• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89 
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96 
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99 
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107 
108 #ifdef CONFIG_NET_RX_BUSY_POLL
109 unsigned int sysctl_net_busy_read __read_mostly;
110 unsigned int sysctl_net_busy_poll __read_mostly;
111 #endif
112 
113 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
114 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
115 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
116 
117 static int sock_close(struct inode *inode, struct file *file);
118 static __poll_t sock_poll(struct file *file,
119 			      struct poll_table_struct *wait);
120 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
121 #ifdef CONFIG_COMPAT
122 static long compat_sock_ioctl(struct file *file,
123 			      unsigned int cmd, unsigned long arg);
124 #endif
125 static int sock_fasync(int fd, struct file *filp, int on);
126 static ssize_t sock_sendpage(struct file *file, struct page *page,
127 			     int offset, size_t size, loff_t *ppos, int more);
128 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
129 				struct pipe_inode_info *pipe, size_t len,
130 				unsigned int flags);
131 
132 #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file * m,struct file * f)133 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
134 {
135 	struct socket *sock = f->private_data;
136 
137 	if (sock->ops->show_fdinfo)
138 		sock->ops->show_fdinfo(m, sock);
139 }
140 #else
141 #define sock_show_fdinfo NULL
142 #endif
143 
144 /*
145  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
146  *	in the operation structures but are done directly via the socketcall() multiplexor.
147  */
148 
149 static const struct file_operations socket_file_ops = {
150 	.owner =	THIS_MODULE,
151 	.llseek =	no_llseek,
152 	.read_iter =	sock_read_iter,
153 	.write_iter =	sock_write_iter,
154 	.poll =		sock_poll,
155 	.unlocked_ioctl = sock_ioctl,
156 #ifdef CONFIG_COMPAT
157 	.compat_ioctl = compat_sock_ioctl,
158 #endif
159 	.mmap =		sock_mmap,
160 	.release =	sock_close,
161 	.fasync =	sock_fasync,
162 	.sendpage =	sock_sendpage,
163 	.splice_write = generic_splice_sendpage,
164 	.splice_read =	sock_splice_read,
165 	.show_fdinfo =	sock_show_fdinfo,
166 };
167 
168 /*
169  *	The protocol list. Each protocol is registered in here.
170  */
171 
172 static DEFINE_SPINLOCK(net_family_lock);
173 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
174 
175 /*
176  * Support routines.
177  * Move socket addresses back and forth across the kernel/user
178  * divide and look after the messy bits.
179  */
180 
181 /**
182  *	move_addr_to_kernel	-	copy a socket address into kernel space
183  *	@uaddr: Address in user space
184  *	@kaddr: Address in kernel space
185  *	@ulen: Length in user space
186  *
187  *	The address is copied into kernel space. If the provided address is
188  *	too long an error code of -EINVAL is returned. If the copy gives
189  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
190  */
191 
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 		return -EINVAL;
196 	if (ulen == 0)
197 		return 0;
198 	if (copy_from_user(kaddr, uaddr, ulen))
199 		return -EFAULT;
200 	return audit_sockaddr(ulen, kaddr);
201 }
202 
203 /**
204  *	move_addr_to_user	-	copy an address to user space
205  *	@kaddr: kernel space address
206  *	@klen: length of address in kernel
207  *	@uaddr: user space address
208  *	@ulen: pointer to user length field
209  *
210  *	The value pointed to by ulen on entry is the buffer length available.
211  *	This is overwritten with the buffer space used. -EINVAL is returned
212  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
213  *	is returned if either the buffer or the length field are not
214  *	accessible.
215  *	After copying the data up to the limit the user specifies, the true
216  *	length of the data is written over the length limit the user
217  *	specified. Zero is returned for a success.
218  */
219 
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 			     void __user *uaddr, int __user *ulen)
222 {
223 	int err;
224 	int len;
225 
226 	BUG_ON(klen > sizeof(struct sockaddr_storage));
227 	err = get_user(len, ulen);
228 	if (err)
229 		return err;
230 	if (len > klen)
231 		len = klen;
232 	if (len < 0)
233 		return -EINVAL;
234 	if (len) {
235 		if (audit_sockaddr(klen, kaddr))
236 			return -ENOMEM;
237 		if (copy_to_user(uaddr, kaddr, len))
238 			return -EFAULT;
239 	}
240 	/*
241 	 *      "fromlen shall refer to the value before truncation.."
242 	 *                      1003.1g
243 	 */
244 	return __put_user(klen, ulen);
245 }
246 
247 static struct kmem_cache *sock_inode_cachep __ro_after_init;
248 
sock_alloc_inode(struct super_block * sb)249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 	struct socket_alloc *ei;
252 
253 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
254 	if (!ei)
255 		return NULL;
256 	init_waitqueue_head(&ei->socket.wq.wait);
257 	ei->socket.wq.fasync_list = NULL;
258 	ei->socket.wq.flags = 0;
259 
260 	ei->socket.state = SS_UNCONNECTED;
261 	ei->socket.flags = 0;
262 	ei->socket.ops = NULL;
263 	ei->socket.sk = NULL;
264 	ei->socket.file = NULL;
265 
266 	return &ei->vfs_inode;
267 }
268 
sock_free_inode(struct inode * inode)269 static void sock_free_inode(struct inode *inode)
270 {
271 	struct socket_alloc *ei;
272 
273 	ei = container_of(inode, struct socket_alloc, vfs_inode);
274 	kmem_cache_free(sock_inode_cachep, ei);
275 }
276 
init_once(void * foo)277 static void init_once(void *foo)
278 {
279 	struct socket_alloc *ei = (struct socket_alloc *)foo;
280 
281 	inode_init_once(&ei->vfs_inode);
282 }
283 
init_inodecache(void)284 static void init_inodecache(void)
285 {
286 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 					      sizeof(struct socket_alloc),
288 					      0,
289 					      (SLAB_HWCACHE_ALIGN |
290 					       SLAB_RECLAIM_ACCOUNT |
291 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
292 					      init_once);
293 	BUG_ON(sock_inode_cachep == NULL);
294 }
295 
296 static const struct super_operations sockfs_ops = {
297 	.alloc_inode	= sock_alloc_inode,
298 	.free_inode	= sock_free_inode,
299 	.statfs		= simple_statfs,
300 };
301 
302 /*
303  * sockfs_dname() is called from d_path().
304  */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
306 {
307 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
308 				d_inode(dentry)->i_ino);
309 }
310 
311 static const struct dentry_operations sockfs_dentry_operations = {
312 	.d_dname  = sockfs_dname,
313 };
314 
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size)315 static int sockfs_xattr_get(const struct xattr_handler *handler,
316 			    struct dentry *dentry, struct inode *inode,
317 			    const char *suffix, void *value, size_t size)
318 {
319 	if (value) {
320 		if (dentry->d_name.len + 1 > size)
321 			return -ERANGE;
322 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
323 	}
324 	return dentry->d_name.len + 1;
325 }
326 
327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
330 
331 static const struct xattr_handler sockfs_xattr_handler = {
332 	.name = XATTR_NAME_SOCKPROTONAME,
333 	.get = sockfs_xattr_get,
334 };
335 
sockfs_security_xattr_set(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)336 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
337 				     struct dentry *dentry, struct inode *inode,
338 				     const char *suffix, const void *value,
339 				     size_t size, int flags)
340 {
341 	/* Handled by LSM. */
342 	return -EAGAIN;
343 }
344 
345 static const struct xattr_handler sockfs_security_xattr_handler = {
346 	.prefix = XATTR_SECURITY_PREFIX,
347 	.set = sockfs_security_xattr_set,
348 };
349 
350 static const struct xattr_handler *sockfs_xattr_handlers[] = {
351 	&sockfs_xattr_handler,
352 	&sockfs_security_xattr_handler,
353 	NULL
354 };
355 
sockfs_init_fs_context(struct fs_context * fc)356 static int sockfs_init_fs_context(struct fs_context *fc)
357 {
358 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
359 	if (!ctx)
360 		return -ENOMEM;
361 	ctx->ops = &sockfs_ops;
362 	ctx->dops = &sockfs_dentry_operations;
363 	ctx->xattr = sockfs_xattr_handlers;
364 	return 0;
365 }
366 
367 static struct vfsmount *sock_mnt __read_mostly;
368 
369 static struct file_system_type sock_fs_type = {
370 	.name =		"sockfs",
371 	.init_fs_context = sockfs_init_fs_context,
372 	.kill_sb =	kill_anon_super,
373 };
374 
375 /*
376  *	Obtains the first available file descriptor and sets it up for use.
377  *
378  *	These functions create file structures and maps them to fd space
379  *	of the current process. On success it returns file descriptor
380  *	and file struct implicitly stored in sock->file.
381  *	Note that another thread may close file descriptor before we return
382  *	from this function. We use the fact that now we do not refer
383  *	to socket after mapping. If one day we will need it, this
384  *	function will increment ref. count on file by 1.
385  *
386  *	In any case returned fd MAY BE not valid!
387  *	This race condition is unavoidable
388  *	with shared fd spaces, we cannot solve it inside kernel,
389  *	but we take care of internal coherence yet.
390  */
391 
392 /**
393  *	sock_alloc_file - Bind a &socket to a &file
394  *	@sock: socket
395  *	@flags: file status flags
396  *	@dname: protocol name
397  *
398  *	Returns the &file bound with @sock, implicitly storing it
399  *	in sock->file. If dname is %NULL, sets to "".
400  *	On failure the return is a ERR pointer (see linux/err.h).
401  *	This function uses GFP_KERNEL internally.
402  */
403 
sock_alloc_file(struct socket * sock,int flags,const char * dname)404 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
405 {
406 	struct file *file;
407 
408 	if (!dname)
409 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
410 
411 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
412 				O_RDWR | (flags & O_NONBLOCK),
413 				&socket_file_ops);
414 	if (IS_ERR(file)) {
415 		sock_release(sock);
416 		return file;
417 	}
418 
419 	sock->file = file;
420 	file->private_data = sock;
421 	stream_open(SOCK_INODE(sock), file);
422 	return file;
423 }
424 EXPORT_SYMBOL(sock_alloc_file);
425 
sock_map_fd(struct socket * sock,int flags)426 static int sock_map_fd(struct socket *sock, int flags)
427 {
428 	struct file *newfile;
429 	int fd = get_unused_fd_flags(flags);
430 	if (unlikely(fd < 0)) {
431 		sock_release(sock);
432 		return fd;
433 	}
434 
435 	newfile = sock_alloc_file(sock, flags, NULL);
436 	if (!IS_ERR(newfile)) {
437 		fd_install(fd, newfile);
438 		return fd;
439 	}
440 
441 	put_unused_fd(fd);
442 	return PTR_ERR(newfile);
443 }
444 
445 /**
446  *	sock_from_file - Return the &socket bounded to @file.
447  *	@file: file
448  *	@err: pointer to an error code return
449  *
450  *	On failure returns %NULL and assigns -ENOTSOCK to @err.
451  */
452 
sock_from_file(struct file * file,int * err)453 struct socket *sock_from_file(struct file *file, int *err)
454 {
455 	if (file->f_op == &socket_file_ops)
456 		return file->private_data;	/* set in sock_map_fd */
457 
458 	*err = -ENOTSOCK;
459 	return NULL;
460 }
461 EXPORT_SYMBOL(sock_from_file);
462 
463 /**
464  *	sockfd_lookup - Go from a file number to its socket slot
465  *	@fd: file handle
466  *	@err: pointer to an error code return
467  *
468  *	The file handle passed in is locked and the socket it is bound
469  *	to is returned. If an error occurs the err pointer is overwritten
470  *	with a negative errno code and NULL is returned. The function checks
471  *	for both invalid handles and passing a handle which is not a socket.
472  *
473  *	On a success the socket object pointer is returned.
474  */
475 
sockfd_lookup(int fd,int * err)476 struct socket *sockfd_lookup(int fd, int *err)
477 {
478 	struct file *file;
479 	struct socket *sock;
480 
481 	file = fget(fd);
482 	if (!file) {
483 		*err = -EBADF;
484 		return NULL;
485 	}
486 
487 	sock = sock_from_file(file, err);
488 	if (!sock)
489 		fput(file);
490 	return sock;
491 }
492 EXPORT_SYMBOL(sockfd_lookup);
493 
sockfd_lookup_light(int fd,int * err,int * fput_needed)494 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
495 {
496 	struct fd f = fdget(fd);
497 	struct socket *sock;
498 
499 	*err = -EBADF;
500 	if (f.file) {
501 		sock = sock_from_file(f.file, err);
502 		if (likely(sock)) {
503 			*fput_needed = f.flags & FDPUT_FPUT;
504 			return sock;
505 		}
506 		fdput(f);
507 	}
508 	return NULL;
509 }
510 
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)511 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
512 				size_t size)
513 {
514 	ssize_t len;
515 	ssize_t used = 0;
516 
517 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
518 	if (len < 0)
519 		return len;
520 	used += len;
521 	if (buffer) {
522 		if (size < used)
523 			return -ERANGE;
524 		buffer += len;
525 	}
526 
527 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
528 	used += len;
529 	if (buffer) {
530 		if (size < used)
531 			return -ERANGE;
532 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
533 		buffer += len;
534 	}
535 
536 	return used;
537 }
538 
sockfs_setattr(struct dentry * dentry,struct iattr * iattr)539 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
540 {
541 	int err = simple_setattr(dentry, iattr);
542 
543 	if (!err && (iattr->ia_valid & ATTR_UID)) {
544 		struct socket *sock = SOCKET_I(d_inode(dentry));
545 
546 		if (sock->sk)
547 			sock->sk->sk_uid = iattr->ia_uid;
548 		else
549 			err = -ENOENT;
550 	}
551 
552 	return err;
553 }
554 
555 static const struct inode_operations sockfs_inode_ops = {
556 	.listxattr = sockfs_listxattr,
557 	.setattr = sockfs_setattr,
558 };
559 
560 /**
561  *	sock_alloc - allocate a socket
562  *
563  *	Allocate a new inode and socket object. The two are bound together
564  *	and initialised. The socket is then returned. If we are out of inodes
565  *	NULL is returned. This functions uses GFP_KERNEL internally.
