• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004
6  *
7  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8  *		Probes initial implementation ( includes contributions from
9  *		Rusty Russell).
10  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
11  *		interface to access function arguments.
12  * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
13  *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
14  * 2005-Mar	Roland McGrath <roland@redhat.com>
15  *		Fixed to handle %rip-relative addressing mode correctly.
16  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18  *		<prasanna@in.ibm.com> added function-return probes.
19  * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
20  *		Added function return probes functionality
21  * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
22  *		kprobe-booster and kretprobe-booster for i386.
23  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
24  *		and kretprobe-booster for x86-64
25  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
26  *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
27  *		unified x86 kprobes code.
28  */
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/string.h>
32 #include <linux/slab.h>
33 #include <linux/hardirq.h>
34 #include <linux/preempt.h>
35 #include <linux/sched/debug.h>
36 #include <linux/perf_event.h>
37 #include <linux/extable.h>
38 #include <linux/kdebug.h>
39 #include <linux/kallsyms.h>
40 #include <linux/kgdb.h>
41 #include <linux/ftrace.h>
42 #include <linux/kasan.h>
43 #include <linux/moduleloader.h>
44 #include <linux/objtool.h>
45 #include <linux/vmalloc.h>
46 #include <linux/pgtable.h>
47 
48 #include <asm/text-patching.h>
49 #include <asm/cacheflush.h>
50 #include <asm/desc.h>
51 #include <linux/uaccess.h>
52 #include <asm/alternative.h>
53 #include <asm/insn.h>
54 #include <asm/debugreg.h>
55 #include <asm/set_memory.h>
56 
57 #include "common.h"
58 
59 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
60 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
61 
62 #define stack_addr(regs) ((unsigned long *)regs->sp)
63 
64 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
65 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
66 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
67 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
68 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
69 	 << (row % 32))
70 	/*
71 	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
72 	 * Groups, and some special opcodes can not boost.
73 	 * This is non-const and volatile to keep gcc from statically
74 	 * optimizing it out, as variable_test_bit makes gcc think only
75 	 * *(unsigned long*) is used.
76 	 */
77 static volatile u32 twobyte_is_boostable[256 / 32] = {
78 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
79 	/*      ----------------------------------------------          */
80 	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
81 	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
82 	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
83 	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
84 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
85 	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
86 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
87 	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
88 	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
89 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
90 	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
91 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
92 	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
93 	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
94 	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
95 	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
96 	/*      -----------------------------------------------         */
97 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
98 };
99 #undef W
100 
101 struct kretprobe_blackpoint kretprobe_blacklist[] = {
102 	{"__switch_to", }, /* This function switches only current task, but
103 			      doesn't switch kernel stack.*/
104 	{NULL, NULL}	/* Terminator */
105 };
106 
107 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
108 
109 static nokprobe_inline void
__synthesize_relative_insn(void * dest,void * from,void * to,u8 op)110 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
111 {
112 	struct __arch_relative_insn {
113 		u8 op;
114 		s32 raddr;
115 	} __packed *insn;
116 
117 	insn = (struct __arch_relative_insn *)dest;
118 	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
119 	insn->op = op;
120 }
121 
122 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
synthesize_reljump(void * dest,void * from,void * to)123 void synthesize_reljump(void *dest, void *from, void *to)
124 {
125 	__synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE);
126 }
127 NOKPROBE_SYMBOL(synthesize_reljump);
128 
129 /* Insert a call instruction at address 'from', which calls address 'to'.*/
synthesize_relcall(void * dest,void * from,void * to)130 void synthesize_relcall(void *dest, void *from, void *to)
131 {
132 	__synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE);
133 }
134 NOKPROBE_SYMBOL(synthesize_relcall);
135 
136 /*
137  * Skip the prefixes of the instruction.
138  */
skip_prefixes(kprobe_opcode_t * insn)139 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
140 {
141 	insn_attr_t attr;
142 
143 	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
144 	while (inat_is_legacy_prefix(attr)) {
145 		insn++;
146 		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
147 	}
148 #ifdef CONFIG_X86_64
149 	if (inat_is_rex_prefix(attr))
150 		insn++;
151 #endif
152 	return insn;
153 }
154 NOKPROBE_SYMBOL(skip_prefixes);
155 
156 /*
157  * Returns non-zero if INSN is boostable.
