1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Kernel Probes (KProbes)
4 * kernel/kprobes.c
5 *
6 * Copyright (C) IBM Corporation, 2002, 2004
7 *
8 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9 * Probes initial implementation (includes suggestions from
10 * Rusty Russell).
11 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12 * hlists and exceptions notifier as suggested by Andi Kleen.
13 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14 * interface to access function arguments.
15 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16 * exceptions notifier to be first on the priority list.
17 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19 * <prasanna@in.ibm.com> added function-return probes.
20 */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38 #include <linux/perf_event.h>
39 #include <linux/static_call.h>
40
41 #include <asm/sections.h>
42 #include <asm/cacheflush.h>
43 #include <asm/errno.h>
44 #include <linux/uaccess.h>
45
46 #define KPROBE_HASH_BITS 6
47 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
48
49
50 static int kprobes_initialized;
51 /* kprobe_table can be accessed by
52 * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
53 * Or
54 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
55 */
56 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
57 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
58
59 /* NOTE: change this value only with kprobe_mutex held */
60 static bool kprobes_all_disarmed;
61
62 /* This protects kprobe_table and optimizing_list */
63 static DEFINE_MUTEX(kprobe_mutex);
64 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
65 static struct {
66 raw_spinlock_t lock ____cacheline_aligned_in_smp;
67 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
68
kprobe_lookup_name(const char * name,unsigned int __unused)69 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
70 unsigned int __unused)
71 {
72 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
73 }
74
kretprobe_table_lock_ptr(unsigned long hash)75 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
76 {
77 return &(kretprobe_table_locks[hash].lock);
78 }
79
80 /* Blacklist -- list of struct kprobe_blacklist_entry */
81 static LIST_HEAD(kprobe_blacklist);
82
83 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
84 /*
85 * kprobe->ainsn.insn points to the copy of the instruction to be
86 * single-stepped. x86_64, POWER4 and above have no-exec support and
87 * stepping on the instruction on a vmalloced/kmalloced/data page
88 * is a recipe for disaster
89 */
90 struct kprobe_insn_page {
91 struct list_head list;
92 kprobe_opcode_t *insns; /* Page of instruction slots */
93 struct kprobe_insn_cache *cache;
94 int nused;
95 int ngarbage;
96 char slot_used[];
97 };
98
99 #define KPROBE_INSN_PAGE_SIZE(slots) \
100 (offsetof(struct kprobe_insn_page, slot_used) + \
101 (sizeof(char) * (slots)))
102
slots_per_page(struct kprobe_insn_cache * c)103 static int slots_per_page(struct kprobe_insn_cache *c)
104 {
105 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
106 }
107
108 enum kprobe_slot_state {
109 SLOT_CLEAN = 0,
110 SLOT_DIRTY = 1,
111 SLOT_USED = 2,
112 };
113
alloc_insn_page(void)114 void __weak *alloc_insn_page(void)
115 {
116 return module_alloc(PAGE_SIZE);
117 }
118
free_insn_page(void * page)119 void __weak free_insn_page(void *page)
120 {
121 module_memfree(page);
122 }
123
124 struct kprobe_insn_cache kprobe_insn_slots = {
125 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
126 .alloc = alloc_insn_page,
127 .free = free_insn_page,
128 .sym = KPROBE_INSN_PAGE_SYM,
129 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
130 .insn_size = MAX_INSN_SIZE,
131 .nr_garbage = 0,
132 };
133 static int collect_garbage_slots(struct kprobe_insn_cache *c);
134
135 /**
136 * __get_insn_slot() - Find a slot on an executable page for an instruction.
137 * We allocate an executable page if there's no room on existing ones.
138 */
__get_insn_slot(struct kprobe_insn_cache * c)139 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
140 {
141 struct kprobe_insn_page *kip;
142 kprobe_opcode_t *slot = NULL;
143
144 /* Since the slot array is not protected by rcu, we need a mutex */
145 mutex_lock(&c->mutex);
146 retry:
147 rcu_read_lock();
148 list_for_each_entry_rcu(kip, &c->pages, list) {
149 if (kip->nused < slots_per_page(c)) {
150 int i;
151 for (i = 0; i < slots_per_page(c); i++) {
152 if (kip->slot_used[i] == SLOT_CLEAN) {
153 kip->slot_used[i] = SLOT_USED;
154 kip->nused++;
155 slot = kip->insns + (i * c->insn_size);
156 rcu_read_unlock();
157 goto out;
158 }
159 }
160 /* kip->nused is broken. Fix it. */
161 kip->nused = slots_per_page(c);
162 WARN_ON(1);
163 }
164 }
165 rcu_read_unlock();
166
167 /* If there are any garbage slots, collect it and try again. */
168 if (c->nr_garbage && collect_garbage_slots(c) == 0)
169 goto retry;
170
171 /* All out of space. Need to allocate a new page. */
172 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
173 if (!kip)
174 goto out;
175
176 /*
177 * Use module_alloc so this page is within +/- 2GB of where the
178 * kernel image and loaded module images reside. This is required
179 * so x86_64 can correctly handle the %rip-relative fixups.
180 */
181 kip->insns = c->alloc();
182 if (!kip->insns) {
183 kfree(kip);
184 goto out;
185 }
186 INIT_LIST_HEAD(&kip->list);
187 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
188 kip->slot_used[0] = SLOT_USED;
189 kip->nused = 1;
190 kip->ngarbage = 0;
191 kip->cache = c;
192 list_add_rcu(&kip->list, &c->pages);
193 slot = kip->insns;
194
195 /* Record the perf ksymbol register event after adding the page */
196 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
197 PAGE_SIZE, false, c->sym);
198 out:
199 mutex_unlock(&c->mutex);
200 return slot;
201 }
202
203 /* Return 1 if all garbages are collected, otherwise 0. */
collect_one_slot(struct kprobe_insn_page * kip,int idx)204 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
205 {
206 kip->slot_used[idx] = SLOT_CLEAN;
207 kip->nused--;
208 if (kip->nused == 0) {
209 /*
210 * Page is no longer in use. Free it unless
211 * it's the last one. We keep the last one
212 * so as not to have to set it up again the
213 * next time somebody inserts a probe.
214 */
215 if (!list_is_singular(&kip->list)) {
216 /*
217 * Record perf ksymbol unregister event before removing
218 * the page.
219 */
220 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
221 (unsigned long)kip->insns, PAGE_SIZE, true,
222 kip->cache->sym);
223 list_del_rcu(&kip->list);
224 synchronize_rcu();
225 kip->cache->free(kip->insns);
226 kfree(kip);
227 }
228 return 1;
229 }
230 return 0;
231 }
232
collect_garbage_slots(struct kprobe_insn_cache * c)233 static int collect_garbage_slots(struct kprobe_insn_cache *c)
234 {
235 struct kprobe_insn_page *kip, *next;
236
237 /* Ensure no-one is interrupted on the garbages */
238 synchronize_rcu();
239
240 list_for_each_entry_safe(kip, next, &c->pages, list) {
241 int i;
242 if (kip->ngarbage == 0)
243 continue;
244 kip->ngarbage = 0; /* we will collect all garbages */
245 for (i = 0; i < slots_per_page(c); i++) {
246 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
247 break;
248 }
249 }
250 c->nr_garbage = 0;
251 return 0;
252 }
253
__free_insn_slot(struct kprobe_insn_cache * c,kprobe_opcode_t * slot,int dirty)254 void __free_insn_slot(struct kprobe_insn_cache *c,
255 kprobe_opcode_t *slot, int dirty)
256 {
257 struct kprobe_insn_page *kip;
258 long idx;
259
260 mutex_lock(&c->mutex);
261 rcu_read_lock();
262 list_for_each_entry_rcu(kip, &c->pages, list) {
263 idx = ((long)slot - (long)kip->insns) /
264 (c->insn_size * sizeof(kprobe_opcode_t));
265 if (idx >= 0 && idx < slots_per_page(c))
266 goto out;
267 }
268 /* Could not find this slot. */
269 WARN_ON(1);
270 kip = NULL;
271 out:
272 rcu_read_unlock();
273 /* Mark and sweep: this may sleep */
274 if (kip) {
275 /* Check double free */
276 WARN_ON(kip->slot_used[idx] != SLOT_USED);
277 if (dirty) {
278 kip->slot_used[idx] = SLOT_DIRTY;
279 kip->ngarbage++;
280 if (++c->nr_garbage > slots_per_page(c))
281 collect_garbage_slots(c);
282 } else {
283 collect_one_slot(kip, idx);
284 }
285 }
286 mutex_unlock(&c->mutex);
287 }
288
289 /*
290 * Check given address is on the page of kprobe instruction slots.
291 * This will be used for checking whether the address on a stack
292 * is on a text area or not.
