122 	/* Don't set any netdev advanced features with device in Safe Mode */
5123 	if (ice_is_safe_mode(vsi->back)) {
5124 		dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
5125 		return ret;
5126 	}
5127 
5128 	/* Do not change setting during reset */
5129 	if (ice_is_reset_in_progress(pf->state)) {
5130 		dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5131 		return -EBUSY;
5132 	}
5133 
5134 	/* Multiple features can be changed in one call so keep features in
5135 	 * separate if/else statements to guarantee each feature is checked
5136 	 */
5137 	if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5138 		ret = ice_vsi_manage_rss_lut(vsi, true);
5139 	else if (!(features & NETIF_F_RXHASH) &&
5140 		 netdev->features & NETIF_F_RXHASH)
5141 		ret = ice_vsi_manage_rss_lut(vsi, false);
5142 
5143 	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
5144 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5145 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5146 	else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
5147 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5148 		ret = ice_vsi_manage_vlan_stripping(vsi, false);
5149 
5150 	if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
5151 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5152 		ret = ice_vsi_manage_vlan_insertion(vsi);
5153 	else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
5154 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5155 		ret = ice_vsi_manage_vlan_insertion(vsi);
5156 
5157 	if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5158 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5159 		ret = ice_cfg_vlan_pruning(vsi, true, false);
5160 	else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5161 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5162 		ret = ice_cfg_vlan_pruning(vsi, false, false);
5163 
5164 	if ((features & NETIF_F_NTUPLE) &&
5165 	    !(netdev->features & NETIF_F_NTUPLE)) {
5166 		ice_vsi_manage_fdir(vsi, true);
5167 		ice_init_arfs(vsi);
5168 	} else if (!(features & NETIF_F_NTUPLE) &&
5169 		 (netdev->features & NETIF_F_NTUPLE)) {
5170 		ice_vsi_manage_fdir(vsi, false);
5171 		ice_clear_arfs(vsi);
5172 	}
5173 
5174 	return ret;
5175 }
5176 
5177 /**
5178  * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
5179  * @vsi: VSI to setup VLAN properties for
5180  */
ice_vsi_vlan_setup(struct ice_vsi * vsi)5181 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
5182 {
5183 	int ret = 0;
5184 
5185 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
5186 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5187 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
5188 		ret = ice_vsi_manage_vlan_insertion(vsi);
5189 
5190 	return ret;
5191 }
5192 
5193 /**
5194  * ice_vsi_cfg - Setup the VSI
5195  * @vsi: the VSI being configured
5196  *
5197  * Return 0 on success and negative value on error
5198  */
ice_vsi_cfg(struct ice_vsi * vsi)5199 int ice_vsi_cfg(struct ice_vsi *vsi)
5200 {
5201 	int err;
5202 
5203 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
5204 		ice_set_rx_mode(vsi->netdev);
5205 
5206 		err = ice_vsi_vlan_setup(vsi);
5207 		if (err)
5208 			return err;
5209 	}
5210 	ice_vsi_cfg_dcb_rings(vsi);
5211 
5212 	err = ice_vsi_cfg_lan_txqs(vsi);
5213 	if (!err && ice_is_xdp_ena_vsi(vsi))
5214 		err = ice_vsi_cfg_xdp_txqs(vsi);
5215 	if (!err)
5216 		err = ice_vsi_cfg_rxqs(vsi);
5217 
5218 	return err;
5219 }
5220 
5221 /**
5222  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
5223  * @vsi: the VSI being configured
5224  */
ice_napi_enable_all(struct ice_vsi * vsi)5225 static void ice_napi_enable_all(struct ice_vsi *vsi)
5226 {
5227 	int q_idx;
5228 
5229 	if (!vsi->netdev)
5230 		return;
5231 
5232 	ice_for_each_q_vector(vsi, q_idx) {
5233 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5234 
5235 		if (q_vector->rx.ring || q_vector->tx.ring)
5236 			napi_enable(&q_vector->napi);
5237 	}
5238 }
5239 
5240 /**
5241  * ice_up_complete - Finish the last steps of bringing up a connection
5242  * @vsi: The VSI being configured
5243  *
5244  * Return 0 on success and negative value on error
5245  */
ice_up_complete(struct ice_vsi * vsi)5246 static int ice_up_complete(struct ice_vsi *vsi)
5247 {
5248 	struct ice_pf *pf = vsi->back;
5249 	int err;
5250 
5251 	ice_vsi_cfg_msix(vsi);
5252 
5253 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
5254 	 * Tx queue group list was configured and the context bits were
5255 	 * programmed using ice_vsi_cfg_txqs
5256 	 */
5257 	err = ice_vsi_start_all_rx_rings(vsi);
5258 	if (err)
5259 		return err;
5260 
5261 	clear_bit(__ICE_DOWN, vsi->state);
5262 	ice_napi_enable_all(vsi);
5263 	ice_vsi_ena_irq(vsi);
5264 
5265 	if (vsi->port_info &&
5266 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
5267 	    vsi->netdev && vsi->type == ICE_VSI_PF) {
5268 		ice_print_link_msg(vsi, true);
5269 		netif_tx_start_all_queues(vsi->netdev);
5270 		netif_carrier_on(vsi->netdev);
5271 	}
5272 
5273 	/* Perform an initial read of the statistics registers now to
5274 	 * set the baseline so counters are ready when interface is up
5275 	 */
5276 	ice_update_eth_stats(vsi);
5277 
5278 	if (vsi->type == ICE_VSI_PF)
5279 		ice_service_task_schedule(pf);
5280 
5281 	return 0;
5282 }
5283 
5284 /**
5285  * ice_up - Bring the connection back up after being down
5286  * @vsi: VSI being configured
5287  */
ice_up(struct ice_vsi * vsi)5288 int ice_up(struct ice_vsi *vsi)
5289 {
5290 	int err;
5291 
5292 	err = ice_vsi_cfg(vsi);
5293 	if (!err)
5294 		err = ice_up_complete(vsi);
5295 
5296 	return err;
5297 }
5298 
5299 /**
5300  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
5301  * @ring: Tx or Rx ring to read stats from
5302  * @pkts: packets stats counter
5303  * @bytes: bytes stats counter
5304  *
5305  * This function fetches stats from the ring considering the atomic operations
5306  * that needs to be performed to read u64 values in 32 bit machine.
