1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_bufmgr.c
25 *
26 * The Iris buffer manager.
27 *
28 * XXX: write better comments
29 * - BOs
30 * - Explain BO cache
31 * - main interface to GEM in the kernel
32 */
33
34 #include <xf86drm.h>
35 #include <util/u_atomic.h>
36 #include <fcntl.h>
37 #include <stdio.h>
38 #include <stdlib.h>
39 #include <string.h>
40 #include <unistd.h>
41 #include <assert.h>
42 #include <sys/ioctl.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/types.h>
46 #include <stdbool.h>
47 #include <time.h>
48 #include <unistd.h>
49
50 #include "errno.h"
51 #include "common/intel_aux_map.h"
52 #include "common/intel_clflush.h"
53 #include "dev/intel_debug.h"
54 #include "common/intel_gem.h"
55 #include "dev/intel_device_info.h"
56 #include "isl/isl.h"
57 #include "os/os_mman.h"
58 #include "util/debug.h"
59 #include "util/macros.h"
60 #include "util/hash_table.h"
61 #include "util/list.h"
62 #include "util/os_file.h"
63 #include "util/u_dynarray.h"
64 #include "util/vma.h"
65 #include "iris_bufmgr.h"
66 #include "iris_context.h"
67 #include "string.h"
68
69 #include "drm-uapi/i915_drm.h"
70
71 #ifdef HAVE_VALGRIND
72 #include <valgrind.h>
73 #include <memcheck.h>
74 #define VG(x) x
75 #else
76 #define VG(x)
77 #endif
78
79 /* VALGRIND_FREELIKE_BLOCK unfortunately does not actually undo the earlier
80 * VALGRIND_MALLOCLIKE_BLOCK but instead leaves vg convinced the memory is
81 * leaked. All because it does not call VG(cli_free) from its
82 * VG_USERREQ__FREELIKE_BLOCK handler. Instead of treating the memory like
83 * and allocation, we mark it available for use upon mmapping and remove
84 * it upon unmapping.
85 */
86 #define VG_DEFINED(ptr, size) VG(VALGRIND_MAKE_MEM_DEFINED(ptr, size))
87 #define VG_NOACCESS(ptr, size) VG(VALGRIND_MAKE_MEM_NOACCESS(ptr, size))
88
89 /* On FreeBSD PAGE_SIZE is already defined in
90 * /usr/include/machine/param.h that is indirectly
91 * included here.
92 */
93 #ifndef PAGE_SIZE
94 #define PAGE_SIZE 4096
95 #endif
96
97 #define WARN_ONCE(cond, fmt...) do { \
98 if (unlikely(cond)) { \
99 static bool _warned = false; \
100 if (!_warned) { \
101 fprintf(stderr, "WARNING: "); \
102 fprintf(stderr, fmt); \
103 _warned = true; \
104 } \
105 } \
106 } while (0)
107
108 #define FILE_DEBUG_FLAG DEBUG_BUFMGR
109
110 /**
111 * For debugging purposes, this returns a time in seconds.
112 */
113 static double
get_time(void)114 get_time(void)
115 {
116 struct timespec tp;
117
118 clock_gettime(CLOCK_MONOTONIC, &tp);
119
120 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
121 }
122
123 static inline int
atomic_add_unless(int * v,int add,int unless)124 atomic_add_unless(int *v, int add, int unless)
125 {
126 int c, old;
127 c = p_atomic_read(v);
128 while (c != unless && (old = p_atomic_cmpxchg(v, c, c + add)) != c)
129 c = old;
130 return c == unless;
131 }
132
133 static const char *
memzone_name(enum iris_memory_zone memzone)134 memzone_name(enum iris_memory_zone memzone)
135 {
136 const char *names[] = {
137 [IRIS_MEMZONE_SHADER] = "shader",
138 [IRIS_MEMZONE_BINDER] = "binder",
139 [IRIS_MEMZONE_BINDLESS] = "scratchsurf",
140 [IRIS_MEMZONE_SURFACE] = "surface",
141 [IRIS_MEMZONE_DYNAMIC] = "dynamic",
142 [IRIS_MEMZONE_OTHER] = "other",
143 [IRIS_MEMZONE_BORDER_COLOR_POOL] = "bordercolor",
144 };
145 assert(memzone < ARRAY_SIZE(names));
146 return names[memzone];
147 }
148
149 struct bo_cache_bucket {
150 /** List of cached BOs. */
151 struct list_head head;
152
153 /** Size of this bucket, in bytes. */
154 uint64_t size;
155 };
156
157 struct bo_export {
158 /** File descriptor associated with a handle export. */
159 int drm_fd;
160
161 /** GEM handle in drm_fd */
162 uint32_t gem_handle;
163
164 struct list_head link;
165 };
166
167 struct iris_memregion {
168 struct drm_i915_gem_memory_class_instance region;
169 uint64_t size;
170 };
171
172 #define NUM_SLAB_ALLOCATORS 3
173
174 struct iris_slab {
175 struct pb_slab base;
176
177 unsigned entry_size;
178
179 /** The BO representing the entire slab */
180 struct iris_bo *bo;
181
182 /** Array of iris_bo structs representing BOs allocated out of this slab */
183 struct iris_bo *entries;
184 };
185
186 #define BUCKET_ARRAY_SIZE (14 * 4)
187
188 struct iris_bufmgr {
189 /**
190 * List into the list of bufmgr.
191 */
192 struct list_head link;
193
194 uint32_t refcount;
195
196 int fd;
197
198 simple_mtx_t lock;
199 simple_mtx_t bo_deps_lock;
200
201 /** Array of lists of cached gem objects of power-of-two sizes */
202 struct bo_cache_bucket cache_bucket[BUCKET_ARRAY_SIZE];
203 int num_buckets;
204
205 /** Same as cache_bucket, but for local memory gem objects */
206 struct bo_cache_bucket local_cache_bucket[BUCKET_ARRAY_SIZE];
207 int num_local_buckets;
208
209 /** Same as cache_bucket, but for local-preferred memory gem objects */
210 struct bo_cache_bucket local_preferred_cache_bucket[BUCKET_ARRAY_SIZE];
211 int num_local_preferred_buckets;
212
213 time_t time;
214
215 struct hash_table *name_table;
216 struct hash_table *handle_table;
217
218 /**
219 * List of BOs which we've effectively freed, but are hanging on to
220 * until they're idle before closing and returning the VMA.
221 */
222 struct list_head zombie_list;
223
224 struct util_vma_heap vma_allocator[IRIS_MEMZONE_COUNT];
225
226 uint64_t vma_min_align;
227 struct iris_memregion vram, sys;
228
229 /* Used only when use_global_vm is true. */
230 uint32_t global_vm_id;
231
232 int next_screen_id;
233
234 bool has_llc:1;
235 bool has_local_mem:1;
236 bool has_mmap_offset:1;
237 bool has_tiling_uapi:1;
238 bool has_userptr_probe:1;
239 bool bo_reuse:1;
240 bool use_global_vm:1;
241 bool all_vram_mappable:1;
242
243 struct intel_aux_map_context *aux_map_ctx;
244
245 struct pb_slabs bo_slabs[NUM_SLAB_ALLOCATORS];
246
247 struct iris_border_color_pool border_color_pool;
248 };
249
250 static simple_mtx_t global_bufmgr_list_mutex = _SIMPLE_MTX_INITIALIZER_NP;
251 static struct list_head global_bufmgr_list = {
252 .next = &global_bufmgr_list,
253 .prev = &global_bufmgr_list,
254 };
255
256 static void bo_free(struct iris_bo *bo);
257
258 static struct iris_bo *
find_and_ref_external_bo(struct hash_table * ht,unsigned int key)259 find_and_ref_external_bo(struct hash_table *ht, unsigned int key)
260 {
261 struct hash_entry *entry = _mesa_hash_table_search(ht, &key);
262 struct iris_bo *bo = entry ? entry->data : NULL;
263
264 if (bo) {
265 assert(iris_bo_is_external(bo));
266 assert(iris_bo_is_real(bo));
267 assert(!bo->real.reusable);
268
269 /* Being non-reusable, the BO cannot be in the cache lists, but it
270 * may be in the zombie list if it had reached zero references, but
271 * we hadn't yet closed it...and then reimported the same BO. If it
272 * is, then remove it since it's now been resurrected.
273 */
274 if (list_is_linked(&bo->head))
275 list_del(&bo->head);
276
277 iris_bo_reference(bo);
278 }
279
280 return bo;
281 }
282
283 static void
bucket_info_for_heap(struct iris_bufmgr * bufmgr,enum iris_heap heap,struct bo_cache_bucket ** cache_bucket,int ** num_buckets)284 bucket_info_for_heap(struct iris_bufmgr *bufmgr, enum iris_heap heap,
285 struct bo_cache_bucket **cache_bucket, int **num_buckets)
286 {
287 switch (heap) {
288 case IRIS_HEAP_SYSTEM_MEMORY:
289 *cache_bucket = bufmgr->cache_bucket;
290 *num_buckets = &bufmgr->num_buckets;
291 break;
292 case IRIS_HEAP_DEVICE_LOCAL:
293 *cache_bucket = bufmgr->local_cache_bucket;
294 *num_buckets = &bufmgr->num_local_buckets;
295 break;
296 case IRIS_HEAP_DEVICE_LOCAL_PREFERRED:
297 *cache_bucket = bufmgr->local_preferred_cache_bucket;
298 *num_buckets = &bufmgr->num_local_preferred_buckets;
299 break;
300 case IRIS_HEAP_MAX:
301 default:
302 *cache_bucket = NULL;
303 *num_buckets = NULL;
304 unreachable("invalid heap");
305 }
306
307 assert(**num_buckets < BUCKET_ARRAY_SIZE);
308 }
309 /**
310 * This function finds the correct bucket fit for the input size.
311 * The function works with O(1) complexity when the requested size
312 * was queried instead of iterating the size through all the buckets.
313 */
314 static struct bo_cache_bucket *
bucket_for_size(struct iris_bufmgr * bufmgr,uint64_t size,enum iris_heap heap)315 bucket_for_size(struct iris_bufmgr *bufmgr, uint64_t size,
316 enum iris_heap heap)
317 {
318 /* Calculating the pages and rounding up to the page size. */
319 const unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
320
321 /* Row Bucket sizes clz((x-1) | 3) Row Column
322 * in pages stride size
323 * 0: 1 2 3 4 -> 30 30 30 30 4 1
324 * 1: 5 6 7 8 -> 29 29 29 29 4 1
325 * 2: 10 12 14 16 -> 28 28 28 28 8 2
326 * 3: 20 24 28 32 -> 27 27 27 27 16 4
327 */
328 const unsigned row = 30 - __builtin_clz((pages - 1) | 3);
329 const unsigned row_max_pages = 4 << row;
330
331 /* The '& ~2' is the special case for row 1. In row 1, max pages /
332 * 2 is 2, but the previous row maximum is zero (because there is
333 * no previous row). All row maximum sizes are power of 2, so that
334 * is the only case where that bit will be set.
335 */
336 const unsigned prev_row_max_pages = (row_max_pages / 2) & ~2;
337 int col_size_log2 = row - 1;
338 col_size_log2 += (col_size_log2 < 0);
339
340 const unsigned col = (pages - prev_row_max_pages +
341 ((1 << col_size_log2) - 1)) >> col_size_log2;
342
343 /* Calculating the index based on the row and column. */
344 const unsigned index = (row * 4) + (col - 1);
345
346 int *num_buckets;
347 struct bo_cache_bucket *buckets;
348 bucket_info_for_heap(bufmgr, heap, &buckets, &num_buckets);
349
350 return (index < *num_buckets) ? &buckets[index] : NULL;
351 }
352
353 enum iris_memory_zone
iris_memzone_for_address(uint64_t address)354 iris_memzone_for_address(uint64_t address)
355 {
356 STATIC_ASSERT(IRIS_MEMZONE_OTHER_START > IRIS_MEMZONE_DYNAMIC_START);
357 STATIC_ASSERT(IRIS_MEMZONE_DYNAMIC_START > IRIS_MEMZONE_SURFACE_START);
358 STATIC_ASSERT(IRIS_MEMZONE_SURFACE_START > IRIS_MEMZONE_BINDLESS_START);
359 STATIC_ASSERT(IRIS_MEMZONE_BINDLESS_START > IRIS_MEMZONE_BINDER_START);
360 STATIC_ASSERT(IRIS_MEMZONE_BINDER_START > IRIS_MEMZONE_SHADER_START);
361 STATIC_ASSERT(IRIS_BORDER_COLOR_POOL_ADDRESS == IRIS_MEMZONE_DYNAMIC_START);
362
363 if (address >= IRIS_MEMZONE_OTHER_START)
364 return IRIS_MEMZONE_OTHER;
365
366 if (address == IRIS_BORDER_COLOR_POOL_ADDRESS)
367 return IRIS_MEMZONE_BORDER_COLOR_POOL;
368
369 if (address > IRIS_MEMZONE_DYNAMIC_START)
370 return IRIS_MEMZONE_DYNAMIC;
371
372 if (address >= IRIS_MEMZONE_SURFACE_START)
373 return IRIS_MEMZONE_SURFACE;
374
375 if (address >= IRIS_MEMZONE_BINDLESS_START)
376 return IRIS_MEMZONE_BINDLESS;
377
378 if (address >= IRIS_MEMZONE_BINDER_START)
379 return IRIS_MEMZONE_BINDER;
380
381 return IRIS_MEMZONE_SHADER;
382 }
383
384 /**
385 * Allocate a section of virtual memory for a buffer, assigning an address.