293 */
__is_insn_slot_addr(struct kprobe_insn_cache * c,unsigned long addr)294 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
295 {
296 struct kprobe_insn_page *kip;
297 bool ret = false;
298
299 rcu_read_lock();
300 list_for_each_entry_rcu(kip, &c->pages, list) {
301 if (addr >= (unsigned long)kip->insns &&
302 addr < (unsigned long)kip->insns + PAGE_SIZE) {
303 ret = true;
304 break;
305 }
306 }
307 rcu_read_unlock();
308
309 return ret;
310 }
311
kprobe_cache_get_kallsym(struct kprobe_insn_cache * c,unsigned int * symnum,unsigned long * value,char * type,char * sym)312 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
313 unsigned long *value, char *type, char *sym)
314 {
315 struct kprobe_insn_page *kip;
316 int ret = -ERANGE;
317
318 rcu_read_lock();
319 list_for_each_entry_rcu(kip, &c->pages, list) {
320 if ((*symnum)--)
321 continue;
322 strlcpy(sym, c->sym, KSYM_NAME_LEN);
323 *type = 't';
324 *value = (unsigned long)kip->insns;
325 ret = 0;
326 break;
327 }
328 rcu_read_unlock();
329
330 return ret;
331 }
332
333 #ifdef CONFIG_OPTPROBES
334 /* For optimized_kprobe buffer */
335 struct kprobe_insn_cache kprobe_optinsn_slots = {
336 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
337 .alloc = alloc_insn_page,
338 .free = free_insn_page,
339 .sym = KPROBE_OPTINSN_PAGE_SYM,
340 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
341 /* .insn_size is initialized later */
342 .nr_garbage = 0,
343 };
344 #endif
345 #endif
346
347 /* We have preemption disabled.. so it is safe to use __ versions */
set_kprobe_instance(struct kprobe * kp)348 static inline void set_kprobe_instance(struct kprobe *kp)
349 {
350 __this_cpu_write(kprobe_instance, kp);
351 }
352
reset_kprobe_instance(void)353 static inline void reset_kprobe_instance(void)
354 {
355 __this_cpu_write(kprobe_instance, NULL);
356 }
357
358 /*
359 * This routine is called either:
360 * - under the kprobe_mutex - during kprobe_[un]register()
361 * OR
362 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
363 */
get_kprobe(void * addr)364 struct kprobe *get_kprobe(void *addr)
365 {
366 struct hlist_head *head;
367 struct kprobe *p;
368
369 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
370 hlist_for_each_entry_rcu(p, head, hlist,
371 lockdep_is_held(&kprobe_mutex)) {
372 if (p->addr == addr)
373 return p;
374 }
375
376 return NULL;
377 }
378 NOKPROBE_SYMBOL(get_kprobe);
379
380 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
381
382 /* Return true if the kprobe is an aggregator */
kprobe_aggrprobe(struct kprobe * p)383 static inline int kprobe_aggrprobe(struct kprobe *p)
384 {
385 return p->pre_handler == aggr_pre_handler;
386 }
387
388 /* Return true(!0) if the kprobe is unused */
kprobe_unused(struct kprobe * p)389 static inline int kprobe_unused(struct kprobe *p)
390 {
391 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
392 list_empty(&p->list);
393 }
394
395 /*
396 * Keep all fields in the kprobe consistent
397 */
copy_kprobe(struct kprobe * ap,struct kprobe * p)398 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
399 {
400 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
401 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
402 }
403
404 #ifdef CONFIG_OPTPROBES
405 /* NOTE: change this value only with kprobe_mutex held */
406 static bool kprobes_allow_optimization;
407
408 /*
409 * Call all pre_handler on the list, but ignores its return value.
410 * This must be called from arch-dep optimized caller.
411 */
opt_pre_handler(struct kprobe * p,struct pt_regs * regs)412 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
413 {
414 struct kprobe *kp;
415
416 list_for_each_entry_rcu(kp, &p->list, list) {
417 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
418 set_kprobe_instance(kp);
419 kp->pre_handler(kp, regs);
420 }
421 reset_kprobe_instance();
422 }
423 }
424 NOKPROBE_SYMBOL(opt_pre_handler);
425
426 /* Free optimized instructions and optimized_kprobe */
free_aggr_kprobe(struct kprobe * p)427 static void free_aggr_kprobe(struct kprobe *p)
428 {
429 struct optimized_kprobe *op;
430
431 op = container_of(p, struct optimized_kprobe, kp);
432 arch_remove_optimized_kprobe(op);
433 arch_remove_kprobe(p);
434 kfree(op);
435 }
436
437 /* Return true(!0) if the kprobe is ready for optimization. */
kprobe_optready(struct kprobe * p)438 static inline int kprobe_optready(struct kprobe *p)
439 {
440 struct optimized_kprobe *op;
441
442 if (kprobe_aggrprobe(p)) {
443 op = container_of(p, struct optimized_kprobe, kp);
444 return arch_prepared_optinsn(&op->optinsn);
445 }
446
447 return 0;
448 }
449
450 /* Return true if the kprobe is disarmed. Note: p must be on hash list */
kprobe_disarmed(struct kprobe * p)451 bool kprobe_disarmed(struct kprobe *p)
452 {
453 struct optimized_kprobe *op;
454
455 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
456 if (!kprobe_aggrprobe(p))
457 return kprobe_disabled(p);
458
459 op = container_of(p, struct optimized_kprobe, kp);
460
461 return kprobe_disabled(p) && list_empty(&op->list);
462 }
463
464 /* Return true(!0) if the probe is queued on (un)optimizing lists */
kprobe_queued(struct kprobe * p)465 static int kprobe_queued(struct kprobe *p)
466 {
467 struct optimized_kprobe *op;
468
469 if (kprobe_aggrprobe(p)) {
470 op = container_of(p, struct optimized_kprobe, kp);
471 if (!list_empty(&op->list))
472 return 1;
473 }
474 return 0;
475 }
476
477 /*
478 * Return an optimized kprobe whose optimizing code replaces
479 * instructions including addr (exclude breakpoint).
480 */
get_optimized_kprobe(unsigned long addr)481 static struct kprobe *get_optimized_kprobe(unsigned long addr)
482 {
483 int i;
484 struct kprobe *p = NULL;
485 struct optimized_kprobe *op;
486
487 /* Don't check i == 0, since that is a breakpoint case. */
488 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
489 p = get_kprobe((void *)(addr - i));
490
491 if (p && kprobe_optready(p)) {
492 op = container_of(p, struct optimized_kprobe, kp);
493 if (arch_within_optimized_kprobe(op, addr))
494 return p;
495 }
496
497 return NULL;
498 }
499
500 /* Optimization staging list, protected by kprobe_mutex */
501 static LIST_HEAD(optimizing_list);
502 static LIST_HEAD(unoptimizing_list);
503 static LIST_HEAD(freeing_list);
504
505 static void kprobe_optimizer(struct work_struct *work);
506 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
507 #define OPTIMIZE_DELAY 5
508
509 /*
510 * Optimize (replace a breakpoint with a jump) kprobes listed on
511 * optimizing_list.
512 */
do_optimize_kprobes(void)513 static void do_optimize_kprobes(void)
514 {
515 lockdep_assert_held(&text_mutex);
516 /*
517 * The optimization/unoptimization refers online_cpus via
518 * stop_machine() and cpu-hotplug modifies online_cpus.
519 * And same time, text_mutex will be held in cpu-hotplug and here.
520 * This combination can cause a deadlock (cpu-hotplug try to lock
521 * text_mutex but stop_machine can not be done because online_cpus
522 * has been changed)
523 * To avoid this deadlock, caller must have locked cpu hotplug
524 * for preventing cpu-hotplug outside of text_mutex locking.
525 */
526 lockdep_assert_cpus_held();
527
528 /* Optimization never be done when disarmed */
529 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
530 list_empty(&optimizing_list))
531 return;
532
533 arch_optimize_kprobes(&optimizing_list);
534 }
535
536 /*
537 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
538 * if need) kprobes listed on unoptimizing_list.
539 */
do_unoptimize_kprobes(void)540 static void do_unoptimize_kprobes(void)
541 {
542 struct optimized_kprobe *op, *tmp;
543
544 lockdep_assert_held(&text_mutex);
545 /* See comment in do_optimize_kprobes() */
546 lockdep_assert_cpus_held();
547
548 /* Unoptimization must be done anytime */
549 if (list_empty(&unoptimizing_list))
550 return;
551
552 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
553 /* Loop free_list for disarming */
554 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
555 /* Switching from detour code to origin */
556 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
557 /* Disarm probes if marked disabled */
558 if (kprobe_disabled(&op->kp))
559 arch_disarm_kprobe(&op->kp);
560 if (kprobe_unused(&op->kp)) {
561 /*
562 * Remove unused probes from hash list. After waiting
563 * for synchronization, these probes are reclaimed.
564 * (reclaiming is done by do_free_cleaned_kprobes.)
565 */
566 hlist_del_rcu(&op->kp.hlist);
567 } else
568 list_del_init(&op->list);
569 }
570 }
571
572 /* Reclaim all kprobes on the free_list */
do_free_cleaned_kprobes(void)573 static void do_free_cleaned_kprobes(void)
574 {
575 struct optimized_kprobe *op, *tmp;
576
577 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
578 list_del_init(&op->list);
579 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
580 /*
581 * This must not happen, but if there is a kprobe
582 * still in use, keep it on kprobes hash list.
583 */
584 continue;
585 }
586 free_aggr_kprobe(&op->kp);
587 }
588 }
589
590 /* Start optimizer after OPTIMIZE_DELAY passed */
kick_kprobe_optimizer(void)591 static void kick_kprobe_optimizer(void)
592 {
593 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
594 }
595
596 /* Kprobe jump optimizer */
kprobe_optimizer(struct work_struct * work)597 static void kprobe_optimizer(struct work_struct *work)
598 {
599 mutex_lock(&kprobe_mutex);
600 cpus_read_lock();
601 mutex_lock(&text_mutex);
602
603 /*
604 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
605 * kprobes before waiting for quiesence period.
606 */
607 do_unoptimize_kprobes();
608
609 /*
610 * Step 2: Wait for quiesence period to ensure all potentially
611 * preempted tasks to have normally scheduled. Because optprobe
612 * may modify multiple instructions, there is a chance that Nth
613 * instruction is preempted. In that case, such tasks can return
614 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
615 * Note that on non-preemptive kernel, this is transparently converted
616 * to synchronoze_sched() to wait for all interrupts to have completed.
