• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2017-2018 Rob Clark <robclark@freedesktop.org>
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Rob Clark <robclark@freedesktop.org>
25  */
26 
27 #define GPU 600
28 
29 #include "ir3_context.h"
30 #include "ir3_image.h"
31 
32 /*
33  * Handlers for instructions changed/added in a6xx:
34  *
35  * Starting with a6xx, isam and stbi is used for SSBOs as well; stbi and the
36  * atomic instructions (used for both SSBO and image) use a new instruction
37  * encoding compared to a4xx/a5xx.
38  */
39 
40 /* src[] = { buffer_index, offset }. No const_index */
41 static void
emit_intrinsic_load_ssbo(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)42 emit_intrinsic_load_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr,
43                          struct ir3_instruction **dst)
44 {
45    struct ir3_block *b = ctx->block;
46    struct ir3_instruction *offset;
47    struct ir3_instruction *ldib;
48 
49    offset = ir3_get_src(ctx, &intr->src[2])[0];
50 
51    ldib = ir3_LDIB(b, ir3_ssbo_to_ibo(ctx, intr->src[0]), 0, offset, 0);
52    ldib->dsts[0]->wrmask = MASK(intr->num_components);
53    ldib->cat6.iim_val = intr->num_components;
54    ldib->cat6.d = 1;
55    ldib->cat6.type = intr->dest.ssa.bit_size == 16 ? TYPE_U16 : TYPE_U32;
56    ldib->barrier_class = IR3_BARRIER_BUFFER_R;
57    ldib->barrier_conflict = IR3_BARRIER_BUFFER_W;
58    ir3_handle_bindless_cat6(ldib, intr->src[0]);
59    ir3_handle_nonuniform(ldib, intr);
60 
61    ir3_split_dest(b, dst, ldib, 0, intr->num_components);
62 }
63 
64 /* src[] = { value, block_index, offset }. const_index[] = { write_mask } */
65 static void
emit_intrinsic_store_ssbo(struct ir3_context * ctx,nir_intrinsic_instr * intr)66 emit_intrinsic_store_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr)
67 {
68    struct ir3_block *b = ctx->block;
69    struct ir3_instruction *stib, *val, *offset;
70    unsigned wrmask = nir_intrinsic_write_mask(intr);
71    unsigned ncomp = ffs(~wrmask) - 1;
72 
73    assert(wrmask == BITFIELD_MASK(intr->num_components));
74 
75    /* src0 is offset, src1 is value:
76     */
77    val = ir3_create_collect(b, ir3_get_src(ctx, &intr->src[0]), ncomp);
78    offset = ir3_get_src(ctx, &intr->src[3])[0];
79 
80    stib = ir3_STIB(b, ir3_ssbo_to_ibo(ctx, intr->src[1]), 0, offset, 0, val, 0);
81    stib->cat6.iim_val = ncomp;
82    stib->cat6.d = 1;
83    stib->cat6.type = intr->src[0].ssa->bit_size == 16 ? TYPE_U16 : TYPE_U32;
84    stib->barrier_class = IR3_BARRIER_BUFFER_W;
85    stib->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
86    ir3_handle_bindless_cat6(stib, intr->src[1]);
87    ir3_handle_nonuniform(stib, intr);
88 
89    array_insert(b, b->keeps, stib);
90 }
91 
92 /*
93  * SSBO atomic intrinsics
94  *
95  * All of the SSBO atomic memory operations read a value from memory,
96  * compute a new value using one of the operations below, write the new
97  * value to memory, and return the original value read.
98  *
99  * All operations take 3 sources except CompSwap that takes 4. These
100  * sources represent:
101  *
102  * 0: The SSBO buffer index.
103  * 1: The offset into the SSBO buffer of the variable that the atomic
104  *    operation will operate on.
105  * 2: The data parameter to the atomic function (i.e. the value to add
106  *    in ssbo_atomic_add, etc).
107  * 3: For CompSwap only: the second data parameter.