386 *
387 * This uses either the bucket allocator for the given size, or the large
388 * object allocator (util_vma).
389 */
390 static uint64_t
vma_alloc(struct iris_bufmgr * bufmgr,enum iris_memory_zone memzone,uint64_t size,uint64_t alignment)391 vma_alloc(struct iris_bufmgr *bufmgr,
392 enum iris_memory_zone memzone,
393 uint64_t size,
394 uint64_t alignment)
395 {
396 simple_mtx_assert_locked(&bufmgr->lock);
397
398 /* Force minimum alignment based on device requirements */
399 assert((alignment & (alignment - 1)) == 0);
400 alignment = MAX2(alignment, bufmgr->vma_min_align);
401
402 if (memzone == IRIS_MEMZONE_BORDER_COLOR_POOL)
403 return IRIS_BORDER_COLOR_POOL_ADDRESS;
404
405 uint64_t addr =
406 util_vma_heap_alloc(&bufmgr->vma_allocator[memzone], size, alignment);
407
408 assert((addr >> 48ull) == 0);
409 assert((addr % alignment) == 0);
410
411 return intel_canonical_address(addr);
412 }
413
414 static void
vma_free(struct iris_bufmgr * bufmgr,uint64_t address,uint64_t size)415 vma_free(struct iris_bufmgr *bufmgr,
416 uint64_t address,
417 uint64_t size)
418 {
419 simple_mtx_assert_locked(&bufmgr->lock);
420
421 if (address == IRIS_BORDER_COLOR_POOL_ADDRESS)
422 return;
423
424 /* Un-canonicalize the address. */
425 address = intel_48b_address(address);
426
427 if (address == 0ull)
428 return;
429
430 enum iris_memory_zone memzone = iris_memzone_for_address(address);
431
432 assert(memzone < ARRAY_SIZE(bufmgr->vma_allocator));
433
434 util_vma_heap_free(&bufmgr->vma_allocator[memzone], address, size);
435 }
436
437 static bool
iris_bo_busy_gem(struct iris_bo * bo)438 iris_bo_busy_gem(struct iris_bo *bo)
439 {
440 assert(iris_bo_is_real(bo));
441
442 struct iris_bufmgr *bufmgr = bo->bufmgr;
443 struct drm_i915_gem_busy busy = { .handle = bo->gem_handle };
444
445 int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
446 if (ret == 0) {
447 return busy.busy;
448 }
449 return false;
450 }
451
452 /* A timeout of 0 just checks for busyness. */
453 static int
iris_bo_wait_syncobj(struct iris_bo * bo,int64_t timeout_ns)454 iris_bo_wait_syncobj(struct iris_bo *bo, int64_t timeout_ns)
455 {
456 int ret = 0;
457 struct iris_bufmgr *bufmgr = bo->bufmgr;
458
459 /* If we know it's idle, don't bother with the kernel round trip */
460 if (bo->idle)
461 return 0;
462
463 simple_mtx_lock(&bufmgr->bo_deps_lock);
464
465 uint32_t handles[bo->deps_size * IRIS_BATCH_COUNT * 2];
466 int handle_count = 0;
467
468 for (int d = 0; d < bo->deps_size; d++) {
469 for (int b = 0; b < IRIS_BATCH_COUNT; b++) {
470 struct iris_syncobj *r = bo->deps[d].read_syncobjs[b];
471 struct iris_syncobj *w = bo->deps[d].write_syncobjs[b];
472 if (r)
473 handles[handle_count++] = r->handle;
474 if (w)
475 handles[handle_count++] = w->handle;
476 }
477 }
478
479 if (handle_count == 0)
480 goto out;
481
482 /* Unlike the gem wait, negative values are not infinite here. */
483 int64_t timeout_abs = os_time_get_absolute_timeout(timeout_ns);
484 if (timeout_abs < 0)
485 timeout_abs = INT64_MAX;
486
487 struct drm_syncobj_wait args = {
488 .handles = (uintptr_t) handles,
489 .timeout_nsec = timeout_abs,
490 .count_handles = handle_count,
491 .flags = DRM_SYNCOBJ_WAIT_FLAGS_WAIT_ALL,
492 };
493
494 ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_SYNCOBJ_WAIT, &args);
495 if (ret != 0) {
496 ret = -errno;
497 goto out;
498 }
499
500 /* We just waited everything, so clean all the deps. */
501 for (int d = 0; d < bo->deps_size; d++) {
502 for (int b = 0; b < IRIS_BATCH_COUNT; b++) {
503 iris_syncobj_reference(bufmgr, &bo->deps[d].write_syncobjs[b], NULL);
504 iris_syncobj_reference(bufmgr, &bo->deps[d].read_syncobjs[b], NULL);
505 }
506 }
507
508 out:
509 simple_mtx_unlock(&bufmgr->bo_deps_lock);
510 return ret;
511 }
512
513 static bool
iris_bo_busy_syncobj(struct iris_bo * bo)514 iris_bo_busy_syncobj(struct iris_bo *bo)
515 {
516 return iris_bo_wait_syncobj(bo, 0) == -ETIME;
517 }
518
519 bool
iris_bo_busy(struct iris_bo * bo)520 iris_bo_busy(struct iris_bo *bo)
521 {
522 bool busy;
523 if (iris_bo_is_external(bo))
524 busy = iris_bo_busy_gem(bo);
525 else
526 busy = iris_bo_busy_syncobj(bo);
527
528 bo->idle = !busy;
529
530 return busy;
531 }
532
533 int
iris_bo_madvise(struct iris_bo * bo,int state)534 iris_bo_madvise(struct iris_bo *bo, int state)
535 {
536 /* We can't madvise suballocated BOs. */
537 assert(iris_bo_is_real(bo));
538
539 struct drm_i915_gem_madvise madv = {
540 .handle = bo->gem_handle,
541 .madv = state,
542 .retained = 1,
543 };
544
545 intel_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
546
547 return madv.retained;
548 }
549
550 static struct iris_bo *
bo_calloc(void)551 bo_calloc(void)
552 {
553 struct iris_bo *bo = calloc(1, sizeof(*bo));
554 if (!bo)
555 return NULL;
556
557 list_inithead(&bo->real.exports);
558
559 bo->hash = _mesa_hash_pointer(bo);
560
561 return bo;
562 }
563
564 static void
bo_unmap(struct iris_bo * bo)565 bo_unmap(struct iris_bo *bo)
566 {
567 assert(iris_bo_is_real(bo));
568
569 VG_NOACCESS(bo->real.map, bo->size);
570 os_munmap(bo->real.map, bo->size);
571 bo->real.map = NULL;
572 }
573
574 static struct pb_slabs *
get_slabs(struct iris_bufmgr * bufmgr,uint64_t size)575 get_slabs(struct iris_bufmgr *bufmgr, uint64_t size)
576 {
577 for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) {
578 struct pb_slabs *slabs = &bufmgr->bo_slabs[i];
579
580 if (size <= 1ull << (slabs->min_order + slabs->num_orders - 1))
581 return slabs;
582 }
583
584 unreachable("should have found a valid slab for this size");
585 }
586
587 /* Return the power of two size of a slab entry matching the input size. */
588 static unsigned
get_slab_pot_entry_size(struct iris_bufmgr * bufmgr,unsigned size)589 get_slab_pot_entry_size(struct iris_bufmgr *bufmgr, unsigned size)
590 {
591 unsigned entry_size = util_next_power_of_two(size);
592 unsigned min_entry_size = 1 << bufmgr->bo_slabs[0].min_order;
593
594 return MAX2(entry_size, min_entry_size);
595 }
596
597 /* Return the slab entry alignment. */
598 static unsigned
get_slab_entry_alignment(struct iris_bufmgr * bufmgr,unsigned size)599 get_slab_entry_alignment(struct iris_bufmgr *bufmgr, unsigned size)
600 {
601 unsigned entry_size = get_slab_pot_entry_size(bufmgr, size);
602
603 if (size <= entry_size * 3 / 4)
604 return entry_size / 4;
605
606 return entry_size;
607 }
608
609 static bool
iris_can_reclaim_slab(void * priv,struct pb_slab_entry * entry)610 iris_can_reclaim_slab(void *priv, struct pb_slab_entry *entry)
611 {
612 struct iris_bo *bo = container_of(entry, struct iris_bo, slab.entry);
613
614 return !iris_bo_busy(bo);
615 }
616
617 static void
iris_slab_free(void * priv,struct pb_slab * pslab)618 iris_slab_free(void *priv, struct pb_slab *pslab)
619 {
620 struct iris_bufmgr *bufmgr = priv;
621 struct iris_slab *slab = (void *) pslab;
622 struct intel_aux_map_context *aux_map_ctx = bufmgr->aux_map_ctx;
623
624 assert(!slab->bo->aux_map_address);
625
626 /* Since we're freeing the whole slab, all buffers allocated out of it
627 * must be reclaimable. We require buffers to be idle to be reclaimed
628 * (see iris_can_reclaim_slab()), so we know all entries must be idle.
629 * Therefore, we can safely unmap their aux table entries.
630 */
631 for (unsigned i = 0; i < pslab->num_entries; i++) {
632 struct iris_bo *bo = &slab->entries[i];
633 if (aux_map_ctx && bo->aux_map_address) {
634 intel_aux_map_unmap_range(aux_map_ctx, bo->address, bo->size);
635 bo->aux_map_address = 0;
636 }
637
638 /* Unref read/write dependency syncobjs and free the array. */
639 for (int d = 0; d < bo->deps_size; d++) {
640 for (int b = 0; b < IRIS_BATCH_COUNT; b++) {
641 iris_syncobj_reference(bufmgr, &bo->deps[d].write_syncobjs[b], NULL);
642 iris_syncobj_reference(bufmgr, &bo->deps[d].read_syncobjs[b], NULL);
643 }
644 }
645 free(bo->deps);
646 }
647
648 iris_bo_unreference(slab->bo);
649
650 free(slab->entries);
651 free(slab);
652 }
653
654 static struct pb_slab *
iris_slab_alloc(void * priv,unsigned heap,unsigned entry_size,unsigned group_index)655 iris_slab_alloc(void *priv,
656 unsigned heap,
657 unsigned entry_size,
658 unsigned group_index)
659 {
660 struct iris_bufmgr *bufmgr = priv;
661 struct iris_slab *slab = calloc(1, sizeof(struct iris_slab));
662 unsigned flags = heap == IRIS_HEAP_SYSTEM_MEMORY ? BO_ALLOC_SMEM :
663 heap == IRIS_HEAP_DEVICE_LOCAL ? BO_ALLOC_LMEM : 0;
664 unsigned slab_size = 0;
665 /* We only support slab allocation for IRIS_MEMZONE_OTHER */
666 enum iris_memory_zone memzone = IRIS_MEMZONE_OTHER;
667
668 if (!slab)
669 return NULL;
670
671 struct pb_slabs *slabs = bufmgr->bo_slabs;
672
673 /* Determine the slab buffer size. */
674 for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) {
675 unsigned max_entry_size =
676 1 << (slabs[i].min_order + slabs[i].num_orders - 1);
677
678 if (entry_size <= max_entry_size) {
679 /* The slab size is twice the size of the largest possible entry. */
680 slab_size = max_entry_size * 2;
681
682 if (!util_is_power_of_two_nonzero(entry_size)) {
683 assert(util_is_power_of_two_nonzero(entry_size * 4 / 3));
684
685 /* If the entry size is 3/4 of a power of two, we would waste
686 * space and not gain anything if we allocated only twice the
687 * power of two for the backing buffer:
688 *
689 * 2 * 3/4 = 1.5 usable with buffer size 2
690 *
691 * Allocating 5 times the entry size leads us to the next power
692 * of two and results in a much better memory utilization:
693 *
694 * 5 * 3/4 = 3.75 usable with buffer size 4
695 */
696 if (entry_size * 5 > slab_size)
697 slab_size = util_next_power_of_two(entry_size * 5);
698 }
699
700 /* The largest slab should have the same size as the PTE fragment
701 * size to get faster address translation.
