• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_V8_PROFILER_H_
6 #define V8_V8_PROFILER_H_
7 
8 #include <limits.h>
9 
10 #include <memory>
11 #include <unordered_set>
12 #include <vector>
13 
14 #include "v8-local-handle.h"       // NOLINT(build/include_directory)
15 #include "v8-message.h"            // NOLINT(build/include_directory)
16 #include "v8-persistent-handle.h"  // NOLINT(build/include_directory)
17 
18 /**
19  * Profiler support for the V8 JavaScript engine.
20  */
21 namespace v8 {
22 
23 enum class EmbedderStateTag : uint8_t;
24 class HeapGraphNode;
25 struct HeapStatsUpdate;
26 class Object;
27 enum StateTag : int;
28 
29 using NativeObject = void*;
30 using SnapshotObjectId = uint32_t;
31 using ProfilerId = uint32_t;
32 
33 struct CpuProfileDeoptFrame {
34   int script_id;
35   size_t position;
36 };
37 
38 namespace internal {
39 class CpuProfile;
40 }  // namespace internal
41 
42 }  // namespace v8
43 
44 #ifdef V8_OS_WIN
45 template class V8_EXPORT std::vector<v8::CpuProfileDeoptFrame>;
46 #endif
47 
48 namespace v8 {
49 
50 struct V8_EXPORT CpuProfileDeoptInfo {
51   /** A pointer to a static string owned by v8. */
52   const char* deopt_reason;
53   std::vector<CpuProfileDeoptFrame> stack;
54 };
55 
56 }  // namespace v8
57 
58 #ifdef V8_OS_WIN
59 template class V8_EXPORT std::vector<v8::CpuProfileDeoptInfo>;
60 #endif
61 
62 namespace v8 {
63 
64 /**
65  * CpuProfileNode represents a node in a call graph.
66  */
67 class V8_EXPORT CpuProfileNode {
68  public:
69   struct LineTick {
70     /** The 1-based number of the source line where the function originates. */
71     int line;
72 
73     /** The count of samples associated with the source line. */
74     unsigned int hit_count;
75   };
76 
77   // An annotation hinting at the source of a CpuProfileNode.
78   enum SourceType {
79     // User-supplied script with associated resource information.
80     kScript = 0,
81     // Native scripts and provided builtins.
82     kBuiltin = 1,
83     // Callbacks into native code.
84     kCallback = 2,
85     // VM-internal functions or state.
86     kInternal = 3,
87     // A node that failed to symbolize.
88     kUnresolved = 4,
89   };
90 
91   /** Returns function name (empty string for anonymous functions.) */
92   Local<String> GetFunctionName() const;
93 
94   /**
95    * Returns function name (empty string for anonymous functions.)
96    * The string ownership is *not* passed to the caller. It stays valid until
97    * profile is deleted. The function is thread safe.
98    */
99   const char* GetFunctionNameStr() const;
100 
101   /** Returns id of the script where function is located. */
102   int GetScriptId() const;
103 
104   /** Returns resource name for script from where the function originates. */
105   Local<String> GetScriptResourceName() const;
106 
107   /**
108    * Returns resource name for script from where the function originates.
109    * The string ownership is *not* passed to the caller. It stays valid until
110    * profile is deleted. The function is thread safe.
111    */
112   const char* GetScriptResourceNameStr() const;
113 
114   /**
115    * Return true if the script from where the function originates is flagged as
116    * being shared cross-origin.
117    */
118   bool IsScriptSharedCrossOrigin() const;
119 
120   /**
121    * Returns the number, 1-based, of the line where the function originates.
122    * kNoLineNumberInfo if no line number information is available.
123    */
124   int GetLineNumber() const;
125 
126   /**
127    * Returns 1-based number of the column where the function originates.
128    * kNoColumnNumberInfo if no column number information is available.
129    */
130   int GetColumnNumber() const;
131 
132   /**
133    * Returns the number of the function's source lines that collect the samples.
134    */
135   unsigned int GetHitLineCount() const;
136 
137   /** Returns the set of source lines that collect the samples.
138    *  The caller allocates buffer and responsible for releasing it.
139    *  True if all available entries are copied, otherwise false.
140    *  The function copies nothing if buffer is not large enough.
141    */
142   bool GetLineTicks(LineTick* entries, unsigned int length) const;
143 
144   /** Returns bailout reason for the function
145     * if the optimization was disabled for it.
146     */
147   const char* GetBailoutReason() const;
148 
149   /**
150     * Returns the count of samples where the function was currently executing.
151     */
152   unsigned GetHitCount() const;
153 
154   /** Returns id of the node. The id is unique within the tree */
155   unsigned GetNodeId() const;
156 
157   /**
158    * Gets the type of the source which the node was captured from.
159    */
160   SourceType GetSourceType() const;
161 
162   /** Returns child nodes count of the node. */
163   int GetChildrenCount() const;
164 
165   /** Retrieves a child node by index. */
166   const CpuProfileNode* GetChild(int index) const;
167 
168   /** Retrieves the ancestor node, or null if the root. */
169   const CpuProfileNode* GetParent() const;
170 
171   /** Retrieves deopt infos for the node. */
172   const std::vector<CpuProfileDeoptInfo>& GetDeoptInfos() const;
173 
174   static const int kNoLineNumberInfo = Message::kNoLineNumberInfo;
175   static const int kNoColumnNumberInfo = Message::kNoColumnInfo;
176 };
177 
178 
179 /**
180  * CpuProfile contains a CPU profile in a form of top-down call tree
181  * (from main() down to functions that do all the work).