158  * RIP relative instructions are adjusted at copying time in 64 bits mode
159  */
can_boost(struct insn * insn,void * addr)160 int can_boost(struct insn *insn, void *addr)
161 {
162 	kprobe_opcode_t opcode;
163 	insn_byte_t prefix;
164 	int i;
165 
166 	if (search_exception_tables((unsigned long)addr))
167 		return 0;	/* Page fault may occur on this address. */
168 
169 	/* 2nd-byte opcode */
170 	if (insn->opcode.nbytes == 2)
171 		return test_bit(insn->opcode.bytes[1],
172 				(unsigned long *)twobyte_is_boostable);
173 
174 	if (insn->opcode.nbytes != 1)
175 		return 0;
176 
177 	for_each_insn_prefix(insn, i, prefix) {
178 		insn_attr_t attr;
179 
180 		attr = inat_get_opcode_attribute(prefix);
181 		/* Can't boost Address-size override prefix and CS override prefix */
182 		if (prefix == 0x2e || inat_is_address_size_prefix(attr))
183 			return 0;
184 	}
185 
186 	opcode = insn->opcode.bytes[0];
187 
188 	switch (opcode & 0xf0) {
189 	case 0x60:
190 		/* can't boost "bound" */
191 		return (opcode != 0x62);
192 	case 0x70:
193 		return 0; /* can't boost conditional jump */
194 	case 0x90:
195 		return opcode != 0x9a;	/* can't boost call far */
196 	case 0xc0:
197 		/* can't boost software-interruptions */
198 		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
199 	case 0xd0:
200 		/* can boost AA* and XLAT */
201 		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
202 	case 0xe0:
203 		/* can boost in/out and absolute jmps */
204 		return ((opcode & 0x04) || opcode == 0xea);
205 	case 0xf0:
206 		/* clear and set flags are boostable */
207 		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
208 	default:
209 		/* call is not boostable */
210 		return opcode != 0x9a;
211 	}
212 }
213 
214 static unsigned long
__recover_probed_insn(kprobe_opcode_t * buf,unsigned long addr)215 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
216 {
217 	struct kprobe *kp;
218 	unsigned long faddr;
219 
220 	kp = get_kprobe((void *)addr);
221 	faddr = ftrace_location(addr);
222 	/*
223 	 * Addresses inside the ftrace location are refused by
224 	 * arch_check_ftrace_location(). Something went terribly wrong
225 	 * if such an address is checked here.
226 	 */
227 	if (WARN_ON(faddr && faddr != addr))
228 		return 0UL;
229 	/*
230 	 * Use the current code if it is not modified by Kprobe
231 	 * and it cannot be modified by ftrace.
232 	 */
233 	if (!kp && !faddr)
234 		return addr;
235 
236 	/*
237 	 * Basically, kp->ainsn.insn has an original instruction.
238 	 * However, RIP-relative instruction can not do single-stepping
239 	 * at different place, __copy_instruction() tweaks the displacement of
240 	 * that instruction. In that case, we can't recover the instruction
241 	 * from the kp->ainsn.insn.
242 	 *
243 	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
244 	 * of the first byte of the probed instruction, which is overwritten
245 	 * by int3. And the instruction at kp->addr is not modified by kprobes
246 	 * except for the first byte, we can recover the original instruction
247 	 * from it and kp->opcode.
248 	 *
249 	 * In case of Kprobes using ftrace, we do not have a copy of
250 	 * the original instruction. In fact, the ftrace location might
251 	 * be modified at anytime and even could be in an inconsistent state.
252 	 * Fortunately, we know that the original code is the ideal 5-byte
253 	 * long NOP.
254 	 */
255 	if (copy_from_kernel_nofault(buf, (void *)addr,
256 		MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
257 		return 0UL;
258 
259 	if (faddr)
260 		memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
261 	else
262 		buf[0] = kp->opcode;
263 	return (unsigned long)buf;
264 }
265 
266 /*
267  * Recover the probed instruction at addr for further analysis.
268  * Caller must lock kprobes by kprobe_mutex, or disable preemption
269  * for preventing to release referencing kprobes.
270  * Returns zero if the instruction can not get recovered (or access failed).