702 *
703 * TODO: move this to intel_device_info?
704 */
705 const unsigned pte_size = 2 * 1024 * 1024;
706
707 if (i == NUM_SLAB_ALLOCATORS - 1 && slab_size < pte_size)
708 slab_size = pte_size;
709
710 break;
711 }
712 }
713 assert(slab_size != 0);
714
715 slab->bo =
716 iris_bo_alloc(bufmgr, "slab", slab_size, slab_size, memzone, flags);
717 if (!slab->bo)
718 goto fail;
719
720 slab_size = slab->bo->size;
721
722 slab->base.num_entries = slab_size / entry_size;
723 slab->base.num_free = slab->base.num_entries;
724 slab->entry_size = entry_size;
725 slab->entries = calloc(slab->base.num_entries, sizeof(*slab->entries));
726 if (!slab->entries)
727 goto fail_bo;
728
729 list_inithead(&slab->base.free);
730
731 for (unsigned i = 0; i < slab->base.num_entries; i++) {
732 struct iris_bo *bo = &slab->entries[i];
733
734 bo->size = entry_size;
735 bo->bufmgr = bufmgr;
736 bo->hash = _mesa_hash_pointer(bo);
737 bo->gem_handle = 0;
738 bo->address = slab->bo->address + i * entry_size;
739 bo->aux_map_address = 0;
740 bo->index = -1;
741 bo->refcount = 0;
742 bo->idle = true;
743
744 bo->slab.entry.slab = &slab->base;
745 bo->slab.entry.group_index = group_index;
746 bo->slab.entry.entry_size = entry_size;
747
748 bo->slab.real = iris_get_backing_bo(slab->bo);
749
750 list_addtail(&bo->slab.entry.head, &slab->base.free);
751 }
752
753 return &slab->base;
754
755 fail_bo:
756 iris_bo_unreference(slab->bo);
757 fail:
758 free(slab);
759 return NULL;
760 }
761
762 static enum iris_heap
flags_to_heap(struct iris_bufmgr * bufmgr,unsigned flags)763 flags_to_heap(struct iris_bufmgr *bufmgr, unsigned flags)
764 {
765 if (bufmgr->vram.size > 0 &&
766 !(flags & BO_ALLOC_SMEM) &&
767 !(flags & BO_ALLOC_COHERENT)) {
768 return flags & BO_ALLOC_LMEM ? IRIS_HEAP_DEVICE_LOCAL :
769 IRIS_HEAP_DEVICE_LOCAL_PREFERRED;
770 } else {
771 assert(!(flags & BO_ALLOC_LMEM));
772 return IRIS_HEAP_SYSTEM_MEMORY;
773 }
774 }
775
776 static struct iris_bo *
alloc_bo_from_slabs(struct iris_bufmgr * bufmgr,const char * name,uint64_t size,uint32_t alignment,unsigned flags)777 alloc_bo_from_slabs(struct iris_bufmgr *bufmgr,
778 const char *name,
779 uint64_t size,
780 uint32_t alignment,
781 unsigned flags)
782 {
783 if (flags & BO_ALLOC_NO_SUBALLOC)
784 return NULL;
785
786 struct pb_slabs *last_slab = &bufmgr->bo_slabs[NUM_SLAB_ALLOCATORS - 1];
787 unsigned max_slab_entry_size =
788 1 << (last_slab->min_order + last_slab->num_orders - 1);
789
790 if (size > max_slab_entry_size)
791 return NULL;
792
793 struct pb_slab_entry *entry;
794
795 enum iris_heap heap = flags_to_heap(bufmgr, flags);
796
797 unsigned alloc_size = size;
798
799 /* Always use slabs for sizes less than 4 KB because the kernel aligns
800 * everything to 4 KB.
801 */
802 if (size < alignment && alignment <= 4 * 1024)
803 alloc_size = alignment;
804
805 if (alignment > get_slab_entry_alignment(bufmgr, alloc_size)) {
806 /* 3/4 allocations can return too small alignment.
807 * Try again with a power of two allocation size.
808 */
809 unsigned pot_size = get_slab_pot_entry_size(bufmgr, alloc_size);
810
811 if (alignment <= pot_size) {
812 /* This size works but wastes some memory to fulfill the alignment. */
813 alloc_size = pot_size;
814 } else {
815 /* can't fulfill alignment requirements */
816 return NULL;
817 }
818 }
819
820 struct pb_slabs *slabs = get_slabs(bufmgr, alloc_size);
821 entry = pb_slab_alloc(slabs, alloc_size, heap);
822 if (!entry) {
823 /* Clean up and try again... */
824 pb_slabs_reclaim(slabs);
825
826 entry = pb_slab_alloc(slabs, alloc_size, heap);
827 }
828 if (!entry)
829 return NULL;
830
831 struct iris_bo *bo = container_of(entry, struct iris_bo, slab.entry);
832
833 if (bo->aux_map_address && bo->bufmgr->aux_map_ctx) {
834 /* This buffer was associated with an aux-buffer range. We only allow
835 * slab allocated buffers to be reclaimed when idle (not in use by an
836 * executing batch). (See iris_can_reclaim_slab().) So we know that
837 * our previous aux mapping is no longer in use, and we can safely
838 * remove it.
839 */
840 intel_aux_map_unmap_range(bo->bufmgr->aux_map_ctx, bo->address,
841 bo->size);
842 bo->aux_map_address = 0;
843 }
844
845 p_atomic_set(&bo->refcount, 1);
846 bo->name = name;
847 bo->size = size;
848
849 /* Zero the contents if necessary. If this fails, fall back to
850 * allocating a fresh BO, which will always be zeroed by the kernel.
851 */
852 if (flags & BO_ALLOC_ZEROED) {
853 void *map = iris_bo_map(NULL, bo, MAP_WRITE | MAP_RAW);
854 if (map) {
855 memset(map, 0, bo->size);
856 } else {
857 pb_slab_free(slabs, &bo->slab.entry);
858 return NULL;
859 }
860 }
861
862 return bo;
863 }
864
865 static struct iris_bo *
alloc_bo_from_cache(struct iris_bufmgr * bufmgr,struct bo_cache_bucket * bucket,uint32_t alignment,enum iris_memory_zone memzone,enum iris_mmap_mode mmap_mode,unsigned flags,bool match_zone)866 alloc_bo_from_cache(struct iris_bufmgr *bufmgr,
867 struct bo_cache_bucket *bucket,
868 uint32_t alignment,
869 enum iris_memory_zone memzone,
870 enum iris_mmap_mode mmap_mode,
871 unsigned flags,
872 bool match_zone)
873 {
874 if (!bucket)
875 return NULL;
876
877 struct iris_bo *bo = NULL;
878
879 simple_mtx_assert_locked(&bufmgr->lock);
880
881 list_for_each_entry_safe(struct iris_bo, cur, &bucket->head, head) {
882 assert(iris_bo_is_real(cur));
883
884 /* Find one that's got the right mapping type. We used to swap maps
885 * around but the kernel doesn't allow this on discrete GPUs.
886 */
887 if (mmap_mode != cur->real.mmap_mode)
888 continue;
889
890 /* Try a little harder to find one that's already in the right memzone */
891 if (match_zone && memzone != iris_memzone_for_address(cur->address))
892 continue;
893
894 /* If the last BO in the cache is busy, there are no idle BOs. Bail,
895 * either falling back to a non-matching memzone, or if that fails,
896 * allocating a fresh buffer.
897 */
898 if (iris_bo_busy(cur))
899 return NULL;
900
901 list_del(&cur->head);
902
903 /* Tell the kernel we need this BO. If it still exists, we're done! */
904 if (iris_bo_madvise(cur, I915_MADV_WILLNEED)) {
905 bo = cur;
906 break;
907 }
908
909 /* This BO was purged, throw it out and keep looking. */
910 bo_free(cur);
911 }
912
913 if (!bo)
914 return NULL;
915
916 if (bo->aux_map_address) {
917 /* This buffer was associated with an aux-buffer range. We make sure
918 * that buffers are not reused from the cache while the buffer is (busy)
919 * being used by an executing batch. Since we are here, the buffer is no
920 * longer being used by a batch and the buffer was deleted (in order to
921 * end up in the cache). Therefore its old aux-buffer range can be
922 * removed from the aux-map.
923 */
924 if (bo->bufmgr->aux_map_ctx)
925 intel_aux_map_unmap_range(bo->bufmgr->aux_map_ctx, bo->address,
926 bo->size);
927 bo->aux_map_address = 0;
928 }
929
930 /* If the cached BO isn't in the right memory zone, or the alignment
931 * isn't sufficient, free the old memory and assign it a new address.
932 */
933 if (memzone != iris_memzone_for_address(bo->address) ||
934 bo->address % alignment != 0) {
935 vma_free(bufmgr, bo->address, bo->size);
936 bo->address = 0ull;
937 }
938
939 /* Zero the contents if necessary. If this fails, fall back to
940 * allocating a fresh BO, which will always be zeroed by the kernel.
941 */
942 if (flags & BO_ALLOC_ZEROED) {
943 void *map = iris_bo_map(NULL, bo, MAP_WRITE | MAP_RAW);
944 if (map) {
945 memset(map, 0, bo->size);
946 } else {
947 bo_free(bo);
948 return NULL;
949 }
950 }
951
952 return bo;
953 }
954
955 static struct iris_bo *
alloc_fresh_bo(struct iris_bufmgr * bufmgr,uint64_t bo_size,unsigned flags)956 alloc_fresh_bo(struct iris_bufmgr *bufmgr, uint64_t bo_size, unsigned flags)
957 {
958 struct iris_bo *bo = bo_calloc();
959 if (!bo)
960 return NULL;
961
962 bo->real.heap = flags_to_heap(bufmgr, flags);
963
964 /* If we have vram size, we have multiple memory regions and should choose
965 * one of them.
966 */
967 if (bufmgr->vram.size > 0) {
968 /* All new BOs we get from the kernel are zeroed, so we don't need to
969 * worry about that here.
970 */
971 struct drm_i915_gem_memory_class_instance regions[2];
972 uint32_t nregions = 0;
973 switch (bo->real.heap) {
974 case IRIS_HEAP_DEVICE_LOCAL_PREFERRED:
975 /* For vram allocations, still use system memory as a fallback. */
976 regions[nregions++] = bufmgr->vram.region;
977 regions[nregions++] = bufmgr->sys.region;
978 break;
979 case IRIS_HEAP_DEVICE_LOCAL:
980 regions[nregions++] = bufmgr->vram.region;
981 break;
982 case IRIS_HEAP_SYSTEM_MEMORY:
983 regions[nregions++] = bufmgr->sys.region;
984 break;
985 case IRIS_HEAP_MAX:
986 unreachable("invalid heap for BO");
987 }
988
989 struct drm_i915_gem_create_ext_memory_regions ext_regions = {
990 .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS },
991 .num_regions = nregions,
992 .regions = (uintptr_t)regions,
993 };
994
995 struct drm_i915_gem_create_ext create = {
996 .size = bo_size,
997 .extensions = (uintptr_t)&ext_regions,
998 };
999
1000 if (!bufmgr->all_vram_mappable &&
1001 bo->real.heap == IRIS_HEAP_DEVICE_LOCAL_PREFERRED) {
1002 create.flags |= I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS;
1003 }
1004
1005 /* It should be safe to use GEM_CREATE_EXT without checking, since we are
1006 * in the side of the branch where discrete memory is available. So we
1007 * can assume GEM_CREATE_EXT is supported already.
1008 */
1009 if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create) != 0) {
1010 free(bo);
1011 return NULL;
1012 }
1013 bo->gem_handle = create.handle;
1014 } else {
1015 struct drm_i915_gem_create create = { .size = bo_size };
1016
1017 /* All new BOs we get from the kernel are zeroed, so we don't need to
1018 * worry about that here.
1019 */
1020 if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE, &create) != 0) {
1021 free(bo);
1022 return NULL;
1023 }
1024 bo->gem_handle = create.handle;
1025 }
1026
1027 bo->bufmgr = bufmgr;
1028 bo->size = bo_size;
1029 bo->idle = true;
1030
1031 if (bufmgr->vram.size == 0) {
1032 /* Calling set_domain() will allocate pages for the BO outside of the
1033 * struct mutex lock in the kernel, which is more efficient than waiting
1034 * to create them during the first execbuf that uses the BO.