617 */
618 synchronize_rcu_tasks();
619
620 /* Step 3: Optimize kprobes after quiesence period */
621 do_optimize_kprobes();
622
623 /* Step 4: Free cleaned kprobes after quiesence period */
624 do_free_cleaned_kprobes();
625
626 mutex_unlock(&text_mutex);
627 cpus_read_unlock();
628
629 /* Step 5: Kick optimizer again if needed */
630 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
631 kick_kprobe_optimizer();
632
633 mutex_unlock(&kprobe_mutex);
634 }
635
636 /* Wait for completing optimization and unoptimization */
wait_for_kprobe_optimizer(void)637 void wait_for_kprobe_optimizer(void)
638 {
639 mutex_lock(&kprobe_mutex);
640
641 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
642 mutex_unlock(&kprobe_mutex);
643
644 /* this will also make optimizing_work execute immmediately */
645 flush_delayed_work(&optimizing_work);
646 /* @optimizing_work might not have been queued yet, relax */
647 cpu_relax();
648
649 mutex_lock(&kprobe_mutex);
650 }
651
652 mutex_unlock(&kprobe_mutex);
653 }
654
optprobe_queued_unopt(struct optimized_kprobe * op)655 bool optprobe_queued_unopt(struct optimized_kprobe *op)
656 {
657 struct optimized_kprobe *_op;
658
659 list_for_each_entry(_op, &unoptimizing_list, list) {
660 if (op == _op)
661 return true;
662 }
663
664 return false;
665 }
666
667 /* Optimize kprobe if p is ready to be optimized */
optimize_kprobe(struct kprobe * p)668 static void optimize_kprobe(struct kprobe *p)
669 {
670 struct optimized_kprobe *op;
671
672 /* Check if the kprobe is disabled or not ready for optimization. */
673 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
674 (kprobe_disabled(p) || kprobes_all_disarmed))
675 return;
676
677 /* kprobes with post_handler can not be optimized */
678 if (p->post_handler)
679 return;
680
681 op = container_of(p, struct optimized_kprobe, kp);
682
683 /* Check there is no other kprobes at the optimized instructions */
684 if (arch_check_optimized_kprobe(op) < 0)
685 return;
686
687 /* Check if it is already optimized. */
688 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
689 if (optprobe_queued_unopt(op)) {
690 /* This is under unoptimizing. Just dequeue the probe */
691 list_del_init(&op->list);
692 }
693 return;
694 }
695 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
696
697 /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
698 if (WARN_ON_ONCE(!list_empty(&op->list)))
699 return;
700
701 list_add(&op->list, &optimizing_list);
702 kick_kprobe_optimizer();
703 }
704
705 /* Short cut to direct unoptimizing */
force_unoptimize_kprobe(struct optimized_kprobe * op)706 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
707 {
708 lockdep_assert_cpus_held();
709 arch_unoptimize_kprobe(op);
710 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
711 }
712
713 /* Unoptimize a kprobe if p is optimized */
unoptimize_kprobe(struct kprobe * p,bool force)714 static void unoptimize_kprobe(struct kprobe *p, bool force)
715 {
716 struct optimized_kprobe *op;
717
718 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
719 return; /* This is not an optprobe nor optimized */
720
721 op = container_of(p, struct optimized_kprobe, kp);
722 if (!kprobe_optimized(p))
723 return;
724
725 if (!list_empty(&op->list)) {
726 if (optprobe_queued_unopt(op)) {
727 /* Queued in unoptimizing queue */
728 if (force) {
729 /*
730 * Forcibly unoptimize the kprobe here, and queue it
731 * in the freeing list for release afterwards.
732 */
733 force_unoptimize_kprobe(op);
734 list_move(&op->list, &freeing_list);
735 }
736 } else {
737 /* Dequeue from the optimizing queue */
738 list_del_init(&op->list);
739 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
740 }
741 return;
742 }
743
744 /* Optimized kprobe case */
745 if (force) {
746 /* Forcibly update the code: this is a special case */
747 force_unoptimize_kprobe(op);
748 } else {
749 list_add(&op->list, &unoptimizing_list);
750 kick_kprobe_optimizer();
751 }
752 }
753
754 /* Cancel unoptimizing for reusing */
reuse_unused_kprobe(struct kprobe * ap)755 static int reuse_unused_kprobe(struct kprobe *ap)
756 {
757 struct optimized_kprobe *op;
758
759 /*
760 * Unused kprobe MUST be on the way of delayed unoptimizing (means
761 * there is still a relative jump) and disabled.
762 */
763 op = container_of(ap, struct optimized_kprobe, kp);
764 WARN_ON_ONCE(list_empty(&op->list));
765 /* Enable the probe again */
766 ap->flags &= ~KPROBE_FLAG_DISABLED;
767 /* Optimize it again (remove from op->list) */
768 if (!kprobe_optready(ap))
769 return -EINVAL;
770
771 optimize_kprobe(ap);
772 return 0;
773 }
774
775 /* Remove optimized instructions */
kill_optimized_kprobe(struct kprobe * p)776 static void kill_optimized_kprobe(struct kprobe *p)
777 {
778 struct optimized_kprobe *op;
779
780 op = container_of(p, struct optimized_kprobe, kp);
781 if (!list_empty(&op->list))
782 /* Dequeue from the (un)optimization queue */
783 list_del_init(&op->list);
784 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
785
786 if (kprobe_unused(p)) {
787 /* Enqueue if it is unused */
788 list_add(&op->list, &freeing_list);
789 /*
790 * Remove unused probes from the hash list. After waiting
791 * for synchronization, this probe is reclaimed.
792 * (reclaiming is done by do_free_cleaned_kprobes().)
793 */
794 hlist_del_rcu(&op->kp.hlist);
795 }
796
797 /* Don't touch the code, because it is already freed. */
798 arch_remove_optimized_kprobe(op);
799 }
800
801 static inline
__prepare_optimized_kprobe(struct optimized_kprobe * op,struct kprobe * p)802 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
803 {
804 if (!kprobe_ftrace(p))
805 arch_prepare_optimized_kprobe(op, p);
806 }
807
808 /* Try to prepare optimized instructions */
prepare_optimized_kprobe(struct kprobe * p)809 static void prepare_optimized_kprobe(struct kprobe *p)
810 {
811 struct optimized_kprobe *op;
812
813 op = container_of(p, struct optimized_kprobe, kp);
814 __prepare_optimized_kprobe(op, p);
815 }
816
817 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
alloc_aggr_kprobe(struct kprobe * p)818 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
819 {
820 struct optimized_kprobe *op;
821
822 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
823 if (!op)
824 return NULL;
825
826 INIT_LIST_HEAD(&op->list);
827 op->kp.addr = p->addr;
828 __prepare_optimized_kprobe(op, p);
829
830 return &op->kp;
831 }
832
833 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
834
835 /*
836 * Prepare an optimized_kprobe and optimize it
837 * NOTE: p must be a normal registered kprobe
838 */
try_to_optimize_kprobe(struct kprobe * p)839 static void try_to_optimize_kprobe(struct kprobe *p)
840 {
841 struct kprobe *ap;
842 struct optimized_kprobe *op;
843
844 /* Impossible to optimize ftrace-based kprobe */
845 if (kprobe_ftrace(p))
846 return;
847
848 /* For preparing optimization, jump_label_text_reserved() is called */
849 cpus_read_lock();
850 jump_label_lock();
851 mutex_lock(&text_mutex);
852
853 ap = alloc_aggr_kprobe(p);
854 if (!ap)
855 goto out;
856
857 op = container_of(ap, struct optimized_kprobe, kp);
858 if (!arch_prepared_optinsn(&op->optinsn)) {
859 /* If failed to setup optimizing, fallback to kprobe */
860 arch_remove_optimized_kprobe(op);
861 kfree(op);
862 goto out;
863 }
864
865 init_aggr_kprobe(ap, p);
866 optimize_kprobe(ap); /* This just kicks optimizer thread */
867
868 out:
869 mutex_unlock(&text_mutex);
870 jump_label_unlock();
871 cpus_read_unlock();
872 }
873
optimize_all_kprobes(void)874 static void optimize_all_kprobes(void)
875 {
876 struct hlist_head *head;
877 struct kprobe *p;
878 unsigned int i;
879
880 mutex_lock(&kprobe_mutex);
881 /* If optimization is already allowed, just return */
882 if (kprobes_allow_optimization)
883 goto out;
884
885 cpus_read_lock();
886 kprobes_allow_optimization = true;
887 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
888 head = &kprobe_table[i];
889 hlist_for_each_entry(p, head, hlist)
890 if (!kprobe_disabled(p))
891 optimize_kprobe(p);
892 }
893 cpus_read_unlock();
894 printk(KERN_INFO "Kprobes globally optimized\n");
895 out:
896 mutex_unlock(&kprobe_mutex);
897 }
898
899 #ifdef CONFIG_SYSCTL
unoptimize_all_kprobes(void)900 static void unoptimize_all_kprobes(void)
901 {
902 struct hlist_head *head;
903 struct kprobe *p;
904 unsigned int i;
905
906 mutex_lock(&kprobe_mutex);
907 /* If optimization is already prohibited, just return */
908 if (!kprobes_allow_optimization) {
909 mutex_unlock(&kprobe_mutex);
910 return;
911 }
912
913 cpus_read_lock();
914 kprobes_allow_optimization = false;
915 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
916 head = &kprobe_table[i];
917 hlist_for_each_entry(p, head, hlist) {
918 if (!kprobe_disabled(p))
919 unoptimize_kprobe(p, false);
920 }
921 }
922 cpus_read_unlock();
923 mutex_unlock(&kprobe_mutex);
924
925 /* Wait for unoptimizing completion */
926 wait_for_kprobe_optimizer();
927 printk(KERN_INFO "Kprobes globally unoptimized\n");
928 }
929
930 static DEFINE_MUTEX(kprobe_sysctl_mutex);
931 int sysctl_kprobes_optimization;
proc_kprobes_optimization_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)932 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
933 void *buffer, size_t *length,
934 loff_t *ppos)
935 {
936 int ret;
937
938 mutex_lock(&kprobe_sysctl_mutex);
939 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
940 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
941
942 if (sysctl_kprobes_optimization)
943 optimize_all_kprobes();
944 else
945 unoptimize_all_kprobes();
946 mutex_unlock(&kprobe_sysctl_mutex);
947
948 return ret;
949 }
950 #endif /* CONFIG_SYSCTL */
951
952 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
__arm_kprobe(struct kprobe * p)953 static void __arm_kprobe(struct kprobe *p)
954 {
955 struct kprobe *_p;
956
957 /* Check collision with other optimized kprobes */
958 _p = get_optimized_kprobe((unsigned long)p->addr);
959 if (unlikely(_p))
960 /* Fallback to unoptimized kprobe */
961 unoptimize_kprobe(_p, true);
962
963 arch_arm_kprobe(p);
964 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
965 }
966
967 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
__disarm_kprobe(struct kprobe * p,bool reopt)968 static void __disarm_kprobe(struct kprobe *p, bool reopt)
969 {
970 struct kprobe *_p;
971
972 /* Try to unoptimize */
973 unoptimize_kprobe(p, kprobes_all_disarmed);
974
975 if (!kprobe_queued(p)) {
976 arch_disarm_kprobe(p);
977 /* If another kprobe was blocked, optimize it. */
978 _p = get_optimized_kprobe((unsigned long)p->addr);
979 if (unlikely(_p) && reopt)
980 optimize_kprobe(_p);
981 }
982 /* TODO: reoptimize others after unoptimized this probe */
983 }
984
985 #else /* !CONFIG_OPTPROBES */
986
987 #define optimize_kprobe(p) do {} while (0)
988 #define unoptimize_kprobe(p, f) do {} while (0)
989 #define kill_optimized_kprobe(p) do {} while (0)
990 #define prepare_optimized_kprobe(p) do {} while (0)
991 #define try_to_optimize_kprobe(p) do {} while (0)
992 #define __arm_kprobe(p) arch_arm_kprobe(p)
993 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
994 #define kprobe_disarmed(p) kprobe_disabled(p)
995 #define wait_for_kprobe_optimizer() do {} while (0)
996
reuse_unused_kprobe(struct kprobe * ap)997 static int reuse_unused_kprobe(struct kprobe *ap)
998 {
999 /*
1000 * If the optimized kprobe is NOT supported, the aggr kprobe is
1001 * released at the same time that the last aggregated kprobe is
1002 * unregistered.