566  */
567 
sock_alloc(void)568 struct socket *sock_alloc(void)
569 {
570 	struct inode *inode;
571 	struct socket *sock;
572 
573 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
574 	if (!inode)
575 		return NULL;
576 
577 	sock = SOCKET_I(inode);
578 
579 	inode->i_ino = get_next_ino();
580 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
581 	inode->i_uid = current_fsuid();
582 	inode->i_gid = current_fsgid();
583 	inode->i_op = &sockfs_inode_ops;
584 
585 	return sock;
586 }
587 EXPORT_SYMBOL(sock_alloc);
588 
__sock_release(struct socket * sock,struct inode * inode)589 static void __sock_release(struct socket *sock, struct inode *inode)
590 {
591 	if (sock->ops) {
592 		struct module *owner = sock->ops->owner;
593 
594 		if (inode)
595 			inode_lock(inode);
596 		sock->ops->release(sock);
597 		sock->sk = NULL;
598 		if (inode)
599 			inode_unlock(inode);
600 		sock->ops = NULL;
601 		module_put(owner);
602 	}
603 
604 	if (sock->wq.fasync_list)
605 		pr_err("%s: fasync list not empty!\n", __func__);
606 
607 	if (!sock->file) {
608 		iput(SOCK_INODE(sock));
609 		return;
610 	}
611 	sock->file = NULL;
612 }
613 
614 /**
615  *	sock_release - close a socket
616  *	@sock: socket to close
617  *
618  *	The socket is released from the protocol stack if it has a release
619  *	callback, and the inode is then released if the socket is bound to
620  *	an inode not a file.
621  */
sock_release(struct socket * sock)622 void sock_release(struct socket *sock)
623 {
624 	__sock_release(sock, NULL);
625 }
626 EXPORT_SYMBOL(sock_release);
627 
__sock_tx_timestamp(__u16 tsflags,__u8 * tx_flags)628 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
629 {
630 	u8 flags = *tx_flags;
631 
632 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
633 		flags |= SKBTX_HW_TSTAMP;
634 
635 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
636 		flags |= SKBTX_SW_TSTAMP;
637 
638 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
639 		flags |= SKBTX_SCHED_TSTAMP;
640 
641 	*tx_flags = flags;
642 }
643 EXPORT_SYMBOL(__sock_tx_timestamp);
644 
645 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
646 					   size_t));
647 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
648 					    size_t));
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)649 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
650 {
651 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
652 				     inet_sendmsg, sock, msg,
653 				     msg_data_left(msg));
654 	BUG_ON(ret == -EIOCBQUEUED);
655 	return ret;
656 }
657 
658 /**
659  *	sock_sendmsg - send a message through @sock
660  *	@sock: socket
661  *	@msg: message to send
662  *
663  *	Sends @msg through @sock, passing through LSM.
664  *	Returns the number of bytes sent, or an error code.
665  */
sock_sendmsg(struct socket * sock,struct msghdr * msg)666 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
667 {
668 	int err = security_socket_sendmsg(sock, msg,
669 					  msg_data_left(msg));
670 
671 	return err ?: sock_sendmsg_nosec(sock, msg);
672 }
673 EXPORT_SYMBOL(sock_sendmsg);
674 
675 /**
676  *	kernel_sendmsg - send a message through @sock (kernel-space)
677  *	@sock: socket
678  *	@msg: message header
679  *	@vec: kernel vec
680  *	@num: vec array length
681  *	@size: total message data size
682  *
683  *	Builds the message data with @vec and sends it through @sock.
684  *	Returns the number of bytes sent, or an error code.
685  */
686 
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)687 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
688 		   struct kvec *vec, size_t num, size_t size)
689 {
690 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
691 	return sock_sendmsg(sock, msg);
692 }
693 EXPORT_SYMBOL(kernel_sendmsg);
694 
695 /**
696  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
697  *	@sk: sock
698  *	@msg: message header
699  *	@vec: output s/g array
700  *	@num: output s/g array length
701  *	@size: total message data size
702  *
703  *	Builds the message data with @vec and sends it through @sock.
704  *	Returns the number of bytes sent, or an error code.
705  *	Caller must hold @sk.
706  */
707 
kernel_sendmsg_locked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)708 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
709 			  struct kvec *vec, size_t num, size_t size)
710 {
711 	struct socket *sock = sk->sk_socket;
712 
713 	if (!sock->ops->sendmsg_locked)
714 		return sock_no_sendmsg_locked(sk, msg, size);
715 
716 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
717 
718 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
719 }
720 EXPORT_SYMBOL(kernel_sendmsg_locked);
721 
skb_is_err_queue(const struct sk_buff * skb)722 static bool skb_is_err_queue(const struct sk_buff *skb)
723 {
724 	/* pkt_type of skbs enqueued on the error queue are set to
725 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
726 	 * in recvmsg, since skbs received on a local socket will never
727 	 * have a pkt_type of PACKET_OUTGOING.
728 	 */
729 	return skb->pkt_type == PACKET_OUTGOING;
730 }
731 
732 /* On transmit, software and hardware timestamps are returned independently.
733  * As the two skb clones share the hardware timestamp, which may be updated
734  * before the software timestamp is received, a hardware TX timestamp may be
735  * returned only if there is no software TX timestamp. Ignore false software
736  * timestamps, which may be made in the __sock_recv_timestamp() call when the
737  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
738  * hardware timestamp.
739  */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)740 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
741 {
742 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
743 }
744 
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb)745 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
746 {
747 	struct scm_ts_pktinfo ts_pktinfo;
748 	struct net_device *orig_dev;
749 
750 	if (!skb_mac_header_was_set(skb))
751 		return;
752 
753 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
754 
755 	rcu_read_lock();
756 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
757 	if (orig_dev)
758 		ts_pktinfo.if_index = orig_dev->ifindex;
759 	rcu_read_unlock();
760 
761 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
762 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
763 		 sizeof(ts_pktinfo), &ts_pktinfo);
764 }
765 
766 /*
767  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
768  */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)769 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
770 	struct sk_buff *skb)
771 {
772 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
773 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
774 	struct scm_timestamping_internal tss;
775 
776 	int empty = 1, false_tstamp = 0;
777 	struct skb_shared_hwtstamps *shhwtstamps =
778 		skb_hwtstamps(skb);
779 
780 	/* Race occurred between timestamp enabling and packet
781 	   receiving.  Fill in the current time for now. */
782 	if (need_software_tstamp && skb->tstamp == 0) {
783 		__net_timestamp(skb);
784 		false_tstamp = 1;
785 	}
786 
787 	if (need_software_tstamp) {
788 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
789 			if (new_tstamp) {
790 				struct __kernel_sock_timeval tv;
791 
792 				skb_get_new_timestamp(skb, &tv);
793 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
794 					 sizeof(tv), &tv);
795 			} else {
796 				struct __kernel_old_timeval tv;
797 
798 				skb_get_timestamp(skb, &tv);
799 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
800 					 sizeof(tv), &tv);
801 			}
802 		} else {
803 			if (new_tstamp) {
804 				struct __kernel_timespec ts;
805 
806 				skb_get_new_timestampns(skb, &ts);
807 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
808 					 sizeof(ts), &ts);
809 			} else {
810 				struct __kernel_old_timespec ts;
811 
812 				skb_get_timestampns(skb, &ts);
813 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
814 					 sizeof(ts), &ts);
815 			}
816 		}
817 	}
818 
819 	memset(&tss, 0, sizeof(tss));
820 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
821 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
822 		empty = 0;
823 	if (shhwtstamps &&
824 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
825 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
826 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
827 		empty = 0;
828 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
829 		    !skb_is_err_queue(skb))
830 			put_ts_pktinfo(msg, skb);
831 	}
832 	if (!empty) {
833 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
834 			put_cmsg_scm_timestamping64(msg, &tss);
835 		else
836 			put_cmsg_scm_timestamping(msg, &tss);
837 
838 		if (skb_is_err_queue(skb) && skb->len &&
839 		    SKB_EXT_ERR(skb)->opt_stats)
840 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
841 				 skb->len, skb->data);
842 	}
843 }
844 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
845 
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)846 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
847 	struct sk_buff *skb)
848 {
849 	int ack;
850 
851 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
852 		return;
853 	if (!skb->wifi_acked_valid)
854 		return;
855 
856 	ack = skb->wifi_acked;
857 
858 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
859 }
860 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
861 
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)862 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
863 				   struct sk_buff *skb)
864 {
865 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
866 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
867 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
868 }
869 
__sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)870 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
871 	struct sk_buff *skb)
872 {
873 	sock_recv_timestamp(msg, sk, skb);
874 	sock_recv_drops(msg, sk, skb);
875 }
876 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
877 
878 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
879 					   size_t, int));
880 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
881 					    size_t, int));
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)882 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
883 				     int flags)
884 {
885 	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
886 				  inet_recvmsg, sock, msg, msg_data_left(msg),
887 				  flags);
888 }
889 
890 /**
891  *	sock_recvmsg - receive a message from @sock
892  *	@sock: socket
893  *	@msg: message to receive
894  *	@flags: message flags
895  *
896  *	Receives @msg from @sock, passing through LSM. Returns the total number
897  *	of bytes received, or an error.
898  */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)899 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
900 {
901 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
902 
903 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
904 }
905 EXPORT_SYMBOL(sock_recvmsg);
906 
907 /**
908  *	kernel_recvmsg - Receive a message from a socket (kernel space)
909  *	@sock: The socket to receive the message from
910  *	@msg: Received message
911  *	@vec: Input s/g array for message data
912  *	@num: Size of input s/g array
913  *	@size: Number of bytes to read
914  *	@flags: Message flags (MSG_DONTWAIT, etc...)
915  *
916  *	On return the msg structure contains the scatter/gather array passed in the
917  *	vec argument. The array is modified so that it consists of the unfilled
918  *	portion of the original array.
919  *
920  *	The returned value is the total number of bytes received, or an error.
921  */
922 
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)923 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
924 		   struct kvec *vec, size_t num, size_t size, int flags)
925 {
926 	msg->msg_control_is_user = false;
927 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
928 	return sock_recvmsg(sock, msg, flags);
929 }
930 EXPORT_SYMBOL(kernel_recvmsg);
931 
sock_sendpage(struct file * file,struct page * page,int offset,size_t size,loff_t * ppos,int more)932 static ssize_t sock_sendpage(struct file *file, struct page *page,
933 			     int offset, size_t size, loff_t *ppos, int more)
934 {
935 	struct socket *sock;
936 	int flags;
937 
938 	sock = file->private_data;
939 
940 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
941 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
942 	flags |= more;
943 
944 	return kernel_sendpage(sock, page, offset, size, flags);
945 }
946 
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)947 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
948 				struct pipe_inode_info *pipe, size_t len,
949 				unsigned int flags)
950 {
951 	struct socket *sock = file->private_data;
952 
953 	if (unlikely(!sock->ops->splice_read))
954 		return generic_file_splice_read(file, ppos, pipe, len, flags);
955 
956 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
957 }
958 
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)959 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
960 {
961 	struct file *file = iocb->ki_filp;
962 	struct socket *sock = file->private_data;
963 	struct msghdr msg = {.msg_iter = *to,
964 			     .msg_iocb = iocb};
965 	ssize_t res;
966 
967 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
968 		msg.msg_flags = MSG_DONTWAIT;
969 
970 	if (iocb->ki_pos != 0)
971 		return -ESPIPE;
972 
973 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
974 		return 0;
975 
976 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
977 	*to = msg.msg_iter;
978 	return res;
979 }
980 
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)981 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
982 {
983 	struct file *file = iocb->ki_filp;
984 	struct socket *sock = file->private_data;
985 	struct msghdr msg = {.msg_iter = *from,
986 			     .msg_iocb = iocb};
987 	ssize_t res;
988 
989 	if (iocb->ki_pos != 0)
990 		return -ESPIPE;
991 
992 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
993 		msg.msg_flags = MSG_DONTWAIT;
994 
995 	if (sock->type == SOCK_SEQPACKET)
996 		msg.msg_flags |= MSG_EOR;
997 
998 	res = sock_sendmsg(sock, &msg);
999 	*from = msg.msg_iter;
1000 	return res;
1001 }
1002 
1003 /*
1004  * Atomic setting of ioctl hooks to avoid race
1005  * with module unload.