1035 */
1036 struct drm_i915_gem_set_domain sd = {
1037 .handle = bo->gem_handle,
1038 .read_domains = I915_GEM_DOMAIN_CPU,
1039 .write_domain = 0,
1040 };
1041
1042 intel_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd);
1043 }
1044
1045 return bo;
1046 }
1047
1048 const char *
1049 iris_heap_to_string[IRIS_HEAP_MAX] = {
1050 [IRIS_HEAP_SYSTEM_MEMORY] = "system",
1051 [IRIS_HEAP_DEVICE_LOCAL] = "local",
1052 [IRIS_HEAP_DEVICE_LOCAL_PREFERRED] = "local-preferred",
1053 };
1054
1055 struct iris_bo *
iris_bo_alloc(struct iris_bufmgr * bufmgr,const char * name,uint64_t size,uint32_t alignment,enum iris_memory_zone memzone,unsigned flags)1056 iris_bo_alloc(struct iris_bufmgr *bufmgr,
1057 const char *name,
1058 uint64_t size,
1059 uint32_t alignment,
1060 enum iris_memory_zone memzone,
1061 unsigned flags)
1062 {
1063 struct iris_bo *bo;
1064 unsigned int page_size = getpagesize();
1065 enum iris_heap heap = flags_to_heap(bufmgr, flags);
1066 bool local = heap != IRIS_HEAP_SYSTEM_MEMORY;
1067 struct bo_cache_bucket *bucket = bucket_for_size(bufmgr, size, heap);
1068
1069 if (memzone != IRIS_MEMZONE_OTHER || (flags & BO_ALLOC_COHERENT))
1070 flags |= BO_ALLOC_NO_SUBALLOC;
1071
1072 bo = alloc_bo_from_slabs(bufmgr, name, size, alignment, flags);
1073
1074 if (bo)
1075 return bo;
1076
1077 /* Round the size up to the bucket size, or if we don't have caching
1078 * at this size, a multiple of the page size.
1079 */
1080 uint64_t bo_size =
1081 bucket ? bucket->size : MAX2(ALIGN(size, page_size), page_size);
1082
1083 bool is_coherent = bufmgr->has_llc ||
1084 (bufmgr->vram.size > 0 && !local) ||
1085 (flags & BO_ALLOC_COHERENT);
1086 bool is_scanout = (flags & BO_ALLOC_SCANOUT) != 0;
1087
1088 enum iris_mmap_mode mmap_mode;
1089 if (!bufmgr->all_vram_mappable && heap == IRIS_HEAP_DEVICE_LOCAL)
1090 mmap_mode = IRIS_MMAP_NONE;
1091 else if (!local && is_coherent && !is_scanout)
1092 mmap_mode = IRIS_MMAP_WB;
1093 else
1094 mmap_mode = IRIS_MMAP_WC;
1095
1096 simple_mtx_lock(&bufmgr->lock);
1097
1098 /* Get a buffer out of the cache if available. First, we try to find
1099 * one with a matching memory zone so we can avoid reallocating VMA.
1100 */
1101 bo = alloc_bo_from_cache(bufmgr, bucket, alignment, memzone, mmap_mode,
1102 flags, true);
1103
1104 /* If that fails, we try for any cached BO, without matching memzone. */
1105 if (!bo) {
1106 bo = alloc_bo_from_cache(bufmgr, bucket, alignment, memzone, mmap_mode,
1107 flags, false);
1108 }
1109
1110 simple_mtx_unlock(&bufmgr->lock);
1111
1112 if (!bo) {
1113 bo = alloc_fresh_bo(bufmgr, bo_size, flags);
1114 if (!bo)
1115 return NULL;
1116 }
1117
1118 if (bo->address == 0ull) {
1119 simple_mtx_lock(&bufmgr->lock);
1120 bo->address = vma_alloc(bufmgr, memzone, bo->size, alignment);
1121 simple_mtx_unlock(&bufmgr->lock);
1122
1123 if (bo->address == 0ull)
1124 goto err_free;
1125 }
1126
1127 bo->name = name;
1128 p_atomic_set(&bo->refcount, 1);
1129 bo->real.reusable = bucket && bufmgr->bo_reuse;
1130 bo->index = -1;
1131 bo->real.kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
1132
1133 /* By default, capture all driver-internal buffers like shader kernels,
1134 * surface states, dynamic states, border colors, and so on.
1135 */
1136 if (memzone < IRIS_MEMZONE_OTHER)
1137 bo->real.kflags |= EXEC_OBJECT_CAPTURE;
1138
1139 assert(bo->real.map == NULL || bo->real.mmap_mode == mmap_mode);
1140 bo->real.mmap_mode = mmap_mode;
1141
1142 /* On integrated GPUs, enable snooping to ensure coherency if needed.
1143 * For discrete, we instead use SMEM and avoid WB maps for coherency.
1144 */
1145 if ((flags & BO_ALLOC_COHERENT) &&
1146 !bufmgr->has_llc && bufmgr->vram.size == 0) {
1147 struct drm_i915_gem_caching arg = {
1148 .handle = bo->gem_handle,
1149 .caching = 1,
1150 };
1151 if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_CACHING, &arg) != 0)
1152 goto err_free;
1153
1154 bo->real.reusable = false;
1155 }
1156
1157 DBG("bo_create: buf %d (%s) (%s memzone) (%s) %llub\n", bo->gem_handle,
1158 bo->name, memzone_name(memzone), iris_heap_to_string[bo->real.heap],
1159 (unsigned long long) size);
1160
1161 return bo;
1162
1163 err_free:
1164 simple_mtx_lock(&bufmgr->lock);
1165 bo_free(bo);
1166 simple_mtx_unlock(&bufmgr->lock);
1167 return NULL;
1168 }
1169
1170 struct iris_bo *
iris_bo_create_userptr(struct iris_bufmgr * bufmgr,const char * name,void * ptr,size_t size,enum iris_memory_zone memzone)1171 iris_bo_create_userptr(struct iris_bufmgr *bufmgr, const char *name,
1172 void *ptr, size_t size,
1173 enum iris_memory_zone memzone)
1174 {
1175 struct drm_gem_close close = { 0, };
1176 struct iris_bo *bo;
1177
1178 bo = bo_calloc();
1179 if (!bo)
1180 return NULL;
1181
1182 struct drm_i915_gem_userptr arg = {
1183 .user_ptr = (uintptr_t)ptr,
1184 .user_size = size,
1185 .flags = bufmgr->has_userptr_probe ? I915_USERPTR_PROBE : 0,
1186 };
1187 if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_USERPTR, &arg))
1188 goto err_free;
1189 bo->gem_handle = arg.handle;
1190
1191 if (!bufmgr->has_userptr_probe) {
1192 /* Check the buffer for validity before we try and use it in a batch */
1193 struct drm_i915_gem_set_domain sd = {
1194 .handle = bo->gem_handle,
1195 .read_domains = I915_GEM_DOMAIN_CPU,
1196 };
1197 if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd))
1198 goto err_close;
1199 }
1200
1201 bo->name = name;
1202 bo->size = size;
1203 bo->real.map = ptr;
1204
1205 bo->bufmgr = bufmgr;
1206 bo->real.kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
1207
1208 simple_mtx_lock(&bufmgr->lock);
1209 bo->address = vma_alloc(bufmgr, memzone, size, 1);
1210 simple_mtx_unlock(&bufmgr->lock);
1211
1212 if (bo->address == 0ull)
1213 goto err_close;
1214
1215 p_atomic_set(&bo->refcount, 1);
1216 bo->real.userptr = true;
1217 bo->index = -1;
1218 bo->idle = true;
1219 bo->real.mmap_mode = IRIS_MMAP_WB;
1220
1221 return bo;
1222
1223 err_close:
1224 close.handle = bo->gem_handle;
1225 intel_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close);
1226 err_free:
1227 free(bo);
1228 return NULL;
1229 }
1230
1231 /**
1232 * Returns a iris_bo wrapping the given buffer object handle.
1233 *
1234 * This can be used when one application needs to pass a buffer object
1235 * to another.
1236 */
1237 struct iris_bo *
iris_bo_gem_create_from_name(struct iris_bufmgr * bufmgr,const char * name,unsigned int handle)1238 iris_bo_gem_create_from_name(struct iris_bufmgr *bufmgr,
1239 const char *name, unsigned int handle)
1240 {
1241 struct iris_bo *bo;
1242
1243 /* At the moment most applications only have a few named bo.
1244 * For instance, in a DRI client only the render buffers passed
1245 * between X and the client are named. And since X returns the
1246 * alternating names for the front/back buffer a linear search
1247 * provides a sufficiently fast match.
1248 */
1249 simple_mtx_lock(&bufmgr->lock);
1250 bo = find_and_ref_external_bo(bufmgr->name_table, handle);
1251 if (bo)
1252 goto out;
1253
1254 struct drm_gem_open open_arg = { .name = handle };
1255 int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_GEM_OPEN, &open_arg);
1256 if (ret != 0) {
1257 DBG("Couldn't reference %s handle 0x%08x: %s\n",
1258 name, handle, strerror(errno));
1259 bo = NULL;
1260 goto out;
1261 }
1262 /* Now see if someone has used a prime handle to get this
1263 * object from the kernel before by looking through the list
1264 * again for a matching gem_handle
1265 */
1266 bo = find_and_ref_external_bo(bufmgr->handle_table, open_arg.handle);
1267 if (bo)
1268 goto out;
1269
1270 bo = bo_calloc();
1271 if (!bo) {
1272 struct drm_gem_close close = { .handle = open_arg.handle, };
1273 intel_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close);
1274 goto out;
1275 }
1276
1277 p_atomic_set(&bo->refcount, 1);
1278
1279 bo->size = open_arg.size;
1280 bo->bufmgr = bufmgr;
1281 bo->gem_handle = open_arg.handle;
1282 bo->name = name;
1283 bo->real.global_name = handle;
1284 bo->real.reusable = false;
1285 bo->real.imported = true;
1286 bo->real.mmap_mode = IRIS_MMAP_NONE;
1287 bo->real.kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
1288 bo->address = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 1);
1289
1290 if (bo->address == 0ull) {
1291 bo_free(bo);
1292 bo = NULL;
1293 goto out;
1294 }
1295
1296 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
1297 _mesa_hash_table_insert(bufmgr->name_table, &bo->real.global_name, bo);
1298
1299 DBG("bo_create_from_handle: %d (%s)\n", handle, bo->name);
1300
1301 out:
1302 simple_mtx_unlock(&bufmgr->lock);
1303 return bo;
1304 }
1305
1306 static void
bo_close(struct iris_bo * bo)1307 bo_close(struct iris_bo *bo)
1308 {
1309 struct iris_bufmgr *bufmgr = bo->bufmgr;
1310
1311 simple_mtx_assert_locked(&bufmgr->lock);
1312 assert(iris_bo_is_real(bo));
1313
1314 if (iris_bo_is_external(bo)) {
1315 struct hash_entry *entry;
1316
1317 if (bo->real.global_name) {
1318 entry = _mesa_hash_table_search(bufmgr->name_table,
1319 &bo->real.global_name);
1320 _mesa_hash_table_remove(bufmgr->name_table, entry);
1321 }
1322
1323 entry = _mesa_hash_table_search(bufmgr->handle_table, &bo->gem_handle);
1324 _mesa_hash_table_remove(bufmgr->handle_table, entry);
1325
1326 list_for_each_entry_safe(struct bo_export, export, &bo->real.exports, link) {
1327 struct drm_gem_close close = { .handle = export->gem_handle };
1328 intel_ioctl(export->drm_fd, DRM_IOCTL_GEM_CLOSE, &close);
1329
1330 list_del(&export->link);
1331 free(export);
1332 }
1333 } else {
1334 assert(list_is_empty(&bo->real.exports));
1335 }
1336
1337 /* Close this object */
1338 struct drm_gem_close close = { .handle = bo->gem_handle };
1339 int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close);
1340 if (ret != 0) {
1341 DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
1342 bo->gem_handle, bo->name, strerror(errno));
1343 }
1344
1345 if (bo->aux_map_address && bo->bufmgr->aux_map_ctx) {
1346 intel_aux_map_unmap_range(bo->bufmgr->aux_map_ctx, bo->address,
1347 bo->size);
1348 }
1349
1350 /* Return the VMA for reuse */
1351 vma_free(bo->bufmgr, bo->address, bo->size);
1352
1353 for (int d = 0; d < bo->deps_size; d++) {
1354 for (int b = 0; b < IRIS_BATCH_COUNT; b++) {
1355 iris_syncobj_reference(bufmgr, &bo->deps[d].write_syncobjs[b], NULL);
1356 iris_syncobj_reference(bufmgr, &bo->deps[d].read_syncobjs[b], NULL);
1357 }
1358 }
1359 free(bo->deps);
1360
1361 free(bo);
1362 }
1363
1364 static void
bo_free(struct iris_bo * bo)1365 bo_free(struct iris_bo *bo)
1366 {
1367 struct iris_bufmgr *bufmgr = bo->bufmgr;
1368
1369 simple_mtx_assert_locked(&bufmgr->lock);
1370 assert(iris_bo_is_real(bo));
1371
1372 if (!bo->real.userptr && bo->real.map)
1373 bo_unmap(bo);
1374
1375 if (bo->idle) {
1376 bo_close(bo);
1377 } else {
1378 /* Defer closing the GEM BO and returning the VMA for reuse until the
1379 * BO is idle. Just move it to the dead list for now.