271  */
recover_probed_instruction(kprobe_opcode_t * buf,unsigned long addr)272 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
273 {
274 	unsigned long __addr;
275 
276 	__addr = __recover_optprobed_insn(buf, addr);
277 	if (__addr != addr)
278 		return __addr;
279 
280 	return __recover_probed_insn(buf, addr);
281 }
282 
283 /* Check if paddr is at an instruction boundary */
can_probe(unsigned long paddr)284 static int can_probe(unsigned long paddr)
285 {
286 	unsigned long addr, __addr, offset = 0;
287 	struct insn insn;
288 	kprobe_opcode_t buf[MAX_INSN_SIZE];
289 
290 	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
291 		return 0;
292 
293 	/* Decode instructions */
294 	addr = paddr - offset;
295 	while (addr < paddr) {
296 		int ret;
297 
298 		/*
299 		 * Check if the instruction has been modified by another
300 		 * kprobe, in which case we replace the breakpoint by the
301 		 * original instruction in our buffer.
302 		 * Also, jump optimization will change the breakpoint to
303 		 * relative-jump. Since the relative-jump itself is
304 		 * normally used, we just go through if there is no kprobe.
305 		 */
306 		__addr = recover_probed_instruction(buf, addr);
307 		if (!__addr)
308 			return 0;
309 
310 		ret = insn_decode(&insn, (void *)__addr, MAX_INSN_SIZE, INSN_MODE_KERN);
311 		if (ret < 0)
312 			return 0;
313 
314 #ifdef CONFIG_KGDB
315 		/*
316 		 * If there is a dynamically installed kgdb sw breakpoint,
317 		 * this function should not be probed.
318 		 */
319 		if (insn.opcode.bytes[0] == INT3_INSN_OPCODE &&
320 		    kgdb_has_hit_break(addr))
321 			return 0;
322 #endif
323 		addr += insn.length;
324 	}
325 
326 	return (addr == paddr);
327 }
328 
329 /*
330  * Returns non-zero if opcode modifies the interrupt flag.
331  */
is_IF_modifier(kprobe_opcode_t * insn)332 static int is_IF_modifier(kprobe_opcode_t *insn)
333 {
334 	/* Skip prefixes */
335 	insn = skip_prefixes(insn);
336 
337 	switch (*insn) {
338 	case 0xfa:		/* cli */
339 	case 0xfb:		/* sti */
340 	case 0xcf:		/* iret/iretd */
341 	case 0x9d:		/* popf/popfd */
342 		return 1;
343 	}
344 
345 	return 0;
346 }
347 
348 /*
349  * Copy an instruction with recovering modified instruction by kprobes
350  * and adjust the displacement if the instruction uses the %rip-relative
351  * addressing mode. Note that since @real will be the final place of copied
352  * instruction, displacement must be adjust by @real, not @dest.
353  * This returns the length of copied instruction, or 0 if it has an error.
354  */
__copy_instruction(u8 * dest,u8 * src,u8 * real,struct insn * insn)355 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
356 {
357 	kprobe_opcode_t buf[MAX_INSN_SIZE];
358 	unsigned long recovered_insn = recover_probed_instruction(buf, (unsigned long)src);
359 	int ret;
360 
361 	if (!recovered_insn || !insn)
362 		return 0;
363 
364 	/* This can access kernel text if given address is not recovered */
365 	if (copy_from_kernel_nofault(dest, (void *)recovered_insn,
366 			MAX_INSN_SIZE))
367 		return 0;
368 
369 	ret = insn_decode(insn, dest, MAX_INSN_SIZE, INSN_MODE_KERN);
370 	if (ret < 0)
371 		return 0;
372 
373 	/* We can not probe force emulate prefixed instruction */
374 	if (insn_has_emulate_prefix(insn))
375 		return 0;
376 
377 	/* Another subsystem puts a breakpoint, failed to recover */
378 	if (insn->opcode.bytes[0] == INT3_INSN_OPCODE)
379 		return 0;
380 
381 	/* We should not singlestep on the exception masking instructions */
382 	if (insn_masking_exception(insn))
383 		return 0;
384 
385 #ifdef CONFIG_X86_64
386 	/* Only x86_64 has RIP relative instructions */
387 	if (insn_rip_relative(insn)) {
388 		s64 newdisp;
389 		u8 *disp;
390 		/*
391 		 * The copied instruction uses the %rip-relative addressing
392 		 * mode.  Adjust the displacement for the difference between
393 		 * the original location of this instruction and the location
394 		 * of the copy that will actually be run.  The tricky bit here
395 		 * is making sure that the sign extension happens correctly in
396 		 * this calculation, since we need a signed 32-bit result to
397 		 * be sign-extended to 64 bits when it's added to the %rip
398 		 * value and yield the same 64-bit result that the sign-
399 		 * extension of the original signed 32-bit displacement would
400 		 * have given.