108  */
109 static struct ir3_instruction *
emit_intrinsic_atomic_ssbo(struct ir3_context * ctx,nir_intrinsic_instr * intr)110 emit_intrinsic_atomic_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr)
111 {
112    struct ir3_block *b = ctx->block;
113    struct ir3_instruction *atomic, *ibo, *src0, *src1, *data, *dummy;
114    type_t type = TYPE_U32;
115 
116    ibo = ir3_ssbo_to_ibo(ctx, intr->src[0]);
117 
118    data = ir3_get_src(ctx, &intr->src[2])[0];
119 
120    /* So this gets a bit creative:
121     *
122     *    src0    - vecN offset/coords
123     *    src1.x  - is actually destination register
124     *    src1.y  - is 'data' except for cmpxchg where src2.y is 'compare'
125     *    src1.z  - is 'data' for cmpxchg
126     *
127     * The combining src and dest kinda doesn't work out so well with how
128     * scheduling and RA work. So we create a dummy src2 which is tied to the
129     * destination in RA (i.e. must be allocated to the same vec2/vec3
130     * register) and then immediately extract the first component.
131     *
132     * Note that nir already multiplies the offset by four
133     */
134    dummy = create_immed(b, 0);
135 
136    if (intr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap_ir3) {
137       src0 = ir3_get_src(ctx, &intr->src[4])[0];
138       struct ir3_instruction *compare = ir3_get_src(ctx, &intr->src[3])[0];
139       src1 = ir3_collect(b, dummy, compare, data);
140    } else {
141       src0 = ir3_get_src(ctx, &intr->src[3])[0];
142       src1 = ir3_collect(b, dummy, data);
143    }
144 
145    switch (intr->intrinsic) {
146    case nir_intrinsic_ssbo_atomic_add_ir3:
147       atomic = ir3_ATOMIC_B_ADD(b, ibo, 0, src0, 0, src1, 0);
148       break;
149    case nir_intrinsic_ssbo_atomic_imin_ir3:
150       atomic = ir3_ATOMIC_B_MIN(b, ibo, 0, src0, 0, src1, 0);
151       type = TYPE_S32;
152       break;
153    case nir_intrinsic_ssbo_atomic_umin_ir3:
154       atomic = ir3_ATOMIC_B_MIN(b, ibo, 0, src0, 0, src1, 0);
155       break;
156    case nir_intrinsic_ssbo_atomic_imax_ir3:
157       atomic = ir3_ATOMIC_B_MAX(b, ibo, 0, src0, 0, src1, 0);
158       type = TYPE_S32;
159       break;
160    case nir_intrinsic_ssbo_atomic_umax_ir3:
161       atomic = ir3_ATOMIC_B_MAX(b, ibo, 0, src0, 0, src1, 0);
162       break;
163    case nir_intrinsic_ssbo_atomic_and_ir3:
164       atomic = ir3_ATOMIC_B_AND(b, ibo, 0, src0, 0, src1, 0);
165       break;
166    case nir_intrinsic_ssbo_atomic_or_ir3:
167       atomic = ir3_ATOMIC_B_OR(b, ibo, 0, src0, 0, src1, 0);
168       break;
169    case nir_intrinsic_ssbo_atomic_xor_ir3:
170       atomic = ir3_ATOMIC_B_XOR(b, ibo, 0, src0, 0, src1, 0);
171       break;
172    case nir_intrinsic_ssbo_atomic_exchange_ir3:
173       atomic = ir3_ATOMIC_B_XCHG(b, ibo, 0, src0, 0, src1, 0);
174       break;
175    case nir_intrinsic_ssbo_atomic_comp_swap_ir3:
176       atomic = ir3_ATOMIC_B_CMPXCHG(b, ibo, 0, src0, 0, src1, 0);
177       break;
178    default:
179       unreachable("boo");
180    }
181 
182    atomic->cat6.iim_val = 1;
183    atomic->cat6.d = 1;
184    atomic->cat6.type = type;
185    atomic->barrier_class = IR3_BARRIER_BUFFER_W;
186    atomic->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
187    ir3_handle_bindless_cat6(atomic, intr->src[0]);
188 
189    /* even if nothing consume the result, we can't DCE the instruction: */
190    array_insert(b, b->keeps, atomic);
191 
192    atomic->dsts[0]->wrmask = src1->dsts[0]->wrmask;
193    ir3_reg_tie(atomic->dsts[0], atomic->srcs[2]);
194    struct ir3_instruction *split;
195    ir3_split_dest(b, &split, atomic, 0, 1);
196    return split;
197 }
198 
199 /* src[] = { deref, coord, sample_index }. const_index[] = {} */