182  */
183 class V8_EXPORT CpuProfile {
184  public:
185   /** Returns CPU profile title. */
186   Local<String> GetTitle() const;
187 
188   /** Returns the root node of the top down call tree. */
189   const CpuProfileNode* GetTopDownRoot() const;
190 
191   /**
192    * Returns number of samples recorded. The samples are not recorded unless
193    * |record_samples| parameter of CpuProfiler::StartCpuProfiling is true.
194    */
195   int GetSamplesCount() const;
196 
197   /**
198    * Returns profile node corresponding to the top frame the sample at
199    * the given index.
200    */
201   const CpuProfileNode* GetSample(int index) const;
202 
203   /**
204    * Returns the timestamp of the sample. The timestamp is the number of
205    * microseconds since some unspecified starting point.
206    * The point is equal to the starting point used by GetStartTime.
207    */
208   int64_t GetSampleTimestamp(int index) const;
209 
210   /**
211    * Returns time when the profile recording was started (in microseconds)
212    * since some unspecified starting point.
213    */
214   int64_t GetStartTime() const;
215 
216   /**
217    * Returns state of the vm when sample was captured.
218    */
219   StateTag GetSampleState(int index) const;
220 
221   /**
222    * Returns state of the embedder when sample was captured.
223    */
224   EmbedderStateTag GetSampleEmbedderState(int index) const;
225 
226   /**
227    * Returns time when the profile recording was stopped (in microseconds)
228    * since some unspecified starting point.
229    * The point is equal to the starting point used by GetStartTime.
230    */
231   int64_t GetEndTime() const;
232 
233   /**
234    * Deletes the profile and removes it from CpuProfiler's list.
235    * All pointers to nodes previously returned become invalid.
236    */
237   void Delete();
238 };
239 
240 enum CpuProfilingMode {
241   // In the resulting CpuProfile tree, intermediate nodes in a stack trace
242   // (from the root to a leaf) will have line numbers that point to the start
243   // line of the function, rather than the line of the callsite of the child.
244   kLeafNodeLineNumbers,
245   // In the resulting CpuProfile tree, nodes are separated based on the line
246   // number of their callsite in their parent.
247   kCallerLineNumbers,
248 };
249 
250 // Determines how names are derived for functions sampled.
251 enum CpuProfilingNamingMode {
252   // Use the immediate name of functions at compilation time.
253   kStandardNaming,
254   // Use more verbose naming for functions without names, inferred from scope
255   // where possible.
256   kDebugNaming,
257 };
258 
259 enum CpuProfilingLoggingMode {
260   // Enables logging when a profile is active, and disables logging when all
261   // profiles are detached.
262   kLazyLogging,
263   // Enables logging for the lifetime of the CpuProfiler. Calls to
264   // StartRecording are faster, at the expense of runtime overhead.
265   kEagerLogging,
266 };
267 
268 // Enum for returning profiling status. Once StartProfiling is called,
269 // we want to return to clients whether the profiling was able to start
270 // correctly, or return a descriptive error.
271 enum class CpuProfilingStatus {
272   kStarted,
273   kAlreadyStarted,
274   kErrorTooManyProfilers
275 };
276 
277 /**
278  * Result from StartProfiling returning the Profiling Status, and
279  * id of the started profiler, or 0 if profiler is not started
280  */
281 struct CpuProfilingResult {
282   const ProfilerId id;
283   const CpuProfilingStatus status;
284 };
285 
286 /**
287  * Delegate for when max samples reached and samples are discarded.
288  */
289 class V8_EXPORT DiscardedSamplesDelegate {
290  public:
291   DiscardedSamplesDelegate() = default;
292 
293   virtual ~DiscardedSamplesDelegate() = default;
294   virtual void Notify() = 0;
295 
GetId()296   ProfilerId GetId() const { return profiler_id_; }
297 
298  private:
299   friend internal::CpuProfile;
300 
SetId(ProfilerId id)301   void SetId(ProfilerId id) { profiler_id_ = id; }
302 
303   ProfilerId profiler_id_;
304 };
305 
306 /**
307  * Optional profiling attributes.
308  */
309 class V8_EXPORT CpuProfilingOptions {
310  public:
311   // Indicates that the sample buffer size should not be explicitly limited.
312   static const unsigned kNoSampleLimit = UINT_MAX;
313 
314   /**
315    * \param mode Type of computation of stack frame line numbers.
316    * \param max_samples The maximum number of samples that should be recorded by
317    *                    the profiler. Samples obtained after this limit will be
318    *                    discarded.
319    * \param sampling_interval_us controls the profile-specific target
320    *                             sampling interval. The provided sampling
321    *                             interval will be snapped to the next lowest
322    *                             non-zero multiple of the profiler's sampling
323    *                             interval, set via SetSamplingInterval(). If
324    *                             zero, the sampling interval will be equal to
325    *                             the profiler's sampling interval.
