1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <generated/utsrelease.h>
9 #include "ice.h"
10 #include "ice_base.h"
11 #include "ice_lib.h"
12 #include "ice_fltr.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_dcb_nl.h"
15 #include "ice_devlink.h"
16
17 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
18 static const char ice_driver_string[] = DRV_SUMMARY;
19 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
20
21 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
22 #define ICE_DDP_PKG_PATH "intel/ice/ddp/"
23 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
24
25 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
26 MODULE_DESCRIPTION(DRV_SUMMARY);
27 MODULE_LICENSE("GPL v2");
28 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
29
30 static int debug = -1;
31 module_param(debug, int, 0644);
32 #ifndef CONFIG_DYNAMIC_DEBUG
33 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
34 #else
35 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
36 #endif /* !CONFIG_DYNAMIC_DEBUG */
37
38 static struct workqueue_struct *ice_wq;
39 static const struct net_device_ops ice_netdev_safe_mode_ops;
40 static const struct net_device_ops ice_netdev_ops;
41 static int ice_vsi_open(struct ice_vsi *vsi);
42
43 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
44
45 static void ice_vsi_release_all(struct ice_pf *pf);
46
47 /**
48 * ice_get_tx_pending - returns number of Tx descriptors not processed
49 * @ring: the ring of descriptors
50 */
ice_get_tx_pending(struct ice_ring * ring)51 static u16 ice_get_tx_pending(struct ice_ring *ring)
52 {
53 u16 head, tail;
54
55 head = ring->next_to_clean;
56 tail = ring->next_to_use;
57
58 if (head != tail)
59 return (head < tail) ?
60 tail - head : (tail + ring->count - head);
61 return 0;
62 }
63
64 /**
65 * ice_check_for_hang_subtask - check for and recover hung queues
66 * @pf: pointer to PF struct
67 */
ice_check_for_hang_subtask(struct ice_pf * pf)68 static void ice_check_for_hang_subtask(struct ice_pf *pf)
69 {
70 struct ice_vsi *vsi = NULL;
71 struct ice_hw *hw;
72 unsigned int i;
73 int packets;
74 u32 v;
75
76 ice_for_each_vsi(pf, v)
77 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
78 vsi = pf->vsi[v];
79 break;
80 }
81
82 if (!vsi || test_bit(__ICE_DOWN, vsi->state))
83 return;
84
85 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
86 return;
87
88 hw = &vsi->back->hw;
89
90 for (i = 0; i < vsi->num_txq; i++) {
91 struct ice_ring *tx_ring = vsi->tx_rings[i];
92
93 if (tx_ring && tx_ring->desc) {
94 /* If packet counter has not changed the queue is
95 * likely stalled, so force an interrupt for this
96 * queue.
97 *
98 * prev_pkt would be negative if there was no
99 * pending work.
100 */
101 packets = tx_ring->stats.pkts & INT_MAX;
102 if (tx_ring->tx_stats.prev_pkt == packets) {
103 /* Trigger sw interrupt to revive the queue */
104 ice_trigger_sw_intr(hw, tx_ring->q_vector);
105 continue;
106 }
107
108 /* Memory barrier between read of packet count and call
109 * to ice_get_tx_pending()
110 */
111 smp_rmb();
112 tx_ring->tx_stats.prev_pkt =
113 ice_get_tx_pending(tx_ring) ? packets : -1;
114 }
115 }
116 }
117
118 /**
119 * ice_init_mac_fltr - Set initial MAC filters
120 * @pf: board private structure
121 *
122 * Set initial set of MAC filters for PF VSI; configure filters for permanent
123 * address and broadcast address. If an error is encountered, netdevice will be
124 * unregistered.
125 */
ice_init_mac_fltr(struct ice_pf * pf)126 static int ice_init_mac_fltr(struct ice_pf *pf)
127 {
128 enum ice_status status;
129 struct ice_vsi *vsi;
130 u8 *perm_addr;
131
132 vsi = ice_get_main_vsi(pf);
133 if (!vsi)
134 return -EINVAL;
135
136 perm_addr = vsi->port_info->mac.perm_addr;
137 status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
138 if (!status)
139 return 0;
140
141 /* We aren't useful with no MAC filters, so unregister if we
142 * had an error
143 */
144 if (vsi->netdev->reg_state == NETREG_REGISTERED) {
145 dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %s. Unregistering device\n",
146 ice_stat_str(status));
147 unregister_netdev(vsi->netdev);
148 free_netdev(vsi->netdev);
149 vsi->netdev = NULL;
150 }
151
152 return -EIO;
153 }
154
155 /**
156 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
157 * @netdev: the net device on which the sync is happening
158 * @addr: MAC address to sync
159 *
160 * This is a callback function which is called by the in kernel device sync
161 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
162 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
163 * MAC filters from the hardware.
164 */
ice_add_mac_to_sync_list(struct net_device * netdev,const u8 * addr)165 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
166 {
167 struct ice_netdev_priv *np = netdev_priv(netdev);
168 struct ice_vsi *vsi = np->vsi;
169
170 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
171 ICE_FWD_TO_VSI))
172 return -EINVAL;
173
174 return 0;
175 }
176
177 /**
178 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
179 * @netdev: the net device on which the unsync is happening
180 * @addr: MAC address to unsync
181 *
182 * This is a callback function which is called by the in kernel device unsync
183 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
184 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
185 * delete the MAC filters from the hardware.
186 */
ice_add_mac_to_unsync_list(struct net_device * netdev,const u8 * addr)187 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
188 {
189 struct ice_netdev_priv *np = netdev_priv(netdev);
190 struct ice_vsi *vsi = np->vsi;
191
192 /* Under some circumstances, we might receive a request to delete our
193 * own device address from our uc list. Because we store the device
194 * address in the VSI's MAC filter list, we need to ignore such
195 * requests and not delete our device address from this list.
196 */
197 if (ether_addr_equal(addr, netdev->dev_addr))
198 return 0;
199
200 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
201 ICE_FWD_TO_VSI))
202 return -EINVAL;
203
204 return 0;
205 }
206
207 /**
208 * ice_vsi_fltr_changed - check if filter state changed
209 * @vsi: VSI to be checked
210 *
211 * returns true if filter state has changed, false otherwise.
212 */
ice_vsi_fltr_changed(struct ice_vsi * vsi)213 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
214 {
215 return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
216 test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
217 test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
218 }
219
220 /**
221 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
222 * @vsi: the VSI being configured
223 * @promisc_m: mask of promiscuous config bits
224 * @set_promisc: enable or disable promisc flag request
225 *
226 */
ice_cfg_promisc(struct ice_vsi * vsi,u8 promisc_m,bool set_promisc)227 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
228 {
229 struct ice_hw *hw = &vsi->back->hw;
230 enum ice_status status = 0;
231
232 if (vsi->type != ICE_VSI_PF)
233 return 0;
234
235 if (vsi->vlan_ena) {
236 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
237 set_promisc);
238 } else {
239 if (set_promisc)
240 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
241 0);
242 else
243 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
244 0);
245 }
246
247 if (status)
248 return -EIO;
249
250 return 0;
251 }
252
253 /**
254 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
255 * @vsi: ptr to the VSI
256 *
257 * Push any outstanding VSI filter changes through the AdminQ.
258 */
ice_vsi_sync_fltr(struct ice_vsi * vsi)259 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
260 {
261 struct device *dev = ice_pf_to_dev(vsi->back);
262 struct net_device *netdev = vsi->netdev;
263 bool promisc_forced_on = false;
264 struct ice_pf *pf = vsi->back;
265 struct ice_hw *hw = &pf->hw;
266 enum ice_status status = 0;
267 u32 changed_flags = 0;
268 u8 promisc_m;
269 int err = 0;
270
271 if (!vsi->netdev)
272 return -EINVAL;
273
274 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
275 usleep_range(1000, 2000);
276
277 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
278 vsi->current_netdev_flags = vsi->netdev->flags;
279
280 INIT_LIST_HEAD(&vsi->tmp_sync_list);
281 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
282
283 if (ice_vsi_fltr_changed(vsi)) {
284 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
285 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
286 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
287
288 /* grab the netdev's addr_list_lock */
289 netif_addr_lock_bh(netdev);
290 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
291 ice_add_mac_to_unsync_list);
292 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
293 ice_add_mac_to_unsync_list);
294 /* our temp lists are populated. release lock */
295 netif_addr_unlock_bh(netdev);
296 }
297
298 /* Remove MAC addresses in the unsync list */
299 status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
300 ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
301 if (status) {
302 netdev_err(netdev, "Failed to delete MAC filters\n");
303 /* if we failed because of alloc failures, just bail */
304 if (status == ICE_ERR_NO_MEMORY) {
305 err = -ENOMEM;
306 goto out;
307 }
308 }
309
310 /* Add MAC addresses in the sync list */
311 status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
312 ice_fltr_free_list(dev, &vsi->tmp_sync_list);
313 /* If filter is added successfully or already exists, do not go into
314 * 'if' condition and report it as error. Instead continue processing
315 * rest of the function.
316 */
317 if (status && status != ICE_ERR_ALREADY_EXISTS) {
318 netdev_err(netdev, "Failed to add MAC filters\n");
319 /* If there is no more space for new umac filters, VSI
320 * should go into promiscuous mode. There should be some
321 * space reserved for promiscuous filters.
322 */
323 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
324 !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
325 vsi->state)) {
326 promisc_forced_on = true;
327 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
328 vsi->vsi_num);
329 } else {
330 err = -EIO;
331 goto out;
332 }
333 }
334 /* check for changes in promiscuous modes */
335 if (changed_flags & IFF_ALLMULTI) {
336 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
337 if (vsi->vlan_ena)
338 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
339 else
340 promisc_m = ICE_MCAST_PROMISC_BITS;
341
342 err = ice_cfg_promisc(vsi, promisc_m, true);
343 if (err) {
344 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
345 vsi->vsi_num);
346 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
347 goto out_promisc;
348 }
349 } else {
350 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
351 if (vsi->vlan_ena)
352 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
353 else
354 promisc_m = ICE_MCAST_PROMISC_BITS;
355
356 err = ice_cfg_promisc(vsi, promisc_m, false);
357 if (err) {
358 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
359 vsi->vsi_num);
360 vsi->current_netdev_flags |= IFF_ALLMULTI;
361 goto out_promisc;
362 }
363 }
364 }
365
366 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
367 test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
368 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
369 if (vsi->current_netdev_flags & IFF_PROMISC) {
370 /* Apply Rx filter rule to get traffic from wire */
371 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
372 err = ice_set_dflt_vsi(pf->first_sw, vsi);
373 if (err && err != -EEXIST) {
374 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
375 err, vsi->vsi_num);
376 vsi->current_netdev_flags &=
377 ~IFF_PROMISC;
378 goto out_promisc;
379 }
380 ice_cfg_vlan_pruning(vsi, false, false);
381 }
382 } else {
383 /* Clear Rx filter to remove traffic from wire */
384 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
385 err = ice_clear_dflt_vsi(pf->first_sw);
386 if (err) {
387 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
388 err, vsi->vsi_num);
389 vsi->current_netdev_flags |=
390 IFF_PROMISC;
391 goto out_promisc;
392 }
393 if (vsi->num_vlan > 1)
394 ice_cfg_vlan_pruning(vsi, true, false);
395 }
396 }
397 }
398 goto exit;
399
400 out_promisc:
401 set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
402 goto exit;
403 out:
404 /* if something went wrong then set the changed flag so we try again */
405 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
406 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
407 exit:
408 clear_bit(__ICE_CFG_BUSY, vsi->state);
409 return err;
410 }
411
412 /**
413 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
414 * @pf: board private structure
415 */
ice_sync_fltr_subtask(struct ice_pf * pf)416 static void ice_sync_fltr_subtask(struct ice_pf *pf)
417 {
418 int v;
419
420 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
421 return;
422
423 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
424
425 ice_for_each_vsi(pf, v)
426 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
427 ice_vsi_sync_fltr(pf->vsi[v])) {
428 /* come back and try again later */
429 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
430 break;
431 }
432 }
433
434 /**
435 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
436 * @pf: the PF
437 * @locked: is the rtnl_lock already held
438 */
ice_pf_dis_all_vsi(struct ice_pf * pf,bool locked)439 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
440 {
441 int v;
442
443 ice_for_each_vsi(pf, v)
444 if (pf->vsi[v])
445 ice_dis_vsi(pf->vsi[v], locked);
446 }
447
448 /**
449 * ice_prepare_for_reset - prep for the core to reset
450 * @pf: board private structure
451 *
452 * Inform or close all dependent features in prep for reset.
453 */
454 static void
ice_prepare_for_reset(struct ice_pf * pf)455 ice_prepare_for_reset(struct ice_pf *pf)
456 {
457 struct ice_hw *hw = &pf->hw;
458 unsigned int i;
459
460 /* already prepared for reset */
461 if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
462 return;
463
464 /* Notify VFs of impending reset */
465 if (ice_check_sq_alive(hw, &hw->mailboxq))
466 ice_vc_notify_reset(pf);
467
468 /* Disable VFs until reset is completed */
469 ice_for_each_vf(pf, i)
470 ice_set_vf_state_qs_dis(&pf->vf[i]);
471
472 /* clear SW filtering DB */
473 ice_clear_hw_tbls(hw);
474 /* disable the VSIs and their queues that are not already DOWN */
475 ice_pf_dis_all_vsi(pf, false);
476
477 if (hw->port_info)
478 ice_sched_clear_port(hw->port_info);
479
480 ice_shutdown_all_ctrlq(hw);
481
482 set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
483 }
484
485 /**
486 * ice_do_reset - Initiate one of many types of resets
487 * @pf: board private structure
488 * @reset_type: reset type requested
489 * before this function was called.
490 */
ice_do_reset(struct ice_pf * pf,enum ice_reset_req reset_type)491 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
492 {
493 struct device *dev = ice_pf_to_dev(pf);
494 struct ice_hw *hw = &pf->hw;
495
496 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
497
498 ice_prepare_for_reset(pf);
499
500 /* trigger the reset */
501 if (ice_reset(hw, reset_type)) {
502 dev_err(dev, "reset %d failed\n", reset_type);
503 set_bit(__ICE_RESET_FAILED, pf->state);
504 clear_bit(__ICE_RESET_OICR_RECV, pf->state);
505 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
506 clear_bit(__ICE_PFR_REQ, pf->state);
507 clear_bit(__ICE_CORER_REQ, pf->state);
508 clear_bit(__ICE_GLOBR_REQ, pf->state);
509 return;
510 }
511
512 /* PFR is a bit of a special case because it doesn't result in an OICR
513 * interrupt. So for PFR, rebuild after the reset and clear the reset-
514 * associated state bits.
515 */
516 if (reset_type == ICE_RESET_PFR) {
517 pf->pfr_count++;
518 ice_rebuild(pf, reset_type);
519 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
520 clear_bit(__ICE_PFR_REQ, pf->state);
521 ice_reset_all_vfs(pf, true);
522 }
523 }
524
525 /**
526 * ice_reset_subtask - Set up for resetting the device and driver
527 * @pf: board private structure
528 */
ice_reset_subtask(struct ice_pf * pf)529 static void ice_reset_subtask(struct ice_pf *pf)
530 {
531 enum ice_reset_req reset_type = ICE_RESET_INVAL;
532
533 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
534 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
535 * of reset is pending and sets bits in pf->state indicating the reset
536 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set
537 * prepare for pending reset if not already (for PF software-initiated
538 * global resets the software should already be prepared for it as
539 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
540 * by firmware or software on other PFs, that bit is not set so prepare
541 * for the reset now), poll for reset done, rebuild and return.
542 */
543 if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
544 /* Perform the largest reset requested */
545 if (test_and_clear_bit(__ICE_CORER_RECV, pf->state))
546 reset_type = ICE_RESET_CORER;
547 if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state))
548 reset_type = ICE_RESET_GLOBR;
549 if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state))
550 reset_type = ICE_RESET_EMPR;
551 /* return if no valid reset type requested */
552 if (reset_type == ICE_RESET_INVAL)
553 return;
554 ice_prepare_for_reset(pf);
555
556 /* make sure we are ready to rebuild */
557 if (ice_check_reset(&pf->hw)) {
558 set_bit(__ICE_RESET_FAILED, pf->state);
559 } else {
560 /* done with reset. start rebuild */
561 pf->hw.reset_ongoing = false;
562 ice_rebuild(pf, reset_type);
563 /* clear bit to resume normal operations, but
564 * ICE_NEEDS_RESTART bit is set in case rebuild failed
565 */
566 clear_bit(__ICE_RESET_OICR_RECV, pf->state);
567 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
568 clear_bit(__ICE_PFR_REQ, pf->state);
569 clear_bit(__ICE_CORER_REQ, pf->state);
570 clear_bit(__ICE_GLOBR_REQ, pf->state);
571 ice_reset_all_vfs(pf, true);
572 }
573
574 return;
575 }
576
577 /* No pending resets to finish processing. Check for new resets */
578 if (test_bit(__ICE_PFR_REQ, pf->state))
579 reset_type = ICE_RESET_PFR;
580 if (test_bit(__ICE_CORER_REQ, pf->state))
581 reset_type = ICE_RESET_CORER;
582 if (test_bit(__ICE_GLOBR_REQ, pf->state))
583 reset_type = ICE_RESET_GLOBR;
584 /* If no valid reset type requested just return */
585 if (reset_type == ICE_RESET_INVAL)
586 return;
587
588 /* reset if not already down or busy */
589 if (!test_bit(__ICE_DOWN, pf->state) &&
590 !test_bit(__ICE_CFG_BUSY, pf->state)) {
591 ice_do_reset(pf, reset_type);
592 }
593 }
594
595 /**
596 * ice_print_topo_conflict - print topology conflict message
597 * @vsi: the VSI whose topology status is being checked
598 */
ice_print_topo_conflict(struct ice_vsi * vsi)599 static void ice_print_topo_conflict(struct ice_vsi *vsi)
600 {
601 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
602 case ICE_AQ_LINK_TOPO_CONFLICT:
603 case ICE_AQ_LINK_MEDIA_CONFLICT:
604 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
605 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
606 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
607 netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n");
608 break;
609 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
610 netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
611 break;
612 default:
613 break;
614 }
615 }
616
617 /**
618 * ice_print_link_msg - print link up or down message
619 * @vsi: the VSI whose link status is being queried
620 * @isup: boolean for if the link is now up or down
621 */
ice_print_link_msg(struct ice_vsi * vsi,bool isup)622 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
623 {
624 struct ice_aqc_get_phy_caps_data *caps;
625 const char *an_advertised;
626 enum ice_status status;
627 const char *fec_req;
628 const char *speed;
629 const char *fec;
630 const char *fc;
631 const char *an;
632
633 if (!vsi)
634 return;
635
636 if (vsi->current_isup == isup)
637 return;
638
639 vsi->current_isup = isup;
640
641 if (!isup) {
642 netdev_info(vsi->netdev, "NIC Link is Down\n");
643 return;
644 }
645
646 switch (vsi->port_info->phy.link_info.link_speed) {
647 case ICE_AQ_LINK_SPEED_100GB:
648 speed = "100 G";
649 break;
650 case ICE_AQ_LINK_SPEED_50GB:
651 speed = "50 G";
652 break;
653 case ICE_AQ_LINK_SPEED_40GB:
654 speed = "40 G";
655 break;
656 case ICE_AQ_LINK_SPEED_25GB:
657 speed = "25 G";
658 break;
659 case ICE_AQ_LINK_SPEED_20GB:
660 speed = "20 G";
661 break;
662 case ICE_AQ_LINK_SPEED_10GB:
663 speed = "10 G";
664 break;
665 case ICE_AQ_LINK_SPEED_5GB:
666 speed = "5 G";
667 break;
668 case ICE_AQ_LINK_SPEED_2500MB:
669 speed = "2.5 G";
670 break;
671 case ICE_AQ_LINK_SPEED_1000MB:
672 speed = "1 G";
673 break;
674 case ICE_AQ_LINK_SPEED_100MB:
675 speed = "100 M";
676 break;
677 default:
678 speed = "Unknown";
679 break;
680 }
681
682 switch (vsi->port_info->fc.current_mode) {
683 case ICE_FC_FULL:
684 fc = "Rx/Tx";
685 break;
686 case ICE_FC_TX_PAUSE:
687 fc = "Tx";
688 break;
689 case ICE_FC_RX_PAUSE:
690 fc = "Rx";
691 break;
692 case ICE_FC_NONE:
693 fc = "None";
694 break;
695 default:
696 fc = "Unknown";
697 break;
698 }
699
700 /* Get FEC mode based on negotiated link info */
701 switch (vsi->port_info->phy.link_info.fec_info) {
702 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
703 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
704 fec = "RS-FEC";
705 break;
706 case ICE_AQ_LINK_25G_KR_FEC_EN:
707 fec = "FC-FEC/BASE-R";
708 break;
709 default:
710 fec = "NONE";
711 break;
712 }
713
714 /* check if autoneg completed, might be false due to not supported */
715 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
716 an = "True";
717 else
718 an = "False";
719
720 /* Get FEC mode requested based on PHY caps last SW configuration */
721 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
722 if (!caps) {
723 fec_req = "Unknown";
724 an_advertised = "Unknown";
725 goto done;
726 }
727
728 status = ice_aq_get_phy_caps(vsi->port_info, false,
729 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
730 if (status)
731 netdev_info(vsi->netdev, "Get phy capability failed.\n");
732
733 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
734
735 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
736 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
737 fec_req = "RS-FEC";
738 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
739 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
740 fec_req = "FC-FEC/BASE-R";
741 else
742 fec_req = "NONE";
743
744 kfree(caps);
745
746 done:
747 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
748 speed, fec_req, fec, an_advertised, an, fc);
749 ice_print_topo_conflict(vsi);
750 }
751
752 /**
753 * ice_vsi_link_event - update the VSI's netdev
754 * @vsi: the VSI on which the link event occurred
755 * @link_up: whether or not the VSI needs to be set up or down
756 */
ice_vsi_link_event(struct ice_vsi * vsi,bool link_up)757 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
758 {
759 if (!vsi)
760 return;
761
762 if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev)
763 return;
764
765 if (vsi->type == ICE_VSI_PF) {
766 if (link_up == netif_carrier_ok(vsi->netdev))
767 return;
768
769 if (link_up) {
770 netif_carrier_on(vsi->netdev);
771 netif_tx_wake_all_queues(vsi->netdev);
772 } else {
773 netif_carrier_off(vsi->netdev);
774 netif_tx_stop_all_queues(vsi->netdev);
775 }
776 }
777 }
778
779 /**
780 * ice_set_dflt_mib - send a default config MIB to the FW
781 * @pf: private PF struct
782 *
783 * This function sends a default configuration MIB to the FW.
784 *
785 * If this function errors out at any point, the driver is still able to
786 * function. The main impact is that LFC may not operate as expected.
787 * Therefore an error state in this function should be treated with a DBG
788 * message and continue on with driver rebuild/reenable.
789 */
ice_set_dflt_mib(struct ice_pf * pf)790 static void ice_set_dflt_mib(struct ice_pf *pf)
791 {
792 struct device *dev = ice_pf_to_dev(pf);
793 u8 mib_type, *buf, *lldpmib = NULL;
794 u16 len, typelen, offset = 0;
795 struct ice_lldp_org_tlv *tlv;
796 struct ice_hw *hw;
797 u32 ouisubtype;
798
799 if (!pf) {
800 dev_dbg(dev, "%s NULL pf pointer\n", __func__);
801 return;
802 }
803
804 hw = &pf->hw;
805 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
806 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
807 if (!lldpmib) {
808 dev_dbg(dev, "%s Failed to allocate MIB memory\n",
809 __func__);
810 return;
811 }
812
813 /* Add ETS CFG TLV */
814 tlv = (struct ice_lldp_org_tlv *)lldpmib;
815 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
816 ICE_IEEE_ETS_TLV_LEN);
817 tlv->typelen = htons(typelen);
818 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
819 ICE_IEEE_SUBTYPE_ETS_CFG);
820 tlv->ouisubtype = htonl(ouisubtype);
821
822 buf = tlv->tlvinfo;
823 buf[0] = 0;
824
825 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
826 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
827 * Octets 13 - 20 are TSA values - leave as zeros
828 */
829 buf[5] = 0x64;
830 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
831 offset += len + 2;
832 tlv = (struct ice_lldp_org_tlv *)
833 ((char *)tlv + sizeof(tlv->typelen) + len);
834
835 /* Add ETS REC TLV */
836 buf = tlv->tlvinfo;
837 tlv->typelen = htons(typelen);
838
839 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
840 ICE_IEEE_SUBTYPE_ETS_REC);
841 tlv->ouisubtype = htonl(ouisubtype);
842
843 /* First octet of buf is reserved
844 * Octets 1 - 4 map UP to TC - all UPs map to zero
845 * Octets 5 - 12 are BW values - set TC 0 to 100%.
846 * Octets 13 - 20 are TSA value - leave as zeros
847 */
848 buf[5] = 0x64;
849 offset += len + 2;
850 tlv = (struct ice_lldp_org_tlv *)
851 ((char *)tlv + sizeof(tlv->typelen) + len);
852
853 /* Add PFC CFG TLV */
854 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
855 ICE_IEEE_PFC_TLV_LEN);
856 tlv->typelen = htons(typelen);
857
858 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
859 ICE_IEEE_SUBTYPE_PFC_CFG);
860 tlv->ouisubtype = htonl(ouisubtype);
861
862 /* Octet 1 left as all zeros - PFC disabled */
863 buf[0] = 0x08;
864 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
865 offset += len + 2;
866
867 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
868 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
869
870 kfree(lldpmib);
871 }
872
873 /**
874 * ice_link_event - process the link event
875 * @pf: PF that the link event is associated with
876 * @pi: port_info for the port that the link event is associated with
877 * @link_up: true if the physical link is up and false if it is down
878 * @link_speed: current link speed received from the link event
879 *
880 * Returns 0 on success and negative on failure
881 */
882 static int
ice_link_event(struct ice_pf * pf,struct ice_port_info * pi,bool link_up,u16 link_speed)883 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
884 u16 link_speed)
885 {
886 struct device *dev = ice_pf_to_dev(pf);
887 struct ice_phy_info *phy_info;
888 struct ice_vsi *vsi;
889 u16 old_link_speed;
890 bool old_link;
891 int result;
892
893 phy_info = &pi->phy;
894 phy_info->link_info_old = phy_info->link_info;
895
896 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
897 old_link_speed = phy_info->link_info_old.link_speed;
898
899 /* update the link info structures and re-enable link events,
900 * don't bail on failure due to other book keeping needed
901 */
902 result = ice_update_link_info(pi);
903 if (result)
904 dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n",
905 pi->lport);
906
907 /* Check if the link state is up after updating link info, and treat
908 * this event as an UP event since the link is actually UP now.
