• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "i915_drv.h"
25 #include "i915_scatterlist.h"
26 #include "i915_pvinfo.h"
27 #include "i915_vgpu.h"
28 
29 /**
30  * DOC: fence register handling
31  *
32  * Important to avoid confusions: "fences" in the i915 driver are not execution
33  * fences used to track command completion but hardware detiler objects which
34  * wrap a given range of the global GTT. Each platform has only a fairly limited
35  * set of these objects.
36  *
37  * Fences are used to detile GTT memory mappings. They're also connected to the
38  * hardware frontbuffer render tracking and hence interact with frontbuffer
39  * compression. Furthermore on older platforms fences are required for tiled
40  * objects used by the display engine. They can also be used by the render
41  * engine - they're required for blitter commands and are optional for render
42  * commands. But on gen4+ both display (with the exception of fbc) and rendering
43  * have their own tiling state bits and don't need fences.
44  *
45  * Also note that fences only support X and Y tiling and hence can't be used for
46  * the fancier new tiling formats like W, Ys and Yf.
47  *
48  * Finally note that because fences are such a restricted resource they're
49  * dynamically associated with objects. Furthermore fence state is committed to
50  * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
51  * explicitly call i915_gem_object_get_fence() to synchronize fencing status
52  * for cpu access. Also note that some code wants an unfenced view, for those
53  * cases the fence can be removed forcefully with i915_gem_object_put_fence().
54  *
55  * Internally these functions will synchronize with userspace access by removing
56  * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
57  */
58 
59 #define pipelined 0
60 
fence_to_i915(struct i915_fence_reg * fence)61 static struct drm_i915_private *fence_to_i915(struct i915_fence_reg *fence)
62 {
63 	return fence->ggtt->vm.i915;
64 }
65 
fence_to_uncore(struct i915_fence_reg * fence)66 static struct intel_uncore *fence_to_uncore(struct i915_fence_reg *fence)
67 {
68 	return fence->ggtt->vm.gt->uncore;
69 }
70 
i965_write_fence_reg(struct i915_fence_reg * fence)71 static void i965_write_fence_reg(struct i915_fence_reg *fence)
72 {
73 	i915_reg_t fence_reg_lo, fence_reg_hi;
74 	int fence_pitch_shift;
75 	u64 val;
76 
77 	if (INTEL_GEN(fence_to_i915(fence)) >= 6) {
78 		fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
79 		fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
80 		fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
81 
82 	} else {
83 		fence_reg_lo = FENCE_REG_965_LO(fence->id);
84 		fence_reg_hi = FENCE_REG_965_HI(fence->id);
85 		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
86 	}
87 
88 	val = 0;
89 	if (fence->tiling) {
90 		unsigned int stride = fence->stride;
91 
92 		GEM_BUG_ON(!IS_ALIGNED(stride, 128));
93 
94 		val = fence->start + fence->size - I965_FENCE_PAGE;
95 		val <<= 32;
96 		val |= fence->start;
97 		val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
98 		if (fence->tiling == I915_TILING_Y)
99 			val |= BIT(I965_FENCE_TILING_Y_SHIFT);
100 		val |= I965_FENCE_REG_VALID;
101 	}
102 
103 	if (!pipelined) {
104 		struct intel_uncore *uncore = fence_to_uncore(fence);
105 
106 		/*
107 		 * To w/a incoherency with non-atomic 64-bit register updates,
108 		 * we split the 64-bit update into two 32-bit writes. In order
109 		 * for a partial fence not to be evaluated between writes, we
110 		 * precede the update with write to turn off the fence register,
111 		 * and only enable the fence as the last step.
112 		 *
113 		 * For extra levels of paranoia, we make sure each step lands
114 		 * before applying the next step.