326    * \param filter_context If specified, profiles will only contain frames
327    *                       using this context. Other frames will be elided.
328    */
329   CpuProfilingOptions(
330       CpuProfilingMode mode = kLeafNodeLineNumbers,
331       unsigned max_samples = kNoSampleLimit, int sampling_interval_us = 0,
332       MaybeLocal<Context> filter_context = MaybeLocal<Context>());
333 
mode()334   CpuProfilingMode mode() const { return mode_; }
max_samples()335   unsigned max_samples() const { return max_samples_; }
sampling_interval_us()336   int sampling_interval_us() const { return sampling_interval_us_; }
337 
338  private:
339   friend class internal::CpuProfile;
340 
has_filter_context()341   bool has_filter_context() const { return !filter_context_.IsEmpty(); }
342   void* raw_filter_context() const;
343 
344   CpuProfilingMode mode_;
345   unsigned max_samples_;
346   int sampling_interval_us_;
347   CopyablePersistentTraits<Context>::CopyablePersistent filter_context_;
348 };
349 
350 /**
351  * Interface for controlling CPU profiling. Instance of the
352  * profiler can be created using v8::CpuProfiler::New method.
353  */
354 class V8_EXPORT CpuProfiler {
355  public:
356   /**
357    * Creates a new CPU profiler for the |isolate|. The isolate must be
358    * initialized. The profiler object must be disposed after use by calling
359    * |Dispose| method.
360    */
361   static CpuProfiler* New(Isolate* isolate,
362                           CpuProfilingNamingMode = kDebugNaming,
363                           CpuProfilingLoggingMode = kLazyLogging);
364 
365   /**
366    * Synchronously collect current stack sample in all profilers attached to
367    * the |isolate|. The call does not affect number of ticks recorded for
368    * the current top node.
369    */
370   static void CollectSample(Isolate* isolate);
371 
372   /**
373    * Disposes the CPU profiler object.
374    */
375   void Dispose();
376 
377   /**
378    * Changes default CPU profiler sampling interval to the specified number
379    * of microseconds. Default interval is 1000us. This method must be called
380    * when there are no profiles being recorded.
381    */
382   void SetSamplingInterval(int us);
383 
384   /**
385    * Sets whether or not the profiler should prioritize consistency of sample
386    * periodicity on Windows. Disabling this can greatly reduce CPU usage, but
387    * may result in greater variance in sample timings from the platform's
388    * scheduler. Defaults to enabled. This method must be called when there are
389    * no profiles being recorded.
390    */
391   void SetUsePreciseSampling(bool);
392 
393   /**
394    * Starts collecting a CPU profile. Several profiles may be collected at once.
395    * Generates an anonymous profiler, without a String identifier.
396    */
397   CpuProfilingResult Start(
398       CpuProfilingOptions options,
399       std::unique_ptr<DiscardedSamplesDelegate> delegate = nullptr);
400 
401   /**
402    * Starts collecting a CPU profile. Title may be an empty string. Several
403    * profiles may be collected at once. Attempts to start collecting several
404    * profiles with the same title are silently ignored.
405    */
406   CpuProfilingResult Start(
407       Local<String> title, CpuProfilingOptions options,
408       std::unique_ptr<DiscardedSamplesDelegate> delegate = nullptr);
409 
410   /**
411    * Starts profiling with the same semantics as above, except with expanded
412    * parameters.
413    *
414    * |record_samples| parameter controls whether individual samples should
415    * be recorded in addition to the aggregated tree.
416    *
417    * |max_samples| controls the maximum number of samples that should be
418    * recorded by the profiler. Samples obtained after this limit will be
419    * discarded.
420    */
421   CpuProfilingResult Start(
422       Local<String> title, CpuProfilingMode mode, bool record_samples = false,
423       unsigned max_samples = CpuProfilingOptions::kNoSampleLimit);
424 
425   /**
426    * The same as StartProfiling above, but the CpuProfilingMode defaults to
427    * kLeafNodeLineNumbers mode, which was the previous default behavior of the
428    * profiler.
429    */
430   CpuProfilingResult Start(Local<String> title, bool record_samples = false);
431 
432   /**
433    * Starts collecting a CPU profile. Title may be an empty string. Several
434    * profiles may be collected at once. Attempts to start collecting several
435    * profiles with the same title are silently ignored.
436    */
437   CpuProfilingStatus StartProfiling(
438       Local<String> title, CpuProfilingOptions options,
439       std::unique_ptr<DiscardedSamplesDelegate> delegate = nullptr);
440 
441   /**
442    * Starts profiling with the same semantics as above, except with expanded
443    * parameters.
444    *
445    * |record_samples| parameter controls whether individual samples should
446    * be recorded in addition to the aggregated tree.
447    *
448    * |max_samples| controls the maximum number of samples that should be
449    * recorded by the profiler. Samples obtained after this limit will be
450    * discarded.
451    */
452   CpuProfilingStatus StartProfiling(
453       Local<String> title, CpuProfilingMode mode, bool record_samples = false,
454       unsigned max_samples = CpuProfilingOptions::kNoSampleLimit);
455 
456   /**
457    * The same as StartProfiling above, but the CpuProfilingMode defaults to
458    * kLeafNodeLineNumbers mode, which was the previous default behavior of the
459    * profiler.