1380 */
1381 list_addtail(&bo->head, &bufmgr->zombie_list);
1382 }
1383 }
1384
1385 /** Frees all cached buffers significantly older than @time. */
1386 static void
cleanup_bo_cache(struct iris_bufmgr * bufmgr,time_t time)1387 cleanup_bo_cache(struct iris_bufmgr *bufmgr, time_t time)
1388 {
1389 int i;
1390
1391 simple_mtx_assert_locked(&bufmgr->lock);
1392
1393 if (bufmgr->time == time)
1394 return;
1395
1396 for (i = 0; i < bufmgr->num_buckets; i++) {
1397 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
1398
1399 list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
1400 if (time - bo->real.free_time <= 1)
1401 break;
1402
1403 list_del(&bo->head);
1404
1405 bo_free(bo);
1406 }
1407 }
1408
1409 for (i = 0; i < bufmgr->num_local_buckets; i++) {
1410 struct bo_cache_bucket *bucket = &bufmgr->local_cache_bucket[i];
1411
1412 list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
1413 if (time - bo->real.free_time <= 1)
1414 break;
1415
1416 list_del(&bo->head);
1417
1418 bo_free(bo);
1419 }
1420 }
1421
1422 for (i = 0; i < bufmgr->num_local_preferred_buckets; i++) {
1423 struct bo_cache_bucket *bucket = &bufmgr->local_preferred_cache_bucket[i];
1424
1425 list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
1426 if (time - bo->real.free_time <= 1)
1427 break;
1428
1429 list_del(&bo->head);
1430
1431 bo_free(bo);
1432 }
1433 }
1434
1435 list_for_each_entry_safe(struct iris_bo, bo, &bufmgr->zombie_list, head) {
1436 /* Stop once we reach a busy BO - all others past this point were
1437 * freed more recently so are likely also busy.
1438 */
1439 if (!bo->idle && iris_bo_busy(bo))
1440 break;
1441
1442 list_del(&bo->head);
1443 bo_close(bo);
1444 }
1445
1446 bufmgr->time = time;
1447 }
1448
1449 static void
bo_unreference_final(struct iris_bo * bo,time_t time)1450 bo_unreference_final(struct iris_bo *bo, time_t time)
1451 {
1452 struct iris_bufmgr *bufmgr = bo->bufmgr;
1453 struct bo_cache_bucket *bucket;
1454
1455 DBG("bo_unreference final: %d (%s)\n", bo->gem_handle, bo->name);
1456
1457 assert(iris_bo_is_real(bo));
1458
1459 bucket = NULL;
1460 if (bo->real.reusable)
1461 bucket = bucket_for_size(bufmgr, bo->size, bo->real.heap);
1462 /* Put the buffer into our internal cache for reuse if we can. */
1463 if (bucket && iris_bo_madvise(bo, I915_MADV_DONTNEED)) {
1464 bo->real.free_time = time;
1465 bo->name = NULL;
1466
1467 list_addtail(&bo->head, &bucket->head);
1468 } else {
1469 bo_free(bo);
1470 }
1471 }
1472
1473 void
iris_bo_unreference(struct iris_bo * bo)1474 iris_bo_unreference(struct iris_bo *bo)
1475 {
1476 if (bo == NULL)
1477 return;
1478
1479 assert(p_atomic_read(&bo->refcount) > 0);
1480
1481 if (atomic_add_unless(&bo->refcount, -1, 1)) {
1482 struct iris_bufmgr *bufmgr = bo->bufmgr;
1483 struct timespec time;
1484
1485 clock_gettime(CLOCK_MONOTONIC, &time);
1486
1487 if (bo->gem_handle == 0) {
1488 pb_slab_free(get_slabs(bufmgr, bo->size), &bo->slab.entry);
1489 } else {
1490 simple_mtx_lock(&bufmgr->lock);
1491
1492 if (p_atomic_dec_zero(&bo->refcount)) {
1493 bo_unreference_final(bo, time.tv_sec);
1494 cleanup_bo_cache(bufmgr, time.tv_sec);
1495 }
1496
1497 simple_mtx_unlock(&bufmgr->lock);
1498 }
1499 }
1500 }
1501
1502 static void
bo_wait_with_stall_warning(struct util_debug_callback * dbg,struct iris_bo * bo,const char * action)1503 bo_wait_with_stall_warning(struct util_debug_callback *dbg,
1504 struct iris_bo *bo,
1505 const char *action)
1506 {
1507 bool busy = dbg && !bo->idle;
1508 double elapsed = unlikely(busy) ? -get_time() : 0.0;
1509
1510 iris_bo_wait_rendering(bo);
1511
1512 if (unlikely(busy)) {
1513 elapsed += get_time();
1514 if (elapsed > 1e-5) /* 0.01ms */ {
1515 perf_debug(dbg, "%s a busy \"%s\" BO stalled and took %.03f ms.\n",
1516 action, bo->name, elapsed * 1000);
1517 }
1518 }
1519 }
1520
1521 static void
print_flags(unsigned flags)1522 print_flags(unsigned flags)
1523 {
1524 if (flags & MAP_READ)
1525 DBG("READ ");
1526 if (flags & MAP_WRITE)
1527 DBG("WRITE ");
1528 if (flags & MAP_ASYNC)
1529 DBG("ASYNC ");
1530 if (flags & MAP_PERSISTENT)
1531 DBG("PERSISTENT ");
1532 if (flags & MAP_COHERENT)
1533 DBG("COHERENT ");
1534 if (flags & MAP_RAW)
1535 DBG("RAW ");
1536 DBG("\n");
1537 }
1538
1539 static void *
iris_bo_gem_mmap_legacy(struct util_debug_callback * dbg,struct iris_bo * bo)1540 iris_bo_gem_mmap_legacy(struct util_debug_callback *dbg, struct iris_bo *bo)
1541 {
1542 struct iris_bufmgr *bufmgr = bo->bufmgr;
1543
1544 assert(bufmgr->vram.size == 0);
1545 assert(iris_bo_is_real(bo));
1546 assert(bo->real.mmap_mode == IRIS_MMAP_WB ||
1547 bo->real.mmap_mode == IRIS_MMAP_WC);
1548
1549 struct drm_i915_gem_mmap mmap_arg = {
1550 .handle = bo->gem_handle,
1551 .size = bo->size,
1552 .flags = bo->real.mmap_mode == IRIS_MMAP_WC ? I915_MMAP_WC : 0,
1553 };
1554
1555 int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
1556 if (ret != 0) {
1557 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1558 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1559 return NULL;
1560 }
1561 void *map = (void *) (uintptr_t) mmap_arg.addr_ptr;
1562
1563 return map;
1564 }
1565
1566 static void *
iris_bo_gem_mmap_offset(struct util_debug_callback * dbg,struct iris_bo * bo)1567 iris_bo_gem_mmap_offset(struct util_debug_callback *dbg, struct iris_bo *bo)
1568 {
1569 struct iris_bufmgr *bufmgr = bo->bufmgr;
1570
1571 assert(iris_bo_is_real(bo));
1572
1573 struct drm_i915_gem_mmap_offset mmap_arg = {
1574 .handle = bo->gem_handle,
1575 };
1576
1577 if (bufmgr->has_local_mem) {
1578 /* On discrete memory platforms, we cannot control the mmap caching mode
1579 * at mmap time. Instead, it's fixed when the object is created (this
1580 * is a limitation of TTM).
1581 *
1582 * On DG1, our only currently enabled discrete platform, there is no
1583 * control over what mode we get. For SMEM, we always get WB because
1584 * it's fast (probably what we want) and when the device views SMEM
1585 * across PCIe, it's always snooped. The only caching mode allowed by
1586 * DG1 hardware for LMEM is WC.
1587 */
1588 if (bo->real.heap != IRIS_HEAP_SYSTEM_MEMORY)
1589 assert(bo->real.mmap_mode == IRIS_MMAP_WC);
1590 else
1591 assert(bo->real.mmap_mode == IRIS_MMAP_WB);
1592
1593 mmap_arg.flags = I915_MMAP_OFFSET_FIXED;
1594 } else {
1595 /* Only integrated platforms get to select a mmap caching mode here */
1596 static const uint32_t mmap_offset_for_mode[] = {
1597 [IRIS_MMAP_UC] = I915_MMAP_OFFSET_UC,
1598 [IRIS_MMAP_WC] = I915_MMAP_OFFSET_WC,
1599 [IRIS_MMAP_WB] = I915_MMAP_OFFSET_WB,
1600 };
1601 assert(bo->real.mmap_mode != IRIS_MMAP_NONE);
1602 assert(bo->real.mmap_mode < ARRAY_SIZE(mmap_offset_for_mode));
1603 mmap_arg.flags = mmap_offset_for_mode[bo->real.mmap_mode];
1604 }
1605
1606 /* Get the fake offset back */
1607 int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_OFFSET, &mmap_arg);
1608 if (ret != 0) {
1609 DBG("%s:%d: Error preparing buffer %d (%s): %s .\n",
1610 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1611 return NULL;
1612 }
1613
1614 /* And map it */
1615 void *map = mmap(0, bo->size, PROT_READ | PROT_WRITE, MAP_SHARED,
1616 bufmgr->fd, mmap_arg.offset);
1617 if (map == MAP_FAILED) {
1618 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1619 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1620 return NULL;
1621 }
1622
1623 return map;
1624 }
1625
1626 void *
iris_bo_map(struct util_debug_callback * dbg,struct iris_bo * bo,unsigned flags)1627 iris_bo_map(struct util_debug_callback *dbg,
1628 struct iris_bo *bo, unsigned flags)
1629 {
1630 struct iris_bufmgr *bufmgr = bo->bufmgr;
1631 void *map = NULL;
1632
1633 if (bo->gem_handle == 0) {
1634 struct iris_bo *real = iris_get_backing_bo(bo);
1635 uint64_t offset = bo->address - real->address;
1636 map = iris_bo_map(dbg, real, flags | MAP_ASYNC) + offset;
1637 } else {
1638 assert(bo->real.mmap_mode != IRIS_MMAP_NONE);
1639 if (bo->real.mmap_mode == IRIS_MMAP_NONE)
1640 return NULL;
1641
1642 if (!bo->real.map) {
1643 DBG("iris_bo_map: %d (%s)\n", bo->gem_handle, bo->name);
1644 map = bufmgr->has_mmap_offset ? iris_bo_gem_mmap_offset(dbg, bo)
1645 : iris_bo_gem_mmap_legacy(dbg, bo);
1646 if (!map) {
1647 return NULL;
1648 }
1649
1650 VG_DEFINED(map, bo->size);
1651
1652 if (p_atomic_cmpxchg(&bo->real.map, NULL, map)) {
1653 VG_NOACCESS(map, bo->size);
1654 os_munmap(map, bo->size);
1655 }
1656 }
1657 assert(bo->real.map);
1658 map = bo->real.map;
1659 }
1660
1661 DBG("iris_bo_map: %d (%s) -> %p\n",
1662 bo->gem_handle, bo->name, bo->real.map);
1663 print_flags(flags);
1664
1665 if (!(flags & MAP_ASYNC)) {
1666 bo_wait_with_stall_warning(dbg, bo, "memory mapping");
1667 }
1668
1669 return map;
1670 }
1671
1672 /** Waits for all GPU rendering with the object to have completed. */
1673 void
iris_bo_wait_rendering(struct iris_bo * bo)1674 iris_bo_wait_rendering(struct iris_bo *bo)
1675 {
1676 /* We require a kernel recent enough for WAIT_IOCTL support.