115 		 */
116 		intel_uncore_write_fw(uncore, fence_reg_lo, 0);
117 		intel_uncore_posting_read_fw(uncore, fence_reg_lo);
118 
119 		intel_uncore_write_fw(uncore, fence_reg_hi, upper_32_bits(val));
120 		intel_uncore_write_fw(uncore, fence_reg_lo, lower_32_bits(val));
121 		intel_uncore_posting_read_fw(uncore, fence_reg_lo);
122 	}
123 }
124 
i915_write_fence_reg(struct i915_fence_reg * fence)125 static void i915_write_fence_reg(struct i915_fence_reg *fence)
126 {
127 	u32 val;
128 
129 	val = 0;
130 	if (fence->tiling) {
131 		unsigned int stride = fence->stride;
132 		unsigned int tiling = fence->tiling;
133 		bool is_y_tiled = tiling == I915_TILING_Y;
134 
135 		if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence_to_i915(fence)))
136 			stride /= 128;
137 		else
138 			stride /= 512;
139 		GEM_BUG_ON(!is_power_of_2(stride));
140 
141 		val = fence->start;
142 		if (is_y_tiled)
143 			val |= BIT(I830_FENCE_TILING_Y_SHIFT);
144 		val |= I915_FENCE_SIZE_BITS(fence->size);
145 		val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT;
146 
147 		val |= I830_FENCE_REG_VALID;
148 	}
149 
150 	if (!pipelined) {
151 		struct intel_uncore *uncore = fence_to_uncore(fence);
152 		i915_reg_t reg = FENCE_REG(fence->id);
153 
154 		intel_uncore_write_fw(uncore, reg, val);
155 		intel_uncore_posting_read_fw(uncore, reg);
156 	}
157 }
158 
i830_write_fence_reg(struct i915_fence_reg * fence)159 static void i830_write_fence_reg(struct i915_fence_reg *fence)
160 {
161 	u32 val;
162 
163 	val = 0;
164 	if (fence->tiling) {
165 		unsigned int stride = fence->stride;
166 
167 		val = fence->start;
168 		if (fence->tiling == I915_TILING_Y)
169 			val |= BIT(I830_FENCE_TILING_Y_SHIFT);
170 		val |= I830_FENCE_SIZE_BITS(fence->size);
171 		val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT;
172 		val |= I830_FENCE_REG_VALID;
173 	}
174 
175 	if (!pipelined) {
176 		struct intel_uncore *uncore = fence_to_uncore(fence);
177 		i915_reg_t reg = FENCE_REG(fence->id);
178 
179 		intel_uncore_write_fw(uncore, reg, val);
180 		intel_uncore_posting_read_fw(uncore, reg);
181 	}
182 }
183 
fence_write(struct i915_fence_reg * fence)184 static void fence_write(struct i915_fence_reg *fence)
185 {
186 	struct drm_i915_private *i915 = fence_to_i915(fence);
187 
188 	/*
189 	 * Previous access through the fence register is marshalled by
190 	 * the mb() inside the fault handlers (i915_gem_release_mmaps)
191 	 * and explicitly managed for internal users.
192 	 */
193 
194 	if (IS_GEN(i915, 2))
195 		i830_write_fence_reg(fence);
196 	else if (IS_GEN(i915, 3))
197 		i915_write_fence_reg(fence);
198 	else
199 		i965_write_fence_reg(fence);
200 
201 	/*
202 	 * Access through the fenced region afterwards is
203 	 * ordered by the posting reads whilst writing the registers.
204 	 */
205 }
206 
gpu_uses_fence_registers(struct i915_fence_reg * fence)207 static bool gpu_uses_fence_registers(struct i915_fence_reg *fence)
208 {
209 	return INTEL_GEN(fence_to_i915(fence)) < 4;
210 }
211 
fence_update(struct i915_fence_reg * fence,struct i915_vma * vma)212 static int fence_update(struct i915_fence_reg *fence,
213 			struct i915_vma *vma)
214 {
215 	struct i915_ggtt *ggtt = fence->ggtt;
216 	struct intel_uncore *uncore = fence_to_uncore(fence);
217 	intel_wakeref_t wakeref;
218 	struct i915_vma *old;
219 	int ret;
220 
221 	fence->tiling = 0;
222 	if (vma) {
223 		GEM_BUG_ON(!i915_gem_object_get_stride(vma->obj) ||
224 			   !i915_gem_object_get_tiling(vma->obj));
225 
226 		if (!i915_vma_is_map_and_fenceable(vma))
227 			return -EINVAL;
228 
229 		if (gpu_uses_fence_registers(fence)) {
230 			/* implicit 'unfenced' GPU blits */
231 			ret = i915_vma_sync(vma);
232 			if (ret)
233 				return ret;
234 		}
235 
236 		fence->start = vma->node.start;
237 		fence->size = vma->fence_size;
238 		fence->stride = i915_gem_object_get_stride(vma->obj);
239 		fence->tiling = i915_gem_object_get_tiling(vma->obj);
240 	}
241 	WRITE_ONCE(fence->dirty, false);
242 
243 	old = xchg(&fence->vma, NULL);
244 	if (old) {
245 		/* XXX Ideally we would move the waiting to outside the mutex */
246 		ret = i915_active_wait(&fence->active);
247 		if (ret) {
248 			fence->vma = old;
249 			return ret;
250 		}
251 
252 		i915_vma_flush_writes(old);
253 
254 		/*
255 		 * Ensure that all userspace CPU access is completed before
256 		 * stealing the fence.