460    */
461   CpuProfilingStatus StartProfiling(Local<String> title,
462                                     bool record_samples = false);
463 
464   /**
465    * Stops collecting CPU profile with a given id and returns it.
466    */
467   CpuProfile* Stop(ProfilerId id);
468 
469   /**
470    * Stops collecting CPU profile with a given title and returns it.
471    * If the title given is empty, finishes the last profile started.
472    */
473   CpuProfile* StopProfiling(Local<String> title);
474 
475   /**
476    * Generate more detailed source positions to code objects. This results in
477    * better results when mapping profiling samples to script source.
478    */
479   static void UseDetailedSourcePositionsForProfiling(Isolate* isolate);
480 
481  private:
482   CpuProfiler();
483   ~CpuProfiler();
484   CpuProfiler(const CpuProfiler&);
485   CpuProfiler& operator=(const CpuProfiler&);
486 };
487 
488 /**
489  * HeapSnapshotEdge represents a directed connection between heap
490  * graph nodes: from retainers to retained nodes.
491  */
492 class V8_EXPORT HeapGraphEdge {
493  public:
494   enum Type {
495     kContextVariable = 0,  // A variable from a function context.
496     kElement = 1,          // An element of an array.
497     kProperty = 2,         // A named object property.
498     kInternal = 3,         // A link that can't be accessed from JS,
499                            // thus, its name isn't a real property name
500                            // (e.g. parts of a ConsString).
501     kHidden = 4,           // A link that is needed for proper sizes
502                            // calculation, but may be hidden from user.
503     kShortcut = 5,         // A link that must not be followed during
504                            // sizes calculation.
505     kWeak = 6              // A weak reference (ignored by the GC).
506   };
507 
508   /** Returns edge type (see HeapGraphEdge::Type). */
509   Type GetType() const;
510 
511   /**
512    * Returns edge name. This can be a variable name, an element index, or
513    * a property name.
514    */
515   Local<Value> GetName() const;
516 
517   /** Returns origin node. */
518   const HeapGraphNode* GetFromNode() const;
519 
520   /** Returns destination node. */
521   const HeapGraphNode* GetToNode() const;
522 };
523 
524 
525 /**
526  * HeapGraphNode represents a node in a heap graph.
527  */
528 class V8_EXPORT HeapGraphNode {
529  public:
530   enum Type {
531     kHidden = 0,         // Hidden node, may be filtered when shown to user.
532     kArray = 1,          // An array of elements.
533     kString = 2,         // A string.
534     kObject = 3,         // A JS object (except for arrays and strings).
535     kCode = 4,           // Compiled code.
536     kClosure = 5,        // Function closure.
537     kRegExp = 6,         // RegExp.
538     kHeapNumber = 7,     // Number stored in the heap.
539     kNative = 8,         // Native object (not from V8 heap).
540     kSynthetic = 9,      // Synthetic object, usually used for grouping
541                          // snapshot items together.
542     kConsString = 10,    // Concatenated string. A pair of pointers to strings.
543     kSlicedString = 11,  // Sliced string. A fragment of another string.
544     kSymbol = 12,        // A Symbol (ES6).
545     kBigInt = 13         // BigInt.
546   };
547 
548   /** Returns node type (see HeapGraphNode::Type). */
549   Type GetType() const;
550 
551   /**
552    * Returns node name. Depending on node's type this can be the name
553    * of the constructor (for objects), the name of the function (for
554    * closures), string value, or an empty string (for compiled code).
555    */
556   Local<String> GetName() const;
557 
558   /**
559    * Returns node id. For the same heap object, the id remains the same
560    * across all snapshots.
561    */
562   SnapshotObjectId GetId() const;
563 
564   /** Returns node's own size, in bytes. */
565   size_t GetShallowSize() const;
566 
567   /** Returns child nodes count of the node. */
568   int GetChildrenCount() const;
569 
570   /** Retrieves a child by index. */
571   const HeapGraphEdge* GetChild(int index) const;
572 };
573 
574 
575 /**
576  * An interface for exporting data from V8, using "push" model.
577  */
578 class V8_EXPORT OutputStream {
579  public:
580   enum WriteResult {
581     kContinue = 0,
582     kAbort = 1
583   };
584   virtual ~OutputStream() = default;
585   /** Notify about the end of stream. */
586   virtual void EndOfStream() = 0;
587   /** Get preferred output chunk size. Called only once. */
GetChunkSize()588   virtual int GetChunkSize() { return 1024; }
589   /**
590    * Writes the next chunk of snapshot data into the stream. Writing
591    * can be stopped by returning kAbort as function result. EndOfStream
592    * will not be called in case writing was aborted.
593    */
594   virtual WriteResult WriteAsciiChunk(char* data, int size) = 0;
595   /**
596    * Writes the next chunk of heap stats data into the stream. Writing
597    * can be stopped by returning kAbort as function result. EndOfStream
598    * will not be called in case writing was aborted.
599    */
WriteHeapStatsChunk(HeapStatsUpdate * data,int count)600   virtual WriteResult WriteHeapStatsChunk(HeapStatsUpdate* data, int count) {
601     return kAbort;
602   }
603 };
604 
605 /**
606  * HeapSnapshots record the state of the JS heap at some moment.