909 */
910 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
911 link_up = true;
912
913 vsi = ice_get_main_vsi(pf);
914 if (!vsi || !vsi->port_info)
915 return -EINVAL;
916
917 /* turn off PHY if media was removed */
918 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
919 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
920 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
921
922 result = ice_aq_set_link_restart_an(pi, false, NULL);
923 if (result) {
924 dev_dbg(dev, "Failed to set link down, VSI %d error %d\n",
925 vsi->vsi_num, result);
926 return result;
927 }
928 }
929
930 /* if the old link up/down and speed is the same as the new */
931 if (link_up == old_link && link_speed == old_link_speed)
932 return result;
933
934 if (ice_is_dcb_active(pf)) {
935 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
936 ice_dcb_rebuild(pf);
937 } else {
938 if (link_up)
939 ice_set_dflt_mib(pf);
940 }
941 ice_vsi_link_event(vsi, link_up);
942 ice_print_link_msg(vsi, link_up);
943
944 ice_vc_notify_link_state(pf);
945
946 return result;
947 }
948
949 /**
950 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
951 * @pf: board private structure
952 */
ice_watchdog_subtask(struct ice_pf * pf)953 static void ice_watchdog_subtask(struct ice_pf *pf)
954 {
955 int i;
956
957 /* if interface is down do nothing */
958 if (test_bit(__ICE_DOWN, pf->state) ||
959 test_bit(__ICE_CFG_BUSY, pf->state))
960 return;
961
962 /* make sure we don't do these things too often */
963 if (time_before(jiffies,
964 pf->serv_tmr_prev + pf->serv_tmr_period))
965 return;
966
967 pf->serv_tmr_prev = jiffies;
968
969 /* Update the stats for active netdevs so the network stack
970 * can look at updated numbers whenever it cares to
971 */
972 ice_update_pf_stats(pf);
973 ice_for_each_vsi(pf, i)
974 if (pf->vsi[i] && pf->vsi[i]->netdev)
975 ice_update_vsi_stats(pf->vsi[i]);
976 }
977
978 /**
979 * ice_init_link_events - enable/initialize link events
980 * @pi: pointer to the port_info instance
981 *
982 * Returns -EIO on failure, 0 on success
983 */
ice_init_link_events(struct ice_port_info * pi)984 static int ice_init_link_events(struct ice_port_info *pi)
985 {
986 u16 mask;
987
988 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
989 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
990
991 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
992 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
993 pi->lport);
994 return -EIO;
995 }
996
997 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
998 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
999 pi->lport);
1000 return -EIO;
1001 }
1002
1003 return 0;
1004 }
1005
1006 /**
1007 * ice_handle_link_event - handle link event via ARQ
1008 * @pf: PF that the link event is associated with
1009 * @event: event structure containing link status info
1010 */
1011 static int
ice_handle_link_event(struct ice_pf * pf,struct ice_rq_event_info * event)1012 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1013 {
1014 struct ice_aqc_get_link_status_data *link_data;
1015 struct ice_port_info *port_info;
1016 int status;
1017
1018 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1019 port_info = pf->hw.port_info;
1020 if (!port_info)
1021 return -EINVAL;
1022
1023 status = ice_link_event(pf, port_info,
1024 !!(link_data->link_info & ICE_AQ_LINK_UP),
1025 le16_to_cpu(link_data->link_speed));
1026 if (status)
1027 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1028 status);
1029
1030 return status;
1031 }
1032
1033 enum ice_aq_task_state {
1034 ICE_AQ_TASK_WAITING = 0,
1035 ICE_AQ_TASK_COMPLETE,
1036 ICE_AQ_TASK_CANCELED,
1037 };
1038
1039 struct ice_aq_task {
1040 struct hlist_node entry;
1041
1042 u16 opcode;
1043 struct ice_rq_event_info *event;
1044 enum ice_aq_task_state state;
1045 };
1046
1047 /**
1048 * ice_wait_for_aq_event - Wait for an AdminQ event from firmware
1049 * @pf: pointer to the PF private structure
1050 * @opcode: the opcode to wait for
1051 * @timeout: how long to wait, in jiffies
1052 * @event: storage for the event info
1053 *
1054 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1055 * current thread will be put to sleep until the specified event occurs or
1056 * until the given timeout is reached.
1057 *
1058 * To obtain only the descriptor contents, pass an event without an allocated
1059 * msg_buf. If the complete data buffer is desired, allocate the
1060 * event->msg_buf with enough space ahead of time.
1061 *
1062 * Returns: zero on success, or a negative error code on failure.
1063 */
ice_aq_wait_for_event(struct ice_pf * pf,u16 opcode,unsigned long timeout,struct ice_rq_event_info * event)1064 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1065 struct ice_rq_event_info *event)
1066 {
1067 struct device *dev = ice_pf_to_dev(pf);
1068 struct ice_aq_task *task;
1069 unsigned long start;
1070 long ret;
1071 int err;
1072
1073 task = kzalloc(sizeof(*task), GFP_KERNEL);
1074 if (!task)
1075 return -ENOMEM;
1076
1077 INIT_HLIST_NODE(&task->entry);
1078 task->opcode = opcode;
1079 task->event = event;
1080 task->state = ICE_AQ_TASK_WAITING;
1081
1082 spin_lock_bh(&pf->aq_wait_lock);
1083 hlist_add_head(&task->entry, &pf->aq_wait_list);
1084 spin_unlock_bh(&pf->aq_wait_lock);
1085
1086 start = jiffies;
1087
1088 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1089 timeout);
1090 switch (task->state) {
1091 case ICE_AQ_TASK_WAITING:
1092 err = ret < 0 ? ret : -ETIMEDOUT;
1093 break;
1094 case ICE_AQ_TASK_CANCELED:
1095 err = ret < 0 ? ret : -ECANCELED;
1096 break;
1097 case ICE_AQ_TASK_COMPLETE:
1098 err = ret < 0 ? ret : 0;
1099 break;
1100 default:
1101 WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1102 err = -EINVAL;
1103 break;
1104 }
1105
1106 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1107 jiffies_to_msecs(jiffies - start),
1108 jiffies_to_msecs(timeout),
1109 opcode);
1110
1111 spin_lock_bh(&pf->aq_wait_lock);
1112 hlist_del(&task->entry);
1113 spin_unlock_bh(&pf->aq_wait_lock);
1114 kfree(task);
1115
1116 return err;
1117 }
1118
1119 /**
1120 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1121 * @pf: pointer to the PF private structure
1122 * @opcode: the opcode of the event
1123 * @event: the event to check
1124 *
1125 * Loops over the current list of pending threads waiting for an AdminQ event.
1126 * For each matching task, copy the contents of the event into the task
1127 * structure and wake up the thread.
1128 *
1129 * If multiple threads wait for the same opcode, they will all be woken up.
1130 *
1131 * Note that event->msg_buf will only be duplicated if the event has a buffer
1132 * with enough space already allocated. Otherwise, only the descriptor and
1133 * message length will be copied.
1134 *
1135 * Returns: true if an event was found, false otherwise
1136 */
ice_aq_check_events(struct ice_pf * pf,u16 opcode,struct ice_rq_event_info * event)1137 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1138 struct ice_rq_event_info *event)
1139 {
1140 struct ice_aq_task *task;
1141 bool found = false;
1142
1143 spin_lock_bh(&pf->aq_wait_lock);
1144 hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1145 if (task->state || task->opcode != opcode)
1146 continue;
1147
1148 memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1149 task->event->msg_len = event->msg_len;
1150
1151 /* Only copy the data buffer if a destination was set */
1152 if (task->event->msg_buf &&
1153 task->event->buf_len > event->buf_len) {
1154 memcpy(task->event->msg_buf, event->msg_buf,
1155 event->buf_len);
1156 task->event->buf_len = event->buf_len;
1157 }
1158
1159 task->state = ICE_AQ_TASK_COMPLETE;
1160 found = true;
1161 }
1162 spin_unlock_bh(&pf->aq_wait_lock);
1163
1164 if (found)
1165 wake_up(&pf->aq_wait_queue);
1166 }
1167
1168 /**
1169 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1170 * @pf: the PF private structure
1171 *
1172 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1173 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1174 */
ice_aq_cancel_waiting_tasks(struct ice_pf * pf)1175 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1176 {
1177 struct ice_aq_task *task;
1178
1179 spin_lock_bh(&pf->aq_wait_lock);
1180 hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1181 task->state = ICE_AQ_TASK_CANCELED;
1182 spin_unlock_bh(&pf->aq_wait_lock);
1183
1184 wake_up(&pf->aq_wait_queue);
1185 }
1186
1187 /**
1188 * __ice_clean_ctrlq - helper function to clean controlq rings
1189 * @pf: ptr to struct ice_pf
1190 * @q_type: specific Control queue type
1191 */
__ice_clean_ctrlq(struct ice_pf * pf,enum ice_ctl_q q_type)1192 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1193 {
1194 struct device *dev = ice_pf_to_dev(pf);
1195 struct ice_rq_event_info event;
1196 struct ice_hw *hw = &pf->hw;
1197 struct ice_ctl_q_info *cq;
1198 u16 pending, i = 0;
1199 const char *qtype;
1200 u32 oldval, val;
1201
1202 /* Do not clean control queue if/when PF reset fails */
1203 if (test_bit(__ICE_RESET_FAILED, pf->state))
1204 return 0;
1205
1206 switch (q_type) {
1207 case ICE_CTL_Q_ADMIN:
1208 cq = &hw->adminq;
1209 qtype = "Admin";
1210 break;
1211 case ICE_CTL_Q_MAILBOX:
1212 cq = &hw->mailboxq;
1213 qtype = "Mailbox";
1214 break;
1215 default:
1216 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1217 return 0;
1218 }
1219
1220 /* check for error indications - PF_xx_AxQLEN register layout for
1221 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1222 */
1223 val = rd32(hw, cq->rq.len);
1224 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1225 PF_FW_ARQLEN_ARQCRIT_M)) {
1226 oldval = val;
1227 if (val & PF_FW_ARQLEN_ARQVFE_M)
1228 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1229 qtype);
1230 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1231 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1232 qtype);
1233 }
1234 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1235 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1236 qtype);
1237 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1238 PF_FW_ARQLEN_ARQCRIT_M);
1239 if (oldval != val)
1240 wr32(hw, cq->rq.len, val);
1241 }
1242
1243 val = rd32(hw, cq->sq.len);
1244 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1245 PF_FW_ATQLEN_ATQCRIT_M)) {
1246 oldval = val;
1247 if (val & PF_FW_ATQLEN_ATQVFE_M)
1248 dev_dbg(dev, "%s Send Queue VF Error detected\n",
1249 qtype);
1250 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1251 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1252 qtype);
1253 }
1254 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1255 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1256 qtype);
1257 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1258 PF_FW_ATQLEN_ATQCRIT_M);
1259 if (oldval != val)
1260 wr32(hw, cq->sq.len, val);
1261 }
1262
1263 event.buf_len = cq->rq_buf_size;
1264 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1265 if (!event.msg_buf)
1266 return 0;
1267
1268 do {
1269 enum ice_status ret;
1270 u16 opcode;
1271
1272 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1273 if (ret == ICE_ERR_AQ_NO_WORK)
1274 break;
1275 if (ret) {
1276 dev_err(dev, "%s Receive Queue event error %s\n", qtype,
1277 ice_stat_str(ret));
1278 break;
1279 }
1280
1281 opcode = le16_to_cpu(event.desc.opcode);
1282
1283 /* Notify any thread that might be waiting for this event */
1284 ice_aq_check_events(pf, opcode, &event);
1285
1286 switch (opcode) {
1287 case ice_aqc_opc_get_link_status:
1288 if (ice_handle_link_event(pf, &event))
1289 dev_err(dev, "Could not handle link event\n");
1290 break;
1291 case ice_aqc_opc_event_lan_overflow:
1292 ice_vf_lan_overflow_event(pf, &event);
1293 break;
1294 case ice_mbx_opc_send_msg_to_pf:
1295 ice_vc_process_vf_msg(pf, &event);
1296 break;
1297 case ice_aqc_opc_fw_logging:
1298 ice_output_fw_log(hw, &event.desc, event.msg_buf);
1299 break;
1300 case ice_aqc_opc_lldp_set_mib_change:
1301 ice_dcb_process_lldp_set_mib_change(pf, &event);
1302 break;
1303 default:
1304 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1305 qtype, opcode);
1306 break;
1307 }
1308 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1309
1310 kfree(event.msg_buf);
1311
1312 return pending && (i == ICE_DFLT_IRQ_WORK);
1313 }
1314
1315 /**
1316 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1317 * @hw: pointer to hardware info
1318 * @cq: control queue information
1319 *
1320 * returns true if there are pending messages in a queue, false if there aren't
1321 */
ice_ctrlq_pending(struct ice_hw * hw,struct ice_ctl_q_info * cq)1322 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1323 {
1324 u16 ntu;
1325
1326 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1327 return cq->rq.next_to_clean != ntu;
1328 }
1329
1330 /**
1331 * ice_clean_adminq_subtask - clean the AdminQ rings
1332 * @pf: board private structure
1333 */
ice_clean_adminq_subtask(struct ice_pf * pf)1334 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1335 {
1336 struct ice_hw *hw = &pf->hw;
1337
1338 if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1339 return;
1340
1341 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1342 return;
1343
1344 clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1345
1346 /* There might be a situation where new messages arrive to a control
1347 * queue between processing the last message and clearing the
1348 * EVENT_PENDING bit. So before exiting, check queue head again (using
1349 * ice_ctrlq_pending) and process new messages if any.
1350 */
1351 if (ice_ctrlq_pending(hw, &hw->adminq))
1352 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1353
1354 ice_flush(hw);
1355 }
1356
1357 /**
1358 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1359 * @pf: board private structure
1360 */
ice_clean_mailboxq_subtask(struct ice_pf * pf)1361 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1362 {
1363 struct ice_hw *hw = &pf->hw;
1364
1365 if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1366 return;
1367
1368 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1369 return;
1370
1371 clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1372
1373 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1374 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1375
1376 ice_flush(hw);
1377 }
1378
1379 /**
1380 * ice_service_task_schedule - schedule the service task to wake up
1381 * @pf: board private structure
1382 *
1383 * If not already scheduled, this puts the task into the work queue.
1384 */
ice_service_task_schedule(struct ice_pf * pf)1385 void ice_service_task_schedule(struct ice_pf *pf)
1386 {
1387 if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
1388 !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
1389 !test_bit(__ICE_NEEDS_RESTART, pf->state))
1390 queue_work(ice_wq, &pf->serv_task);
1391 }
1392
1393 /**
1394 * ice_service_task_complete - finish up the service task
1395 * @pf: board private structure
1396 */
ice_service_task_complete(struct ice_pf * pf)1397 static void ice_service_task_complete(struct ice_pf *pf)
1398 {
1399 WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
1400
1401 /* force memory (pf->state) to sync before next service task */
1402 smp_mb__before_atomic();
1403 clear_bit(__ICE_SERVICE_SCHED, pf->state);
1404 }
1405
1406 /**
1407 * ice_service_task_stop - stop service task and cancel works
1408 * @pf: board private structure
1409 *
1410 * Return 0 if the __ICE_SERVICE_DIS bit was not already set,
1411 * 1 otherwise.
1412 */
ice_service_task_stop(struct ice_pf * pf)1413 static int ice_service_task_stop(struct ice_pf *pf)
1414 {
1415 int ret;
1416
1417 ret = test_and_set_bit(__ICE_SERVICE_DIS, pf->state);
1418
1419 if (pf->serv_tmr.function)
1420 del_timer_sync(&pf->serv_tmr);
1421 if (pf->serv_task.func)
1422 cancel_work_sync(&pf->serv_task);
1423
1424 clear_bit(__ICE_SERVICE_SCHED, pf->state);
1425 return ret;
1426 }
1427
1428 /**
1429 * ice_service_task_restart - restart service task and schedule works
1430 * @pf: board private structure
1431 *
1432 * This function is needed for suspend and resume works (e.g WoL scenario)
1433 */
ice_service_task_restart(struct ice_pf * pf)1434 static void ice_service_task_restart(struct ice_pf *pf)
1435 {
1436 clear_bit(__ICE_SERVICE_DIS, pf->state);
1437 ice_service_task_schedule(pf);
1438 }
1439
1440 /**
1441 * ice_service_timer - timer callback to schedule service task
1442 * @t: pointer to timer_list
1443 */
ice_service_timer(struct timer_list * t)1444 static void ice_service_timer(struct timer_list *t)
1445 {
1446 struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1447
1448 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1449 ice_service_task_schedule(pf);
1450 }
1451
1452 /**
1453 * ice_handle_mdd_event - handle malicious driver detect event
1454 * @pf: pointer to the PF structure
1455 *
1456 * Called from service task. OICR interrupt handler indicates MDD event.
1457 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1458 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1459 * disable the queue, the PF can be configured to reset the VF using ethtool
1460 * private flag mdd-auto-reset-vf.
1461 */
ice_handle_mdd_event(struct ice_pf * pf)1462 static void ice_handle_mdd_event(struct ice_pf *pf)
1463 {
1464 struct device *dev = ice_pf_to_dev(pf);
1465 struct ice_hw *hw = &pf->hw;
1466 unsigned int i;
1467 u32 reg;
1468
1469 if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) {
1470 /* Since the VF MDD event logging is rate limited, check if
1471 * there are pending MDD events.
1472 */
1473 ice_print_vfs_mdd_events(pf);
1474 return;
1475 }
1476
1477 /* find what triggered an MDD event */
1478 reg = rd32(hw, GL_MDET_TX_PQM);
1479 if (reg & GL_MDET_TX_PQM_VALID_M) {
1480 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1481 GL_MDET_TX_PQM_PF_NUM_S;
1482 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1483 GL_MDET_TX_PQM_VF_NUM_S;
1484 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1485 GL_MDET_TX_PQM_MAL_TYPE_S;
1486 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1487 GL_MDET_TX_PQM_QNUM_S);
1488
1489 if (netif_msg_tx_err(pf))
1490 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1491 event, queue, pf_num, vf_num);
1492 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1493 }
1494
1495 reg = rd32(hw, GL_MDET_TX_TCLAN);
1496 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1497 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1498 GL_MDET_TX_TCLAN_PF_NUM_S;
1499 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1500 GL_MDET_TX_TCLAN_VF_NUM_S;
1501 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1502 GL_MDET_TX_TCLAN_MAL_TYPE_S;
1503 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1504 GL_MDET_TX_TCLAN_QNUM_S);
1505
1506 if (netif_msg_tx_err(pf))
1507 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1508 event, queue, pf_num, vf_num);
1509 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1510 }
1511
1512 reg = rd32(hw, GL_MDET_RX);
1513 if (reg & GL_MDET_RX_VALID_M) {
1514 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1515 GL_MDET_RX_PF_NUM_S;
1516 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1517 GL_MDET_RX_VF_NUM_S;
1518 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1519 GL_MDET_RX_MAL_TYPE_S;
1520 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1521 GL_MDET_RX_QNUM_S);
1522
1523 if (netif_msg_rx_err(pf))
1524 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1525 event, queue, pf_num, vf_num);
1526 wr32(hw, GL_MDET_RX, 0xffffffff);
1527 }
1528
1529 /* check to see if this PF caused an MDD event */
1530 reg = rd32(hw, PF_MDET_TX_PQM);
1531 if (reg & PF_MDET_TX_PQM_VALID_M) {
1532 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1533 if (netif_msg_tx_err(pf))
1534 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1535 }
1536
1537 reg = rd32(hw, PF_MDET_TX_TCLAN);
1538 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1539 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1540 if (netif_msg_tx_err(pf))
1541 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1542 }
1543
1544 reg = rd32(hw, PF_MDET_RX);
1545 if (reg & PF_MDET_RX_VALID_M) {
1546 wr32(hw, PF_MDET_RX, 0xFFFF);
1547 if (netif_msg_rx_err(pf))
1548 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1549 }
1550
1551 /* Check to see if one of the VFs caused an MDD event, and then
1552 * increment counters and set print pending
1553 */
1554 ice_for_each_vf(pf, i) {
1555 struct ice_vf *vf = &pf->vf[i];
1556
1557 reg = rd32(hw, VP_MDET_TX_PQM(i));
1558 if (reg & VP_MDET_TX_PQM_VALID_M) {
1559 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1560 vf->mdd_tx_events.count++;
1561 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1562 if (netif_msg_tx_err(pf))
1563 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1564 i);
1565 }
1566
1567 reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1568 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1569 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1570 vf->mdd_tx_events.count++;
1571 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1572 if (netif_msg_tx_err(pf))
1573 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1574 i);
1575 }
1576
1577 reg = rd32(hw, VP_MDET_TX_TDPU(i));
1578 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1579 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1580 vf->mdd_tx_events.count++;
1581 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1582 if (netif_msg_tx_err(pf))
1583 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1584 i);
1585 }
1586
1587 reg = rd32(hw, VP_MDET_RX(i));
1588 if (reg & VP_MDET_RX_VALID_M) {
1589 wr32(hw, VP_MDET_RX(i), 0xFFFF);
1590 vf->mdd_rx_events.count++;
1591 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1592 if (netif_msg_rx_err(pf))
1593 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1594 i);
1595
1596 /* Since the queue is disabled on VF Rx MDD events, the
1597 * PF can be configured to reset the VF through ethtool
1598 * private flag mdd-auto-reset-vf.
1599 */
1600 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1601 /* VF MDD event counters will be cleared by
1602 * reset, so print the event prior to reset.
1603 */
1604 ice_print_vf_rx_mdd_event(vf);
1605 mutex_lock(&pf->vf[i].cfg_lock);
1606 ice_reset_vf(&pf->vf[i], false);
1607 mutex_unlock(&pf->vf[i].cfg_lock);
1608 }
1609 }
1610 }
1611
1612 ice_print_vfs_mdd_events(pf);
1613 }
1614
1615 /**
1616 * ice_force_phys_link_state - Force the physical link state
1617 * @vsi: VSI to force the physical link state to up/down
1618 * @link_up: true/false indicates to set the physical link to up/down
1619 *
1620 * Force the physical link state by getting the current PHY capabilities from
1621 * hardware and setting the PHY config based on the determined capabilities. If
1622 * link changes a link event will be triggered because both the Enable Automatic
1623 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1624 *
1625 * Returns 0 on success, negative on failure
1626 */
ice_force_phys_link_state(struct ice_vsi * vsi,bool link_up)1627 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1628 {
1629 struct ice_aqc_get_phy_caps_data *pcaps;
1630 struct ice_aqc_set_phy_cfg_data *cfg;
1631 struct ice_port_info *pi;
1632 struct device *dev;
1633 int retcode;
1634
1635 if (!vsi || !vsi->port_info || !vsi->back)
1636 return -EINVAL;
1637 if (vsi->type != ICE_VSI_PF)
1638 return 0;
1639
1640 dev = ice_pf_to_dev(vsi->back);
1641
1642 pi = vsi->port_info;
1643
1644 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1645 if (!pcaps)
1646 return -ENOMEM;
1647
1648 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1649 NULL);
1650 if (retcode) {
1651 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1652 vsi->vsi_num, retcode);
1653 retcode = -EIO;
1654 goto out;
1655 }
1656
1657 /* No change in link */
1658 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1659 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1660 goto out;
1661
1662 /* Use the current user PHY configuration. The current user PHY
1663 * configuration is initialized during probe from PHY capabilities
1664 * software mode, and updated on set PHY configuration.
1665 */
1666 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1667 if (!cfg) {
1668 retcode = -ENOMEM;
1669 goto out;
1670 }
1671
1672 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1673 if (link_up)
1674 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1675 else
1676 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1677
1678 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1679 if (retcode) {
1680 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1681 vsi->vsi_num, retcode);
1682 retcode = -EIO;
1683 }
1684
1685 kfree(cfg);
1686 out:
1687 kfree(pcaps);
1688 return retcode;
1689 }
1690
1691 /**
1692 * ice_init_nvm_phy_type - Initialize the NVM PHY type
1693 * @pi: port info structure
1694 *
1695 * Initialize nvm_phy_type_[low|high] for link lenient mode support
1696 */
ice_init_nvm_phy_type(struct ice_port_info * pi)1697 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1698 {
1699 struct ice_aqc_get_phy_caps_data *pcaps;
1700 struct ice_pf *pf = pi->hw->back;
1701 enum ice_status status;
1702 int err = 0;
1703
1704 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1705 if (!pcaps)
1706 return -ENOMEM;
1707
1708 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, pcaps,
1709 NULL);
1710
1711 if (status) {
1712 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1713 err = -EIO;
1714 goto out;
1715 }
1716
1717 pf->nvm_phy_type_hi = pcaps->phy_type_high;
1718 pf->nvm_phy_type_lo = pcaps->phy_type_low;
1719
1720 out:
1721 kfree(pcaps);
1722 return err;
1723 }
1724
1725 /**
1726 * ice_init_link_dflt_override - Initialize link default override
1727 * @pi: port info structure
1728 *
1729 * Initialize link default override and PHY total port shutdown during probe
1730 */
ice_init_link_dflt_override(struct ice_port_info * pi)1731 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1732 {
1733 struct ice_link_default_override_tlv *ldo;
1734 struct ice_pf *pf = pi->hw->back;
1735
1736 ldo = &pf->link_dflt_override;
1737 if (ice_get_link_default_override(ldo, pi))
1738 return;
1739
1740 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1741 return;
1742
1743 /* Enable Total Port Shutdown (override/replace link-down-on-close
1744 * ethtool private flag) for ports with Port Disable bit set.
1745 */
1746 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1747 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1748 }
1749
1750 /**
1751 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1752 * @pi: port info structure
1753 *
1754 * If default override is enabled, initialized the user PHY cfg speed and FEC
1755 * settings using the default override mask from the NVM.
1756 *
1757 * The PHY should only be configured with the default override settings the
1758 * first time media is available. The __ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1759 * is used to indicate that the user PHY cfg default override is initialized
1760 * and the PHY has not been configured with the default override settings. The
1761 * state is set here, and cleared in ice_configure_phy the first time the PHY is
1762 * configured.
1763 */
ice_init_phy_cfg_dflt_override(struct ice_port_info * pi)1764 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1765 {
1766 struct ice_link_default_override_tlv *ldo;
1767 struct ice_aqc_set_phy_cfg_data *cfg;
1768 struct ice_phy_info *phy = &pi->phy;
1769 struct ice_pf *pf = pi->hw->back;
1770
1771 ldo = &pf->link_dflt_override;
1772
1773 /* If link default override is enabled, use to mask NVM PHY capabilities
1774 * for speed and FEC default configuration.
1775 */
1776 cfg = &phy->curr_user_phy_cfg;
1777
1778 if (ldo->phy_type_low || ldo->phy_type_high) {
1779 cfg->phy_type_low = pf->nvm_phy_type_lo &
1780 cpu_to_le64(ldo->phy_type_low);
1781 cfg->phy_type_high = pf->nvm_phy_type_hi &
1782 cpu_to_le64(ldo->phy_type_high);
1783 }
1784 cfg->link_fec_opt = ldo->fec_options;
1785 phy->curr_user_fec_req = ICE_FEC_AUTO;
1786
1787 set_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
1788 }
1789
1790 /**
1791 * ice_init_phy_user_cfg - Initialize the PHY user configuration
1792 * @pi: port info structure
1793 *
1794 * Initialize the current user PHY configuration, speed, FEC, and FC requested
1795 * mode to default. The PHY defaults are from get PHY capabilities topology
1796 * with media so call when media is first available. An error is returned if
1797 * called when media is not available. The PHY initialization completed state is
1798 * set here.