1006  */
1007 
1008 static DEFINE_MUTEX(br_ioctl_mutex);
1009 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1010 
brioctl_set(int (* hook)(struct net *,unsigned int,void __user *))1011 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1012 {
1013 	mutex_lock(&br_ioctl_mutex);
1014 	br_ioctl_hook = hook;
1015 	mutex_unlock(&br_ioctl_mutex);
1016 }
1017 EXPORT_SYMBOL(brioctl_set);
1018 
1019 static DEFINE_MUTEX(vlan_ioctl_mutex);
1020 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1021 
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1022 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1023 {
1024 	mutex_lock(&vlan_ioctl_mutex);
1025 	vlan_ioctl_hook = hook;
1026 	mutex_unlock(&vlan_ioctl_mutex);
1027 }
1028 EXPORT_SYMBOL(vlan_ioctl_set);
1029 
1030 static DEFINE_MUTEX(dlci_ioctl_mutex);
1031 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1032 
dlci_ioctl_set(int (* hook)(unsigned int,void __user *))1033 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1034 {
1035 	mutex_lock(&dlci_ioctl_mutex);
1036 	dlci_ioctl_hook = hook;
1037 	mutex_unlock(&dlci_ioctl_mutex);
1038 }
1039 EXPORT_SYMBOL(dlci_ioctl_set);
1040 
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1041 static long sock_do_ioctl(struct net *net, struct socket *sock,
1042 			  unsigned int cmd, unsigned long arg)
1043 {
1044 	int err;
1045 	void __user *argp = (void __user *)arg;
1046 
1047 	err = sock->ops->ioctl(sock, cmd, arg);
1048 
1049 	/*
1050 	 * If this ioctl is unknown try to hand it down
1051 	 * to the NIC driver.
1052 	 */
1053 	if (err != -ENOIOCTLCMD)
1054 		return err;
1055 
1056 	if (cmd == SIOCGIFCONF) {
1057 		struct ifconf ifc;
1058 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1059 			return -EFAULT;
1060 		rtnl_lock();
1061 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1062 		rtnl_unlock();
1063 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1064 			err = -EFAULT;
1065 	} else if (is_socket_ioctl_cmd(cmd)) {
1066 		struct ifreq ifr;
1067 		bool need_copyout;
1068 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1069 			return -EFAULT;
1070 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1071 		if (!err && need_copyout)
1072 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1073 				return -EFAULT;
1074 	} else {
1075 		err = -ENOTTY;
1076 	}
1077 	return err;
1078 }
1079 
1080 /*
1081  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1082  *	what to do with it - that's up to the protocol still.
1083  */
1084 
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1085 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1086 {
1087 	struct socket *sock;
1088 	struct sock *sk;
1089 	void __user *argp = (void __user *)arg;
1090 	int pid, err;
1091 	struct net *net;
1092 
1093 	sock = file->private_data;
1094 	sk = sock->sk;
1095 	net = sock_net(sk);
1096 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1097 		struct ifreq ifr;
1098 		bool need_copyout;
1099 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1100 			return -EFAULT;
1101 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1102 		if (!err && need_copyout)
1103 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1104 				return -EFAULT;
1105 	} else
1106 #ifdef CONFIG_WEXT_CORE
1107 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1108 		err = wext_handle_ioctl(net, cmd, argp);
1109 	} else
1110 #endif
1111 		switch (cmd) {
1112 		case FIOSETOWN:
1113 		case SIOCSPGRP:
1114 			err = -EFAULT;
1115 			if (get_user(pid, (int __user *)argp))
1116 				break;
1117 			err = f_setown(sock->file, pid, 1);
1118 			break;
1119 		case FIOGETOWN:
1120 		case SIOCGPGRP:
1121 			err = put_user(f_getown(sock->file),
1122 				       (int __user *)argp);
1123 			break;
1124 		case SIOCGIFBR:
1125 		case SIOCSIFBR:
1126 		case SIOCBRADDBR:
1127 		case SIOCBRDELBR:
1128 			err = -ENOPKG;
1129 			if (!br_ioctl_hook)
1130 				request_module("bridge");
1131 
1132 			mutex_lock(&br_ioctl_mutex);
1133 			if (br_ioctl_hook)
1134 				err = br_ioctl_hook(net, cmd, argp);
1135 			mutex_unlock(&br_ioctl_mutex);
1136 			break;
1137 		case SIOCGIFVLAN:
1138 		case SIOCSIFVLAN:
1139 			err = -ENOPKG;
1140 			if (!vlan_ioctl_hook)
1141 				request_module("8021q");
1142 
1143 			mutex_lock(&vlan_ioctl_mutex);
1144 			if (vlan_ioctl_hook)
1145 				err = vlan_ioctl_hook(net, argp);
1146 			mutex_unlock(&vlan_ioctl_mutex);
1147 			break;
1148 		case SIOCADDDLCI:
1149 		case SIOCDELDLCI:
1150 			err = -ENOPKG;
1151 			if (!dlci_ioctl_hook)
1152 				request_module("dlci");
1153 
1154 			mutex_lock(&dlci_ioctl_mutex);
1155 			if (dlci_ioctl_hook)
1156 				err = dlci_ioctl_hook(cmd, argp);
1157 			mutex_unlock(&dlci_ioctl_mutex);
1158 			break;
1159 		case SIOCGSKNS:
1160 			err = -EPERM;
1161 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1162 				break;
1163 
1164 			err = open_related_ns(&net->ns, get_net_ns);
1165 			break;
1166 		case SIOCGSTAMP_OLD:
1167 		case SIOCGSTAMPNS_OLD:
1168 			if (!sock->ops->gettstamp) {
1169 				err = -ENOIOCTLCMD;
1170 				break;
1171 			}
1172 			err = sock->ops->gettstamp(sock, argp,
1173 						   cmd == SIOCGSTAMP_OLD,
1174 						   !IS_ENABLED(CONFIG_64BIT));
1175 			break;
1176 		case SIOCGSTAMP_NEW:
1177 		case SIOCGSTAMPNS_NEW:
1178 			if (!sock->ops->gettstamp) {
1179 				err = -ENOIOCTLCMD;
1180 				break;
1181 			}
1182 			err = sock->ops->gettstamp(sock, argp,
1183 						   cmd == SIOCGSTAMP_NEW,
1184 						   false);
1185 			break;
1186 		default:
1187 			err = sock_do_ioctl(net, sock, cmd, arg);
1188 			break;
1189 		}
1190 	return err;
1191 }
1192 
1193 /**
1194  *	sock_create_lite - creates a socket
1195  *	@family: protocol family (AF_INET, ...)
1196  *	@type: communication type (SOCK_STREAM, ...)
1197  *	@protocol: protocol (0, ...)
1198  *	@res: new socket
1199  *
1200  *	Creates a new socket and assigns it to @res, passing through LSM.
1201  *	The new socket initialization is not complete, see kernel_accept().
1202  *	Returns 0 or an error. On failure @res is set to %NULL.
1203  *	This function internally uses GFP_KERNEL.
1204  */
1205 
sock_create_lite(int family,int type,int protocol,struct socket ** res)1206 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1207 {
1208 	int err;
1209 	struct socket *sock = NULL;
1210 
1211 	err = security_socket_create(family, type, protocol, 1);
1212 	if (err)
1213 		goto out;
1214 
1215 	sock = sock_alloc();
1216 	if (!sock) {
1217 		err = -ENOMEM;
1218 		goto out;
1219 	}
1220 
1221 	sock->type = type;
1222 	err = security_socket_post_create(sock, family, type, protocol, 1);
1223 	if (err)
1224 		goto out_release;
1225 
1226 out:
1227 	*res = sock;
1228 	return err;
1229 out_release:
1230 	sock_release(sock);
1231 	sock = NULL;
1232 	goto out;
1233 }
1234 EXPORT_SYMBOL(sock_create_lite);
1235 
1236 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1237 static __poll_t sock_poll(struct file *file, poll_table *wait)
1238 {
1239 	struct socket *sock = file->private_data;
1240 	__poll_t events = poll_requested_events(wait), flag = 0;
1241 
1242 	if (!sock->ops->poll)
1243 		return 0;
1244 
1245 	if (sk_can_busy_loop(sock->sk)) {
1246 		/* poll once if requested by the syscall */
1247 		if (events & POLL_BUSY_LOOP)
1248 			sk_busy_loop(sock->sk, 1);
1249 
1250 		/* if this socket can poll_ll, tell the system call */
1251 		flag = POLL_BUSY_LOOP;
1252 	}
1253 
1254 	return sock->ops->poll(file, sock, wait) | flag;
1255 }
1256 
sock_mmap(struct file * file,struct vm_area_struct * vma)1257 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1258 {
1259 	struct socket *sock = file->private_data;
1260 
1261 	return sock->ops->mmap(file, sock, vma);
1262 }
1263 
sock_close(struct inode * inode,struct file * filp)1264 static int sock_close(struct inode *inode, struct file *filp)
1265 {
1266 	__sock_release(SOCKET_I(inode), inode);
1267 	return 0;
1268 }
1269 
1270 /*
1271  *	Update the socket async list
1272  *
1273  *	Fasync_list locking strategy.
1274  *
1275  *	1. fasync_list is modified only under process context socket lock
1276  *	   i.e. under semaphore.
1277  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1278  *	   or under socket lock
1279  */
1280 
sock_fasync(int fd,struct file * filp,int on)1281 static int sock_fasync(int fd, struct file *filp, int on)
1282 {
1283 	struct socket *sock = filp->private_data;
1284 	struct sock *sk = sock->sk;
1285 	struct socket_wq *wq = &sock->wq;
1286 
1287 	if (sk == NULL)
1288 		return -EINVAL;
1289 
1290 	lock_sock(sk);
1291 	fasync_helper(fd, filp, on, &wq->fasync_list);
1292 
1293 	if (!wq->fasync_list)
1294 		sock_reset_flag(sk, SOCK_FASYNC);
1295 	else
1296 		sock_set_flag(sk, SOCK_FASYNC);
1297 
1298 	release_sock(sk);
1299 	return 0;
1300 }
1301 
1302 /* This function may be called only under rcu_lock */
1303 
sock_wake_async(struct socket_wq * wq,int how,int band)1304 int sock_wake_async(struct socket_wq *wq, int how, int band)
1305 {
1306 	if (!wq || !wq->fasync_list)
1307 		return -1;
1308 
1309 	switch (how) {
1310 	case SOCK_WAKE_WAITD:
1311 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1312 			break;
1313 		goto call_kill;
1314 	case SOCK_WAKE_SPACE:
1315 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1316 			break;
1317 		fallthrough;
1318 	case SOCK_WAKE_IO:
1319 call_kill:
1320 		kill_fasync(&wq->fasync_list, SIGIO, band);
1321 		break;
1322 	case SOCK_WAKE_URG:
1323 		kill_fasync(&wq->fasync_list, SIGURG, band);
1324 	}
1325 
1326 	return 0;
1327 }
1328 EXPORT_SYMBOL(sock_wake_async);
1329 
1330 /**
1331  *	__sock_create - creates a socket
1332  *	@net: net namespace
1333  *	@family: protocol family (AF_INET, ...)
1334  *	@type: communication type (SOCK_STREAM, ...)
1335  *	@protocol: protocol (0, ...)
1336  *	@res: new socket
1337  *	@kern: boolean for kernel space sockets
1338  *
1339  *	Creates a new socket and assigns it to @res, passing through LSM.
1340  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1341  *	be set to true if the socket resides in kernel space.
1342  *	This function internally uses GFP_KERNEL.
1343  */
1344 
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1345 int __sock_create(struct net *net, int family, int type, int protocol,
1346 			 struct socket **res, int kern)
1347 {
1348 	int err;
1349 	struct socket *sock;
1350 	const struct net_proto_family *pf;
1351 
1352 	/*
1353 	 *      Check protocol is in range
1354 	 */
1355 	if (family < 0 || family >= NPROTO)
1356 		return -EAFNOSUPPORT;
1357 	if (type < 0 || type >= SOCK_MAX)
1358 		return -EINVAL;
1359 
1360 	/* Compatibility.
1361 
1362 	   This uglymoron is moved from INET layer to here to avoid
1363 	   deadlock in module load.
1364 	 */
1365 	if (family == PF_INET && type == SOCK_PACKET) {
1366 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1367 			     current->comm);
1368 		family = PF_PACKET;
1369 	}
1370 
1371 	err = security_socket_create(family, type, protocol, kern);
1372 	if (err)
1373 		return err;
1374 
1375 	/*
1376 	 *	Allocate the socket and allow the family to set things up. if
1377 	 *	the protocol is 0, the family is instructed to select an appropriate
1378 	 *	default.
1379 	 */
1380 	sock = sock_alloc();
1381 	if (!sock) {
1382 		net_warn_ratelimited("socket: no more sockets\n");
1383 		return -ENFILE;	/* Not exactly a match, but its the
1384 				   closest posix thing */
1385 	}
1386 
1387 	sock->type = type;
1388 
1389 #ifdef CONFIG_MODULES
1390 	/* Attempt to load a protocol module if the find failed.
1391 	 *
1392 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1393 	 * requested real, full-featured networking support upon configuration.
1394 	 * Otherwise module support will break!