5307  */
5308 static void
ice_fetch_u64_stats_per_ring(struct ice_ring * ring,u64 * pkts,u64 * bytes)5309 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
5310 {
5311 	unsigned int start;
5312 	*pkts = 0;
5313 	*bytes = 0;
5314 
5315 	if (!ring)
5316 		return;
5317 	do {
5318 		start = u64_stats_fetch_begin_irq(&ring->syncp);
5319 		*pkts = ring->stats.pkts;
5320 		*bytes = ring->stats.bytes;
5321 	} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
5322 }
5323 
5324 /**
5325  * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
5326  * @vsi: the VSI to be updated
5327  * @rings: rings to work on
5328  * @count: number of rings
5329  */
5330 static void
ice_update_vsi_tx_ring_stats(struct ice_vsi * vsi,struct ice_ring ** rings,u16 count)5331 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings,
5332 			     u16 count)
5333 {
5334 	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5335 	u16 i;
5336 
5337 	for (i = 0; i < count; i++) {
5338 		struct ice_ring *ring;
5339 		u64 pkts, bytes;
5340 
5341 		ring = READ_ONCE(rings[i]);
5342 		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5343 		vsi_stats->tx_packets += pkts;
5344 		vsi_stats->tx_bytes += bytes;
5345 		vsi->tx_restart += ring->tx_stats.restart_q;
5346 		vsi->tx_busy += ring->tx_stats.tx_busy;
5347 		vsi->tx_linearize += ring->tx_stats.tx_linearize;
5348 	}
5349 }
5350 
5351 /**
5352  * ice_update_vsi_ring_stats - Update VSI stats counters
5353  * @vsi: the VSI to be updated
5354  */
ice_update_vsi_ring_stats(struct ice_vsi * vsi)5355 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
5356 {
5357 	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5358 	struct ice_ring *ring;
5359 	u64 pkts, bytes;
5360 	int i;
5361 
5362 	/* reset netdev stats */
5363 	vsi_stats->tx_packets = 0;
5364 	vsi_stats->tx_bytes = 0;
5365 	vsi_stats->rx_packets = 0;
5366 	vsi_stats->rx_bytes = 0;
5367 
5368 	/* reset non-netdev (extended) stats */
5369 	vsi->tx_restart = 0;
5370 	vsi->tx_busy = 0;
5371 	vsi->tx_linearize = 0;
5372 	vsi->rx_buf_failed = 0;
5373 	vsi->rx_page_failed = 0;
5374 	vsi->rx_gro_dropped = 0;
5375 
5376 	rcu_read_lock();
5377 
5378 	/* update Tx rings counters */
5379 	ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq);
5380 
5381 	/* update Rx rings counters */
5382 	ice_for_each_rxq(vsi, i) {
5383 		ring = READ_ONCE(vsi->rx_rings[i]);
5384 		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5385 		vsi_stats->rx_packets += pkts;
5386 		vsi_stats->rx_bytes += bytes;
5387 		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
5388 		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
5389 		vsi->rx_gro_dropped += ring->rx_stats.gro_dropped;
5390 	}
5391 
5392 	/* update XDP Tx rings counters */
5393 	if (ice_is_xdp_ena_vsi(vsi))
5394 		ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings,
5395 					     vsi->num_xdp_txq);
5396 
5397 	rcu_read_unlock();
5398 }
5399 
5400 /**
5401  * ice_update_vsi_stats - Update VSI stats counters
5402  * @vsi: the VSI to be updated
5403  */
ice_update_vsi_stats(struct ice_vsi * vsi)5404 void ice_update_vsi_stats(struct ice_vsi *vsi)
5405 {
5406 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
5407 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
5408 	struct ice_pf *pf = vsi->back;
5409 
5410 	if (test_bit(__ICE_DOWN, vsi->state) ||
5411 	    test_bit(__ICE_CFG_BUSY, pf->state))
5412 		return;
5413 
5414 	/* get stats as recorded by Tx/Rx rings */
5415 	ice_update_vsi_ring_stats(vsi);
5416 
5417 	/* get VSI stats as recorded by the hardware */
5418 	ice_update_eth_stats(vsi);
5419 
5420 	cur_ns->tx_errors = cur_es->tx_errors;
5421 	cur_ns->rx_dropped = cur_es->rx_discards + vsi->rx_gro_dropped;
5422 	cur_ns->tx_dropped = cur_es->tx_discards;
5423 	cur_ns->multicast = cur_es->rx_multicast;
5424 
5425 	/* update some more netdev stats if this is main VSI */
5426 	if (vsi->type == ICE_VSI_PF) {
5427 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
5428 		cur_ns->rx_errors = pf->stats.crc_errors +
5429 				    pf->stats.illegal_bytes +
5430 				    pf->stats.rx_len_errors +
5431 				    pf->stats.rx_undersize +
5432 				    pf->hw_csum_rx_error +
5433 				    pf->stats.rx_jabber +
5434 				    pf->stats.rx_fragments +
5435 				    pf->stats.rx_oversize;
5436 		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
5437 		/* record drops from the port level */
5438 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
5439 	}
5440 }
5441 
5442 /**
5443  * ice_update_pf_stats - Update PF port stats counters
5444  * @pf: PF whose stats needs to be updated
5445  */
ice_update_pf_stats(struct ice_pf * pf)5446 void ice_update_pf_stats(struct ice_pf *pf)
5447 {
5448 	struct ice_hw_port_stats *prev_ps, *cur_ps;
5449 	struct ice_hw *hw = &pf->hw;
5450 	u16 fd_ctr_base;
5451 	u8 port;
5452 
5453 	port = hw->port_info->lport;
5454 	prev_ps = &pf->stats_prev;
5455 	cur_ps = &pf->stats;
5456 
5457 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
5458 			  &prev_ps->eth.rx_bytes,
5459 			  &cur_ps->eth.rx_bytes);
5460 
5461 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
5462 			  &prev_ps->eth.rx_unicast,
5463 			  &cur_ps->eth.rx_unicast);
5464 
5465 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
5466 			  &prev_ps->eth.rx_multicast,
5467 			  &cur_ps->eth.rx_multicast);
5468 
5469 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
5470 			  &prev_ps->eth.rx_broadcast,
5471 			  &cur_ps->eth.rx_broadcast);
5472 
5473 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
5474 			  &prev_ps->eth.rx_discards,
5475 			  &cur_ps->eth.rx_discards);
5476 
5477 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
5478 			  &prev_ps->eth.tx_bytes,
5479 			  &cur_ps->eth.tx_bytes);
5480 
5481 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
5482 			  &prev_ps->eth.tx_unicast,
5483 			  &cur_ps->eth.tx_unicast);
5484 
5485 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
5486 			  &prev_ps->eth.tx_multicast,
5487 			  &cur_ps->eth.tx_multicast);
5488 
5489 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
5490 			  &prev_ps->eth.tx_broadcast,
5491 			  &cur_ps->eth.tx_broadcast);
5492 
5493 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
5494 			  &prev_ps->tx_dropped_link_down,
5495 			  &cur_ps->tx_dropped_link_down);
5496 
5497 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
5498 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
5499 
5500 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
5501 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
5502 
5503 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
5504 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
5505 
5506 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
5507 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
5508 
5509 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
5510 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
5511 
5512 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
5513 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
5514 
5515 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
5516 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
5517 
5518 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
5519 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
5520 
5521 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
5522 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
5523 
5524 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
5525 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
5526 
5527 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
5528 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
5529 
5530 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
5531 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
5532 
5533 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
5534 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
5535 
5536 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
5537 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
5538 
5539 	fd_ctr_base = hw->fd_ctr_base;
5540 
5541 	ice_stat_update40(hw,
5542 			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
5543 			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
5544 			  &cur_ps->fd_sb_match);
5545 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
5546 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
5547 
5548 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
5549 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
5550 
5551 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
5552 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
5553 
5554 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
5555 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
5556 
5557 	ice_update_dcb_stats(pf);
5558 
5559 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
5560 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
5561 
5562 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
5563 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
5564 
5565 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
5566 			  &prev_ps->mac_local_faults,
5567 			  &cur_ps->mac_local_faults);
5568 
5569 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
5570 			  &prev_ps->mac_remote_faults,
5571 			  &cur_ps->mac_remote_faults);
5572 
5573 	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
5574 			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
5575 
5576 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
5577 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
5578 
5579 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
5580 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
5581 
5582 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
5583 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
5584 
5585 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
5586 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
5587 
5588 	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
5589 
5590 	pf->stat_prev_loaded = true;
5591 }
5592 
5593 /**
5594  * ice_get_stats64 - get statistics for network device structure
5595  * @netdev: network interface device structure
5596  * @stats: main device statistics structure
5597  */
5598 static
ice_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)5599 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
5600 {
5601 	struct ice_netdev_priv *np = netdev_priv(netdev);
5602 	struct rtnl_link_stats64 *vsi_stats;
5603 	struct ice_vsi *vsi = np->vsi;
5604 
5605 	vsi_stats = &vsi->net_stats;
5606 
5607 	if (!vsi->num_txq || !vsi->num_rxq)
5608 		return;
5609 
5610 	/* netdev packet/byte stats come from ring counter. These are obtained
5611 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
5612 	 * But, only call the update routine and read the registers if VSI is
5613 	 * not down.