401 		 */
402 		newdisp = (u8 *) src + (s64) insn->displacement.value
403 			  - (u8 *) real;
404 		if ((s64) (s32) newdisp != newdisp) {
405 			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
406 			return 0;
407 		}
408 		disp = (u8 *) dest + insn_offset_displacement(insn);
409 		*(s32 *) disp = (s32) newdisp;
410 	}
411 #endif
412 	return insn->length;
413 }
414 
415 /* Prepare reljump right after instruction to boost */
prepare_boost(kprobe_opcode_t * buf,struct kprobe * p,struct insn * insn)416 static int prepare_boost(kprobe_opcode_t *buf, struct kprobe *p,
417 			  struct insn *insn)
418 {
419 	int len = insn->length;
420 
421 	if (can_boost(insn, p->addr) &&
422 	    MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) {
423 		/*
424 		 * These instructions can be executed directly if it
425 		 * jumps back to correct address.
426 		 */
427 		synthesize_reljump(buf + len, p->ainsn.insn + len,
428 				   p->addr + insn->length);
429 		len += JMP32_INSN_SIZE;
430 		p->ainsn.boostable = true;
431 	} else {
432 		p->ainsn.boostable = false;
433 	}
434 
435 	return len;
436 }
437 
438 /* Make page to RO mode when allocate it */
alloc_insn_page(void)439 void *alloc_insn_page(void)
440 {
441 	void *page;
442 
443 	page = module_alloc(PAGE_SIZE);
444 	if (!page)
445 		return NULL;
446 
447 	set_vm_flush_reset_perms(page);
448 	/*
449 	 * First make the page read-only, and only then make it executable to
450 	 * prevent it from being W+X in between.
451 	 */
452 	set_memory_ro((unsigned long)page, 1);
453 
454 	/*
455 	 * TODO: Once additional kernel code protection mechanisms are set, ensure
456 	 * that the page was not maliciously altered and it is still zeroed.
457 	 */
458 	set_memory_x((unsigned long)page, 1);
459 
460 	return page;
461 }
462 
463 /* Recover page to RW mode before releasing it */
free_insn_page(void * page)464 void free_insn_page(void *page)
465 {
466 	module_memfree(page);
467 }
468 
arch_copy_kprobe(struct kprobe * p)469 static int arch_copy_kprobe(struct kprobe *p)
470 {
471 	struct insn insn;
472 	kprobe_opcode_t buf[MAX_INSN_SIZE];
473 	int len;
474 
475 	/* Copy an instruction with recovering if other optprobe modifies it.*/
476 	len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
477 	if (!len)
478 		return -EINVAL;
479 
480 	/*
481 	 * __copy_instruction can modify the displacement of the instruction,
482 	 * but it doesn't affect boostable check.
483 	 */
484 	len = prepare_boost(buf, p, &insn);
485 
486 	/* Check whether the instruction modifies Interrupt Flag or not */
487 	p->ainsn.if_modifier = is_IF_modifier(buf);
488 
489 	/* Also, displacement change doesn't affect the first byte */
490 	p->opcode = buf[0];
491 
492 	p->ainsn.tp_len = len;
493 	perf_event_text_poke(p->ainsn.insn, NULL, 0, buf, len);
494 
495 	/* OK, write back the instruction(s) into ROX insn buffer */
496 	text_poke(p->ainsn.insn, buf, len);
497 
498 	return 0;
499 }
500 
arch_prepare_kprobe(struct kprobe * p)501 int arch_prepare_kprobe(struct kprobe *p)
502 {
503 	int ret;
504 
505 	if (alternatives_text_reserved(p->addr, p->addr))
506 		return -EINVAL;
507 
508 	if (!can_probe((unsigned long)p->addr))
509 		return -EILSEQ;
510 	/* insn: must be on special executable page on x86. */
511 	p->ainsn.insn = get_insn_slot();
512 	if (!p->ainsn.insn)
513 		return -ENOMEM;
514 
515 	ret = arch_copy_kprobe(p);
516 	if (ret) {
517 		free_insn_slot(p->ainsn.insn, 0);
518 		p->ainsn.insn = NULL;
519 	}
520 
521 	return ret;
522 }
523 
arch_arm_kprobe(struct kprobe * p)524 void arch_arm_kprobe(struct kprobe *p)
525 {
526 	u8 int3 = INT3_INSN_OPCODE;
527 
528 	text_poke(p->addr, &int3, 1);
529 	text_poke_sync();
530 	perf_event_text_poke(p->addr, &p->opcode, 1, &int3, 1);
531 }
532 
arch_disarm_kprobe(struct kprobe * p)533 void arch_disarm_kprobe(struct kprobe *p)
534 {
535 	u8 int3 = INT3_INSN_OPCODE;
536 
537 	perf_event_text_poke(p->addr, &int3, 1, &p->opcode, 1);
538 	text_poke(p->addr, &p->opcode, 1);
539 	text_poke_sync();
540 }
541 