1003 * Thus there should be no chance to reuse unused kprobe.
1004 */
1005 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
1006 return -EINVAL;
1007 }
1008
free_aggr_kprobe(struct kprobe * p)1009 static void free_aggr_kprobe(struct kprobe *p)
1010 {
1011 arch_remove_kprobe(p);
1012 kfree(p);
1013 }
1014
alloc_aggr_kprobe(struct kprobe * p)1015 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1016 {
1017 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1018 }
1019 #endif /* CONFIG_OPTPROBES */
1020
1021 #ifdef CONFIG_KPROBES_ON_FTRACE
1022 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1023 .func = kprobe_ftrace_handler,
1024 .flags = FTRACE_OPS_FL_SAVE_REGS,
1025 };
1026
1027 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1028 .func = kprobe_ftrace_handler,
1029 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1030 };
1031
1032 static int kprobe_ipmodify_enabled;
1033 static int kprobe_ftrace_enabled;
1034
1035 /* Must ensure p->addr is really on ftrace */
prepare_kprobe(struct kprobe * p)1036 static int prepare_kprobe(struct kprobe *p)
1037 {
1038 if (!kprobe_ftrace(p))
1039 return arch_prepare_kprobe(p);
1040
1041 return arch_prepare_kprobe_ftrace(p);
1042 }
1043
1044 /* Caller must lock kprobe_mutex */
__arm_kprobe_ftrace(struct kprobe * p,struct ftrace_ops * ops,int * cnt)1045 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1046 int *cnt)
1047 {
1048 int ret = 0;
1049
1050 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1051 if (ret) {
1052 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1053 p->addr, ret);
1054 return ret;
1055 }
1056
1057 if (*cnt == 0) {
1058 ret = register_ftrace_function(ops);
1059 if (ret) {
1060 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1061 goto err_ftrace;
1062 }
1063 }
1064
1065 (*cnt)++;
1066 return ret;
1067
1068 err_ftrace:
1069 /*
1070 * At this point, sinec ops is not registered, we should be sefe from
1071 * registering empty filter.
1072 */
1073 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1074 return ret;
1075 }
1076
arm_kprobe_ftrace(struct kprobe * p)1077 static int arm_kprobe_ftrace(struct kprobe *p)
1078 {
1079 bool ipmodify = (p->post_handler != NULL);
1080
1081 return __arm_kprobe_ftrace(p,
1082 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1083 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1084 }
1085
1086 /* Caller must lock kprobe_mutex */
__disarm_kprobe_ftrace(struct kprobe * p,struct ftrace_ops * ops,int * cnt)1087 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1088 int *cnt)
1089 {
1090 int ret = 0;
1091
1092 if (*cnt == 1) {
1093 ret = unregister_ftrace_function(ops);
1094 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1095 return ret;
1096 }
1097
1098 (*cnt)--;
1099
1100 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1101 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1102 p->addr, ret);
1103 return ret;
1104 }
1105
disarm_kprobe_ftrace(struct kprobe * p)1106 static int disarm_kprobe_ftrace(struct kprobe *p)
1107 {
1108 bool ipmodify = (p->post_handler != NULL);
1109
1110 return __disarm_kprobe_ftrace(p,
1111 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1112 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1113 }
1114 #else /* !CONFIG_KPROBES_ON_FTRACE */
prepare_kprobe(struct kprobe * p)1115 static inline int prepare_kprobe(struct kprobe *p)
1116 {
1117 return arch_prepare_kprobe(p);
1118 }
1119
arm_kprobe_ftrace(struct kprobe * p)1120 static inline int arm_kprobe_ftrace(struct kprobe *p)
1121 {
1122 return -ENODEV;
1123 }
1124
disarm_kprobe_ftrace(struct kprobe * p)1125 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1126 {
1127 return -ENODEV;
1128 }
1129 #endif
1130
1131 /* Arm a kprobe with text_mutex */
arm_kprobe(struct kprobe * kp)1132 static int arm_kprobe(struct kprobe *kp)
1133 {
1134 if (unlikely(kprobe_ftrace(kp)))
1135 return arm_kprobe_ftrace(kp);
1136
1137 cpus_read_lock();
1138 mutex_lock(&text_mutex);
1139 __arm_kprobe(kp);
1140 mutex_unlock(&text_mutex);
1141 cpus_read_unlock();
1142
1143 return 0;
1144 }
1145
1146 /* Disarm a kprobe with text_mutex */
disarm_kprobe(struct kprobe * kp,bool reopt)1147 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1148 {
1149 if (unlikely(kprobe_ftrace(kp)))
1150 return disarm_kprobe_ftrace(kp);
1151
1152 cpus_read_lock();
1153 mutex_lock(&text_mutex);
1154 __disarm_kprobe(kp, reopt);
1155 mutex_unlock(&text_mutex);
1156 cpus_read_unlock();
1157
1158 return 0;
1159 }
1160
1161 /*
1162 * Aggregate handlers for multiple kprobes support - these handlers
1163 * take care of invoking the individual kprobe handlers on p->list
1164 */
aggr_pre_handler(struct kprobe * p,struct pt_regs * regs)1165 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1166 {
1167 struct kprobe *kp;
1168
1169 list_for_each_entry_rcu(kp, &p->list, list) {
1170 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1171 set_kprobe_instance(kp);
1172 if (kp->pre_handler(kp, regs))
1173 return 1;
1174 }
1175 reset_kprobe_instance();
1176 }
1177 return 0;
1178 }
1179 NOKPROBE_SYMBOL(aggr_pre_handler);
1180
aggr_post_handler(struct kprobe * p,struct pt_regs * regs,unsigned long flags)1181 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1182 unsigned long flags)
1183 {
1184 struct kprobe *kp;
1185
1186 list_for_each_entry_rcu(kp, &p->list, list) {
1187 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1188 set_kprobe_instance(kp);
1189 kp->post_handler(kp, regs, flags);
1190 reset_kprobe_instance();
1191 }
1192 }
1193 }
1194 NOKPROBE_SYMBOL(aggr_post_handler);
1195
aggr_fault_handler(struct kprobe * p,struct pt_regs * regs,int trapnr)1196 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1197 int trapnr)
1198 {
1199 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1200
1201 /*
1202 * if we faulted "during" the execution of a user specified
1203 * probe handler, invoke just that probe's fault handler
1204 */
1205 if (cur && cur->fault_handler) {
1206 if (cur->fault_handler(cur, regs, trapnr))
1207 return 1;
1208 }
1209 return 0;
1210 }
1211 NOKPROBE_SYMBOL(aggr_fault_handler);
1212
1213 /* Walks the list and increments nmissed count for multiprobe case */
kprobes_inc_nmissed_count(struct kprobe * p)1214 void kprobes_inc_nmissed_count(struct kprobe *p)
1215 {
1216 struct kprobe *kp;
1217 if (!kprobe_aggrprobe(p)) {
1218 p->nmissed++;
1219 } else {
1220 list_for_each_entry_rcu(kp, &p->list, list)
1221 kp->nmissed++;
1222 }
1223 return;
1224 }
1225 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1226
recycle_rp_inst(struct kretprobe_instance * ri)1227 static void recycle_rp_inst(struct kretprobe_instance *ri)
1228 {
1229 struct kretprobe *rp = ri->rp;
1230
1231 /* remove rp inst off the rprobe_inst_table */
1232 hlist_del(&ri->hlist);
1233 INIT_HLIST_NODE(&ri->hlist);
1234 if (likely(rp)) {
1235 raw_spin_lock(&rp->lock);
1236 hlist_add_head(&ri->hlist, &rp->free_instances);
1237 raw_spin_unlock(&rp->lock);
1238 } else
1239 kfree_rcu(ri, rcu);
1240 }
1241 NOKPROBE_SYMBOL(recycle_rp_inst);
1242
kretprobe_hash_lock(struct task_struct * tsk,struct hlist_head ** head,unsigned long * flags)1243 static void kretprobe_hash_lock(struct task_struct *tsk,
1244 struct hlist_head **head, unsigned long *flags)
1245 __acquires(hlist_lock)
1246 {
1247 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1248 raw_spinlock_t *hlist_lock;
1249
1250 *head = &kretprobe_inst_table[hash];
1251 hlist_lock = kretprobe_table_lock_ptr(hash);
1252 /*
1253 * Nested is a workaround that will soon not be needed.
