1 /*
2 * Copyright © 2019 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <unistd.h>
25 #include <poll.h>
26
27 #include "common/intel_gem.h"
28
29 #include "dev/intel_debug.h"
30 #include "dev/intel_device_info.h"
31
32 #include "perf/intel_perf.h"
33 #include "perf/intel_perf_mdapi.h"
34 #include "perf/intel_perf_private.h"
35 #include "perf/intel_perf_query.h"
36 #include "perf/intel_perf_regs.h"
37
38 #include "drm-uapi/i915_drm.h"
39
40 #include "util/compiler.h"
41 #include "util/u_math.h"
42
43 #define FILE_DEBUG_FLAG DEBUG_PERFMON
44
45 #define MI_RPC_BO_SIZE (4096)
46 #define MI_FREQ_OFFSET_BYTES (256)
47 #define MI_PERF_COUNTERS_OFFSET_BYTES (260)
48
49 #define ALIGN(x, y) (((x) + (y)-1) & ~((y)-1))
50
51 #define MAP_READ (1 << 0)
52 #define MAP_WRITE (1 << 1)
53
54 /**
55 * Periodic OA samples are read() into these buffer structures via the
56 * i915 perf kernel interface and appended to the
57 * perf_ctx->sample_buffers linked list. When we process the
58 * results of an OA metrics query we need to consider all the periodic
59 * samples between the Begin and End MI_REPORT_PERF_COUNT command
60 * markers.
61 *
62 * 'Periodic' is a simplification as there are other automatic reports
63 * written by the hardware also buffered here.
64 *
65 * Considering three queries, A, B and C:
66 *
67 * Time ---->
68 * ________________A_________________
69 * | |
70 * | ________B_________ _____C___________
71 * | | | | | |
72 *
73 * And an illustration of sample buffers read over this time frame:
74 * [HEAD ][ ][ ][ ][ ][ ][ ][ ][TAIL ]
75 *
76 * These nodes may hold samples for query A:
77 * [ ][ ][ A ][ A ][ A ][ A ][ A ][ ][ ]
78 *
79 * These nodes may hold samples for query B:
80 * [ ][ ][ B ][ B ][ B ][ ][ ][ ][ ]
81 *
82 * These nodes may hold samples for query C:
83 * [ ][ ][ ][ ][ ][ C ][ C ][ C ][ ]
84 *
85 * The illustration assumes we have an even distribution of periodic
86 * samples so all nodes have the same size plotted against time:
87 *
88 * Note, to simplify code, the list is never empty.
89 *
90 * With overlapping queries we can see that periodic OA reports may
91 * relate to multiple queries and care needs to be take to keep
92 * track of sample buffers until there are no queries that might
93 * depend on their contents.
94 *
95 * We use a node ref counting system where a reference ensures that a
96 * node and all following nodes can't be freed/recycled until the
97 * reference drops to zero.
98 *
99 * E.g. with a ref of one here:
100 * [ 0 ][ 0 ][ 1 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ]
101 *
102 * These nodes could be freed or recycled ("reaped"):
103 * [ 0 ][ 0 ]
104 *
105 * These must be preserved until the leading ref drops to zero:
106 * [ 1 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ]
107 *
108 * When a query starts we take a reference on the current tail of
109 * the list, knowing that no already-buffered samples can possibly
110 * relate to the newly-started query. A pointer to this node is
111 * also saved in the query object's ->oa.samples_head.
112 *
113 * E.g. starting query A while there are two nodes in .sample_buffers:
114 * ________________A________
115 * |
116 *
117 * [ 0 ][ 1 ]
118 * ^_______ Add a reference and store pointer to node in
119 * A->oa.samples_head
120 *
121 * Moving forward to when the B query starts with no new buffer nodes:
122 * (for reference, i915 perf reads() are only done when queries finish)
123 * ________________A_______
124 * | ________B___
125 * | |
126 *
127 * [ 0 ][ 2 ]
128 * ^_______ Add a reference and store pointer to
129 * node in B->oa.samples_head
130 *
131 * Once a query is finished, after an OA query has become 'Ready',
132 * once the End OA report has landed and after we we have processed
133 * all the intermediate periodic samples then we drop the
134 * ->oa.samples_head reference we took at the start.
135 *
136 * So when the B query has finished we have:
137 * ________________A________
138 * | ______B___________
139 * | | |
140 * [ 0 ][ 1 ][ 0 ][ 0 ][ 0 ]
141 * ^_______ Drop B->oa.samples_head reference
142 *
143 * We still can't free these due to the A->oa.samples_head ref:
144 * [ 1 ][ 0 ][ 0 ][ 0 ]
145 *
146 * When the A query finishes: (note there's a new ref for C's samples_head)
147 * ________________A_________________
148 * | |
149 * | _____C_________
150 * | | |
151 * [ 0 ][ 0 ][ 0 ][ 0 ][ 1 ][ 0 ][ 0 ]
152 * ^_______ Drop A->oa.samples_head reference
153 *
154 * And we can now reap these nodes up to the C->oa.samples_head:
155 * [ X ][ X ][ X ][ X ]
156 * keeping -> [ 1 ][ 0 ][ 0 ]
157 *
158 * We reap old sample buffers each time we finish processing an OA
159 * query by iterating the sample_buffers list from the head until we
160 * find a referenced node and stop.
161 *
162 * Reaped buffers move to a perfquery.free_sample_buffers list and
163 * when we come to read() we first look to recycle a buffer from the
164 * free_sample_buffers list before allocating a new buffer.
165 */
166 struct oa_sample_buf {
167 struct exec_node link;
168 int refcount;
169 int len;
170 uint8_t buf[I915_PERF_OA_SAMPLE_SIZE * 10];
171 uint32_t last_timestamp;
172 };
173
174 /**
175 * gen representation of a performance query object.
176 *
177 * NB: We want to keep this structure relatively lean considering that
178 * applications may expect to allocate enough objects to be able to
179 * query around all draw calls in a frame.
180 */
181 struct intel_perf_query_object
182 {
183 const struct intel_perf_query_info *queryinfo;
184
185 /* See query->kind to know which state below is in use... */
186 union {
187 struct {
188
189 /**
190 * BO containing OA counter snapshots at query Begin/End time.
191 */
192 void *bo;
193
194 /**
195 * Address of mapped of @bo
196 */
197 void *map;
198
199 /**
200 * The MI_REPORT_PERF_COUNT command lets us specify a unique
201 * ID that will be reflected in the resulting OA report
202 * that's written by the GPU. This is the ID we're expecting
203 * in the begin report and the the end report should be
204 * @begin_report_id + 1.
205 */
206 int begin_report_id;
207
208 /**
209 * Reference the head of the brw->perfquery.sample_buffers
210 * list at the time that the query started (so we only need
211 * to look at nodes after this point when looking for samples
212 * related to this query)
213 *
214 * (See struct brw_oa_sample_buf description for more details)
215 */
216 struct exec_node *samples_head;
217
218 /**
219 * false while in the unaccumulated_elements list, and set to
220 * true when the final, end MI_RPC snapshot has been
221 * accumulated.
222 */
223 bool results_accumulated;
224
225 /**
226 * Accumulated OA results between begin and end of the query.
227 */
228 struct intel_perf_query_result result;
229 } oa;
230
231 struct {
232 /**
233 * BO containing starting and ending snapshots for the
234 * statistics counters.
235 */
236 void *bo;
237 } pipeline_stats;
238 };
239 };
240
241 struct intel_perf_context {
242 struct intel_perf_config *perf;
243
244 void * mem_ctx; /* ralloc context */
245 void * ctx; /* driver context (eg, brw_context) */
246 void * bufmgr;
247 const struct intel_device_info *devinfo;
248
249 uint32_t hw_ctx;
250 int drm_fd;
251
252 /* The i915 perf stream we open to setup + enable the OA counters */
253 int oa_stream_fd;
254
255 /* An i915 perf stream fd gives exclusive access to the OA unit that will
256 * report counter snapshots for a specific counter set/profile in a
257 * specific layout/format so we can only start OA queries that are
258 * compatible with the currently open fd...