1799 *
1800 * These configurations are used when setting PHY
1801 * configuration. The user PHY configuration is updated on set PHY
1802 * configuration. Returns 0 on success, negative on failure
1803 */
ice_init_phy_user_cfg(struct ice_port_info * pi)1804 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
1805 {
1806 struct ice_aqc_get_phy_caps_data *pcaps;
1807 struct ice_phy_info *phy = &pi->phy;
1808 struct ice_pf *pf = pi->hw->back;
1809 enum ice_status status;
1810 struct ice_vsi *vsi;
1811 int err = 0;
1812
1813 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1814 return -EIO;
1815
1816 vsi = ice_get_main_vsi(pf);
1817 if (!vsi)
1818 return -EINVAL;
1819
1820 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1821 if (!pcaps)
1822 return -ENOMEM;
1823
1824 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1825 NULL);
1826 if (status) {
1827 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1828 err = -EIO;
1829 goto err_out;
1830 }
1831
1832 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
1833
1834 /* check if lenient mode is supported and enabled */
1835 if (ice_fw_supports_link_override(&vsi->back->hw) &&
1836 !(pcaps->module_compliance_enforcement &
1837 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
1838 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
1839
1840 /* if link default override is enabled, initialize user PHY
1841 * configuration with link default override values
1842 */
1843 if (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN) {
1844 ice_init_phy_cfg_dflt_override(pi);
1845 goto out;
1846 }
1847 }
1848
1849 /* if link default override is not enabled, initialize PHY using
1850 * topology with media
1851 */
1852 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
1853 pcaps->link_fec_options);
1854 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
1855
1856 out:
1857 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
1858 set_bit(__ICE_PHY_INIT_COMPLETE, pf->state);
1859 err_out:
1860 kfree(pcaps);
1861 return err;
1862 }
1863
1864 /**
1865 * ice_configure_phy - configure PHY
1866 * @vsi: VSI of PHY
1867 *
1868 * Set the PHY configuration. If the current PHY configuration is the same as
1869 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
1870 * configure the based get PHY capabilities for topology with media.
1871 */
ice_configure_phy(struct ice_vsi * vsi)1872 static int ice_configure_phy(struct ice_vsi *vsi)
1873 {
1874 struct device *dev = ice_pf_to_dev(vsi->back);
1875 struct ice_aqc_get_phy_caps_data *pcaps;
1876 struct ice_aqc_set_phy_cfg_data *cfg;
1877 struct ice_port_info *pi;
1878 enum ice_status status;
1879 int err = 0;
1880
1881 pi = vsi->port_info;
1882 if (!pi)
1883 return -EINVAL;
1884
1885 /* Ensure we have media as we cannot configure a medialess port */
1886 if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1887 return -EPERM;
1888
1889 ice_print_topo_conflict(vsi);
1890
1891 if (vsi->port_info->phy.link_info.topo_media_conflict ==
1892 ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
1893 return -EPERM;
1894
1895 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
1896 return ice_force_phys_link_state(vsi, true);
1897
1898 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1899 if (!pcaps)
1900 return -ENOMEM;
1901
1902 /* Get current PHY config */
1903 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1904 NULL);
1905 if (status) {
1906 dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n",
1907 vsi->vsi_num, ice_stat_str(status));
1908 err = -EIO;
1909 goto done;
1910 }
1911
1912 /* If PHY enable link is configured and configuration has not changed,
1913 * there's nothing to do
1914 */
1915 if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
1916 ice_phy_caps_equals_cfg(pcaps, &pi->phy.curr_user_phy_cfg))
1917 goto done;
1918
1919 /* Use PHY topology as baseline for configuration */
1920 memset(pcaps, 0, sizeof(*pcaps));
1921 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1922 NULL);
1923 if (status) {
1924 dev_err(dev, "Failed to get PHY topology, VSI %d error %s\n",
1925 vsi->vsi_num, ice_stat_str(status));
1926 err = -EIO;
1927 goto done;
1928 }
1929
1930 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1931 if (!cfg) {
1932 err = -ENOMEM;
1933 goto done;
1934 }
1935
1936 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
1937
1938 /* Speed - If default override pending, use curr_user_phy_cfg set in
1939 * ice_init_phy_user_cfg_ldo.
1940 */
1941 if (test_and_clear_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING,
1942 vsi->back->state)) {
1943 cfg->phy_type_low = pi->phy.curr_user_phy_cfg.phy_type_low;
1944 cfg->phy_type_high = pi->phy.curr_user_phy_cfg.phy_type_high;
1945 } else {
1946 u64 phy_low = 0, phy_high = 0;
1947
1948 ice_update_phy_type(&phy_low, &phy_high,
1949 pi->phy.curr_user_speed_req);
1950 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
1951 cfg->phy_type_high = pcaps->phy_type_high &
1952 cpu_to_le64(phy_high);
1953 }
1954
1955 /* Can't provide what was requested; use PHY capabilities */
1956 if (!cfg->phy_type_low && !cfg->phy_type_high) {
1957 cfg->phy_type_low = pcaps->phy_type_low;
1958 cfg->phy_type_high = pcaps->phy_type_high;
1959 }
1960
1961 /* FEC */
1962 ice_cfg_phy_fec(pi, cfg, pi->phy.curr_user_fec_req);
1963
1964 /* Can't provide what was requested; use PHY capabilities */
1965 if (cfg->link_fec_opt !=
1966 (cfg->link_fec_opt & pcaps->link_fec_options)) {
1967 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
1968 cfg->link_fec_opt = pcaps->link_fec_options;
1969 }
1970
1971 /* Flow Control - always supported; no need to check against
1972 * capabilities
1973 */
1974 ice_cfg_phy_fc(pi, cfg, pi->phy.curr_user_fc_req);
1975
1976 /* Enable link and link update */
1977 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
1978
1979 status = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1980 if (status) {
1981 dev_err(dev, "Failed to set phy config, VSI %d error %s\n",
1982 vsi->vsi_num, ice_stat_str(status));
1983 err = -EIO;
1984 }
1985
1986 kfree(cfg);
1987 done:
1988 kfree(pcaps);
1989 return err;
1990 }
1991
1992 /**
1993 * ice_check_media_subtask - Check for media
1994 * @pf: pointer to PF struct
1995 *
1996 * If media is available, then initialize PHY user configuration if it is not
1997 * been, and configure the PHY if the interface is up.
1998 */
ice_check_media_subtask(struct ice_pf * pf)1999 static void ice_check_media_subtask(struct ice_pf *pf)
2000 {
2001 struct ice_port_info *pi;
2002 struct ice_vsi *vsi;
2003 int err;
2004
2005 /* No need to check for media if it's already present */
2006 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2007 return;
2008
2009 vsi = ice_get_main_vsi(pf);
2010 if (!vsi)
2011 return;
2012
2013 /* Refresh link info and check if media is present */
2014 pi = vsi->port_info;
2015 err = ice_update_link_info(pi);
2016 if (err)
2017 return;
2018
2019 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2020 if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state))
2021 ice_init_phy_user_cfg(pi);
2022
2023 /* PHY settings are reset on media insertion, reconfigure
2024 * PHY to preserve settings.
2025 */
2026 if (test_bit(__ICE_DOWN, vsi->state) &&
2027 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2028 return;
2029
2030 err = ice_configure_phy(vsi);
2031 if (!err)
2032 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2033
2034 /* A Link Status Event will be generated; the event handler
2035 * will complete bringing the interface up
2036 */
2037 }
2038 }
2039
2040 /**
2041 * ice_service_task - manage and run subtasks
2042 * @work: pointer to work_struct contained by the PF struct
2043 */
ice_service_task(struct work_struct * work)2044 static void ice_service_task(struct work_struct *work)
2045 {
2046 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2047 unsigned long start_time = jiffies;
2048
2049 /* subtasks */
2050
2051 /* process reset requests first */
2052 ice_reset_subtask(pf);
2053
2054 /* bail if a reset/recovery cycle is pending or rebuild failed */
2055 if (ice_is_reset_in_progress(pf->state) ||
2056 test_bit(__ICE_SUSPENDED, pf->state) ||
2057 test_bit(__ICE_NEEDS_RESTART, pf->state)) {
2058 ice_service_task_complete(pf);
2059 return;
2060 }
2061
2062 ice_clean_adminq_subtask(pf);
2063 ice_check_media_subtask(pf);
2064 ice_check_for_hang_subtask(pf);
2065 ice_sync_fltr_subtask(pf);
2066 ice_handle_mdd_event(pf);
2067 ice_watchdog_subtask(pf);
2068
2069 if (ice_is_safe_mode(pf)) {
2070 ice_service_task_complete(pf);
2071 return;
2072 }
2073
2074 ice_process_vflr_event(pf);
2075 ice_clean_mailboxq_subtask(pf);
2076 ice_sync_arfs_fltrs(pf);
2077 /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
2078 ice_service_task_complete(pf);
2079
2080 /* If the tasks have taken longer than one service timer period
2081 * or there is more work to be done, reset the service timer to
2082 * schedule the service task now.
2083 */
2084 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2085 test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
2086 test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
2087 test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2088 test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
2089 mod_timer(&pf->serv_tmr, jiffies);
2090 }
2091
2092 /**
2093 * ice_set_ctrlq_len - helper function to set controlq length
2094 * @hw: pointer to the HW instance
2095 */
ice_set_ctrlq_len(struct ice_hw * hw)2096 static void ice_set_ctrlq_len(struct ice_hw *hw)
2097 {
2098 hw->adminq.num_rq_entries = ICE_AQ_LEN;
2099 hw->adminq.num_sq_entries = ICE_AQ_LEN;
2100 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2101 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2102 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2103 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2104 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2105 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2106 }
2107
2108 /**
2109 * ice_schedule_reset - schedule a reset
2110 * @pf: board private structure
2111 * @reset: reset being requested
2112 */
ice_schedule_reset(struct ice_pf * pf,enum ice_reset_req reset)2113 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2114 {
2115 struct device *dev = ice_pf_to_dev(pf);
2116
2117 /* bail out if earlier reset has failed */
2118 if (test_bit(__ICE_RESET_FAILED, pf->state)) {
2119 dev_dbg(dev, "earlier reset has failed\n");
2120 return -EIO;
2121 }
2122 /* bail if reset/recovery already in progress */
2123 if (ice_is_reset_in_progress(pf->state)) {
2124 dev_dbg(dev, "Reset already in progress\n");
2125 return -EBUSY;
2126 }
2127
2128 switch (reset) {
2129 case ICE_RESET_PFR:
2130 set_bit(__ICE_PFR_REQ, pf->state);
2131 break;
2132 case ICE_RESET_CORER:
2133 set_bit(__ICE_CORER_REQ, pf->state);
2134 break;
2135 case ICE_RESET_GLOBR:
2136 set_bit(__ICE_GLOBR_REQ, pf->state);
2137 break;
2138 default:
2139 return -EINVAL;
2140 }
2141
2142 ice_service_task_schedule(pf);
2143 return 0;
2144 }
2145
2146 /**
2147 * ice_irq_affinity_notify - Callback for affinity changes
2148 * @notify: context as to what irq was changed
2149 * @mask: the new affinity mask
2150 *
2151 * This is a callback function used by the irq_set_affinity_notifier function
2152 * so that we may register to receive changes to the irq affinity masks.
2153 */
2154 static void
ice_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)2155 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2156 const cpumask_t *mask)
2157 {
2158 struct ice_q_vector *q_vector =
2159 container_of(notify, struct ice_q_vector, affinity_notify);
2160
2161 cpumask_copy(&q_vector->affinity_mask, mask);
2162 }
2163
2164 /**
2165 * ice_irq_affinity_release - Callback for affinity notifier release
2166 * @ref: internal core kernel usage
2167 *
2168 * This is a callback function used by the irq_set_affinity_notifier function
2169 * to inform the current notification subscriber that they will no longer
2170 * receive notifications.
2171 */
ice_irq_affinity_release(struct kref __always_unused * ref)2172 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2173
2174 /**
2175 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2176 * @vsi: the VSI being configured
2177 */
ice_vsi_ena_irq(struct ice_vsi * vsi)2178 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2179 {
2180 struct ice_hw *hw = &vsi->back->hw;
2181 int i;
2182
2183 ice_for_each_q_vector(vsi, i)
2184 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2185
2186 ice_flush(hw);
2187 return 0;
2188 }
2189
2190 /**
2191 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2192 * @vsi: the VSI being configured
2193 * @basename: name for the vector
2194 */
ice_vsi_req_irq_msix(struct ice_vsi * vsi,char * basename)2195 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2196 {
2197 int q_vectors = vsi->num_q_vectors;
2198 struct ice_pf *pf = vsi->back;
2199 int base = vsi->base_vector;
2200 struct device *dev;
2201 int rx_int_idx = 0;
2202 int tx_int_idx = 0;
2203 int vector, err;
2204 int irq_num;
2205
2206 dev = ice_pf_to_dev(pf);
2207 for (vector = 0; vector < q_vectors; vector++) {
2208 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2209
2210 irq_num = pf->msix_entries[base + vector].vector;
2211
2212 if (q_vector->tx.ring && q_vector->rx.ring) {
2213 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2214 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2215 tx_int_idx++;
2216 } else if (q_vector->rx.ring) {
2217 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2218 "%s-%s-%d", basename, "rx", rx_int_idx++);
2219 } else if (q_vector->tx.ring) {
2220 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2221 "%s-%s-%d", basename, "tx", tx_int_idx++);
2222 } else {
2223 /* skip this unused q_vector */
2224 continue;
2225 }
2226 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0,
2227 q_vector->name, q_vector);
2228 if (err) {
2229 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2230 err);
2231 goto free_q_irqs;
2232 }
2233
2234 /* register for affinity change notifications */
2235 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2236 struct irq_affinity_notify *affinity_notify;
2237
2238 affinity_notify = &q_vector->affinity_notify;
2239 affinity_notify->notify = ice_irq_affinity_notify;
2240 affinity_notify->release = ice_irq_affinity_release;
2241 irq_set_affinity_notifier(irq_num, affinity_notify);
2242 }
2243
2244 /* assign the mask for this irq */
2245 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2246 }
2247
2248 vsi->irqs_ready = true;
2249 return 0;
2250
2251 free_q_irqs:
2252 while (vector) {
2253 vector--;
2254 irq_num = pf->msix_entries[base + vector].vector;
2255 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2256 irq_set_affinity_notifier(irq_num, NULL);
2257 irq_set_affinity_hint(irq_num, NULL);
2258 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2259 }
2260 return err;
2261 }
2262
2263 /**
2264 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2265 * @vsi: VSI to setup Tx rings used by XDP
2266 *
2267 * Return 0 on success and negative value on error
2268 */
ice_xdp_alloc_setup_rings(struct ice_vsi * vsi)2269 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2270 {
2271 struct device *dev = ice_pf_to_dev(vsi->back);
2272 int i;
2273
2274 for (i = 0; i < vsi->num_xdp_txq; i++) {
2275 u16 xdp_q_idx = vsi->alloc_txq + i;
2276 struct ice_ring *xdp_ring;
2277
2278 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2279
2280 if (!xdp_ring)
2281 goto free_xdp_rings;
2282
2283 xdp_ring->q_index = xdp_q_idx;
2284 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2285 xdp_ring->ring_active = false;
2286 xdp_ring->vsi = vsi;
2287 xdp_ring->netdev = NULL;
2288 xdp_ring->dev = dev;
2289 xdp_ring->count = vsi->num_tx_desc;
2290 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2291 if (ice_setup_tx_ring(xdp_ring))
2292 goto free_xdp_rings;
2293 ice_set_ring_xdp(xdp_ring);
2294 xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring);
2295 }
2296
2297 return 0;
2298
2299 free_xdp_rings:
2300 for (; i >= 0; i--)
2301 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2302 ice_free_tx_ring(vsi->xdp_rings[i]);
2303 return -ENOMEM;
2304 }
2305
2306 /**
2307 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2308 * @vsi: VSI to set the bpf prog on
2309 * @prog: the bpf prog pointer
2310 */
ice_vsi_assign_bpf_prog(struct ice_vsi * vsi,struct bpf_prog * prog)2311 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2312 {
2313 struct bpf_prog *old_prog;
2314 int i;
2315
2316 old_prog = xchg(&vsi->xdp_prog, prog);
2317 if (old_prog)
2318 bpf_prog_put(old_prog);
2319
2320 ice_for_each_rxq(vsi, i)
2321 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2322 }
2323
2324 /**
2325 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2326 * @vsi: VSI to bring up Tx rings used by XDP
2327 * @prog: bpf program that will be assigned to VSI
2328 *
2329 * Return 0 on success and negative value on error
2330 */
ice_prepare_xdp_rings(struct ice_vsi * vsi,struct bpf_prog * prog)2331 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2332 {
2333 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2334 int xdp_rings_rem = vsi->num_xdp_txq;
2335 struct ice_pf *pf = vsi->back;
2336 struct ice_qs_cfg xdp_qs_cfg = {
2337 .qs_mutex = &pf->avail_q_mutex,
2338 .pf_map = pf->avail_txqs,
2339 .pf_map_size = pf->max_pf_txqs,
2340 .q_count = vsi->num_xdp_txq,
2341 .scatter_count = ICE_MAX_SCATTER_TXQS,
2342 .vsi_map = vsi->txq_map,
2343 .vsi_map_offset = vsi->alloc_txq,
2344 .mapping_mode = ICE_VSI_MAP_CONTIG
2345 };
2346 enum ice_status status;
2347 struct device *dev;
2348 int i, v_idx;
2349
2350 dev = ice_pf_to_dev(pf);
2351 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2352 sizeof(*vsi->xdp_rings), GFP_KERNEL);
2353 if (!vsi->xdp_rings)
2354 return -ENOMEM;
2355
2356 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2357 if (__ice_vsi_get_qs(&xdp_qs_cfg))
2358 goto err_map_xdp;
2359
2360 if (ice_xdp_alloc_setup_rings(vsi))
2361 goto clear_xdp_rings;
2362
2363 /* follow the logic from ice_vsi_map_rings_to_vectors */
2364 ice_for_each_q_vector(vsi, v_idx) {
2365 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2366 int xdp_rings_per_v, q_id, q_base;
2367
2368 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2369 vsi->num_q_vectors - v_idx);
2370 q_base = vsi->num_xdp_txq - xdp_rings_rem;
2371
2372 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2373 struct ice_ring *xdp_ring = vsi->xdp_rings[q_id];
2374
2375 xdp_ring->q_vector = q_vector;
2376 xdp_ring->next = q_vector->tx.ring;
2377 q_vector->tx.ring = xdp_ring;
2378 }
2379 xdp_rings_rem -= xdp_rings_per_v;
2380 }
2381
2382 /* omit the scheduler update if in reset path; XDP queues will be
2383 * taken into account at the end of ice_vsi_rebuild, where
2384 * ice_cfg_vsi_lan is being called
2385 */
2386 if (ice_is_reset_in_progress(pf->state))
2387 return 0;
2388
2389 /* tell the Tx scheduler that right now we have
2390 * additional queues
2391 */
2392 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2393 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2394
2395 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2396 max_txqs);
2397 if (status) {
2398 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n",
2399 ice_stat_str(status));
2400 goto clear_xdp_rings;
2401 }
2402
2403 /* assign the prog only when it's not already present on VSI;
2404 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2405 * VSI rebuild that happens under ethtool -L can expose us to
2406 * the bpf_prog refcount issues as we would be swapping same
2407 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2408 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2409 * this is not harmful as dev_xdp_install bumps the refcount
2410 * before calling the op exposed by the driver;
2411 */
2412 if (!ice_is_xdp_ena_vsi(vsi))
2413 ice_vsi_assign_bpf_prog(vsi, prog);
2414
2415 return 0;
2416 clear_xdp_rings:
2417 for (i = 0; i < vsi->num_xdp_txq; i++)
2418 if (vsi->xdp_rings[i]) {
2419 kfree_rcu(vsi->xdp_rings[i], rcu);
2420 vsi->xdp_rings[i] = NULL;
2421 }
2422
2423 err_map_xdp:
2424 mutex_lock(&pf->avail_q_mutex);
2425 for (i = 0; i < vsi->num_xdp_txq; i++) {
2426 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2427 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2428 }
2429 mutex_unlock(&pf->avail_q_mutex);
2430
2431 devm_kfree(dev, vsi->xdp_rings);
2432 return -ENOMEM;
2433 }
2434
2435 /**
2436 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2437 * @vsi: VSI to remove XDP rings
2438 *
2439 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2440 * resources
2441 */
ice_destroy_xdp_rings(struct ice_vsi * vsi)2442 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2443 {
2444 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2445 struct ice_pf *pf = vsi->back;
2446 int i, v_idx;
2447
2448 /* q_vectors are freed in reset path so there's no point in detaching
2449 * rings; in case of rebuild being triggered not from reset bits
2450 * in pf->state won't be set, so additionally check first q_vector
2451 * against NULL
2452 */
2453 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2454 goto free_qmap;
2455
2456 ice_for_each_q_vector(vsi, v_idx) {
2457 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2458 struct ice_ring *ring;
2459
2460 ice_for_each_ring(ring, q_vector->tx)
2461 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2462 break;
2463
2464 /* restore the value of last node prior to XDP setup */
2465 q_vector->tx.ring = ring;
2466 }
2467
2468 free_qmap:
2469 mutex_lock(&pf->avail_q_mutex);
2470 for (i = 0; i < vsi->num_xdp_txq; i++) {
2471 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2472 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2473 }
2474 mutex_unlock(&pf->avail_q_mutex);
2475
2476 for (i = 0; i < vsi->num_xdp_txq; i++)
2477 if (vsi->xdp_rings[i]) {
2478 if (vsi->xdp_rings[i]->desc) {
2479 synchronize_rcu();
2480 ice_free_tx_ring(vsi->xdp_rings[i]);
2481 }
2482 kfree_rcu(vsi->xdp_rings[i], rcu);
2483 vsi->xdp_rings[i] = NULL;
2484 }
2485
2486 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2487 vsi->xdp_rings = NULL;
2488
2489 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2490 return 0;
2491
2492 ice_vsi_assign_bpf_prog(vsi, NULL);
2493
2494 /* notify Tx scheduler that we destroyed XDP queues and bring
2495 * back the old number of child nodes
2496 */
2497 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2498 max_txqs[i] = vsi->num_txq;
2499
2500 /* change number of XDP Tx queues to 0 */
2501 vsi->num_xdp_txq = 0;
2502
2503 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2504 max_txqs);
2505 }
2506
2507 /**
2508 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2509 * @vsi: VSI to setup XDP for
2510 * @prog: XDP program
2511 * @extack: netlink extended ack
2512 */
2513 static int
ice_xdp_setup_prog(struct ice_vsi * vsi,struct bpf_prog * prog,struct netlink_ext_ack * extack)2514 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2515 struct netlink_ext_ack *extack)
2516 {
2517 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2518 bool if_running = netif_running(vsi->netdev);
2519 int ret = 0, xdp_ring_err = 0;
2520
2521 if (frame_size > vsi->rx_buf_len) {
2522 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2523 return -EOPNOTSUPP;
2524 }
2525
2526 /* need to stop netdev while setting up the program for Rx rings */
2527 if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) {
2528 ret = ice_down(vsi);
2529 if (ret) {
2530 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2531 return ret;
2532 }
2533 }
2534
2535 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2536 vsi->num_xdp_txq = vsi->alloc_rxq;
2537 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2538 if (xdp_ring_err)
2539 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2540 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2541 xdp_ring_err = ice_destroy_xdp_rings(vsi);
2542 if (xdp_ring_err)
2543 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2544 } else {
2545 /* safe to call even when prog == vsi->xdp_prog as
2546 * dev_xdp_install in net/core/dev.c incremented prog's
2547 * refcount so corresponding bpf_prog_put won't cause
2548 * underflow
2549 */
2550 ice_vsi_assign_bpf_prog(vsi, prog);
2551 }
2552
2553 if (if_running)
2554 ret = ice_up(vsi);
2555
2556 if (!ret && prog && vsi->xsk_pools) {
2557 int i;
2558
2559 ice_for_each_rxq(vsi, i) {
2560 struct ice_ring *rx_ring = vsi->rx_rings[i];
2561
2562 if (rx_ring->xsk_pool)
2563 napi_schedule(&rx_ring->q_vector->napi);
2564 }
2565 }
2566
2567 return (ret || xdp_ring_err) ? -ENOMEM : 0;
2568 }
2569
2570 /**
2571 * ice_xdp_safe_mode - XDP handler for safe mode
2572 * @dev: netdevice
2573 * @xdp: XDP command
2574 */
ice_xdp_safe_mode(struct net_device __always_unused * dev,struct netdev_bpf * xdp)2575 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2576 struct netdev_bpf *xdp)
2577 {
2578 NL_SET_ERR_MSG_MOD(xdp->extack,
2579 "Please provide working DDP firmware package in order to use XDP\n"
2580 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2581 return -EOPNOTSUPP;
2582 }
2583
2584 /**
2585 * ice_xdp - implements XDP handler
2586 * @dev: netdevice
2587 * @xdp: XDP command
2588 */
ice_xdp(struct net_device * dev,struct netdev_bpf * xdp)2589 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2590 {
2591 struct ice_netdev_priv *np = netdev_priv(dev);
2592 struct ice_vsi *vsi = np->vsi;
2593
2594 if (vsi->type != ICE_VSI_PF) {
2595 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2596 return -EINVAL;
2597 }
2598
2599 switch (xdp->command) {
2600 case XDP_SETUP_PROG:
2601 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2602 case XDP_SETUP_XSK_POOL:
2603 return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2604 xdp->xsk.queue_id);
2605 default:
2606 return -EINVAL;
2607 }
2608 }
2609
2610 /**
2611 * ice_ena_misc_vector - enable the non-queue interrupts
2612 * @pf: board private structure
2613 */
ice_ena_misc_vector(struct ice_pf * pf)2614 static void ice_ena_misc_vector(struct ice_pf *pf)
2615 {
2616 struct ice_hw *hw = &pf->hw;
2617 u32 val;
2618
2619 /* Disable anti-spoof detection interrupt to prevent spurious event
2620 * interrupts during a function reset. Anti-spoof functionally is
2621 * still supported.
2622 */
2623 val = rd32(hw, GL_MDCK_TX_TDPU);
2624 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2625 wr32(hw, GL_MDCK_TX_TDPU, val);
2626
2627 /* clear things first */
2628 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
2629 rd32(hw, PFINT_OICR); /* read to clear */
2630
2631 val = (PFINT_OICR_ECC_ERR_M |
2632 PFINT_OICR_MAL_DETECT_M |
2633 PFINT_OICR_GRST_M |
2634 PFINT_OICR_PCI_EXCEPTION_M |
2635 PFINT_OICR_VFLR_M |
2636 PFINT_OICR_HMC_ERR_M |
2637 PFINT_OICR_PE_CRITERR_M);
2638
2639 wr32(hw, PFINT_OICR_ENA, val);
2640
2641 /* SW_ITR_IDX = 0, but don't change INTENA */
2642 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2643 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2644 }
2645
2646 /**
2647 * ice_misc_intr - misc interrupt handler
2648 * @irq: interrupt number
2649 * @data: pointer to a q_vector
2650 */
ice_misc_intr(int __always_unused irq,void * data)2651 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2652 {
2653 struct ice_pf *pf = (struct ice_pf *)data;
2654 struct ice_hw *hw = &pf->hw;
2655 irqreturn_t ret = IRQ_NONE;
2656 struct device *dev;
2657 u32 oicr, ena_mask;
2658
2659 dev = ice_pf_to_dev(pf);
2660 set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
2661 set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
2662
2663 oicr = rd32(hw, PFINT_OICR);
2664 ena_mask = rd32(hw, PFINT_OICR_ENA);
2665
2666 if (oicr & PFINT_OICR_SWINT_M) {
2667 ena_mask &= ~PFINT_OICR_SWINT_M;
2668 pf->sw_int_count++;
2669 }
2670
2671 if (oicr & PFINT_OICR_MAL_DETECT_M) {
2672 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2673 set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
2674 }
2675 if (oicr & PFINT_OICR_VFLR_M) {
2676 /* disable any further VFLR event notifications */
2677 if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) {
2678 u32 reg = rd32(hw, PFINT_OICR_ENA);
2679
2680 reg &= ~PFINT_OICR_VFLR_M;
2681 wr32(hw, PFINT_OICR_ENA, reg);
2682 } else {
2683 ena_mask &= ~PFINT_OICR_VFLR_M;
2684 set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
2685 }
2686 }
2687
2688 if (oicr & PFINT_OICR_GRST_M) {
2689 u32 reset;
2690
2691 /* we have a reset warning */
2692 ena_mask &= ~PFINT_OICR_GRST_M;
2693 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2694 GLGEN_RSTAT_RESET_TYPE_S;
2695
2696 if (reset == ICE_RESET_CORER)
2697 pf->corer_count++;
2698 else if (reset == ICE_RESET_GLOBR)
2699 pf->globr_count++;
2700 else if (reset == ICE_RESET_EMPR)
2701 pf->empr_count++;
2702 else
2703 dev_dbg(dev, "Invalid reset type %d\n", reset);
2704
2705 /* If a reset cycle isn't already in progress, we set a bit in
2706 * pf->state so that the service task can start a reset/rebuild.