5614 	 */
5615 	if (!test_bit(__ICE_DOWN, vsi->state))
5616 		ice_update_vsi_ring_stats(vsi);
5617 	stats->tx_packets = vsi_stats->tx_packets;
5618 	stats->tx_bytes = vsi_stats->tx_bytes;
5619 	stats->rx_packets = vsi_stats->rx_packets;
5620 	stats->rx_bytes = vsi_stats->rx_bytes;
5621 
5622 	/* The rest of the stats can be read from the hardware but instead we
5623 	 * just return values that the watchdog task has already obtained from
5624 	 * the hardware.
5625 	 */
5626 	stats->multicast = vsi_stats->multicast;
5627 	stats->tx_errors = vsi_stats->tx_errors;
5628 	stats->tx_dropped = vsi_stats->tx_dropped;
5629 	stats->rx_errors = vsi_stats->rx_errors;
5630 	stats->rx_dropped = vsi_stats->rx_dropped;
5631 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
5632 	stats->rx_length_errors = vsi_stats->rx_length_errors;
5633 }
5634 
5635 /**
5636  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
5637  * @vsi: VSI having NAPI disabled
5638  */
ice_napi_disable_all(struct ice_vsi * vsi)5639 static void ice_napi_disable_all(struct ice_vsi *vsi)
5640 {
5641 	int q_idx;
5642 
5643 	if (!vsi->netdev)
5644 		return;
5645 
5646 	ice_for_each_q_vector(vsi, q_idx) {
5647 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5648 
5649 		if (q_vector->rx.ring || q_vector->tx.ring)
5650 			napi_disable(&q_vector->napi);
5651 	}
5652 }
5653 
5654 /**
5655  * ice_down - Shutdown the connection
5656  * @vsi: The VSI being stopped
5657  */
ice_down(struct ice_vsi * vsi)5658 int ice_down(struct ice_vsi *vsi)
5659 {
5660 	int i, tx_err, rx_err, link_err = 0;
5661 
5662 	/* Caller of this function is expected to set the
5663 	 * vsi->state __ICE_DOWN bit
5664 	 */
5665 	if (vsi->netdev) {
5666 		netif_carrier_off(vsi->netdev);
5667 		netif_tx_disable(vsi->netdev);
5668 	}
5669 
5670 	ice_vsi_dis_irq(vsi);
5671 
5672 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
5673 	if (tx_err)
5674 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
5675 			   vsi->vsi_num, tx_err);
5676 	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
5677 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
5678 		if (tx_err)
5679 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
5680 				   vsi->vsi_num, tx_err);
5681 	}
5682 
5683 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
5684 	if (rx_err)
5685 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
5686 			   vsi->vsi_num, rx_err);
5687 
5688 	ice_napi_disable_all(vsi);
5689 
5690 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
5691 		link_err = ice_force_phys_link_state(vsi, false);
5692 		if (link_err)
5693 			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
5694 				   vsi->vsi_num, link_err);
5695 	}
5696 
5697 	ice_for_each_txq(vsi, i)
5698 		ice_clean_tx_ring(vsi->tx_rings[i]);
5699 
5700 	ice_for_each_rxq(vsi, i)
5701 		ice_clean_rx_ring(vsi->rx_rings[i]);
5702 
5703 	if (tx_err || rx_err || link_err) {
5704 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
5705 			   vsi->vsi_num, vsi->vsw->sw_id);
5706 		return -EIO;
5707 	}
5708 
5709 	return 0;
5710 }
5711 
5712 /**
5713  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
5714  * @vsi: VSI having resources allocated
5715  *
5716  * Return 0 on success, negative on failure
5717  */
ice_vsi_setup_tx_rings(struct ice_vsi * vsi)5718 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
5719 {
5720 	int i, err = 0;
5721 
5722 	if (!vsi->num_txq) {
5723 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
5724 			vsi->vsi_num);
5725 		return -EINVAL;
5726 	}
5727 
5728 	ice_for_each_txq(vsi, i) {
5729 		struct ice_ring *ring = vsi->tx_rings[i];
5730 
5731 		if (!ring)
5732 			return -EINVAL;
5733 
5734 		ring->netdev = vsi->netdev;
5735 		err = ice_setup_tx_ring(ring);
5736 		if (err)
5737 			break;
5738 	}
5739 
5740 	return err;
5741 }
5742 
5743 /**
5744  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
5745  * @vsi: VSI having resources allocated
5746  *
5747  * Return 0 on success, negative on failure
5748  */
ice_vsi_setup_rx_rings(struct ice_vsi * vsi)5749 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
5750 {
5751 	int i, err = 0;
5752 
5753 	if (!vsi->num_rxq) {
5754 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
5755 			vsi->vsi_num);
5756 		return -EINVAL;
5757 	}
5758 
5759 	ice_for_each_rxq(vsi, i) {
5760 		struct ice_ring *ring = vsi->rx_rings[i];
5761 
5762 		if (!ring)
5763 			return -EINVAL;
5764 
5765 		ring->netdev = vsi->netdev;
5766 		err = ice_setup_rx_ring(ring);
5767 		if (err)
5768 			break;
5769 	}
5770 
5771 	return err;
5772 }
5773 
5774 /**
5775  * ice_vsi_open_ctrl - open control VSI for use
5776  * @vsi: the VSI to open
5777  *
5778  * Initialization of the Control VSI
5779  *
5780  * Returns 0 on success, negative value on error
5781  */
ice_vsi_open_ctrl(struct ice_vsi * vsi)5782 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
5783 {
5784 	char int_name[ICE_INT_NAME_STR_LEN];
5785 	struct ice_pf *pf = vsi->back;
5786 	struct device *dev;
5787 	int err;
5788 
5789 	dev = ice_pf_to_dev(pf);
5790 	/* allocate descriptors */
5791 	err = ice_vsi_setup_tx_rings(vsi);
5792 	if (err)
5793 		goto err_setup_tx;
5794 
5795 	err = ice_vsi_setup_rx_rings(vsi);
5796 	if (err)
5797 		goto err_setup_rx;
5798 
5799 	err = ice_vsi_cfg(vsi);
5800 	if (err)
5801 		goto err_setup_rx;
5802 
5803 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
5804 		 dev_driver_string(dev), dev_name(dev));
5805 	err = ice_vsi_req_irq_msix(vsi, int_name);
5806 	if (err)
5807 		goto err_setup_rx;
5808 
5809 	ice_vsi_cfg_msix(vsi);
5810 
5811 	err = ice_vsi_start_all_rx_rings(vsi);
5812 	if (err)
5813 		goto err_up_complete;
5814 
5815 	clear_bit(__ICE_DOWN, vsi->state);
5816 	ice_vsi_ena_irq(vsi);
5817 
5818 	return 0;
5819 
5820 err_up_complete:
5821 	ice_down(vsi);
5822 err_setup_rx:
5823 	ice_vsi_free_rx_rings(vsi);
5824 err_setup_tx:
5825 	ice_vsi_free_tx_rings(vsi);
5826 
5827 	return err;
5828 }
5829 
5830 /**
5831  * ice_vsi_open - Called when a network interface is made active
5832  * @vsi: the VSI to open
5833  *
5834  * Initialization of the VSI
5835  *
5836  * Returns 0 on success, negative value on error
5837  */
ice_vsi_open(struct ice_vsi * vsi)5838 static int ice_vsi_open(struct ice_vsi *vsi)
5839 {
5840 	char int_name[ICE_INT_NAME_STR_LEN];
5841 	struct ice_pf *pf = vsi->back;
5842 	int err;
5843 
5844 	/* allocate descriptors */
5845 	err = ice_vsi_setup_tx_rings(vsi);
5846 	if (err)
5847 		goto err_setup_tx;
5848 
5849 	err = ice_vsi_setup_rx_rings(vsi);
5850 	if (err)
5851 		goto err_setup_rx;
5852 
5853 	err = ice_vsi_cfg(vsi);
5854 	if (err)
5855 		goto err_setup_rx;
5856 