257 		 */
258 		if (old != vma) {
259 			GEM_BUG_ON(old->fence != fence);
260 			i915_vma_revoke_mmap(old);
261 			old->fence = NULL;
262 		}
263 
264 		list_move(&fence->link, &ggtt->fence_list);
265 	}
266 
267 	/*
268 	 * We only need to update the register itself if the device is awake.
269 	 * If the device is currently powered down, we will defer the write
270 	 * to the runtime resume, see intel_ggtt_restore_fences().
271 	 *
272 	 * This only works for removing the fence register, on acquisition
273 	 * the caller must hold the rpm wakeref. The fence register must
274 	 * be cleared before we can use any other fences to ensure that
275 	 * the new fences do not overlap the elided clears, confusing HW.
276 	 */
277 	wakeref = intel_runtime_pm_get_if_in_use(uncore->rpm);
278 	if (!wakeref) {
279 		GEM_BUG_ON(vma);
280 		return 0;
281 	}
282 
283 	WRITE_ONCE(fence->vma, vma);
284 	fence_write(fence);
285 
286 	if (vma) {
287 		vma->fence = fence;
288 		list_move_tail(&fence->link, &ggtt->fence_list);
289 	}
290 
291 	intel_runtime_pm_put(uncore->rpm, wakeref);
292 	return 0;
293 }
294 
295 /**
296  * i915_vma_revoke_fence - force-remove fence for a VMA
297  * @vma: vma to map linearly (not through a fence reg)
298  *
299  * This function force-removes any fence from the given object, which is useful
300  * if the kernel wants to do untiled GTT access.
301  */
i915_vma_revoke_fence(struct i915_vma * vma)302 void i915_vma_revoke_fence(struct i915_vma *vma)
303 {
304 	struct i915_fence_reg *fence = vma->fence;
305 	intel_wakeref_t wakeref;
306 
307 	lockdep_assert_held(&vma->vm->mutex);
308 	if (!fence)
309 		return;
310 
311 	GEM_BUG_ON(fence->vma != vma);
312 	GEM_BUG_ON(!i915_active_is_idle(&fence->active));
313 	GEM_BUG_ON(atomic_read(&fence->pin_count));
314 
315 	fence->tiling = 0;
316 	WRITE_ONCE(fence->vma, NULL);
317 	vma->fence = NULL;
318 
319 	/*
320 	 * Skip the write to HW if and only if the device is currently
321 	 * suspended.
322 	 *
323 	 * If the driver does not currently hold a wakeref (if_in_use == 0),
324 	 * the device may currently be runtime suspended, or it may be woken
325 	 * up before the suspend takes place. If the device is not suspended
326 	 * (powered down) and we skip clearing the fence register, the HW is
327 	 * left in an undefined state where we may end up with multiple
328 	 * registers overlapping.
