• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef GrPathUtils_DEFINED
9 #define GrPathUtils_DEFINED
10 
11 #include "include/core/SkRect.h"
12 #include "include/private/SkTArray.h"
13 #include "src/core/SkGeometry.h"
14 #include "src/core/SkPathPriv.h"
15 #include "src/gpu/BufferWriter.h"
16 #include "src/gpu/GrVx.h"
17 
18 class SkMatrix;
19 
20 /**
21  *  Utilities for evaluating paths.
22  */
23 namespace GrPathUtils {
24 
25 // When tessellating curved paths into linear segments, this defines the maximum distance in screen
26 // space which a segment may deviate from the mathematically correct value. Above this value, the
27 // segment will be subdivided.
28 // This value was chosen to approximate the supersampling accuracy of the raster path (16 samples,
29 // or one quarter pixel).
30 static const SkScalar kDefaultTolerance = SkDoubleToScalar(0.25);
31 
32 // We guarantee that no quad or cubic will ever produce more than this many points
33 static const int kMaxPointsPerCurve = 1 << 10;
34 
35 // Very small tolerances will be increased to a minimum threshold value, to avoid division problems
36 // in subsequent math.
37 SkScalar scaleToleranceToSrc(SkScalar devTol,
38                              const SkMatrix& viewM,
39                              const SkRect& pathBounds);
40 
41 // Returns the maximum number of vertices required when using a recursive chopping algorithm to
42 // linearize the quadratic Bezier (e.g. generateQuadraticPoints below) to the given error tolerance.
43 // This is a power of two and will not exceed kMaxPointsPerCurve.
44 uint32_t quadraticPointCount(const SkPoint points[], SkScalar tol);
45 
46 // Returns the number of points actually written to 'points', will be <= to 'pointsLeft'
47 uint32_t generateQuadraticPoints(const SkPoint& p0,
48                                  const SkPoint& p1,
49                                  const SkPoint& p2,
50                                  SkScalar tolSqd,
51                                  SkPoint** points,
52                                  uint32_t pointsLeft);
53 
54 // Returns the maximum number of vertices required when using a recursive chopping algorithm to
55 // linearize the cubic Bezier (e.g. generateQuadraticPoints below) to the given error tolerance.
56 // This is a power of two and will not exceed kMaxPointsPerCurve.
57 uint32_t cubicPointCount(const SkPoint points[], SkScalar tol);
58 
59 // Returns the number of points actually written to 'points', will be <= to 'pointsLeft'
60 uint32_t generateCubicPoints(const SkPoint& p0,
61                              const SkPoint& p1,
62                              const SkPoint& p2,
63                              const SkPoint& p3,
64                              SkScalar tolSqd,
65                              SkPoint** points,
66                              uint32_t pointsLeft);
67 
68 // A 2x3 matrix that goes from the 2d space coordinates to UV space where u^2-v = 0 specifies the
69 // quad. The matrix is determined by the control points of the quadratic.
70 class QuadUVMatrix {
71 public:
QuadUVMatrix()72     QuadUVMatrix() {}
73     // Initialize the matrix from the control pts
QuadUVMatrix(const SkPoint controlPts[3])74     QuadUVMatrix(const SkPoint controlPts[3]) { this->set(controlPts); }
75     void set(const SkPoint controlPts[3]);
76 
77     /**
78      * Applies the matrix to vertex positions to compute UV coords.
79      *
80      * vertices is a pointer to the first vertex.
81      * vertexCount is the number of vertices.
82      * stride is the size of each vertex.
83      * uvOffset is the offset of the UV values within each vertex.
84      */
apply(void * vertices,int vertexCount,size_t stride,size_t uvOffset)85     void apply(void* vertices, int vertexCount, size_t stride, size_t uvOffset) const {
86         intptr_t xyPtr = reinterpret_cast<intptr_t>(vertices);
87         intptr_t uvPtr = reinterpret_cast<intptr_t>(vertices) + uvOffset;
88         float sx = fM[0];
89         float kx = fM[1];
90         float tx = fM[2];
91         float ky = fM[3];
92         float sy = fM[4];
93         float ty = fM[5];
94         for (int i = 0; i < vertexCount; ++i) {
95             const SkPoint* xy = reinterpret_cast<const SkPoint*>(xyPtr);
96             SkPoint* uv = reinterpret_cast<SkPoint*>(uvPtr);
97             uv->fX = sx * xy->fX + kx * xy->fY + tx;
98             uv->fY = ky * xy->fX + sy * xy->fY + ty;
99             xyPtr += stride;
100             uvPtr += stride;
101         }
102     }
103 private:
104     float fM[6];
105 };
106 
107 // Input is 3 control points and a weight for a bezier conic. Calculates the three linear
108 // functionals (K,L,M) that represent the implicit equation of the conic, k^2 - lm.