259 */
260 int current_oa_metrics_set_id;
261 int current_oa_format;
262
263 /* List of buffers containing OA reports */
264 struct exec_list sample_buffers;
265
266 /* Cached list of empty sample buffers */
267 struct exec_list free_sample_buffers;
268
269 int n_active_oa_queries;
270 int n_active_pipeline_stats_queries;
271
272 /* The number of queries depending on running OA counters which
273 * extends beyond brw_end_perf_query() since we need to wait until
274 * the last MI_RPC command has parsed by the GPU.
275 *
276 * Accurate accounting is important here as emitting an
277 * MI_REPORT_PERF_COUNT command while the OA unit is disabled will
278 * effectively hang the gpu.
279 */
280 int n_oa_users;
281
282 /* To help catch an spurious problem with the hardware or perf
283 * forwarding samples, we emit each MI_REPORT_PERF_COUNT command
284 * with a unique ID that we can explicitly check for...
285 */
286 int next_query_start_report_id;
287
288 /**
289 * An array of queries whose results haven't yet been assembled
290 * based on the data in buffer objects.
291 *
292 * These may be active, or have already ended. However, the
293 * results have not been requested.
294 */
295 struct intel_perf_query_object **unaccumulated;
296 int unaccumulated_elements;
297 int unaccumulated_array_size;
298
299 /* The total number of query objects so we can relinquish
300 * our exclusive access to perf if the application deletes
301 * all of its objects. (NB: We only disable perf while
302 * there are no active queries)
303 */
304 int n_query_instances;
305
306 int period_exponent;
307 };
308
309 static bool
inc_n_users(struct intel_perf_context * perf_ctx)310 inc_n_users(struct intel_perf_context *perf_ctx)
311 {
312 if (perf_ctx->n_oa_users == 0 &&
313 intel_ioctl(perf_ctx->oa_stream_fd, I915_PERF_IOCTL_ENABLE, 0) < 0)
314 {
315 return false;
316 }
317 ++perf_ctx->n_oa_users;
318
319 return true;
320 }
321
322 static void
dec_n_users(struct intel_perf_context * perf_ctx)323 dec_n_users(struct intel_perf_context *perf_ctx)
324 {
325 /* Disabling the i915 perf stream will effectively disable the OA
326 * counters. Note it's important to be sure there are no outstanding
327 * MI_RPC commands at this point since they could stall the CS
328 * indefinitely once OACONTROL is disabled.
329 */
330 --perf_ctx->n_oa_users;
331 if (perf_ctx->n_oa_users == 0 &&
332 intel_ioctl(perf_ctx->oa_stream_fd, I915_PERF_IOCTL_DISABLE, 0) < 0)
333 {
334 DBG("WARNING: Error disabling gen perf stream: %m\n");
335 }
336 }
337
338 void
intel_perf_close(struct intel_perf_context * perfquery,const struct intel_perf_query_info * query)339 intel_perf_close(struct intel_perf_context *perfquery,
340 const struct intel_perf_query_info *query)
341 {
342 if (perfquery->oa_stream_fd != -1) {
343 close(perfquery->oa_stream_fd);
344 perfquery->oa_stream_fd = -1;
345 }
346 if (query && query->kind == INTEL_PERF_QUERY_TYPE_RAW) {
347 struct intel_perf_query_info *raw_query =
348 (struct intel_perf_query_info *) query;
349 raw_query->oa_metrics_set_id = 0;
350 }
351 }
352
353 bool
intel_perf_open(struct intel_perf_context * perf_ctx,int metrics_set_id,int report_format,int period_exponent,int drm_fd,uint32_t ctx_id,bool enable)354 intel_perf_open(struct intel_perf_context *perf_ctx,
355 int metrics_set_id,
356 int report_format,
357 int period_exponent,
358 int drm_fd,
359 uint32_t ctx_id,
360 bool enable)
361 {
362 uint64_t properties[DRM_I915_PERF_PROP_MAX * 2];
363 uint32_t p = 0;
364
365 /* Single context sampling if valid context id. */
366 if (ctx_id != INTEL_PERF_INVALID_CTX_ID) {
367 properties[p++] = DRM_I915_PERF_PROP_CTX_HANDLE;
368 properties[p++] = ctx_id;
369 }
370
371 /* Include OA reports in samples */
372 properties[p++] = DRM_I915_PERF_PROP_SAMPLE_OA;
373 properties[p++] = true;
374
375 /* OA unit configuration */
376 properties[p++] = DRM_I915_PERF_PROP_OA_METRICS_SET;
377 properties[p++] = metrics_set_id;
378
379 properties[p++] = DRM_I915_PERF_PROP_OA_FORMAT;
380 properties[p++] = report_format;
381
382 properties[p++] = DRM_I915_PERF_PROP_OA_EXPONENT;
383 properties[p++] = period_exponent;
384
385 /* If global SSEU is available, pin it to the default. This will ensure on
386 * Gfx11 for instance we use the full EU array. Initially when perf was
387 * enabled we would use only half on Gfx11 because of functional
388 * requirements.
389 *
390 * Temporary disable this option on Gfx12.5+, kernel doesn't appear to
391 * support it.
392 */
393 if (intel_perf_has_global_sseu(perf_ctx->perf) &&
394 perf_ctx->devinfo->verx10 < 125) {
395 properties[p++] = DRM_I915_PERF_PROP_GLOBAL_SSEU;
396 properties[p++] = to_user_pointer(&perf_ctx->perf->sseu);
397 }
398
399 assert(p <= ARRAY_SIZE(properties));
400
401 struct drm_i915_perf_open_param param = {
402 .flags = I915_PERF_FLAG_FD_CLOEXEC |
403 I915_PERF_FLAG_FD_NONBLOCK |
404 (enable ? 0 : I915_PERF_FLAG_DISABLED),
405 .num_properties = p / 2,
406 .properties_ptr = (uintptr_t) properties,
407 };
408 int fd = intel_ioctl(drm_fd, DRM_IOCTL_I915_PERF_OPEN, ¶m);
409 if (fd == -1) {
410 DBG("Error opening gen perf OA stream: %m\n");
411 return false;
412 }
413
414 perf_ctx->oa_stream_fd = fd;
415
416 perf_ctx->current_oa_metrics_set_id = metrics_set_id;
417 perf_ctx->current_oa_format = report_format;
418
419 if (enable)
420 ++perf_ctx->n_oa_users;
421
422 return true;
423 }
424
425 static uint64_t
get_metric_id(struct intel_perf_config * perf,const struct intel_perf_query_info * query)426 get_metric_id(struct intel_perf_config *perf,
427 const struct intel_perf_query_info *query)
428 {
429 /* These queries are know not to ever change, their config ID has been
430 * loaded upon the first query creation. No need to look them up again.
431 */
432 if (query->kind == INTEL_PERF_QUERY_TYPE_OA)
433 return query->oa_metrics_set_id;
434
435 assert(query->kind == INTEL_PERF_QUERY_TYPE_RAW);
436
437 /* Raw queries can be reprogrammed up by an external application/library.
438 * When a raw query is used for the first time it's id is set to a value !=
439 * 0. When it stops being used the id returns to 0. No need to reload the
440 * ID when it's already loaded.