607  */
608 class V8_EXPORT HeapSnapshot {
609  public:
610   enum SerializationFormat {
611     kJSON = 0  // See format description near 'Serialize' method.
612   };
613 
614   /** Returns the root node of the heap graph. */
615   const HeapGraphNode* GetRoot() const;
616 
617   /** Returns a node by its id. */
618   const HeapGraphNode* GetNodeById(SnapshotObjectId id) const;
619 
620   /** Returns total nodes count in the snapshot. */
621   int GetNodesCount() const;
622 
623   /** Returns a node by index. */
624   const HeapGraphNode* GetNode(int index) const;
625 
626   /** Returns a max seen JS object Id. */
627   SnapshotObjectId GetMaxSnapshotJSObjectId() const;
628 
629   /**
630    * Deletes the snapshot and removes it from HeapProfiler's list.
631    * All pointers to nodes, edges and paths previously returned become
632    * invalid.
633    */
634   void Delete();
635 
636   /**
637    * Prepare a serialized representation of the snapshot. The result
638    * is written into the stream provided in chunks of specified size.
639    * The total length of the serialized snapshot is unknown in
640    * advance, it can be roughly equal to JS heap size (that means,
641    * it can be really big - tens of megabytes).
642    *
643    * For the JSON format, heap contents are represented as an object
644    * with the following structure:
645    *
646    *  {
647    *    snapshot: {
648    *      title: "...",
649    *      uid: nnn,
650    *      meta: { meta-info },
651    *      node_count: nnn,
652    *      edge_count: nnn
653    *    },
654    *    nodes: [nodes array],
655    *    edges: [edges array],
656    *    strings: [strings array]
657    *  }
658    *
659    * Nodes reference strings, other nodes, and edges by their indexes
660    * in corresponding arrays.
661    */
662   void Serialize(OutputStream* stream,
663                  SerializationFormat format = kJSON) const;
664 };
665 
666 
667 /**
668  * An interface for reporting progress and controlling long-running
669  * activities.
670  */
671 class V8_EXPORT ActivityControl {
672  public:
673   enum ControlOption {
674     kContinue = 0,
675     kAbort = 1
676   };
677   virtual ~ActivityControl() = default;
678   /**
679    * Notify about current progress. The activity can be stopped by
680    * returning kAbort as the callback result.
681    */
682   virtual ControlOption ReportProgressValue(uint32_t done, uint32_t total) = 0;
683 };
684 
685 /**
686  * AllocationProfile is a sampled profile of allocations done by the program.
687  * This is structured as a call-graph.
688  */
689 class V8_EXPORT AllocationProfile {
690  public:
691   struct Allocation {
692     /**
693      * Size of the sampled allocation object.
694      */
695     size_t size;
696 
697     /**
698      * The number of objects of such size that were sampled.
699      */
700     unsigned int count;
701   };
702 
703   /**
704    * Represents a node in the call-graph.
705    */
706   struct Node {
707     /**
708      * Name of the function. May be empty for anonymous functions or if the
709      * script corresponding to this function has been unloaded.
710      */
711     Local<String> name;
712 
713     /**
714      * Name of the script containing the function. May be empty if the script
715      * name is not available, or if the script has been unloaded.
716      */
717     Local<String> script_name;
718 
719     /**
720      * id of the script where the function is located. May be equal to
721      * v8::UnboundScript::kNoScriptId in cases where the script doesn't exist.
722      */
723     int script_id;
724 
725     /**
726      * Start position of the function in the script.
727      */
728     int start_position;
729 
730     /**
731      * 1-indexed line number where the function starts. May be
732      * kNoLineNumberInfo if no line number information is available.
733      */
734     int line_number;
735 
736     /**
737      * 1-indexed column number where the function starts. May be
738      * kNoColumnNumberInfo if no line number information is available.
739      */
740     int column_number;
741 
742     /**
743      * Unique id of the node.
744      */
745     uint32_t node_id;
746 
747     /**
748      * List of callees called from this node for which we have sampled
749      * allocations. The lifetime of the children is scoped to the containing
750      * AllocationProfile.
751      */
752     std::vector<Node*> children;
753 
754     /**
755      * List of self allocations done by this node in the call-graph.
756      */
757     std::vector<Allocation> allocations;
758   };
759 
760   /**
761    * Represent a single sample recorded for an allocation.
762    */
763   struct Sample {
764     /**
765      * id of the node in the profile tree.
766      */
767     uint32_t node_id;
768 
769     /**
770      * Size of the sampled allocation object.
771      */
772     size_t size;
773 
774     /**
775      * The number of objects of such size that were sampled.
776      */
777     unsigned int count;
778 
779     /**
780      * Unique time-ordered id of the allocation sample. Can be used to track
781      * what samples were added or removed between two snapshots.
782      */
783     uint64_t sample_id;
784   };
785 
786   /**
787    * Returns the root node of the call-graph. The root node corresponds to an
788    * empty JS call-stack. The lifetime of the returned Node* is scoped to the
789    * containing AllocationProfile.