329 	 */
330 	with_intel_runtime_pm_if_active(fence_to_uncore(fence)->rpm, wakeref)
331 		fence_write(fence);
332 }
333 
fence_find(struct i915_ggtt * ggtt)334 static struct i915_fence_reg *fence_find(struct i915_ggtt *ggtt)
335 {
336 	struct i915_fence_reg *fence;
337 
338 	list_for_each_entry(fence, &ggtt->fence_list, link) {
339 		GEM_BUG_ON(fence->vma && fence->vma->fence != fence);
340 
341 		if (atomic_read(&fence->pin_count))
342 			continue;
343 
344 		return fence;
345 	}
346 
347 	/* Wait for completion of pending flips which consume fences */
348 	if (intel_has_pending_fb_unpin(ggtt->vm.i915))
349 		return ERR_PTR(-EAGAIN);
350 
351 	return ERR_PTR(-ENOBUFS);
352 }
353 
__i915_vma_pin_fence(struct i915_vma * vma)354 int __i915_vma_pin_fence(struct i915_vma *vma)
355 {
356 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
357 	struct i915_fence_reg *fence;
358 	struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
359 	int err;
360 
361 	lockdep_assert_held(&vma->vm->mutex);
362 
363 	/* Just update our place in the LRU if our fence is getting reused. */
364 	if (vma->fence) {
365 		fence = vma->fence;
366 		GEM_BUG_ON(fence->vma != vma);
367 		atomic_inc(&fence->pin_count);
368 		if (!fence->dirty) {
369 			list_move_tail(&fence->link, &ggtt->fence_list);
370 			return 0;
371 		}
372 	} else if (set) {
373 		fence = fence_find(ggtt);
374 		if (IS_ERR(fence))
375 			return PTR_ERR(fence);
376 
377 		GEM_BUG_ON(atomic_read(&fence->pin_count));
378 		atomic_inc(&fence->pin_count);
379 	} else {
380 		return 0;
381 	}
382 
383 	err = fence_update(fence, set);
384 	if (err)
385 		goto out_unpin;
386 
387 	GEM_BUG_ON(fence->vma != set);
388 	GEM_BUG_ON(vma->fence != (set ? fence : NULL));
389 
390 	if (set)
391 		return 0;
392 
393 out_unpin:
394 	atomic_dec(&fence->pin_count);
395 	return err;
396 }
397 
398 /**
399  * i915_vma_pin_fence - set up fencing for a vma
400  * @vma: vma to map through a fence reg
401  *
402  * When mapping objects through the GTT, userspace wants to be able to write
403  * to them without having to worry about swizzling if the object is tiled.
404  * This function walks the fence regs looking for a free one for @obj,
405  * stealing one if it can't find any.
406  *
407  * It then sets up the reg based on the object's properties: address, pitch
408  * and tiling format.
409  *
410  * For an untiled surface, this removes any existing fence.
411  *
412  * Returns:
413  *
414  * 0 on success, negative error code on failure.
415  */
i915_vma_pin_fence(struct i915_vma * vma)416 int i915_vma_pin_fence(struct i915_vma *vma)
417 {
418 	int err;
419 
420 	if (!vma->fence && !i915_gem_object_is_tiled(vma->obj))
421 		return 0;
422 
423 	/*
424 	 * Note that we revoke fences on runtime suspend. Therefore the user
425 	 * must keep the device awake whilst using the fence.
426 	 */
427 	assert_rpm_wakelock_held(vma->vm->gt->uncore->rpm);
428 	GEM_BUG_ON(!i915_vma_is_pinned(vma));
429 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
430 
431 	err = mutex_lock_interruptible(&vma->vm->mutex);
432 	if (err)
433 		return err;
434 
435 	err = __i915_vma_pin_fence(vma);
436 	mutex_unlock(&vma->vm->mutex);
437 
438 	return err;
439 }
440 
441 /**
442  * i915_reserve_fence - Reserve a fence for vGPU
443  * @ggtt: Global GTT
444  *
445  * This function walks the fence regs looking for a free one and remove
446  * it from the fence_list. It is used to reserve fence for vGPU to use.
447  */
i915_reserve_fence(struct i915_ggtt * ggtt)448 struct i915_fence_reg *i915_reserve_fence(struct i915_ggtt *ggtt)
449 {
450 	struct i915_fence_reg *fence;
451 	int count;
452 	int ret;
453 
454 	lockdep_assert_held(&ggtt->vm.mutex);
455 
456 	/* Keep at least one fence available for the display engine. */
457 	count = 0;
458 	list_for_each_entry(fence, &ggtt->fence_list, link)
459 		count += !atomic_read(&fence->pin_count);
460 	if (count <= 1)
461 		return ERR_PTR(-ENOSPC);
462 
463 	fence = fence_find(ggtt);
464 	if (IS_ERR(fence))
465 		return fence;
466 
467 	if (fence->vma) {
468 		/* Force-remove fence from VMA */
469 		ret = fence_update(fence, NULL);
470 		if (ret)
471 			return ERR_PTR(ret);
472 	}
473 
474 	list_del(&fence->link);
475 
476 	return fence;
477 }
478 
479 /**
480  * i915_unreserve_fence - Reclaim a reserved fence
481  * @fence: the fence reg
482  *
483  * This function add a reserved fence register from vGPU to the fence_list.