441 */
442 if (query->oa_metrics_set_id != 0) {
443 DBG("Raw query '%s' guid=%s using cached ID: %"PRIu64"\n",
444 query->name, query->guid, query->oa_metrics_set_id);
445 return query->oa_metrics_set_id;
446 }
447
448 struct intel_perf_query_info *raw_query = (struct intel_perf_query_info *)query;
449 if (!intel_perf_load_metric_id(perf, query->guid,
450 &raw_query->oa_metrics_set_id)) {
451 DBG("Unable to read query guid=%s ID, falling back to test config\n", query->guid);
452 raw_query->oa_metrics_set_id = perf->fallback_raw_oa_metric;
453 } else {
454 DBG("Raw query '%s'guid=%s loaded ID: %"PRIu64"\n",
455 query->name, query->guid, query->oa_metrics_set_id);
456 }
457 return query->oa_metrics_set_id;
458 }
459
460 static struct oa_sample_buf *
get_free_sample_buf(struct intel_perf_context * perf_ctx)461 get_free_sample_buf(struct intel_perf_context *perf_ctx)
462 {
463 struct exec_node *node = exec_list_pop_head(&perf_ctx->free_sample_buffers);
464 struct oa_sample_buf *buf;
465
466 if (node)
467 buf = exec_node_data(struct oa_sample_buf, node, link);
468 else {
469 buf = ralloc_size(perf_ctx->perf, sizeof(*buf));
470
471 exec_node_init(&buf->link);
472 buf->refcount = 0;
473 }
474 buf->len = 0;
475
476 return buf;
477 }
478
479 static void
reap_old_sample_buffers(struct intel_perf_context * perf_ctx)480 reap_old_sample_buffers(struct intel_perf_context *perf_ctx)
481 {
482 struct exec_node *tail_node =
483 exec_list_get_tail(&perf_ctx->sample_buffers);
484 struct oa_sample_buf *tail_buf =
485 exec_node_data(struct oa_sample_buf, tail_node, link);
486
487 /* Remove all old, unreferenced sample buffers walking forward from
488 * the head of the list, except always leave at least one node in
489 * the list so we always have a node to reference when we Begin
490 * a new query.
491 */
492 foreach_list_typed_safe(struct oa_sample_buf, buf, link,
493 &perf_ctx->sample_buffers)
494 {
495 if (buf->refcount == 0 && buf != tail_buf) {
496 exec_node_remove(&buf->link);
497 exec_list_push_head(&perf_ctx->free_sample_buffers, &buf->link);
498 } else
499 return;
500 }
501 }
502
503 static void
free_sample_bufs(struct intel_perf_context * perf_ctx)504 free_sample_bufs(struct intel_perf_context *perf_ctx)
505 {
506 foreach_list_typed_safe(struct oa_sample_buf, buf, link,
507 &perf_ctx->free_sample_buffers)
508 ralloc_free(buf);
509
510 exec_list_make_empty(&perf_ctx->free_sample_buffers);
511 }
512
513
514 struct intel_perf_query_object *
intel_perf_new_query(struct intel_perf_context * perf_ctx,unsigned query_index)515 intel_perf_new_query(struct intel_perf_context *perf_ctx, unsigned query_index)
516 {
517 const struct intel_perf_query_info *query =
518 &perf_ctx->perf->queries[query_index];
519
520 switch (query->kind) {
521 case INTEL_PERF_QUERY_TYPE_OA:
522 case INTEL_PERF_QUERY_TYPE_RAW:
523 if (perf_ctx->period_exponent == 0)
524 return NULL;
525 break;
526 case INTEL_PERF_QUERY_TYPE_PIPELINE:
527 break;
528 }
529
530 struct intel_perf_query_object *obj =
531 calloc(1, sizeof(struct intel_perf_query_object));
532
533 if (!obj)
534 return NULL;
535
536 obj->queryinfo = query;
537
538 perf_ctx->n_query_instances++;
539 return obj;
540 }
541
542 int
intel_perf_active_queries(struct intel_perf_context * perf_ctx,const struct intel_perf_query_info * query)543 intel_perf_active_queries(struct intel_perf_context *perf_ctx,
544 const struct intel_perf_query_info *query)
545 {
546 assert(perf_ctx->n_active_oa_queries == 0 || perf_ctx->n_active_pipeline_stats_queries == 0);
547
548 switch (query->kind) {
549 case INTEL_PERF_QUERY_TYPE_OA:
550 case INTEL_PERF_QUERY_TYPE_RAW:
551 return perf_ctx->n_active_oa_queries;
552 break;
553
554 case INTEL_PERF_QUERY_TYPE_PIPELINE:
555 return perf_ctx->n_active_pipeline_stats_queries;
556 break;
557
558 default:
559 unreachable("Unknown query type");
560 break;
561 }
562 }
563
564 const struct intel_perf_query_info*
intel_perf_query_info(const struct intel_perf_query_object * query)565 intel_perf_query_info(const struct intel_perf_query_object *query)
566 {
567 return query->queryinfo;
568 }
569
570 struct intel_perf_context *
intel_perf_new_context(void * parent)571 intel_perf_new_context(void *parent)
572 {
573 struct intel_perf_context *ctx = rzalloc(parent, struct intel_perf_context);
574 if (! ctx)
575 fprintf(stderr, "%s: failed to alloc context\n", __func__);
576 return ctx;
577 }
578
579 struct intel_perf_config *
intel_perf_config(struct intel_perf_context * ctx)580 intel_perf_config(struct intel_perf_context *ctx)
581 {
582 return ctx->perf;
583 }
584
585 void
intel_perf_init_context(struct intel_perf_context * perf_ctx,struct intel_perf_config * perf_cfg,void * mem_ctx,void * ctx,void * bufmgr,const struct intel_device_info * devinfo,uint32_t hw_ctx,int drm_fd)586 intel_perf_init_context(struct intel_perf_context *perf_ctx,
587 struct intel_perf_config *perf_cfg,
588 void * mem_ctx, /* ralloc context */
589 void * ctx, /* driver context (eg, brw_context) */
590 void * bufmgr, /* eg brw_bufmgr */
591 const struct intel_device_info *devinfo,
592 uint32_t hw_ctx,
593 int drm_fd)
594 {
595 perf_ctx->perf = perf_cfg;
596 perf_ctx->mem_ctx = mem_ctx;
597 perf_ctx->ctx = ctx;
598 perf_ctx->bufmgr = bufmgr;
599 perf_ctx->drm_fd = drm_fd;
600 perf_ctx->hw_ctx = hw_ctx;
601 perf_ctx->devinfo = devinfo;
602
603 perf_ctx->unaccumulated =
604 ralloc_array(mem_ctx, struct intel_perf_query_object *, 2);
605 perf_ctx->unaccumulated_elements = 0;
606 perf_ctx->unaccumulated_array_size = 2;
607
608 exec_list_make_empty(&perf_ctx->sample_buffers);
609 exec_list_make_empty(&perf_ctx->free_sample_buffers);
610
611 /* It's convenient to guarantee that this linked list of sample
612 * buffers is never empty so we add an empty head so when we
613 * Begin an OA query we can always take a reference on a buffer
614 * in this list.
615 */
616 struct oa_sample_buf *buf = get_free_sample_buf(perf_ctx);
617 exec_list_push_head(&perf_ctx->sample_buffers, &buf->link);
618
619 perf_ctx->oa_stream_fd = -1;
620 perf_ctx->next_query_start_report_id = 1000;
621
622 /* The period_exponent gives a sampling period as follows:
623 * sample_period = timestamp_period * 2^(period_exponent + 1)
624 *
625 * The timestamps increments every 80ns (HSW), ~52ns (GFX9LP) or
626 * ~83ns (GFX8/9).
627 *
628 * The counter overflow period is derived from the EuActive counter
629 * which reads a counter that increments by the number of clock
630 * cycles multiplied by the number of EUs. It can be calculated as:
631 *
632 * 2^(number of bits in A counter) / (n_eus * max_intel_freq * 2)
633 *
634 * (E.g. 40 EUs @ 1GHz = ~53ms)
635 *
636 * We select a sampling period inferior to that overflow period to
637 * ensure we cannot see more than 1 counter overflow, otherwise we
638 * could loose information.
639 */
640
641 int a_counter_in_bits = 32;
642 if (devinfo->ver >= 8)
643 a_counter_in_bits = 40;
644
645 uint64_t overflow_period = pow(2, a_counter_in_bits) / (perf_cfg->sys_vars.n_eus *
646 /* drop 1GHz freq to have units in nanoseconds */
647 2);
648
649 DBG("A counter overflow period: %"PRIu64"ns, %"PRIu64"ms (n_eus=%"PRIu64")\n",
650 overflow_period, overflow_period / 1000000ul, perf_cfg->sys_vars.n_eus);
651
652 int period_exponent = 0;
653 uint64_t prev_sample_period, next_sample_period;
654 for (int e = 0; e < 30; e++) {
655 prev_sample_period = 1000000000ull * pow(2, e + 1) / devinfo->timestamp_frequency;
656 next_sample_period = 1000000000ull * pow(2, e + 2) / devinfo->timestamp_frequency;
657
658 /* Take the previous sampling period, lower than the overflow
659 * period.