1395 	 */
1396 	if (rcu_access_pointer(net_families[family]) == NULL)
1397 		request_module("net-pf-%d", family);
1398 #endif
1399 
1400 	rcu_read_lock();
1401 	pf = rcu_dereference(net_families[family]);
1402 	err = -EAFNOSUPPORT;
1403 	if (!pf)
1404 		goto out_release;
1405 
1406 	/*
1407 	 * We will call the ->create function, that possibly is in a loadable
1408 	 * module, so we have to bump that loadable module refcnt first.
1409 	 */
1410 	if (!try_module_get(pf->owner))
1411 		goto out_release;
1412 
1413 	/* Now protected by module ref count */
1414 	rcu_read_unlock();
1415 
1416 	err = pf->create(net, sock, protocol, kern);
1417 	if (err < 0)
1418 		goto out_module_put;
1419 
1420 	/*
1421 	 * Now to bump the refcnt of the [loadable] module that owns this
1422 	 * socket at sock_release time we decrement its refcnt.
1423 	 */
1424 	if (!try_module_get(sock->ops->owner))
1425 		goto out_module_busy;
1426 
1427 	/*
1428 	 * Now that we're done with the ->create function, the [loadable]
1429 	 * module can have its refcnt decremented
1430 	 */
1431 	module_put(pf->owner);
1432 	err = security_socket_post_create(sock, family, type, protocol, kern);
1433 	if (err)
1434 		goto out_sock_release;
1435 	*res = sock;
1436 
1437 	return 0;
1438 
1439 out_module_busy:
1440 	err = -EAFNOSUPPORT;
1441 out_module_put:
1442 	sock->ops = NULL;
1443 	module_put(pf->owner);
1444 out_sock_release:
1445 	sock_release(sock);
1446 	return err;
1447 
1448 out_release:
1449 	rcu_read_unlock();
1450 	goto out_sock_release;
1451 }
1452 EXPORT_SYMBOL(__sock_create);
1453 
1454 /**
1455  *	sock_create - creates a socket
1456  *	@family: protocol family (AF_INET, ...)
1457  *	@type: communication type (SOCK_STREAM, ...)
1458  *	@protocol: protocol (0, ...)
1459  *	@res: new socket
1460  *
1461  *	A wrapper around __sock_create().
1462  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1463  */
1464 
sock_create(int family,int type,int protocol,struct socket ** res)1465 int sock_create(int family, int type, int protocol, struct socket **res)
1466 {
1467 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1468 }
1469 EXPORT_SYMBOL(sock_create);
1470 
1471 /**
1472  *	sock_create_kern - creates a socket (kernel space)
1473  *	@net: net namespace
1474  *	@family: protocol family (AF_INET, ...)
1475  *	@type: communication type (SOCK_STREAM, ...)
1476  *	@protocol: protocol (0, ...)
1477  *	@res: new socket
1478  *
1479  *	A wrapper around __sock_create().
1480  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1481  */
1482 
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1483 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1484 {
1485 	return __sock_create(net, family, type, protocol, res, 1);
1486 }
1487 EXPORT_SYMBOL(sock_create_kern);
1488 
__sys_socket(int family,int type,int protocol)1489 int __sys_socket(int family, int type, int protocol)
1490 {
1491 	int retval;
1492 	struct socket *sock;
1493 	int flags;
1494 
1495 	/* Check the SOCK_* constants for consistency.  */
1496 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1497 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1498 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1499 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1500 
1501 	flags = type & ~SOCK_TYPE_MASK;
1502 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1503 		return -EINVAL;
1504 	type &= SOCK_TYPE_MASK;
1505 
1506 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1507 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1508 
1509 	retval = sock_create(family, type, protocol, &sock);
1510 	if (retval < 0)
1511 		return retval;
1512 
1513 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1514 }
1515 
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1516 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1517 {
1518 	return __sys_socket(family, type, protocol);
1519 }
1520 
1521 /*
1522  *	Create a pair of connected sockets.
1523  */
1524 
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1525 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1526 {
1527 	struct socket *sock1, *sock2;
1528 	int fd1, fd2, err;
1529 	struct file *newfile1, *newfile2;
1530 	int flags;
1531 
1532 	flags = type & ~SOCK_TYPE_MASK;
1533 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1534 		return -EINVAL;
1535 	type &= SOCK_TYPE_MASK;
1536 
1537 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1538 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1539 
1540 	/*
1541 	 * reserve descriptors and make sure we won't fail
1542 	 * to return them to userland.
1543 	 */
1544 	fd1 = get_unused_fd_flags(flags);
1545 	if (unlikely(fd1 < 0))
1546 		return fd1;
1547 
1548 	fd2 = get_unused_fd_flags(flags);
1549 	if (unlikely(fd2 < 0)) {
1550 		put_unused_fd(fd1);
1551 		return fd2;
1552 	}
1553 
1554 	err = put_user(fd1, &usockvec[0]);
1555 	if (err)
1556 		goto out;
1557 
1558 	err = put_user(fd2, &usockvec[1]);
1559 	if (err)
1560 		goto out;
1561 
1562 	/*
1563 	 * Obtain the first socket and check if the underlying protocol
1564 	 * supports the socketpair call.
1565 	 */
1566 
1567 	err = sock_create(family, type, protocol, &sock1);
1568 	if (unlikely(err < 0))
1569 		goto out;
1570 
1571 	err = sock_create(family, type, protocol, &sock2);
1572 	if (unlikely(err < 0)) {
1573 		sock_release(sock1);
1574 		goto out;
1575 	}
1576 
1577 	err = security_socket_socketpair(sock1, sock2);
1578 	if (unlikely(err)) {
1579 		sock_release(sock2);
1580 		sock_release(sock1);
1581 		goto out;
1582 	}
1583 
1584 	err = sock1->ops->socketpair(sock1, sock2);
1585 	if (unlikely(err < 0)) {
1586 		sock_release(sock2);
1587 		sock_release(sock1);
1588 		goto out;
1589 	}
1590 
1591 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1592 	if (IS_ERR(newfile1)) {
1593 		err = PTR_ERR(newfile1);
1594 		sock_release(sock2);
1595 		goto out;
1596 	}
1597 
1598 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1599 	if (IS_ERR(newfile2)) {
1600 		err = PTR_ERR(newfile2);
1601 		fput(newfile1);
1602 		goto out;
1603 	}
1604 
1605 	audit_fd_pair(fd1, fd2);
1606 
1607 	fd_install(fd1, newfile1);
1608 	fd_install(fd2, newfile2);
1609 	return 0;
1610 
1611 out:
1612 	put_unused_fd(fd2);
1613 	put_unused_fd(fd1);
1614 	return err;
1615 }
1616 
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1617 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1618 		int __user *, usockvec)
1619 {
1620 	return __sys_socketpair(family, type, protocol, usockvec);
1621 }
1622 
1623 /*
1624  *	Bind a name to a socket. Nothing much to do here since it's
1625  *	the protocol's responsibility to handle the local address.
1626  *
1627  *	We move the socket address to kernel space before we call
1628  *	the protocol layer (having also checked the address is ok).
1629  */
1630 
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1631 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1632 {
1633 	struct socket *sock;
1634 	struct sockaddr_storage address;
1635 	int err, fput_needed;
1636 
1637 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1638 	if (sock) {
1639 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1640 		if (!err) {
1641 			err = security_socket_bind(sock,
1642 						   (struct sockaddr *)&address,
1643 						   addrlen);
1644 			if (!err)
1645 				err = sock->ops->bind(sock,
1646 						      (struct sockaddr *)
1647 						      &address, addrlen);
1648 		}
1649 		fput_light(sock->file, fput_needed);
1650 	}
1651 	return err;
1652 }
1653 
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1654 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1655 {
1656 	return __sys_bind(fd, umyaddr, addrlen);
1657 }
1658 
1659 /*
1660  *	Perform a listen. Basically, we allow the protocol to do anything
1661  *	necessary for a listen, and if that works, we mark the socket as
1662  *	ready for listening.
1663  */
1664 
__sys_listen(int fd,int backlog)1665 int __sys_listen(int fd, int backlog)
1666 {
1667 	struct socket *sock;
1668 	int err, fput_needed;
1669 	int somaxconn;
1670 
1671 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1672 	if (sock) {
1673 		somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1674 		if ((unsigned int)backlog > somaxconn)
1675 			backlog = somaxconn;
1676 
1677 		err = security_socket_listen(sock, backlog);
1678 		if (!err)
1679 			err = sock->ops->listen(sock, backlog);
1680 
1681 		fput_light(sock->file, fput_needed);
1682 	}
1683 	return err;
1684 }
1685 
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1686 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1687 {
1688 	return __sys_listen(fd, backlog);
1689 }
1690 
do_accept(struct file * file,unsigned file_flags,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1691 struct file *do_accept(struct file *file, unsigned file_flags,
1692 		       struct sockaddr __user *upeer_sockaddr,
1693 		       int __user *upeer_addrlen, int flags)
1694 {
1695 	struct socket *sock, *newsock;
1696 	struct file *newfile;
1697 	int err, len;
1698 	struct sockaddr_storage address;
1699 
1700 	sock = sock_from_file(file, &err);
1701 	if (!sock)
1702 		return ERR_PTR(err);
1703 
1704 	newsock = sock_alloc();
1705 	if (!newsock)
1706 		return ERR_PTR(-ENFILE);
1707 
1708 	newsock->type = sock->type;
1709 	newsock->ops = sock->ops;
1710 
1711 	/*
1712 	 * We don't need try_module_get here, as the listening socket (sock)
1713 	 * has the protocol module (sock->ops->owner) held.
1714 	 */
1715 	__module_get(newsock->ops->owner);
1716 
1717 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1718 	if (IS_ERR(newfile))
1719 		return newfile;
1720 
1721 	err = security_socket_accept(sock, newsock);
1722 	if (err)
1723 		goto out_fd;
1724 
1725 	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1726 					false);
1727 	if (err < 0)
1728 		goto out_fd;
1729 
1730 	if (upeer_sockaddr) {
1731 		len = newsock->ops->getname(newsock,
1732 					(struct sockaddr *)&address, 2);
1733 		if (len < 0) {
1734 			err = -ECONNABORTED;
1735 			goto out_fd;
1736 		}
1737 		err = move_addr_to_user(&address,
1738 					len, upeer_sockaddr, upeer_addrlen);
1739 		if (err < 0)
1740 			goto out_fd;
1741 	}
1742 
1743 	/* File flags are not inherited via accept() unlike another OSes. */
1744 	return newfile;
1745 out_fd:
1746 	fput(newfile);
1747 	return ERR_PTR(err);
1748 }
1749 
__sys_accept4_file(struct file * file,unsigned file_flags,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags,unsigned long nofile)1750 int __sys_accept4_file(struct file *file, unsigned file_flags,
1751 		       struct sockaddr __user *upeer_sockaddr,
1752 		       int __user *upeer_addrlen, int flags,
1753 		       unsigned long nofile)
1754 {
1755 	struct file *newfile;
1756 	int newfd;
1757 
1758 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1759 		return -EINVAL;
1760 
1761 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1762 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1763 
1764 	newfd = __get_unused_fd_flags(flags, nofile);
1765 	if (unlikely(newfd < 0))
1766 		return newfd;
1767 
1768 	newfile = do_accept(file, file_flags, upeer_sockaddr, upeer_addrlen,
1769 			    flags);
1770 	if (IS_ERR(newfile)) {
1771 		put_unused_fd(newfd);
1772 		return PTR_ERR(newfile);
1773 	}
1774 	fd_install(newfd, newfile);
1775 	return newfd;
1776 }
1777 
1778 /*
1779  *	For accept, we attempt to create a new socket, set up the link
1780  *	with the client, wake up the client, then return the new
1781  *	connected fd. We collect the address of the connector in kernel
1782  *	space and move it to user at the very end. This is unclean because
1783  *	we open the socket then return an error.
1784  *
1785  *	1003.1g adds the ability to recvmsg() to query connection pending
1786  *	status to recvmsg. We need to add that support in a way thats
1787  *	clean when we restructure accept also.
1788  */
1789 
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1790 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1791 		  int __user *upeer_addrlen, int flags)
1792 {
1793 	int ret = -EBADF;
1794 	struct fd f;
1795 
1796 	f = fdget(fd);
1797 	if (f.file) {
1798 		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1799 						upeer_addrlen, flags,
1800 						rlimit(RLIMIT_NOFILE));
1801 		fdput(f);
1802 	}
1803 
1804 	return ret;
1805 }
1806 
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)1807 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1808 		int __user *, upeer_addrlen, int, flags)
1809 {
1810 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1811 }
1812 
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)1813 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1814 		int __user *, upeer_addrlen)
1815 {
1816 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1817 }
1818 
1819 /*
1820  *	Attempt to connect to a socket with the server address.  The address
1821  *	is in user space so we verify it is OK and move it to kernel space.
1822  *
1823  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1824  *	break bindings
1825  *
1826  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1827  *	other SEQPACKET protocols that take time to connect() as it doesn't
1828  *	include the -EINPROGRESS status for such sockets.