1254 * There's other protections that make sure the same lock
1255 * is not taken on the same CPU that lockdep is unaware of.
1256 * Differentiate when it is taken in NMI context.
1257 */
1258 raw_spin_lock_irqsave_nested(hlist_lock, *flags, !!in_nmi());
1259 }
1260 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1261
kretprobe_table_lock(unsigned long hash,unsigned long * flags)1262 static void kretprobe_table_lock(unsigned long hash,
1263 unsigned long *flags)
1264 __acquires(hlist_lock)
1265 {
1266 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1267 /*
1268 * Nested is a workaround that will soon not be needed.
1269 * There's other protections that make sure the same lock
1270 * is not taken on the same CPU that lockdep is unaware of.
1271 * Differentiate when it is taken in NMI context.
1272 */
1273 raw_spin_lock_irqsave_nested(hlist_lock, *flags, !!in_nmi());
1274 }
1275 NOKPROBE_SYMBOL(kretprobe_table_lock);
1276
kretprobe_hash_unlock(struct task_struct * tsk,unsigned long * flags)1277 static void kretprobe_hash_unlock(struct task_struct *tsk,
1278 unsigned long *flags)
1279 __releases(hlist_lock)
1280 {
1281 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1282 raw_spinlock_t *hlist_lock;
1283
1284 hlist_lock = kretprobe_table_lock_ptr(hash);
1285 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1286 }
1287 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1288
kretprobe_table_unlock(unsigned long hash,unsigned long * flags)1289 static void kretprobe_table_unlock(unsigned long hash,
1290 unsigned long *flags)
1291 __releases(hlist_lock)
1292 {
1293 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1294 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1295 }
1296 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1297
1298 static struct kprobe kprobe_busy = {
1299 .addr = (void *) get_kprobe,
1300 };
1301
kprobe_busy_begin(void)1302 void kprobe_busy_begin(void)
1303 {
1304 struct kprobe_ctlblk *kcb;
1305
1306 preempt_disable();
1307 __this_cpu_write(current_kprobe, &kprobe_busy);
1308 kcb = get_kprobe_ctlblk();
1309 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1310 }
1311
kprobe_busy_end(void)1312 void kprobe_busy_end(void)
1313 {
1314 __this_cpu_write(current_kprobe, NULL);
1315 preempt_enable();
1316 }
1317
1318 /*
1319 * This function is called from finish_task_switch when task tk becomes dead,
1320 * so that we can recycle any function-return probe instances associated
1321 * with this task. These left over instances represent probed functions
1322 * that have been called but will never return.
1323 */
kprobe_flush_task(struct task_struct * tk)1324 void kprobe_flush_task(struct task_struct *tk)
1325 {
1326 struct kretprobe_instance *ri;
1327 struct hlist_head *head;
1328 struct hlist_node *tmp;
1329 unsigned long hash, flags = 0;
1330
1331 if (unlikely(!kprobes_initialized))
1332 /* Early boot. kretprobe_table_locks not yet initialized. */
1333 return;
1334
1335 kprobe_busy_begin();
1336
1337 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1338 head = &kretprobe_inst_table[hash];
1339 kretprobe_table_lock(hash, &flags);
1340 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1341 if (ri->task == tk)
1342 recycle_rp_inst(ri);
1343 }
1344 kretprobe_table_unlock(hash, &flags);
1345
1346 kprobe_busy_end();
1347 }
1348 NOKPROBE_SYMBOL(kprobe_flush_task);
1349
free_rp_inst(struct kretprobe * rp)1350 static inline void free_rp_inst(struct kretprobe *rp)
1351 {
1352 struct kretprobe_instance *ri;
1353 struct hlist_node *next;
1354
1355 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1356 hlist_del(&ri->hlist);
1357 kfree(ri);
1358 }
1359 }
1360
cleanup_rp_inst(struct kretprobe * rp)1361 static void cleanup_rp_inst(struct kretprobe *rp)
1362 {
1363 unsigned long flags, hash;
1364 struct kretprobe_instance *ri;
1365 struct hlist_node *next;
1366 struct hlist_head *head;
1367
1368 /* To avoid recursive kretprobe by NMI, set kprobe busy here */
1369 kprobe_busy_begin();
1370 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1371 kretprobe_table_lock(hash, &flags);
1372 head = &kretprobe_inst_table[hash];
1373 hlist_for_each_entry_safe(ri, next, head, hlist) {
1374 if (ri->rp == rp)
1375 ri->rp = NULL;
1376 }
1377 kretprobe_table_unlock(hash, &flags);
1378 }
1379 kprobe_busy_end();
1380
1381 free_rp_inst(rp);
1382 }
1383 NOKPROBE_SYMBOL(cleanup_rp_inst);
1384
1385 /* Add the new probe to ap->list */
add_new_kprobe(struct kprobe * ap,struct kprobe * p)1386 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1387 {
1388 if (p->post_handler)
1389 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1390
1391 list_add_rcu(&p->list, &ap->list);
1392 if (p->post_handler && !ap->post_handler)
1393 ap->post_handler = aggr_post_handler;
1394
1395 return 0;
1396 }
1397
1398 /*
1399 * Fill in the required fields of the "manager kprobe". Replace the
1400 * earlier kprobe in the hlist with the manager kprobe
1401 */
init_aggr_kprobe(struct kprobe * ap,struct kprobe * p)1402 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1403 {
1404 /* Copy p's insn slot to ap */
1405 copy_kprobe(p, ap);
1406 flush_insn_slot(ap);
1407 ap->addr = p->addr;
1408 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1409 ap->pre_handler = aggr_pre_handler;
1410 ap->fault_handler = aggr_fault_handler;
1411 /* We don't care the kprobe which has gone. */
1412 if (p->post_handler && !kprobe_gone(p))
1413 ap->post_handler = aggr_post_handler;
1414
1415 INIT_LIST_HEAD(&ap->list);
1416 INIT_HLIST_NODE(&ap->hlist);
1417
1418 list_add_rcu(&p->list, &ap->list);
1419 hlist_replace_rcu(&p->hlist, &ap->hlist);
1420 }
1421
1422 /*
1423 * This is the second or subsequent kprobe at the address - handle
1424 * the intricacies
1425 */
register_aggr_kprobe(struct kprobe * orig_p,struct kprobe * p)1426 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1427 {
1428 int ret = 0;
1429 struct kprobe *ap = orig_p;
1430
1431 cpus_read_lock();
1432
1433 /* For preparing optimization, jump_label_text_reserved() is called */
1434 jump_label_lock();
1435 mutex_lock(&text_mutex);
1436
1437 if (!kprobe_aggrprobe(orig_p)) {
1438 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1439 ap = alloc_aggr_kprobe(orig_p);
1440 if (!ap) {
1441 ret = -ENOMEM;
1442 goto out;
1443 }
1444 init_aggr_kprobe(ap, orig_p);
1445 } else if (kprobe_unused(ap)) {
1446 /* This probe is going to die. Rescue it */
1447 ret = reuse_unused_kprobe(ap);
1448 if (ret)
1449 goto out;
1450 }
1451
1452 if (kprobe_gone(ap)) {
1453 /*
1454 * Attempting to insert new probe at the same location that
1455 * had a probe in the module vaddr area which already
1456 * freed. So, the instruction slot has already been
1457 * released. We need a new slot for the new probe.
1458 */
1459 ret = arch_prepare_kprobe(ap);
1460 if (ret)
1461 /*
1462 * Even if fail to allocate new slot, don't need to
1463 * free aggr_probe. It will be used next time, or
1464 * freed by unregister_kprobe.
1465 */
1466 goto out;
1467
1468 /* Prepare optimized instructions if possible. */
1469 prepare_optimized_kprobe(ap);
1470
1471 /*
1472 * Clear gone flag to prevent allocating new slot again, and
1473 * set disabled flag because it is not armed yet.
1474 */
1475 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1476 | KPROBE_FLAG_DISABLED;
1477 }
1478
1479 /* Copy ap's insn slot to p */
1480 copy_kprobe(ap, p);
1481 ret = add_new_kprobe(ap, p);
1482
1483 out:
1484 mutex_unlock(&text_mutex);
1485 jump_label_unlock();
1486 cpus_read_unlock();
1487
1488 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1489 ap->flags &= ~KPROBE_FLAG_DISABLED;
1490 if (!kprobes_all_disarmed) {
1491 /* Arm the breakpoint again. */
1492 ret = arm_kprobe(ap);
1493 if (ret) {
1494 ap->flags |= KPROBE_FLAG_DISABLED;
1495 list_del_rcu(&p->list);
1496 synchronize_rcu();
1497 }
1498 }
1499 }
1500 return ret;
1501 }
1502
arch_within_kprobe_blacklist(unsigned long addr)1503 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1504 {
1505 /* The __kprobes marked functions and entry code must not be probed */
1506 return addr >= (unsigned long)__kprobes_text_start &&
1507 addr < (unsigned long)__kprobes_text_end;
1508 }
1509
__within_kprobe_blacklist(unsigned long addr)1510 static bool __within_kprobe_blacklist(unsigned long addr)
1511 {
1512 struct kprobe_blacklist_entry *ent;
1513
1514 if (arch_within_kprobe_blacklist(addr))
1515 return true;
1516 /*
1517 * If there exists a kprobe_blacklist, verify and
1518 * fail any probe registration in the prohibited area
1519 */
1520 list_for_each_entry(ent, &kprobe_blacklist, list) {
1521 if (addr >= ent->start_addr && addr < ent->end_addr)
1522 return true;
1523 }
1524 return false;
1525 }
1526
within_kprobe_blacklist(unsigned long addr)1527 bool within_kprobe_blacklist(unsigned long addr)
1528 {
1529 char symname[KSYM_NAME_LEN], *p;
1530
1531 if (__within_kprobe_blacklist(addr))
1532 return true;
1533
1534 /* Check if the address is on a suffixed-symbol */
1535 if (!lookup_symbol_name(addr, symname)) {
1536 p = strchr(symname, '.');
1537 if (!p)
1538 return false;
1539 *p = '\0';
1540 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1541 if (addr)
1542 return __within_kprobe_blacklist(addr);
1543 }
1544 return false;
1545 }
1546
1547 /*
1548 * If we have a symbol_name argument, look it up and add the offset field
1549 * to it. This way, we can specify a relative address to a symbol.