1677 * See intel_init_bufmgr()
1678 */
1679 iris_bo_wait(bo, -1);
1680 }
1681
1682 static int
iris_bo_wait_gem(struct iris_bo * bo,int64_t timeout_ns)1683 iris_bo_wait_gem(struct iris_bo *bo, int64_t timeout_ns)
1684 {
1685 assert(iris_bo_is_real(bo));
1686
1687 struct iris_bufmgr *bufmgr = bo->bufmgr;
1688 struct drm_i915_gem_wait wait = {
1689 .bo_handle = bo->gem_handle,
1690 .timeout_ns = timeout_ns,
1691 };
1692
1693 int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1694 if (ret != 0)
1695 return -errno;
1696
1697 return 0;
1698 }
1699
1700 /**
1701 * Waits on a BO for the given amount of time.
1702 *
1703 * @bo: buffer object to wait for
1704 * @timeout_ns: amount of time to wait in nanoseconds.
1705 * If value is less than 0, an infinite wait will occur.
1706 *
1707 * Returns 0 if the wait was successful ie. the last batch referencing the
1708 * object has completed within the allotted time. Otherwise some negative return
1709 * value describes the error. Of particular interest is -ETIME when the wait has
1710 * failed to yield the desired result.
1711 *
1712 * Similar to iris_bo_wait_rendering except a timeout parameter allows
1713 * the operation to give up after a certain amount of time. Another subtle
1714 * difference is the internal locking semantics are different (this variant does
1715 * not hold the lock for the duration of the wait). This makes the wait subject
1716 * to a larger userspace race window.
1717 *
1718 * The implementation shall wait until the object is no longer actively
1719 * referenced within a batch buffer at the time of the call. The wait will
1720 * not guarantee that the buffer is re-issued via another thread, or an flinked
1721 * handle. Userspace must make sure this race does not occur if such precision
1722 * is important.
1723 *
1724 * Note that some kernels have broken the infinite wait for negative values
1725 * promise, upgrade to latest stable kernels if this is the case.
1726 */
1727 int
iris_bo_wait(struct iris_bo * bo,int64_t timeout_ns)1728 iris_bo_wait(struct iris_bo *bo, int64_t timeout_ns)
1729 {
1730 int ret;
1731
1732 if (iris_bo_is_external(bo))
1733 ret = iris_bo_wait_gem(bo, timeout_ns);
1734 else
1735 ret = iris_bo_wait_syncobj(bo, timeout_ns);
1736
1737 if (ret != 0)
1738 return -errno;
1739
1740 bo->idle = true;
1741
1742 return ret;
1743 }
1744
1745 static void
iris_bufmgr_destroy(struct iris_bufmgr * bufmgr)1746 iris_bufmgr_destroy(struct iris_bufmgr *bufmgr)
1747 {
1748 iris_destroy_border_color_pool(&bufmgr->border_color_pool);
1749
1750 /* Free aux-map buffers */
1751 intel_aux_map_finish(bufmgr->aux_map_ctx);
1752
1753 /* bufmgr will no longer try to free VMA entries in the aux-map */
1754 bufmgr->aux_map_ctx = NULL;
1755
1756 for (int i = 0; i < NUM_SLAB_ALLOCATORS; i++) {
1757 if (bufmgr->bo_slabs[i].groups)
1758 pb_slabs_deinit(&bufmgr->bo_slabs[i]);
1759 }
1760
1761 simple_mtx_lock(&bufmgr->lock);
1762 /* Free any cached buffer objects we were going to reuse */
1763 for (int i = 0; i < bufmgr->num_buckets; i++) {
1764 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
1765
1766 list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
1767 list_del(&bo->head);
1768
1769 bo_free(bo);
1770 }
1771 }
1772
1773 for (int i = 0; i < bufmgr->num_local_buckets; i++) {
1774 struct bo_cache_bucket *bucket = &bufmgr->local_cache_bucket[i];
1775
1776 list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
1777 list_del(&bo->head);
1778
1779 bo_free(bo);
1780 }
1781 }
1782
1783 for (int i = 0; i < bufmgr->num_local_preferred_buckets; i++) {
1784 struct bo_cache_bucket *bucket = &bufmgr->local_preferred_cache_bucket[i];
1785
1786 list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
1787 list_del(&bo->head);
1788
1789 bo_free(bo);
1790 }
1791 }
1792
1793 /* Close any buffer objects on the dead list. */
1794 list_for_each_entry_safe(struct iris_bo, bo, &bufmgr->zombie_list, head) {
1795 list_del(&bo->head);
1796 bo_close(bo);
1797 }
1798
1799 _mesa_hash_table_destroy(bufmgr->name_table, NULL);
1800 _mesa_hash_table_destroy(bufmgr->handle_table, NULL);
1801
1802 for (int z = 0; z < IRIS_MEMZONE_COUNT; z++)
1803 util_vma_heap_finish(&bufmgr->vma_allocator[z]);
1804
1805 close(bufmgr->fd);
1806
1807 simple_mtx_unlock(&bufmgr->lock);
1808
1809 simple_mtx_destroy(&bufmgr->lock);
1810 simple_mtx_destroy(&bufmgr->bo_deps_lock);
1811
1812 free(bufmgr);
1813 }
1814
1815 int
iris_gem_get_tiling(struct iris_bo * bo,uint32_t * tiling)1816 iris_gem_get_tiling(struct iris_bo *bo, uint32_t *tiling)
1817 {
1818 struct iris_bufmgr *bufmgr = bo->bufmgr;
1819
1820 if (!bufmgr->has_tiling_uapi) {
1821 *tiling = I915_TILING_NONE;
1822 return 0;
1823 }
1824
1825 struct drm_i915_gem_get_tiling ti = { .handle = bo->gem_handle };
1826 int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &ti);
1827
1828 if (ret) {
1829 DBG("gem_get_tiling failed for BO %u: %s\n",
1830 bo->gem_handle, strerror(errno));
1831 }
1832
1833 *tiling = ti.tiling_mode;
1834
1835 return ret;
1836 }
1837
1838 int
iris_gem_set_tiling(struct iris_bo * bo,const struct isl_surf * surf)1839 iris_gem_set_tiling(struct iris_bo *bo, const struct isl_surf *surf)
1840 {
1841 struct iris_bufmgr *bufmgr = bo->bufmgr;
1842 uint32_t tiling_mode = isl_tiling_to_i915_tiling(surf->tiling);
1843 int ret;
1844
1845 /* If we can't do map_gtt, the set/get_tiling API isn't useful. And it's
1846 * actually not supported by the kernel in those cases.
1847 */
1848 if (!bufmgr->has_tiling_uapi)
1849 return 0;
1850
1851 /* GEM_SET_TILING is slightly broken and overwrites the input on the
1852 * error path, so we have to open code intel_ioctl().
1853 */
1854 do {
1855 struct drm_i915_gem_set_tiling set_tiling = {
1856 .handle = bo->gem_handle,
1857 .tiling_mode = tiling_mode,
1858 .stride = surf->row_pitch_B,
1859 };
1860 ret = ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling);
1861 } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
1862
1863 if (ret) {
1864 DBG("gem_set_tiling failed for BO %u: %s\n",
1865 bo->gem_handle, strerror(errno));
1866 }
1867
1868 return ret;
1869 }
1870
1871 struct iris_bo *
iris_bo_import_dmabuf(struct iris_bufmgr * bufmgr,int prime_fd)1872 iris_bo_import_dmabuf(struct iris_bufmgr *bufmgr, int prime_fd)
1873 {
1874 uint32_t handle;
1875 struct iris_bo *bo;
1876
1877 simple_mtx_lock(&bufmgr->lock);
1878 int ret = drmPrimeFDToHandle(bufmgr->fd, prime_fd, &handle);
1879 if (ret) {
1880 DBG("import_dmabuf: failed to obtain handle from fd: %s\n",
1881 strerror(errno));
1882 simple_mtx_unlock(&bufmgr->lock);
1883 return NULL;
1884 }
1885
1886 /*
1887 * See if the kernel has already returned this buffer to us. Just as
1888 * for named buffers, we must not create two bo's pointing at the same
1889 * kernel object
1890 */
1891 bo = find_and_ref_external_bo(bufmgr->handle_table, handle);
1892 if (bo)
1893 goto out;
1894
1895 bo = bo_calloc();
1896 if (!bo)
1897 goto out;
1898
1899 p_atomic_set(&bo->refcount, 1);
1900
1901 /* Determine size of bo. The fd-to-handle ioctl really should
1902 * return the size, but it doesn't. If we have kernel 3.12 or
1903 * later, we can lseek on the prime fd to get the size. Older
1904 * kernels will just fail, in which case we fall back to the
1905 * provided (estimated or guess size). */
1906 ret = lseek(prime_fd, 0, SEEK_END);
1907 if (ret != -1)
1908 bo->size = ret;
1909
1910 bo->bufmgr = bufmgr;
1911 bo->name = "prime";
1912 bo->real.reusable = false;
1913 bo->real.imported = true;
1914 bo->real.mmap_mode = IRIS_MMAP_NONE;
1915 bo->real.kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
1916 bo->gem_handle = handle;
1917
1918 /* From the Bspec, Memory Compression - Gfx12:
1919 *
1920 * The base address for the surface has to be 64K page aligned and the
1921 * surface is expected to be padded in the virtual domain to be 4 4K
1922 * pages.
1923 *
1924 * The dmabuf may contain a compressed surface. Align the BO to 64KB just
1925 * in case. We always align to 64KB even on platforms where we don't need
1926 * to, because it's a fairly reasonable thing to do anyway.
1927 */
1928 bo->address = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 64 * 1024);
1929
1930 if (bo->address == 0ull) {
1931 bo_free(bo);
1932 bo = NULL;
1933 goto out;
1934 }
1935
1936 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
1937
1938 out:
1939 simple_mtx_unlock(&bufmgr->lock);
1940 return bo;
1941 }
1942
1943 static void
iris_bo_mark_exported_locked(struct iris_bo * bo)1944 iris_bo_mark_exported_locked(struct iris_bo *bo)
1945 {
1946 struct iris_bufmgr *bufmgr = bo->bufmgr;
1947
1948 /* We cannot export suballocated BOs. */
1949 assert(iris_bo_is_real(bo));
1950 simple_mtx_assert_locked(&bufmgr->lock);
1951
1952 if (!iris_bo_is_external(bo))
1953 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
1954
1955 if (!bo->real.exported) {
1956 /* If a BO is going to be used externally, it could be sent to the
1957 * display HW. So make sure our CPU mappings don't assume cache
1958 * coherency since display is outside that cache.
1959 */
1960 bo->real.exported = true;
1961 bo->real.reusable = false;
1962 }
1963 }
1964
1965 void
iris_bo_mark_exported(struct iris_bo * bo)1966 iris_bo_mark_exported(struct iris_bo *bo)
1967 {
1968 struct iris_bufmgr *bufmgr = bo->bufmgr;
1969
1970 /* We cannot export suballocated BOs. */
1971 assert(iris_bo_is_real(bo));
1972
1973 if (bo->real.exported) {
1974 assert(!bo->real.reusable);
1975 return;
1976 }
1977
1978 simple_mtx_lock(&bufmgr->lock);
1979 iris_bo_mark_exported_locked(bo);
1980 simple_mtx_unlock(&bufmgr->lock);
1981 }
1982
1983 int
iris_bo_export_dmabuf(struct iris_bo * bo,int * prime_fd)1984 iris_bo_export_dmabuf(struct iris_bo *bo, int *prime_fd)
1985 {
1986 struct iris_bufmgr *bufmgr = bo->bufmgr;
1987
1988 /* We cannot export suballocated BOs. */
1989 assert(iris_bo_is_real(bo));
1990
1991 iris_bo_mark_exported(bo);
1992
1993 if (drmPrimeHandleToFD(bufmgr->fd, bo->gem_handle,
1994 DRM_CLOEXEC | DRM_RDWR, prime_fd) != 0)
1995 return -errno;
1996
1997 return 0;
1998 }
1999
2000 uint32_t
iris_bo_export_gem_handle(struct iris_bo * bo)2001 iris_bo_export_gem_handle(struct iris_bo *bo)
2002 {
2003 /* We cannot export suballocated BOs. */
2004 assert(iris_bo_is_real(bo));
2005
2006 iris_bo_mark_exported(bo);
2007
2008 return bo->gem_handle;
2009 }
2010
2011 int
iris_bo_flink(struct iris_bo * bo,uint32_t * name)2012 iris_bo_flink(struct iris_bo *bo, uint32_t *name)
2013 {
2014 struct iris_bufmgr *bufmgr = bo->bufmgr;
2015
2016 /* We cannot export suballocated BOs. */
2017 assert(iris_bo_is_real(bo));
2018
2019 if (!bo->real.global_name) {
2020 struct drm_gem_flink flink = { .handle = bo->gem_handle };
2021
2022 if (intel_ioctl(bufmgr->fd, DRM_IOCTL_GEM_FLINK, &flink))
2023 return -errno;
2024
2025 simple_mtx_lock(&bufmgr->lock);
2026 if (!bo->real.global_name) {
2027 iris_bo_mark_exported_locked(bo);
2028 bo->real.global_name = flink.name;
2029 _mesa_hash_table_insert(bufmgr->name_table, &bo->real.global_name, bo);
2030 }
2031 simple_mtx_unlock(&bufmgr->lock);
2032 }
2033
2034 *name = bo->real.global_name;
2035 return 0;
2036 }
2037
2038 int
iris_bo_export_gem_handle_for_device(struct iris_bo * bo,int drm_fd,uint32_t * out_handle)2039 iris_bo_export_gem_handle_for_device(struct iris_bo *bo, int drm_fd,
2040 uint32_t *out_handle)
2041 {
2042 /* We cannot export suballocated BOs. */
2043 assert(iris_bo_is_real(bo));
2044
2045 /* Only add the new GEM handle to the list of export if it belongs to a
2046 * different GEM device. Otherwise we might close the same buffer multiple
2047 * times.