1829  */
1830 
__sys_connect_file(struct file * file,struct sockaddr_storage * address,int addrlen,int file_flags)1831 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1832 		       int addrlen, int file_flags)
1833 {
1834 	struct socket *sock;
1835 	int err;
1836 
1837 	sock = sock_from_file(file, &err);
1838 	if (!sock)
1839 		goto out;
1840 
1841 	err =
1842 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1843 	if (err)
1844 		goto out;
1845 
1846 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1847 				 sock->file->f_flags | file_flags);
1848 out:
1849 	return err;
1850 }
1851 
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)1852 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1853 {
1854 	int ret = -EBADF;
1855 	struct fd f;
1856 
1857 	f = fdget(fd);
1858 	if (f.file) {
1859 		struct sockaddr_storage address;
1860 
1861 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1862 		if (!ret)
1863 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1864 		fdput(f);
1865 	}
1866 
1867 	return ret;
1868 }
1869 
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)1870 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1871 		int, addrlen)
1872 {
1873 	return __sys_connect(fd, uservaddr, addrlen);
1874 }
1875 
1876 /*
1877  *	Get the local address ('name') of a socket object. Move the obtained
1878  *	name to user space.
1879  */
1880 
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)1881 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1882 		      int __user *usockaddr_len)
1883 {
1884 	struct socket *sock;
1885 	struct sockaddr_storage address;
1886 	int err, fput_needed;
1887 
1888 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1889 	if (!sock)
1890 		goto out;
1891 
1892 	err = security_socket_getsockname(sock);
1893 	if (err)
1894 		goto out_put;
1895 
1896 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1897 	if (err < 0)
1898 		goto out_put;
1899         /* "err" is actually length in this case */
1900 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1901 
1902 out_put:
1903 	fput_light(sock->file, fput_needed);
1904 out:
1905 	return err;
1906 }
1907 
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1908 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1909 		int __user *, usockaddr_len)
1910 {
1911 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1912 }
1913 
1914 /*
1915  *	Get the remote address ('name') of a socket object. Move the obtained
1916  *	name to user space.
1917  */
1918 
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)1919 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1920 		      int __user *usockaddr_len)
1921 {
1922 	struct socket *sock;
1923 	struct sockaddr_storage address;
1924 	int err, fput_needed;
1925 
1926 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1927 	if (sock != NULL) {
1928 		err = security_socket_getpeername(sock);
1929 		if (err) {
1930 			fput_light(sock->file, fput_needed);
1931 			return err;
1932 		}
1933 
1934 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1935 		if (err >= 0)
1936 			/* "err" is actually length in this case */
1937 			err = move_addr_to_user(&address, err, usockaddr,
1938 						usockaddr_len);
1939 		fput_light(sock->file, fput_needed);
1940 	}
1941 	return err;
1942 }
1943 
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1944 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1945 		int __user *, usockaddr_len)
1946 {
1947 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1948 }
1949 
1950 /*
1951  *	Send a datagram to a given address. We move the address into kernel
1952  *	space and check the user space data area is readable before invoking
1953  *	the protocol.
1954  */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)1955 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1956 		 struct sockaddr __user *addr,  int addr_len)
1957 {
1958 	struct socket *sock;
1959 	struct sockaddr_storage address;
1960 	int err;
1961 	struct msghdr msg;
1962 	struct iovec iov;
1963 	int fput_needed;
1964 
1965 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1966 	if (unlikely(err))
1967 		return err;
1968 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1969 	if (!sock)
1970 		goto out;
1971 
1972 	msg.msg_name = NULL;
1973 	msg.msg_control = NULL;
1974 	msg.msg_controllen = 0;
1975 	msg.msg_namelen = 0;
1976 	if (addr) {
1977 		err = move_addr_to_kernel(addr, addr_len, &address);
1978 		if (err < 0)
1979 			goto out_put;
1980 		msg.msg_name = (struct sockaddr *)&address;
1981 		msg.msg_namelen = addr_len;
1982 	}
1983 	if (sock->file->f_flags & O_NONBLOCK)
1984 		flags |= MSG_DONTWAIT;
1985 	msg.msg_flags = flags;
1986 	err = sock_sendmsg(sock, &msg);
1987 
1988 out_put:
1989 	fput_light(sock->file, fput_needed);
1990 out:
1991 	return err;
1992 }
1993 
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)1994 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1995 		unsigned int, flags, struct sockaddr __user *, addr,
1996 		int, addr_len)
1997 {
1998 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1999 }
2000 
2001 /*
2002  *	Send a datagram down a socket.
2003  */
2004 
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)2005 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2006 		unsigned int, flags)
2007 {
2008 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2009 }
2010 
2011 /*
2012  *	Receive a frame from the socket and optionally record the address of the
2013  *	sender. We verify the buffers are writable and if needed move the
2014  *	sender address from kernel to user space.
2015  */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)2016 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2017 		   struct sockaddr __user *addr, int __user *addr_len)
2018 {
2019 	struct socket *sock;
2020 	struct iovec iov;
2021 	struct msghdr msg;
2022 	struct sockaddr_storage address;
2023 	int err, err2;
2024 	int fput_needed;
2025 
2026 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2027 	if (unlikely(err))
2028 		return err;
2029 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2030 	if (!sock)
2031 		goto out;
2032 
2033 	msg.msg_control = NULL;
2034 	msg.msg_controllen = 0;
2035 	/* Save some cycles and don't copy the address if not needed */
2036 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2037 	/* We assume all kernel code knows the size of sockaddr_storage */
2038 	msg.msg_namelen = 0;
2039 	msg.msg_iocb = NULL;
2040 	msg.msg_flags = 0;
2041 	if (sock->file->f_flags & O_NONBLOCK)
2042 		flags |= MSG_DONTWAIT;
2043 	err = sock_recvmsg(sock, &msg, flags);
2044 
2045 	if (err >= 0 && addr != NULL) {
2046 		err2 = move_addr_to_user(&address,
2047 					 msg.msg_namelen, addr, addr_len);
2048 		if (err2 < 0)
2049 			err = err2;
2050 	}
2051 
2052 	fput_light(sock->file, fput_needed);
2053 out:
2054 	return err;
2055 }
2056 
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2057 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2058 		unsigned int, flags, struct sockaddr __user *, addr,
2059 		int __user *, addr_len)
2060 {
2061 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2062 }
2063 
2064 /*
2065  *	Receive a datagram from a socket.
2066  */
2067 
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2068 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2069 		unsigned int, flags)
2070 {
2071 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2072 }
2073 
sock_use_custom_sol_socket(const struct socket * sock)2074 static bool sock_use_custom_sol_socket(const struct socket *sock)
2075 {
2076 	const struct sock *sk = sock->sk;
2077 
2078 	/* Use sock->ops->setsockopt() for MPTCP */
2079 	return IS_ENABLED(CONFIG_MPTCP) &&
2080 	       sk->sk_protocol == IPPROTO_MPTCP &&
2081 	       sk->sk_type == SOCK_STREAM &&
2082 	       (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2083 }
2084 
2085 /*
2086  *	Set a socket option. Because we don't know the option lengths we have
2087  *	to pass the user mode parameter for the protocols to sort out.
2088  */
__sys_setsockopt(int fd,int level,int optname,char __user * user_optval,int optlen)2089 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2090 		int optlen)
2091 {
2092 	sockptr_t optval = USER_SOCKPTR(user_optval);
2093 	char *kernel_optval = NULL;
2094 	int err, fput_needed;
2095 	struct socket *sock;
2096 
2097 	if (optlen < 0)
2098 		return -EINVAL;
2099 
2100 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2101 	if (!sock)
2102 		return err;
2103 
2104 	err = security_socket_setsockopt(sock, level, optname);
2105 	if (err)
2106 		goto out_put;
2107 
2108 	if (!in_compat_syscall())
2109 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2110 						     user_optval, &optlen,
2111 						     &kernel_optval);
2112 	if (err < 0)
2113 		goto out_put;
2114 	if (err > 0) {
2115 		err = 0;
2116 		goto out_put;
2117 	}
2118 
2119 	if (kernel_optval)
2120 		optval = KERNEL_SOCKPTR(kernel_optval);
2121 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2122 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2123 	else if (unlikely(!sock->ops->setsockopt))
2124 		err = -EOPNOTSUPP;
2125 	else
2126 		err = sock->ops->setsockopt(sock, level, optname, optval,
2127 					    optlen);
2128 	kfree(kernel_optval);
2129 out_put:
2130 	fput_light(sock->file, fput_needed);
2131 	return err;
2132 }
2133 
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2134 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2135 		char __user *, optval, int, optlen)
2136 {
2137 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2138 }
2139 
2140 /*
2141  *	Get a socket option. Because we don't know the option lengths we have
2142  *	to pass a user mode parameter for the protocols to sort out.
2143  */
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2144 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2145 		int __user *optlen)
2146 {
2147 	int err, fput_needed;
2148 	struct socket *sock;
2149 	int max_optlen;
2150 
2151 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2152 	if (!sock)
2153 		return err;
2154 
2155 	err = security_socket_getsockopt(sock, level, optname);
2156 	if (err)
2157 		goto out_put;
2158 
2159 	if (!in_compat_syscall())
2160 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2161 
2162 	if (level == SOL_SOCKET)
2163 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2164 	else if (unlikely(!sock->ops->getsockopt))
2165 		err = -EOPNOTSUPP;
2166 	else
2167 		err = sock->ops->getsockopt(sock, level, optname, optval,
2168 					    optlen);
2169 
2170 	if (!in_compat_syscall())
2171 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2172 						     optval, optlen, max_optlen,
2173 						     err);
2174 out_put:
2175 	fput_light(sock->file, fput_needed);
2176 	return err;
2177 }
2178 
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2179 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2180 		char __user *, optval, int __user *, optlen)
2181 {
2182 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2183 }
2184 
2185 /*
2186  *	Shutdown a socket.
2187  */
2188 
__sys_shutdown_sock(struct socket * sock,int how)2189 int __sys_shutdown_sock(struct socket *sock, int how)
2190 {
2191 	int err;
2192 
2193 	err = security_socket_shutdown(sock, how);
2194 	if (!err)
2195 		err = sock->ops->shutdown(sock, how);
2196 
2197 	return err;
2198 }
2199 
__sys_shutdown(int fd,int how)2200 int __sys_shutdown(int fd, int how)
2201 {
2202 	int err, fput_needed;
2203 	struct socket *sock;
2204 
2205 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2206 	if (sock != NULL) {
2207 		err = __sys_shutdown_sock(sock, how);
2208 		fput_light(sock->file, fput_needed);
2209 	}
2210 	return err;
2211 }
2212 
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2213 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2214 {
2215 	return __sys_shutdown(fd, how);
2216 }
2217 
2218 /* A couple of helpful macros for getting the address of the 32/64 bit
2219  * fields which are the same type (int / unsigned) on our platforms.
2220  */
2221 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2222 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2223 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2224 
2225 struct used_address {
2226 	struct sockaddr_storage name;
2227 	unsigned int name_len;
2228 };
2229 
__copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec __user ** uiov,size_t * nsegs)2230 int __copy_msghdr_from_user(struct msghdr *kmsg,
2231 			    struct user_msghdr __user *umsg,
2232 			    struct sockaddr __user **save_addr,
2233 			    struct iovec __user **uiov, size_t *nsegs)
2234 {
2235 	struct user_msghdr msg;
2236 	ssize_t err;
2237 
2238 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2239 		return -EFAULT;
2240 
2241 	kmsg->msg_control_is_user = true;
2242 	kmsg->msg_control_user = msg.msg_control;
2243 	kmsg->msg_controllen = msg.msg_controllen;
2244 	kmsg->msg_flags = msg.msg_flags;
2245 
2246 	kmsg->msg_namelen = msg.msg_namelen;
2247 	if (!msg.msg_name)
2248 		kmsg->msg_namelen = 0;
2249 
2250 	if (kmsg->msg_namelen < 0)
2251 		return -EINVAL;
2252 
2253 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2254 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2255 
2256 	if (save_addr)
2257 		*save_addr = msg.msg_name;
2258 
2259 	if (msg.msg_name && kmsg->msg_namelen) {
2260 		if (!save_addr) {
2261 			err = move_addr_to_kernel(msg.msg_name,
2262 						  kmsg->msg_namelen,
2263 						  kmsg->msg_name);
2264 			if (err < 0)
2265 				return err;
2266 		}
2267 	} else {
2268 		kmsg->msg_name = NULL;
2269 		kmsg->msg_namelen = 0;
2270 	}
2271 
2272 	if (msg.msg_iovlen > UIO_MAXIOV)
2273 		return -EMSGSIZE;
2274 
2275 	kmsg->msg_iocb = NULL;
2276 	*uiov = msg.msg_iov;
2277 	*nsegs = msg.msg_iovlen;
2278 	return 0;
2279 }
2280 
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2281 static int copy_msghdr_from_user(struct msghdr *kmsg,
2282 				 struct user_msghdr __user *umsg,
2283 				 struct sockaddr __user **save_addr,
2284 				 struct iovec **iov)
2285 {
2286 	struct user_msghdr msg;
2287 	ssize_t err;
2288 
2289 	err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2290 					&msg.msg_iovlen);
2291 	if (err)
2292 		return err;
2293 
2294 	err = import_iovec(save_addr ? READ : WRITE,
2295 			    msg.msg_iov, msg.msg_iovlen,
2296 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2297 	return err < 0 ? err : 0;
2298 }
2299 
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2300 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2301 			   unsigned int flags, struct used_address *used_address,
2302 			   unsigned int allowed_msghdr_flags)
2303 {
2304 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2305 				__aligned(sizeof(__kernel_size_t));
2306 	/* 20 is size of ipv6_pktinfo */
2307 	unsigned char *ctl_buf = ctl;
2308 	int ctl_len;
2309 	ssize_t err;
2310 
2311 	err = -ENOBUFS;
2312 
2313 	if (msg_sys->msg_controllen > INT_MAX)
2314 		goto out;
2315 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2316 	ctl_len = msg_sys->msg_controllen;
2317 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2318 		err =
2319 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2320 						     sizeof(ctl));
2321 		if (err)
2322 			goto out;
2323 		ctl_buf = msg_sys->msg_control;
2324 		ctl_len = msg_sys->msg_controllen;
2325 	} else if (ctl_len) {
2326 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2327 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2328 		if (ctl_len > sizeof(ctl)) {
2329 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2330 			if (ctl_buf == NULL)
2331 				goto out;
2332 		}
2333 		err = -EFAULT;
2334 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2335 			goto out_freectl;
2336 		msg_sys->msg_control = ctl_buf;
2337 		msg_sys->msg_control_is_user = false;
2338 	}
2339 	msg_sys->msg_flags = flags;
2340 
2341 	if (sock->file->f_flags & O_NONBLOCK)
2342 		msg_sys->msg_flags |= MSG_DONTWAIT;
2343 	/*
2344 	 * If this is sendmmsg() and current destination address is same as
2345 	 * previously succeeded address, omit asking LSM's decision.
