• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1"""Common features for bignum in test generation framework."""
2# Copyright The Mbed TLS Contributors
3# SPDX-License-Identifier: Apache-2.0
4#
5# Licensed under the Apache License, Version 2.0 (the "License"); you may
6# not use this file except in compliance with the License.
7# You may obtain a copy of the License at
8#
9# http://www.apache.org/licenses/LICENSE-2.0
10#
11# Unless required by applicable law or agreed to in writing, software
12# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14# See the License for the specific language governing permissions and
15# limitations under the License.
16
17from abc import abstractmethod
18import enum
19from typing import Iterator, List, Tuple, TypeVar, Any
20from itertools import chain
21
22from . import test_case
23from . import test_data_generation
24from .bignum_data import INPUTS_DEFAULT, MODULI_DEFAULT
25
26T = TypeVar('T') #pylint: disable=invalid-name
27
28def invmod(a: int, n: int) -> int:
29    """Return inverse of a to modulo n.
30
31    Equivalent to pow(a, -1, n) in Python 3.8+. Implementation is equivalent
32    to long_invmod() in CPython.
33    """
34    b, c = 1, 0
35    while n:
36        q, r = divmod(a, n)
37        a, b, c, n = n, c, b - q*c, r
38    # at this point a is the gcd of the original inputs
39    if a == 1:
40        return b
41    raise ValueError("Not invertible")
42
43def invmod_positive(a: int, n: int) -> int:
44    """Return a non-negative inverse of a to modulo n."""
45    inv = invmod(a, n)
46    return inv if inv >= 0 else inv + n
47
48def hex_to_int(val: str) -> int:
49    """Implement the syntax accepted by mbedtls_test_read_mpi().
50
51    This is a superset of what is accepted by mbedtls_test_read_mpi_core().
52    """
53    if val in ['', '-']:
54        return 0
55    return int(val, 16)
56
57def quote_str(val: str) -> str:
58    return "\"{}\"".format(val)
59
60def bound_mpi(val: int, bits_in_limb: int) -> int:
61    """First number exceeding number of limbs needed for given input value."""
62    return bound_mpi_limbs(limbs_mpi(val, bits_in_limb), bits_in_limb)
63
64def bound_mpi_limbs(limbs: int, bits_in_limb: int) -> int:
65    """First number exceeding maximum of given number of limbs."""
66    bits = bits_in_limb * limbs
67    return 1 << bits
68
69def limbs_mpi(val: int, bits_in_limb: int) -> int:
70    """Return the number of limbs required to store value."""
71    return (val.bit_length() + bits_in_limb - 1) // bits_in_limb
72
73def combination_pairs(values: List[T]) -> List[Tuple[T, T]]:
74    """Return all pair combinations from input values."""
75    return [(x, y) for x in values for y in values]
76
77def hex_digits_for_limb(limbs: int, bits_in_limb: int) -> int:
78    """ Retrun the hex digits need for a number of limbs. """
79    return 2 * (limbs * bits_in_limb // 8)
80
81class OperationCommon(test_data_generation.BaseTest):
82    """Common features for bignum binary operations.
83
84    This adds functionality common in binary operation tests.
85
86    Attributes:
87        symbol: Symbol to use for the operation in case description.
88        input_values: List of values to use as test case inputs. These are
89            combined to produce pairs of values.
90        input_cases: List of tuples containing pairs of test case inputs. This
91            can be used to implement specific pairs of inputs.
92        unique_combinations_only: Boolean to select if test case combinations
93            must be unique. If True, only A,B or B,A would be included as a test
94            case. If False, both A,B and B,A would be included.
95        input_style: Controls the way how test data is passed to the functions
96            in the generated test cases. "variable" passes them as they are
97            defined in the python source. "arch_split" pads the values with
98            zeroes depending on the architecture/limb size. If this is set,
99            test cases are generated for all architectures.
100        arity: the number of operands for the operation. Currently supported
101            values are 1 and 2.
102    """
103    symbol = ""
104    input_values = INPUTS_DEFAULT # type: List[str]
105    input_cases = [] # type: List[Any]
106    unique_combinations_only = False
107    input_styles = ["variable", "fixed", "arch_split"] # type: List[str]
108    input_style = "variable" # type: str
109    limb_sizes = [32, 64] # type: List[int]
110    arities = [1, 2]
111    arity = 2
112    suffix = False   # for arity = 1, symbol can be prefix (default) or suffix
113
114    def __init__(self, val_a: str, val_b: str = "0", bits_in_limb: int = 32) -> None:
115        self.val_a = val_a
116        self.val_b = val_b
117        # Setting the int versions here as opposed to making them @properties
118        # provides earlier/more robust input validation.
119        self.int_a = hex_to_int(val_a)
120        self.int_b = hex_to_int(val_b)
121        if bits_in_limb not in self.limb_sizes:
122            raise ValueError("Invalid number of bits in limb!")