660 */
661 if (prev_sample_period < overflow_period &&
662 next_sample_period > overflow_period)
663 period_exponent = e + 1;
664 }
665
666 perf_ctx->period_exponent = period_exponent;
667
668 if (period_exponent == 0) {
669 DBG("WARNING: enable to find a sampling exponent\n");
670 } else {
671 DBG("OA sampling exponent: %i ~= %"PRIu64"ms\n", period_exponent,
672 prev_sample_period / 1000000ul);
673 }
674 }
675
676 /**
677 * Add a query to the global list of "unaccumulated queries."
678 *
679 * Queries are tracked here until all the associated OA reports have
680 * been accumulated via accumulate_oa_reports() after the end
681 * MI_REPORT_PERF_COUNT has landed in query->oa.bo.
682 */
683 static void
add_to_unaccumulated_query_list(struct intel_perf_context * perf_ctx,struct intel_perf_query_object * obj)684 add_to_unaccumulated_query_list(struct intel_perf_context *perf_ctx,
685 struct intel_perf_query_object *obj)
686 {
687 if (perf_ctx->unaccumulated_elements >=
688 perf_ctx->unaccumulated_array_size)
689 {
690 perf_ctx->unaccumulated_array_size *= 1.5;
691 perf_ctx->unaccumulated =
692 reralloc(perf_ctx->mem_ctx, perf_ctx->unaccumulated,
693 struct intel_perf_query_object *,
694 perf_ctx->unaccumulated_array_size);
695 }
696
697 perf_ctx->unaccumulated[perf_ctx->unaccumulated_elements++] = obj;
698 }
699
700 /**
701 * Emit MI_STORE_REGISTER_MEM commands to capture all of the
702 * pipeline statistics for the performance query object.
703 */
704 static void
snapshot_statistics_registers(struct intel_perf_context * ctx,struct intel_perf_query_object * obj,uint32_t offset_in_bytes)705 snapshot_statistics_registers(struct intel_perf_context *ctx,
706 struct intel_perf_query_object *obj,
707 uint32_t offset_in_bytes)
708 {
709 struct intel_perf_config *perf = ctx->perf;
710 const struct intel_perf_query_info *query = obj->queryinfo;
711 const int n_counters = query->n_counters;
712
713 for (int i = 0; i < n_counters; i++) {
714 const struct intel_perf_query_counter *counter = &query->counters[i];
715
716 assert(counter->data_type == INTEL_PERF_COUNTER_DATA_TYPE_UINT64);
717
718 perf->vtbl.store_register_mem(ctx->ctx, obj->pipeline_stats.bo,
719 counter->pipeline_stat.reg, 8,
720 offset_in_bytes + counter->offset);
721 }
722 }
723
724 static void
snapshot_query_layout(struct intel_perf_context * perf_ctx,struct intel_perf_query_object * query,bool end_snapshot)725 snapshot_query_layout(struct intel_perf_context *perf_ctx,
726 struct intel_perf_query_object *query,
727 bool end_snapshot)
728 {
729 struct intel_perf_config *perf_cfg = perf_ctx->perf;
730 const struct intel_perf_query_field_layout *layout = &perf_cfg->query_layout;
731 uint32_t offset = end_snapshot ? align(layout->size, layout->alignment) : 0;
732
733 for (uint32_t f = 0; f < layout->n_fields; f++) {
734 const struct intel_perf_query_field *field =
735 &layout->fields[end_snapshot ? f : (layout->n_fields - 1 - f)];
736
737 switch (field->type) {
738 case INTEL_PERF_QUERY_FIELD_TYPE_MI_RPC:
739 perf_cfg->vtbl.emit_mi_report_perf_count(perf_ctx->ctx, query->oa.bo,
740 offset + field->location,
741 query->oa.begin_report_id +
742 (end_snapshot ? 1 : 0));
743 break;
744 case INTEL_PERF_QUERY_FIELD_TYPE_SRM_PERFCNT:
745 case INTEL_PERF_QUERY_FIELD_TYPE_SRM_RPSTAT:
746 case INTEL_PERF_QUERY_FIELD_TYPE_SRM_OA_A:
747 case INTEL_PERF_QUERY_FIELD_TYPE_SRM_OA_B:
748 case INTEL_PERF_QUERY_FIELD_TYPE_SRM_OA_C:
749 perf_cfg->vtbl.store_register_mem(perf_ctx->ctx, query->oa.bo,
750 field->mmio_offset, field->size,
751 offset + field->location);
752 break;
753 default:
754 unreachable("Invalid field type");
755 }
756 }
757 }
758
759 bool
intel_perf_begin_query(struct intel_perf_context * perf_ctx,struct intel_perf_query_object * query)760 intel_perf_begin_query(struct intel_perf_context *perf_ctx,
761 struct intel_perf_query_object *query)
762 {
763 struct intel_perf_config *perf_cfg = perf_ctx->perf;
764 const struct intel_perf_query_info *queryinfo = query->queryinfo;
765
766 /* XXX: We have to consider that the command parser unit that parses batch
767 * buffer commands and is used to capture begin/end counter snapshots isn't
768 * implicitly synchronized with what's currently running across other GPU
769 * units (such as the EUs running shaders) that the performance counters are
770 * associated with.
771 *
772 * The intention of performance queries is to measure the work associated
773 * with commands between the begin/end delimiters and so for that to be the
774 * case we need to explicitly synchronize the parsing of commands to capture
775 * Begin/End counter snapshots with what's running across other parts of the
776 * GPU.
777 *
778 * When the command parser reaches a Begin marker it effectively needs to
779 * drain everything currently running on the GPU until the hardware is idle
780 * before capturing the first snapshot of counters - otherwise the results
781 * would also be measuring the effects of earlier commands.
782 *
783 * When the command parser reaches an End marker it needs to stall until
784 * everything currently running on the GPU has finished before capturing the
785 * end snapshot - otherwise the results won't be a complete representation
786 * of the work.
787 *
788 * To achieve this, we stall the pipeline at pixel scoreboard (prevent any
789 * additional work to be processed by the pipeline until all pixels of the
790 * previous draw has be completed).
791 *
792 * N.B. The final results are based on deltas of counters between (inside)
793 * Begin/End markers so even though the total wall clock time of the
794 * workload is stretched by larger pipeline bubbles the bubbles themselves
795 * are generally invisible to the query results. Whether that's a good or a
796 * bad thing depends on the use case. For a lower real-time impact while
797 * capturing metrics then periodic sampling may be a better choice than
798 * INTEL_performance_query.
799 *
800 *
801 * This is our Begin synchronization point to drain current work on the
802 * GPU before we capture our first counter snapshot...
803 */
804 perf_cfg->vtbl.emit_stall_at_pixel_scoreboard(perf_ctx->ctx);
805
806 switch (queryinfo->kind) {
807 case INTEL_PERF_QUERY_TYPE_OA:
808 case INTEL_PERF_QUERY_TYPE_RAW: {
809
810 /* Opening an i915 perf stream implies exclusive access to the OA unit
811 * which will generate counter reports for a specific counter set with a
812 * specific layout/format so we can't begin any OA based queries that
813 * require a different counter set or format unless we get an opportunity
814 * to close the stream and open a new one...