2346 	 * used_address->name_len is initialized to UINT_MAX so that the first
2347 	 * destination address never matches.
2348 	 */
2349 	if (used_address && msg_sys->msg_name &&
2350 	    used_address->name_len == msg_sys->msg_namelen &&
2351 	    !memcmp(&used_address->name, msg_sys->msg_name,
2352 		    used_address->name_len)) {
2353 		err = sock_sendmsg_nosec(sock, msg_sys);
2354 		goto out_freectl;
2355 	}
2356 	err = sock_sendmsg(sock, msg_sys);
2357 	/*
2358 	 * If this is sendmmsg() and sending to current destination address was
2359 	 * successful, remember it.
2360 	 */
2361 	if (used_address && err >= 0) {
2362 		used_address->name_len = msg_sys->msg_namelen;
2363 		if (msg_sys->msg_name)
2364 			memcpy(&used_address->name, msg_sys->msg_name,
2365 			       used_address->name_len);
2366 	}
2367 
2368 out_freectl:
2369 	if (ctl_buf != ctl)
2370 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2371 out:
2372 	return err;
2373 }
2374 
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2375 int sendmsg_copy_msghdr(struct msghdr *msg,
2376 			struct user_msghdr __user *umsg, unsigned flags,
2377 			struct iovec **iov)
2378 {
2379 	int err;
2380 
2381 	if (flags & MSG_CMSG_COMPAT) {
2382 		struct compat_msghdr __user *msg_compat;
2383 
2384 		msg_compat = (struct compat_msghdr __user *) umsg;
2385 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2386 	} else {
2387 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2388 	}
2389 	if (err < 0)
2390 		return err;
2391 
2392 	return 0;
2393 }
2394 
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2395 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2396 			 struct msghdr *msg_sys, unsigned int flags,
2397 			 struct used_address *used_address,
2398 			 unsigned int allowed_msghdr_flags)
2399 {
2400 	struct sockaddr_storage address;
2401 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2402 	ssize_t err;
2403 
2404 	msg_sys->msg_name = &address;
2405 
2406 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2407 	if (err < 0)
2408 		return err;
2409 
2410 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2411 				allowed_msghdr_flags);
2412 	kfree(iov);
2413 	return err;
2414 }
2415 
2416 /*
2417  *	BSD sendmsg interface
2418  */
__sys_sendmsg_sock(struct socket * sock,struct msghdr * msg,unsigned int flags)2419 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2420 			unsigned int flags)
2421 {
2422 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2423 }
2424 
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2425 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2426 		   bool forbid_cmsg_compat)
2427 {
2428 	int fput_needed, err;
2429 	struct msghdr msg_sys;
2430 	struct socket *sock;
2431 
2432 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2433 		return -EINVAL;
2434 
2435 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2436 	if (!sock)
2437 		goto out;
2438 
2439 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2440 
2441 	fput_light(sock->file, fput_needed);
2442 out:
2443 	return err;
2444 }
2445 
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2446 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2447 {
2448 	return __sys_sendmsg(fd, msg, flags, true);
2449 }
2450 
2451 /*
2452  *	Linux sendmmsg interface
2453  */
2454 
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2455 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2456 		   unsigned int flags, bool forbid_cmsg_compat)
2457 {
2458 	int fput_needed, err, datagrams;
2459 	struct socket *sock;
2460 	struct mmsghdr __user *entry;
2461 	struct compat_mmsghdr __user *compat_entry;
2462 	struct msghdr msg_sys;
2463 	struct used_address used_address;
2464 	unsigned int oflags = flags;
2465 
2466 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2467 		return -EINVAL;
2468 
2469 	if (vlen > UIO_MAXIOV)
2470 		vlen = UIO_MAXIOV;
2471 
2472 	datagrams = 0;
2473 
2474 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2475 	if (!sock)
2476 		return err;
2477 
2478 	used_address.name_len = UINT_MAX;
2479 	entry = mmsg;
2480 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2481 	err = 0;
2482 	flags |= MSG_BATCH;
2483 
2484 	while (datagrams < vlen) {
2485 		if (datagrams == vlen - 1)
2486 			flags = oflags;
2487 
2488 		if (MSG_CMSG_COMPAT & flags) {
2489 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2490 					     &msg_sys, flags, &used_address, MSG_EOR);
2491 			if (err < 0)
2492 				break;
2493 			err = __put_user(err, &compat_entry->msg_len);
2494 			++compat_entry;
2495 		} else {
2496 			err = ___sys_sendmsg(sock,
2497 					     (struct user_msghdr __user *)entry,
2498 					     &msg_sys, flags, &used_address, MSG_EOR);
2499 			if (err < 0)
2500 				break;
2501 			err = put_user(err, &entry->msg_len);
2502 			++entry;
2503 		}
2504 
2505 		if (err)
2506 			break;
2507 		++datagrams;
2508 		if (msg_data_left(&msg_sys))
2509 			break;
2510 		cond_resched();
2511 	}
2512 
2513 	fput_light(sock->file, fput_needed);
2514 
2515 	/* We only return an error if no datagrams were able to be sent */
2516 	if (datagrams != 0)
2517 		return datagrams;
2518 
2519 	return err;
2520 }
2521 
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2522 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2523 		unsigned int, vlen, unsigned int, flags)
2524 {
2525 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2526 }
2527 
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2528 int recvmsg_copy_msghdr(struct msghdr *msg,
2529 			struct user_msghdr __user *umsg, unsigned flags,
2530 			struct sockaddr __user **uaddr,
2531 			struct iovec **iov)
2532 {
2533 	ssize_t err;
2534 
2535 	if (MSG_CMSG_COMPAT & flags) {
2536 		struct compat_msghdr __user *msg_compat;
2537 
2538 		msg_compat = (struct compat_msghdr __user *) umsg;
2539 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2540 	} else {
2541 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2542 	}
2543 	if (err < 0)
2544 		return err;
2545 
2546 	return 0;
2547 }
2548 
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2549 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2550 			   struct user_msghdr __user *msg,
2551 			   struct sockaddr __user *uaddr,
2552 			   unsigned int flags, int nosec)
2553 {
2554 	struct compat_msghdr __user *msg_compat =
2555 					(struct compat_msghdr __user *) msg;
2556 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2557 	struct sockaddr_storage addr;
2558 	unsigned long cmsg_ptr;
2559 	int len;
2560 	ssize_t err;
2561 
2562 	msg_sys->msg_name = &addr;
2563 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2564 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2565 
2566 	/* We assume all kernel code knows the size of sockaddr_storage */
2567 	msg_sys->msg_namelen = 0;
2568 
2569 	if (sock->file->f_flags & O_NONBLOCK)
2570 		flags |= MSG_DONTWAIT;
2571 
2572 	if (unlikely(nosec))
2573 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2574 	else
2575 		err = sock_recvmsg(sock, msg_sys, flags);
2576 
2577 	if (err < 0)
2578 		goto out;
2579 	len = err;
2580 
2581 	if (uaddr != NULL) {
2582 		err = move_addr_to_user(&addr,
2583 					msg_sys->msg_namelen, uaddr,
2584 					uaddr_len);
2585 		if (err < 0)
2586 			goto out;
2587 	}
2588 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2589 			 COMPAT_FLAGS(msg));
2590 	if (err)
2591 		goto out;
2592 	if (MSG_CMSG_COMPAT & flags)
2593 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2594 				 &msg_compat->msg_controllen);
2595 	else
2596 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2597 				 &msg->msg_controllen);
2598 	if (err)
2599 		goto out;
2600 	err = len;
2601 out:
2602 	return err;
2603 }
2604 
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2605 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2606 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2607 {
2608 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2609 	/* user mode address pointers */
2610 	struct sockaddr __user *uaddr;
2611 	ssize_t err;
2612 
2613 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2614 	if (err < 0)
2615 		return err;
2616 
2617 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2618 	kfree(iov);
2619 	return err;
2620 }
2621 
2622 /*
2623  *	BSD recvmsg interface
2624  */
2625 
__sys_recvmsg_sock(struct socket * sock,struct msghdr * msg,struct user_msghdr __user * umsg,struct sockaddr __user * uaddr,unsigned int flags)2626 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2627 			struct user_msghdr __user *umsg,
2628 			struct sockaddr __user *uaddr, unsigned int flags)
2629 {
2630 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2631 }
2632 
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2633 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2634 		   bool forbid_cmsg_compat)
2635 {
2636 	int fput_needed, err;
2637 	struct msghdr msg_sys;
2638 	struct socket *sock;
2639 
2640 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2641 		return -EINVAL;
2642 
2643 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2644 	if (!sock)
2645 		goto out;
2646 
2647 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2648 
2649 	fput_light(sock->file, fput_needed);
2650 out:
2651 	return err;
2652 }
2653 
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2654 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2655 		unsigned int, flags)
2656 {
2657 	return __sys_recvmsg(fd, msg, flags, true);
2658 }
2659 
2660 /*
2661  *     Linux recvmmsg interface
2662  */
2663 
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2664 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2665 			  unsigned int vlen, unsigned int flags,
2666 			  struct timespec64 *timeout)
2667 {
2668 	int fput_needed, err, datagrams;
2669 	struct socket *sock;
2670 	struct mmsghdr __user *entry;
2671 	struct compat_mmsghdr __user *compat_entry;
2672 	struct msghdr msg_sys;
2673 	struct timespec64 end_time;
2674 	struct timespec64 timeout64;
2675 
2676 	if (timeout &&
2677 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2678 				    timeout->tv_nsec))
2679 		return -EINVAL;
2680 
2681 	datagrams = 0;
2682 
2683 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2684 	if (!sock)
2685 		return err;
2686 
2687 	if (likely(!(flags & MSG_ERRQUEUE))) {
2688 		err = sock_error(sock->sk);
2689 		if (err) {
2690 			datagrams = err;
2691 			goto out_put;
2692 		}
2693 	}
2694 
2695 	entry = mmsg;
2696 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2697 
2698 	while (datagrams < vlen) {
2699 		/*
2700 		 * No need to ask LSM for more than the first datagram.
2701 		 */
2702 		if (MSG_CMSG_COMPAT & flags) {
2703 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2704 					     &msg_sys, flags & ~MSG_WAITFORONE,
2705 					     datagrams);
2706 			if (err < 0)
2707 				break;
2708 			err = __put_user(err, &compat_entry->msg_len);
2709 			++compat_entry;
2710 		} else {
2711 			err = ___sys_recvmsg(sock,
2712 					     (struct user_msghdr __user *)entry,
2713 					     &msg_sys, flags & ~MSG_WAITFORONE,
2714 					     datagrams);
2715 			if (err < 0)
2716 				break;
2717 			err = put_user(err, &entry->msg_len);
2718 			++entry;
2719 		}
2720 
2721 		if (err)
2722 			break;
2723 		++datagrams;
2724 
2725 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2726 		if (flags & MSG_WAITFORONE)
2727 			flags |= MSG_DONTWAIT;
2728 
2729 		if (timeout) {
2730 			ktime_get_ts64(&timeout64);
2731 			*timeout = timespec64_sub(end_time, timeout64);
2732 			if (timeout->tv_sec < 0) {
2733 				timeout->tv_sec = timeout->tv_nsec = 0;
2734 				break;
2735 			}
2736 
2737 			/* Timeout, return less than vlen datagrams */
2738 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2739 				break;
2740 		}
2741 
2742 		/* Out of band data, return right away */
2743 		if (msg_sys.msg_flags & MSG_OOB)
2744 			break;
2745 		cond_resched();
2746 	}
2747 
2748 	if (err == 0)
2749 		goto out_put;
2750 
2751 	if (datagrams == 0) {
2752 		datagrams = err;
2753 		goto out_put;
2754 	}
2755 
2756 	/*
2757 	 * We may return less entries than requested (vlen) if the
2758 	 * sock is non block and there aren't enough datagrams...