484  */
i915_unreserve_fence(struct i915_fence_reg * fence)485 void i915_unreserve_fence(struct i915_fence_reg *fence)
486 {
487 	struct i915_ggtt *ggtt = fence->ggtt;
488 
489 	lockdep_assert_held(&ggtt->vm.mutex);
490 
491 	list_add(&fence->link, &ggtt->fence_list);
492 }
493 
494 /**
495  * intel_ggtt_restore_fences - restore fence state
496  * @ggtt: Global GTT
497  *
498  * Restore the hw fence state to match the software tracking again, to be called
499  * after a gpu reset and on resume. Note that on runtime suspend we only cancel
500  * the fences, to be reacquired by the user later.
501  */
intel_ggtt_restore_fences(struct i915_ggtt * ggtt)502 void intel_ggtt_restore_fences(struct i915_ggtt *ggtt)
503 {
504 	int i;
505 
506 	for (i = 0; i < ggtt->num_fences; i++)
507 		fence_write(&ggtt->fence_regs[i]);
508 }
509 
510 /**
511  * DOC: tiling swizzling details
512  *
513  * The idea behind tiling is to increase cache hit rates by rearranging
514  * pixel data so that a group of pixel accesses are in the same cacheline.
515  * Performance improvement from doing this on the back/depth buffer are on
516  * the order of 30%.
517  *
518  * Intel architectures make this somewhat more complicated, though, by
519  * adjustments made to addressing of data when the memory is in interleaved
520  * mode (matched pairs of DIMMS) to improve memory bandwidth.
521  * For interleaved memory, the CPU sends every sequential 64 bytes
522  * to an alternate memory channel so it can get the bandwidth from both.
523  *
524  * The GPU also rearranges its accesses for increased bandwidth to interleaved
525  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
526  * it does it a little differently, since one walks addresses not just in the
527  * X direction but also Y.  So, along with alternating channels when bit
528  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
529  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
530  * are common to both the 915 and 965-class hardware.
531  *
532  * The CPU also sometimes XORs in higher bits as well, to improve
533  * bandwidth doing strided access like we do so frequently in graphics.  This
534  * is called "Channel XOR Randomization" in the MCH documentation.  The result
535  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
536  * decode.
537  *
538  * All of this bit 6 XORing has an effect on our memory management,
539  * as we need to make sure that the 3d driver can correctly address object
540  * contents.
541  *
542  * If we don't have interleaved memory, all tiling is safe and no swizzling is
543  * required.
544  *
545  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
546  * 17 is not just a page offset, so as we page an object out and back in,
547  * individual pages in it will have different bit 17 addresses, resulting in
548  * each 64 bytes being swapped with its neighbor!
549  *
550  * Otherwise, if interleaved, we have to tell the 3d driver what the address
551  * swizzling it needs to do is, since it's writing with the CPU to the pages
552  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
553  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
554  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
555  * to match what the GPU expects.
556  */
557 
558 /**
559  * detect_bit_6_swizzle - detect bit 6 swizzling pattern
560  * @ggtt: Global GGTT
561  *
562  * Detects bit 6 swizzling of address lookup between IGD access and CPU
563  * access through main memory.
564  */
detect_bit_6_swizzle(struct i915_ggtt * ggtt)565 static void detect_bit_6_swizzle(struct i915_ggtt *ggtt)
566 {
567 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
568 	struct drm_i915_private *i915 = ggtt->vm.i915;
569 	u32 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
570 	u32 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
571 
572 	if (INTEL_GEN(i915) >= 8 || IS_VALLEYVIEW(i915)) {
573 		/*
574 		 * On BDW+, swizzling is not used. We leave the CPU memory
575 		 * controller in charge of optimizing memory accesses without
576 		 * the extra address manipulation GPU side.
577 		 *
578 		 * VLV and CHV don't have GPU swizzling.