arch_remove_kprobe(struct kprobe * p)542 void arch_remove_kprobe(struct kprobe *p)
543 {
544 	if (p->ainsn.insn) {
545 		/* Record the perf event before freeing the slot */
546 		perf_event_text_poke(p->ainsn.insn, p->ainsn.insn,
547 				     p->ainsn.tp_len, NULL, 0);
548 		free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
549 		p->ainsn.insn = NULL;
550 	}
551 }
552 
553 static nokprobe_inline void
save_previous_kprobe(struct kprobe_ctlblk * kcb)554 save_previous_kprobe(struct kprobe_ctlblk *kcb)
555 {
556 	kcb->prev_kprobe.kp = kprobe_running();
557 	kcb->prev_kprobe.status = kcb->kprobe_status;
558 	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
559 	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
560 }
561 
562 static nokprobe_inline void
restore_previous_kprobe(struct kprobe_ctlblk * kcb)563 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
564 {
565 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
566 	kcb->kprobe_status = kcb->prev_kprobe.status;
567 	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
568 	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
569 }
570 
571 static nokprobe_inline void
set_current_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)572 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
573 		   struct kprobe_ctlblk *kcb)
574 {
575 	__this_cpu_write(current_kprobe, p);
576 	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
577 		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
578 	if (p->ainsn.if_modifier)
579 		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
580 }
581 
clear_btf(void)582 static nokprobe_inline void clear_btf(void)
583 {
584 	if (test_thread_flag(TIF_BLOCKSTEP)) {
585 		unsigned long debugctl = get_debugctlmsr();
586 
587 		debugctl &= ~DEBUGCTLMSR_BTF;
588 		update_debugctlmsr(debugctl);
589 	}
590 }
591 
restore_btf(void)592 static nokprobe_inline void restore_btf(void)
593 {
594 	if (test_thread_flag(TIF_BLOCKSTEP)) {
595 		unsigned long debugctl = get_debugctlmsr();
596 
597 		debugctl |= DEBUGCTLMSR_BTF;
598 		update_debugctlmsr(debugctl);
599 	}
600 }
601 
arch_prepare_kretprobe(struct kretprobe_instance * ri,struct pt_regs * regs)602 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
603 {
604 	unsigned long *sara = stack_addr(regs);
605 
606 	ri->ret_addr = (kprobe_opcode_t *) *sara;
607 	ri->fp = sara;
608 
609 	/* Replace the return addr with trampoline addr */
610 	*sara = (unsigned long) &kretprobe_trampoline;
611 }
612 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
613 
setup_singlestep(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb,int reenter)614 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
615 			     struct kprobe_ctlblk *kcb, int reenter)
616 {
617 	if (setup_detour_execution(p, regs, reenter))
618 		return;
619 
620 #if !defined(CONFIG_PREEMPTION)
621 	if (p->ainsn.boostable && !p->post_handler) {
622 		/* Boost up -- we can execute copied instructions directly */
623 		if (!reenter)
624 			reset_current_kprobe();
625 		/*
626 		 * Reentering boosted probe doesn't reset current_kprobe,
627 		 * nor set current_kprobe, because it doesn't use single
628 		 * stepping.
629 		 */
630 		regs->ip = (unsigned long)p->ainsn.insn;
631 		return;
632 	}
633 #endif
634 	if (reenter) {
635 		save_previous_kprobe(kcb);
636 		set_current_kprobe(p, regs, kcb);
637 		kcb->kprobe_status = KPROBE_REENTER;
638 	} else
639 		kcb->kprobe_status = KPROBE_HIT_SS;
640 	/* Prepare real single stepping */
641 	clear_btf();
642 	regs->flags |= X86_EFLAGS_TF;
643 	regs->flags &= ~X86_EFLAGS_IF;
644 	/* single step inline if the instruction is an int3 */
645 	if (p->opcode == INT3_INSN_OPCODE)
646 		regs->ip = (unsigned long)p->addr;
647 	else
648 		regs->ip = (unsigned long)p->ainsn.insn;
649 }
650 NOKPROBE_SYMBOL(setup_singlestep);
651 
652 /*
653  * We have reentered the kprobe_handler(), since another probe was hit while
654  * within the handler. We save the original kprobes variables and just single
655  * step on the instruction of the new probe without calling any user handlers.