1550 * This returns encoded errors if it fails to look up symbol or invalid
1551 * combination of parameters.
1552 */
_kprobe_addr(kprobe_opcode_t * addr,const char * symbol_name,unsigned int offset)1553 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1554 const char *symbol_name, unsigned int offset)
1555 {
1556 if ((symbol_name && addr) || (!symbol_name && !addr))
1557 goto invalid;
1558
1559 if (symbol_name) {
1560 addr = kprobe_lookup_name(symbol_name, offset);
1561 if (!addr)
1562 return ERR_PTR(-ENOENT);
1563 }
1564
1565 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1566 if (addr)
1567 return addr;
1568
1569 invalid:
1570 return ERR_PTR(-EINVAL);
1571 }
1572
kprobe_addr(struct kprobe * p)1573 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1574 {
1575 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1576 }
1577
1578 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
__get_valid_kprobe(struct kprobe * p)1579 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1580 {
1581 struct kprobe *ap, *list_p;
1582
1583 lockdep_assert_held(&kprobe_mutex);
1584
1585 ap = get_kprobe(p->addr);
1586 if (unlikely(!ap))
1587 return NULL;
1588
1589 if (p != ap) {
1590 list_for_each_entry(list_p, &ap->list, list)
1591 if (list_p == p)
1592 /* kprobe p is a valid probe */
1593 goto valid;
1594 return NULL;
1595 }
1596 valid:
1597 return ap;
1598 }
1599
1600 /* Return error if the kprobe is being re-registered */
check_kprobe_rereg(struct kprobe * p)1601 static inline int check_kprobe_rereg(struct kprobe *p)
1602 {
1603 int ret = 0;
1604
1605 mutex_lock(&kprobe_mutex);
1606 if (__get_valid_kprobe(p))
1607 ret = -EINVAL;
1608 mutex_unlock(&kprobe_mutex);
1609
1610 return ret;
1611 }
1612
arch_check_ftrace_location(struct kprobe * p)1613 int __weak arch_check_ftrace_location(struct kprobe *p)
1614 {
1615 unsigned long ftrace_addr;
1616
1617 ftrace_addr = ftrace_location((unsigned long)p->addr);
1618 if (ftrace_addr) {
1619 #ifdef CONFIG_KPROBES_ON_FTRACE
1620 /* Given address is not on the instruction boundary */
1621 if ((unsigned long)p->addr != ftrace_addr)
1622 return -EILSEQ;
1623 p->flags |= KPROBE_FLAG_FTRACE;
1624 #else /* !CONFIG_KPROBES_ON_FTRACE */
1625 return -EINVAL;
1626 #endif
1627 }
1628 return 0;
1629 }
1630
check_kprobe_address_safe(struct kprobe * p,struct module ** probed_mod)1631 static int check_kprobe_address_safe(struct kprobe *p,
1632 struct module **probed_mod)
1633 {
1634 int ret;
1635
1636 ret = arch_check_ftrace_location(p);
1637 if (ret)
1638 return ret;
1639 jump_label_lock();
1640 preempt_disable();
1641
1642 /* Ensure it is not in reserved area nor out of text */
1643 if (!(core_kernel_text((unsigned long) p->addr) ||
1644 is_module_text_address((unsigned long) p->addr)) ||
1645 in_gate_area_no_mm((unsigned long) p->addr) ||
1646 within_kprobe_blacklist((unsigned long) p->addr) ||
1647 jump_label_text_reserved(p->addr, p->addr) ||
1648 static_call_text_reserved(p->addr, p->addr) ||
1649 find_bug((unsigned long)p->addr)) {
1650 ret = -EINVAL;
1651 goto out;
1652 }
1653
1654 /* Check if are we probing a module */
1655 *probed_mod = __module_text_address((unsigned long) p->addr);
1656 if (*probed_mod) {
1657 /*
1658 * We must hold a refcount of the probed module while updating
1659 * its code to prohibit unexpected unloading.
1660 */
1661 if (unlikely(!try_module_get(*probed_mod))) {
1662 ret = -ENOENT;
1663 goto out;
1664 }
1665
1666 /*
1667 * If the module freed .init.text, we couldn't insert
1668 * kprobes in there.
1669 */
1670 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1671 (*probed_mod)->state != MODULE_STATE_COMING) {
1672 module_put(*probed_mod);
1673 *probed_mod = NULL;
1674 ret = -ENOENT;
1675 }
1676 }
1677 out:
1678 preempt_enable();
1679 jump_label_unlock();
1680
1681 return ret;
1682 }
1683
register_kprobe(struct kprobe * p)1684 int register_kprobe(struct kprobe *p)
1685 {
1686 int ret;
1687 struct kprobe *old_p;
1688 struct module *probed_mod;
1689 kprobe_opcode_t *addr;
1690
1691 /* Adjust probe address from symbol */
1692 addr = kprobe_addr(p);
1693 if (IS_ERR(addr))
1694 return PTR_ERR(addr);
1695 p->addr = addr;
1696
1697 ret = check_kprobe_rereg(p);
1698 if (ret)
1699 return ret;
1700
1701 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1702 p->flags &= KPROBE_FLAG_DISABLED;
1703 p->nmissed = 0;
1704 INIT_LIST_HEAD(&p->list);
1705
1706 ret = check_kprobe_address_safe(p, &probed_mod);
1707 if (ret)
1708 return ret;
1709
1710 mutex_lock(&kprobe_mutex);
1711
1712 old_p = get_kprobe(p->addr);
1713 if (old_p) {
1714 /* Since this may unoptimize old_p, locking text_mutex. */
1715 ret = register_aggr_kprobe(old_p, p);
1716 goto out;
1717 }
1718
1719 cpus_read_lock();
1720 /* Prevent text modification */
1721 mutex_lock(&text_mutex);
1722 ret = prepare_kprobe(p);
1723 mutex_unlock(&text_mutex);
1724 cpus_read_unlock();
1725 if (ret)
1726 goto out;
1727
1728 INIT_HLIST_NODE(&p->hlist);
1729 hlist_add_head_rcu(&p->hlist,
1730 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1731
1732 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1733 ret = arm_kprobe(p);
1734 if (ret) {
1735 hlist_del_rcu(&p->hlist);
1736 synchronize_rcu();
1737 goto out;
1738 }
1739 }
1740
1741 /* Try to optimize kprobe */
1742 try_to_optimize_kprobe(p);
1743 out:
1744 mutex_unlock(&kprobe_mutex);
1745
1746 if (probed_mod)
1747 module_put(probed_mod);
1748
1749 return ret;
1750 }
1751 EXPORT_SYMBOL_GPL(register_kprobe);
1752
1753 /* Check if all probes on the aggrprobe are disabled */
aggr_kprobe_disabled(struct kprobe * ap)1754 static int aggr_kprobe_disabled(struct kprobe *ap)
1755 {
1756 struct kprobe *kp;
1757
1758 lockdep_assert_held(&kprobe_mutex);
1759
1760 list_for_each_entry(kp, &ap->list, list)
1761 if (!kprobe_disabled(kp))
1762 /*
1763 * There is an active probe on the list.
1764 * We can't disable this ap.
1765 */
1766 return 0;
1767
1768 return 1;
1769 }
1770
1771 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
__disable_kprobe(struct kprobe * p)1772 static struct kprobe *__disable_kprobe(struct kprobe *p)
1773 {
1774 struct kprobe *orig_p;
1775 int ret;
1776
1777 /* Get an original kprobe for return */
1778 orig_p = __get_valid_kprobe(p);
1779 if (unlikely(orig_p == NULL))
1780 return ERR_PTR(-EINVAL);
1781
1782 if (!kprobe_disabled(p)) {
1783 /* Disable probe if it is a child probe */
1784 if (p != orig_p)
1785 p->flags |= KPROBE_FLAG_DISABLED;
1786
1787 /* Try to disarm and disable this/parent probe */
1788 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1789 /*
1790 * Don't be lazy here. Even if 'kprobes_all_disarmed'
1791 * is false, 'orig_p' might not have been armed yet.
1792 * Note arm_all_kprobes() __tries__ to arm all kprobes
1793 * on the best effort basis.
1794 */
1795 if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1796 ret = disarm_kprobe(orig_p, true);
1797 if (ret) {
1798 p->flags &= ~KPROBE_FLAG_DISABLED;
1799 return ERR_PTR(ret);
1800 }
1801 }
1802 orig_p->flags |= KPROBE_FLAG_DISABLED;
1803 }
1804 }
1805
1806 return orig_p;
1807 }
1808
1809 /*
1810 * Unregister a kprobe without a scheduler synchronization.