2048 */
2049 struct iris_bufmgr *bufmgr = bo->bufmgr;
2050 int ret = os_same_file_description(drm_fd, bufmgr->fd);
2051 WARN_ONCE(ret < 0,
2052 "Kernel has no file descriptor comparison support: %s\n",
2053 strerror(errno));
2054 if (ret == 0) {
2055 *out_handle = iris_bo_export_gem_handle(bo);
2056 return 0;
2057 }
2058
2059 struct bo_export *export = calloc(1, sizeof(*export));
2060 if (!export)
2061 return -ENOMEM;
2062
2063 export->drm_fd = drm_fd;
2064
2065 int dmabuf_fd = -1;
2066 int err = iris_bo_export_dmabuf(bo, &dmabuf_fd);
2067 if (err) {
2068 free(export);
2069 return err;
2070 }
2071
2072 simple_mtx_lock(&bufmgr->lock);
2073 err = drmPrimeFDToHandle(drm_fd, dmabuf_fd, &export->gem_handle);
2074 close(dmabuf_fd);
2075 if (err) {
2076 simple_mtx_unlock(&bufmgr->lock);
2077 free(export);
2078 return err;
2079 }
2080
2081 bool found = false;
2082 list_for_each_entry(struct bo_export, iter, &bo->real.exports, link) {
2083 if (iter->drm_fd != drm_fd)
2084 continue;
2085 /* Here we assume that for a given DRM fd, we'll always get back the
2086 * same GEM handle for a given buffer.
2087 */
2088 assert(iter->gem_handle == export->gem_handle);
2089 free(export);
2090 export = iter;
2091 found = true;
2092 break;
2093 }
2094 if (!found)
2095 list_addtail(&export->link, &bo->real.exports);
2096
2097 simple_mtx_unlock(&bufmgr->lock);
2098
2099 *out_handle = export->gem_handle;
2100
2101 return 0;
2102 }
2103
2104 static void
add_bucket(struct iris_bufmgr * bufmgr,int size,enum iris_heap heap)2105 add_bucket(struct iris_bufmgr *bufmgr, int size, enum iris_heap heap)
2106 {
2107 int *num_buckets;
2108 struct bo_cache_bucket *buckets;
2109 bucket_info_for_heap(bufmgr, heap, &buckets, &num_buckets);
2110
2111 unsigned int i = (*num_buckets)++;
2112
2113 list_inithead(&buckets[i].head);
2114 buckets[i].size = size;
2115
2116 assert(bucket_for_size(bufmgr, size, heap) == &buckets[i]);
2117 assert(bucket_for_size(bufmgr, size - 2048, heap) == &buckets[i]);
2118 assert(bucket_for_size(bufmgr, size + 1, heap) != &buckets[i]);
2119 }
2120
2121 static void
init_cache_buckets(struct iris_bufmgr * bufmgr,enum iris_heap heap)2122 init_cache_buckets(struct iris_bufmgr *bufmgr, enum iris_heap heap)
2123 {
2124 uint64_t size, cache_max_size = 64 * 1024 * 1024;
2125
2126 /* OK, so power of two buckets was too wasteful of memory.
2127 * Give 3 other sizes between each power of two, to hopefully
2128 * cover things accurately enough. (The alternative is
2129 * probably to just go for exact matching of sizes, and assume
2130 * that for things like composited window resize the tiled
2131 * width/height alignment and rounding of sizes to pages will
2132 * get us useful cache hit rates anyway)
2133 */
2134 add_bucket(bufmgr, PAGE_SIZE, heap);
2135 add_bucket(bufmgr, PAGE_SIZE * 2, heap);
2136 add_bucket(bufmgr, PAGE_SIZE * 3, heap);
2137
2138 /* Initialize the linked lists for BO reuse cache. */
2139 for (size = 4 * PAGE_SIZE; size <= cache_max_size; size *= 2) {
2140 add_bucket(bufmgr, size, heap);
2141
2142 add_bucket(bufmgr, size + size * 1 / 4, heap);
2143 add_bucket(bufmgr, size + size * 2 / 4, heap);
2144 add_bucket(bufmgr, size + size * 3 / 4, heap);
2145 }
2146 }
2147
2148 void
iris_hw_context_set_unrecoverable(struct iris_bufmgr * bufmgr,uint32_t ctx_id)2149 iris_hw_context_set_unrecoverable(struct iris_bufmgr *bufmgr,
2150 uint32_t ctx_id)
2151 {
2152 /* Upon declaring a GPU hang, the kernel will zap the guilty context
2153 * back to the default logical HW state and attempt to continue on to
2154 * our next submitted batchbuffer. However, our render batches assume
2155 * the previous GPU state is preserved, and only emit commands needed
2156 * to incrementally change that state. In particular, we inherit the
2157 * STATE_BASE_ADDRESS and PIPELINE_SELECT settings, which are critical.
2158 * With default base addresses, our next batches will almost certainly
2159 * cause more GPU hangs, leading to repeated hangs until we're banned
2160 * or the machine is dead.
2161 *
2162 * Here we tell the kernel not to attempt to recover our context but
2163 * immediately (on the next batchbuffer submission) report that the
2164 * context is lost, and we will do the recovery ourselves. Ideally,
2165 * we'll have two lost batches instead of a continual stream of hangs.
2166 */
2167 struct drm_i915_gem_context_param p = {
2168 .ctx_id = ctx_id,
2169 .param = I915_CONTEXT_PARAM_RECOVERABLE,
2170 .value = false,
2171 };
2172 intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p);
2173 }
2174
2175 void
iris_hw_context_set_vm_id(struct iris_bufmgr * bufmgr,uint32_t ctx_id)2176 iris_hw_context_set_vm_id(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
2177 {
2178 if (!bufmgr->use_global_vm)
2179 return;
2180
2181 struct drm_i915_gem_context_param p = {
2182 .ctx_id = ctx_id,
2183 .param = I915_CONTEXT_PARAM_VM,
2184 .value = bufmgr->global_vm_id,
2185 };
2186 int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p);
2187 if (ret != 0) {
2188 DBG("DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM failed: %s\n",
2189 strerror(errno));
2190 }
2191 }
2192
2193 uint32_t
iris_create_hw_context(struct iris_bufmgr * bufmgr)2194 iris_create_hw_context(struct iris_bufmgr *bufmgr)
2195 {
2196 struct drm_i915_gem_context_create create = { };
2197 int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
2198 if (ret != 0) {
2199 DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n", strerror(errno));
2200 return 0;
2201 }
2202
2203 iris_hw_context_set_unrecoverable(bufmgr, create.ctx_id);
2204 iris_hw_context_set_vm_id(bufmgr, create.ctx_id);
2205
2206 return create.ctx_id;
2207 }
2208
2209 int
iris_kernel_context_get_priority(struct iris_bufmgr * bufmgr,uint32_t ctx_id)2210 iris_kernel_context_get_priority(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
2211 {
2212 struct drm_i915_gem_context_param p = {
2213 .ctx_id = ctx_id,
2214 .param = I915_CONTEXT_PARAM_PRIORITY,
2215 };
2216 intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &p);
2217 return p.value; /* on error, return 0 i.e. default priority */
2218 }
2219
2220 int
iris_hw_context_set_priority(struct iris_bufmgr * bufmgr,uint32_t ctx_id,int priority)2221 iris_hw_context_set_priority(struct iris_bufmgr *bufmgr,
2222 uint32_t ctx_id,
2223 int priority)
2224 {
2225 struct drm_i915_gem_context_param p = {
2226 .ctx_id = ctx_id,
2227 .param = I915_CONTEXT_PARAM_PRIORITY,
2228 .value = priority,
2229 };
2230 int err;
2231
2232 err = 0;
2233 if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p))
2234 err = -errno;
2235
2236 return err;
2237 }
2238
2239 uint32_t
iris_clone_hw_context(struct iris_bufmgr * bufmgr,uint32_t ctx_id)2240 iris_clone_hw_context(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
2241 {
2242 uint32_t new_ctx = iris_create_hw_context(bufmgr);
2243
2244 if (new_ctx) {
2245 int priority = iris_kernel_context_get_priority(bufmgr, ctx_id);
2246 iris_hw_context_set_priority(bufmgr, new_ctx, priority);
2247 }
2248
2249 return new_ctx;
2250 }
2251
2252 void
iris_destroy_kernel_context(struct iris_bufmgr * bufmgr,uint32_t ctx_id)2253 iris_destroy_kernel_context(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
2254 {
2255 struct drm_i915_gem_context_destroy d = { .ctx_id = ctx_id };
2256
2257 if (ctx_id != 0 &&
2258 intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, &d) != 0) {
2259 fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
2260 strerror(errno));
2261 }
2262 }
2263
2264 int
iris_reg_read(struct iris_bufmgr * bufmgr,uint32_t offset,uint64_t * result)2265 iris_reg_read(struct iris_bufmgr *bufmgr, uint32_t offset, uint64_t *result)
2266 {
2267 struct drm_i915_reg_read reg_read = { .offset = offset };
2268 int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_REG_READ, ®_read);
2269
2270 *result = reg_read.val;
2271 return ret;
2272 }
2273
2274 static struct intel_buffer *
intel_aux_map_buffer_alloc(void * driver_ctx,uint32_t size)2275 intel_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
2276 {
2277 struct intel_buffer *buf = malloc(sizeof(struct intel_buffer));
2278 if (!buf)
2279 return NULL;
2280
2281 struct iris_bufmgr *bufmgr = (struct iris_bufmgr *)driver_ctx;
2282
2283 unsigned int page_size = getpagesize();
2284 size = MAX2(ALIGN(size, page_size), page_size);
2285
2286 struct iris_bo *bo = alloc_fresh_bo(bufmgr, size, 0);
2287 if (!bo) {
2288 free(buf);
2289 return NULL;
2290 }
2291
2292 simple_mtx_lock(&bufmgr->lock);
2293
2294 bo->address = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 64 * 1024);
2295 if (bo->address == 0ull) {
2296 free(buf);
2297 bo_free(bo);
2298 simple_mtx_unlock(&bufmgr->lock);
2299 return NULL;
2300 }
2301
2302 simple_mtx_unlock(&bufmgr->lock);
2303
2304 bo->name = "aux-map";
2305 p_atomic_set(&bo->refcount, 1);
2306 bo->index = -1;
2307 bo->real.kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED |
2308 EXEC_OBJECT_CAPTURE;
2309 bo->real.mmap_mode =
2310 bo->real.heap != IRIS_HEAP_SYSTEM_MEMORY ? IRIS_MMAP_WC : IRIS_MMAP_WB;
2311
2312 buf->driver_bo = bo;
2313 buf->gpu = bo->address;
2314 buf->gpu_end = buf->gpu + bo->size;
2315 buf->map = iris_bo_map(NULL, bo, MAP_WRITE | MAP_RAW);
2316 return buf;
2317 }
2318
2319 static void
intel_aux_map_buffer_free(void * driver_ctx,struct intel_buffer * buffer)2320 intel_aux_map_buffer_free(void *driver_ctx, struct intel_buffer *buffer)
2321 {
2322 iris_bo_unreference((struct iris_bo*)buffer->driver_bo);
2323 free(buffer);
2324 }
2325
2326 static struct intel_mapped_pinned_buffer_alloc aux_map_allocator = {
2327 .alloc = intel_aux_map_buffer_alloc,
2328 .free = intel_aux_map_buffer_free,
2329 };
2330
2331 static int
gem_param(int fd,int name)2332 gem_param(int fd, int name)
2333 {
2334 int v = -1; /* No param uses (yet) the sign bit, reserve it for errors */
2335
2336 struct drm_i915_getparam gp = { .param = name, .value = &v };
2337 if (intel_ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp))
2338 return -1;
2339
2340 return v;
2341 }
2342
2343 static bool
iris_bufmgr_get_meminfo(struct iris_bufmgr * bufmgr,struct intel_device_info * devinfo)2344 iris_bufmgr_get_meminfo(struct iris_bufmgr *bufmgr,
2345 struct intel_device_info *devinfo)
2346 {
2347 bufmgr->sys.region.memory_class = devinfo->mem.sram.mem_class;
2348 bufmgr->sys.region.memory_instance = devinfo->mem.sram.mem_instance;
2349 bufmgr->sys.size = devinfo->mem.sram.mappable.size;
2350
2351 bufmgr->vram.region.memory_class = devinfo->mem.vram.mem_class;
2352 bufmgr->vram.region.memory_instance = devinfo->mem.vram.mem_instance;
2353 bufmgr->vram.size = devinfo->mem.vram.mappable.size;
2354
2355 return true;
2356 }
2357
2358 static void
iris_bufmgr_init_global_vm(int fd,struct iris_bufmgr * bufmgr)2359 iris_bufmgr_init_global_vm(int fd, struct iris_bufmgr *bufmgr)
2360 {
2361 struct drm_i915_gem_context_param gcp = {
2362 .ctx_id = 0,
2363 .param = I915_CONTEXT_PARAM_VM,
2364 };
2365
2366 if (intel_ioctl(fd, DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &gcp)) {
2367 bufmgr->use_global_vm = false;
2368 bufmgr->global_vm_id = 0;
2369 } else {
2370 bufmgr->use_global_vm = true;
2371 bufmgr->global_vm_id = gcp.value;
2372 }
2373 }
2374
2375 /**
2376 * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
2377 * and manage map buffer objections.