656  */
reenter_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)657 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
658 			  struct kprobe_ctlblk *kcb)
659 {
660 	switch (kcb->kprobe_status) {
661 	case KPROBE_HIT_SSDONE:
662 	case KPROBE_HIT_ACTIVE:
663 	case KPROBE_HIT_SS:
664 		kprobes_inc_nmissed_count(p);
665 		setup_singlestep(p, regs, kcb, 1);
666 		break;
667 	case KPROBE_REENTER:
668 		/* A probe has been hit in the codepath leading up to, or just
669 		 * after, single-stepping of a probed instruction. This entire
670 		 * codepath should strictly reside in .kprobes.text section.
671 		 * Raise a BUG or we'll continue in an endless reentering loop
672 		 * and eventually a stack overflow.
673 		 */
674 		pr_err("Unrecoverable kprobe detected.\n");
675 		dump_kprobe(p);
676 		BUG();
677 	default:
678 		/* impossible cases */
679 		WARN_ON(1);
680 		return 0;
681 	}
682 
683 	return 1;
684 }
685 NOKPROBE_SYMBOL(reenter_kprobe);
686 
687 /*
688  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
689  * remain disabled throughout this function.
690  */
kprobe_int3_handler(struct pt_regs * regs)691 int kprobe_int3_handler(struct pt_regs *regs)
692 {
693 	kprobe_opcode_t *addr;
694 	struct kprobe *p;
695 	struct kprobe_ctlblk *kcb;
696 
697 	if (user_mode(regs))
698 		return 0;
699 
700 	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
701 	/*
702 	 * We don't want to be preempted for the entire duration of kprobe
703 	 * processing. Since int3 and debug trap disables irqs and we clear
704 	 * IF while singlestepping, it must be no preemptible.
705 	 */
706 
707 	kcb = get_kprobe_ctlblk();
708 	p = get_kprobe(addr);
709 
710 	if (p) {
711 		if (kprobe_running()) {
712 			if (reenter_kprobe(p, regs, kcb))
713 				return 1;
714 		} else {
715 			set_current_kprobe(p, regs, kcb);
716 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
717 
718 			/*
719 			 * If we have no pre-handler or it returned 0, we
720 			 * continue with normal processing.  If we have a
721 			 * pre-handler and it returned non-zero, that means
722 			 * user handler setup registers to exit to another
723 			 * instruction, we must skip the single stepping.
724 			 */
725 			if (!p->pre_handler || !p->pre_handler(p, regs))
726 				setup_singlestep(p, regs, kcb, 0);
727 			else
728 				reset_current_kprobe();
729 			return 1;
730 		}
731 	} else if (*addr != INT3_INSN_OPCODE) {
732 		/*
733 		 * The breakpoint instruction was removed right
734 		 * after we hit it.  Another cpu has removed
735 		 * either a probepoint or a debugger breakpoint
736 		 * at this address.  In either case, no further
737 		 * handling of this interrupt is appropriate.
738 		 * Back up over the (now missing) int3 and run
739 		 * the original instruction.
740 		 */
741 		regs->ip = (unsigned long)addr;
742 		return 1;
743 	} /* else: not a kprobe fault; let the kernel handle it */
744 
745 	return 0;
746 }
747 NOKPROBE_SYMBOL(kprobe_int3_handler);
748 
749 /*
750  * When a retprobed function returns, this code saves registers and
751  * calls trampoline_handler() runs, which calls the kretprobe's handler.