790    */
791   virtual Node* GetRootNode() = 0;
792   virtual const std::vector<Sample>& GetSamples() = 0;
793 
794   virtual ~AllocationProfile() = default;
795 
796   static const int kNoLineNumberInfo = Message::kNoLineNumberInfo;
797   static const int kNoColumnNumberInfo = Message::kNoColumnInfo;
798 };
799 
800 /**
801  * An object graph consisting of embedder objects and V8 objects.
802  * Edges of the graph are strong references between the objects.
803  * The embedder can build this graph during heap snapshot generation
804  * to include the embedder objects in the heap snapshot.
805  * Usage:
806  * 1) Define derived class of EmbedderGraph::Node for embedder objects.
807  * 2) Set the build embedder graph callback on the heap profiler using
808  *    HeapProfiler::AddBuildEmbedderGraphCallback.
809  * 3) In the callback use graph->AddEdge(node1, node2) to add an edge from
810  *    node1 to node2.
811  * 4) To represent references from/to V8 object, construct V8 nodes using
812  *    graph->V8Node(value).
813  */
814 class V8_EXPORT EmbedderGraph {
815  public:
816   class Node {
817    public:
818     /**
819      * Detachedness specifies whether an object is attached or detached from the
820      * main application state. While unkown in general, there may be objects
821      * that specifically know their state. V8 passes this information along in
822      * the snapshot. Users of the snapshot may use it to annotate the object
823      * graph.
824      */
825     enum class Detachedness : uint8_t {
826       kUnknown = 0,
827       kAttached = 1,
828       kDetached = 2,
829     };
830 
831     Node() = default;
832     virtual ~Node() = default;
833     virtual const char* Name() = 0;
834     virtual size_t SizeInBytes() = 0;
835     /**
836      * The corresponding V8 wrapper node if not null.
837      * During heap snapshot generation the embedder node and the V8 wrapper
838      * node will be merged into one node to simplify retaining paths.
839      */
WrapperNode()840     virtual Node* WrapperNode() { return nullptr; }
IsRootNode()841     virtual bool IsRootNode() { return false; }
842     /** Must return true for non-V8 nodes. */
IsEmbedderNode()843     virtual bool IsEmbedderNode() { return true; }
844     /**
845      * Optional name prefix. It is used in Chrome for tagging detached nodes.
846      */
NamePrefix()847     virtual const char* NamePrefix() { return nullptr; }
848 
849     /**
850      * Returns the NativeObject that can be used for querying the
851      * |HeapSnapshot|.
852      */
GetNativeObject()853     virtual NativeObject GetNativeObject() { return nullptr; }
854 
855     /**
856      * Detachedness state of a given object. While unkown in general, there may
857      * be objects that specifically know their state. V8 passes this information
858      * along in the snapshot. Users of the snapshot may use it to annotate the
859      * object graph.
860      */
GetDetachedness()861     virtual Detachedness GetDetachedness() { return Detachedness::kUnknown; }
862 
863     Node(const Node&) = delete;
864     Node& operator=(const Node&) = delete;
865   };
866 
867   /**
868    * Returns a node corresponding to the given V8 value. Ownership is not
869    * transferred. The result pointer is valid while the graph is alive.
870    */
871   virtual Node* V8Node(const v8::Local<v8::Value>& value) = 0;
872 
873   /**
874    * Adds the given node to the graph and takes ownership of the node.
875    * Returns a raw pointer to the node that is valid while the graph is alive.
876    */
877   virtual Node* AddNode(std::unique_ptr<Node> node) = 0;
878 
879   /**
880    * Adds an edge that represents a strong reference from the given
881    * node |from| to the given node |to|. The nodes must be added to the graph
882    * before calling this function.
883    *
884    * If name is nullptr, the edge will have auto-increment indexes, otherwise
885    * it will be named accordingly.
886    */
887   virtual void AddEdge(Node* from, Node* to, const char* name = nullptr) = 0;
888 
889   virtual ~EmbedderGraph() = default;
890 };
891 
892 /**
893  * Interface for controlling heap profiling. Instance of the
894  * profiler can be retrieved using v8::Isolate::GetHeapProfiler.
895  */
896 class V8_EXPORT HeapProfiler {
897  public:
898   enum SamplingFlags {
899     kSamplingNoFlags = 0,
900     kSamplingForceGC = 1 << 0,
901   };
902 
903   /**
904    * Callback function invoked during heap snapshot generation to retrieve
905    * the embedder object graph. The callback should use graph->AddEdge(..) to
906    * add references between the objects.
907    * The callback must not trigger garbage collection in V8.
908    */
909   typedef void (*BuildEmbedderGraphCallback)(v8::Isolate* isolate,
910                                              v8::EmbedderGraph* graph,
911                                              void* data);
912 
913   /**
914    * Callback function invoked during heap snapshot generation to retrieve
915    * the detachedness state of an object referenced by a TracedReference.
916    *
917    * The callback takes Local<Value> as parameter to allow the embedder to
918    * unpack the TracedReference into a Local and reuse that Local for different
919    * purposes.