815 */
816 uint64_t metric_id = get_metric_id(perf_ctx->perf, queryinfo);
817
818 if (perf_ctx->oa_stream_fd != -1 &&
819 perf_ctx->current_oa_metrics_set_id != metric_id) {
820
821 if (perf_ctx->n_oa_users != 0) {
822 DBG("WARNING: Begin failed already using perf config=%i/%"PRIu64"\n",
823 perf_ctx->current_oa_metrics_set_id, metric_id);
824 return false;
825 } else
826 intel_perf_close(perf_ctx, queryinfo);
827 }
828
829 /* If the OA counters aren't already on, enable them. */
830 if (perf_ctx->oa_stream_fd == -1) {
831 assert(perf_ctx->period_exponent != 0);
832
833 if (!intel_perf_open(perf_ctx, metric_id, queryinfo->oa_format,
834 perf_ctx->period_exponent, perf_ctx->drm_fd,
835 perf_ctx->hw_ctx, false))
836 return false;
837 } else {
838 assert(perf_ctx->current_oa_metrics_set_id == metric_id &&
839 perf_ctx->current_oa_format == queryinfo->oa_format);
840 }
841
842 if (!inc_n_users(perf_ctx)) {
843 DBG("WARNING: Error enabling i915 perf stream: %m\n");
844 return false;
845 }
846
847 if (query->oa.bo) {
848 perf_cfg->vtbl.bo_unreference(query->oa.bo);
849 query->oa.bo = NULL;
850 }
851
852 query->oa.bo = perf_cfg->vtbl.bo_alloc(perf_ctx->bufmgr,
853 "perf. query OA MI_RPC bo",
854 MI_RPC_BO_SIZE);
855 #ifdef DEBUG
856 /* Pre-filling the BO helps debug whether writes landed. */
857 void *map = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->oa.bo, MAP_WRITE);
858 memset(map, 0x80, MI_RPC_BO_SIZE);
859 perf_cfg->vtbl.bo_unmap(query->oa.bo);
860 #endif
861
862 query->oa.begin_report_id = perf_ctx->next_query_start_report_id;
863 perf_ctx->next_query_start_report_id += 2;
864
865 snapshot_query_layout(perf_ctx, query, false /* end_snapshot */);
866
867 ++perf_ctx->n_active_oa_queries;
868
869 /* No already-buffered samples can possibly be associated with this query
870 * so create a marker within the list of sample buffers enabling us to
871 * easily ignore earlier samples when processing this query after
872 * completion.
873 */
874 assert(!exec_list_is_empty(&perf_ctx->sample_buffers));
875 query->oa.samples_head = exec_list_get_tail(&perf_ctx->sample_buffers);
876
877 struct oa_sample_buf *buf =
878 exec_node_data(struct oa_sample_buf, query->oa.samples_head, link);
879
880 /* This reference will ensure that future/following sample
881 * buffers (that may relate to this query) can't be freed until
882 * this drops to zero.
883 */
884 buf->refcount++;
885
886 intel_perf_query_result_clear(&query->oa.result);
887 query->oa.results_accumulated = false;
888
889 add_to_unaccumulated_query_list(perf_ctx, query);
890 break;
891 }
892
893 case INTEL_PERF_QUERY_TYPE_PIPELINE:
894 if (query->pipeline_stats.bo) {
895 perf_cfg->vtbl.bo_unreference(query->pipeline_stats.bo);
896 query->pipeline_stats.bo = NULL;
897 }
898
899 query->pipeline_stats.bo =
900 perf_cfg->vtbl.bo_alloc(perf_ctx->bufmgr,
901 "perf. query pipeline stats bo",
902 STATS_BO_SIZE);
903
904 /* Take starting snapshots. */
905 snapshot_statistics_registers(perf_ctx, query, 0);
906
907 ++perf_ctx->n_active_pipeline_stats_queries;
908 break;
909
910 default:
911 unreachable("Unknown query type");
912 break;
913 }
914
915 return true;
916 }
917
918 void
intel_perf_end_query(struct intel_perf_context * perf_ctx,struct intel_perf_query_object * query)919 intel_perf_end_query(struct intel_perf_context *perf_ctx,
920 struct intel_perf_query_object *query)
921 {
922 struct intel_perf_config *perf_cfg = perf_ctx->perf;
923
924 /* Ensure that the work associated with the queried commands will have
925 * finished before taking our query end counter readings.
926 *
927 * For more details see comment in brw_begin_perf_query for
928 * corresponding flush.
929 */
930 perf_cfg->vtbl.emit_stall_at_pixel_scoreboard(perf_ctx->ctx);
931
932 switch (query->queryinfo->kind) {
933 case INTEL_PERF_QUERY_TYPE_OA:
934 case INTEL_PERF_QUERY_TYPE_RAW:
935
936 /* NB: It's possible that the query will have already been marked
937 * as 'accumulated' if an error was seen while reading samples
938 * from perf. In this case we mustn't try and emit a closing
939 * MI_RPC command in case the OA unit has already been disabled
940 */
941 if (!query->oa.results_accumulated)
942 snapshot_query_layout(perf_ctx, query, true /* end_snapshot */);
943
944 --perf_ctx->n_active_oa_queries;
945
946 /* NB: even though the query has now ended, it can't be accumulated
947 * until the end MI_REPORT_PERF_COUNT snapshot has been written
948 * to query->oa.bo
949 */
950 break;
951
952 case INTEL_PERF_QUERY_TYPE_PIPELINE:
953 snapshot_statistics_registers(perf_ctx, query,
954 STATS_BO_END_OFFSET_BYTES);
955 --perf_ctx->n_active_pipeline_stats_queries;
956 break;
957
958 default:
959 unreachable("Unknown query type");
960 break;
961 }
962 }
963
intel_perf_oa_stream_ready(struct intel_perf_context * perf_ctx)964 bool intel_perf_oa_stream_ready(struct intel_perf_context *perf_ctx)
965 {
966 struct pollfd pfd;
967
968 pfd.fd = perf_ctx->oa_stream_fd;
969 pfd.events = POLLIN;
970 pfd.revents = 0;
971
972 if (poll(&pfd, 1, 0) < 0) {
973 DBG("Error polling OA stream\n");
974 return false;
975 }
976
977 if (!(pfd.revents & POLLIN))
978 return false;
979
980 return true;
981 }
982
983 ssize_t
intel_perf_read_oa_stream(struct intel_perf_context * perf_ctx,void * buf,size_t nbytes)984 intel_perf_read_oa_stream(struct intel_perf_context *perf_ctx,
985 void* buf,
986 size_t nbytes)
987 {
988 return read(perf_ctx->oa_stream_fd, buf, nbytes);
989 }
990
991 enum OaReadStatus {
992 OA_READ_STATUS_ERROR,
993 OA_READ_STATUS_UNFINISHED,
994 OA_READ_STATUS_FINISHED,
995 };
996
997 static enum OaReadStatus
read_oa_samples_until(struct intel_perf_context * perf_ctx,uint32_t start_timestamp,uint32_t end_timestamp)998 read_oa_samples_until(struct intel_perf_context *perf_ctx,
999 uint32_t start_timestamp,
1000 uint32_t end_timestamp)
1001 {
1002 struct exec_node *tail_node =
1003 exec_list_get_tail(&perf_ctx->sample_buffers);
1004 struct oa_sample_buf *tail_buf =
1005 exec_node_data(struct oa_sample_buf, tail_node, link);
1006 uint32_t last_timestamp =
1007 tail_buf->len == 0 ? start_timestamp : tail_buf->last_timestamp;
1008
1009 while (1) {
1010 struct oa_sample_buf *buf = get_free_sample_buf(perf_ctx);
1011 uint32_t offset;
1012 int len;
1013
1014 while ((len = read(perf_ctx->oa_stream_fd, buf->buf,
1015 sizeof(buf->buf))) < 0 && errno == EINTR)
1016 ;
1017
1018 if (len <= 0) {
1019 exec_list_push_tail(&perf_ctx->free_sample_buffers, &buf->link);
1020
1021 if (len == 0) {
1022 DBG("Spurious EOF reading i915 perf samples\n");
1023 return OA_READ_STATUS_ERROR;
1024 }
1025
1026 if (errno != EAGAIN) {
1027 DBG("Error reading i915 perf samples: %m\n");
1028 return OA_READ_STATUS_ERROR;
1029 }
1030
1031 if ((last_timestamp - start_timestamp) >= INT32_MAX)
1032 return OA_READ_STATUS_UNFINISHED;
1033
1034 if ((last_timestamp - start_timestamp) <
1035 (end_timestamp - start_timestamp))
1036 return OA_READ_STATUS_UNFINISHED;
1037
1038 return OA_READ_STATUS_FINISHED;
1039 }
1040
1041 buf->len = len;
1042 exec_list_push_tail(&perf_ctx->sample_buffers, &buf->link);
1043
1044 /* Go through the reports and update the last timestamp. */
1045 offset = 0;
1046 while (offset < buf->len) {
1047 const struct drm_i915_perf_record_header *header =
1048 (const struct drm_i915_perf_record_header *) &buf->buf[offset];
1049 uint32_t *report = (uint32_t *) (header + 1);
1050
1051 if (header->type == DRM_I915_PERF_RECORD_SAMPLE)
1052 last_timestamp = report[1];
1053
1054 offset += header->size;
1055 }
1056
1057 buf->last_timestamp = last_timestamp;
1058 }
1059
1060 unreachable("not reached");
1061 return OA_READ_STATUS_ERROR;
1062 }
1063
1064 /**
1065 * Try to read all the reports until either the delimiting timestamp
1066 * or an error arises.