2707 * We also make note of which reset happened so that peer
2708 * devices/drivers can be informed.
2709 */
2710 if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
2711 if (reset == ICE_RESET_CORER)
2712 set_bit(__ICE_CORER_RECV, pf->state);
2713 else if (reset == ICE_RESET_GLOBR)
2714 set_bit(__ICE_GLOBR_RECV, pf->state);
2715 else
2716 set_bit(__ICE_EMPR_RECV, pf->state);
2717
2718 /* There are couple of different bits at play here.
2719 * hw->reset_ongoing indicates whether the hardware is
2720 * in reset. This is set to true when a reset interrupt
2721 * is received and set back to false after the driver
2722 * has determined that the hardware is out of reset.
2723 *
2724 * __ICE_RESET_OICR_RECV in pf->state indicates
2725 * that a post reset rebuild is required before the
2726 * driver is operational again. This is set above.
2727 *
2728 * As this is the start of the reset/rebuild cycle, set
2729 * both to indicate that.
2730 */
2731 hw->reset_ongoing = true;
2732 }
2733 }
2734
2735 if (oicr & PFINT_OICR_HMC_ERR_M) {
2736 ena_mask &= ~PFINT_OICR_HMC_ERR_M;
2737 dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n",
2738 rd32(hw, PFHMC_ERRORINFO),
2739 rd32(hw, PFHMC_ERRORDATA));
2740 }
2741
2742 /* Report any remaining unexpected interrupts */
2743 oicr &= ena_mask;
2744 if (oicr) {
2745 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
2746 /* If a critical error is pending there is no choice but to
2747 * reset the device.
2748 */
2749 if (oicr & (PFINT_OICR_PE_CRITERR_M |
2750 PFINT_OICR_PCI_EXCEPTION_M |
2751 PFINT_OICR_ECC_ERR_M)) {
2752 set_bit(__ICE_PFR_REQ, pf->state);
2753 ice_service_task_schedule(pf);
2754 }
2755 }
2756 ret = IRQ_HANDLED;
2757
2758 ice_service_task_schedule(pf);
2759 ice_irq_dynamic_ena(hw, NULL, NULL);
2760
2761 return ret;
2762 }
2763
2764 /**
2765 * ice_dis_ctrlq_interrupts - disable control queue interrupts
2766 * @hw: pointer to HW structure
2767 */
ice_dis_ctrlq_interrupts(struct ice_hw * hw)2768 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
2769 {
2770 /* disable Admin queue Interrupt causes */
2771 wr32(hw, PFINT_FW_CTL,
2772 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
2773
2774 /* disable Mailbox queue Interrupt causes */
2775 wr32(hw, PFINT_MBX_CTL,
2776 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
2777
2778 /* disable Control queue Interrupt causes */
2779 wr32(hw, PFINT_OICR_CTL,
2780 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
2781
2782 ice_flush(hw);
2783 }
2784
2785 /**
2786 * ice_free_irq_msix_misc - Unroll misc vector setup
2787 * @pf: board private structure
2788 */
ice_free_irq_msix_misc(struct ice_pf * pf)2789 static void ice_free_irq_msix_misc(struct ice_pf *pf)
2790 {
2791 struct ice_hw *hw = &pf->hw;
2792
2793 ice_dis_ctrlq_interrupts(hw);
2794
2795 /* disable OICR interrupt */
2796 wr32(hw, PFINT_OICR_ENA, 0);
2797 ice_flush(hw);
2798
2799 if (pf->msix_entries) {
2800 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2801 devm_free_irq(ice_pf_to_dev(pf),
2802 pf->msix_entries[pf->oicr_idx].vector, pf);
2803 }
2804
2805 pf->num_avail_sw_msix += 1;
2806 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
2807 }
2808
2809 /**
2810 * ice_ena_ctrlq_interrupts - enable control queue interrupts
2811 * @hw: pointer to HW structure
2812 * @reg_idx: HW vector index to associate the control queue interrupts with
2813 */
ice_ena_ctrlq_interrupts(struct ice_hw * hw,u16 reg_idx)2814 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
2815 {
2816 u32 val;
2817
2818 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2819 PFINT_OICR_CTL_CAUSE_ENA_M);
2820 wr32(hw, PFINT_OICR_CTL, val);
2821
2822 /* enable Admin queue Interrupt causes */
2823 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2824 PFINT_FW_CTL_CAUSE_ENA_M);
2825 wr32(hw, PFINT_FW_CTL, val);
2826
2827 /* enable Mailbox queue Interrupt causes */
2828 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
2829 PFINT_MBX_CTL_CAUSE_ENA_M);
2830 wr32(hw, PFINT_MBX_CTL, val);
2831
2832 ice_flush(hw);
2833 }
2834
2835 /**
2836 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2837 * @pf: board private structure
2838 *
2839 * This sets up the handler for MSIX 0, which is used to manage the
2840 * non-queue interrupts, e.g. AdminQ and errors. This is not used
2841 * when in MSI or Legacy interrupt mode.
2842 */
ice_req_irq_msix_misc(struct ice_pf * pf)2843 static int ice_req_irq_msix_misc(struct ice_pf *pf)
2844 {
2845 struct device *dev = ice_pf_to_dev(pf);
2846 struct ice_hw *hw = &pf->hw;
2847 int oicr_idx, err = 0;
2848
2849 if (!pf->int_name[0])
2850 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2851 dev_driver_string(dev), dev_name(dev));
2852
2853 /* Do not request IRQ but do enable OICR interrupt since settings are
2854 * lost during reset. Note that this function is called only during
2855 * rebuild path and not while reset is in progress.
2856 */
2857 if (ice_is_reset_in_progress(pf->state))
2858 goto skip_req_irq;
2859
2860 /* reserve one vector in irq_tracker for misc interrupts */
2861 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2862 if (oicr_idx < 0)
2863 return oicr_idx;
2864
2865 pf->num_avail_sw_msix -= 1;
2866 pf->oicr_idx = (u16)oicr_idx;
2867
2868 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
2869 ice_misc_intr, 0, pf->int_name, pf);
2870 if (err) {
2871 dev_err(dev, "devm_request_irq for %s failed: %d\n",
2872 pf->int_name, err);
2873 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2874 pf->num_avail_sw_msix += 1;
2875 return err;
2876 }
2877
2878 skip_req_irq:
2879 ice_ena_misc_vector(pf);
2880
2881 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
2882 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
2883 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
2884
2885 ice_flush(hw);
2886 ice_irq_dynamic_ena(hw, NULL, NULL);
2887
2888 return 0;
2889 }
2890
2891 /**
2892 * ice_napi_add - register NAPI handler for the VSI
2893 * @vsi: VSI for which NAPI handler is to be registered
2894 *
2895 * This function is only called in the driver's load path. Registering the NAPI
2896 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2897 * reset/rebuild, etc.)
2898 */
ice_napi_add(struct ice_vsi * vsi)2899 static void ice_napi_add(struct ice_vsi *vsi)
2900 {
2901 int v_idx;
2902
2903 if (!vsi->netdev)
2904 return;
2905
2906 ice_for_each_q_vector(vsi, v_idx)
2907 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
2908 ice_napi_poll, NAPI_POLL_WEIGHT);
2909 }
2910
2911 /**
2912 * ice_set_ops - set netdev and ethtools ops for the given netdev
2913 * @netdev: netdev instance
2914 */
ice_set_ops(struct net_device * netdev)2915 static void ice_set_ops(struct net_device *netdev)
2916 {
2917 struct ice_pf *pf = ice_netdev_to_pf(netdev);
2918
2919 if (ice_is_safe_mode(pf)) {
2920 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
2921 ice_set_ethtool_safe_mode_ops(netdev);
2922 return;
2923 }
2924
2925 netdev->netdev_ops = &ice_netdev_ops;
2926 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
2927 ice_set_ethtool_ops(netdev);
2928 }
2929
2930 /**
2931 * ice_set_netdev_features - set features for the given netdev
2932 * @netdev: netdev instance
2933 */
ice_set_netdev_features(struct net_device * netdev)2934 static void ice_set_netdev_features(struct net_device *netdev)
2935 {
2936 struct ice_pf *pf = ice_netdev_to_pf(netdev);
2937 netdev_features_t csumo_features;
2938 netdev_features_t vlano_features;
2939 netdev_features_t dflt_features;
2940 netdev_features_t tso_features;
2941
2942 if (ice_is_safe_mode(pf)) {
2943 /* safe mode */
2944 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
2945 netdev->hw_features = netdev->features;
2946 return;
2947 }
2948
2949 dflt_features = NETIF_F_SG |
2950 NETIF_F_HIGHDMA |
2951 NETIF_F_NTUPLE |
2952 NETIF_F_RXHASH;
2953
2954 csumo_features = NETIF_F_RXCSUM |
2955 NETIF_F_IP_CSUM |
2956 NETIF_F_SCTP_CRC |
2957 NETIF_F_IPV6_CSUM;
2958
2959 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
2960 NETIF_F_HW_VLAN_CTAG_TX |
2961 NETIF_F_HW_VLAN_CTAG_RX;
2962
2963 tso_features = NETIF_F_TSO |
2964 NETIF_F_TSO_ECN |
2965 NETIF_F_TSO6 |
2966 NETIF_F_GSO_GRE |
2967 NETIF_F_GSO_UDP_TUNNEL |
2968 NETIF_F_GSO_GRE_CSUM |
2969 NETIF_F_GSO_UDP_TUNNEL_CSUM |
2970 NETIF_F_GSO_PARTIAL |
2971 NETIF_F_GSO_IPXIP4 |
2972 NETIF_F_GSO_IPXIP6 |
2973 NETIF_F_GSO_UDP_L4;
2974
2975 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
2976 NETIF_F_GSO_GRE_CSUM;
2977 /* set features that user can change */
2978 netdev->hw_features = dflt_features | csumo_features |
2979 vlano_features | tso_features;
2980
2981 /* add support for HW_CSUM on packets with MPLS header */
2982 netdev->mpls_features = NETIF_F_HW_CSUM;
2983
2984 /* enable features */
2985 netdev->features |= netdev->hw_features;
2986 /* encap and VLAN devices inherit default, csumo and tso features */
2987 netdev->hw_enc_features |= dflt_features | csumo_features |
2988 tso_features;
2989 netdev->vlan_features |= dflt_features | csumo_features |
2990 tso_features;
2991 }
2992
2993 /**
2994 * ice_cfg_netdev - Allocate, configure and register a netdev
2995 * @vsi: the VSI associated with the new netdev
2996 *
2997 * Returns 0 on success, negative value on failure
2998 */
ice_cfg_netdev(struct ice_vsi * vsi)2999 static int ice_cfg_netdev(struct ice_vsi *vsi)
3000 {
3001 struct ice_pf *pf = vsi->back;
3002 struct ice_netdev_priv *np;
3003 struct net_device *netdev;
3004 u8 mac_addr[ETH_ALEN];
3005 int err;
3006
3007 err = ice_devlink_create_port(vsi);
3008 if (err)
3009 return err;
3010
3011 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
3012 vsi->alloc_rxq);
3013 if (!netdev) {
3014 err = -ENOMEM;
3015 goto err_destroy_devlink_port;
3016 }
3017
3018 vsi->netdev = netdev;
3019 np = netdev_priv(netdev);
3020 np->vsi = vsi;
3021
3022 ice_set_netdev_features(netdev);
3023
3024 ice_set_ops(netdev);
3025
3026 if (vsi->type == ICE_VSI_PF) {
3027 SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf));
3028 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3029 ether_addr_copy(netdev->dev_addr, mac_addr);
3030 ether_addr_copy(netdev->perm_addr, mac_addr);
3031 }
3032
3033 netdev->priv_flags |= IFF_UNICAST_FLT;
3034
3035 /* Setup netdev TC information */
3036 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3037
3038 /* setup watchdog timeout value to be 5 second */
3039 netdev->watchdog_timeo = 5 * HZ;
3040
3041 netdev->min_mtu = ETH_MIN_MTU;
3042 netdev->max_mtu = ICE_MAX_MTU;
3043
3044 err = register_netdev(vsi->netdev);
3045 if (err)
3046 goto err_free_netdev;
3047
3048 devlink_port_type_eth_set(&vsi->devlink_port, vsi->netdev);
3049
3050 netif_carrier_off(vsi->netdev);
3051
3052 /* make sure transmit queues start off as stopped */
3053 netif_tx_stop_all_queues(vsi->netdev);
3054
3055 return 0;
3056
3057 err_free_netdev:
3058 free_netdev(vsi->netdev);
3059 vsi->netdev = NULL;
3060 err_destroy_devlink_port:
3061 ice_devlink_destroy_port(vsi);
3062 return err;
3063 }
3064
3065 /**
3066 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3067 * @lut: Lookup table
3068 * @rss_table_size: Lookup table size
3069 * @rss_size: Range of queue number for hashing
3070 */
ice_fill_rss_lut(u8 * lut,u16 rss_table_size,u16 rss_size)3071 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3072 {
3073 u16 i;
3074
3075 for (i = 0; i < rss_table_size; i++)
3076 lut[i] = i % rss_size;
3077 }
3078
3079 /**
3080 * ice_pf_vsi_setup - Set up a PF VSI
3081 * @pf: board private structure
3082 * @pi: pointer to the port_info instance
3083 *
3084 * Returns pointer to the successfully allocated VSI software struct
3085 * on success, otherwise returns NULL on failure.
3086 */
3087 static struct ice_vsi *
ice_pf_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3088 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3089 {
3090 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
3091 }
3092
3093 /**
3094 * ice_ctrl_vsi_setup - Set up a control VSI
3095 * @pf: board private structure
3096 * @pi: pointer to the port_info instance
3097 *
3098 * Returns pointer to the successfully allocated VSI software struct
3099 * on success, otherwise returns NULL on failure.
3100 */
3101 static struct ice_vsi *
ice_ctrl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3102 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3103 {
3104 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID);
3105 }
3106
3107 /**
3108 * ice_lb_vsi_setup - Set up a loopback VSI
3109 * @pf: board private structure
3110 * @pi: pointer to the port_info instance
3111 *
3112 * Returns pointer to the successfully allocated VSI software struct
3113 * on success, otherwise returns NULL on failure.
3114 */
3115 struct ice_vsi *
ice_lb_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3116 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3117 {
3118 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
3119 }
3120
3121 /**
3122 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3123 * @netdev: network interface to be adjusted
3124 * @proto: unused protocol
3125 * @vid: VLAN ID to be added
3126 *
3127 * net_device_ops implementation for adding VLAN IDs
3128 */
3129 static int
ice_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)3130 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
3131 u16 vid)
3132 {
3133 struct ice_netdev_priv *np = netdev_priv(netdev);
3134 struct ice_vsi *vsi = np->vsi;
3135 int ret;
3136
3137 if (vid >= VLAN_N_VID) {
3138 netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
3139 vid, VLAN_N_VID);
3140 return -EINVAL;
3141 }
3142
3143 if (vsi->info.pvid)
3144 return -EINVAL;
3145
3146 /* VLAN 0 is added by default during load/reset */
3147 if (!vid)
3148 return 0;
3149
3150 /* Enable VLAN pruning when a VLAN other than 0 is added */
3151 if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
3152 ret = ice_cfg_vlan_pruning(vsi, true, false);
3153 if (ret)
3154 return ret;
3155 }
3156
3157 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3158 * packets aren't pruned by the device's internal switch on Rx
3159 */
3160 ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
3161 if (!ret) {
3162 vsi->vlan_ena = true;
3163 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3164 }
3165
3166 return ret;
3167 }
3168
3169 /**
3170 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3171 * @netdev: network interface to be adjusted
3172 * @proto: unused protocol
3173 * @vid: VLAN ID to be removed
3174 *
3175 * net_device_ops implementation for removing VLAN IDs
3176 */
3177 static int
ice_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)3178 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
3179 u16 vid)
3180 {
3181 struct ice_netdev_priv *np = netdev_priv(netdev);
3182 struct ice_vsi *vsi = np->vsi;
3183 int ret;
3184
3185 if (vsi->info.pvid)
3186 return -EINVAL;
3187
3188 /* don't allow removal of VLAN 0 */
3189 if (!vid)
3190 return 0;
3191
3192 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN
3193 * information
3194 */
3195 ret = ice_vsi_kill_vlan(vsi, vid);
3196 if (ret)
3197 return ret;
3198
3199 /* Disable pruning when VLAN 0 is the only VLAN rule */
3200 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
3201 ret = ice_cfg_vlan_pruning(vsi, false, false);
3202
3203 vsi->vlan_ena = false;
3204 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3205 return ret;
3206 }
3207
3208 /**
3209 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3210 * @pf: board private structure
3211 *
3212 * Returns 0 on success, negative value on failure
3213 */
ice_setup_pf_sw(struct ice_pf * pf)3214 static int ice_setup_pf_sw(struct ice_pf *pf)
3215 {
3216 struct ice_vsi *vsi;
3217 int status = 0;
3218
3219 if (ice_is_reset_in_progress(pf->state))
3220 return -EBUSY;
3221
3222 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3223 if (!vsi)
3224 return -ENOMEM;
3225
3226 status = ice_cfg_netdev(vsi);
3227 if (status) {
3228 status = -ENODEV;
3229 goto unroll_vsi_setup;
3230 }
3231 /* netdev has to be configured before setting frame size */
3232 ice_vsi_cfg_frame_size(vsi);
3233
3234 /* Setup DCB netlink interface */
3235 ice_dcbnl_setup(vsi);
3236
3237 /* registering the NAPI handler requires both the queues and
3238 * netdev to be created, which are done in ice_pf_vsi_setup()
3239 * and ice_cfg_netdev() respectively
3240 */
3241 ice_napi_add(vsi);
3242
3243 status = ice_set_cpu_rx_rmap(vsi);
3244 if (status) {
3245 dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n",
3246 vsi->vsi_num, status);
3247 status = -EINVAL;
3248 goto unroll_napi_add;
3249 }
3250 status = ice_init_mac_fltr(pf);
3251 if (status)
3252 goto free_cpu_rx_map;
3253
3254 return status;
3255
3256 free_cpu_rx_map:
3257 ice_free_cpu_rx_rmap(vsi);
3258
3259 unroll_napi_add:
3260 if (vsi) {
3261 ice_napi_del(vsi);
3262 if (vsi->netdev) {
3263 if (vsi->netdev->reg_state == NETREG_REGISTERED)
3264 unregister_netdev(vsi->netdev);
3265 free_netdev(vsi->netdev);
3266 vsi->netdev = NULL;
3267 }
3268 }
3269
3270 unroll_vsi_setup:
3271 ice_vsi_release(vsi);
3272 return status;
3273 }
3274
3275 /**
3276 * ice_get_avail_q_count - Get count of queues in use
3277 * @pf_qmap: bitmap to get queue use count from
3278 * @lock: pointer to a mutex that protects access to pf_qmap
3279 * @size: size of the bitmap
3280 */
3281 static u16
ice_get_avail_q_count(unsigned long * pf_qmap,struct mutex * lock,u16 size)3282 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3283 {
3284 unsigned long bit;
3285 u16 count = 0;
3286
3287 mutex_lock(lock);
3288 for_each_clear_bit(bit, pf_qmap, size)
3289 count++;
3290 mutex_unlock(lock);
3291
3292 return count;
3293 }
3294
3295 /**
3296 * ice_get_avail_txq_count - Get count of Tx queues in use
3297 * @pf: pointer to an ice_pf instance
3298 */
ice_get_avail_txq_count(struct ice_pf * pf)3299 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3300 {
3301 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3302 pf->max_pf_txqs);
3303 }
3304
3305 /**
3306 * ice_get_avail_rxq_count - Get count of Rx queues in use
3307 * @pf: pointer to an ice_pf instance
3308 */
ice_get_avail_rxq_count(struct ice_pf * pf)3309 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3310 {
3311 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3312 pf->max_pf_rxqs);
3313 }
3314
3315 /**
3316 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3317 * @pf: board private structure to initialize
3318 */
ice_deinit_pf(struct ice_pf * pf)3319 static void ice_deinit_pf(struct ice_pf *pf)
3320 {
3321 ice_service_task_stop(pf);
3322 mutex_destroy(&pf->sw_mutex);
3323 mutex_destroy(&pf->tc_mutex);
3324 mutex_destroy(&pf->avail_q_mutex);
3325
3326 if (pf->avail_txqs) {
3327 bitmap_free(pf->avail_txqs);
3328 pf->avail_txqs = NULL;
3329 }
3330
3331 if (pf->avail_rxqs) {
3332 bitmap_free(pf->avail_rxqs);
3333 pf->avail_rxqs = NULL;
3334 }
3335 }
3336
3337 /**
3338 * ice_set_pf_caps - set PFs capability flags
3339 * @pf: pointer to the PF instance
3340 */
ice_set_pf_caps(struct ice_pf * pf)3341 static void ice_set_pf_caps(struct ice_pf *pf)
3342 {
3343 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3344
3345 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3346 if (func_caps->common_cap.dcb)
3347 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3348 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3349 if (func_caps->common_cap.sr_iov_1_1) {
3350 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3351 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
3352 ICE_MAX_VF_COUNT);
3353 }
3354 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3355 if (func_caps->common_cap.rss_table_size)
3356 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3357
3358 clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3359 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3360 u16 unused;
3361
3362 /* ctrl_vsi_idx will be set to a valid value when flow director
3363 * is setup by ice_init_fdir
3364 */
3365 pf->ctrl_vsi_idx = ICE_NO_VSI;
3366 set_bit(ICE_FLAG_FD_ENA, pf->flags);
3367 /* force guaranteed filter pool for PF */
3368 ice_alloc_fd_guar_item(&pf->hw, &unused,
3369 func_caps->fd_fltr_guar);
3370 /* force shared filter pool for PF */
3371 ice_alloc_fd_shrd_item(&pf->hw, &unused,
3372 func_caps->fd_fltr_best_effort);
3373 }
3374
3375 pf->max_pf_txqs = func_caps->common_cap.num_txq;
3376 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3377 }
3378
3379 /**
3380 * ice_init_pf - Initialize general software structures (struct ice_pf)
3381 * @pf: board private structure to initialize
3382 */
ice_init_pf(struct ice_pf * pf)3383 static int ice_init_pf(struct ice_pf *pf)
3384 {
3385 ice_set_pf_caps(pf);
3386
3387 mutex_init(&pf->sw_mutex);
3388 mutex_init(&pf->tc_mutex);
3389
3390 INIT_HLIST_HEAD(&pf->aq_wait_list);
3391 spin_lock_init(&pf->aq_wait_lock);
3392 init_waitqueue_head(&pf->aq_wait_queue);
3393
3394 /* setup service timer and periodic service task */
3395 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3396 pf->serv_tmr_period = HZ;
3397 INIT_WORK(&pf->serv_task, ice_service_task);
3398 clear_bit(__ICE_SERVICE_SCHED, pf->state);
3399
3400 mutex_init(&pf->avail_q_mutex);
3401 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3402 if (!pf->avail_txqs)
3403 return -ENOMEM;
3404
3405 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3406 if (!pf->avail_rxqs) {
3407 bitmap_free(pf->avail_txqs);
3408 pf->avail_txqs = NULL;
3409 return -ENOMEM;
3410 }
3411
3412 return 0;
3413 }
3414
3415 /**
3416 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3417 * @pf: board private structure
3418 *
3419 * compute the number of MSIX vectors required (v_budget) and request from
3420 * the OS. Return the number of vectors reserved or negative on failure
3421 */
ice_ena_msix_range(struct ice_pf * pf)3422 static int ice_ena_msix_range(struct ice_pf *pf)
3423 {
3424 struct device *dev = ice_pf_to_dev(pf);
3425 int v_left, v_actual, v_budget = 0;
3426 int needed, err, i;
3427
3428 v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3429
3430 /* reserve one vector for miscellaneous handler */
3431 needed = 1;
3432 if (v_left < needed)
3433 goto no_hw_vecs_left_err;
3434 v_budget += needed;
3435 v_left -= needed;
3436
3437 /* reserve vectors for LAN traffic */
3438 needed = min_t(int, num_online_cpus(), v_left);
3439 if (v_left < needed)
3440 goto no_hw_vecs_left_err;
3441 pf->num_lan_msix = needed;
3442 v_budget += needed;
3443 v_left -= needed;
3444
3445 /* reserve one vector for flow director */
3446 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3447 needed = ICE_FDIR_MSIX;
3448 if (v_left < needed)
3449 goto no_hw_vecs_left_err;
3450 v_budget += needed;
3451 v_left -= needed;
3452 }
3453
3454 pf->msix_entries = devm_kcalloc(dev, v_budget,
3455 sizeof(*pf->msix_entries), GFP_KERNEL);
3456
3457 if (!pf->msix_entries) {
3458 err = -ENOMEM;
3459 goto exit_err;
3460 }
3461
3462 for (i = 0; i < v_budget; i++)
3463 pf->msix_entries[i].entry = i;
3464
3465 /* actually reserve the vectors */
3466 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3467 ICE_MIN_MSIX, v_budget);
3468
3469 if (v_actual < 0) {
3470 dev_err(dev, "unable to reserve MSI-X vectors\n");
3471 err = v_actual;
3472 goto msix_err;
3473 }
3474
3475 if (v_actual < v_budget) {
3476 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
3477 v_budget, v_actual);
3478
3479 if (v_actual < ICE_MIN_MSIX) {
3480 /* error if we can't get minimum vectors */
3481 pci_disable_msix(pf->pdev);
3482 err = -ERANGE;
3483 goto msix_err;
3484 } else {
3485 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
3486 }
3487 }
3488
3489 return v_actual;
3490
3491 msix_err:
3492 devm_kfree(dev, pf->msix_entries);
3493 goto exit_err;
3494
3495 no_hw_vecs_left_err:
3496 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
3497 needed, v_left);
3498 err = -ERANGE;
3499 exit_err:
3500 pf->num_lan_msix = 0;
3501 return err;
3502 }
3503
3504 /**
3505 * ice_dis_msix - Disable MSI-X interrupt setup in OS
3506 * @pf: board private structure
3507 */
ice_dis_msix(struct ice_pf * pf)3508 static void ice_dis_msix(struct ice_pf *pf)
3509 {
3510 pci_disable_msix(pf->pdev);
3511 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
3512 pf->msix_entries = NULL;
3513 }
3514
3515 /**
3516 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3517 * @pf: board private structure
3518 */
ice_clear_interrupt_scheme(struct ice_pf * pf)3519 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3520 {
3521 ice_dis_msix(pf);
3522
3523 if (pf->irq_tracker) {
3524 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
3525 pf->irq_tracker = NULL;
3526 }
3527 }
3528
3529 /**
3530 * ice_init_interrupt_scheme - Determine proper interrupt scheme
3531 * @pf: board private structure to initialize
3532 */
ice_init_interrupt_scheme(struct ice_pf * pf)3533 static int ice_init_interrupt_scheme(struct ice_pf *pf)
3534 {
3535 int vectors;
3536
3537 vectors = ice_ena_msix_range(pf);
3538
3539 if (vectors < 0)
3540 return vectors;
3541
3542 /* set up vector assignment tracking */
3543 pf->irq_tracker =
3544 devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) +
3545 (sizeof(u16) * vectors), GFP_KERNEL);
3546 if (!pf->irq_tracker) {
3547 ice_dis_msix(pf);
3548 return -ENOMEM;
3549 }
3550
3551 /* populate SW interrupts pool with number of OS granted IRQs. */
3552 pf->num_avail_sw_msix = (u16)vectors;
3553 pf->irq_tracker->num_entries = (u16)vectors;
3554 pf->irq_tracker->end = pf->irq_tracker->num_entries;
3555
3556 return 0;
3557 }
3558
3559 /**
3560 * ice_is_wol_supported - check if WoL is supported
3561 * @hw: pointer to hardware info
3562 *
3563 * Check if WoL is supported based on the HW configuration.