579 		 */
580 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
581 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
582 	} else if (INTEL_GEN(i915) >= 6) {
583 		if (i915->preserve_bios_swizzle) {
584 			if (intel_uncore_read(uncore, DISP_ARB_CTL) &
585 			    DISP_TILE_SURFACE_SWIZZLING) {
586 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
587 				swizzle_y = I915_BIT_6_SWIZZLE_9;
588 			} else {
589 				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
590 				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
591 			}
592 		} else {
593 			u32 dimm_c0, dimm_c1;
594 			dimm_c0 = intel_uncore_read(uncore, MAD_DIMM_C0);
595 			dimm_c1 = intel_uncore_read(uncore, MAD_DIMM_C1);
596 			dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
597 			dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
598 			/*
599 			 * Enable swizzling when the channels are populated
600 			 * with identically sized dimms. We don't need to check
601 			 * the 3rd channel because no cpu with gpu attached
602 			 * ships in that configuration. Also, swizzling only
603 			 * makes sense for 2 channels anyway.
604 			 */
605 			if (dimm_c0 == dimm_c1) {
606 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
607 				swizzle_y = I915_BIT_6_SWIZZLE_9;
608 			} else {
609 				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
610 				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
611 			}
612 		}
613 	} else if (IS_GEN(i915, 5)) {
614 		/*
615 		 * On Ironlake whatever DRAM config, GPU always do
616 		 * same swizzling setup.
617 		 */
618 		swizzle_x = I915_BIT_6_SWIZZLE_9_10;
619 		swizzle_y = I915_BIT_6_SWIZZLE_9;
620 	} else if (IS_GEN(i915, 2)) {
621 		/*
622 		 * As far as we know, the 865 doesn't have these bit 6
623 		 * swizzling issues.
624 		 */
625 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
626 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
627 	} else if (IS_G45(i915) || IS_I965G(i915) || IS_G33(i915)) {
628 		/*
629 		 * The 965, G33, and newer, have a very flexible memory
630 		 * configuration.  It will enable dual-channel mode
631 		 * (interleaving) on as much memory as it can, and the GPU
632 		 * will additionally sometimes enable different bit 6
633 		 * swizzling for tiled objects from the CPU.
634 		 *
635 		 * Here's what I found on the G965:
636 		 *    slot fill         memory size  swizzling
637 		 * 0A   0B   1A   1B    1-ch   2-ch
638 		 * 512  0    0    0     512    0     O
639 		 * 512  0    512  0     16     1008  X
640 		 * 512  0    0    512   16     1008  X
641 		 * 0    512  0    512   16     1008  X
642 		 * 1024 1024 1024 0     2048   1024  O
643 		 *
644 		 * We could probably detect this based on either the DRB
645 		 * matching, which was the case for the swizzling required in
646 		 * the table above, or from the 1-ch value being less than
647 		 * the minimum size of a rank.
648 		 *
649 		 * Reports indicate that the swizzling actually
650 		 * varies depending upon page placement inside the
651 		 * channels, i.e. we see swizzled pages where the
652 		 * banks of memory are paired and unswizzled on the
653 		 * uneven portion, so leave that as unknown.
654 		 */
655 		if (intel_uncore_read16(uncore, C0DRB3) ==
656 		    intel_uncore_read16(uncore, C1DRB3)) {
657 			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
658 			swizzle_y = I915_BIT_6_SWIZZLE_9;
659 		}
660 	} else {
661 		u32 dcc = intel_uncore_read(uncore, DCC);
662 
663 		/*
664 		 * On 9xx chipsets, channel interleave by the CPU is
665 		 * determined by DCC.  For single-channel, neither the CPU
666 		 * nor the GPU do swizzling.  For dual channel interleaved,
667 		 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
668 		 * 9 for Y tiled.  The CPU's interleave is independent, and
669 		 * can be based on either bit 11 (haven't seen this yet) or
670 		 * bit 17 (common).
671 		 */
672 		switch (dcc & DCC_ADDRESSING_MODE_MASK) {
673 		case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
674 		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
675 			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
676 			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
677 			break;
678 		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
679 			if (dcc & DCC_CHANNEL_XOR_DISABLE) {
680 				/*
681 				 * This is the base swizzling by the GPU for
682 				 * tiled buffers.