1067 */
1068 static bool
read_oa_samples_for_query(struct intel_perf_context * perf_ctx,struct intel_perf_query_object * query,void * current_batch)1069 read_oa_samples_for_query(struct intel_perf_context *perf_ctx,
1070 struct intel_perf_query_object *query,
1071 void *current_batch)
1072 {
1073 uint32_t *start;
1074 uint32_t *last;
1075 uint32_t *end;
1076 struct intel_perf_config *perf_cfg = perf_ctx->perf;
1077
1078 /* We need the MI_REPORT_PERF_COUNT to land before we can start
1079 * accumulate. */
1080 assert(!perf_cfg->vtbl.batch_references(current_batch, query->oa.bo) &&
1081 !perf_cfg->vtbl.bo_busy(query->oa.bo));
1082
1083 /* Map the BO once here and let accumulate_oa_reports() unmap
1084 * it. */
1085 if (query->oa.map == NULL)
1086 query->oa.map = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->oa.bo, MAP_READ);
1087
1088 start = last = query->oa.map;
1089 end = query->oa.map + perf_ctx->perf->query_layout.size;
1090
1091 if (start[0] != query->oa.begin_report_id) {
1092 DBG("Spurious start report id=%"PRIu32"\n", start[0]);
1093 return true;
1094 }
1095 if (end[0] != (query->oa.begin_report_id + 1)) {
1096 DBG("Spurious end report id=%"PRIu32"\n", end[0]);
1097 return true;
1098 }
1099
1100 /* Read the reports until the end timestamp. */
1101 switch (read_oa_samples_until(perf_ctx, start[1], end[1])) {
1102 case OA_READ_STATUS_ERROR:
1103 FALLTHROUGH; /* Let accumulate_oa_reports() deal with the error. */
1104 case OA_READ_STATUS_FINISHED:
1105 return true;
1106 case OA_READ_STATUS_UNFINISHED:
1107 return false;
1108 }
1109
1110 unreachable("invalid read status");
1111 return false;
1112 }
1113
1114 void
intel_perf_wait_query(struct intel_perf_context * perf_ctx,struct intel_perf_query_object * query,void * current_batch)1115 intel_perf_wait_query(struct intel_perf_context *perf_ctx,
1116 struct intel_perf_query_object *query,
1117 void *current_batch)
1118 {
1119 struct intel_perf_config *perf_cfg = perf_ctx->perf;
1120 struct brw_bo *bo = NULL;
1121
1122 switch (query->queryinfo->kind) {
1123 case INTEL_PERF_QUERY_TYPE_OA:
1124 case INTEL_PERF_QUERY_TYPE_RAW:
1125 bo = query->oa.bo;
1126 break;
1127
1128 case INTEL_PERF_QUERY_TYPE_PIPELINE:
1129 bo = query->pipeline_stats.bo;
1130 break;
1131
1132 default:
1133 unreachable("Unknown query type");
1134 break;
1135 }
1136
1137 if (bo == NULL)
1138 return;
1139
1140 /* If the current batch references our results bo then we need to
1141 * flush first...
1142 */
1143 if (perf_cfg->vtbl.batch_references(current_batch, bo))
1144 perf_cfg->vtbl.batchbuffer_flush(perf_ctx->ctx, __FILE__, __LINE__);
1145
1146 perf_cfg->vtbl.bo_wait_rendering(bo);
1147 }
1148
1149 bool
intel_perf_is_query_ready(struct intel_perf_context * perf_ctx,struct intel_perf_query_object * query,void * current_batch)1150 intel_perf_is_query_ready(struct intel_perf_context *perf_ctx,
1151 struct intel_perf_query_object *query,
1152 void *current_batch)
1153 {
1154 struct intel_perf_config *perf_cfg = perf_ctx->perf;
1155
1156 switch (query->queryinfo->kind) {
1157 case INTEL_PERF_QUERY_TYPE_OA:
1158 case INTEL_PERF_QUERY_TYPE_RAW:
1159 return (query->oa.results_accumulated ||
1160 (query->oa.bo &&
1161 !perf_cfg->vtbl.batch_references(current_batch, query->oa.bo) &&
1162 !perf_cfg->vtbl.bo_busy(query->oa.bo)));
1163
1164 case INTEL_PERF_QUERY_TYPE_PIPELINE:
1165 return (query->pipeline_stats.bo &&
1166 !perf_cfg->vtbl.batch_references(current_batch, query->pipeline_stats.bo) &&
1167 !perf_cfg->vtbl.bo_busy(query->pipeline_stats.bo));
1168
1169 default:
1170 unreachable("Unknown query type");
1171 break;
1172 }
1173
1174 return false;
1175 }
1176
1177 /**
1178 * Remove a query from the global list of unaccumulated queries once
1179 * after successfully accumulating the OA reports associated with the
1180 * query in accumulate_oa_reports() or when discarding unwanted query
1181 * results.
1182 */
1183 static void
drop_from_unaccumulated_query_list(struct intel_perf_context * perf_ctx,struct intel_perf_query_object * query)1184 drop_from_unaccumulated_query_list(struct intel_perf_context *perf_ctx,
1185 struct intel_perf_query_object *query)
1186 {
1187 for (int i = 0; i < perf_ctx->unaccumulated_elements; i++) {
1188 if (perf_ctx->unaccumulated[i] == query) {
1189 int last_elt = --perf_ctx->unaccumulated_elements;
1190
1191 if (i == last_elt)
1192 perf_ctx->unaccumulated[i] = NULL;
1193 else {
1194 perf_ctx->unaccumulated[i] =
1195 perf_ctx->unaccumulated[last_elt];
1196 }
1197
1198 break;
1199 }
1200 }
1201
1202 /* Drop our samples_head reference so that associated periodic
1203 * sample data buffers can potentially be reaped if they aren't
1204 * referenced by any other queries...
1205 */
1206
1207 struct oa_sample_buf *buf =
1208 exec_node_data(struct oa_sample_buf, query->oa.samples_head, link);
1209
1210 assert(buf->refcount > 0);
1211 buf->refcount--;
1212
1213 query->oa.samples_head = NULL;
1214
1215 reap_old_sample_buffers(perf_ctx);
1216 }
1217
1218 /* In general if we see anything spurious while accumulating results,
1219 * we don't try and continue accumulating the current query, hoping
1220 * for the best, we scrap anything outstanding, and then hope for the
1221 * best with new queries.
1222 */
1223 static void
discard_all_queries(struct intel_perf_context * perf_ctx)1224 discard_all_queries(struct intel_perf_context *perf_ctx)
1225 {
1226 while (perf_ctx->unaccumulated_elements) {
1227 struct intel_perf_query_object *query = perf_ctx->unaccumulated[0];
1228
1229 query->oa.results_accumulated = true;
1230 drop_from_unaccumulated_query_list(perf_ctx, query);
1231
1232 dec_n_users(perf_ctx);
1233 }
1234 }
1235
1236 /* Looks for the validity bit of context ID (dword 2) of an OA report. */
1237 static bool
oa_report_ctx_id_valid(const struct intel_device_info * devinfo,const uint32_t * report)1238 oa_report_ctx_id_valid(const struct intel_device_info *devinfo,
1239 const uint32_t *report)
1240 {
1241 assert(devinfo->ver >= 8);
1242 if (devinfo->ver == 8)
1243 return (report[0] & (1 << 25)) != 0;
1244 return (report[0] & (1 << 16)) != 0;
1245 }
1246
1247 /**
1248 * Accumulate raw OA counter values based on deltas between pairs of
1249 * OA reports.