2378 *
2379 * \param fd File descriptor of the opened DRM device.
2380 */
2381 static struct iris_bufmgr *
iris_bufmgr_create(struct intel_device_info * devinfo,int fd,bool bo_reuse)2382 iris_bufmgr_create(struct intel_device_info *devinfo, int fd, bool bo_reuse)
2383 {
2384 if (devinfo->gtt_size <= IRIS_MEMZONE_OTHER_START)
2385 return NULL;
2386
2387 struct iris_bufmgr *bufmgr = calloc(1, sizeof(*bufmgr));
2388 if (bufmgr == NULL)
2389 return NULL;
2390
2391 /* Handles to buffer objects belong to the device fd and are not
2392 * reference counted by the kernel. If the same fd is used by
2393 * multiple parties (threads sharing the same screen bufmgr, or
2394 * even worse the same device fd passed to multiple libraries)
2395 * ownership of those handles is shared by those independent parties.
2396 *
2397 * Don't do this! Ensure that each library/bufmgr has its own device
2398 * fd so that its namespace does not clash with another.
2399 */
2400 bufmgr->fd = os_dupfd_cloexec(fd);
2401
2402 p_atomic_set(&bufmgr->refcount, 1);
2403
2404 simple_mtx_init(&bufmgr->lock, mtx_plain);
2405 simple_mtx_init(&bufmgr->bo_deps_lock, mtx_plain);
2406
2407 iris_bufmgr_init_global_vm(fd, bufmgr);
2408
2409 list_inithead(&bufmgr->zombie_list);
2410
2411 bufmgr->has_llc = devinfo->has_llc;
2412 bufmgr->has_local_mem = devinfo->has_local_mem;
2413 bufmgr->has_tiling_uapi = devinfo->has_tiling_uapi;
2414 bufmgr->bo_reuse = bo_reuse;
2415 bufmgr->has_mmap_offset = gem_param(fd, I915_PARAM_MMAP_GTT_VERSION) >= 4;
2416 bufmgr->has_userptr_probe =
2417 gem_param(fd, I915_PARAM_HAS_USERPTR_PROBE) >= 1;
2418 iris_bufmgr_get_meminfo(bufmgr, devinfo);
2419 bufmgr->all_vram_mappable = intel_vram_all_mappable(devinfo);
2420
2421 STATIC_ASSERT(IRIS_MEMZONE_SHADER_START == 0ull);
2422 const uint64_t _4GB = 1ull << 32;
2423 const uint64_t _2GB = 1ul << 31;
2424
2425 /* The STATE_BASE_ADDRESS size field can only hold 1 page shy of 4GB */
2426 const uint64_t _4GB_minus_1 = _4GB - PAGE_SIZE;
2427
2428 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_SHADER],
2429 PAGE_SIZE, _4GB_minus_1 - PAGE_SIZE);
2430 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_BINDER],
2431 IRIS_MEMZONE_BINDER_START, IRIS_BINDER_ZONE_SIZE);
2432 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_BINDLESS],
2433 IRIS_MEMZONE_BINDLESS_START, IRIS_BINDLESS_SIZE);
2434 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_SURFACE],
2435 IRIS_MEMZONE_SURFACE_START, _4GB_minus_1 -
2436 IRIS_BINDER_ZONE_SIZE - IRIS_BINDLESS_SIZE);
2437
2438 /* Wa_2209859288: the Tigerlake PRM's workarounds volume says:
2439 *
2440 * "PSDunit is dropping MSB of the blend state pointer from SD FIFO"
2441 * "Limit the Blend State Pointer to < 2G"
2442 *
2443 * We restrict the dynamic state pool to 2GB so that we don't ever get a
2444 * BLEND_STATE pointer with the MSB set. We aren't likely to need the
2445 * full 4GB for dynamic state anyway.
2446 */
2447 const uint64_t dynamic_pool_size =
2448 (devinfo->ver >= 12 ? _2GB : _4GB_minus_1) - IRIS_BORDER_COLOR_POOL_SIZE;
2449 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_DYNAMIC],
2450 IRIS_MEMZONE_DYNAMIC_START + IRIS_BORDER_COLOR_POOL_SIZE,
2451 dynamic_pool_size);
2452
2453 /* Leave the last 4GB out of the high vma range, so that no state
2454 * base address + size can overflow 48 bits.
2455 */
2456 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_OTHER],
2457 IRIS_MEMZONE_OTHER_START,
2458 (devinfo->gtt_size - _4GB) - IRIS_MEMZONE_OTHER_START);
2459
2460 init_cache_buckets(bufmgr, IRIS_HEAP_SYSTEM_MEMORY);
2461 init_cache_buckets(bufmgr, IRIS_HEAP_DEVICE_LOCAL);
2462 init_cache_buckets(bufmgr, IRIS_HEAP_DEVICE_LOCAL_PREFERRED);
2463
2464 unsigned min_slab_order = 8; /* 256 bytes */
2465 unsigned max_slab_order = 20; /* 1 MB (slab size = 2 MB) */
2466 unsigned num_slab_orders_per_allocator =
2467 (max_slab_order - min_slab_order) / NUM_SLAB_ALLOCATORS;
2468
2469 /* Divide the size order range among slab managers. */
2470 for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) {
2471 unsigned min_order = min_slab_order;
2472 unsigned max_order =
2473 MIN2(min_order + num_slab_orders_per_allocator, max_slab_order);
2474
2475 if (!pb_slabs_init(&bufmgr->bo_slabs[i], min_order, max_order,
2476 IRIS_HEAP_MAX, true, bufmgr,
2477 iris_can_reclaim_slab,
2478 iris_slab_alloc,
2479 (void *) iris_slab_free)) {
2480 free(bufmgr);
2481 return NULL;
2482 }
2483 min_slab_order = max_order + 1;
2484 }
2485
2486 bufmgr->name_table =
2487 _mesa_hash_table_create(NULL, _mesa_hash_uint, _mesa_key_uint_equal);
2488 bufmgr->handle_table =
2489 _mesa_hash_table_create(NULL, _mesa_hash_uint, _mesa_key_uint_equal);
2490
2491 bufmgr->vma_min_align =
2492 devinfo->verx10 >= 125 ? 2 * 1024 * 1024 :
2493 (devinfo->has_local_mem ? 64 * 1024 : PAGE_SIZE);
2494
2495 if (devinfo->has_aux_map) {
2496 bufmgr->aux_map_ctx = intel_aux_map_init(bufmgr, &aux_map_allocator,
2497 devinfo);
2498 assert(bufmgr->aux_map_ctx);
2499 }
2500
2501 iris_init_border_color_pool(bufmgr, &bufmgr->border_color_pool);
2502
2503 return bufmgr;
2504 }
2505
2506 static struct iris_bufmgr *
iris_bufmgr_ref(struct iris_bufmgr * bufmgr)2507 iris_bufmgr_ref(struct iris_bufmgr *bufmgr)
2508 {
2509 p_atomic_inc(&bufmgr->refcount);
2510 return bufmgr;
2511 }
2512
2513 void
iris_bufmgr_unref(struct iris_bufmgr * bufmgr)2514 iris_bufmgr_unref(struct iris_bufmgr *bufmgr)
2515 {
2516 simple_mtx_lock(&global_bufmgr_list_mutex);
2517 if (p_atomic_dec_zero(&bufmgr->refcount)) {
2518 list_del(&bufmgr->link);
2519 iris_bufmgr_destroy(bufmgr);
2520 }
2521 simple_mtx_unlock(&global_bufmgr_list_mutex);
2522 }
2523
2524 /** Returns a new unique id, to be used by screens. */
2525 int
iris_bufmgr_create_screen_id(struct iris_bufmgr * bufmgr)2526 iris_bufmgr_create_screen_id(struct iris_bufmgr *bufmgr)
2527 {
2528 return p_atomic_inc_return(&bufmgr->next_screen_id) - 1;
2529 }
2530
2531 /**
2532 * Gets an already existing GEM buffer manager or create a new one.
2533 *
2534 * \param fd File descriptor of the opened DRM device.
2535 */
2536 struct iris_bufmgr *
iris_bufmgr_get_for_fd(struct intel_device_info * devinfo,int fd,bool bo_reuse)2537 iris_bufmgr_get_for_fd(struct intel_device_info *devinfo, int fd, bool bo_reuse)
2538 {
2539 struct stat st;
2540
2541 if (fstat(fd, &st))
2542 return NULL;
2543
2544 struct iris_bufmgr *bufmgr = NULL;
2545
2546 simple_mtx_lock(&global_bufmgr_list_mutex);
2547 list_for_each_entry(struct iris_bufmgr, iter_bufmgr, &global_bufmgr_list, link) {
2548 struct stat iter_st;
2549 if (fstat(iter_bufmgr->fd, &iter_st))
2550 continue;
2551
2552 if (st.st_rdev == iter_st.st_rdev) {
2553 assert(iter_bufmgr->bo_reuse == bo_reuse);
2554 bufmgr = iris_bufmgr_ref(iter_bufmgr);
2555 goto unlock;
2556 }
2557 }
2558
2559 bufmgr = iris_bufmgr_create(devinfo, fd, bo_reuse);
2560 if (bufmgr)
2561 list_addtail(&bufmgr->link, &global_bufmgr_list);
2562
2563 unlock:
2564 simple_mtx_unlock(&global_bufmgr_list_mutex);
2565
2566 return bufmgr;
2567 }
2568
2569 int
iris_bufmgr_get_fd(struct iris_bufmgr * bufmgr)2570 iris_bufmgr_get_fd(struct iris_bufmgr *bufmgr)
2571 {
2572 return bufmgr->fd;
2573 }
2574
2575 void*
iris_bufmgr_get_aux_map_context(struct iris_bufmgr * bufmgr)2576 iris_bufmgr_get_aux_map_context(struct iris_bufmgr *bufmgr)
2577 {
2578 return bufmgr->aux_map_ctx;
2579 }
2580
2581 simple_mtx_t *
iris_bufmgr_get_bo_deps_lock(struct iris_bufmgr * bufmgr)2582 iris_bufmgr_get_bo_deps_lock(struct iris_bufmgr *bufmgr)
2583 {
2584 return &bufmgr->bo_deps_lock;
2585 }
2586
2587 struct iris_border_color_pool *
iris_bufmgr_get_border_color_pool(struct iris_bufmgr * bufmgr)2588 iris_bufmgr_get_border_color_pool(struct iris_bufmgr *bufmgr)
2589 {
2590 return &bufmgr->border_color_pool;
2591 }
2592
2593 uint64_t
iris_bufmgr_vram_size(struct iris_bufmgr * bufmgr)2594 iris_bufmgr_vram_size(struct iris_bufmgr *bufmgr)
2595 {
2596 return bufmgr->vram.size;
2597 }
2598
2599 uint64_t
iris_bufmgr_sram_size(struct iris_bufmgr * bufmgr)2600 iris_bufmgr_sram_size(struct iris_bufmgr *bufmgr)
2601 {
2602 return bufmgr->sys.size;
2603 }
2604