920    */
921   using GetDetachednessCallback = EmbedderGraph::Node::Detachedness (*)(
922       v8::Isolate* isolate, const v8::Local<v8::Value>& v8_value,
923       uint16_t class_id, void* data);
924 
925   /** Returns the number of snapshots taken. */
926   int GetSnapshotCount();
927 
928   /** Returns a snapshot by index. */
929   const HeapSnapshot* GetHeapSnapshot(int index);
930 
931   /**
932    * Returns SnapshotObjectId for a heap object referenced by |value| if
933    * it has been seen by the heap profiler, kUnknownObjectId otherwise.
934    */
935   SnapshotObjectId GetObjectId(Local<Value> value);
936 
937   /**
938    * Returns SnapshotObjectId for a native object referenced by |value| if it
939    * has been seen by the heap profiler, kUnknownObjectId otherwise.
940    */
941   SnapshotObjectId GetObjectId(NativeObject value);
942 
943   /**
944    * Returns heap object with given SnapshotObjectId if the object is alive,
945    * otherwise empty handle is returned.
946    */
947   Local<Value> FindObjectById(SnapshotObjectId id);
948 
949   /**
950    * Clears internal map from SnapshotObjectId to heap object. The new objects
951    * will not be added into it unless a heap snapshot is taken or heap object
952    * tracking is kicked off.
953    */
954   void ClearObjectIds();
955 
956   /**
957    * A constant for invalid SnapshotObjectId. GetSnapshotObjectId will return
958    * it in case heap profiler cannot find id  for the object passed as
959    * parameter. HeapSnapshot::GetNodeById will always return NULL for such id.
960    */
961   static const SnapshotObjectId kUnknownObjectId = 0;
962 
963   /**
964    * Callback interface for retrieving user friendly names of global objects.
965    */
966   class ObjectNameResolver {
967    public:
968     /**
969      * Returns name to be used in the heap snapshot for given node. Returned
970      * string must stay alive until snapshot collection is completed.
971      */
972     virtual const char* GetName(Local<Object> object) = 0;
973 
974    protected:
975     virtual ~ObjectNameResolver() = default;
976   };
977 
978   /**
979    * Takes a heap snapshot and returns it.
980    */
981   const HeapSnapshot* TakeHeapSnapshot(
982       ActivityControl* control = nullptr,
983       ObjectNameResolver* global_object_name_resolver = nullptr,
984       bool treat_global_objects_as_roots = true,
985       bool capture_numeric_value = false);
986 
987   /**
988    * Starts tracking of heap objects population statistics. After calling
989    * this method, all heap objects relocations done by the garbage collector
990    * are being registered.
991    *
992    * |track_allocations| parameter controls whether stack trace of each
993    * allocation in the heap will be recorded and reported as part of
994    * HeapSnapshot.
995    */
996   void StartTrackingHeapObjects(bool track_allocations = false);
997 
998   /**
999    * Adds a new time interval entry to the aggregated statistics array. The
1000    * time interval entry contains information on the current heap objects
1001    * population size. The method also updates aggregated statistics and
1002    * reports updates for all previous time intervals via the OutputStream
1003    * object. Updates on each time interval are provided as a stream of the
1004    * HeapStatsUpdate structure instances.
1005    * If |timestamp_us| is supplied, timestamp of the new entry will be written
1006    * into it. The return value of the function is the last seen heap object Id.
1007    *
1008    * StartTrackingHeapObjects must be called before the first call to this
1009    * method.
1010    */
1011   SnapshotObjectId GetHeapStats(OutputStream* stream,
1012                                 int64_t* timestamp_us = nullptr);
1013 
1014   /**
1015    * Stops tracking of heap objects population statistics, cleans up all
1016    * collected data. StartHeapObjectsTracking must be called again prior to
1017    * calling GetHeapStats next time.
1018    */
1019   void StopTrackingHeapObjects();
1020 
1021   /**
1022    * Starts gathering a sampling heap profile. A sampling heap profile is
1023    * similar to tcmalloc's heap profiler and Go's mprof. It samples object
1024    * allocations and builds an online 'sampling' heap profile. At any point in
1025    * time, this profile is expected to be a representative sample of objects
1026    * currently live in the system. Each sampled allocation includes the stack
1027    * trace at the time of allocation, which makes this really useful for memory
1028    * leak detection.
1029    *
1030    * This mechanism is intended to be cheap enough that it can be used in
1031    * production with minimal performance overhead.
1032    *
1033    * Allocations are sampled using a randomized Poisson process. On average, one
1034    * allocation will be sampled every |sample_interval| bytes allocated. The
1035    * |stack_depth| parameter controls the maximum number of stack frames to be
1036    * captured on each allocation.
1037    *
1038    * NOTE: This is a proof-of-concept at this point. Right now we only sample
1039    * newspace allocations. Support for paged space allocation (e.g. pre-tenured
1040    * objects, large objects, code objects, etc.) and native allocations
1041    * doesn't exist yet, but is anticipated in the future.
1042    *
1043    * Objects allocated before the sampling is started will not be included in
1044    * the profile.
1045    *
1046    * Returns false if a sampling heap profiler is already running.
1047    */
1048   bool StartSamplingHeapProfiler(uint64_t sample_interval = 512 * 1024,
1049                                  int stack_depth = 16,
1050                                  SamplingFlags flags = kSamplingNoFlags);
1051 
1052   /**
1053    * Stops the sampling heap profile and discards the current profile.