1250 *
1251 * Accumulation starts from the first report captured via
1252 * MI_REPORT_PERF_COUNT (MI_RPC) by brw_begin_perf_query() until the
1253 * last MI_RPC report requested by brw_end_perf_query(). Between these
1254 * two reports there may also some number of periodically sampled OA
1255 * reports collected via the i915 perf interface - depending on the
1256 * duration of the query.
1257 *
1258 * These periodic snapshots help to ensure we handle counter overflow
1259 * correctly by being frequent enough to ensure we don't miss multiple
1260 * overflows of a counter between snapshots. For Gfx8+ the i915 perf
1261 * snapshots provide the extra context-switch reports that let us
1262 * subtract out the progress of counters associated with other
1263 * contexts running on the system.
1264 */
1265 static void
accumulate_oa_reports(struct intel_perf_context * perf_ctx,struct intel_perf_query_object * query)1266 accumulate_oa_reports(struct intel_perf_context *perf_ctx,
1267 struct intel_perf_query_object *query)
1268 {
1269 const struct intel_device_info *devinfo = perf_ctx->devinfo;
1270 uint32_t *start;
1271 uint32_t *last;
1272 uint32_t *end;
1273 struct exec_node *first_samples_node;
1274 bool last_report_ctx_match = true;
1275 int out_duration = 0;
1276
1277 assert(query->oa.map != NULL);
1278
1279 start = last = query->oa.map;
1280 end = query->oa.map + perf_ctx->perf->query_layout.size;
1281
1282 if (start[0] != query->oa.begin_report_id) {
1283 DBG("Spurious start report id=%"PRIu32"\n", start[0]);
1284 goto error;
1285 }
1286 if (end[0] != (query->oa.begin_report_id + 1)) {
1287 DBG("Spurious end report id=%"PRIu32"\n", end[0]);
1288 goto error;
1289 }
1290
1291 /* On Gfx12+ OA reports are sourced from per context counters, so we don't
1292 * ever have to look at the global OA buffer. Yey \o/
1293 */
1294 if (perf_ctx->devinfo->ver >= 12) {
1295 last = start;
1296 goto end;
1297 }
1298
1299 /* See if we have any periodic reports to accumulate too... */
1300
1301 /* N.B. The oa.samples_head was set when the query began and
1302 * pointed to the tail of the perf_ctx->sample_buffers list at
1303 * the time the query started. Since the buffer existed before the
1304 * first MI_REPORT_PERF_COUNT command was emitted we therefore know
1305 * that no data in this particular node's buffer can possibly be
1306 * associated with the query - so skip ahead one...
1307 */
1308 first_samples_node = query->oa.samples_head->next;
1309
1310 foreach_list_typed_from(struct oa_sample_buf, buf, link,
1311 &perf_ctx->sample_buffers,
1312 first_samples_node)
1313 {
1314 int offset = 0;
1315
1316 while (offset < buf->len) {
1317 const struct drm_i915_perf_record_header *header =
1318 (const struct drm_i915_perf_record_header *)(buf->buf + offset);
1319
1320 assert(header->size != 0);
1321 assert(header->size <= buf->len);
1322
1323 offset += header->size;
1324
1325 switch (header->type) {
1326 case DRM_I915_PERF_RECORD_SAMPLE: {
1327 uint32_t *report = (uint32_t *)(header + 1);
1328 bool report_ctx_match = true;
1329 bool add = true;
1330
1331 /* Ignore reports that come before the start marker.
1332 * (Note: takes care to allow overflow of 32bit timestamps)
1333 */
1334 if (intel_device_info_timebase_scale(devinfo,
1335 report[1] - start[1]) > 5000000000) {
1336 continue;
1337 }
1338
1339 /* Ignore reports that come after the end marker.
1340 * (Note: takes care to allow overflow of 32bit timestamps)
1341 */
1342 if (intel_device_info_timebase_scale(devinfo,
1343 report[1] - end[1]) <= 5000000000) {
1344 goto end;
1345 }
1346
1347 /* For Gfx8+ since the counters continue while other
1348 * contexts are running we need to discount any unrelated
1349 * deltas. The hardware automatically generates a report
1350 * on context switch which gives us a new reference point
1351 * to continuing adding deltas from.
1352 *
1353 * For Haswell we can rely on the HW to stop the progress
1354 * of OA counters while any other context is acctive.
1355 */
1356 if (devinfo->ver >= 8) {
1357 /* Consider that the current report matches our context only if
1358 * the report says the report ID is valid.
1359 */
1360 report_ctx_match = oa_report_ctx_id_valid(devinfo, report) &&
1361 report[2] == start[2];
1362 if (report_ctx_match)
1363 out_duration = 0;
1364 else
1365 out_duration++;
1366
1367 /* Only add the delta between <last, report> if the last report
1368 * was clearly identified as our context, or if we have at most
1369 * 1 report without a matching ID.
1370 *
1371 * The OA unit will sometimes label reports with an invalid
1372 * context ID when i915 rewrites the execlist submit register
1373 * with the same context as the one currently running. This
1374 * happens when i915 wants to notify the HW of ringbuffer tail
1375 * register update. We have to consider this report as part of
1376 * our context as the 3d pipeline behind the OACS unit is still
1377 * processing the operations started at the previous execlist
1378 * submission.
1379 */
1380 add = last_report_ctx_match && out_duration < 2;
1381 }
1382
1383 if (add) {
1384 intel_perf_query_result_accumulate(&query->oa.result,
1385 query->queryinfo,
1386 last, report);
1387 } else {
1388 /* We're not adding the delta because we've identified it's not
1389 * for the context we filter for. We can consider that the
1390 * query was split.
1391 */
1392 query->oa.result.query_disjoint = true;
1393 }
1394
1395 last = report;
1396 last_report_ctx_match = report_ctx_match;
1397
1398 break;
1399 }
1400
1401 case DRM_I915_PERF_RECORD_OA_BUFFER_LOST:
1402 DBG("i915 perf: OA error: all reports lost\n");
1403 goto error;
1404 case DRM_I915_PERF_RECORD_OA_REPORT_LOST:
1405 DBG("i915 perf: OA report lost\n");
1406 break;
1407 }
1408 }
1409 }
1410
1411 end:
1412
1413 intel_perf_query_result_accumulate(&query->oa.result, query->queryinfo,
1414 last, end);
1415
1416 query->oa.results_accumulated = true;
1417 drop_from_unaccumulated_query_list(perf_ctx, query);
1418 dec_n_users(perf_ctx);
1419
1420 return;
1421
1422 error:
1423
1424 discard_all_queries(perf_ctx);
1425 }
1426
1427 void
intel_perf_delete_query(struct intel_perf_context * perf_ctx,struct intel_perf_query_object * query)1428 intel_perf_delete_query(struct intel_perf_context *perf_ctx,
1429 struct intel_perf_query_object *query)
1430 {
1431 struct intel_perf_config *perf_cfg = perf_ctx->perf;
1432
1433 /* We can assume that the frontend waits for a query to complete
1434 * before ever calling into here, so we don't have to worry about
1435 * deleting an in-flight query object.
1436 */
1437 switch (query->queryinfo->kind) {
1438 case INTEL_PERF_QUERY_TYPE_OA:
1439 case INTEL_PERF_QUERY_TYPE_RAW:
1440 if (query->oa.bo) {
1441 if (!query->oa.results_accumulated) {
1442 drop_from_unaccumulated_query_list(perf_ctx, query);
1443 dec_n_users(perf_ctx);
1444 }
1445
1446 perf_cfg->vtbl.bo_unreference(query->oa.bo);
1447 query->oa.bo = NULL;
1448 }
1449
1450 query->oa.results_accumulated = false;
1451 break;
1452
1453 case INTEL_PERF_QUERY_TYPE_PIPELINE:
1454 if (query->pipeline_stats.bo) {
1455 perf_cfg->vtbl.bo_unreference(query->pipeline_stats.bo);
1456 query->pipeline_stats.bo = NULL;
1457 }
1458 break;
1459
1460 default:
1461 unreachable("Unknown query type");
1462 break;
1463 }
1464
1465 /* As an indication that the INTEL_performance_query extension is no
1466 * longer in use, it's a good time to free our cache of sample
1467 * buffers and close any current i915-perf stream.