109 //
110 // Output: klm holds the linear functionals K,L,M as row vectors:
111 //
112 //     | ..K.. |   | x |      | k |
113 //     | ..L.. | * | y |  ==  | l |
114 //     | ..M.. |   | 1 |      | m |
115 //
116 void getConicKLM(const SkPoint p[3], const SkScalar weight, SkMatrix* klm);
117 
118 // Converts a cubic into a sequence of quads. If working in device space use tolScale = 1, otherwise
119 // set based on stretchiness of the matrix. The result is sets of 3 points in quads. This will
120 // preserve the starting and ending tangent vectors (modulo FP precision).
121 void convertCubicToQuads(const SkPoint p[4],
122                          SkScalar tolScale,
123                          SkTArray<SkPoint, true>* quads);
124 
125 // When we approximate a cubic {a,b,c,d} with a quadratic we may have to ensure that the new control
126 // point lies between the lines ab and cd. The convex path renderer requires this. It starts with a
127 // path where all the control points taken together form a convex polygon. It relies on this
128 // property and the quadratic approximation of cubics step cannot alter it. This variation enforces
129 // this constraint. The cubic must be simple and dir must specify the orientation of the contour
130 // containing the cubic.
131 void convertCubicToQuadsConstrainToTangents(const SkPoint p[4],
132                                             SkScalar tolScale,
133                                             SkPathFirstDirection dir,
134                                             SkTArray<SkPoint, true>* quads);
135 
136 // Converts the given line to a cubic bezier.
137 // NOTE: This method interpolates at 1/3 and 2/3, but if suitable in context, the cubic
138 // {p0, p0, p1, p1} may also work.
writeLineAsCubic(SkPoint startPt,SkPoint endPt,skgpu::VertexWriter * writer)139 inline void writeLineAsCubic(SkPoint startPt, SkPoint endPt, skgpu::VertexWriter* writer) {
140     using grvx::float2, skvx::bit_pun;
141     float2 p0 = bit_pun<float2>(startPt);
142     float2 p1 = bit_pun<float2>(endPt);
143     float2 v = (p1 - p0) * (1/3.f);
144     *writer << p0 << (p0 + v) << (p1 - v) << p1;
145 }
146 
147 // Converts the given quadratic bezier to a cubic.
writeQuadAsCubic(const SkPoint p[3],skgpu::VertexWriter * writer)148 inline void writeQuadAsCubic(const SkPoint p[3], skgpu::VertexWriter* writer) {
149     using grvx::float2, skvx::bit_pun;
150     float2 p0 = bit_pun<float2>(p[0]);
151     float2 p1 = bit_pun<float2>(p[1]);
152     float2 p2 = bit_pun<float2>(p[2]);
153     float2 c = p1 * (2/3.f);
154     *writer << p0 << (p0*(1/3.f) + c) << (p2 * (1/3.f) + c) << p2;
155 }
convertQuadToCubic(const SkPoint p[3],SkPoint out[4])156 inline void convertQuadToCubic(const SkPoint p[3], SkPoint out[4]) {
157     skgpu::VertexWriter writer(out);
158     writeQuadAsCubic(p, &writer);
159 }
160 
161 // Finds 0, 1, or 2 T values at which to chop the given curve in order to guarantee the resulting
162 // cubics are convex and rotate no more than 180 degrees.
163 //
164 //   - If the cubic is "serpentine", then the T values are any inflection points in [0 < T < 1].
165 //   - If the cubic is linear, then the T values are any 180-degree cusp points in [0 < T < 1].
166 //   - Otherwise the T value is the point at which rotation reaches 180 degrees, iff in [0 < T < 1].
167 //
168 // 'areCusps' is set to true if the chop point occurred at a cusp (within tolerance), or if the chop
169 // point(s) occurred at 180-degree turnaround points on a degenerate flat line.
170 int findCubicConvex180Chops(const SkPoint[], float T[2], bool* areCusps);
171 
172 // Returns true if the given conic (or quadratic) has a cusp point. The w value is not necessary in
173 // determining this. If there is a cusp, it can be found at the midtangent.
conicHasCusp(const SkPoint p[3])174 inline bool conicHasCusp(const SkPoint p[3]) {
175     SkVector a = p[1] - p[0];
176     SkVector b = p[2] - p[1];
177     // A conic of any class can only have a cusp if it is a degenerate flat line with a 180 degree
178     // turnarund. To detect this, the beginning and ending tangents must be parallel
179     // (a.cross(b) == 0) and pointing in opposite directions (a.dot(b) < 0).
180     return a.cross(b) == 0 && a.dot(b) < 0;
181 }
182 
183 }  // namespace GrPathUtils
184 
185 #endif
186