683 				 */
684 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
685 				swizzle_y = I915_BIT_6_SWIZZLE_9;
686 			} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
687 				/* Bit 11 swizzling by the CPU in addition. */
688 				swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
689 				swizzle_y = I915_BIT_6_SWIZZLE_9_11;
690 			} else {
691 				/* Bit 17 swizzling by the CPU in addition. */
692 				swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
693 				swizzle_y = I915_BIT_6_SWIZZLE_9_17;
694 			}
695 			break;
696 		}
697 
698 		/* check for L-shaped memory aka modified enhanced addressing */
699 		if (IS_GEN(i915, 4) &&
700 		    !(intel_uncore_read(uncore, DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
701 			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
702 			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
703 		}
704 
705 		if (dcc == 0xffffffff) {
706 			drm_err(&i915->drm, "Couldn't read from MCHBAR.  "
707 				  "Disabling tiling.\n");
708 			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
709 			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
710 		}
711 	}
712 
713 	if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
714 	    swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
715 		/*
716 		 * Userspace likes to explode if it sees unknown swizzling,
717 		 * so lie. We will finish the lie when reporting through
718 		 * the get-tiling-ioctl by reporting the physical swizzle
719 		 * mode as unknown instead.
720 		 *
721 		 * As we don't strictly know what the swizzling is, it may be
722 		 * bit17 dependent, and so we need to also prevent the pages
723 		 * from being moved.
724 		 */
725 		i915->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
726 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
727 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
728 	}
729 
730 	i915->ggtt.bit_6_swizzle_x = swizzle_x;
731 	i915->ggtt.bit_6_swizzle_y = swizzle_y;
732 }
733 
734 /*
735  * Swap every 64 bytes of this page around, to account for it having a new
736  * bit 17 of its physical address and therefore being interpreted differently
737  * by the GPU.
738  */
swizzle_page(struct page * page)739 static void swizzle_page(struct page *page)
740 {
741 	char temp[64];
742 	char *vaddr;
743 	int i;
744 
745 	vaddr = kmap(page);
746 
747 	for (i = 0; i < PAGE_SIZE; i += 128) {
748 		memcpy(temp, &vaddr[i], 64);
749 		memcpy(&vaddr[i], &vaddr[i + 64], 64);
750 		memcpy(&vaddr[i + 64], temp, 64);
751 	}
752 
753 	kunmap(page);
754 }
755 
756 /**
757  * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
758  * @obj: i915 GEM buffer object
759  * @pages: the scattergather list of physical pages
760  *
761  * This function fixes up the swizzling in case any page frame number for this
762  * object has changed in bit 17 since that state has been saved with
763  * i915_gem_object_save_bit_17_swizzle().
764  *
765  * This is called when pinning backing storage again, since the kernel is free
766  * to move unpinned backing storage around (either by directly moving pages or
767  * by swapping them out and back in again).
768  */
769 void
i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object * obj,struct sg_table * pages)770 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
771 				  struct sg_table *pages)
772 {
773 	struct sgt_iter sgt_iter;
774 	struct page *page;
775 	int i;
776 
777 	if (obj->bit_17 == NULL)
778 		return;
779 
780 	i = 0;
781 	for_each_sgt_page(page, sgt_iter, pages) {
782 		char new_bit_17 = page_to_phys(page) >> 17;
783 		if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) {
784 			swizzle_page(page);
785 			set_page_dirty(page);
786 		}
787 		i++;
788 	}
789 }
790 
791 /**
792  * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
793  * @obj: i915 GEM buffer object
794  * @pages: the scattergather list of physical pages
795  *
796  * This function saves the bit 17 of each page frame number so that swizzling
797  * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
798  * be called before the backing storage can be unpinned.