752  */
753 asm(
754 	".text\n"
755 	".global kretprobe_trampoline\n"
756 	".type kretprobe_trampoline, @function\n"
757 	"kretprobe_trampoline:\n"
758 	/* We don't bother saving the ss register */
759 #ifdef CONFIG_X86_64
760 	"	pushq %rsp\n"
761 	"	pushfq\n"
762 	SAVE_REGS_STRING
763 	"	movq %rsp, %rdi\n"
764 	"	call trampoline_handler\n"
765 	/* Replace saved sp with true return address. */
766 	"	movq %rax, 19*8(%rsp)\n"
767 	RESTORE_REGS_STRING
768 	"	popfq\n"
769 #else
770 	"	pushl %esp\n"
771 	"	pushfl\n"
772 	SAVE_REGS_STRING
773 	"	movl %esp, %eax\n"
774 	"	call trampoline_handler\n"
775 	/* Replace saved sp with true return address. */
776 	"	movl %eax, 15*4(%esp)\n"
777 	RESTORE_REGS_STRING
778 	"	popfl\n"
779 #endif
780 	ASM_RET
781 	".size kretprobe_trampoline, .-kretprobe_trampoline\n"
782 );
783 NOKPROBE_SYMBOL(kretprobe_trampoline);
784 STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
785 
786 
787 /*
788  * Called from kretprobe_trampoline
789  */
trampoline_handler(struct pt_regs * regs)790 __used __visible void *trampoline_handler(struct pt_regs *regs)
791 {
792 	/* fixup registers */
793 	regs->cs = __KERNEL_CS;
794 #ifdef CONFIG_X86_32
795 	regs->gs = 0;
796 #endif
797 	regs->ip = (unsigned long)&kretprobe_trampoline;
798 	regs->orig_ax = ~0UL;
799 
800 	return (void *)kretprobe_trampoline_handler(regs, &kretprobe_trampoline, &regs->sp);
801 }
802 NOKPROBE_SYMBOL(trampoline_handler);
803 
804 /*
805  * Called after single-stepping.  p->addr is the address of the
806  * instruction whose first byte has been replaced by the "int 3"
807  * instruction.  To avoid the SMP problems that can occur when we
808  * temporarily put back the original opcode to single-step, we
809  * single-stepped a copy of the instruction.  The address of this
810  * copy is p->ainsn.insn.
811  *
812  * This function prepares to return from the post-single-step
813  * interrupt.  We have to fix up the stack as follows:
814  *
815  * 0) Except in the case of absolute or indirect jump or call instructions,
816  * the new ip is relative to the copied instruction.  We need to make
817  * it relative to the original instruction.
818  *
819  * 1) If the single-stepped instruction was pushfl, then the TF and IF
820  * flags are set in the just-pushed flags, and may need to be cleared.
821  *
822  * 2) If the single-stepped instruction was a call, the return address
823  * that is atop the stack is the address following the copied instruction.
824  * We need to make it the address following the original instruction.
825  *
826  * If this is the first time we've single-stepped the instruction at
827  * this probepoint, and the instruction is boostable, boost it: add a
828  * jump instruction after the copied instruction, that jumps to the next
829  * instruction after the probepoint.
830  */
resume_execution(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)831 static void resume_execution(struct kprobe *p, struct pt_regs *regs,
832 			     struct kprobe_ctlblk *kcb)
833 {
834 	unsigned long *tos = stack_addr(regs);
835 	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
836 	unsigned long orig_ip = (unsigned long)p->addr;
837 	kprobe_opcode_t *insn = p->ainsn.insn;
838 
839 	/* Skip prefixes */
840 	insn = skip_prefixes(insn);
841 
842 	regs->flags &= ~X86_EFLAGS_TF;
843 	switch (*insn) {
844 	case 0x9c:	/* pushfl */
845 		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
846 		*tos |= kcb->kprobe_old_flags;
847 		break;
848 	case 0xc2:	/* iret/ret/lret */
849 	case 0xc3:
850 	case 0xca:
851 	case 0xcb:
852 	case 0xcf:
853 	case 0xea:	/* jmp absolute -- ip is correct */
854 		/* ip is already adjusted, no more changes required */
855 		p->ainsn.boostable = true;
856 		goto no_change;
857 	case 0xe8:	/* call relative - Fix return addr */
858 		*tos = orig_ip + (*tos - copy_ip);
859 		break;
860 #ifdef CONFIG_X86_32
861 	case 0x9a:	/* call absolute -- same as call absolute, indirect */
862 		*tos = orig_ip + (*tos - copy_ip);
863 		goto no_change;
864 #endif
865 	case 0xff:
866 		if ((insn[1] & 0x30) == 0x10) {
867 			/*
868 			 * call absolute, indirect
869 			 * Fix return addr; ip is correct.