3564 * Returns true if NVM supports and enables WoL for this port, false otherwise
3565 */
ice_is_wol_supported(struct ice_hw * hw)3566 bool ice_is_wol_supported(struct ice_hw *hw)
3567 {
3568 u16 wol_ctrl;
3569
3570 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3571 * word) indicates WoL is not supported on the corresponding PF ID.
3572 */
3573 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3574 return false;
3575
3576 return !(BIT(hw->port_info->lport) & wol_ctrl);
3577 }
3578
3579 /**
3580 * ice_vsi_recfg_qs - Change the number of queues on a VSI
3581 * @vsi: VSI being changed
3582 * @new_rx: new number of Rx queues
3583 * @new_tx: new number of Tx queues
3584 *
3585 * Only change the number of queues if new_tx, or new_rx is non-0.
3586 *
3587 * Returns 0 on success.
3588 */
ice_vsi_recfg_qs(struct ice_vsi * vsi,int new_rx,int new_tx)3589 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
3590 {
3591 struct ice_pf *pf = vsi->back;
3592 int err = 0, timeout = 50;
3593
3594 if (!new_rx && !new_tx)
3595 return -EINVAL;
3596
3597 while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) {
3598 timeout--;
3599 if (!timeout)
3600 return -EBUSY;
3601 usleep_range(1000, 2000);
3602 }
3603
3604 if (new_tx)
3605 vsi->req_txq = (u16)new_tx;
3606 if (new_rx)
3607 vsi->req_rxq = (u16)new_rx;
3608
3609 /* set for the next time the netdev is started */
3610 if (!netif_running(vsi->netdev)) {
3611 ice_vsi_rebuild(vsi, false);
3612 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3613 goto done;
3614 }
3615
3616 ice_vsi_close(vsi);
3617 ice_vsi_rebuild(vsi, false);
3618 ice_pf_dcb_recfg(pf);
3619 ice_vsi_open(vsi);
3620 done:
3621 clear_bit(__ICE_CFG_BUSY, pf->state);
3622 return err;
3623 }
3624
3625 /**
3626 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
3627 * @pf: PF to configure
3628 *
3629 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
3630 * VSI can still Tx/Rx VLAN tagged packets.
3631 */
ice_set_safe_mode_vlan_cfg(struct ice_pf * pf)3632 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
3633 {
3634 struct ice_vsi *vsi = ice_get_main_vsi(pf);
3635 struct ice_vsi_ctx *ctxt;
3636 enum ice_status status;
3637 struct ice_hw *hw;
3638
3639 if (!vsi)
3640 return;
3641
3642 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
3643 if (!ctxt)
3644 return;
3645
3646 hw = &pf->hw;
3647 ctxt->info = vsi->info;
3648
3649 ctxt->info.valid_sections =
3650 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
3651 ICE_AQ_VSI_PROP_SECURITY_VALID |
3652 ICE_AQ_VSI_PROP_SW_VALID);
3653
3654 /* disable VLAN anti-spoof */
3655 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3656 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3657
3658 /* disable VLAN pruning and keep all other settings */
3659 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
3660
3661 /* allow all VLANs on Tx and don't strip on Rx */
3662 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL |
3663 ICE_AQ_VSI_VLAN_EMOD_NOTHING;
3664
3665 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
3666 if (status) {
3667 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n",
3668 ice_stat_str(status),
3669 ice_aq_str(hw->adminq.sq_last_status));
3670 } else {
3671 vsi->info.sec_flags = ctxt->info.sec_flags;
3672 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
3673 vsi->info.vlan_flags = ctxt->info.vlan_flags;
3674 }
3675
3676 kfree(ctxt);
3677 }
3678
3679 /**
3680 * ice_log_pkg_init - log result of DDP package load
3681 * @hw: pointer to hardware info
3682 * @status: status of package load
3683 */
3684 static void
ice_log_pkg_init(struct ice_hw * hw,enum ice_status * status)3685 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
3686 {
3687 struct ice_pf *pf = (struct ice_pf *)hw->back;
3688 struct device *dev = ice_pf_to_dev(pf);
3689
3690 switch (*status) {
3691 case ICE_SUCCESS:
3692 /* The package download AdminQ command returned success because
3693 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
3694 * already a package loaded on the device.
3695 */
3696 if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
3697 hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
3698 hw->pkg_ver.update == hw->active_pkg_ver.update &&
3699 hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
3700 !memcmp(hw->pkg_name, hw->active_pkg_name,
3701 sizeof(hw->pkg_name))) {
3702 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
3703 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
3704 hw->active_pkg_name,
3705 hw->active_pkg_ver.major,
3706 hw->active_pkg_ver.minor,
3707 hw->active_pkg_ver.update,
3708 hw->active_pkg_ver.draft);
3709 else
3710 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
3711 hw->active_pkg_name,
3712 hw->active_pkg_ver.major,
3713 hw->active_pkg_ver.minor,
3714 hw->active_pkg_ver.update,
3715 hw->active_pkg_ver.draft);
3716 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
3717 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
3718 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
3719 hw->active_pkg_name,
3720 hw->active_pkg_ver.major,
3721 hw->active_pkg_ver.minor,
3722 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3723 *status = ICE_ERR_NOT_SUPPORTED;
3724 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3725 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
3726 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
3727 hw->active_pkg_name,
3728 hw->active_pkg_ver.major,
3729 hw->active_pkg_ver.minor,
3730 hw->active_pkg_ver.update,
3731 hw->active_pkg_ver.draft,
3732 hw->pkg_name,
3733 hw->pkg_ver.major,
3734 hw->pkg_ver.minor,
3735 hw->pkg_ver.update,
3736 hw->pkg_ver.draft);
3737 } else {
3738 dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n");
3739 *status = ICE_ERR_NOT_SUPPORTED;
3740 }
3741 break;
3742 case ICE_ERR_FW_DDP_MISMATCH:
3743 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
3744 break;
3745 case ICE_ERR_BUF_TOO_SHORT:
3746 case ICE_ERR_CFG:
3747 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
3748 break;
3749 case ICE_ERR_NOT_SUPPORTED:
3750 /* Package File version not supported */
3751 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
3752 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3753 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
3754 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
3755 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
3756 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3757 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
3758 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
3759 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3760 break;
3761 case ICE_ERR_AQ_ERROR:
3762 switch (hw->pkg_dwnld_status) {
3763 case ICE_AQ_RC_ENOSEC:
3764 case ICE_AQ_RC_EBADSIG:
3765 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
3766 return;
3767 case ICE_AQ_RC_ESVN:
3768 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
3769 return;
3770 case ICE_AQ_RC_EBADMAN:
3771 case ICE_AQ_RC_EBADBUF:
3772 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
3773 /* poll for reset to complete */
3774 if (ice_check_reset(hw))
3775 dev_err(dev, "Error resetting device. Please reload the driver\n");
3776 return;
3777 default:
3778 break;
3779 }
3780 fallthrough;
3781 default:
3782 dev_err(dev, "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n",
3783 *status);
3784 break;
3785 }
3786 }
3787
3788 /**
3789 * ice_load_pkg - load/reload the DDP Package file
3790 * @firmware: firmware structure when firmware requested or NULL for reload
3791 * @pf: pointer to the PF instance
3792 *
3793 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
3794 * initialize HW tables.
3795 */
3796 static void
ice_load_pkg(const struct firmware * firmware,struct ice_pf * pf)3797 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
3798 {
3799 enum ice_status status = ICE_ERR_PARAM;
3800 struct device *dev = ice_pf_to_dev(pf);
3801 struct ice_hw *hw = &pf->hw;
3802
3803 /* Load DDP Package */
3804 if (firmware && !hw->pkg_copy) {
3805 status = ice_copy_and_init_pkg(hw, firmware->data,
3806 firmware->size);
3807 ice_log_pkg_init(hw, &status);
3808 } else if (!firmware && hw->pkg_copy) {
3809 /* Reload package during rebuild after CORER/GLOBR reset */
3810 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
3811 ice_log_pkg_init(hw, &status);
3812 } else {
3813 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
3814 }
3815
3816 if (status) {
3817 /* Safe Mode */
3818 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3819 return;
3820 }
3821
3822 /* Successful download package is the precondition for advanced
3823 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
3824 */
3825 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3826 }
3827
3828 /**
3829 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
3830 * @pf: pointer to the PF structure
3831 *
3832 * There is no error returned here because the driver should be able to handle
3833 * 128 Byte cache lines, so we only print a warning in case issues are seen,
3834 * specifically with Tx.
3835 */
ice_verify_cacheline_size(struct ice_pf * pf)3836 static void ice_verify_cacheline_size(struct ice_pf *pf)
3837 {
3838 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
3839 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
3840 ICE_CACHE_LINE_BYTES);
3841 }
3842
3843 /**
3844 * ice_send_version - update firmware with driver version
3845 * @pf: PF struct
3846 *
3847 * Returns ICE_SUCCESS on success, else error code
3848 */
ice_send_version(struct ice_pf * pf)3849 static enum ice_status ice_send_version(struct ice_pf *pf)
3850 {
3851 struct ice_driver_ver dv;
3852
3853 dv.major_ver = 0xff;
3854 dv.minor_ver = 0xff;
3855 dv.build_ver = 0xff;
3856 dv.subbuild_ver = 0;
3857 strscpy((char *)dv.driver_string, UTS_RELEASE,
3858 sizeof(dv.driver_string));
3859 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
3860 }
3861
3862 /**
3863 * ice_init_fdir - Initialize flow director VSI and configuration
3864 * @pf: pointer to the PF instance
3865 *
3866 * returns 0 on success, negative on error
3867 */
ice_init_fdir(struct ice_pf * pf)3868 static int ice_init_fdir(struct ice_pf *pf)
3869 {
3870 struct device *dev = ice_pf_to_dev(pf);
3871 struct ice_vsi *ctrl_vsi;
3872 int err;
3873
3874 /* Side Band Flow Director needs to have a control VSI.
3875 * Allocate it and store it in the PF.
3876 */
3877 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
3878 if (!ctrl_vsi) {
3879 dev_dbg(dev, "could not create control VSI\n");
3880 return -ENOMEM;
3881 }
3882
3883 err = ice_vsi_open_ctrl(ctrl_vsi);
3884 if (err) {
3885 dev_dbg(dev, "could not open control VSI\n");
3886 goto err_vsi_open;
3887 }
3888
3889 mutex_init(&pf->hw.fdir_fltr_lock);
3890
3891 err = ice_fdir_create_dflt_rules(pf);
3892 if (err)
3893 goto err_fdir_rule;
3894
3895 return 0;
3896
3897 err_fdir_rule:
3898 ice_fdir_release_flows(&pf->hw);
3899 ice_vsi_close(ctrl_vsi);
3900 err_vsi_open:
3901 ice_vsi_release(ctrl_vsi);
3902 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
3903 pf->vsi[pf->ctrl_vsi_idx] = NULL;
3904 pf->ctrl_vsi_idx = ICE_NO_VSI;
3905 }
3906 return err;
3907 }
3908
3909 /**
3910 * ice_get_opt_fw_name - return optional firmware file name or NULL
3911 * @pf: pointer to the PF instance
3912 */
ice_get_opt_fw_name(struct ice_pf * pf)3913 static char *ice_get_opt_fw_name(struct ice_pf *pf)
3914 {
3915 /* Optional firmware name same as default with additional dash
3916 * followed by a EUI-64 identifier (PCIe Device Serial Number)
3917 */
3918 struct pci_dev *pdev = pf->pdev;
3919 char *opt_fw_filename;
3920 u64 dsn;
3921
3922 /* Determine the name of the optional file using the DSN (two
3923 * dwords following the start of the DSN Capability).
3924 */
3925 dsn = pci_get_dsn(pdev);
3926 if (!dsn)
3927 return NULL;
3928
3929 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
3930 if (!opt_fw_filename)
3931 return NULL;
3932
3933 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
3934 ICE_DDP_PKG_PATH, dsn);
3935
3936 return opt_fw_filename;
3937 }
3938
3939 /**
3940 * ice_request_fw - Device initialization routine
3941 * @pf: pointer to the PF instance
3942 */
ice_request_fw(struct ice_pf * pf)3943 static void ice_request_fw(struct ice_pf *pf)
3944 {
3945 char *opt_fw_filename = ice_get_opt_fw_name(pf);
3946 const struct firmware *firmware = NULL;
3947 struct device *dev = ice_pf_to_dev(pf);
3948 int err = 0;
3949
3950 /* optional device-specific DDP (if present) overrides the default DDP
3951 * package file. kernel logs a debug message if the file doesn't exist,
3952 * and warning messages for other errors.
3953 */
3954 if (opt_fw_filename) {
3955 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
3956 if (err) {
3957 kfree(opt_fw_filename);
3958 goto dflt_pkg_load;
3959 }
3960
3961 /* request for firmware was successful. Download to device */
3962 ice_load_pkg(firmware, pf);
3963 kfree(opt_fw_filename);
3964 release_firmware(firmware);
3965 return;
3966 }
3967
3968 dflt_pkg_load:
3969 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
3970 if (err) {
3971 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
3972 return;
3973 }
3974
3975 /* request for firmware was successful. Download to device */
3976 ice_load_pkg(firmware, pf);
3977 release_firmware(firmware);
3978 }
3979
3980 /**
3981 * ice_print_wake_reason - show the wake up cause in the log
3982 * @pf: pointer to the PF struct
3983 */
ice_print_wake_reason(struct ice_pf * pf)3984 static void ice_print_wake_reason(struct ice_pf *pf)
3985 {
3986 u32 wus = pf->wakeup_reason;
3987 const char *wake_str;
3988
3989 /* if no wake event, nothing to print */
3990 if (!wus)
3991 return;
3992
3993 if (wus & PFPM_WUS_LNKC_M)
3994 wake_str = "Link\n";
3995 else if (wus & PFPM_WUS_MAG_M)
3996 wake_str = "Magic Packet\n";
3997 else if (wus & PFPM_WUS_MNG_M)
3998 wake_str = "Management\n";
3999 else if (wus & PFPM_WUS_FW_RST_WK_M)
4000 wake_str = "Firmware Reset\n";
4001 else
4002 wake_str = "Unknown\n";
4003
4004 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4005 }
4006
4007 /**
4008 * ice_probe - Device initialization routine
4009 * @pdev: PCI device information struct
4010 * @ent: entry in ice_pci_tbl
4011 *
4012 * Returns 0 on success, negative on failure
4013 */
4014 static int
ice_probe(struct pci_dev * pdev,const struct pci_device_id __always_unused * ent)4015 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
4016 {
4017 struct device *dev = &pdev->dev;
4018 struct ice_pf *pf;
4019 struct ice_hw *hw;
4020 int i, err;
4021
4022 if (pdev->is_virtfn) {
4023 dev_err(dev, "can't probe a virtual function\n");
4024 return -EINVAL;
4025 }
4026
4027 /* this driver uses devres, see
4028 * Documentation/driver-api/driver-model/devres.rst
4029 */
4030 err = pcim_enable_device(pdev);
4031 if (err)
4032 return err;
4033
4034 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
4035 if (err) {
4036 dev_err(dev, "BAR0 I/O map error %d\n", err);
4037 return err;
4038 }
4039
4040 pf = ice_allocate_pf(dev);
4041 if (!pf)
4042 return -ENOMEM;
4043
4044 /* set up for high or low DMA */
4045 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4046 if (err)
4047 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
4048 if (err) {
4049 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4050 return err;
4051 }
4052
4053 pci_enable_pcie_error_reporting(pdev);
4054 pci_set_master(pdev);
4055
4056 pf->pdev = pdev;
4057 pci_set_drvdata(pdev, pf);
4058 set_bit(__ICE_DOWN, pf->state);
4059 /* Disable service task until DOWN bit is cleared */
4060 set_bit(__ICE_SERVICE_DIS, pf->state);
4061
4062 hw = &pf->hw;
4063 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4064 pci_save_state(pdev);
4065
4066 hw->back = pf;
4067 hw->vendor_id = pdev->vendor;
4068 hw->device_id = pdev->device;
4069 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4070 hw->subsystem_vendor_id = pdev->subsystem_vendor;
4071 hw->subsystem_device_id = pdev->subsystem_device;
4072 hw->bus.device = PCI_SLOT(pdev->devfn);
4073 hw->bus.func = PCI_FUNC(pdev->devfn);
4074 ice_set_ctrlq_len(hw);
4075
4076 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4077
4078 err = ice_devlink_register(pf);
4079 if (err) {
4080 dev_err(dev, "ice_devlink_register failed: %d\n", err);
4081 goto err_exit_unroll;
4082 }
4083
4084 #ifndef CONFIG_DYNAMIC_DEBUG
4085 if (debug < -1)
4086 hw->debug_mask = debug;
4087 #endif
4088
4089 err = ice_init_hw(hw);
4090 if (err) {
4091 dev_err(dev, "ice_init_hw failed: %d\n", err);
4092 err = -EIO;
4093 goto err_exit_unroll;
4094 }
4095
4096 ice_request_fw(pf);
4097
4098 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4099 * set in pf->state, which will cause ice_is_safe_mode to return
4100 * true
4101 */
4102 if (ice_is_safe_mode(pf)) {
4103 dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n");
4104 /* we already got function/device capabilities but these don't
4105 * reflect what the driver needs to do in safe mode. Instead of
4106 * adding conditional logic everywhere to ignore these
4107 * device/function capabilities, override them.
4108 */
4109 ice_set_safe_mode_caps(hw);
4110 }
4111
4112 err = ice_init_pf(pf);
4113 if (err) {
4114 dev_err(dev, "ice_init_pf failed: %d\n", err);
4115 goto err_init_pf_unroll;
4116 }
4117
4118 ice_devlink_init_regions(pf);
4119
4120 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4121 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4122 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4123 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4124 i = 0;
4125 if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4126 pf->hw.udp_tunnel_nic.tables[i].n_entries =
4127 pf->hw.tnl.valid_count[TNL_VXLAN];
4128 pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4129 UDP_TUNNEL_TYPE_VXLAN;
4130 i++;
4131 }
4132 if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4133 pf->hw.udp_tunnel_nic.tables[i].n_entries =
4134 pf->hw.tnl.valid_count[TNL_GENEVE];
4135 pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4136 UDP_TUNNEL_TYPE_GENEVE;
4137 i++;
4138 }
4139
4140 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4141 if (!pf->num_alloc_vsi) {
4142 err = -EIO;
4143 goto err_init_pf_unroll;
4144 }
4145 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4146 dev_warn(&pf->pdev->dev,
4147 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4148 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4149 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4150 }
4151
4152 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4153 GFP_KERNEL);
4154 if (!pf->vsi) {
4155 err = -ENOMEM;
4156 goto err_init_pf_unroll;
4157 }
4158
4159 err = ice_init_interrupt_scheme(pf);
4160 if (err) {
4161 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4162 err = -EIO;
4163 goto err_init_vsi_unroll;
4164 }
4165
4166 /* In case of MSIX we are going to setup the misc vector right here
4167 * to handle admin queue events etc. In case of legacy and MSI
4168 * the misc functionality and queue processing is combined in
4169 * the same vector and that gets setup at open.
4170 */
4171 err = ice_req_irq_msix_misc(pf);
4172 if (err) {
4173 dev_err(dev, "setup of misc vector failed: %d\n", err);
4174 goto err_init_interrupt_unroll;
4175 }
4176
4177 /* create switch struct for the switch element created by FW on boot */
4178 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4179 if (!pf->first_sw) {
4180 err = -ENOMEM;
4181 goto err_msix_misc_unroll;
4182 }
4183
4184 if (hw->evb_veb)
4185 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4186 else
4187 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4188
4189 pf->first_sw->pf = pf;
4190
4191 /* record the sw_id available for later use */
4192 pf->first_sw->sw_id = hw->port_info->sw_id;
4193
4194 err = ice_setup_pf_sw(pf);
4195 if (err) {
4196 dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4197 goto err_alloc_sw_unroll;
4198 }
4199
4200 clear_bit(__ICE_SERVICE_DIS, pf->state);
4201
4202 /* tell the firmware we are up */
4203 err = ice_send_version(pf);
4204 if (err) {
4205 dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4206 UTS_RELEASE, err);
4207 goto err_send_version_unroll;
4208 }
4209
4210 /* since everything is good, start the service timer */
4211 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4212
4213 err = ice_init_link_events(pf->hw.port_info);
4214 if (err) {
4215 dev_err(dev, "ice_init_link_events failed: %d\n", err);
4216 goto err_send_version_unroll;
4217 }
4218
4219 /* not a fatal error if this fails */
4220 err = ice_init_nvm_phy_type(pf->hw.port_info);
4221 if (err)
4222 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4223
4224 /* not a fatal error if this fails */
4225 err = ice_update_link_info(pf->hw.port_info);
4226 if (err)
4227 dev_err(dev, "ice_update_link_info failed: %d\n", err);
4228
4229 ice_init_link_dflt_override(pf->hw.port_info);
4230
4231 /* if media available, initialize PHY settings */
4232 if (pf->hw.port_info->phy.link_info.link_info &
4233 ICE_AQ_MEDIA_AVAILABLE) {
4234 /* not a fatal error if this fails */
4235 err = ice_init_phy_user_cfg(pf->hw.port_info);
4236 if (err)
4237 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4238
4239 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4240 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4241
4242 if (vsi)
4243 ice_configure_phy(vsi);
4244 }
4245 } else {
4246 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4247 }
4248
4249 ice_verify_cacheline_size(pf);
4250
4251 /* Save wakeup reason register for later use */
4252 pf->wakeup_reason = rd32(hw, PFPM_WUS);
4253
4254 /* check for a power management event */
4255 ice_print_wake_reason(pf);
4256
4257 /* clear wake status, all bits */
4258 wr32(hw, PFPM_WUS, U32_MAX);
4259
4260 /* Disable WoL at init, wait for user to enable */
4261 device_set_wakeup_enable(dev, false);
4262
4263 if (ice_is_safe_mode(pf)) {
4264 ice_set_safe_mode_vlan_cfg(pf);
4265 goto probe_done;
4266 }
4267
4268 /* initialize DDP driven features */
4269
4270 /* Note: Flow director init failure is non-fatal to load */
4271 if (ice_init_fdir(pf))
4272 dev_err(dev, "could not initialize flow director\n");
4273
4274 /* Note: DCB init failure is non-fatal to load */
4275 if (ice_init_pf_dcb(pf, false)) {
4276 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4277 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4278 } else {
4279 ice_cfg_lldp_mib_change(&pf->hw, true);
4280 }
4281
4282 /* print PCI link speed and width */
4283 pcie_print_link_status(pf->pdev);
4284
4285 probe_done:
4286 /* ready to go, so clear down state bit */
4287 clear_bit(__ICE_DOWN, pf->state);
4288 return 0;
4289
4290 err_send_version_unroll:
4291 ice_vsi_release_all(pf);
4292 err_alloc_sw_unroll:
4293 set_bit(__ICE_SERVICE_DIS, pf->state);
4294 set_bit(__ICE_DOWN, pf->state);
4295 devm_kfree(dev, pf->first_sw);
4296 err_msix_misc_unroll:
4297 ice_free_irq_msix_misc(pf);
4298 err_init_interrupt_unroll:
4299 ice_clear_interrupt_scheme(pf);
4300 err_init_vsi_unroll:
4301 devm_kfree(dev, pf->vsi);
4302 err_init_pf_unroll:
4303 ice_deinit_pf(pf);
4304 ice_devlink_destroy_regions(pf);
4305 ice_deinit_hw(hw);
4306 err_exit_unroll:
4307 ice_devlink_unregister(pf);
4308 pci_disable_pcie_error_reporting(pdev);
4309 pci_disable_device(pdev);
4310 return err;
4311 }
4312
4313 /**
4314 * ice_set_wake - enable or disable Wake on LAN
4315 * @pf: pointer to the PF struct
4316 *
4317 * Simple helper for WoL control
4318 */
ice_set_wake(struct ice_pf * pf)4319 static void ice_set_wake(struct ice_pf *pf)
4320 {
4321 struct ice_hw *hw = &pf->hw;
4322 bool wol = pf->wol_ena;
4323
4324 /* clear wake state, otherwise new wake events won't fire */
4325 wr32(hw, PFPM_WUS, U32_MAX);
4326
4327 /* enable / disable APM wake up, no RMW needed */
4328 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4329
4330 /* set magic packet filter enabled */
4331 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4332 }
4333
4334 /**
4335 * ice_setup_magic_mc_wake - setup device to wake on multicast magic packet
4336 * @pf: pointer to the PF struct
4337 *
4338 * Issue firmware command to enable multicast magic wake, making
4339 * sure that any locally administered address (LAA) is used for
4340 * wake, and that PF reset doesn't undo the LAA.