5857 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
5858 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
5859 	err = ice_vsi_req_irq_msix(vsi, int_name);
5860 	if (err)
5861 		goto err_setup_rx;
5862 
5863 	/* Notify the stack of the actual queue counts. */
5864 	err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
5865 	if (err)
5866 		goto err_set_qs;
5867 
5868 	err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
5869 	if (err)
5870 		goto err_set_qs;
5871 
5872 	err = ice_up_complete(vsi);
5873 	if (err)
5874 		goto err_up_complete;
5875 
5876 	return 0;
5877 
5878 err_up_complete:
5879 	ice_down(vsi);
5880 err_set_qs:
5881 	ice_vsi_free_irq(vsi);
5882 err_setup_rx:
5883 	ice_vsi_free_rx_rings(vsi);
5884 err_setup_tx:
5885 	ice_vsi_free_tx_rings(vsi);
5886 
5887 	return err;
5888 }
5889 
5890 /**
5891  * ice_vsi_release_all - Delete all VSIs
5892  * @pf: PF from which all VSIs are being removed
5893  */
ice_vsi_release_all(struct ice_pf * pf)5894 static void ice_vsi_release_all(struct ice_pf *pf)
5895 {
5896 	int err, i;
5897 
5898 	if (!pf->vsi)
5899 		return;
5900 
5901 	ice_for_each_vsi(pf, i) {
5902 		if (!pf->vsi[i])
5903 			continue;
5904 
5905 		err = ice_vsi_release(pf->vsi[i]);
5906 		if (err)
5907 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
5908 				i, err, pf->vsi[i]->vsi_num);
5909 	}
5910 }
5911 
5912 /**
5913  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
5914  * @pf: pointer to the PF instance
5915  * @type: VSI type to rebuild
5916  *
5917  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
5918  */
ice_vsi_rebuild_by_type(struct ice_pf * pf,enum ice_vsi_type type)5919 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
5920 {
5921 	struct device *dev = ice_pf_to_dev(pf);
5922 	enum ice_status status;
5923 	int i, err;
5924 
5925 	ice_for_each_vsi(pf, i) {
5926 		struct ice_vsi *vsi = pf->vsi[i];
5927 
5928 		if (!vsi || vsi->type != type)
5929 			continue;
5930 
5931 		/* rebuild the VSI */
5932 		err = ice_vsi_rebuild(vsi, true);
5933 		if (err) {
5934 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
5935 				err, vsi->idx, ice_vsi_type_str(type));
5936 			return err;
5937 		}
5938 
5939 		/* replay filters for the VSI */
5940 		status = ice_replay_vsi(&pf->hw, vsi->idx);
5941 		if (status) {
5942 			dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n",
5943 				ice_stat_str(status), vsi->idx,
5944 				ice_vsi_type_str(type));
5945 			return -EIO;
5946 		}
5947 
5948 		/* Re-map HW VSI number, using VSI handle that has been
5949 		 * previously validated in ice_replay_vsi() call above
5950 		 */
5951 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
5952 
5953 		/* enable the VSI */
5954 		err = ice_ena_vsi(vsi, false);
5955 		if (err) {
5956 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
5957 				err, vsi->idx, ice_vsi_type_str(type));
5958 			return err;
5959 		}
5960 
5961 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
5962 			 ice_vsi_type_str(type));
5963 	}
5964 
5965 	return 0;
5966 }
5967 
5968 /**
5969  * ice_update_pf_netdev_link - Update PF netdev link status
5970  * @pf: pointer to the PF instance
5971  */
ice_update_pf_netdev_link(struct ice_pf * pf)5972 static void ice_update_pf_netdev_link(struct ice_pf *pf)
5973 {
5974 	bool link_up;
5975 	int i;
5976 
5977 	ice_for_each_vsi(pf, i) {
5978 		struct ice_vsi *vsi = pf->vsi[i];
5979 
5980 		if (!vsi || vsi->type != ICE_VSI_PF)
5981 			return;
5982 
5983 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
5984 		if (link_up) {
5985 			netif_carrier_on(pf->vsi[i]->netdev);
5986 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
5987 		} else {
5988 			netif_carrier_off(pf->vsi[i]->netdev);
5989 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
5990 		}
5991 	}
5992 }
5993 
5994 /**
5995  * ice_rebuild - rebuild after reset
5996  * @pf: PF to rebuild
5997  * @reset_type: type of reset
5998  *
5999  * Do not rebuild VF VSI in this flow because that is already handled via
6000  * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
6001  * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
6002  * to reset/rebuild all the VF VSI twice.
6003  */
ice_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)6004 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
6005 {
6006 	struct device *dev = ice_pf_to_dev(pf);
6007 	struct ice_hw *hw = &pf->hw;
6008 	enum ice_status ret;
6009 	int err;
6010 
6011 	if (test_bit(__ICE_DOWN, pf->state))
6012 		goto clear_recovery;
6013 
6014 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
6015 
6016 	ret = ice_init_all_ctrlq(hw);
6017 	if (ret) {
6018 		dev_err(dev, "control queues init failed %s\n",
6019 			ice_stat_str(ret));
6020 		goto err_init_ctrlq;
6021 	}
6022 
6023 	/* if DDP was previously loaded successfully */
6024 	if (!ice_is_safe_mode(pf)) {
6025 		/* reload the SW DB of filter tables */
6026 		if (reset_type == ICE_RESET_PFR)
6027 			ice_fill_blk_tbls(hw);
6028 		else
6029 			/* Reload DDP Package after CORER/GLOBR reset */
6030 			ice_load_pkg(NULL, pf);
6031 	}
6032 
6033 	ret = ice_clear_pf_cfg(hw);
6034 	if (ret) {
6035 		dev_err(dev, "clear PF configuration failed %s\n",
6036 			ice_stat_str(ret));
6037 		goto err_init_ctrlq;
6038 	}
6039 
6040 	if (pf->first_sw->dflt_vsi_ena)
6041 		dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
6042 	/* clear the default VSI configuration if it exists */
6043 	pf->first_sw->dflt_vsi = NULL;
6044 	pf->first_sw->dflt_vsi_ena = false;
6045 
6046 	ice_clear_pxe_mode(hw);
6047 
6048 	ret = ice_get_caps(hw);
6049 	if (ret) {
6050 		dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret));
6051 		goto err_init_ctrlq;
6052 	}
6053 
6054 	ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
6055 	if (ret) {
6056 		dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret));
6057 		goto err_init_ctrlq;
6058 	}
6059 
6060 	err = ice_sched_init_port(hw->port_info);
6061 	if (err)
6062 		goto err_sched_init_port;
6063 
6064 	/* start misc vector */
6065 	err = ice_req_irq_msix_misc(pf);
6066 	if (err) {
6067 		dev_err(dev, "misc vector setup failed: %d\n", err);
6068 		goto err_sched_init_port;
6069 	}
6070 
6071 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6072 		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
6073 		if (!rd32(hw, PFQF_FD_SIZE)) {
6074 			u16 unused, guar, b_effort;
6075 
6076 			guar = hw->func_caps.fd_fltr_guar;
6077 			b_effort = hw->func_caps.fd_fltr_best_effort;
6078 
6079 			/* force guaranteed filter pool for PF */
6080 			ice_alloc_fd_guar_item(hw, &unused, guar);
6081 			/* force shared filter pool for PF */