870 			 * But this is not boostable
871 			 */
872 			*tos = orig_ip + (*tos - copy_ip);
873 			goto no_change;
874 		} else if (((insn[1] & 0x31) == 0x20) ||
875 			   ((insn[1] & 0x31) == 0x21)) {
876 			/*
877 			 * jmp near and far, absolute indirect
878 			 * ip is correct. And this is boostable
879 			 */
880 			p->ainsn.boostable = true;
881 			goto no_change;
882 		}
883 	default:
884 		break;
885 	}
886 
887 	regs->ip += orig_ip - copy_ip;
888 
889 no_change:
890 	restore_btf();
891 }
892 NOKPROBE_SYMBOL(resume_execution);
893 
894 /*
895  * Interrupts are disabled on entry as trap1 is an interrupt gate and they
896  * remain disabled throughout this function.
897  */
kprobe_debug_handler(struct pt_regs * regs)898 int kprobe_debug_handler(struct pt_regs *regs)
899 {
900 	struct kprobe *cur = kprobe_running();
901 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
902 
903 	if (!cur)
904 		return 0;
905 
906 	resume_execution(cur, regs, kcb);
907 	regs->flags |= kcb->kprobe_saved_flags;
908 
909 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
910 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
911 		cur->post_handler(cur, regs, 0);
912 	}
913 
914 	/* Restore back the original saved kprobes variables and continue. */
915 	if (kcb->kprobe_status == KPROBE_REENTER) {
916 		restore_previous_kprobe(kcb);
917 		goto out;
918 	}
919 	reset_current_kprobe();
920 out:
921 	/*
922 	 * if somebody else is singlestepping across a probe point, flags
923 	 * will have TF set, in which case, continue the remaining processing
924 	 * of do_debug, as if this is not a probe hit.
925 	 */
926 	if (regs->flags & X86_EFLAGS_TF)
927 		return 0;
928 
929 	return 1;
930 }
931 NOKPROBE_SYMBOL(kprobe_debug_handler);
932 
kprobe_fault_handler(struct pt_regs * regs,int trapnr)933 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
934 {
935 	struct kprobe *cur = kprobe_running();
936 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
937 
938 	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
939 		/* This must happen on single-stepping */
940 		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
941 			kcb->kprobe_status != KPROBE_REENTER);
942 		/*
943 		 * We are here because the instruction being single
944 		 * stepped caused a page fault. We reset the current
945 		 * kprobe and the ip points back to the probe address
946 		 * and allow the page fault handler to continue as a
947 		 * normal page fault.
948 		 */
949 		regs->ip = (unsigned long)cur->addr;
950 		/*
951 		 * Trap flag (TF) has been set here because this fault
952 		 * happened where the single stepping will be done.
953 		 * So clear it by resetting the current kprobe:
954 		 */
955 		regs->flags &= ~X86_EFLAGS_TF;
956 		/*
957 		 * Since the single step (trap) has been cancelled,
958 		 * we need to restore BTF here.
959 		 */
960 		restore_btf();
961 
962 		/*
963 		 * If the TF flag was set before the kprobe hit,
964 		 * don't touch it:
965 		 */
966 		regs->flags |= kcb->kprobe_old_flags;
967 
968 		if (kcb->kprobe_status == KPROBE_REENTER)
969 			restore_previous_kprobe(kcb);
970 		else
971 			reset_current_kprobe();
972 	} else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
973 		   kcb->kprobe_status == KPROBE_HIT_SSDONE) {
974 		/*
975 		 * We increment the nmissed count for accounting,
976 		 * we can also use npre/npostfault count for accounting
977 		 * these specific fault cases.
978 		 */
979 		kprobes_inc_nmissed_count(cur);
980 
981 		/*
982 		 * We come here because instructions in the pre/post
983 		 * handler caused the page_fault, this could happen
984 		 * if handler tries to access user space by
985 		 * copy_from_user(), get_user() etc. Let the
986 		 * user-specified handler try to fix it first.
987 		 */
988 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
989 			return 1;
990 	}
991 
992 	return 0;
993 }
994 NOKPROBE_SYMBOL(kprobe_fault_handler);
995 
arch_populate_kprobe_blacklist(void)996 int __init arch_populate_kprobe_blacklist(void)
997 {
998 	return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
999 					 (unsigned long)__entry_text_end);
1000 }
1001 
arch_init_kprobes(void)1002 int __init arch_init_kprobes(void)
1003 {
1004 	return 0;
1005 }
1006 
arch_trampoline_kprobe(struct kprobe * p)1007 int arch_trampoline_kprobe(struct kprobe *p)
1008 {
1009 	return 0;
1010 }
1011