200 static void
emit_intrinsic_load_image(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)201 emit_intrinsic_load_image(struct ir3_context *ctx, nir_intrinsic_instr *intr,
202                           struct ir3_instruction **dst)
203 {
204    struct ir3_block *b = ctx->block;
205    struct ir3_instruction *ldib;
206    struct ir3_instruction *const *coords = ir3_get_src(ctx, &intr->src[1]);
207    unsigned ncoords = ir3_get_image_coords(intr, NULL);
208 
209    ldib = ir3_LDIB(b, ir3_image_to_ibo(ctx, intr->src[0]), 0,
210                    ir3_create_collect(b, coords, ncoords), 0);
211    ldib->dsts[0]->wrmask = MASK(intr->num_components);
212    ldib->cat6.iim_val = intr->num_components;
213    ldib->cat6.d = ncoords;
214    ldib->cat6.type = ir3_get_type_for_image_intrinsic(intr);
215    ldib->cat6.typed = true;
216    ldib->barrier_class = IR3_BARRIER_IMAGE_R;
217    ldib->barrier_conflict = IR3_BARRIER_IMAGE_W;
218    ir3_handle_bindless_cat6(ldib, intr->src[0]);
219    ir3_handle_nonuniform(ldib, intr);
220 
221    ir3_split_dest(b, dst, ldib, 0, intr->num_components);
222 }
223 
224 /* src[] = { deref, coord, sample_index, value }. const_index[] = {} */
225 static void
emit_intrinsic_store_image(struct ir3_context * ctx,nir_intrinsic_instr * intr)226 emit_intrinsic_store_image(struct ir3_context *ctx, nir_intrinsic_instr *intr)
227 {
228    struct ir3_block *b = ctx->block;
229    struct ir3_instruction *stib;
230    struct ir3_instruction *const *value = ir3_get_src(ctx, &intr->src[3]);
231    struct ir3_instruction *const *coords = ir3_get_src(ctx, &intr->src[1]);
232    unsigned ncoords = ir3_get_image_coords(intr, NULL);
233    enum pipe_format format = nir_intrinsic_format(intr);
234    unsigned ncomp = ir3_get_num_components_for_image_format(format);
235 
236    /* src0 is offset, src1 is value:
237     */
238    stib = ir3_STIB(b, ir3_image_to_ibo(ctx, intr->src[0]), 0,
239                    ir3_create_collect(b, coords, ncoords), 0,
240                    ir3_create_collect(b, value, ncomp), 0);
241    stib->cat6.iim_val = ncomp;
242    stib->cat6.d = ncoords;
243    stib->cat6.type = ir3_get_type_for_image_intrinsic(intr);
244    stib->cat6.typed = true;
245    stib->barrier_class = IR3_BARRIER_IMAGE_W;
246    stib->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W;
247    ir3_handle_bindless_cat6(stib, intr->src[0]);
248    ir3_handle_nonuniform(stib, intr);
249 
250    array_insert(b, b->keeps, stib);
251 }
252 
253 /* src[] = { deref, coord, sample_index, value, compare }. const_index[] = {} */
254 static struct ir3_instruction *
emit_intrinsic_atomic_image(struct ir3_context * ctx,nir_intrinsic_instr * intr)255 emit_intrinsic_atomic_image(struct ir3_context *ctx, nir_intrinsic_instr *intr)
256 {
257    struct ir3_block *b = ctx->block;
258    struct ir3_instruction *atomic, *ibo, *src0, *src1, *dummy;
259    struct ir3_instruction *const *coords = ir3_get_src(ctx, &intr->src[1]);
260    struct ir3_instruction *value = ir3_get_src(ctx, &intr->src[3])[0];
261    unsigned ncoords = ir3_get_image_coords(intr, NULL);
262 
263    ibo = ir3_image_to_ibo(ctx, intr->src[0]);
264 
265    /* So this gets a bit creative:
266     *
267     *    src0    - vecN offset/coords
268     *    src1.x  - is actually destination register
269     *    src1.y  - is 'value' except for cmpxchg where src2.y is 'compare'
270     *    src1.z  - is 'value' for cmpxchg
271     *
272     * The combining src and dest kinda doesn't work out so well with how
273     * scheduling and RA work. So we create a dummy src2 which is tied to the
274     * destination in RA (i.e. must be allocated to the same vec2/vec3
275     * register) and then immediately extract the first component.