6082 			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
6083 		}
6084 	}
6085 
6086 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
6087 		ice_dcb_rebuild(pf);
6088 
6089 	/* rebuild PF VSI */
6090 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
6091 	if (err) {
6092 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
6093 		goto err_vsi_rebuild;
6094 	}
6095 
6096 	/* If Flow Director is active */
6097 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6098 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
6099 		if (err) {
6100 			dev_err(dev, "control VSI rebuild failed: %d\n", err);
6101 			goto err_vsi_rebuild;
6102 		}
6103 
6104 		/* replay HW Flow Director recipes */
6105 		if (hw->fdir_prof)
6106 			ice_fdir_replay_flows(hw);
6107 
6108 		/* replay Flow Director filters */
6109 		ice_fdir_replay_fltrs(pf);
6110 
6111 		ice_rebuild_arfs(pf);
6112 	}
6113 
6114 	ice_update_pf_netdev_link(pf);
6115 
6116 	/* tell the firmware we are up */
6117 	ret = ice_send_version(pf);
6118 	if (ret) {
6119 		dev_err(dev, "Rebuild failed due to error sending driver version: %s\n",
6120 			ice_stat_str(ret));
6121 		goto err_vsi_rebuild;
6122 	}
6123 
6124 	ice_replay_post(hw);
6125 
6126 	/* if we get here, reset flow is successful */
6127 	clear_bit(__ICE_RESET_FAILED, pf->state);
6128 	return;
6129 
6130 err_vsi_rebuild:
6131 err_sched_init_port:
6132 	ice_sched_cleanup_all(hw);
6133 err_init_ctrlq:
6134 	ice_shutdown_all_ctrlq(hw);
6135 	set_bit(__ICE_RESET_FAILED, pf->state);
6136 clear_recovery:
6137 	/* set this bit in PF state to control service task scheduling */
6138 	set_bit(__ICE_NEEDS_RESTART, pf->state);
6139 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
6140 }
6141 
6142 /**
6143  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
6144  * @vsi: Pointer to VSI structure
6145  */
ice_max_xdp_frame_size(struct ice_vsi * vsi)6146 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
6147 {
6148 	if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
6149 		return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
6150 	else
6151 		return ICE_RXBUF_3072;
6152 }
6153 
6154 /**
6155  * ice_change_mtu - NDO callback to change the MTU
6156  * @netdev: network interface device structure
6157  * @new_mtu: new value for maximum frame size
6158  *
6159  * Returns 0 on success, negative on failure
6160  */
ice_change_mtu(struct net_device * netdev,int new_mtu)6161 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
6162 {
6163 	struct ice_netdev_priv *np = netdev_priv(netdev);
6164 	struct ice_vsi *vsi = np->vsi;
6165 	struct ice_pf *pf = vsi->back;
6166 	u8 count = 0;
6167 
6168 	if (new_mtu == (int)netdev->mtu) {
6169 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
6170 		return 0;
6171 	}
6172 
6173 	if (ice_is_xdp_ena_vsi(vsi)) {
6174 		int frame_size = ice_max_xdp_frame_size(vsi);
6175 
6176 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
6177 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
6178 				   frame_size - ICE_ETH_PKT_HDR_PAD);
6179 			return -EINVAL;
6180 		}
6181 	}
6182 
6183 	if (new_mtu < (int)netdev->min_mtu) {
6184 		netdev_err(netdev, "new MTU invalid. min_mtu is %d\n",
6185 			   netdev->min_mtu);
6186 		return -EINVAL;
6187 	} else if (new_mtu > (int)netdev->max_mtu) {
6188 		netdev_err(netdev, "new MTU invalid. max_mtu is %d\n",
6189 			   netdev->min_mtu);
6190 		return -EINVAL;
6191 	}
6192 	/* if a reset is in progress, wait for some time for it to complete */
6193 	do {
6194 		if (ice_is_reset_in_progress(pf->state)) {
6195 			count++;
6196 			usleep_range(1000, 2000);
6197 		} else {
6198 			break;
6199 		}
6200 
6201 	} while (count < 100);
6202 
6203 	if (count == 100) {
6204 		netdev_err(netdev, "can't change MTU. Device is busy\n");
6205 		return -EBUSY;
6206 	}
6207 
6208 	netdev->mtu = (unsigned int)new_mtu;
6209 
6210 	/* if VSI is up, bring it down and then back up */
6211 	if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
6212 		int err;
6213 
6214 		err = ice_down(vsi);
6215 		if (err) {
6216 			netdev_err(netdev, "change MTU if_up err %d\n", err);
6217 			return err;
6218 		}
6219 
6220 		err = ice_up(vsi);
6221 		if (err) {
6222 			netdev_err(netdev, "change MTU if_up err %d\n", err);
6223 			return err;
6224 		}
6225 	}
6226 
6227 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
6228 	return 0;
6229 }
6230 
6231 /**
6232  * ice_aq_str - convert AQ err code to a string
6233  * @aq_err: the AQ error code to convert
6234  */
ice_aq_str(enum ice_aq_err aq_err)6235 const char *ice_aq_str(enum ice_aq_err aq_err)
6236 {
6237 	switch (aq_err) {
6238 	case ICE_AQ_RC_OK:
6239 		return "OK";
6240 	case ICE_AQ_RC_EPERM:
6241 		return "ICE_AQ_RC_EPERM";
6242 	case ICE_AQ_RC_ENOENT:
6243 		return "ICE_AQ_RC_ENOENT";
6244 	case ICE_AQ_RC_ENOMEM:
6245 		return "ICE_AQ_RC_ENOMEM";
6246 	case ICE_AQ_RC_EBUSY:
6247 		return "ICE_AQ_RC_EBUSY";
6248 	case ICE_AQ_RC_EEXIST:
6249 		return "ICE_AQ_RC_EEXIST";
6250 	case ICE_AQ_RC_EINVAL:
6251 		return "ICE_AQ_RC_EINVAL";
6252 	case ICE_AQ_RC_ENOSPC:
6253 		return "ICE_AQ_RC_ENOSPC";
6254 	case ICE_AQ_RC_ENOSYS:
6255 		return "ICE_AQ_RC_ENOSYS";
6256 	case ICE_AQ_RC_EMODE:
6257 		return "ICE_AQ_RC_EMODE";
6258 	case ICE_AQ_RC_ENOSEC:
6259 		return "ICE_AQ_RC_ENOSEC";
6260 	case ICE_AQ_RC_EBADSIG:
6261 		return "ICE_AQ_RC_EBADSIG";
6262 	case ICE_AQ_RC_ESVN:
6263 		return "ICE_AQ_RC_ESVN";
6264 	case ICE_AQ_RC_EBADMAN:
6265 		return "ICE_AQ_RC_EBADMAN";
6266 	case ICE_AQ_RC_EBADBUF:
6267 		return "ICE_AQ_RC_EBADBUF";
6268 	}
6269 
6270 	return "ICE_AQ_RC_UNKNOWN";
6271 }
6272 
6273 /**
6274  * ice_stat_str - convert status err code to a string
6275  * @stat_err: the status error code to convert
6276  */
ice_stat_str(enum ice_status stat_err)6277 const char *ice_stat_str(enum ice_status stat_err)
6278 {
6279 	switch (stat_err) {
6280 	case ICE_SUCCESS:
6281 		return "OK";
6282 	case ICE_ERR_PARAM:
6283 		return "ICE_ERR_PARAM";
6284 	case ICE_ERR_NOT_IMPL:
6285 		return "ICE_ERR_NOT_IMPL";
6286 	case ICE_ERR_NOT_READY:
6287 		return "ICE_ERR_NOT_READY";
6288 	case ICE_ERR_NOT_SUPPORTED:
6289 		return "ICE_ERR_NOT_SUPPORTED";
6290 	case ICE_ERR_BAD_PTR:
6291 		return "ICE_ERR_BAD_PTR";
6292 	case ICE_ERR_INVAL_SIZE:
6293 		return "ICE_ERR_INVAL_SIZE";
6294 	case ICE_ERR_DEVICE_NOT_SUPPORTED:
6295 		return "ICE_ERR_DEVICE_NOT_SUPPORTED";
6296 	case ICE_ERR_RESET_FAILED:
6297 		return "ICE_ERR_RESET_FAILED";
6298 	case ICE_ERR_FW_API_VER:
6299 		return "ICE_ERR_FW_API_VER";
6300 	case ICE_ERR_NO_MEMORY:
6301 		return "ICE_ERR_NO_MEMORY";
6302 	case ICE_ERR_CFG:
6303 		return "ICE_ERR_CFG";
6304 	case ICE_ERR_OUT_OF_RANGE:
6305 		return "ICE_ERR_OUT_OF_RANGE";
6306 	case ICE_ERR_ALREADY_EXISTS:
6307 		return "ICE_ERR_ALREADY_EXISTS";
6308 	case ICE_ERR_NVM_CHECKSUM:
6309 		return "ICE_ERR_NVM_CHECKSUM";
6310 	case ICE_ERR_BUF_TOO_SHORT:
6311 		return "ICE_ERR_BUF_TOO_SHORT";
6312 	case ICE_ERR_NVM_BLANK_MODE:
6313 		return "ICE_ERR_NVM_BLANK_MODE";
6314 	case ICE_ERR_IN_USE:
6315 		return "ICE_ERR_IN_USE";
6316 	case ICE_ERR_MAX_LIMIT:
6317 		return "ICE_ERR_MAX_LIMIT";
6318 	case ICE_ERR_RESET_ONGOING:
6319 		return "ICE_ERR_RESET_ONGOING";
6320 	case ICE_ERR_HW_TABLE:
6321 		return "ICE_ERR_HW_TABLE";
6322 	case ICE_ERR_DOES_NOT_EXIST:
6323 		return "ICE_ERR_DOES_NOT_EXIST";
6324 	case ICE_ERR_FW_DDP_MISMATCH:
6325 		return "ICE_ERR_FW_DDP_MISMATCH";
6326 	case ICE_ERR_AQ_ERROR:
6327 		return "ICE_ERR_AQ_ERROR";
6328 	case ICE_ERR_AQ_TIMEOUT:
6329 		return "ICE_ERR_AQ_TIMEOUT";
6330 	case ICE_ERR_AQ_FULL:
6331 		return "ICE_ERR_AQ_FULL";
6332 	case ICE_ERR_AQ_NO_WORK:
6333 		return "ICE_ERR_AQ_NO_WORK";
6334 	case ICE_ERR_AQ_EMPTY:
6335 		return "ICE_ERR_AQ_EMPTY";
6336 	case ICE_ERR_AQ_FW_CRITICAL:
6337 		return "ICE_ERR_AQ_FW_CRITICAL";
6338 	}
6339 
6340 	return "ICE_ERR_UNKNOWN";
6341 }
6342 
6343 /**
6344  * ice_set_rss - Set RSS keys and lut
6345  * @vsi: Pointer to VSI structure
6346  * @seed: RSS hash seed
6347  * @lut: Lookup table
6348  * @lut_size: Lookup table size
6349  *
6350  * Returns 0 on success, negative on failure
6351  */
ice_set_rss(struct ice_vsi * vsi,u8 * seed,u8 * lut,u16 lut_size)6352 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6353 {
6354 	struct ice_pf *pf = vsi->back;
6355 	struct ice_hw *hw = &pf->hw;
6356 	enum ice_status status;
6357 	struct device *dev;
6358 
6359 	dev = ice_pf_to_dev(pf);
6360 	if (seed) {
6361 		struct ice_aqc_get_set_rss_keys *buf =
6362 				  (struct ice_aqc_get_set_rss_keys *)seed;
6363 
6364 		status = ice_aq_set_rss_key(hw, vsi->idx, buf);
6365 
6366 		if (status) {
6367 			dev_err(dev, "Cannot set RSS key, err %s aq_err %s\n",
6368 				ice_stat_str(status),
6369 				ice_aq_str(hw->adminq.sq_last_status));
6370 			return -EIO;
6371 		}
6372 	}
6373 
6374 	if (lut) {
6375 		status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6376 					    lut, lut_size);
6377 		if (status) {
6378 			dev_err(dev, "Cannot set RSS lut, err %s aq_err %s\n",
6379 				ice_stat_str(status),
6380 				ice_aq_str(hw->adminq.sq_last_status));
6381 			return -EIO;
6382 		}
6383 	}
6384 
6385 	return 0;
6386 }
6387 
6388 /**
6389  * ice_get_rss - Get RSS keys and lut
6390  * @vsi: Pointer to VSI structure
6391  * @seed: Buffer to store the keys
6392  * @lut: Buffer to store the lookup table entries
6393  * @lut_size: Size of buffer to store the lookup table entries
6394  *
6395  * Returns 0 on success, negative on failure
6396  */
ice_get_rss(struct ice_vsi * vsi,u8 * seed,u8 * lut,u16 lut_size)6397 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6398 {
6399 	struct ice_pf *pf = vsi->back;
6400 	struct ice_hw *hw = &pf->hw;
6401 	enum ice_status status;
6402 	struct device *dev;
6403 
6404 	dev = ice_pf_to_dev(pf);
6405 	if (seed) {
6406 		struct ice_aqc_get_set_rss_keys *buf =
6407 				  (struct ice_aqc_get_set_rss_keys *)seed;
6408 
6409 		status = ice_aq_get_rss_key(hw, vsi->idx, buf);
6410 		if (status) {
6411 			dev_err(dev, "Cannot get RSS key, err %s aq_err %s\n",
6412 				ice_stat_str(status),
6413 				ice_aq_str(hw->adminq.sq_last_status));
6414 			return -EIO;
6415 		}
6416 	}
6417 
6418 	if (lut) {
6419 		status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6420 					    lut, lut_size);
6421 		if (status) {
6422 			dev_err(dev, "Cannot get RSS lut, err %s aq_err %s\n",
6423 				ice_stat_str(status),
6424 				ice_aq_str(hw->adminq.sq_last_status));
6425 			return -EIO;
6426 		}
6427 	}
6428 
6429 	return 0;
6430 }
6431 
6432 /**
6433  * ice_bridge_getlink - Get the hardware bridge mode
6434  * @skb: skb buff
6435  * @pid: process ID
6436  * @seq: RTNL message seq
6437  * @dev: the netdev being configured
6438  * @filter_mask: filter mask passed in
6439  * @nlflags: netlink flags passed in
6440  *
6441  * Return the bridge mode (VEB/VEPA)
6442  */
6443 static int
ice_bridge_getlink(struct sk_buff * skb,u32 pid,u32 seq,struct net_device * dev,u32 filter_mask,int nlflags)6444 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
6445 		   struct net_device *dev, u32 filter_mask, int nlflags)
6446 {
6447 	struct ice_netdev_priv *np = netdev_priv(dev);
6448 	struct ice_vsi *vsi = np->vsi;
6449 	struct ice_pf *pf = vsi->back;
6450 	u16 bmode;
6451 
6452 	bmode = pf->first_sw->bridge_mode;
6453 
6454 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
6455 				       filter_mask, NULL);
6456 }
6457 
6458 /**
6459  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
6460  * @vsi: Pointer to VSI structure
6461  * @bmode: Hardware bridge mode (VEB/VEPA)
6462  *
6463  * Returns 0 on success, negative on failure
6464  */
ice_vsi_update_bridge_mode(struct ice_vsi * vsi,u16 bmode)6465 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
6466 {
6467 	struct ice_aqc_vsi_props *vsi_props;
6468 	struct ice_hw *hw = &vsi->back->hw;
6469 	struct ice_vsi_ctx *ctxt;
6470 	enum ice_status status;
6471 	int ret = 0;
6472 
6473 	vsi_props = &vsi->info;
6474 
6475 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
6476 	if (!ctxt)
6477 		return -ENOMEM;
6478 
6479 	ctxt->info = vsi->info;
6480 
6481 	if (bmode == BRIDGE_MODE_VEB)
6482 		/* change from VEPA to VEB mode */
6483 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6484 	else
6485 		/* change from VEB to VEPA mode */
6486 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6487 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
6488 
6489 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
6490 	if (status) {
6491 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n",
6492 			bmode, ice_stat_str(status),
6493 			ice_aq_str(hw->adminq.sq_last_status));
6494 		ret = -EIO;
6495 		goto out;
6496 	}
6497 	/* Update sw flags for book keeping */
6498 	vsi_props->sw_flags = ctxt->info.sw_flags;
6499 
6500 out:
6501 	kfree(ctxt);
6502 	return ret;
6503 }
6504 
6505 /**
6506  * ice_bridge_setlink - Set the hardware bridge mode
6507  * @dev: the netdev being configured
6508  * @nlh: RTNL message
6509  * @flags: bridge setlink flags
6510  * @extack: netlink extended ack
6511  *
6512  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
6513  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
6514  * not already set for all VSIs connected to this switch. And also update the
6515  * unicast switch filter rules for the corresponding switch of the netdev.