1811 */
__unregister_kprobe_top(struct kprobe * p)1812 static int __unregister_kprobe_top(struct kprobe *p)
1813 {
1814 struct kprobe *ap, *list_p;
1815
1816 /* Disable kprobe. This will disarm it if needed. */
1817 ap = __disable_kprobe(p);
1818 if (IS_ERR(ap))
1819 return PTR_ERR(ap);
1820
1821 if (ap == p)
1822 /*
1823 * This probe is an independent(and non-optimized) kprobe
1824 * (not an aggrprobe). Remove from the hash list.
1825 */
1826 goto disarmed;
1827
1828 /* Following process expects this probe is an aggrprobe */
1829 WARN_ON(!kprobe_aggrprobe(ap));
1830
1831 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1832 /*
1833 * !disarmed could be happen if the probe is under delayed
1834 * unoptimizing.
1835 */
1836 goto disarmed;
1837 else {
1838 /* If disabling probe has special handlers, update aggrprobe */
1839 if (p->post_handler && !kprobe_gone(p)) {
1840 list_for_each_entry(list_p, &ap->list, list) {
1841 if ((list_p != p) && (list_p->post_handler))
1842 goto noclean;
1843 }
1844 /*
1845 * For the kprobe-on-ftrace case, we keep the
1846 * post_handler setting to identify this aggrprobe
1847 * armed with kprobe_ipmodify_ops.
1848 */
1849 if (!kprobe_ftrace(ap))
1850 ap->post_handler = NULL;
1851 }
1852 noclean:
1853 /*
1854 * Remove from the aggrprobe: this path will do nothing in
1855 * __unregister_kprobe_bottom().
1856 */
1857 list_del_rcu(&p->list);
1858 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1859 /*
1860 * Try to optimize this probe again, because post
1861 * handler may have been changed.
1862 */
1863 optimize_kprobe(ap);
1864 }
1865 return 0;
1866
1867 disarmed:
1868 hlist_del_rcu(&ap->hlist);
1869 return 0;
1870 }
1871
__unregister_kprobe_bottom(struct kprobe * p)1872 static void __unregister_kprobe_bottom(struct kprobe *p)
1873 {
1874 struct kprobe *ap;
1875
1876 if (list_empty(&p->list))
1877 /* This is an independent kprobe */
1878 arch_remove_kprobe(p);
1879 else if (list_is_singular(&p->list)) {
1880 /* This is the last child of an aggrprobe */
1881 ap = list_entry(p->list.next, struct kprobe, list);
1882 list_del(&p->list);
1883 free_aggr_kprobe(ap);
1884 }
1885 /* Otherwise, do nothing. */
1886 }
1887
register_kprobes(struct kprobe ** kps,int num)1888 int register_kprobes(struct kprobe **kps, int num)
1889 {
1890 int i, ret = 0;
1891
1892 if (num <= 0)
1893 return -EINVAL;
1894 for (i = 0; i < num; i++) {
1895 ret = register_kprobe(kps[i]);
1896 if (ret < 0) {
1897 if (i > 0)
1898 unregister_kprobes(kps, i);
1899 break;
1900 }
1901 }
1902 return ret;
1903 }
1904 EXPORT_SYMBOL_GPL(register_kprobes);
1905
unregister_kprobe(struct kprobe * p)1906 void unregister_kprobe(struct kprobe *p)
1907 {
1908 unregister_kprobes(&p, 1);
1909 }
1910 EXPORT_SYMBOL_GPL(unregister_kprobe);
1911
unregister_kprobes(struct kprobe ** kps,int num)1912 void unregister_kprobes(struct kprobe **kps, int num)
1913 {
1914 int i;
1915
1916 if (num <= 0)
1917 return;
1918 mutex_lock(&kprobe_mutex);
1919 for (i = 0; i < num; i++)
1920 if (__unregister_kprobe_top(kps[i]) < 0)
1921 kps[i]->addr = NULL;
1922 mutex_unlock(&kprobe_mutex);
1923
1924 synchronize_rcu();
1925 for (i = 0; i < num; i++)
1926 if (kps[i]->addr)
1927 __unregister_kprobe_bottom(kps[i]);
1928 }
1929 EXPORT_SYMBOL_GPL(unregister_kprobes);
1930
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)1931 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1932 unsigned long val, void *data)
1933 {
1934 return NOTIFY_DONE;
1935 }
1936 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1937
1938 static struct notifier_block kprobe_exceptions_nb = {
1939 .notifier_call = kprobe_exceptions_notify,
1940 .priority = 0x7fffffff /* we need to be notified first */
1941 };
1942
arch_deref_entry_point(void * entry)1943 unsigned long __weak arch_deref_entry_point(void *entry)
1944 {
1945 return (unsigned long)entry;
1946 }
1947
1948 #ifdef CONFIG_KRETPROBES
1949
__kretprobe_trampoline_handler(struct pt_regs * regs,void * trampoline_address,void * frame_pointer)1950 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
1951 void *trampoline_address,
1952 void *frame_pointer)
1953 {
1954 struct kretprobe_instance *ri = NULL, *last = NULL;
1955 struct hlist_head *head;
1956 struct hlist_node *tmp;
1957 unsigned long flags;
1958 kprobe_opcode_t *correct_ret_addr = NULL;
1959 bool skipped = false;
1960
1961 kretprobe_hash_lock(current, &head, &flags);
1962
1963 /*
1964 * It is possible to have multiple instances associated with a given
1965 * task either because multiple functions in the call path have
1966 * return probes installed on them, and/or more than one
1967 * return probe was registered for a target function.
1968 *
1969 * We can handle this because:
1970 * - instances are always pushed into the head of the list
1971 * - when multiple return probes are registered for the same
1972 * function, the (chronologically) first instance's ret_addr
1973 * will be the real return address, and all the rest will
1974 * point to kretprobe_trampoline.
1975 */
1976 hlist_for_each_entry(ri, head, hlist) {
1977 if (ri->task != current)
1978 /* another task is sharing our hash bucket */
1979 continue;
1980 /*
1981 * Return probes must be pushed on this hash list correct
1982 * order (same as return order) so that it can be popped
1983 * correctly. However, if we find it is pushed it incorrect
1984 * order, this means we find a function which should not be
1985 * probed, because the wrong order entry is pushed on the
1986 * path of processing other kretprobe itself.
1987 */
1988 if (ri->fp != frame_pointer) {
1989 if (!skipped)
1990 pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n");
1991 skipped = true;
1992 continue;
1993 }
1994
1995 correct_ret_addr = ri->ret_addr;
1996 if (skipped)
1997 pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n",
1998 ri->rp->kp.addr);
1999
2000 if (correct_ret_addr != trampoline_address)
2001 /*
2002 * This is the real return address. Any other
2003 * instances associated with this task are for
2004 * other calls deeper on the call stack
2005 */
2006 break;
2007 }
2008
2009 BUG_ON(!correct_ret_addr || (correct_ret_addr == trampoline_address));
2010 last = ri;
2011
2012 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
2013 if (ri->task != current)
2014 /* another task is sharing our hash bucket */
2015 continue;
2016 if (ri->fp != frame_pointer)
2017 continue;
2018
2019 if (ri->rp && ri->rp->handler) {
2020 struct kprobe *prev = kprobe_running();
2021
2022 __this_cpu_write(current_kprobe, &ri->rp->kp);
2023 ri->ret_addr = correct_ret_addr;
2024 ri->rp->handler(ri, regs);
2025 __this_cpu_write(current_kprobe, prev);
2026 }
2027
2028 recycle_rp_inst(ri);
2029
2030 if (ri == last)
2031 break;
2032 }
2033
2034 kretprobe_hash_unlock(current, &flags);
2035
2036 return (unsigned long)correct_ret_addr;
2037 }
NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)2038 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
2039
2040 /*
2041 * This kprobe pre_handler is registered with every kretprobe. When probe
2042 * hits it will set up the return probe.
2043 */
2044 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2045 {
2046 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2047 unsigned long hash, flags = 0;
2048 struct kretprobe_instance *ri;
2049
2050 /* TODO: consider to only swap the RA after the last pre_handler fired */
2051 hash = hash_ptr(current, KPROBE_HASH_BITS);
2052 /*
2053 * Nested is a workaround that will soon not be needed.
2054 * There's other protections that make sure the same lock
2055 * is not taken on the same CPU that lockdep is unaware of.
2056 */
2057 raw_spin_lock_irqsave_nested(&rp->lock, flags, 1);
2058 if (!hlist_empty(&rp->free_instances)) {
2059 ri = hlist_entry(rp->free_instances.first,
2060 struct kretprobe_instance, hlist);
2061 hlist_del(&ri->hlist);
2062 raw_spin_unlock_irqrestore(&rp->lock, flags);
2063
2064 ri->rp = rp;
2065 ri->task = current;
2066
2067 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
2068 raw_spin_lock_irqsave_nested(&rp->lock, flags, 1);
2069 hlist_add_head(&ri->hlist, &rp->free_instances);
2070 raw_spin_unlock_irqrestore(&rp->lock, flags);
2071 return 0;
2072 }
2073
2074 arch_prepare_kretprobe(ri, regs);
2075
2076 /* XXX(hch): why is there no hlist_move_head? */
2077 INIT_HLIST_NODE(&ri->hlist);
2078 kretprobe_table_lock(hash, &flags);
2079 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
2080 kretprobe_table_unlock(hash, &flags);
2081 } else {
2082 rp->nmissed++;
2083 raw_spin_unlock_irqrestore(&rp->lock, flags);
2084 }
2085 return 0;
2086 }
2087 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2088
arch_kprobe_on_func_entry(unsigned long offset)2089 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
2090 {
2091 return !offset;
2092 }
2093
2094 /**
2095 * kprobe_on_func_entry() -- check whether given address is function entry
2096 * @addr: Target address
2097 * @sym: Target symbol name
2098 * @offset: The offset from the symbol or the address
2099 *
2100 * This checks whether the given @addr+@offset or @sym+@offset is on the
2101 * function entry address or not.