276     */
277    dummy = create_immed(b, 0);
278    src0 = ir3_create_collect(b, coords, ncoords);
279 
280    if (intr->intrinsic == nir_intrinsic_image_atomic_comp_swap ||
281        intr->intrinsic == nir_intrinsic_bindless_image_atomic_comp_swap) {
282       struct ir3_instruction *compare = ir3_get_src(ctx, &intr->src[4])[0];
283       src1 = ir3_collect(b, dummy, compare, value);
284    } else {
285       src1 = ir3_collect(b, dummy, value);
286    }
287 
288    switch (intr->intrinsic) {
289    case nir_intrinsic_image_atomic_add:
290    case nir_intrinsic_bindless_image_atomic_add:
291       atomic = ir3_ATOMIC_B_ADD(b, ibo, 0, src0, 0, src1, 0);
292       break;
293    case nir_intrinsic_image_atomic_imin:
294    case nir_intrinsic_image_atomic_umin:
295    case nir_intrinsic_bindless_image_atomic_imin:
296    case nir_intrinsic_bindless_image_atomic_umin:
297       atomic = ir3_ATOMIC_B_MIN(b, ibo, 0, src0, 0, src1, 0);
298       break;
299    case nir_intrinsic_image_atomic_imax:
300    case nir_intrinsic_image_atomic_umax:
301    case nir_intrinsic_bindless_image_atomic_imax:
302    case nir_intrinsic_bindless_image_atomic_umax:
303       atomic = ir3_ATOMIC_B_MAX(b, ibo, 0, src0, 0, src1, 0);
304       break;
305    case nir_intrinsic_image_atomic_and:
306    case nir_intrinsic_bindless_image_atomic_and:
307       atomic = ir3_ATOMIC_B_AND(b, ibo, 0, src0, 0, src1, 0);
308       break;
309    case nir_intrinsic_image_atomic_or:
310    case nir_intrinsic_bindless_image_atomic_or:
311       atomic = ir3_ATOMIC_B_OR(b, ibo, 0, src0, 0, src1, 0);
312       break;
313    case nir_intrinsic_image_atomic_xor:
314    case nir_intrinsic_bindless_image_atomic_xor:
315       atomic = ir3_ATOMIC_B_XOR(b, ibo, 0, src0, 0, src1, 0);
316       break;
317    case nir_intrinsic_image_atomic_exchange:
318    case nir_intrinsic_bindless_image_atomic_exchange:
319       atomic = ir3_ATOMIC_B_XCHG(b, ibo, 0, src0, 0, src1, 0);
320       break;
321    case nir_intrinsic_image_atomic_comp_swap:
322    case nir_intrinsic_bindless_image_atomic_comp_swap:
323       atomic = ir3_ATOMIC_B_CMPXCHG(b, ibo, 0, src0, 0, src1, 0);
324       break;
325    default:
326       unreachable("boo");
327    }
328 
329    atomic->cat6.iim_val = 1;
330    atomic->cat6.d = ncoords;
331    atomic->cat6.type = ir3_get_type_for_image_intrinsic(intr);
332    atomic->cat6.typed = true;
333    atomic->barrier_class = IR3_BARRIER_IMAGE_W;
334    atomic->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W;
335    ir3_handle_bindless_cat6(atomic, intr->src[0]);
336 
337    /* even if nothing consume the result, we can't DCE the instruction: */
338    array_insert(b, b->keeps, atomic);
339 
340    atomic->dsts[0]->wrmask = src1->dsts[0]->wrmask;
341    ir3_reg_tie(atomic->dsts[0], atomic->srcs[2]);
342    struct ir3_instruction *split;
343    ir3_split_dest(b, &split, atomic, 0, 1);
344    return split;
345 }
346 
347 static void
emit_intrinsic_image_size(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)348 emit_intrinsic_image_size(struct ir3_context *ctx, nir_intrinsic_instr *intr,
349                           struct ir3_instruction **dst)
350 {
351    struct ir3_block *b = ctx->block;
352    struct ir3_instruction *ibo = ir3_image_to_ibo(ctx, intr->src[0]);
353    struct ir3_instruction *resinfo = ir3_RESINFO(b, ibo, 0);
354    resinfo->cat6.iim_val = 1;
355    resinfo->cat6.d = intr->num_components;
356    resinfo->cat6.type = TYPE_U32;