6516  */
6517 static int
ice_bridge_setlink(struct net_device * dev,struct nlmsghdr * nlh,u16 __always_unused flags,struct netlink_ext_ack __always_unused * extack)6518 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
6519 		   u16 __always_unused flags,
6520 		   struct netlink_ext_ack __always_unused *extack)
6521 {
6522 	struct ice_netdev_priv *np = netdev_priv(dev);
6523 	struct ice_pf *pf = np->vsi->back;
6524 	struct nlattr *attr, *br_spec;
6525 	struct ice_hw *hw = &pf->hw;
6526 	enum ice_status status;
6527 	struct ice_sw *pf_sw;
6528 	int rem, v, err = 0;
6529 
6530 	pf_sw = pf->first_sw;
6531 	/* find the attribute in the netlink message */
6532 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
6533 
6534 	nla_for_each_nested(attr, br_spec, rem) {
6535 		__u16 mode;
6536 
6537 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
6538 			continue;
6539 		mode = nla_get_u16(attr);
6540 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
6541 			return -EINVAL;
6542 		/* Continue  if bridge mode is not being flipped */
6543 		if (mode == pf_sw->bridge_mode)
6544 			continue;
6545 		/* Iterates through the PF VSI list and update the loopback
6546 		 * mode of the VSI
6547 		 */
6548 		ice_for_each_vsi(pf, v) {
6549 			if (!pf->vsi[v])
6550 				continue;
6551 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
6552 			if (err)
6553 				return err;
6554 		}
6555 
6556 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
6557 		/* Update the unicast switch filter rules for the corresponding
6558 		 * switch of the netdev
6559 		 */
6560 		status = ice_update_sw_rule_bridge_mode(hw);
6561 		if (status) {
6562 			netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n",
6563 				   mode, ice_stat_str(status),
6564 				   ice_aq_str(hw->adminq.sq_last_status));
6565 			/* revert hw->evb_veb */
6566 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
6567 			return -EIO;
6568 		}
6569 
6570 		pf_sw->bridge_mode = mode;
6571 	}
6572 
6573 	return 0;
6574 }
6575 
6576 /**
6577  * ice_tx_timeout - Respond to a Tx Hang
6578  * @netdev: network interface device structure
6579  * @txqueue: Tx queue
6580  */
ice_tx_timeout(struct net_device * netdev,unsigned int txqueue)6581 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
6582 {
6583 	struct ice_netdev_priv *np = netdev_priv(netdev);
6584 	struct ice_ring *tx_ring = NULL;
6585 	struct ice_vsi *vsi = np->vsi;
6586 	struct ice_pf *pf = vsi->back;
6587 	u32 i;
6588 
6589 	pf->tx_timeout_count++;
6590 
6591 	/* Check if PFC is enabled for the TC to which the queue belongs
6592 	 * to. If yes then Tx timeout is not caused by a hung queue, no
6593 	 * need to reset and rebuild
6594 	 */
6595 	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
6596 		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
6597 			 txqueue);
6598 		return;
6599 	}
6600 
6601 	/* now that we have an index, find the tx_ring struct */
6602 	for (i = 0; i < vsi->num_txq; i++)
6603 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
6604 			if (txqueue == vsi->tx_rings[i]->q_index) {
6605 				tx_ring = vsi->tx_rings[i];
6606 				break;
6607 			}
6608 
6609 	/* Reset recovery level if enough time has elapsed after last timeout.
6610 	 * Also ensure no new reset action happens before next timeout period.
6611 	 */
6612 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
6613 		pf->tx_timeout_recovery_level = 1;
6614 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
6615 				       netdev->watchdog_timeo)))
6616 		return;
6617 
6618 	if (tx_ring) {
6619 		struct ice_hw *hw = &pf->hw;
6620 		u32 head, val = 0;
6621 
6622 		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
6623 			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
6624 		/* Read interrupt register */
6625 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
6626 
6627 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
6628 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
6629 			    head, tx_ring->next_to_use, val);
6630 	}
6631 
6632 	pf->tx_timeout_last_recovery = jiffies;
6633 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
6634 		    pf->tx_timeout_recovery_level, txqueue);
6635 
6636 	switch (pf->tx_timeout_recovery_level) {
6637 	case 1:
6638 		set_bit(__ICE_PFR_REQ, pf->state);
6639 		break;
6640 	case 2:
6641 		set_bit(__ICE_CORER_REQ, pf->state);
6642 		break;
6643 	case 3:
6644 		set_bit(__ICE_GLOBR_REQ, pf->state);
6645 		break;
6646 	default:
6647 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
6648 		set_bit(__ICE_DOWN, pf->state);
6649 		set_bit(__ICE_NEEDS_RESTART, vsi->state);
6650 		set_bit(__ICE_SERVICE_DIS, pf->state);
6651 		break;
6652 	}
6653 
6654 	ice_service_task_schedule(pf);
6655 	pf->tx_timeout_recovery_level++;
6656 }
6657 
6658 /**
6659  * ice_open - Called when a network interface becomes active
6660  * @netdev: network interface device structure
6661  *
6662  * The open entry point is called when a network interface is made
6663  * active by the system (IFF_UP). At this point all resources needed
6664  * for transmit and receive operations are allocated, the interrupt
6665  * handler is registered with the OS, the netdev watchdog is enabled,
6666  * and the stack is notified that the interface is ready.