799  */
800 void
i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object * obj,struct sg_table * pages)801 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
802 				    struct sg_table *pages)
803 {
804 	const unsigned int page_count = obj->base.size >> PAGE_SHIFT;
805 	struct sgt_iter sgt_iter;
806 	struct page *page;
807 	int i;
808 
809 	if (obj->bit_17 == NULL) {
810 		obj->bit_17 = bitmap_zalloc(page_count, GFP_KERNEL);
811 		if (obj->bit_17 == NULL) {
812 			DRM_ERROR("Failed to allocate memory for bit 17 "
813 				  "record\n");
814 			return;
815 		}
816 	}
817 
818 	i = 0;
819 
820 	for_each_sgt_page(page, sgt_iter, pages) {
821 		if (page_to_phys(page) & (1 << 17))
822 			__set_bit(i, obj->bit_17);
823 		else
824 			__clear_bit(i, obj->bit_17);
825 		i++;
826 	}
827 }
828 
intel_ggtt_init_fences(struct i915_ggtt * ggtt)829 void intel_ggtt_init_fences(struct i915_ggtt *ggtt)
830 {
831 	struct drm_i915_private *i915 = ggtt->vm.i915;
832 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
833 	int num_fences;
834 	int i;
835 
836 	INIT_LIST_HEAD(&ggtt->fence_list);
837 	INIT_LIST_HEAD(&ggtt->userfault_list);
838 	intel_wakeref_auto_init(&ggtt->userfault_wakeref, uncore->rpm);
839 
840 	detect_bit_6_swizzle(ggtt);
841 
842 	if (!i915_ggtt_has_aperture(ggtt))
843 		num_fences = 0;
844 	else if (INTEL_GEN(i915) >= 7 &&
845 		 !(IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)))
846 		num_fences = 32;
847 	else if (INTEL_GEN(i915) >= 4 ||
848 		 IS_I945G(i915) || IS_I945GM(i915) ||
849 		 IS_G33(i915) || IS_PINEVIEW(i915))
850 		num_fences = 16;
851 	else
852 		num_fences = 8;
853 
854 	if (intel_vgpu_active(i915))
855 		num_fences = intel_uncore_read(uncore,
856 					       vgtif_reg(avail_rs.fence_num));
857 	ggtt->fence_regs = kcalloc(num_fences,
858 				   sizeof(*ggtt->fence_regs),
859 				   GFP_KERNEL);
860 	if (!ggtt->fence_regs)
861 		num_fences = 0;
862 
863 	/* Initialize fence registers to zero */
864 	for (i = 0; i < num_fences; i++) {
865 		struct i915_fence_reg *fence = &ggtt->fence_regs[i];
866 
867 		i915_active_init(&fence->active, NULL, NULL);
868 		fence->ggtt = ggtt;
869 		fence->id = i;
870 		list_add_tail(&fence->link, &ggtt->fence_list);
871 	}
872 	ggtt->num_fences = num_fences;
873 
874 	intel_ggtt_restore_fences(ggtt);
875 }
876 
intel_ggtt_fini_fences(struct i915_ggtt * ggtt)877 void intel_ggtt_fini_fences(struct i915_ggtt *ggtt)
878 {
879 	int i;
880 
881 	for (i = 0; i < ggtt->num_fences; i++) {
882 		struct i915_fence_reg *fence = &ggtt->fence_regs[i];
883 
884 		i915_active_fini(&fence->active);
885 	}
886 
887 	kfree(ggtt->fence_regs);
888 }
889 
intel_gt_init_swizzling(struct intel_gt * gt)890 void intel_gt_init_swizzling(struct intel_gt *gt)
891 {
892 	struct drm_i915_private *i915 = gt->i915;
893 	struct intel_uncore *uncore = gt->uncore;
894 
895 	if (INTEL_GEN(i915) < 5 ||
896 	    i915->ggtt.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
897 		return;
898 
899 	intel_uncore_rmw(uncore, DISP_ARB_CTL, 0, DISP_TILE_SURFACE_SWIZZLING);
900 
901 	if (IS_GEN(i915, 5))
902 		return;
903 
904 	intel_uncore_rmw(uncore, TILECTL, 0, TILECTL_SWZCTL);
905 
906 	if (IS_GEN(i915, 6))
907 		intel_uncore_write(uncore,
908 				   ARB_MODE,
909 				   _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
910 	else if (IS_GEN(i915, 7))
911 		intel_uncore_write(uncore,
912 				   ARB_MODE,
913 				   _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
914 	else if (IS_GEN(i915, 8))
915 		intel_uncore_write(uncore,
916 				   GAMTARBMODE,
917 				   _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
918 	else
919 		MISSING_CASE(INTEL_GEN(i915));
920 }
921