4341 */
ice_setup_mc_magic_wake(struct ice_pf * pf)4342 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4343 {
4344 struct device *dev = ice_pf_to_dev(pf);
4345 struct ice_hw *hw = &pf->hw;
4346 enum ice_status status;
4347 u8 mac_addr[ETH_ALEN];
4348 struct ice_vsi *vsi;
4349 u8 flags;
4350
4351 if (!pf->wol_ena)
4352 return;
4353
4354 vsi = ice_get_main_vsi(pf);
4355 if (!vsi)
4356 return;
4357
4358 /* Get current MAC address in case it's an LAA */
4359 if (vsi->netdev)
4360 ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4361 else
4362 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4363
4364 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4365 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4366 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4367
4368 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4369 if (status)
4370 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n",
4371 ice_stat_str(status),
4372 ice_aq_str(hw->adminq.sq_last_status));
4373 }
4374
4375 /**
4376 * ice_remove - Device removal routine
4377 * @pdev: PCI device information struct
4378 */
ice_remove(struct pci_dev * pdev)4379 static void ice_remove(struct pci_dev *pdev)
4380 {
4381 struct ice_pf *pf = pci_get_drvdata(pdev);
4382 int i;
4383
4384 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4385 if (!ice_is_reset_in_progress(pf->state))
4386 break;
4387 msleep(100);
4388 }
4389
4390 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4391 set_bit(__ICE_VF_RESETS_DISABLED, pf->state);
4392 ice_free_vfs(pf);
4393 }
4394
4395 set_bit(__ICE_DOWN, pf->state);
4396 ice_service_task_stop(pf);
4397
4398 ice_aq_cancel_waiting_tasks(pf);
4399
4400 mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4401 if (!ice_is_safe_mode(pf))
4402 ice_remove_arfs(pf);
4403 ice_setup_mc_magic_wake(pf);
4404 ice_vsi_release_all(pf);
4405 ice_set_wake(pf);
4406 ice_free_irq_msix_misc(pf);
4407 ice_for_each_vsi(pf, i) {
4408 if (!pf->vsi[i])
4409 continue;
4410 ice_vsi_free_q_vectors(pf->vsi[i]);
4411 }
4412 ice_deinit_pf(pf);
4413 ice_devlink_destroy_regions(pf);
4414 ice_deinit_hw(&pf->hw);
4415 ice_devlink_unregister(pf);
4416
4417 /* Issue a PFR as part of the prescribed driver unload flow. Do not
4418 * do it via ice_schedule_reset() since there is no need to rebuild
4419 * and the service task is already stopped.
4420 */
4421 ice_reset(&pf->hw, ICE_RESET_PFR);
4422 pci_wait_for_pending_transaction(pdev);
4423 ice_clear_interrupt_scheme(pf);
4424 pci_disable_pcie_error_reporting(pdev);
4425 pci_disable_device(pdev);
4426 }
4427
4428 /**
4429 * ice_shutdown - PCI callback for shutting down device
4430 * @pdev: PCI device information struct
4431 */
ice_shutdown(struct pci_dev * pdev)4432 static void ice_shutdown(struct pci_dev *pdev)
4433 {
4434 struct ice_pf *pf = pci_get_drvdata(pdev);
4435
4436 ice_remove(pdev);
4437
4438 if (system_state == SYSTEM_POWER_OFF) {
4439 pci_wake_from_d3(pdev, pf->wol_ena);
4440 pci_set_power_state(pdev, PCI_D3hot);
4441 }
4442 }
4443
4444 #ifdef CONFIG_PM
4445 /**
4446 * ice_prepare_for_shutdown - prep for PCI shutdown
4447 * @pf: board private structure
4448 *
4449 * Inform or close all dependent features in prep for PCI device shutdown
4450 */
ice_prepare_for_shutdown(struct ice_pf * pf)4451 static void ice_prepare_for_shutdown(struct ice_pf *pf)
4452 {
4453 struct ice_hw *hw = &pf->hw;
4454 u32 v;
4455
4456 /* Notify VFs of impending reset */
4457 if (ice_check_sq_alive(hw, &hw->mailboxq))
4458 ice_vc_notify_reset(pf);
4459
4460 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
4461
4462 /* disable the VSIs and their queues that are not already DOWN */
4463 ice_pf_dis_all_vsi(pf, false);
4464
4465 ice_for_each_vsi(pf, v)
4466 if (pf->vsi[v])
4467 pf->vsi[v]->vsi_num = 0;
4468
4469 ice_shutdown_all_ctrlq(hw);
4470 }
4471
4472 /**
4473 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
4474 * @pf: board private structure to reinitialize
4475 *
4476 * This routine reinitialize interrupt scheme that was cleared during
4477 * power management suspend callback.
4478 *
4479 * This should be called during resume routine to re-allocate the q_vectors
4480 * and reacquire interrupts.
4481 */
ice_reinit_interrupt_scheme(struct ice_pf * pf)4482 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
4483 {
4484 struct device *dev = ice_pf_to_dev(pf);
4485 int ret, v;
4486
4487 /* Since we clear MSIX flag during suspend, we need to
4488 * set it back during resume...
4489 */
4490
4491 ret = ice_init_interrupt_scheme(pf);
4492 if (ret) {
4493 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
4494 return ret;
4495 }
4496
4497 /* Remap vectors and rings, after successful re-init interrupts */
4498 ice_for_each_vsi(pf, v) {
4499 if (!pf->vsi[v])
4500 continue;
4501
4502 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
4503 if (ret)
4504 goto err_reinit;
4505 ice_vsi_map_rings_to_vectors(pf->vsi[v]);
4506 }
4507
4508 ret = ice_req_irq_msix_misc(pf);
4509 if (ret) {
4510 dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
4511 ret);
4512 goto err_reinit;
4513 }
4514
4515 return 0;
4516
4517 err_reinit:
4518 while (v--)
4519 if (pf->vsi[v])
4520 ice_vsi_free_q_vectors(pf->vsi[v]);
4521
4522 return ret;
4523 }
4524
4525 /**
4526 * ice_suspend
4527 * @dev: generic device information structure
4528 *
4529 * Power Management callback to quiesce the device and prepare
4530 * for D3 transition.
4531 */
ice_suspend(struct device * dev)4532 static int __maybe_unused ice_suspend(struct device *dev)
4533 {
4534 struct pci_dev *pdev = to_pci_dev(dev);
4535 struct ice_pf *pf;
4536 int disabled, v;
4537
4538 pf = pci_get_drvdata(pdev);
4539
4540 if (!ice_pf_state_is_nominal(pf)) {
4541 dev_err(dev, "Device is not ready, no need to suspend it\n");
4542 return -EBUSY;
4543 }
4544
4545 /* Stop watchdog tasks until resume completion.
4546 * Even though it is most likely that the service task is
4547 * disabled if the device is suspended or down, the service task's
4548 * state is controlled by a different state bit, and we should
4549 * store and honor whatever state that bit is in at this point.
4550 */
4551 disabled = ice_service_task_stop(pf);
4552
4553 /* Already suspended?, then there is nothing to do */
4554 if (test_and_set_bit(__ICE_SUSPENDED, pf->state)) {
4555 if (!disabled)
4556 ice_service_task_restart(pf);
4557 return 0;
4558 }
4559
4560 if (test_bit(__ICE_DOWN, pf->state) ||
4561 ice_is_reset_in_progress(pf->state)) {
4562 dev_err(dev, "can't suspend device in reset or already down\n");
4563 if (!disabled)
4564 ice_service_task_restart(pf);
4565 return 0;
4566 }
4567
4568 ice_setup_mc_magic_wake(pf);
4569
4570 ice_prepare_for_shutdown(pf);
4571
4572 ice_set_wake(pf);
4573
4574 /* Free vectors, clear the interrupt scheme and release IRQs
4575 * for proper hibernation, especially with large number of CPUs.
4576 * Otherwise hibernation might fail when mapping all the vectors back
4577 * to CPU0.
4578 */
4579 ice_free_irq_msix_misc(pf);
4580 ice_for_each_vsi(pf, v) {
4581 if (!pf->vsi[v])
4582 continue;
4583 ice_vsi_free_q_vectors(pf->vsi[v]);
4584 }
4585 ice_free_cpu_rx_rmap(ice_get_main_vsi(pf));
4586 ice_clear_interrupt_scheme(pf);
4587
4588 pci_save_state(pdev);
4589 pci_wake_from_d3(pdev, pf->wol_ena);
4590 pci_set_power_state(pdev, PCI_D3hot);
4591 return 0;
4592 }
4593
4594 /**
4595 * ice_resume - PM callback for waking up from D3
4596 * @dev: generic device information structure
4597 */
ice_resume(struct device * dev)4598 static int __maybe_unused ice_resume(struct device *dev)
4599 {
4600 struct pci_dev *pdev = to_pci_dev(dev);
4601 enum ice_reset_req reset_type;
4602 struct ice_pf *pf;
4603 struct ice_hw *hw;
4604 int ret;
4605
4606 pci_set_power_state(pdev, PCI_D0);
4607 pci_restore_state(pdev);
4608 pci_save_state(pdev);
4609
4610 if (!pci_device_is_present(pdev))
4611 return -ENODEV;
4612
4613 ret = pci_enable_device_mem(pdev);
4614 if (ret) {
4615 dev_err(dev, "Cannot enable device after suspend\n");
4616 return ret;
4617 }
4618
4619 pf = pci_get_drvdata(pdev);
4620 hw = &pf->hw;
4621
4622 pf->wakeup_reason = rd32(hw, PFPM_WUS);
4623 ice_print_wake_reason(pf);
4624
4625 /* We cleared the interrupt scheme when we suspended, so we need to
4626 * restore it now to resume device functionality.
4627 */
4628 ret = ice_reinit_interrupt_scheme(pf);
4629 if (ret)
4630 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
4631
4632 clear_bit(__ICE_DOWN, pf->state);
4633 /* Now perform PF reset and rebuild */
4634 reset_type = ICE_RESET_PFR;
4635 /* re-enable service task for reset, but allow reset to schedule it */
4636 clear_bit(__ICE_SERVICE_DIS, pf->state);
4637
4638 if (ice_schedule_reset(pf, reset_type))
4639 dev_err(dev, "Reset during resume failed.\n");
4640
4641 clear_bit(__ICE_SUSPENDED, pf->state);
4642 ice_service_task_restart(pf);
4643
4644 /* Restart the service task */
4645 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4646
4647 return 0;
4648 }
4649 #endif /* CONFIG_PM */
4650
4651 /**
4652 * ice_pci_err_detected - warning that PCI error has been detected
4653 * @pdev: PCI device information struct
4654 * @err: the type of PCI error
4655 *
4656 * Called to warn that something happened on the PCI bus and the error handling
4657 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
4658 */
4659 static pci_ers_result_t
ice_pci_err_detected(struct pci_dev * pdev,pci_channel_state_t err)4660 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
4661 {
4662 struct ice_pf *pf = pci_get_drvdata(pdev);
4663
4664 if (!pf) {
4665 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
4666 __func__, err);
4667 return PCI_ERS_RESULT_DISCONNECT;
4668 }
4669
4670 if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4671 ice_service_task_stop(pf);
4672
4673 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4674 set_bit(__ICE_PFR_REQ, pf->state);
4675 ice_prepare_for_reset(pf);
4676 }
4677 }
4678
4679 return PCI_ERS_RESULT_NEED_RESET;
4680 }
4681
4682 /**
4683 * ice_pci_err_slot_reset - a PCI slot reset has just happened
4684 * @pdev: PCI device information struct
4685 *
4686 * Called to determine if the driver can recover from the PCI slot reset by
4687 * using a register read to determine if the device is recoverable.
4688 */
ice_pci_err_slot_reset(struct pci_dev * pdev)4689 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
4690 {
4691 struct ice_pf *pf = pci_get_drvdata(pdev);
4692 pci_ers_result_t result;
4693 int err;
4694 u32 reg;
4695
4696 err = pci_enable_device_mem(pdev);
4697 if (err) {
4698 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
4699 err);
4700 result = PCI_ERS_RESULT_DISCONNECT;
4701 } else {
4702 pci_set_master(pdev);
4703 pci_restore_state(pdev);
4704 pci_save_state(pdev);
4705 pci_wake_from_d3(pdev, false);
4706
4707 /* Check for life */
4708 reg = rd32(&pf->hw, GLGEN_RTRIG);
4709 if (!reg)
4710 result = PCI_ERS_RESULT_RECOVERED;
4711 else
4712 result = PCI_ERS_RESULT_DISCONNECT;
4713 }
4714
4715 err = pci_aer_clear_nonfatal_status(pdev);
4716 if (err)
4717 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
4718 err);
4719 /* non-fatal, continue */
4720
4721 return result;
4722 }
4723
4724 /**
4725 * ice_pci_err_resume - restart operations after PCI error recovery
4726 * @pdev: PCI device information struct
4727 *
4728 * Called to allow the driver to bring things back up after PCI error and/or
4729 * reset recovery have finished
4730 */
ice_pci_err_resume(struct pci_dev * pdev)4731 static void ice_pci_err_resume(struct pci_dev *pdev)
4732 {
4733 struct ice_pf *pf = pci_get_drvdata(pdev);
4734
4735 if (!pf) {
4736 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
4737 __func__);
4738 return;
4739 }
4740
4741 if (test_bit(__ICE_SUSPENDED, pf->state)) {
4742 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
4743 __func__);
4744 return;
4745 }
4746
4747 ice_restore_all_vfs_msi_state(pdev);
4748
4749 ice_do_reset(pf, ICE_RESET_PFR);
4750 ice_service_task_restart(pf);
4751 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4752 }
4753
4754 /**
4755 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
4756 * @pdev: PCI device information struct
4757 */
ice_pci_err_reset_prepare(struct pci_dev * pdev)4758 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
4759 {
4760 struct ice_pf *pf = pci_get_drvdata(pdev);
4761
4762 if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4763 ice_service_task_stop(pf);
4764
4765 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4766 set_bit(__ICE_PFR_REQ, pf->state);
4767 ice_prepare_for_reset(pf);
4768 }
4769 }
4770 }
4771
4772 /**
4773 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
4774 * @pdev: PCI device information struct
4775 */
ice_pci_err_reset_done(struct pci_dev * pdev)4776 static void ice_pci_err_reset_done(struct pci_dev *pdev)
4777 {
4778 ice_pci_err_resume(pdev);
4779 }
4780
4781 /* ice_pci_tbl - PCI Device ID Table
4782 *
4783 * Wildcard entries (PCI_ANY_ID) should come last
4784 * Last entry must be all 0s
4785 *
4786 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
4787 * Class, Class Mask, private data (not used) }
4788 */
4789 static const struct pci_device_id ice_pci_tbl[] = {
4790 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
4791 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
4792 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
4793 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
4794 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
4795 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
4796 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
4797 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
4798 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
4799 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
4800 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
4801 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
4802 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
4803 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
4804 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
4805 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
4806 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
4807 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
4808 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
4809 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
4810 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
4811 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
4812 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
4813 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
4814 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
4815 /* required last entry */
4816 { 0, }
4817 };
4818 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
4819
4820 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
4821
4822 static const struct pci_error_handlers ice_pci_err_handler = {
4823 .error_detected = ice_pci_err_detected,
4824 .slot_reset = ice_pci_err_slot_reset,
4825 .reset_prepare = ice_pci_err_reset_prepare,
4826 .reset_done = ice_pci_err_reset_done,
4827 .resume = ice_pci_err_resume
4828 };
4829
4830 static struct pci_driver ice_driver = {
4831 .name = KBUILD_MODNAME,
4832 .id_table = ice_pci_tbl,
4833 .probe = ice_probe,
4834 .remove = ice_remove,
4835 #ifdef CONFIG_PM
4836 .driver.pm = &ice_pm_ops,
4837 #endif /* CONFIG_PM */
4838 .shutdown = ice_shutdown,
4839 .sriov_configure = ice_sriov_configure,
4840 .err_handler = &ice_pci_err_handler
4841 };
4842
4843 /**
4844 * ice_module_init - Driver registration routine
4845 *
4846 * ice_module_init is the first routine called when the driver is
4847 * loaded. All it does is register with the PCI subsystem.
4848 */
ice_module_init(void)4849 static int __init ice_module_init(void)
4850 {
4851 int status;
4852
4853 pr_info("%s\n", ice_driver_string);
4854 pr_info("%s\n", ice_copyright);
4855
4856 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME);
4857 if (!ice_wq) {
4858 pr_err("Failed to create workqueue\n");
4859 return -ENOMEM;
4860 }
4861
4862 status = pci_register_driver(&ice_driver);
4863 if (status) {
4864 pr_err("failed to register PCI driver, err %d\n", status);
4865 destroy_workqueue(ice_wq);
4866 }
4867
4868 return status;
4869 }
4870 module_init(ice_module_init);
4871
4872 /**
4873 * ice_module_exit - Driver exit cleanup routine
4874 *
4875 * ice_module_exit is called just before the driver is removed
4876 * from memory.
4877 */
ice_module_exit(void)4878 static void __exit ice_module_exit(void)
4879 {
4880 pci_unregister_driver(&ice_driver);
4881 destroy_workqueue(ice_wq);
4882 pr_info("module unloaded\n");
4883 }
4884 module_exit(ice_module_exit);
4885
4886 /**
4887 * ice_set_mac_address - NDO callback to set MAC address
4888 * @netdev: network interface device structure
4889 * @pi: pointer to an address structure
4890 *
4891 * Returns 0 on success, negative on failure
4892 */
ice_set_mac_address(struct net_device * netdev,void * pi)4893 static int ice_set_mac_address(struct net_device *netdev, void *pi)
4894 {
4895 struct ice_netdev_priv *np = netdev_priv(netdev);
4896 struct ice_vsi *vsi = np->vsi;
4897 struct ice_pf *pf = vsi->back;
4898 struct ice_hw *hw = &pf->hw;
4899 struct sockaddr *addr = pi;
4900 enum ice_status status;
4901 u8 old_mac[ETH_ALEN];
4902 u8 flags = 0;
4903 int err = 0;
4904 u8 *mac;
4905
4906 mac = (u8 *)addr->sa_data;
4907
4908 if (!is_valid_ether_addr(mac))
4909 return -EADDRNOTAVAIL;
4910
4911 if (ether_addr_equal(netdev->dev_addr, mac)) {
4912 netdev_dbg(netdev, "already using mac %pM\n", mac);
4913 return 0;
4914 }
4915
4916 if (test_bit(__ICE_DOWN, pf->state) ||
4917 ice_is_reset_in_progress(pf->state)) {
4918 netdev_err(netdev, "can't set mac %pM. device not ready\n",
4919 mac);
4920 return -EBUSY;
4921 }
4922
4923 netif_addr_lock_bh(netdev);
4924 ether_addr_copy(old_mac, netdev->dev_addr);
4925 /* change the netdev's MAC address */
4926 memcpy(netdev->dev_addr, mac, netdev->addr_len);
4927 netif_addr_unlock_bh(netdev);
4928
4929 /* Clean up old MAC filter. Not an error if old filter doesn't exist */
4930 status = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
4931 if (status && status != ICE_ERR_DOES_NOT_EXIST) {
4932 err = -EADDRNOTAVAIL;
4933 goto err_update_filters;
4934 }
4935
4936 /* Add filter for new MAC. If filter exists, return success */
4937 status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
4938 if (status == ICE_ERR_ALREADY_EXISTS)
4939 /* Although this MAC filter is already present in hardware it's
4940 * possible in some cases (e.g. bonding) that dev_addr was
4941 * modified outside of the driver and needs to be restored back
4942 * to this value.
4943 */
4944 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
4945 else if (status)
4946 /* error if the new filter addition failed */
4947 err = -EADDRNOTAVAIL;
4948
4949 err_update_filters:
4950 if (err) {
4951 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
4952 mac);
4953 netif_addr_lock_bh(netdev);
4954 ether_addr_copy(netdev->dev_addr, old_mac);
4955 netif_addr_unlock_bh(netdev);
4956 return err;
4957 }
4958
4959 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
4960 netdev->dev_addr);
4961
4962 /* write new MAC address to the firmware */
4963 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
4964 status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
4965 if (status) {
4966 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n",
4967 mac, ice_stat_str(status));
4968 }
4969 return 0;
4970 }
4971
4972 /**
4973 * ice_set_rx_mode - NDO callback to set the netdev filters
4974 * @netdev: network interface device structure
4975 */
ice_set_rx_mode(struct net_device * netdev)4976 static void ice_set_rx_mode(struct net_device *netdev)
4977 {
4978 struct ice_netdev_priv *np = netdev_priv(netdev);
4979 struct ice_vsi *vsi = np->vsi;
4980
4981 if (!vsi)
4982 return;
4983
4984 /* Set the flags to synchronize filters
4985 * ndo_set_rx_mode may be triggered even without a change in netdev
4986 * flags
4987 */
4988 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
4989 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
4990 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
4991
4992 /* schedule our worker thread which will take care of
4993 * applying the new filter changes
4994 */
4995 ice_service_task_schedule(vsi->back);
4996 }
4997
4998 /**
4999 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5000 * @netdev: network interface device structure
5001 * @queue_index: Queue ID
5002 * @maxrate: maximum bandwidth in Mbps
5003 */
5004 static int
ice_set_tx_maxrate(struct net_device * netdev,int queue_index,u32 maxrate)5005 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5006 {
5007 struct ice_netdev_priv *np = netdev_priv(netdev);
5008 struct ice_vsi *vsi = np->vsi;
5009 enum ice_status status;
5010 u16 q_handle;
5011 u8 tc;
5012
5013 /* Validate maxrate requested is within permitted range */
5014 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5015 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5016 maxrate, queue_index);
5017 return -EINVAL;
5018 }
5019
5020 q_handle = vsi->tx_rings[queue_index]->q_handle;
5021 tc = ice_dcb_get_tc(vsi, queue_index);
5022
5023 /* Set BW back to default, when user set maxrate to 0 */
5024 if (!maxrate)
5025 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5026 q_handle, ICE_MAX_BW);
5027 else
5028 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5029 q_handle, ICE_MAX_BW, maxrate * 1000);
5030 if (status) {
5031 netdev_err(netdev, "Unable to set Tx max rate, error %s\n",
5032 ice_stat_str(status));
5033 return -EIO;
5034 }
5035
5036 return 0;
5037 }
5038
5039 /**
5040 * ice_fdb_add - add an entry to the hardware database
5041 * @ndm: the input from the stack
5042 * @tb: pointer to array of nladdr (unused)
5043 * @dev: the net device pointer
5044 * @addr: the MAC address entry being added
5045 * @vid: VLAN ID
5046 * @flags: instructions from stack about fdb operation
5047 * @extack: netlink extended ack
5048 */
5049 static int
ice_fdb_add(struct ndmsg * ndm,struct nlattr __always_unused * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,struct netlink_ext_ack __always_unused * extack)5050 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5051 struct net_device *dev, const unsigned char *addr, u16 vid,
5052 u16 flags, struct netlink_ext_ack __always_unused *extack)
5053 {
5054 int err;
5055
5056 if (vid) {
5057 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5058 return -EINVAL;
5059 }
5060 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5061 netdev_err(dev, "FDB only supports static addresses\n");
5062 return -EINVAL;
5063 }
5064
5065 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5066 err = dev_uc_add_excl(dev, addr);
5067 else if (is_multicast_ether_addr(addr))
5068 err = dev_mc_add_excl(dev, addr);
5069 else
5070 err = -EINVAL;
5071
5072 /* Only return duplicate errors if NLM_F_EXCL is set */
5073 if (err == -EEXIST && !(flags & NLM_F_EXCL))
5074 err = 0;
5075
5076 return err;
5077 }
5078
5079 /**
5080 * ice_fdb_del - delete an entry from the hardware database
5081 * @ndm: the input from the stack
5082 * @tb: pointer to array of nladdr (unused)
5083 * @dev: the net device pointer
5084 * @addr: the MAC address entry being added
5085 * @vid: VLAN ID
5086 */
5087 static int
ice_fdb_del(struct ndmsg * ndm,__always_unused struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,__always_unused u16 vid)5088 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5089 struct net_device *dev, const unsigned char *addr,
5090 __always_unused u16 vid)
5091 {
5092 int err;
5093
5094 if (ndm->ndm_state & NUD_PERMANENT) {
5095 netdev_err(dev, "FDB only supports static addresses\n");
5096 return -EINVAL;
5097 }
5098
5099 if (is_unicast_ether_addr(addr))
5100 err = dev_uc_del(dev, addr);
5101 else if (is_multicast_ether_addr(addr))
5102 err = dev_mc_del(dev, addr);
5103 else
5104 err = -EINVAL;
5105
5106 return err;
5107 }
5108
5109 /**
5110 * ice_set_features - set the netdev feature flags
5111 * @netdev: ptr to the netdev being adjusted
5112 * @features: the feature set that the stack is suggesting
5113 */
5114 static int
ice_set_features(struct net_device * netdev,netdev_features_t features)5115 ice_set_features(struct net_device *netdev, netdev_features_t features)
5116 {
5117 struct ice_netdev_priv *np = netdev_priv(netdev);
5118 struct ice_vsi *vsi = np->vsi;
5119 struct ice_pf *pf = vsi->back;
5120 int ret = 0;
5121
5122 /* Don't set any netdev advanced features with device in Safe Mode */
5123 if (ice_is_safe_mode(vsi->back)) {
5124 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
5125 return ret;
5126 }
5127
5128 /* Do not change setting during reset */
5129 if (ice_is_reset_in_progress(pf->state)) {
5130 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5131 return -EBUSY;
5132 }
5133
5134 /* Multiple features can be changed in one call so keep features in
5135 * separate if/else statements to guarantee each feature is checked
5136 */
5137 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5138 ret = ice_vsi_manage_rss_lut(vsi, true);
5139 else if (!(features & NETIF_F_RXHASH) &&
5140 netdev->features & NETIF_F_RXHASH)
5141 ret = ice_vsi_manage_rss_lut(vsi, false);
5142
5143 if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
5144 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5145 ret = ice_vsi_manage_vlan_stripping(vsi, true);
5146 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
5147 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5148 ret = ice_vsi_manage_vlan_stripping(vsi, false);
5149
5150 if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
5151 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5152 ret = ice_vsi_manage_vlan_insertion(vsi);
5153 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
5154 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5155 ret = ice_vsi_manage_vlan_insertion(vsi);
5156
5157 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5158 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5159 ret = ice_cfg_vlan_pruning(vsi, true, false);
5160 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5161 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5162 ret = ice_cfg_vlan_pruning(vsi, false, false);
5163
5164 if ((features & NETIF_F_NTUPLE) &&
5165 !(netdev->features & NETIF_F_NTUPLE)) {
5166 ice_vsi_manage_fdir(vsi, true);
5167 ice_init_arfs(vsi);
5168 } else if (!(features & NETIF_F_NTUPLE) &&
5169 (netdev->features & NETIF_F_NTUPLE)) {
5170 ice_vsi_manage_fdir(vsi, false);
5171 ice_clear_arfs(vsi);
5172 }
5173
5174 return ret;
5175 }
5176
5177 /**
5178 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
5179 * @vsi: VSI to setup VLAN properties for
5180 */
ice_vsi_vlan_setup(struct ice_vsi * vsi)5181 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
5182 {
5183 int ret = 0;
5184
5185 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
5186 ret = ice_vsi_manage_vlan_stripping(vsi, true);
5187 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
5188 ret = ice_vsi_manage_vlan_insertion(vsi);
5189
5190 return ret;
5191 }
5192
5193 /**
5194 * ice_vsi_cfg - Setup the VSI
5195 * @vsi: the VSI being configured
5196 *
5197 * Return 0 on success and negative value on error
5198 */
ice_vsi_cfg(struct ice_vsi * vsi)5199 int ice_vsi_cfg(struct ice_vsi *vsi)
5200 {
5201 int err;
5202
5203 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
5204 ice_set_rx_mode(vsi->netdev);
5205
5206 err = ice_vsi_vlan_setup(vsi);
5207 if (err)
5208 return err;
5209 }
5210 ice_vsi_cfg_dcb_rings(vsi);
5211
5212 err = ice_vsi_cfg_lan_txqs(vsi);
5213 if (!err && ice_is_xdp_ena_vsi(vsi))
5214 err = ice_vsi_cfg_xdp_txqs(vsi);
5215 if (!err)
5216 err = ice_vsi_cfg_rxqs(vsi);
5217
5218 return err;
5219 }
5220
5221 /**
5222 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
5223 * @vsi: the VSI being configured
5224 */
ice_napi_enable_all(struct ice_vsi * vsi)5225 static void ice_napi_enable_all(struct ice_vsi *vsi)
5226 {
5227 int q_idx;
5228
5229 if (!vsi->netdev)
5230 return;
5231
5232 ice_for_each_q_vector(vsi, q_idx) {
5233 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5234
5235 if (q_vector->rx.ring || q_vector->tx.ring)
5236 napi_enable(&q_vector->napi);
5237 }
5238 }
5239
5240 /**
5241 * ice_up_complete - Finish the last steps of bringing up a connection
5242 * @vsi: The VSI being configured
5243 *
5244 * Return 0 on success and negative value on error
5245 */
ice_up_complete(struct ice_vsi * vsi)5246 static int ice_up_complete(struct ice_vsi *vsi)
5247 {
5248 struct ice_pf *pf = vsi->back;
5249 int err;
5250
5251 ice_vsi_cfg_msix(vsi);
5252
5253 /* Enable only Rx rings, Tx rings were enabled by the FW when the
5254 * Tx queue group list was configured and the context bits were
5255 * programmed using ice_vsi_cfg_txqs
5256 */
5257 err = ice_vsi_start_all_rx_rings(vsi);
5258 if (err)
5259 return err;
5260
5261 clear_bit(__ICE_DOWN, vsi->state);
5262 ice_napi_enable_all(vsi);
5263 ice_vsi_ena_irq(vsi);
5264
5265 if (vsi->port_info &&
5266 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
5267 vsi->netdev && vsi->type == ICE_VSI_PF) {
5268 ice_print_link_msg(vsi, true);
5269 netif_tx_start_all_queues(vsi->netdev);
5270 netif_carrier_on(vsi->netdev);
5271 }
5272
5273 /* Perform an initial read of the statistics registers now to
5274 * set the baseline so counters are ready when interface is up
5275 */
5276 ice_update_eth_stats(vsi);
5277
5278 if (vsi->type == ICE_VSI_PF)
5279 ice_service_task_schedule(pf);
5280
5281 return 0;
5282 }
5283
5284 /**
5285 * ice_up - Bring the connection back up after being down
5286 * @vsi: VSI being configured
5287 */
ice_up(struct ice_vsi * vsi)5288 int ice_up(struct ice_vsi *vsi)
5289 {
5290 int err;
5291
5292 err = ice_vsi_cfg(vsi);
5293 if (!err)
5294 err = ice_up_complete(vsi);
5295
5296 return err;
5297 }
5298
5299 /**
5300 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
5301 * @ring: Tx or Rx ring to read stats from
5302 * @pkts: packets stats counter
5303 * @bytes: bytes stats counter
5304 *
5305 * This function fetches stats from the ring considering the atomic operations
5306 * that needs to be performed to read u64 values in 32 bit machine.