6667  *
6668  * Returns 0 on success, negative value on failure
6669  */
ice_open(struct net_device * netdev)6670 int ice_open(struct net_device *netdev)
6671 {
6672 	struct ice_netdev_priv *np = netdev_priv(netdev);
6673 	struct ice_pf *pf = np->vsi->back;
6674 
6675 	if (ice_is_reset_in_progress(pf->state)) {
6676 		netdev_err(netdev, "can't open net device while reset is in progress");
6677 		return -EBUSY;
6678 	}
6679 
6680 	return ice_open_internal(netdev);
6681 }
6682 
6683 /**
6684  * ice_open_internal - Called when a network interface becomes active
6685  * @netdev: network interface device structure
6686  *
6687  * Internal ice_open implementation. Should not be used directly except for ice_open and reset
6688  * handling routine
6689  *
6690  * Returns 0 on success, negative value on failure
6691  */
ice_open_internal(struct net_device * netdev)6692 int ice_open_internal(struct net_device *netdev)
6693 {
6694 	struct ice_netdev_priv *np = netdev_priv(netdev);
6695 	struct ice_vsi *vsi = np->vsi;
6696 	struct ice_pf *pf = vsi->back;
6697 	struct ice_port_info *pi;
6698 	int err;
6699 
6700 	if (test_bit(__ICE_NEEDS_RESTART, pf->state)) {
6701 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
6702 		return -EIO;
6703 	}
6704 
6705 	if (test_bit(__ICE_DOWN, pf->state)) {
6706 		netdev_err(netdev, "device is not ready yet\n");
6707 		return -EBUSY;
6708 	}
6709 
6710 	netif_carrier_off(netdev);
6711 
6712 	pi = vsi->port_info;
6713 	err = ice_update_link_info(pi);
6714 	if (err) {
6715 		netdev_err(netdev, "Failed to get link info, error %d\n",
6716 			   err);
6717 		return err;
6718 	}
6719 
6720 	/* Set PHY if there is media, otherwise, turn off PHY */
6721 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
6722 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6723 		if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state)) {
6724 			err = ice_init_phy_user_cfg(pi);
6725 			if (err) {
6726 				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
6727 					   err);
6728 				return err;
6729 			}
6730 		}
6731 
6732 		err = ice_configure_phy(vsi);
6733 		if (err) {
6734 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
6735 				   err);
6736 			return err;
6737 		}
6738 	} else {
6739 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6740 		err = ice_aq_set_link_restart_an(pi, false, NULL);
6741 		if (err) {
6742 			netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n",
6743 				   vsi->vsi_num, err);
6744 			return err;
6745 		}
6746 	}
6747 
6748 	err = ice_vsi_open(vsi);
6749 	if (err)
6750 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
6751 			   vsi->vsi_num, vsi->vsw->sw_id);
6752 
6753 	/* Update existing tunnels information */
6754 	udp_tunnel_get_rx_info(netdev);
6755 
6756 	return err;
6757 }
6758 
6759 /**
6760  * ice_stop - Disables a network interface
6761  * @netdev: network interface device structure
6762  *
6763  * The stop entry point is called when an interface is de-activated by the OS,
6764  * and the netdevice enters the DOWN state. The hardware is still under the
6765  * driver's control, but the netdev interface is disabled.
6766  *
6767  * Returns success only - not allowed to fail
6768  */
ice_stop(struct net_device * netdev)6769 int ice_stop(struct net_device *netdev)
6770 {
6771 	struct ice_netdev_priv *np = netdev_priv(netdev);
6772 	struct ice_vsi *vsi = np->vsi;
6773 	struct ice_pf *pf = vsi->back;
6774 
6775 	if (ice_is_reset_in_progress(pf->state)) {
6776 		netdev_err(netdev, "can't stop net device while reset is in progress");
6777 		return -EBUSY;
6778 	}
6779 
6780 	ice_vsi_close(vsi);
6781 
6782 	return 0;
6783 }
6784 
6785 /**
6786  * ice_features_check - Validate encapsulated packet conforms to limits
6787  * @skb: skb buffer
6788  * @netdev: This port's netdev
6789  * @features: Offload features that the stack believes apply
6790  */
6791 static netdev_features_t
ice_features_check(struct sk_buff * skb,struct net_device __always_unused * netdev,netdev_features_t features)6792 ice_features_check(struct sk_buff *skb,
6793 		   struct net_device __always_unused *netdev,
6794 		   netdev_features_t features)
6795 {
6796 	size_t len;
6797 
6798 	/* No point in doing any of this if neither checksum nor GSO are
6799 	 * being requested for this frame. We can rule out both by just
6800 	 * checking for CHECKSUM_PARTIAL
6801 	 */
6802 	if (skb->ip_summed != CHECKSUM_PARTIAL)
6803 		return features;
6804 
6805 	/* We cannot support GSO if the MSS is going to be less than
6806 	 * 64 bytes. If it is then we need to drop support for GSO.
6807 	 */
6808 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
6809 		features &= ~NETIF_F_GSO_MASK;
6810 
6811 	len = skb_network_header(skb) - skb->data;
6812 	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
6813 		goto out_rm_features;
6814 
6815 	len = skb_transport_header(skb) - skb_network_header(skb);
6816 	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6817 		goto out_rm_features;
6818 
6819 	if (skb->encapsulation) {
6820 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
6821 		if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
6822 			goto out_rm_features;
6823 
6824 		len = skb_inner_transport_header(skb) -
6825 		      skb_inner_network_header(skb);
6826 		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6827 			goto out_rm_features;
6828 	}
6829 
6830 	return features;
6831 out_rm_features:
6832 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
6833 }
6834 
6835 static const struct net_device_ops ice_netdev_safe_mode_ops = {
6836 	.ndo_open = ice_open,
6837 	.ndo_stop = ice_stop,
6838 	.ndo_start_xmit = ice_start_xmit,
6839 	.ndo_set_mac_address = ice_set_mac_address,
6840 	.ndo_validate_addr = eth_validate_addr,
6841 	.ndo_change_mtu = ice_change_mtu,
6842 	.ndo_get_stats64 = ice_get_stats64,
6843 	.ndo_tx_timeout = ice_tx_timeout,
6844 	.ndo_bpf = ice_xdp_safe_mode,
6845 };
6846 
6847 static const struct net_device_ops ice_netdev_ops = {
6848 	.ndo_open = ice_open,
6849 	.ndo_stop = ice_stop,
6850 	.ndo_start_xmit = ice_start_xmit,
6851 	.ndo_features_check = ice_features_check,
6852 	.ndo_set_rx_mode = ice_set_rx_mode,
6853 	.ndo_set_mac_address = ice_set_mac_address,
6854 	.ndo_validate_addr = eth_validate_addr,
6855 	.ndo_change_mtu = ice_change_mtu,
6856 	.ndo_get_stats64 = ice_get_stats64,
6857 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
6858 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
6859 	.ndo_set_vf_mac = ice_set_vf_mac,
6860 	.ndo_get_vf_config = ice_get_vf_cfg,
6861 	.ndo_set_vf_trust = ice_set_vf_trust,
6862 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
6863 	.ndo_set_vf_link_state = ice_set_vf_link_state,
6864 	.ndo_get_vf_stats = ice_get_vf_stats,
6865 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
6866 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
6867 	.ndo_set_features = ice_set_features,
6868 	.ndo_bridge_getlink = ice_bridge_getlink,
6869 	.ndo_bridge_setlink = ice_bridge_setlink,
6870 	.ndo_fdb_add = ice_fdb_add,
6871 	.ndo_fdb_del = ice_fdb_del,
6872 #ifdef CONFIG_RFS_ACCEL
6873 	.ndo_rx_flow_steer = ice_rx_flow_steer,
6874 #endif
6875 	.ndo_tx_timeout = ice_tx_timeout,
6876 	.ndo_bpf = ice_xdp,
6877 	.ndo_xdp_xmit = ice_xdp_xmit,
6878 	.ndo_xsk_wakeup = ice_xsk_wakeup,
6879 	.ndo_udp_tunnel_add = udp_tunnel_nic_add_port,
6880 	.ndo_udp_tunnel_del = udp_tunnel_nic_del_port,
6881 };
6882