357    resinfo->cat6.typed = false;
358    /* resinfo has no writemask and always writes out 3 components: */
359    compile_assert(ctx, intr->num_components <= 3);
360    resinfo->dsts[0]->wrmask = MASK(3);
361    ir3_handle_bindless_cat6(resinfo, intr->src[0]);
362    ir3_handle_nonuniform(resinfo, intr);
363 
364    ir3_split_dest(b, dst, resinfo, 0, intr->num_components);
365 }
366 
367 static void
emit_intrinsic_load_global_ir3(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)368 emit_intrinsic_load_global_ir3(struct ir3_context *ctx,
369                                nir_intrinsic_instr *intr,
370                                struct ir3_instruction **dst)
371 {
372    struct ir3_block *b = ctx->block;
373    unsigned dest_components = nir_intrinsic_dest_components(intr);
374    struct ir3_instruction *addr, *offset;
375 
376    addr = ir3_collect(b, ir3_get_src(ctx, &intr->src[0])[0],
377                       ir3_get_src(ctx, &intr->src[0])[1]);
378 
379    struct ir3_instruction *load;
380 
381    bool const_offset_in_bounds = nir_src_is_const(intr->src[1]) &&
382                                  nir_src_as_int(intr->src[1]) < (1 << 13) &&
383                                  nir_src_as_int(intr->src[1]) > -(1 << 13);
384 
385    if (const_offset_in_bounds) {
386       load = ir3_LDG(b, addr, 0, create_immed(b, nir_src_as_int(intr->src[1])),
387                      0, create_immed(b, dest_components), 0);
388    } else {
389       offset = ir3_get_src(ctx, &intr->src[1])[0];
390       load =
391          ir3_LDG_A(b, addr, 0, offset, 0, create_immed(b, 0), 0,
392                    create_immed(b, 0), 0, create_immed(b, dest_components), 0);
393    }
394 
395    load->cat6.type = type_uint_size(intr->dest.ssa.bit_size);
396    load->dsts[0]->wrmask = MASK(dest_components);
397 
398    load->barrier_class = IR3_BARRIER_BUFFER_R;
399    load->barrier_conflict = IR3_BARRIER_BUFFER_W;
400 
401    ir3_split_dest(b, dst, load, 0, dest_components);
402 }
403 
404 static void
emit_intrinsic_store_global_ir3(struct ir3_context * ctx,nir_intrinsic_instr * intr)405 emit_intrinsic_store_global_ir3(struct ir3_context *ctx,
406                                 nir_intrinsic_instr *intr)
407 {
408    struct ir3_block *b = ctx->block;
409    struct ir3_instruction *value, *addr, *offset;
410    unsigned ncomp = nir_intrinsic_src_components(intr, 0);
411 
412    addr = ir3_collect(b, ir3_get_src(ctx, &intr->src[1])[0],
413                       ir3_get_src(ctx, &intr->src[1])[1]);
414 
415    value = ir3_create_collect(b, ir3_get_src(ctx, &intr->src[0]), ncomp);
416 
417    struct ir3_instruction *stg;
418 
419    bool const_offset_in_bounds = nir_src_is_const(intr->src[2]) &&
420                                  nir_src_as_int(intr->src[2]) < (1 << 13) &&
421                                  nir_src_as_int(intr->src[2]) > -(1 << 13);
422 
423    if (const_offset_in_bounds) {
424       stg = ir3_STG(b, addr, 0,
425                     create_immed(b, nir_src_as_int(intr->src[2])), 0,
426                     value, 0,
427                     create_immed(b, ncomp), 0);
428    } else {
429       offset = ir3_get_src(ctx, &intr->src[2])[0];
430       stg =
431          ir3_STG_A(b, addr, 0, offset, 0, create_immed(b, 0), 0,
432                    create_immed(b, 0), 0, value, 0, create_immed(b, ncomp), 0);
433    }
434 
435    stg->cat6.type = type_uint_size(intr->src[0].ssa->bit_size);
436    stg->cat6.iim_val = 1;
437 
438    array_insert(b, b->keeps, stg);