2759 	 */
2760 	if (err != -EAGAIN) {
2761 		/*
2762 		 * ... or  if recvmsg returns an error after we
2763 		 * received some datagrams, where we record the
2764 		 * error to return on the next call or if the
2765 		 * app asks about it using getsockopt(SO_ERROR).
2766 		 */
2767 		WRITE_ONCE(sock->sk->sk_err, -err);
2768 	}
2769 out_put:
2770 	fput_light(sock->file, fput_needed);
2771 
2772 	return datagrams;
2773 }
2774 
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)2775 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2776 		   unsigned int vlen, unsigned int flags,
2777 		   struct __kernel_timespec __user *timeout,
2778 		   struct old_timespec32 __user *timeout32)
2779 {
2780 	int datagrams;
2781 	struct timespec64 timeout_sys;
2782 
2783 	if (timeout && get_timespec64(&timeout_sys, timeout))
2784 		return -EFAULT;
2785 
2786 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2787 		return -EFAULT;
2788 
2789 	if (!timeout && !timeout32)
2790 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2791 
2792 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2793 
2794 	if (datagrams <= 0)
2795 		return datagrams;
2796 
2797 	if (timeout && put_timespec64(&timeout_sys, timeout))
2798 		datagrams = -EFAULT;
2799 
2800 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2801 		datagrams = -EFAULT;
2802 
2803 	return datagrams;
2804 }
2805 
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)2806 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2807 		unsigned int, vlen, unsigned int, flags,
2808 		struct __kernel_timespec __user *, timeout)
2809 {
2810 	if (flags & MSG_CMSG_COMPAT)
2811 		return -EINVAL;
2812 
2813 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2814 }
2815 
2816 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)2817 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2818 		unsigned int, vlen, unsigned int, flags,
2819 		struct old_timespec32 __user *, timeout)
2820 {
2821 	if (flags & MSG_CMSG_COMPAT)
2822 		return -EINVAL;
2823 
2824 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2825 }
2826 #endif
2827 
2828 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2829 /* Argument list sizes for sys_socketcall */
2830 #define AL(x) ((x) * sizeof(unsigned long))
2831 static const unsigned char nargs[21] = {
2832 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2833 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2834 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2835 	AL(4), AL(5), AL(4)
2836 };
2837 
2838 #undef AL
2839 
2840 /*
2841  *	System call vectors.
2842  *
2843  *	Argument checking cleaned up. Saved 20% in size.
2844  *  This function doesn't need to set the kernel lock because
2845  *  it is set by the callees.
2846  */
2847 
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)2848 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2849 {
2850 	unsigned long a[AUDITSC_ARGS];
2851 	unsigned long a0, a1;
2852 	int err;
2853 	unsigned int len;
2854 
2855 	if (call < 1 || call > SYS_SENDMMSG)
2856 		return -EINVAL;
2857 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2858 
2859 	len = nargs[call];
2860 	if (len > sizeof(a))
2861 		return -EINVAL;
2862 
2863 	/* copy_from_user should be SMP safe. */
2864 	if (copy_from_user(a, args, len))
2865 		return -EFAULT;
2866 
2867 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2868 	if (err)
2869 		return err;
2870 
2871 	a0 = a[0];
2872 	a1 = a[1];
2873 
2874 	switch (call) {
2875 	case SYS_SOCKET:
2876 		err = __sys_socket(a0, a1, a[2]);
2877 		break;
2878 	case SYS_BIND:
2879 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2880 		break;
2881 	case SYS_CONNECT:
2882 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2883 		break;
2884 	case SYS_LISTEN:
2885 		err = __sys_listen(a0, a1);
2886 		break;
2887 	case SYS_ACCEPT:
2888 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2889 				    (int __user *)a[2], 0);
2890 		break;
2891 	case SYS_GETSOCKNAME:
2892 		err =
2893 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2894 				      (int __user *)a[2]);
2895 		break;
2896 	case SYS_GETPEERNAME:
2897 		err =
2898 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2899 				      (int __user *)a[2]);
2900 		break;
2901 	case SYS_SOCKETPAIR:
2902 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2903 		break;
2904 	case SYS_SEND:
2905 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2906 				   NULL, 0);
2907 		break;
2908 	case SYS_SENDTO:
2909 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2910 				   (struct sockaddr __user *)a[4], a[5]);
2911 		break;
2912 	case SYS_RECV:
2913 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2914 				     NULL, NULL);
2915 		break;
2916 	case SYS_RECVFROM:
2917 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2918 				     (struct sockaddr __user *)a[4],
2919 				     (int __user *)a[5]);
2920 		break;
2921 	case SYS_SHUTDOWN:
2922 		err = __sys_shutdown(a0, a1);
2923 		break;
2924 	case SYS_SETSOCKOPT:
2925 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2926 				       a[4]);
2927 		break;
2928 	case SYS_GETSOCKOPT:
2929 		err =
2930 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2931 				     (int __user *)a[4]);
2932 		break;
2933 	case SYS_SENDMSG:
2934 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2935 				    a[2], true);
2936 		break;
2937 	case SYS_SENDMMSG:
2938 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2939 				     a[3], true);
2940 		break;
2941 	case SYS_RECVMSG:
2942 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2943 				    a[2], true);
2944 		break;
2945 	case SYS_RECVMMSG:
2946 		if (IS_ENABLED(CONFIG_64BIT))
2947 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2948 					     a[2], a[3],
2949 					     (struct __kernel_timespec __user *)a[4],
2950 					     NULL);
2951 		else
2952 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2953 					     a[2], a[3], NULL,
2954 					     (struct old_timespec32 __user *)a[4]);
2955 		break;
2956 	case SYS_ACCEPT4:
2957 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2958 				    (int __user *)a[2], a[3]);
2959 		break;
2960 	default:
2961 		err = -EINVAL;
2962 		break;
2963 	}
2964 	return err;
2965 }
2966 
2967 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2968 
2969 /**
2970  *	sock_register - add a socket protocol handler
2971  *	@ops: description of protocol
2972  *
2973  *	This function is called by a protocol handler that wants to
2974  *	advertise its address family, and have it linked into the
2975  *	socket interface. The value ops->family corresponds to the
2976  *	socket system call protocol family.
2977  */
sock_register(const struct net_proto_family * ops)2978 int sock_register(const struct net_proto_family *ops)
2979 {
2980 	int err;
2981 
2982 	if (ops->family >= NPROTO) {
2983 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2984 		return -ENOBUFS;
2985 	}
2986 
2987 	spin_lock(&net_family_lock);
2988 	if (rcu_dereference_protected(net_families[ops->family],
2989 				      lockdep_is_held(&net_family_lock)))
2990 		err = -EEXIST;
2991 	else {
2992 		rcu_assign_pointer(net_families[ops->family], ops);
2993 		err = 0;
2994 	}
2995 	spin_unlock(&net_family_lock);
2996 
2997 	pr_info("NET: Registered protocol family %d\n", ops->family);
2998 	return err;
2999 }
3000 EXPORT_SYMBOL(sock_register);
3001 
3002 /**
3003  *	sock_unregister - remove a protocol handler
3004  *	@family: protocol family to remove
3005  *
3006  *	This function is called by a protocol handler that wants to
3007  *	remove its address family, and have it unlinked from the
3008  *	new socket creation.
3009  *
3010  *	If protocol handler is a module, then it can use module reference
3011  *	counts to protect against new references. If protocol handler is not
3012  *	a module then it needs to provide its own protection in
3013  *	the ops->create routine.
3014  */
sock_unregister(int family)3015 void sock_unregister(int family)
3016 {
3017 	BUG_ON(family < 0 || family >= NPROTO);
3018 
3019 	spin_lock(&net_family_lock);
3020 	RCU_INIT_POINTER(net_families[family], NULL);
3021 	spin_unlock(&net_family_lock);
3022 
3023 	synchronize_rcu();
3024 
3025 	pr_info("NET: Unregistered protocol family %d\n", family);
3026 }
3027 EXPORT_SYMBOL(sock_unregister);
3028 
sock_is_registered(int family)3029 bool sock_is_registered(int family)
3030 {
3031 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3032 }
3033 
sock_init(void)3034 static int __init sock_init(void)
3035 {
3036 	int err;
3037 	/*
3038 	 *      Initialize the network sysctl infrastructure.
3039 	 */
3040 	err = net_sysctl_init();
3041 	if (err)
3042 		goto out;
3043 
3044 	/*
3045 	 *      Initialize skbuff SLAB cache
3046 	 */
3047 	skb_init();
3048 
3049 	/*
3050 	 *      Initialize the protocols module.
3051 	 */
3052 
3053 	init_inodecache();
3054 
3055 	err = register_filesystem(&sock_fs_type);
3056 	if (err)
3057 		goto out;
3058 	sock_mnt = kern_mount(&sock_fs_type);
3059 	if (IS_ERR(sock_mnt)) {
3060 		err = PTR_ERR(sock_mnt);
3061 		goto out_mount;
3062 	}
3063 
3064 	/* The real protocol initialization is performed in later initcalls.
3065 	 */
3066 
3067 #ifdef CONFIG_NETFILTER
3068 	err = netfilter_init();
3069 	if (err)
3070 		goto out;
3071 #endif
3072 
3073 	ptp_classifier_init();
3074 
3075 out:
3076 	return err;
3077 
3078 out_mount:
3079 	unregister_filesystem(&sock_fs_type);
3080 	goto out;
3081 }
3082 
3083 core_initcall(sock_init);	/* early initcall */
3084 
3085 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3086 void socket_seq_show(struct seq_file *seq)
3087 {
3088 	seq_printf(seq, "sockets: used %d\n",
3089 		   sock_inuse_get(seq->private));
3090 }
3091 #endif				/* CONFIG_PROC_FS */
3092 
3093 #ifdef CONFIG_COMPAT
compat_dev_ifconf(struct net * net,struct compat_ifconf __user * uifc32)3094 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3095 {
3096 	struct compat_ifconf ifc32;
3097 	struct ifconf ifc;
3098 	int err;
3099 
3100 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3101 		return -EFAULT;
3102 
3103 	ifc.ifc_len = ifc32.ifc_len;
3104 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3105 
3106 	rtnl_lock();
3107 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3108 	rtnl_unlock();
3109 	if (err)
3110 		return err;
3111 
3112 	ifc32.ifc_len = ifc.ifc_len;
3113 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3114 		return -EFAULT;
3115 
3116 	return 0;
3117 }
3118 
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3119 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3120 {
3121 	compat_uptr_t uptr32;
3122 	struct ifreq ifr;
3123 	void __user *saved;
3124 	int err;
3125 
3126 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3127 		return -EFAULT;
3128 
3129 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3130 		return -EFAULT;
3131 
3132 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3133 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3134 
3135 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3136 	if (!err) {
3137 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3138 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3139 			err = -EFAULT;
3140 	}
3141 	return err;
3142 }
3143 
3144 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3145 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3146 				 struct compat_ifreq __user *u_ifreq32)
3147 {
3148 	struct ifreq ifreq;
3149 	u32 data32;
3150 
3151 	if (!is_socket_ioctl_cmd(cmd))
3152 		return -ENOTTY;
3153 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3154 		return -EFAULT;
3155 	if (get_user(data32, &u_ifreq32->ifr_data))
3156 		return -EFAULT;
3157 	ifreq.ifr_data = compat_ptr(data32);
3158 
3159 	return dev_ioctl(net, cmd, &ifreq, NULL);
3160 }
3161 
compat_ifreq_ioctl(struct net * net,struct socket * sock,unsigned int cmd,struct compat_ifreq __user * uifr32)3162 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3163 			      unsigned int cmd,
3164 			      struct compat_ifreq __user *uifr32)
3165 {
3166 	struct ifreq __user *uifr;
3167 	int err;
3168 
3169 	/* Handle the fact that while struct ifreq has the same *layout* on
3170 	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3171 	 * which are handled elsewhere, it still has different *size* due to
3172 	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3173 	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3174 	 * As a result, if the struct happens to be at the end of a page and
3175 	 * the next page isn't readable/writable, we get a fault. To prevent
3176 	 * that, copy back and forth to the full size.