5307 */
5308 static void
ice_fetch_u64_stats_per_ring(struct ice_ring * ring,u64 * pkts,u64 * bytes)5309 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
5310 {
5311 unsigned int start;
5312 *pkts = 0;
5313 *bytes = 0;
5314
5315 if (!ring)
5316 return;
5317 do {
5318 start = u64_stats_fetch_begin_irq(&ring->syncp);
5319 *pkts = ring->stats.pkts;
5320 *bytes = ring->stats.bytes;
5321 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
5322 }
5323
5324 /**
5325 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
5326 * @vsi: the VSI to be updated
5327 * @rings: rings to work on
5328 * @count: number of rings
5329 */
5330 static void
ice_update_vsi_tx_ring_stats(struct ice_vsi * vsi,struct ice_ring ** rings,u16 count)5331 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings,
5332 u16 count)
5333 {
5334 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5335 u16 i;
5336
5337 for (i = 0; i < count; i++) {
5338 struct ice_ring *ring;
5339 u64 pkts, bytes;
5340
5341 ring = READ_ONCE(rings[i]);
5342 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5343 vsi_stats->tx_packets += pkts;
5344 vsi_stats->tx_bytes += bytes;
5345 vsi->tx_restart += ring->tx_stats.restart_q;
5346 vsi->tx_busy += ring->tx_stats.tx_busy;
5347 vsi->tx_linearize += ring->tx_stats.tx_linearize;
5348 }
5349 }
5350
5351 /**
5352 * ice_update_vsi_ring_stats - Update VSI stats counters
5353 * @vsi: the VSI to be updated
5354 */
ice_update_vsi_ring_stats(struct ice_vsi * vsi)5355 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
5356 {
5357 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5358 struct ice_ring *ring;
5359 u64 pkts, bytes;
5360 int i;
5361
5362 /* reset netdev stats */
5363 vsi_stats->tx_packets = 0;
5364 vsi_stats->tx_bytes = 0;
5365 vsi_stats->rx_packets = 0;
5366 vsi_stats->rx_bytes = 0;
5367
5368 /* reset non-netdev (extended) stats */
5369 vsi->tx_restart = 0;
5370 vsi->tx_busy = 0;
5371 vsi->tx_linearize = 0;
5372 vsi->rx_buf_failed = 0;
5373 vsi->rx_page_failed = 0;
5374 vsi->rx_gro_dropped = 0;
5375
5376 rcu_read_lock();
5377
5378 /* update Tx rings counters */
5379 ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq);
5380
5381 /* update Rx rings counters */
5382 ice_for_each_rxq(vsi, i) {
5383 ring = READ_ONCE(vsi->rx_rings[i]);
5384 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5385 vsi_stats->rx_packets += pkts;
5386 vsi_stats->rx_bytes += bytes;
5387 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
5388 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
5389 vsi->rx_gro_dropped += ring->rx_stats.gro_dropped;
5390 }
5391
5392 /* update XDP Tx rings counters */
5393 if (ice_is_xdp_ena_vsi(vsi))
5394 ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings,
5395 vsi->num_xdp_txq);
5396
5397 rcu_read_unlock();
5398 }
5399
5400 /**
5401 * ice_update_vsi_stats - Update VSI stats counters
5402 * @vsi: the VSI to be updated
5403 */
ice_update_vsi_stats(struct ice_vsi * vsi)5404 void ice_update_vsi_stats(struct ice_vsi *vsi)
5405 {
5406 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
5407 struct ice_eth_stats *cur_es = &vsi->eth_stats;
5408 struct ice_pf *pf = vsi->back;
5409
5410 if (test_bit(__ICE_DOWN, vsi->state) ||
5411 test_bit(__ICE_CFG_BUSY, pf->state))
5412 return;
5413
5414 /* get stats as recorded by Tx/Rx rings */
5415 ice_update_vsi_ring_stats(vsi);
5416
5417 /* get VSI stats as recorded by the hardware */
5418 ice_update_eth_stats(vsi);
5419
5420 cur_ns->tx_errors = cur_es->tx_errors;
5421 cur_ns->rx_dropped = cur_es->rx_discards + vsi->rx_gro_dropped;
5422 cur_ns->tx_dropped = cur_es->tx_discards;
5423 cur_ns->multicast = cur_es->rx_multicast;
5424
5425 /* update some more netdev stats if this is main VSI */
5426 if (vsi->type == ICE_VSI_PF) {
5427 cur_ns->rx_crc_errors = pf->stats.crc_errors;
5428 cur_ns->rx_errors = pf->stats.crc_errors +
5429 pf->stats.illegal_bytes +
5430 pf->stats.rx_len_errors +
5431 pf->stats.rx_undersize +
5432 pf->hw_csum_rx_error +
5433 pf->stats.rx_jabber +
5434 pf->stats.rx_fragments +
5435 pf->stats.rx_oversize;
5436 cur_ns->rx_length_errors = pf->stats.rx_len_errors;
5437 /* record drops from the port level */
5438 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
5439 }
5440 }
5441
5442 /**
5443 * ice_update_pf_stats - Update PF port stats counters
5444 * @pf: PF whose stats needs to be updated
5445 */
ice_update_pf_stats(struct ice_pf * pf)5446 void ice_update_pf_stats(struct ice_pf *pf)
5447 {
5448 struct ice_hw_port_stats *prev_ps, *cur_ps;
5449 struct ice_hw *hw = &pf->hw;
5450 u16 fd_ctr_base;
5451 u8 port;
5452
5453 port = hw->port_info->lport;
5454 prev_ps = &pf->stats_prev;
5455 cur_ps = &pf->stats;
5456
5457 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
5458 &prev_ps->eth.rx_bytes,
5459 &cur_ps->eth.rx_bytes);
5460
5461 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
5462 &prev_ps->eth.rx_unicast,
5463 &cur_ps->eth.rx_unicast);
5464
5465 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
5466 &prev_ps->eth.rx_multicast,
5467 &cur_ps->eth.rx_multicast);
5468
5469 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
5470 &prev_ps->eth.rx_broadcast,
5471 &cur_ps->eth.rx_broadcast);
5472
5473 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
5474 &prev_ps->eth.rx_discards,
5475 &cur_ps->eth.rx_discards);
5476
5477 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
5478 &prev_ps->eth.tx_bytes,
5479 &cur_ps->eth.tx_bytes);
5480
5481 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
5482 &prev_ps->eth.tx_unicast,
5483 &cur_ps->eth.tx_unicast);
5484
5485 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
5486 &prev_ps->eth.tx_multicast,
5487 &cur_ps->eth.tx_multicast);
5488
5489 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
5490 &prev_ps->eth.tx_broadcast,
5491 &cur_ps->eth.tx_broadcast);
5492
5493 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
5494 &prev_ps->tx_dropped_link_down,
5495 &cur_ps->tx_dropped_link_down);
5496
5497 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
5498 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
5499
5500 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
5501 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
5502
5503 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
5504 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
5505
5506 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
5507 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
5508
5509 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
5510 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
5511
5512 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
5513 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
5514
5515 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
5516 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
5517
5518 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
5519 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
5520
5521 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
5522 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
5523
5524 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
5525 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
5526
5527 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
5528 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
5529
5530 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
5531 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
5532
5533 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
5534 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
5535
5536 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
5537 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
5538
5539 fd_ctr_base = hw->fd_ctr_base;
5540
5541 ice_stat_update40(hw,
5542 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
5543 pf->stat_prev_loaded, &prev_ps->fd_sb_match,
5544 &cur_ps->fd_sb_match);
5545 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
5546 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
5547
5548 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
5549 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
5550
5551 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
5552 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
5553
5554 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
5555 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
5556
5557 ice_update_dcb_stats(pf);
5558
5559 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
5560 &prev_ps->crc_errors, &cur_ps->crc_errors);
5561
5562 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
5563 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
5564
5565 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
5566 &prev_ps->mac_local_faults,
5567 &cur_ps->mac_local_faults);
5568
5569 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
5570 &prev_ps->mac_remote_faults,
5571 &cur_ps->mac_remote_faults);
5572
5573 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
5574 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
5575
5576 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
5577 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
5578
5579 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
5580 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
5581
5582 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
5583 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
5584
5585 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
5586 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
5587
5588 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
5589
5590 pf->stat_prev_loaded = true;
5591 }
5592
5593 /**
5594 * ice_get_stats64 - get statistics for network device structure
5595 * @netdev: network interface device structure
5596 * @stats: main device statistics structure
5597 */
5598 static
ice_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)5599 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
5600 {
5601 struct ice_netdev_priv *np = netdev_priv(netdev);
5602 struct rtnl_link_stats64 *vsi_stats;
5603 struct ice_vsi *vsi = np->vsi;
5604
5605 vsi_stats = &vsi->net_stats;
5606
5607 if (!vsi->num_txq || !vsi->num_rxq)
5608 return;
5609
5610 /* netdev packet/byte stats come from ring counter. These are obtained
5611 * by summing up ring counters (done by ice_update_vsi_ring_stats).
5612 * But, only call the update routine and read the registers if VSI is
5613 * not down.
5614 */
5615 if (!test_bit(__ICE_DOWN, vsi->state))
5616 ice_update_vsi_ring_stats(vsi);
5617 stats->tx_packets = vsi_stats->tx_packets;
5618 stats->tx_bytes = vsi_stats->tx_bytes;
5619 stats->rx_packets = vsi_stats->rx_packets;
5620 stats->rx_bytes = vsi_stats->rx_bytes;
5621
5622 /* The rest of the stats can be read from the hardware but instead we
5623 * just return values that the watchdog task has already obtained from
5624 * the hardware.
5625 */
5626 stats->multicast = vsi_stats->multicast;
5627 stats->tx_errors = vsi_stats->tx_errors;
5628 stats->tx_dropped = vsi_stats->tx_dropped;
5629 stats->rx_errors = vsi_stats->rx_errors;
5630 stats->rx_dropped = vsi_stats->rx_dropped;
5631 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
5632 stats->rx_length_errors = vsi_stats->rx_length_errors;
5633 }
5634
5635 /**
5636 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
5637 * @vsi: VSI having NAPI disabled
5638 */
ice_napi_disable_all(struct ice_vsi * vsi)5639 static void ice_napi_disable_all(struct ice_vsi *vsi)
5640 {
5641 int q_idx;
5642
5643 if (!vsi->netdev)
5644 return;
5645
5646 ice_for_each_q_vector(vsi, q_idx) {
5647 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5648
5649 if (q_vector->rx.ring || q_vector->tx.ring)
5650 napi_disable(&q_vector->napi);
5651 }
5652 }
5653
5654 /**
5655 * ice_down - Shutdown the connection
5656 * @vsi: The VSI being stopped
5657 */
ice_down(struct ice_vsi * vsi)5658 int ice_down(struct ice_vsi *vsi)
5659 {
5660 int i, tx_err, rx_err, link_err = 0;
5661
5662 /* Caller of this function is expected to set the
5663 * vsi->state __ICE_DOWN bit
5664 */
5665 if (vsi->netdev) {
5666 netif_carrier_off(vsi->netdev);
5667 netif_tx_disable(vsi->netdev);
5668 }
5669
5670 ice_vsi_dis_irq(vsi);
5671
5672 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
5673 if (tx_err)
5674 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
5675 vsi->vsi_num, tx_err);
5676 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
5677 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
5678 if (tx_err)
5679 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
5680 vsi->vsi_num, tx_err);
5681 }
5682
5683 rx_err = ice_vsi_stop_all_rx_rings(vsi);
5684 if (rx_err)
5685 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
5686 vsi->vsi_num, rx_err);
5687
5688 ice_napi_disable_all(vsi);
5689
5690 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
5691 link_err = ice_force_phys_link_state(vsi, false);
5692 if (link_err)
5693 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
5694 vsi->vsi_num, link_err);
5695 }
5696
5697 ice_for_each_txq(vsi, i)
5698 ice_clean_tx_ring(vsi->tx_rings[i]);
5699
5700 ice_for_each_rxq(vsi, i)
5701 ice_clean_rx_ring(vsi->rx_rings[i]);
5702
5703 if (tx_err || rx_err || link_err) {
5704 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
5705 vsi->vsi_num, vsi->vsw->sw_id);
5706 return -EIO;
5707 }
5708
5709 return 0;
5710 }
5711
5712 /**
5713 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
5714 * @vsi: VSI having resources allocated
5715 *
5716 * Return 0 on success, negative on failure
5717 */
ice_vsi_setup_tx_rings(struct ice_vsi * vsi)5718 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
5719 {
5720 int i, err = 0;
5721
5722 if (!vsi->num_txq) {
5723 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
5724 vsi->vsi_num);
5725 return -EINVAL;
5726 }
5727
5728 ice_for_each_txq(vsi, i) {
5729 struct ice_ring *ring = vsi->tx_rings[i];
5730
5731 if (!ring)
5732 return -EINVAL;
5733
5734 ring->netdev = vsi->netdev;
5735 err = ice_setup_tx_ring(ring);
5736 if (err)
5737 break;
5738 }
5739
5740 return err;
5741 }
5742
5743 /**
5744 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
5745 * @vsi: VSI having resources allocated
5746 *
5747 * Return 0 on success, negative on failure
5748 */
ice_vsi_setup_rx_rings(struct ice_vsi * vsi)5749 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
5750 {
5751 int i, err = 0;
5752
5753 if (!vsi->num_rxq) {
5754 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
5755 vsi->vsi_num);
5756 return -EINVAL;
5757 }
5758
5759 ice_for_each_rxq(vsi, i) {
5760 struct ice_ring *ring = vsi->rx_rings[i];
5761
5762 if (!ring)
5763 return -EINVAL;
5764
5765 ring->netdev = vsi->netdev;
5766 err = ice_setup_rx_ring(ring);
5767 if (err)
5768 break;
5769 }
5770
5771 return err;
5772 }
5773
5774 /**
5775 * ice_vsi_open_ctrl - open control VSI for use
5776 * @vsi: the VSI to open
5777 *
5778 * Initialization of the Control VSI
5779 *
5780 * Returns 0 on success, negative value on error
5781 */
ice_vsi_open_ctrl(struct ice_vsi * vsi)5782 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
5783 {
5784 char int_name[ICE_INT_NAME_STR_LEN];
5785 struct ice_pf *pf = vsi->back;
5786 struct device *dev;
5787 int err;
5788
5789 dev = ice_pf_to_dev(pf);
5790 /* allocate descriptors */
5791 err = ice_vsi_setup_tx_rings(vsi);
5792 if (err)
5793 goto err_setup_tx;
5794
5795 err = ice_vsi_setup_rx_rings(vsi);
5796 if (err)
5797 goto err_setup_rx;
5798
5799 err = ice_vsi_cfg(vsi);
5800 if (err)
5801 goto err_setup_rx;
5802
5803 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
5804 dev_driver_string(dev), dev_name(dev));
5805 err = ice_vsi_req_irq_msix(vsi, int_name);
5806 if (err)
5807 goto err_setup_rx;
5808
5809 ice_vsi_cfg_msix(vsi);
5810
5811 err = ice_vsi_start_all_rx_rings(vsi);
5812 if (err)
5813 goto err_up_complete;
5814
5815 clear_bit(__ICE_DOWN, vsi->state);
5816 ice_vsi_ena_irq(vsi);
5817
5818 return 0;
5819
5820 err_up_complete:
5821 ice_down(vsi);
5822 err_setup_rx:
5823 ice_vsi_free_rx_rings(vsi);
5824 err_setup_tx:
5825 ice_vsi_free_tx_rings(vsi);
5826
5827 return err;
5828 }
5829
5830 /**
5831 * ice_vsi_open - Called when a network interface is made active
5832 * @vsi: the VSI to open
5833 *
5834 * Initialization of the VSI
5835 *
5836 * Returns 0 on success, negative value on error
5837 */
ice_vsi_open(struct ice_vsi * vsi)5838 static int ice_vsi_open(struct ice_vsi *vsi)
5839 {
5840 char int_name[ICE_INT_NAME_STR_LEN];
5841 struct ice_pf *pf = vsi->back;
5842 int err;
5843
5844 /* allocate descriptors */
5845 err = ice_vsi_setup_tx_rings(vsi);
5846 if (err)
5847 goto err_setup_tx;
5848
5849 err = ice_vsi_setup_rx_rings(vsi);
5850 if (err)
5851 goto err_setup_rx;
5852
5853 err = ice_vsi_cfg(vsi);
5854 if (err)
5855 goto err_setup_rx;
5856
5857 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
5858 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
5859 err = ice_vsi_req_irq_msix(vsi, int_name);
5860 if (err)
5861 goto err_setup_rx;
5862
5863 /* Notify the stack of the actual queue counts. */
5864 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
5865 if (err)
5866 goto err_set_qs;
5867
5868 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
5869 if (err)
5870 goto err_set_qs;
5871
5872 err = ice_up_complete(vsi);
5873 if (err)
5874 goto err_up_complete;
5875
5876 return 0;
5877
5878 err_up_complete:
5879 ice_down(vsi);
5880 err_set_qs:
5881 ice_vsi_free_irq(vsi);
5882 err_setup_rx:
5883 ice_vsi_free_rx_rings(vsi);
5884 err_setup_tx:
5885 ice_vsi_free_tx_rings(vsi);
5886
5887 return err;
5888 }
5889
5890 /**
5891 * ice_vsi_release_all - Delete all VSIs
5892 * @pf: PF from which all VSIs are being removed
5893 */
ice_vsi_release_all(struct ice_pf * pf)5894 static void ice_vsi_release_all(struct ice_pf *pf)
5895 {
5896 int err, i;
5897
5898 if (!pf->vsi)
5899 return;
5900
5901 ice_for_each_vsi(pf, i) {
5902 if (!pf->vsi[i])
5903 continue;
5904
5905 err = ice_vsi_release(pf->vsi[i]);
5906 if (err)
5907 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
5908 i, err, pf->vsi[i]->vsi_num);
5909 }
5910 }
5911
5912 /**
5913 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
5914 * @pf: pointer to the PF instance
5915 * @type: VSI type to rebuild
5916 *
5917 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
5918 */
ice_vsi_rebuild_by_type(struct ice_pf * pf,enum ice_vsi_type type)5919 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
5920 {
5921 struct device *dev = ice_pf_to_dev(pf);
5922 enum ice_status status;
5923 int i, err;
5924
5925 ice_for_each_vsi(pf, i) {
5926 struct ice_vsi *vsi = pf->vsi[i];
5927
5928 if (!vsi || vsi->type != type)
5929 continue;
5930
5931 /* rebuild the VSI */
5932 err = ice_vsi_rebuild(vsi, true);
5933 if (err) {
5934 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
5935 err, vsi->idx, ice_vsi_type_str(type));
5936 return err;
5937 }
5938
5939 /* replay filters for the VSI */
5940 status = ice_replay_vsi(&pf->hw, vsi->idx);
5941 if (status) {
5942 dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n",
5943 ice_stat_str(status), vsi->idx,
5944 ice_vsi_type_str(type));
5945 return -EIO;
5946 }
5947
5948 /* Re-map HW VSI number, using VSI handle that has been
5949 * previously validated in ice_replay_vsi() call above
5950 */
5951 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
5952
5953 /* enable the VSI */
5954 err = ice_ena_vsi(vsi, false);
5955 if (err) {
5956 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
5957 err, vsi->idx, ice_vsi_type_str(type));
5958 return err;
5959 }
5960
5961 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
5962 ice_vsi_type_str(type));
5963 }
5964
5965 return 0;
5966 }
5967
5968 /**
5969 * ice_update_pf_netdev_link - Update PF netdev link status
5970 * @pf: pointer to the PF instance
5971 */
ice_update_pf_netdev_link(struct ice_pf * pf)5972 static void ice_update_pf_netdev_link(struct ice_pf *pf)
5973 {
5974 bool link_up;
5975 int i;
5976
5977 ice_for_each_vsi(pf, i) {
5978 struct ice_vsi *vsi = pf->vsi[i];
5979
5980 if (!vsi || vsi->type != ICE_VSI_PF)
5981 return;
5982
5983 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
5984 if (link_up) {
5985 netif_carrier_on(pf->vsi[i]->netdev);
5986 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
5987 } else {
5988 netif_carrier_off(pf->vsi[i]->netdev);
5989 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
5990 }
5991 }
5992 }
5993
5994 /**
5995 * ice_rebuild - rebuild after reset
5996 * @pf: PF to rebuild
5997 * @reset_type: type of reset
5998 *
5999 * Do not rebuild VF VSI in this flow because that is already handled via
6000 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
6001 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
6002 * to reset/rebuild all the VF VSI twice.