439 
440    stg->barrier_class = IR3_BARRIER_BUFFER_W;
441    stg->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
442 }
443 
444 static struct ir3_instruction *
emit_intrinsic_atomic_global(struct ir3_context * ctx,nir_intrinsic_instr * intr)445 emit_intrinsic_atomic_global(struct ir3_context *ctx, nir_intrinsic_instr *intr)
446 {
447    struct ir3_block *b = ctx->block;
448    struct ir3_instruction *addr, *atomic, *src1;
449    struct ir3_instruction *value = ir3_get_src(ctx, &intr->src[1])[0];
450    type_t type = TYPE_U32;
451 
452    addr = ir3_collect(b, ir3_get_src(ctx, &intr->src[0])[0],
453                       ir3_get_src(ctx, &intr->src[0])[1]);
454 
455    if (intr->intrinsic == nir_intrinsic_global_atomic_comp_swap_ir3) {
456       struct ir3_instruction *compare = ir3_get_src(ctx, &intr->src[2])[0];
457       src1 = ir3_collect(b, compare, value);
458    } else {
459       src1 = value;
460    }
461 
462    switch (intr->intrinsic) {
463    case nir_intrinsic_global_atomic_add_ir3:
464       atomic = ir3_ATOMIC_G_ADD(b, addr, 0, src1, 0);
465       break;
466    case nir_intrinsic_global_atomic_imin_ir3:
467       atomic = ir3_ATOMIC_G_MIN(b, addr, 0, src1, 0);
468       type = TYPE_S32;
469       break;
470    case nir_intrinsic_global_atomic_umin_ir3:
471       atomic = ir3_ATOMIC_G_MIN(b, addr, 0, src1, 0);
472       break;
473    case nir_intrinsic_global_atomic_imax_ir3:
474       atomic = ir3_ATOMIC_G_MAX(b, addr, 0, src1, 0);
475       type = TYPE_S32;
476       break;
477    case nir_intrinsic_global_atomic_umax_ir3:
478       atomic = ir3_ATOMIC_G_MAX(b, addr, 0, src1, 0);
479       break;
480    case nir_intrinsic_global_atomic_and_ir3:
481       atomic = ir3_ATOMIC_G_AND(b, addr, 0, src1, 0);
482       break;
483    case nir_intrinsic_global_atomic_or_ir3:
484       atomic = ir3_ATOMIC_G_OR(b, addr, 0, src1, 0);
485       break;
486    case nir_intrinsic_global_atomic_xor_ir3:
487       atomic = ir3_ATOMIC_G_XOR(b, addr, 0, src1, 0);
488       break;
489    case nir_intrinsic_global_atomic_exchange_ir3:
490       atomic = ir3_ATOMIC_G_XCHG(b, addr, 0, src1, 0);
491       break;
492    case nir_intrinsic_global_atomic_comp_swap_ir3:
493       atomic = ir3_ATOMIC_G_CMPXCHG(b, addr, 0, src1, 0);
494       break;
495    default:
496       unreachable("Unknown global atomic op");
497    }
498 
499    atomic->cat6.iim_val = 1;
500    atomic->cat6.d = 1;
501    atomic->cat6.type = type;
502    atomic->barrier_class = IR3_BARRIER_BUFFER_W;
503    atomic->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
504 
505    /* even if nothing consume the result, we can't DCE the instruction: */
506    array_insert(b, b->keeps, atomic);
507 
508    return atomic;
509 }
510 
511 const struct ir3_context_funcs ir3_a6xx_funcs = {
512    .emit_intrinsic_load_ssbo = emit_intrinsic_load_ssbo,
513    .emit_intrinsic_store_ssbo = emit_intrinsic_store_ssbo,
514    .emit_intrinsic_atomic_ssbo = emit_intrinsic_atomic_ssbo,
515    .emit_intrinsic_load_image = emit_intrinsic_load_image,
516    .emit_intrinsic_store_image = emit_intrinsic_store_image,
517    .emit_intrinsic_atomic_image = emit_intrinsic_atomic_image,
518    .emit_intrinsic_image_size = emit_intrinsic_image_size,
519    .emit_intrinsic_load_global_ir3 = emit_intrinsic_load_global_ir3,
520    .emit_intrinsic_store_global_ir3 = emit_intrinsic_store_global_ir3,
521    .emit_intrinsic_atomic_global = emit_intrinsic_atomic_global,
522 };
523