1468 */
1469 if (--perf_ctx->n_query_instances == 0) {
1470 free_sample_bufs(perf_ctx);
1471 intel_perf_close(perf_ctx, query->queryinfo);
1472 }
1473
1474 free(query);
1475 }
1476
1477 static int
get_oa_counter_data(struct intel_perf_context * perf_ctx,struct intel_perf_query_object * query,size_t data_size,uint8_t * data)1478 get_oa_counter_data(struct intel_perf_context *perf_ctx,
1479 struct intel_perf_query_object *query,
1480 size_t data_size,
1481 uint8_t *data)
1482 {
1483 struct intel_perf_config *perf_cfg = perf_ctx->perf;
1484 const struct intel_perf_query_info *queryinfo = query->queryinfo;
1485 int n_counters = queryinfo->n_counters;
1486 int written = 0;
1487
1488 for (int i = 0; i < n_counters; i++) {
1489 const struct intel_perf_query_counter *counter = &queryinfo->counters[i];
1490 uint64_t *out_uint64;
1491 float *out_float;
1492 size_t counter_size = intel_perf_query_counter_get_size(counter);
1493
1494 if (counter_size) {
1495 switch (counter->data_type) {
1496 case INTEL_PERF_COUNTER_DATA_TYPE_UINT64:
1497 out_uint64 = (uint64_t *)(data + counter->offset);
1498 *out_uint64 =
1499 counter->oa_counter_read_uint64(perf_cfg, queryinfo,
1500 &query->oa.result);
1501 break;
1502 case INTEL_PERF_COUNTER_DATA_TYPE_FLOAT:
1503 out_float = (float *)(data + counter->offset);
1504 *out_float =
1505 counter->oa_counter_read_float(perf_cfg, queryinfo,
1506 &query->oa.result);
1507 break;
1508 default:
1509 /* So far we aren't using uint32, double or bool32... */
1510 unreachable("unexpected counter data type");
1511 }
1512
1513 if (counter->offset + counter_size > written)
1514 written = counter->offset + counter_size;
1515 }
1516 }
1517
1518 return written;
1519 }
1520
1521 static int
get_pipeline_stats_data(struct intel_perf_context * perf_ctx,struct intel_perf_query_object * query,size_t data_size,uint8_t * data)1522 get_pipeline_stats_data(struct intel_perf_context *perf_ctx,
1523 struct intel_perf_query_object *query,
1524 size_t data_size,
1525 uint8_t *data)
1526
1527 {
1528 struct intel_perf_config *perf_cfg = perf_ctx->perf;
1529 const struct intel_perf_query_info *queryinfo = query->queryinfo;
1530 int n_counters = queryinfo->n_counters;
1531 uint8_t *p = data;
1532
1533 uint64_t *start = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->pipeline_stats.bo, MAP_READ);
1534 uint64_t *end = start + (STATS_BO_END_OFFSET_BYTES / sizeof(uint64_t));
1535
1536 for (int i = 0; i < n_counters; i++) {
1537 const struct intel_perf_query_counter *counter = &queryinfo->counters[i];
1538 uint64_t value = end[i] - start[i];
1539
1540 if (counter->pipeline_stat.numerator !=
1541 counter->pipeline_stat.denominator) {
1542 value *= counter->pipeline_stat.numerator;
1543 value /= counter->pipeline_stat.denominator;
1544 }
1545
1546 *((uint64_t *)p) = value;
1547 p += 8;
1548 }
1549
1550 perf_cfg->vtbl.bo_unmap(query->pipeline_stats.bo);
1551
1552 return p - data;
1553 }
1554
1555 void
intel_perf_get_query_data(struct intel_perf_context * perf_ctx,struct intel_perf_query_object * query,void * current_batch,int data_size,unsigned * data,unsigned * bytes_written)1556 intel_perf_get_query_data(struct intel_perf_context *perf_ctx,
1557 struct intel_perf_query_object *query,
1558 void *current_batch,
1559 int data_size,
1560 unsigned *data,
1561 unsigned *bytes_written)
1562 {
1563 struct intel_perf_config *perf_cfg = perf_ctx->perf;
1564 int written = 0;
1565
1566 switch (query->queryinfo->kind) {
1567 case INTEL_PERF_QUERY_TYPE_OA:
1568 case INTEL_PERF_QUERY_TYPE_RAW:
1569 if (!query->oa.results_accumulated) {
1570 /* Due to the sampling frequency of the OA buffer by the i915-perf
1571 * driver, there can be a 5ms delay between the Mesa seeing the query
1572 * complete and i915 making all the OA buffer reports available to us.
1573 * We need to wait for all the reports to come in before we can do
1574 * the post processing removing unrelated deltas.
1575 * There is a i915-perf series to address this issue, but it's
1576 * not been merged upstream yet.
1577 */
1578 while (!read_oa_samples_for_query(perf_ctx, query, current_batch))
1579 ;
1580
1581 uint32_t *begin_report = query->oa.map;
1582 uint32_t *end_report = query->oa.map + perf_cfg->query_layout.size;
1583 intel_perf_query_result_accumulate_fields(&query->oa.result,
1584 query->queryinfo,
1585 begin_report,
1586 end_report,
1587 true /* no_oa_accumulate */);
1588 accumulate_oa_reports(perf_ctx, query);
1589 assert(query->oa.results_accumulated);
1590
1591 perf_cfg->vtbl.bo_unmap(query->oa.bo);
1592 query->oa.map = NULL;
1593 }
1594 if (query->queryinfo->kind == INTEL_PERF_QUERY_TYPE_OA) {
1595 written = get_oa_counter_data(perf_ctx, query, data_size, (uint8_t *)data);
1596 } else {
1597 const struct intel_device_info *devinfo = perf_ctx->devinfo;
1598
1599 written = intel_perf_query_result_write_mdapi((uint8_t *)data, data_size,
1600 devinfo, query->queryinfo,
1601 &query->oa.result);
1602 }
1603 break;
1604
1605 case INTEL_PERF_QUERY_TYPE_PIPELINE:
1606 written = get_pipeline_stats_data(perf_ctx, query, data_size, (uint8_t *)data);
1607 break;
1608
1609 default:
1610 unreachable("Unknown query type");
1611 break;
1612 }
1613
1614 if (bytes_written)
1615 *bytes_written = written;
1616 }
1617
1618 void
intel_perf_dump_query_count(struct intel_perf_context * perf_ctx)1619 intel_perf_dump_query_count(struct intel_perf_context *perf_ctx)
1620 {
1621 DBG("Queries: (Open queries = %d, OA users = %d)\n",
1622 perf_ctx->n_active_oa_queries, perf_ctx->n_oa_users);
1623 }
1624
1625 void
intel_perf_dump_query(struct intel_perf_context * ctx,struct intel_perf_query_object * obj,void * current_batch)1626 intel_perf_dump_query(struct intel_perf_context *ctx,
1627 struct intel_perf_query_object *obj,
1628 void *current_batch)
1629 {
1630 switch (obj->queryinfo->kind) {
1631 case INTEL_PERF_QUERY_TYPE_OA:
1632 case INTEL_PERF_QUERY_TYPE_RAW:
1633 DBG("BO: %-4s OA data: %-10s %-15s\n",
1634 obj->oa.bo ? "yes," : "no,",
1635 intel_perf_is_query_ready(ctx, obj, current_batch) ? "ready," : "not ready,",
1636 obj->oa.results_accumulated ? "accumulated" : "not accumulated");
1637 break;
1638 case INTEL_PERF_QUERY_TYPE_PIPELINE:
1639 DBG("BO: %-4s\n",
1640 obj->pipeline_stats.bo ? "yes" : "no");
1641 break;
1642 default:
1643 unreachable("Unknown query type");
1644 break;
1645 }
1646 }
1647