6003 */
ice_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)6004 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
6005 {
6006 struct device *dev = ice_pf_to_dev(pf);
6007 struct ice_hw *hw = &pf->hw;
6008 enum ice_status ret;
6009 int err;
6010
6011 if (test_bit(__ICE_DOWN, pf->state))
6012 goto clear_recovery;
6013
6014 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
6015
6016 ret = ice_init_all_ctrlq(hw);
6017 if (ret) {
6018 dev_err(dev, "control queues init failed %s\n",
6019 ice_stat_str(ret));
6020 goto err_init_ctrlq;
6021 }
6022
6023 /* if DDP was previously loaded successfully */
6024 if (!ice_is_safe_mode(pf)) {
6025 /* reload the SW DB of filter tables */
6026 if (reset_type == ICE_RESET_PFR)
6027 ice_fill_blk_tbls(hw);
6028 else
6029 /* Reload DDP Package after CORER/GLOBR reset */
6030 ice_load_pkg(NULL, pf);
6031 }
6032
6033 ret = ice_clear_pf_cfg(hw);
6034 if (ret) {
6035 dev_err(dev, "clear PF configuration failed %s\n",
6036 ice_stat_str(ret));
6037 goto err_init_ctrlq;
6038 }
6039
6040 if (pf->first_sw->dflt_vsi_ena)
6041 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
6042 /* clear the default VSI configuration if it exists */
6043 pf->first_sw->dflt_vsi = NULL;
6044 pf->first_sw->dflt_vsi_ena = false;
6045
6046 ice_clear_pxe_mode(hw);
6047
6048 ret = ice_get_caps(hw);
6049 if (ret) {
6050 dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret));
6051 goto err_init_ctrlq;
6052 }
6053
6054 ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
6055 if (ret) {
6056 dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret));
6057 goto err_init_ctrlq;
6058 }
6059
6060 err = ice_sched_init_port(hw->port_info);
6061 if (err)
6062 goto err_sched_init_port;
6063
6064 /* start misc vector */
6065 err = ice_req_irq_msix_misc(pf);
6066 if (err) {
6067 dev_err(dev, "misc vector setup failed: %d\n", err);
6068 goto err_sched_init_port;
6069 }
6070
6071 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6072 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
6073 if (!rd32(hw, PFQF_FD_SIZE)) {
6074 u16 unused, guar, b_effort;
6075
6076 guar = hw->func_caps.fd_fltr_guar;
6077 b_effort = hw->func_caps.fd_fltr_best_effort;
6078
6079 /* force guaranteed filter pool for PF */
6080 ice_alloc_fd_guar_item(hw, &unused, guar);
6081 /* force shared filter pool for PF */
6082 ice_alloc_fd_shrd_item(hw, &unused, b_effort);
6083 }
6084 }
6085
6086 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
6087 ice_dcb_rebuild(pf);
6088
6089 /* rebuild PF VSI */
6090 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
6091 if (err) {
6092 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
6093 goto err_vsi_rebuild;
6094 }
6095
6096 /* If Flow Director is active */
6097 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6098 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
6099 if (err) {
6100 dev_err(dev, "control VSI rebuild failed: %d\n", err);
6101 goto err_vsi_rebuild;
6102 }
6103
6104 /* replay HW Flow Director recipes */
6105 if (hw->fdir_prof)
6106 ice_fdir_replay_flows(hw);
6107
6108 /* replay Flow Director filters */
6109 ice_fdir_replay_fltrs(pf);
6110
6111 ice_rebuild_arfs(pf);
6112 }
6113
6114 ice_update_pf_netdev_link(pf);
6115
6116 /* tell the firmware we are up */
6117 ret = ice_send_version(pf);
6118 if (ret) {
6119 dev_err(dev, "Rebuild failed due to error sending driver version: %s\n",
6120 ice_stat_str(ret));
6121 goto err_vsi_rebuild;
6122 }
6123
6124 ice_replay_post(hw);
6125
6126 /* if we get here, reset flow is successful */
6127 clear_bit(__ICE_RESET_FAILED, pf->state);
6128 return;
6129
6130 err_vsi_rebuild:
6131 err_sched_init_port:
6132 ice_sched_cleanup_all(hw);
6133 err_init_ctrlq:
6134 ice_shutdown_all_ctrlq(hw);
6135 set_bit(__ICE_RESET_FAILED, pf->state);
6136 clear_recovery:
6137 /* set this bit in PF state to control service task scheduling */
6138 set_bit(__ICE_NEEDS_RESTART, pf->state);
6139 dev_err(dev, "Rebuild failed, unload and reload driver\n");
6140 }
6141
6142 /**
6143 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
6144 * @vsi: Pointer to VSI structure
6145 */
ice_max_xdp_frame_size(struct ice_vsi * vsi)6146 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
6147 {
6148 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
6149 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
6150 else
6151 return ICE_RXBUF_3072;
6152 }
6153
6154 /**
6155 * ice_change_mtu - NDO callback to change the MTU
6156 * @netdev: network interface device structure
6157 * @new_mtu: new value for maximum frame size
6158 *
6159 * Returns 0 on success, negative on failure
6160 */
ice_change_mtu(struct net_device * netdev,int new_mtu)6161 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
6162 {
6163 struct ice_netdev_priv *np = netdev_priv(netdev);
6164 struct ice_vsi *vsi = np->vsi;
6165 struct ice_pf *pf = vsi->back;
6166 u8 count = 0;
6167
6168 if (new_mtu == (int)netdev->mtu) {
6169 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
6170 return 0;
6171 }
6172
6173 if (ice_is_xdp_ena_vsi(vsi)) {
6174 int frame_size = ice_max_xdp_frame_size(vsi);
6175
6176 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
6177 netdev_err(netdev, "max MTU for XDP usage is %d\n",
6178 frame_size - ICE_ETH_PKT_HDR_PAD);
6179 return -EINVAL;
6180 }
6181 }
6182
6183 if (new_mtu < (int)netdev->min_mtu) {
6184 netdev_err(netdev, "new MTU invalid. min_mtu is %d\n",
6185 netdev->min_mtu);
6186 return -EINVAL;
6187 } else if (new_mtu > (int)netdev->max_mtu) {
6188 netdev_err(netdev, "new MTU invalid. max_mtu is %d\n",
6189 netdev->min_mtu);
6190 return -EINVAL;
6191 }
6192 /* if a reset is in progress, wait for some time for it to complete */
6193 do {
6194 if (ice_is_reset_in_progress(pf->state)) {
6195 count++;
6196 usleep_range(1000, 2000);
6197 } else {
6198 break;
6199 }
6200
6201 } while (count < 100);
6202
6203 if (count == 100) {
6204 netdev_err(netdev, "can't change MTU. Device is busy\n");
6205 return -EBUSY;
6206 }
6207
6208 netdev->mtu = (unsigned int)new_mtu;
6209
6210 /* if VSI is up, bring it down and then back up */
6211 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
6212 int err;
6213
6214 err = ice_down(vsi);
6215 if (err) {
6216 netdev_err(netdev, "change MTU if_up err %d\n", err);
6217 return err;
6218 }
6219
6220 err = ice_up(vsi);
6221 if (err) {
6222 netdev_err(netdev, "change MTU if_up err %d\n", err);
6223 return err;
6224 }
6225 }
6226
6227 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
6228 return 0;
6229 }
6230
6231 /**
6232 * ice_aq_str - convert AQ err code to a string
6233 * @aq_err: the AQ error code to convert
6234 */
ice_aq_str(enum ice_aq_err aq_err)6235 const char *ice_aq_str(enum ice_aq_err aq_err)
6236 {
6237 switch (aq_err) {
6238 case ICE_AQ_RC_OK:
6239 return "OK";
6240 case ICE_AQ_RC_EPERM:
6241 return "ICE_AQ_RC_EPERM";
6242 case ICE_AQ_RC_ENOENT:
6243 return "ICE_AQ_RC_ENOENT";
6244 case ICE_AQ_RC_ENOMEM:
6245 return "ICE_AQ_RC_ENOMEM";
6246 case ICE_AQ_RC_EBUSY:
6247 return "ICE_AQ_RC_EBUSY";
6248 case ICE_AQ_RC_EEXIST:
6249 return "ICE_AQ_RC_EEXIST";
6250 case ICE_AQ_RC_EINVAL:
6251 return "ICE_AQ_RC_EINVAL";
6252 case ICE_AQ_RC_ENOSPC:
6253 return "ICE_AQ_RC_ENOSPC";
6254 case ICE_AQ_RC_ENOSYS:
6255 return "ICE_AQ_RC_ENOSYS";
6256 case ICE_AQ_RC_EMODE:
6257 return "ICE_AQ_RC_EMODE";
6258 case ICE_AQ_RC_ENOSEC:
6259 return "ICE_AQ_RC_ENOSEC";
6260 case ICE_AQ_RC_EBADSIG:
6261 return "ICE_AQ_RC_EBADSIG";
6262 case ICE_AQ_RC_ESVN:
6263 return "ICE_AQ_RC_ESVN";
6264 case ICE_AQ_RC_EBADMAN:
6265 return "ICE_AQ_RC_EBADMAN";
6266 case ICE_AQ_RC_EBADBUF:
6267 return "ICE_AQ_RC_EBADBUF";
6268 }
6269
6270 return "ICE_AQ_RC_UNKNOWN";
6271 }
6272
6273 /**
6274 * ice_stat_str - convert status err code to a string
6275 * @stat_err: the status error code to convert
6276 */
ice_stat_str(enum ice_status stat_err)6277 const char *ice_stat_str(enum ice_status stat_err)
6278 {
6279 switch (stat_err) {
6280 case ICE_SUCCESS:
6281 return "OK";
6282 case ICE_ERR_PARAM:
6283 return "ICE_ERR_PARAM";
6284 case ICE_ERR_NOT_IMPL:
6285 return "ICE_ERR_NOT_IMPL";
6286 case ICE_ERR_NOT_READY:
6287 return "ICE_ERR_NOT_READY";
6288 case ICE_ERR_NOT_SUPPORTED:
6289 return "ICE_ERR_NOT_SUPPORTED";
6290 case ICE_ERR_BAD_PTR:
6291 return "ICE_ERR_BAD_PTR";
6292 case ICE_ERR_INVAL_SIZE:
6293 return "ICE_ERR_INVAL_SIZE";
6294 case ICE_ERR_DEVICE_NOT_SUPPORTED:
6295 return "ICE_ERR_DEVICE_NOT_SUPPORTED";
6296 case ICE_ERR_RESET_FAILED:
6297 return "ICE_ERR_RESET_FAILED";
6298 case ICE_ERR_FW_API_VER:
6299 return "ICE_ERR_FW_API_VER";
6300 case ICE_ERR_NO_MEMORY:
6301 return "ICE_ERR_NO_MEMORY";
6302 case ICE_ERR_CFG:
6303 return "ICE_ERR_CFG";
6304 case ICE_ERR_OUT_OF_RANGE:
6305 return "ICE_ERR_OUT_OF_RANGE";
6306 case ICE_ERR_ALREADY_EXISTS:
6307 return "ICE_ERR_ALREADY_EXISTS";
6308 case ICE_ERR_NVM_CHECKSUM:
6309 return "ICE_ERR_NVM_CHECKSUM";
6310 case ICE_ERR_BUF_TOO_SHORT:
6311 return "ICE_ERR_BUF_TOO_SHORT";
6312 case ICE_ERR_NVM_BLANK_MODE:
6313 return "ICE_ERR_NVM_BLANK_MODE";
6314 case ICE_ERR_IN_USE:
6315 return "ICE_ERR_IN_USE";
6316 case ICE_ERR_MAX_LIMIT:
6317 return "ICE_ERR_MAX_LIMIT";
6318 case ICE_ERR_RESET_ONGOING:
6319 return "ICE_ERR_RESET_ONGOING";
6320 case ICE_ERR_HW_TABLE:
6321 return "ICE_ERR_HW_TABLE";
6322 case ICE_ERR_DOES_NOT_EXIST:
6323 return "ICE_ERR_DOES_NOT_EXIST";
6324 case ICE_ERR_FW_DDP_MISMATCH:
6325 return "ICE_ERR_FW_DDP_MISMATCH";
6326 case ICE_ERR_AQ_ERROR:
6327 return "ICE_ERR_AQ_ERROR";
6328 case ICE_ERR_AQ_TIMEOUT:
6329 return "ICE_ERR_AQ_TIMEOUT";
6330 case ICE_ERR_AQ_FULL:
6331 return "ICE_ERR_AQ_FULL";
6332 case ICE_ERR_AQ_NO_WORK:
6333 return "ICE_ERR_AQ_NO_WORK";
6334 case ICE_ERR_AQ_EMPTY:
6335 return "ICE_ERR_AQ_EMPTY";
6336 case ICE_ERR_AQ_FW_CRITICAL:
6337 return "ICE_ERR_AQ_FW_CRITICAL";
6338 }
6339
6340 return "ICE_ERR_UNKNOWN";
6341 }
6342
6343 /**
6344 * ice_set_rss - Set RSS keys and lut
6345 * @vsi: Pointer to VSI structure
6346 * @seed: RSS hash seed
6347 * @lut: Lookup table
6348 * @lut_size: Lookup table size
6349 *
6350 * Returns 0 on success, negative on failure
6351 */
ice_set_rss(struct ice_vsi * vsi,u8 * seed,u8 * lut,u16 lut_size)6352 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6353 {
6354 struct ice_pf *pf = vsi->back;
6355 struct ice_hw *hw = &pf->hw;
6356 enum ice_status status;
6357 struct device *dev;
6358
6359 dev = ice_pf_to_dev(pf);
6360 if (seed) {
6361 struct ice_aqc_get_set_rss_keys *buf =
6362 (struct ice_aqc_get_set_rss_keys *)seed;
6363
6364 status = ice_aq_set_rss_key(hw, vsi->idx, buf);
6365
6366 if (status) {
6367 dev_err(dev, "Cannot set RSS key, err %s aq_err %s\n",
6368 ice_stat_str(status),
6369 ice_aq_str(hw->adminq.sq_last_status));
6370 return -EIO;
6371 }
6372 }
6373
6374 if (lut) {
6375 status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6376 lut, lut_size);
6377 if (status) {
6378 dev_err(dev, "Cannot set RSS lut, err %s aq_err %s\n",
6379 ice_stat_str(status),
6380 ice_aq_str(hw->adminq.sq_last_status));
6381 return -EIO;
6382 }
6383 }
6384
6385 return 0;
6386 }
6387
6388 /**
6389 * ice_get_rss - Get RSS keys and lut
6390 * @vsi: Pointer to VSI structure
6391 * @seed: Buffer to store the keys
6392 * @lut: Buffer to store the lookup table entries
6393 * @lut_size: Size of buffer to store the lookup table entries
6394 *
6395 * Returns 0 on success, negative on failure
6396 */
ice_get_rss(struct ice_vsi * vsi,u8 * seed,u8 * lut,u16 lut_size)6397 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6398 {
6399 struct ice_pf *pf = vsi->back;
6400 struct ice_hw *hw = &pf->hw;
6401 enum ice_status status;
6402 struct device *dev;
6403
6404 dev = ice_pf_to_dev(pf);
6405 if (seed) {
6406 struct ice_aqc_get_set_rss_keys *buf =
6407 (struct ice_aqc_get_set_rss_keys *)seed;
6408
6409 status = ice_aq_get_rss_key(hw, vsi->idx, buf);
6410 if (status) {
6411 dev_err(dev, "Cannot get RSS key, err %s aq_err %s\n",
6412 ice_stat_str(status),
6413 ice_aq_str(hw->adminq.sq_last_status));
6414 return -EIO;
6415 }
6416 }
6417
6418 if (lut) {
6419 status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6420 lut, lut_size);
6421 if (status) {
6422 dev_err(dev, "Cannot get RSS lut, err %s aq_err %s\n",
6423 ice_stat_str(status),
6424 ice_aq_str(hw->adminq.sq_last_status));
6425 return -EIO;
6426 }
6427 }
6428
6429 return 0;
6430 }
6431
6432 /**
6433 * ice_bridge_getlink - Get the hardware bridge mode
6434 * @skb: skb buff
6435 * @pid: process ID
6436 * @seq: RTNL message seq
6437 * @dev: the netdev being configured
6438 * @filter_mask: filter mask passed in
6439 * @nlflags: netlink flags passed in
6440 *
6441 * Return the bridge mode (VEB/VEPA)
6442 */
6443 static int
ice_bridge_getlink(struct sk_buff * skb,u32 pid,u32 seq,struct net_device * dev,u32 filter_mask,int nlflags)6444 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
6445 struct net_device *dev, u32 filter_mask, int nlflags)
6446 {
6447 struct ice_netdev_priv *np = netdev_priv(dev);
6448 struct ice_vsi *vsi = np->vsi;
6449 struct ice_pf *pf = vsi->back;
6450 u16 bmode;
6451
6452 bmode = pf->first_sw->bridge_mode;
6453
6454 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
6455 filter_mask, NULL);
6456 }
6457
6458 /**
6459 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
6460 * @vsi: Pointer to VSI structure
6461 * @bmode: Hardware bridge mode (VEB/VEPA)
6462 *
6463 * Returns 0 on success, negative on failure
6464 */
ice_vsi_update_bridge_mode(struct ice_vsi * vsi,u16 bmode)6465 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
6466 {
6467 struct ice_aqc_vsi_props *vsi_props;
6468 struct ice_hw *hw = &vsi->back->hw;
6469 struct ice_vsi_ctx *ctxt;
6470 enum ice_status status;
6471 int ret = 0;
6472
6473 vsi_props = &vsi->info;
6474
6475 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
6476 if (!ctxt)
6477 return -ENOMEM;
6478
6479 ctxt->info = vsi->info;
6480
6481 if (bmode == BRIDGE_MODE_VEB)
6482 /* change from VEPA to VEB mode */
6483 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6484 else
6485 /* change from VEB to VEPA mode */
6486 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6487 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
6488
6489 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
6490 if (status) {
6491 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n",
6492 bmode, ice_stat_str(status),
6493 ice_aq_str(hw->adminq.sq_last_status));
6494 ret = -EIO;
6495 goto out;
6496 }
6497 /* Update sw flags for book keeping */
6498 vsi_props->sw_flags = ctxt->info.sw_flags;
6499
6500 out:
6501 kfree(ctxt);
6502 return ret;
6503 }
6504
6505 /**
6506 * ice_bridge_setlink - Set the hardware bridge mode
6507 * @dev: the netdev being configured
6508 * @nlh: RTNL message
6509 * @flags: bridge setlink flags
6510 * @extack: netlink extended ack
6511 *
6512 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
6513 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
6514 * not already set for all VSIs connected to this switch. And also update the
6515 * unicast switch filter rules for the corresponding switch of the netdev.
6516 */
6517 static int
ice_bridge_setlink(struct net_device * dev,struct nlmsghdr * nlh,u16 __always_unused flags,struct netlink_ext_ack __always_unused * extack)6518 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
6519 u16 __always_unused flags,
6520 struct netlink_ext_ack __always_unused *extack)
6521 {
6522 struct ice_netdev_priv *np = netdev_priv(dev);
6523 struct ice_pf *pf = np->vsi->back;
6524 struct nlattr *attr, *br_spec;
6525 struct ice_hw *hw = &pf->hw;
6526 enum ice_status status;
6527 struct ice_sw *pf_sw;
6528 int rem, v, err = 0;
6529
6530 pf_sw = pf->first_sw;
6531 /* find the attribute in the netlink message */
6532 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
6533
6534 nla_for_each_nested(attr, br_spec, rem) {
6535 __u16 mode;
6536
6537 if (nla_type(attr) != IFLA_BRIDGE_MODE)
6538 continue;
6539 mode = nla_get_u16(attr);
6540 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
6541 return -EINVAL;
6542 /* Continue if bridge mode is not being flipped */
6543 if (mode == pf_sw->bridge_mode)
6544 continue;
6545 /* Iterates through the PF VSI list and update the loopback
6546 * mode of the VSI
6547 */
6548 ice_for_each_vsi(pf, v) {
6549 if (!pf->vsi[v])
6550 continue;
6551 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
6552 if (err)
6553 return err;
6554 }
6555
6556 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
6557 /* Update the unicast switch filter rules for the corresponding
6558 * switch of the netdev
6559 */
6560 status = ice_update_sw_rule_bridge_mode(hw);
6561 if (status) {
6562 netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n",
6563 mode, ice_stat_str(status),
6564 ice_aq_str(hw->adminq.sq_last_status));
6565 /* revert hw->evb_veb */
6566 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
6567 return -EIO;
6568 }
6569
6570 pf_sw->bridge_mode = mode;
6571 }
6572
6573 return 0;
6574 }
6575
6576 /**
6577 * ice_tx_timeout - Respond to a Tx Hang
6578 * @netdev: network interface device structure
6579 * @txqueue: Tx queue
6580 */
ice_tx_timeout(struct net_device * netdev,unsigned int txqueue)6581 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
6582 {
6583 struct ice_netdev_priv *np = netdev_priv(netdev);
6584 struct ice_ring *tx_ring = NULL;
6585 struct ice_vsi *vsi = np->vsi;
6586 struct ice_pf *pf = vsi->back;
6587 u32 i;
6588
6589 pf->tx_timeout_count++;
6590
6591 /* Check if PFC is enabled for the TC to which the queue belongs
6592 * to. If yes then Tx timeout is not caused by a hung queue, no
6593 * need to reset and rebuild
6594 */
6595 if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
6596 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
6597 txqueue);
6598 return;
6599 }
6600
6601 /* now that we have an index, find the tx_ring struct */
6602 for (i = 0; i < vsi->num_txq; i++)
6603 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
6604 if (txqueue == vsi->tx_rings[i]->q_index) {
6605 tx_ring = vsi->tx_rings[i];
6606 break;
6607 }
6608
6609 /* Reset recovery level if enough time has elapsed after last timeout.
6610 * Also ensure no new reset action happens before next timeout period.
6611 */
6612 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
6613 pf->tx_timeout_recovery_level = 1;
6614 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
6615 netdev->watchdog_timeo)))
6616 return;
6617
6618 if (tx_ring) {
6619 struct ice_hw *hw = &pf->hw;
6620 u32 head, val = 0;
6621
6622 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
6623 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
6624 /* Read interrupt register */
6625 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
6626
6627 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
6628 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
6629 head, tx_ring->next_to_use, val);
6630 }
6631
6632 pf->tx_timeout_last_recovery = jiffies;
6633 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
6634 pf->tx_timeout_recovery_level, txqueue);
6635
6636 switch (pf->tx_timeout_recovery_level) {
6637 case 1:
6638 set_bit(__ICE_PFR_REQ, pf->state);
6639 break;
6640 case 2:
6641 set_bit(__ICE_CORER_REQ, pf->state);
6642 break;
6643 case 3:
6644 set_bit(__ICE_GLOBR_REQ, pf->state);
6645 break;
6646 default:
6647 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
6648 set_bit(__ICE_DOWN, pf->state);
6649 set_bit(__ICE_NEEDS_RESTART, vsi->state);
6650 set_bit(__ICE_SERVICE_DIS, pf->state);
6651 break;
6652 }
6653
6654 ice_service_task_schedule(pf);
6655 pf->tx_timeout_recovery_level++;
6656 }
6657
6658 /**
6659 * ice_open - Called when a network interface becomes active
6660 * @netdev: network interface device structure
6661 *
6662 * The open entry point is called when a network interface is made
6663 * active by the system (IFF_UP). At this point all resources needed
6664 * for transmit and receive operations are allocated, the interrupt
6665 * handler is registered with the OS, the netdev watchdog is enabled,
6666 * and the stack is notified that the interface is ready.
6667 *
6668 * Returns 0 on success, negative value on failure
6669 */
ice_open(struct net_device * netdev)6670 int ice_open(struct net_device *netdev)
6671 {
6672 struct ice_netdev_priv *np = netdev_priv(netdev);
6673 struct ice_pf *pf = np->vsi->back;
6674
6675 if (ice_is_reset_in_progress(pf->state)) {
6676 netdev_err(netdev, "can't open net device while reset is in progress");
6677 return -EBUSY;
6678 }
6679
6680 return ice_open_internal(netdev);
6681 }
6682
6683 /**
6684 * ice_open_internal - Called when a network interface becomes active
6685 * @netdev: network interface device structure
6686 *
6687 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
6688 * handling routine
6689 *
6690 * Returns 0 on success, negative value on failure
6691 */
ice_open_internal(struct net_device * netdev)6692 int ice_open_internal(struct net_device *netdev)
6693 {
6694 struct ice_netdev_priv *np = netdev_priv(netdev);
6695 struct ice_vsi *vsi = np->vsi;
6696 struct ice_pf *pf = vsi->back;
6697 struct ice_port_info *pi;
6698 int err;
6699
6700 if (test_bit(__ICE_NEEDS_RESTART, pf->state)) {
6701 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
6702 return -EIO;
6703 }
6704
6705 if (test_bit(__ICE_DOWN, pf->state)) {
6706 netdev_err(netdev, "device is not ready yet\n");
6707 return -EBUSY;
6708 }
6709
6710 netif_carrier_off(netdev);
6711
6712 pi = vsi->port_info;
6713 err = ice_update_link_info(pi);
6714 if (err) {
6715 netdev_err(netdev, "Failed to get link info, error %d\n",
6716 err);
6717 return err;
6718 }
6719
6720 /* Set PHY if there is media, otherwise, turn off PHY */
6721 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
6722 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6723 if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state)) {
6724 err = ice_init_phy_user_cfg(pi);
6725 if (err) {
6726 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
6727 err);
6728 return err;
6729 }
6730 }
6731
6732 err = ice_configure_phy(vsi);
6733 if (err) {
6734 netdev_err(netdev, "Failed to set physical link up, error %d\n",
6735 err);
6736 return err;
6737 }
6738 } else {
6739 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6740 err = ice_aq_set_link_restart_an(pi, false, NULL);
6741 if (err) {
6742 netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n",
6743 vsi->vsi_num, err);
6744 return err;
6745 }
6746 }
6747
6748 err = ice_vsi_open(vsi);
6749 if (err)
6750 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
6751 vsi->vsi_num, vsi->vsw->sw_id);
6752
6753 /* Update existing tunnels information */
6754 udp_tunnel_get_rx_info(netdev);
6755
6756 return err;
6757 }
6758
6759 /**
6760 * ice_stop - Disables a network interface
6761 * @netdev: network interface device structure
6762 *
6763 * The stop entry point is called when an interface is de-activated by the OS,
6764 * and the netdevice enters the DOWN state. The hardware is still under the
6765 * driver's control, but the netdev interface is disabled.
6766 *
6767 * Returns success only - not allowed to fail
6768 */
ice_stop(struct net_device * netdev)6769 int ice_stop(struct net_device *netdev)
6770 {
6771 struct ice_netdev_priv *np = netdev_priv(netdev);
6772 struct ice_vsi *vsi = np->vsi;
6773 struct ice_pf *pf = vsi->back;
6774
6775 if (ice_is_reset_in_progress(pf->state)) {
6776 netdev_err(netdev, "can't stop net device while reset is in progress");
6777 return -EBUSY;
6778 }
6779
6780 ice_vsi_close(vsi);
6781
6782 return 0;
6783 }
6784
6785 /**
6786 * ice_features_check - Validate encapsulated packet conforms to limits
6787 * @skb: skb buffer
6788 * @netdev: This port's netdev
6789 * @features: Offload features that the stack believes apply
6790 */
6791 static netdev_features_t
ice_features_check(struct sk_buff * skb,struct net_device __always_unused * netdev,netdev_features_t features)6792 ice_features_check(struct sk_buff *skb,
6793 struct net_device __always_unused *netdev,
6794 netdev_features_t features)
6795 {
6796 size_t len;
6797
6798 /* No point in doing any of this if neither checksum nor GSO are
6799 * being requested for this frame. We can rule out both by just
6800 * checking for CHECKSUM_PARTIAL
6801 */
6802 if (skb->ip_summed != CHECKSUM_PARTIAL)
6803 return features;
6804
6805 /* We cannot support GSO if the MSS is going to be less than
6806 * 64 bytes. If it is then we need to drop support for GSO.
6807 */
6808 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
6809 features &= ~NETIF_F_GSO_MASK;
6810
6811 len = skb_network_header(skb) - skb->data;
6812 if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
6813 goto out_rm_features;
6814
6815 len = skb_transport_header(skb) - skb_network_header(skb);
6816 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6817 goto out_rm_features;
6818
6819 if (skb->encapsulation) {
6820 len = skb_inner_network_header(skb) - skb_transport_header(skb);
6821 if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
6822 goto out_rm_features;
6823
6824 len = skb_inner_transport_header(skb) -
6825 skb_inner_network_header(skb);
6826 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6827 goto out_rm_features;
6828 }
6829
6830 return features;
6831 out_rm_features:
6832 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
6833 }
6834
6835 static const struct net_device_ops ice_netdev_safe_mode_ops = {
6836 .ndo_open = ice_open,
6837 .ndo_stop = ice_stop,
6838 .ndo_start_xmit = ice_start_xmit,
6839 .ndo_set_mac_address = ice_set_mac_address,
6840 .ndo_validate_addr = eth_validate_addr,
6841 .ndo_change_mtu = ice_change_mtu,
6842 .ndo_get_stats64 = ice_get_stats64,
6843 .ndo_tx_timeout = ice_tx_timeout,
6844 .ndo_bpf = ice_xdp_safe_mode,
6845 };
6846
6847 static const struct net_device_ops ice_netdev_ops = {
6848 .ndo_open = ice_open,
6849 .ndo_stop = ice_stop,
6850 .ndo_start_xmit = ice_start_xmit,
6851 .ndo_features_check = ice_features_check,
6852 .ndo_set_rx_mode = ice_set_rx_mode,
6853 .ndo_set_mac_address = ice_set_mac_address,
6854 .ndo_validate_addr = eth_validate_addr,
6855 .ndo_change_mtu = ice_change_mtu,
6856 .ndo_get_stats64 = ice_get_stats64,
6857 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
6858 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
6859 .ndo_set_vf_mac = ice_set_vf_mac,
6860 .ndo_get_vf_config = ice_get_vf_cfg,
6861 .ndo_set_vf_trust = ice_set_vf_trust,
6862 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
6863 .ndo_set_vf_link_state = ice_set_vf_link_state,
6864 .ndo_get_vf_stats = ice_get_vf_stats,
6865 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
6866 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
6867 .ndo_set_features = ice_set_features,
6868 .ndo_bridge_getlink = ice_bridge_getlink,
6869 .ndo_bridge_setlink = ice_bridge_setlink,
6870 .ndo_fdb_add = ice_fdb_add,
6871 .ndo_fdb_del = ice_fdb_del,
6872 #ifdef CONFIG_RFS_ACCEL
6873 .ndo_rx_flow_steer = ice_rx_flow_steer,
6874 #endif
6875 .ndo_tx_timeout = ice_tx_timeout,
6876 .ndo_bpf = ice_xdp,
6877 .ndo_xdp_xmit = ice_xdp_xmit,
6878 .ndo_xsk_wakeup = ice_xsk_wakeup,
6879 .ndo_udp_tunnel_add = udp_tunnel_nic_add_port,
6880 .ndo_udp_tunnel_del = udp_tunnel_nic_del_port,
6881 };
6882