123        if self.input_style == "arch_split":
124            self.dependencies = ["MBEDTLS_HAVE_INT{:d}".format(bits_in_limb)]
125        self.bits_in_limb = bits_in_limb
126
127    @property
128    def boundary(self) -> int:
129        if self.arity == 1:
130            return self.int_a
131        elif self.arity == 2:
132            return max(self.int_a, self.int_b)
133        raise ValueError("Unsupported number of operands!")
134
135    @property
136    def limb_boundary(self) -> int:
137        return bound_mpi(self.boundary, self.bits_in_limb)
138
139    @property
140    def limbs(self) -> int:
141        return limbs_mpi(self.boundary, self.bits_in_limb)
142
143    @property
144    def hex_digits(self) -> int:
145        return hex_digits_for_limb(self.limbs, self.bits_in_limb)
146
147    def format_arg(self, val: str) -> str:
148        if self.input_style not in self.input_styles:
149            raise ValueError("Unknown input style!")
150        if self.input_style == "variable":
151            return val
152        else:
153            return val.zfill(self.hex_digits)
154
155    def format_result(self, res: int) -> str:
156        res_str = '{:x}'.format(res)
157        return quote_str(self.format_arg(res_str))
158
159    @property
160    def arg_a(self) -> str:
161        return self.format_arg(self.val_a)
162
163    @property
164    def arg_b(self) -> str:
165        if self.arity == 1:
166            raise AttributeError("Operation is unary and doesn't have arg_b!")
167        return self.format_arg(self.val_b)
168
169    def arguments(self) -> List[str]:
170        args = [quote_str(self.arg_a)]
171        if self.arity == 2:
172            args.append(quote_str(self.arg_b))
173        return args + self.result()
174
175    def description(self) -> str:
176        """Generate a description for the test case.
177
178        If not set, case_description uses the form A `symbol` B, where symbol
179        is used to represent the operation. Descriptions of each value are
180        generated to provide some context to the test case.
181        """
182        if not self.case_description:
183            if self.arity == 1:
184                format_string = "{1:x} {0}" if self.suffix else "{0} {1:x}"
185                self.case_description = format_string.format(
186                    self.symbol, self.int_a
187                )
188            elif self.arity == 2:
189                self.case_description = "{:x} {} {:x}".format(
190                    self.int_a, self.symbol, self.int_b
191                )
192        return super().description()
193
194    @property
195    def is_valid(self) -> bool:
196        return True
197
198    @abstractmethod
199    def result(self) -> List[str]:
200        """Get the result of the operation.
201
202        This could be calculated during initialization and stored as `_result`
203        and then returned, or calculated when the method is called.
204        """
205        raise NotImplementedError
206
207    @classmethod
208    def get_value_pairs(cls) -> Iterator[Tuple[str, str]]:
209        """Generator to yield pairs of inputs.
210
211        Combinations are first generated from all input values, and then
212        specific cases provided.
213        """
214        if cls.arity == 1:
215            yield from ((a, "0") for a in cls.input_values)
216        elif cls.arity == 2:
217            if cls.unique_combinations_only:
218                yield from combination_pairs(cls.input_values)
219            else:
220                yield from (
221                    (a, b)
222                    for a in cls.input_values
223                    for b in cls.input_values
224                )
225        else:
226            raise ValueError("Unsupported number of operands!")
227
228    @classmethod
229    def generate_function_tests(cls) -> Iterator[test_case.TestCase]:
230        if cls.input_style not in cls.input_styles:
231            raise ValueError("Unknown input style!")
232        if cls.arity not in cls.arities:
233            raise ValueError("Unsupported number of operands!")
234        if cls.input_style == "arch_split":
235            test_objects = (cls(a, b, bits_in_limb=bil)
236                            for a, b in cls.get_value_pairs()
237                            for bil in cls.limb_sizes)
238            special_cases = (cls(*args, bits_in_limb=bil) # type: ignore
239                             for args in cls.input_cases
240                             for bil in cls.limb_sizes)
241        else:
242            test_objects = (cls(a, b)
243                            for a, b in cls.get_value_pairs())
244            special_cases = (cls(*args) for args in cls.input_cases)
245        yield from (valid_test_object.create_test_case()
246                    for valid_test_object in filter(
247                        lambda test_object: test_object.is_valid,
248                        chain(test_objects, special_cases)
249                        )
250                    )
251
252
253class ModulusRepresentation(enum.Enum):
254    """Representation selector of a modulus."""
255    # Numerical values aligned with the type mbedtls_mpi_mod_rep_selector
256    INVALID = 0
257    MONTGOMERY = 2
258    OPT_RED = 3
259
260    def symbol(self) -> str:
261        """The C symbol for this representation selector."""
262        return 'MBEDTLS_MPI_MOD_REP_' + self.name
263
264    @classmethod
265    def supported_representations(cls) -> List['ModulusRepresentation']:
266        """Return all representations that are supported in positive test cases."""
267        return [cls.MONTGOMERY, cls.OPT_RED]
268
269
270class ModOperationCommon(OperationCommon):
271    #pylint: disable=abstract-method
272    """Target for bignum mod_raw test case generation."""