3177 	 */
3178 
3179 	uifr = compat_alloc_user_space(sizeof(*uifr));
3180 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3181 		return -EFAULT;
3182 
3183 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3184 
3185 	if (!err) {
3186 		switch (cmd) {
3187 		case SIOCGIFFLAGS:
3188 		case SIOCGIFMETRIC:
3189 		case SIOCGIFMTU:
3190 		case SIOCGIFMEM:
3191 		case SIOCGIFHWADDR:
3192 		case SIOCGIFINDEX:
3193 		case SIOCGIFADDR:
3194 		case SIOCGIFBRDADDR:
3195 		case SIOCGIFDSTADDR:
3196 		case SIOCGIFNETMASK:
3197 		case SIOCGIFPFLAGS:
3198 		case SIOCGIFTXQLEN:
3199 		case SIOCGMIIPHY:
3200 		case SIOCGMIIREG:
3201 		case SIOCGIFNAME:
3202 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3203 				err = -EFAULT;
3204 			break;
3205 		}
3206 	}
3207 	return err;
3208 }
3209 
compat_sioc_ifmap(struct net * net,unsigned int cmd,struct compat_ifreq __user * uifr32)3210 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3211 			struct compat_ifreq __user *uifr32)
3212 {
3213 	struct ifreq ifr;
3214 	struct compat_ifmap __user *uifmap32;
3215 	int err;
3216 
3217 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3218 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3219 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3220 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3221 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3222 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3223 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3224 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3225 	if (err)
3226 		return -EFAULT;
3227 
3228 	err = dev_ioctl(net, cmd, &ifr, NULL);
3229 
3230 	if (cmd == SIOCGIFMAP && !err) {
3231 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3232 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3233 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3234 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3235 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3236 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3237 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3238 		if (err)
3239 			err = -EFAULT;
3240 	}
3241 	return err;
3242 }
3243 
3244 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3245  * for some operations; this forces use of the newer bridge-utils that
3246  * use compatible ioctls
3247  */
old_bridge_ioctl(compat_ulong_t __user * argp)3248 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3249 {
3250 	compat_ulong_t tmp;
3251 
3252 	if (get_user(tmp, argp))
3253 		return -EFAULT;
3254 	if (tmp == BRCTL_GET_VERSION)
3255 		return BRCTL_VERSION + 1;
3256 	return -EINVAL;
3257 }
3258 
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3259 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3260 			 unsigned int cmd, unsigned long arg)
3261 {
3262 	void __user *argp = compat_ptr(arg);
3263 	struct sock *sk = sock->sk;
3264 	struct net *net = sock_net(sk);
3265 
3266 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3267 		return compat_ifr_data_ioctl(net, cmd, argp);
3268 
3269 	switch (cmd) {
3270 	case SIOCSIFBR:
3271 	case SIOCGIFBR:
3272 		return old_bridge_ioctl(argp);
3273 	case SIOCGIFCONF:
3274 		return compat_dev_ifconf(net, argp);
3275 	case SIOCWANDEV:
3276 		return compat_siocwandev(net, argp);
3277 	case SIOCGIFMAP:
3278 	case SIOCSIFMAP:
3279 		return compat_sioc_ifmap(net, cmd, argp);
3280 	case SIOCGSTAMP_OLD:
3281 	case SIOCGSTAMPNS_OLD:
3282 		if (!sock->ops->gettstamp)
3283 			return -ENOIOCTLCMD;
3284 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3285 					    !COMPAT_USE_64BIT_TIME);
3286 
3287 	case SIOCETHTOOL:
3288 	case SIOCBONDSLAVEINFOQUERY:
3289 	case SIOCBONDINFOQUERY:
3290 	case SIOCSHWTSTAMP:
3291 	case SIOCGHWTSTAMP:
3292 		return compat_ifr_data_ioctl(net, cmd, argp);
3293 
3294 	case FIOSETOWN:
3295 	case SIOCSPGRP:
3296 	case FIOGETOWN:
3297 	case SIOCGPGRP:
3298 	case SIOCBRADDBR:
3299 	case SIOCBRDELBR:
3300 	case SIOCGIFVLAN:
3301 	case SIOCSIFVLAN:
3302 	case SIOCADDDLCI:
3303 	case SIOCDELDLCI:
3304 	case SIOCGSKNS:
3305 	case SIOCGSTAMP_NEW:
3306 	case SIOCGSTAMPNS_NEW:
3307 		return sock_ioctl(file, cmd, arg);
3308 
3309 	case SIOCGIFFLAGS:
3310 	case SIOCSIFFLAGS:
3311 	case SIOCGIFMETRIC:
3312 	case SIOCSIFMETRIC:
3313 	case SIOCGIFMTU:
3314 	case SIOCSIFMTU:
3315 	case SIOCGIFMEM:
3316 	case SIOCSIFMEM:
3317 	case SIOCGIFHWADDR:
3318 	case SIOCSIFHWADDR:
3319 	case SIOCADDMULTI:
3320 	case SIOCDELMULTI:
3321 	case SIOCGIFINDEX:
3322 	case SIOCGIFADDR:
3323 	case SIOCSIFADDR:
3324 	case SIOCSIFHWBROADCAST:
3325 	case SIOCDIFADDR:
3326 	case SIOCGIFBRDADDR:
3327 	case SIOCSIFBRDADDR:
3328 	case SIOCGIFDSTADDR:
3329 	case SIOCSIFDSTADDR:
3330 	case SIOCGIFNETMASK:
3331 	case SIOCSIFNETMASK:
3332 	case SIOCSIFPFLAGS:
3333 	case SIOCGIFPFLAGS:
3334 	case SIOCGIFTXQLEN:
3335 	case SIOCSIFTXQLEN:
3336 	case SIOCBRADDIF:
3337 	case SIOCBRDELIF:
3338 	case SIOCGIFNAME:
3339 	case SIOCSIFNAME:
3340 	case SIOCGMIIPHY:
3341 	case SIOCGMIIREG:
3342 	case SIOCSMIIREG:
3343 	case SIOCBONDENSLAVE:
3344 	case SIOCBONDRELEASE:
3345 	case SIOCBONDSETHWADDR:
3346 	case SIOCBONDCHANGEACTIVE:
3347 		return compat_ifreq_ioctl(net, sock, cmd, argp);
3348 
3349 	case SIOCSARP:
3350 	case SIOCGARP:
3351 	case SIOCDARP:
3352 	case SIOCOUTQ:
3353 	case SIOCOUTQNSD:
3354 	case SIOCATMARK:
3355 		return sock_do_ioctl(net, sock, cmd, arg);
3356 	}
3357 
3358 	return -ENOIOCTLCMD;
3359 }
3360 
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3361 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3362 			      unsigned long arg)
3363 {
3364 	struct socket *sock = file->private_data;
3365 	int ret = -ENOIOCTLCMD;
3366 	struct sock *sk;
3367 	struct net *net;
3368 
3369 	sk = sock->sk;
3370 	net = sock_net(sk);
3371 
3372 	if (sock->ops->compat_ioctl)
3373 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3374 
3375 	if (ret == -ENOIOCTLCMD &&
3376 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3377 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3378 
3379 	if (ret == -ENOIOCTLCMD)
3380 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3381 
3382 	return ret;
3383 }
3384 #endif
3385 
3386 /**
3387  *	kernel_bind - bind an address to a socket (kernel space)
3388  *	@sock: socket
3389  *	@addr: address
3390  *	@addrlen: length of address
3391  *
3392  *	Returns 0 or an error.
3393  */
3394 
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3395 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3396 {
3397 	return sock->ops->bind(sock, addr, addrlen);
3398 }
3399 EXPORT_SYMBOL(kernel_bind);
3400 
3401 /**
3402  *	kernel_listen - move socket to listening state (kernel space)
3403  *	@sock: socket
3404  *	@backlog: pending connections queue size
3405  *
3406  *	Returns 0 or an error.
3407  */
3408 
kernel_listen(struct socket * sock,int backlog)3409 int kernel_listen(struct socket *sock, int backlog)
3410 {
3411 	return sock->ops->listen(sock, backlog);
3412 }
3413 EXPORT_SYMBOL(kernel_listen);
3414 
3415 /**
3416  *	kernel_accept - accept a connection (kernel space)
3417  *	@sock: listening socket
3418  *	@newsock: new connected socket
3419  *	@flags: flags
3420  *
3421  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3422  *	If it fails, @newsock is guaranteed to be %NULL.
3423  *	Returns 0 or an error.
3424  */
3425 
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3426 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3427 {
3428 	struct sock *sk = sock->sk;
3429 	int err;
3430 
3431 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3432 			       newsock);
3433 	if (err < 0)
3434 		goto done;
3435 
3436 	err = sock->ops->accept(sock, *newsock, flags, true);
3437 	if (err < 0) {
3438 		sock_release(*newsock);
3439 		*newsock = NULL;
3440 		goto done;
3441 	}
3442 
3443 	(*newsock)->ops = sock->ops;
3444 	__module_get((*newsock)->ops->owner);
3445 
3446 done:
3447 	return err;
3448 }
3449 EXPORT_SYMBOL(kernel_accept);
3450 
3451 /**
3452  *	kernel_connect - connect a socket (kernel space)
3453  *	@sock: socket
3454  *	@addr: address
3455  *	@addrlen: address length
3456  *	@flags: flags (O_NONBLOCK, ...)
3457  *
3458  *	For datagram sockets, @addr is the addres to which datagrams are sent
3459  *	by default, and the only address from which datagrams are received.
3460  *	For stream sockets, attempts to connect to @addr.
3461  *	Returns 0 or an error code.
3462  */
3463 
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3464 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3465 		   int flags)
3466 {
3467 	return sock->ops->connect(sock, addr, addrlen, flags);
3468 }
3469 EXPORT_SYMBOL(kernel_connect);
3470 
3471 /**
3472  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3473  *	@sock: socket
3474  *	@addr: address holder
3475  *
3476  * 	Fills the @addr pointer with the address which the socket is bound.
3477  *	Returns 0 or an error code.
3478  */
3479 
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3480 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3481 {
3482 	return sock->ops->getname(sock, addr, 0);
3483 }
3484 EXPORT_SYMBOL(kernel_getsockname);
3485 
3486 /**
3487  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3488  *	@sock: socket
3489  *	@addr: address holder
3490  *
3491  * 	Fills the @addr pointer with the address which the socket is connected.
3492  *	Returns 0 or an error code.
3493  */
3494 
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3495 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3496 {
3497 	return sock->ops->getname(sock, addr, 1);
3498 }
3499 EXPORT_SYMBOL(kernel_getpeername);
3500 
3501 /**
3502  *	kernel_sendpage - send a &page through a socket (kernel space)
3503  *	@sock: socket
3504  *	@page: page
3505  *	@offset: page offset
3506  *	@size: total size in bytes
3507  *	@flags: flags (MSG_DONTWAIT, ...)
3508  *
3509  *	Returns the total amount sent in bytes or an error.
3510  */
3511 
kernel_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)3512 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3513 		    size_t size, int flags)
3514 {
3515 	if (sock->ops->sendpage) {
3516 		/* Warn in case the improper page to zero-copy send */
3517 		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3518 		return sock->ops->sendpage(sock, page, offset, size, flags);
3519 	}
3520 	return sock_no_sendpage(sock, page, offset, size, flags);
3521 }
3522 EXPORT_SYMBOL(kernel_sendpage);
3523 
3524 /**
3525  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3526  *	@sk: sock
3527  *	@page: page
3528  *	@offset: page offset
3529  *	@size: total size in bytes
3530  *	@flags: flags (MSG_DONTWAIT, ...)
3531  *
3532  *	Returns the total amount sent in bytes or an error.
3533  *	Caller must hold @sk.
3534  */
3535 
kernel_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)3536 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3537 			   size_t size, int flags)
3538 {
3539 	struct socket *sock = sk->sk_socket;
3540 
3541 	if (sock->ops->sendpage_locked)
3542 		return sock->ops->sendpage_locked(sk, page, offset, size,
3543 						  flags);
3544 
3545 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3546 }
3547 EXPORT_SYMBOL(kernel_sendpage_locked);
3548 
3549 /**
3550  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3551  *	@sock: socket
3552  *	@how: connection part
3553  *
3554  *	Returns 0 or an error.
3555  */
3556 
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3557 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3558 {
3559 	return sock->ops->shutdown(sock, how);
3560 }
3561 EXPORT_SYMBOL(kernel_sock_shutdown);
3562 
3563 /**
3564  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3565  *	@sk: socket
3566  *
3567  *	This routine returns the IP overhead imposed by a socket i.e.
3568  *	the length of the underlying IP header, depending on whether
3569  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3570  *	on at the socket. Assumes that the caller has a lock on the socket.
3571  */
3572 
kernel_sock_ip_overhead(struct sock * sk)3573 u32 kernel_sock_ip_overhead(struct sock *sk)
3574 {
3575 	struct inet_sock *inet;
3576 	struct ip_options_rcu *opt;
3577 	u32 overhead = 0;
3578 #if IS_ENABLED(CONFIG_IPV6)
3579 	struct ipv6_pinfo *np;
3580 	struct ipv6_txoptions *optv6 = NULL;
3581 #endif /* IS_ENABLED(CONFIG_IPV6) */
3582 
3583 	if (!sk)
3584 		return overhead;
3585 
3586 	switch (sk->sk_family) {
3587 	case AF_INET:
3588 		inet = inet_sk(sk);
3589 		overhead += sizeof(struct iphdr);
3590 		opt = rcu_dereference_protected(inet->inet_opt,
3591 						sock_owned_by_user(sk));
3592 		if (opt)
3593 			overhead += opt->opt.optlen;
3594 		return overhead;
3595 #if IS_ENABLED(CONFIG_IPV6)
3596 	case AF_INET6:
3597 		np = inet6_sk(sk);
3598 		overhead += sizeof(struct ipv6hdr);
3599 		if (np)
3600 			optv6 = rcu_dereference_protected(np->opt,
3601 							  sock_owned_by_user(sk));
3602 		if (optv6)
3603 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3604 		return overhead;
3605 #endif /* IS_ENABLED(CONFIG_IPV6) */
3606 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3607 		return overhead;
3608 	}
3609 }
3610 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3611