1054    */
1055   void StopSamplingHeapProfiler();
1056 
1057   /**
1058    * Returns the sampled profile of allocations allocated (and still live) since
1059    * StartSamplingHeapProfiler was called. The ownership of the pointer is
1060    * transferred to the caller. Returns nullptr if sampling heap profiler is not
1061    * active.
1062    */
1063   AllocationProfile* GetAllocationProfile();
1064 
1065   /**
1066    * Deletes all snapshots taken. All previously returned pointers to
1067    * snapshots and their contents become invalid after this call.
1068    */
1069   void DeleteAllHeapSnapshots();
1070 
1071   void AddBuildEmbedderGraphCallback(BuildEmbedderGraphCallback callback,
1072                                      void* data);
1073   void RemoveBuildEmbedderGraphCallback(BuildEmbedderGraphCallback callback,
1074                                         void* data);
1075 
1076   void SetGetDetachednessCallback(GetDetachednessCallback callback, void* data);
1077 
1078   /**
1079    * Default value of persistent handle class ID. Must not be used to
1080    * define a class. Can be used to reset a class of a persistent
1081    * handle.
1082    */
1083   static const uint16_t kPersistentHandleNoClassId = 0;
1084 
1085  private:
1086   HeapProfiler();
1087   ~HeapProfiler();
1088   HeapProfiler(const HeapProfiler&);
1089   HeapProfiler& operator=(const HeapProfiler&);
1090 };
1091 
1092 /**
1093  * A struct for exporting HeapStats data from V8, using "push" model.
1094  * See HeapProfiler::GetHeapStats.
1095  */
1096 struct HeapStatsUpdate {
HeapStatsUpdateHeapStatsUpdate1097   HeapStatsUpdate(uint32_t index, uint32_t count, uint32_t size)
1098     : index(index), count(count), size(size) { }
1099   uint32_t index;  // Index of the time interval that was changed.
1100   uint32_t count;  // New value of count field for the interval with this index.
1101   uint32_t size;  // New value of size field for the interval with this index.
1102 };
1103 
1104 #define CODE_EVENTS_LIST(V) \
1105   V(Builtin)                \
1106   V(Callback)               \
1107   V(Eval)                   \
1108   V(Function)               \
1109   V(InterpretedFunction)    \
1110   V(Handler)                \
1111   V(BytecodeHandler)        \
1112   V(LazyCompile)            \
1113   V(RegExp)                 \
1114   V(Script)                 \
1115   V(Stub)                   \
1116   V(Relocation)
1117 
1118 /**
1119  * Note that this enum may be extended in the future. Please include a default
1120  * case if this enum is used in a switch statement.
1121  */
1122 enum CodeEventType {
1123   kUnknownType = 0
1124 #define V(Name) , k##Name##Type
1125   CODE_EVENTS_LIST(V)
1126 #undef V
1127 };
1128 
1129 /**
1130  * Representation of a code creation event
1131  */
1132 class V8_EXPORT CodeEvent {
1133  public:
1134   uintptr_t GetCodeStartAddress();
1135   size_t GetCodeSize();
1136   Local<String> GetFunctionName();
1137   Local<String> GetScriptName();
1138   int GetScriptLine();
1139   int GetScriptColumn();
1140   /**
1141    * NOTE (mmarchini): We can't allocate objects in the heap when we collect
1142    * existing code, and both the code type and the comment are not stored in the
1143    * heap, so we return those as const char*.
1144    */
1145   CodeEventType GetCodeType();
1146   const char* GetComment();
1147 
1148   static const char* GetCodeEventTypeName(CodeEventType code_event_type);
1149 
1150   uintptr_t GetPreviousCodeStartAddress();
1151 };
1152 
1153 /**
1154  * Interface to listen to code creation and code relocation events.
1155  */
1156 class V8_EXPORT CodeEventHandler {
1157  public:
1158   /**
1159    * Creates a new listener for the |isolate|. The isolate must be initialized.
1160    * The listener object must be disposed after use by calling |Dispose| method.
1161    * Multiple listeners can be created for the same isolate.
1162    */
1163   explicit CodeEventHandler(Isolate* isolate);
1164   virtual ~CodeEventHandler();
1165 
1166   /**
1167    * Handle is called every time a code object is created or moved. Information
1168    * about each code event will be available through the `code_event`
1169    * parameter.
1170    *
1171    * When the CodeEventType is kRelocationType, the code for this CodeEvent has
1172    * moved from `GetPreviousCodeStartAddress()` to `GetCodeStartAddress()`.
1173    */
1174   virtual void Handle(CodeEvent* code_event) = 0;
1175 
1176   /**
1177    * Call `Enable()` to starts listening to code creation and code relocation
1178    * events. These events will be handled by `Handle()`.
1179    */
1180   void Enable();
1181 
1182   /**
1183    * Call `Disable()` to stop listening to code creation and code relocation
1184    * events.
1185    */
1186   void Disable();
1187 
1188  private:
1189   CodeEventHandler();
1190   CodeEventHandler(const CodeEventHandler&);
1191   CodeEventHandler& operator=(const CodeEventHandler&);
1192   void* internal_listener_;
1193 };
1194 
1195 }  // namespace v8
1196 
1197 
1198 #endif  // V8_V8_PROFILER_H_
1199