273    moduli = MODULI_DEFAULT # type: List[str]
274    montgomery_form_a = False
275    disallow_zero_a = False
276
277    def __init__(self, val_n: str, val_a: str, val_b: str = "0",
278                 bits_in_limb: int = 64) -> None:
279        super().__init__(val_a=val_a, val_b=val_b, bits_in_limb=bits_in_limb)
280        self.val_n = val_n
281        # Setting the int versions here as opposed to making them @properties
282        # provides earlier/more robust input validation.
283        self.int_n = hex_to_int(val_n)
284
285    def to_montgomery(self, val: int) -> int:
286        return (val * self.r) % self.int_n
287
288    def from_montgomery(self, val: int) -> int:
289        return (val * self.r_inv) % self.int_n
290
291    def convert_from_canonical(self, canonical: int,
292                               rep: ModulusRepresentation) -> int:
293        """Convert values from canonical representation to the given representation."""
294        if rep is ModulusRepresentation.MONTGOMERY:
295            return self.to_montgomery(canonical)
296        elif rep is ModulusRepresentation.OPT_RED:
297            return canonical
298        else:
299            raise ValueError('Modulus representation not supported: {}'
300                             .format(rep.name))
301
302    @property
303    def boundary(self) -> int:
304        return self.int_n
305
306    @property
307    def arg_a(self) -> str:
308        if self.montgomery_form_a:
309            value_a = self.to_montgomery(self.int_a)
310        else:
311            value_a = self.int_a
312        return self.format_arg('{:x}'.format(value_a))
313
314    @property
315    def arg_n(self) -> str:
316        return self.format_arg(self.val_n)
317
318    def format_arg(self, val: str) -> str:
319        return super().format_arg(val).zfill(self.hex_digits)
320
321    def arguments(self) -> List[str]:
322        return [quote_str(self.arg_n)] + super().arguments()
323
324    @property
325    def r(self) -> int: # pylint: disable=invalid-name
326        l = limbs_mpi(self.int_n, self.bits_in_limb)
327        return bound_mpi_limbs(l, self.bits_in_limb)
328
329    @property
330    def r_inv(self) -> int:
331        return invmod(self.r, self.int_n)
332
333    @property
334    def r2(self) -> int: # pylint: disable=invalid-name
335        return pow(self.r, 2)
336
337    @property
338    def is_valid(self) -> bool:
339        if self.int_a >= self.int_n:
340            return False
341        if self.disallow_zero_a and self.int_a == 0:
342            return False
343        if self.arity == 2 and self.int_b >= self.int_n:
344            return False
345        return True
346
347    def description(self) -> str:
348        """Generate a description for the test case.
349
350        It uses the form A `symbol` B mod N, where symbol is used to represent
351        the operation.
352        """
353
354        if not self.case_description:
355            return super().description() + " mod {:x}".format(self.int_n)
356        return super().description()
357
358    @classmethod
359    def input_cases_args(cls) -> Iterator[Tuple[Any, Any, Any]]:
360        if cls.arity == 1:
361            yield from ((n, a, "0") for a, n in cls.input_cases)
362        elif cls.arity == 2:
363            yield from ((n, a, b) for a, b, n in cls.input_cases)
364        else:
365            raise ValueError("Unsupported number of operands!")
366
367    @classmethod
368    def generate_function_tests(cls) -> Iterator[test_case.TestCase]:
369        if cls.input_style not in cls.input_styles:
370            raise ValueError("Unknown input style!")
371        if cls.arity not in cls.arities:
372            raise ValueError("Unsupported number of operands!")
373        if cls.input_style == "arch_split":
374            test_objects = (cls(n, a, b, bits_in_limb=bil)
375                            for n in cls.moduli
376                            for a, b in cls.get_value_pairs()
377                            for bil in cls.limb_sizes)
378            special_cases = (cls(*args, bits_in_limb=bil)
379                             for args in cls.input_cases_args()
380                             for bil in cls.limb_sizes)
381        else:
382            test_objects = (cls(n, a, b)
383                            for n in cls.moduli
384                            for a, b in cls.get_value_pairs())
385            special_cases = (cls(*args) for args in cls.input_cases_args())
386        yield from (valid_test_object.create_test_case()
387                    for valid_test_object in filter(
388                        lambda test_object: test_object.is_valid,
389                        chain(test_objects, special_cases)
390                        ))
391
392# BEGIN MERGE SLOT 1
393
394# END MERGE SLOT 1
395
396# BEGIN MERGE SLOT 2
397
398# END MERGE SLOT 2
399
400# BEGIN MERGE SLOT 3
401
402# END MERGE SLOT 3
403
404# BEGIN MERGE SLOT 4
405
406# END MERGE SLOT 4
407
408# BEGIN MERGE SLOT 5
409
410# END MERGE SLOT 5
411
412# BEGIN MERGE SLOT 6
413
414# END MERGE SLOT 6
415
416# BEGIN MERGE SLOT 7
417
418# END MERGE SLOT 7
419
420# BEGIN MERGE SLOT 8
421
422# END MERGE SLOT 8
423
424# BEGIN MERGE SLOT 9
425
426# END MERGE SLOT 9
427
428# BEGIN MERGE SLOT 10
429
430# END MERGE SLOT 10
431