2102 * This returns 0 if it is the function entry, or -EINVAL if it is not.
2103 * And also it returns -ENOENT if it fails the symbol or address lookup.
2104 * Caller must pass @addr or @sym (either one must be NULL), or this
2105 * returns -EINVAL.
2106 */
kprobe_on_func_entry(kprobe_opcode_t * addr,const char * sym,unsigned long offset)2107 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
2108 {
2109 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
2110
2111 if (IS_ERR(kp_addr))
2112 return PTR_ERR(kp_addr);
2113
2114 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset))
2115 return -ENOENT;
2116
2117 if (!arch_kprobe_on_func_entry(offset))
2118 return -EINVAL;
2119
2120 return 0;
2121 }
2122
register_kretprobe(struct kretprobe * rp)2123 int register_kretprobe(struct kretprobe *rp)
2124 {
2125 int ret;
2126 struct kretprobe_instance *inst;
2127 int i;
2128 void *addr;
2129
2130 ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2131 if (ret)
2132 return ret;
2133
2134 /* If only rp->kp.addr is specified, check reregistering kprobes */
2135 if (rp->kp.addr && check_kprobe_rereg(&rp->kp))
2136 return -EINVAL;
2137
2138 if (kretprobe_blacklist_size) {
2139 addr = kprobe_addr(&rp->kp);
2140 if (IS_ERR(addr))
2141 return PTR_ERR(addr);
2142
2143 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2144 if (kretprobe_blacklist[i].addr == addr)
2145 return -EINVAL;
2146 }
2147 }
2148
2149 if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2150 return -E2BIG;
2151
2152 rp->kp.pre_handler = pre_handler_kretprobe;
2153 rp->kp.post_handler = NULL;
2154 rp->kp.fault_handler = NULL;
2155
2156 /* Pre-allocate memory for max kretprobe instances */
2157 if (rp->maxactive <= 0) {
2158 #ifdef CONFIG_PREEMPTION
2159 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2160 #else
2161 rp->maxactive = num_possible_cpus();
2162 #endif
2163 }
2164 raw_spin_lock_init(&rp->lock);
2165 INIT_HLIST_HEAD(&rp->free_instances);
2166 for (i = 0; i < rp->maxactive; i++) {
2167 inst = kmalloc(sizeof(struct kretprobe_instance) +
2168 rp->data_size, GFP_KERNEL);
2169 if (inst == NULL) {
2170 free_rp_inst(rp);
2171 return -ENOMEM;
2172 }
2173 INIT_HLIST_NODE(&inst->hlist);
2174 hlist_add_head(&inst->hlist, &rp->free_instances);
2175 }
2176
2177 rp->nmissed = 0;
2178 /* Establish function entry probe point */
2179 ret = register_kprobe(&rp->kp);
2180 if (ret != 0)
2181 free_rp_inst(rp);
2182 return ret;
2183 }
2184 EXPORT_SYMBOL_GPL(register_kretprobe);
2185
register_kretprobes(struct kretprobe ** rps,int num)2186 int register_kretprobes(struct kretprobe **rps, int num)
2187 {
2188 int ret = 0, i;
2189
2190 if (num <= 0)
2191 return -EINVAL;
2192 for (i = 0; i < num; i++) {
2193 ret = register_kretprobe(rps[i]);
2194 if (ret < 0) {
2195 if (i > 0)
2196 unregister_kretprobes(rps, i);
2197 break;
2198 }
2199 }
2200 return ret;
2201 }
2202 EXPORT_SYMBOL_GPL(register_kretprobes);
2203
unregister_kretprobe(struct kretprobe * rp)2204 void unregister_kretprobe(struct kretprobe *rp)
2205 {
2206 unregister_kretprobes(&rp, 1);
2207 }
2208 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2209
unregister_kretprobes(struct kretprobe ** rps,int num)2210 void unregister_kretprobes(struct kretprobe **rps, int num)
2211 {
2212 int i;
2213
2214 if (num <= 0)
2215 return;
2216 mutex_lock(&kprobe_mutex);
2217 for (i = 0; i < num; i++)
2218 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2219 rps[i]->kp.addr = NULL;
2220 mutex_unlock(&kprobe_mutex);
2221
2222 synchronize_rcu();
2223 for (i = 0; i < num; i++) {
2224 if (rps[i]->kp.addr) {
2225 __unregister_kprobe_bottom(&rps[i]->kp);
2226 cleanup_rp_inst(rps[i]);
2227 }
2228 }
2229 }
2230 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2231
2232 #else /* CONFIG_KRETPROBES */
register_kretprobe(struct kretprobe * rp)2233 int register_kretprobe(struct kretprobe *rp)
2234 {
2235 return -ENOSYS;
2236 }
2237 EXPORT_SYMBOL_GPL(register_kretprobe);
2238
register_kretprobes(struct kretprobe ** rps,int num)2239 int register_kretprobes(struct kretprobe **rps, int num)
2240 {
2241 return -ENOSYS;
2242 }
2243 EXPORT_SYMBOL_GPL(register_kretprobes);
2244
unregister_kretprobe(struct kretprobe * rp)2245 void unregister_kretprobe(struct kretprobe *rp)
2246 {
2247 }
2248 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2249
unregister_kretprobes(struct kretprobe ** rps,int num)2250 void unregister_kretprobes(struct kretprobe **rps, int num)
2251 {
2252 }
2253 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2254
pre_handler_kretprobe(struct kprobe * p,struct pt_regs * regs)2255 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2256 {
2257 return 0;
2258 }
2259 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2260
2261 #endif /* CONFIG_KRETPROBES */
2262
2263 /* Set the kprobe gone and remove its instruction buffer. */
kill_kprobe(struct kprobe * p)2264 static void kill_kprobe(struct kprobe *p)
2265 {
2266 struct kprobe *kp;
2267
2268 lockdep_assert_held(&kprobe_mutex);
2269
2270 if (WARN_ON_ONCE(kprobe_gone(p)))
2271 return;
2272
2273 p->flags |= KPROBE_FLAG_GONE;
2274 if (kprobe_aggrprobe(p)) {
2275 /*
2276 * If this is an aggr_kprobe, we have to list all the
2277 * chained probes and mark them GONE.
2278 */
2279 list_for_each_entry(kp, &p->list, list)
2280 kp->flags |= KPROBE_FLAG_GONE;
2281 p->post_handler = NULL;
2282 kill_optimized_kprobe(p);
2283 }
2284 /*
2285 * Here, we can remove insn_slot safely, because no thread calls
2286 * the original probed function (which will be freed soon) any more.
2287 */
2288 arch_remove_kprobe(p);
2289
2290 /*
2291 * The module is going away. We should disarm the kprobe which
2292 * is using ftrace, because ftrace framework is still available at
2293 * MODULE_STATE_GOING notification.
2294 */
2295 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2296 disarm_kprobe_ftrace(p);
2297 }
2298
2299 /* Disable one kprobe */
disable_kprobe(struct kprobe * kp)2300 int disable_kprobe(struct kprobe *kp)
2301 {
2302 int ret = 0;
2303 struct kprobe *p;
2304
2305 mutex_lock(&kprobe_mutex);
2306
2307 /* Disable this kprobe */
2308 p = __disable_kprobe(kp);
2309 if (IS_ERR(p))
2310 ret = PTR_ERR(p);
2311
2312 mutex_unlock(&kprobe_mutex);
2313 return ret;
2314 }
2315 EXPORT_SYMBOL_GPL(disable_kprobe);
2316
2317 /* Enable one kprobe */
enable_kprobe(struct kprobe * kp)2318 int enable_kprobe(struct kprobe *kp)
2319 {
2320 int ret = 0;
2321 struct kprobe *p;
2322
2323 mutex_lock(&kprobe_mutex);
2324
2325 /* Check whether specified probe is valid. */
2326 p = __get_valid_kprobe(kp);
2327 if (unlikely(p == NULL)) {
2328 ret = -EINVAL;
2329 goto out;
2330 }
2331
2332 if (kprobe_gone(kp)) {
2333 /* This kprobe has gone, we couldn't enable it. */
2334 ret = -EINVAL;
2335 goto out;
2336 }
2337
2338 if (p != kp)
2339 kp->flags &= ~KPROBE_FLAG_DISABLED;
2340
2341 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2342 p->flags &= ~KPROBE_FLAG_DISABLED;
2343 ret = arm_kprobe(p);
2344 if (ret) {
2345 p->flags |= KPROBE_FLAG_DISABLED;
2346 if (p != kp)
2347 kp->flags |= KPROBE_FLAG_DISABLED;
2348 }
2349 }
2350 out:
2351 mutex_unlock(&kprobe_mutex);
2352 return ret;
2353 }
2354 EXPORT_SYMBOL_GPL(enable_kprobe);
2355
2356 /* Caller must NOT call this in usual path. This is only for critical case */
dump_kprobe(struct kprobe * kp)2357 void dump_kprobe(struct kprobe *kp)
2358 {
2359 pr_err("Dumping kprobe:\n");
2360 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2361 kp->symbol_name, kp->offset, kp->addr);
2362 }
2363 NOKPROBE_SYMBOL(dump_kprobe);
2364
kprobe_add_ksym_blacklist(unsigned long entry)2365 int kprobe_add_ksym_blacklist(unsigned long entry)
2366 {
2367 struct kprobe_blacklist_entry *ent;
2368 unsigned long offset = 0, size = 0;
2369
2370 if (!kernel_text_address(entry) ||
2371 !kallsyms_lookup_size_offset(entry, &size, &offset))
2372 return -EINVAL;
2373
2374 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2375 if (!ent)
2376 return -ENOMEM;
2377 ent->start_addr = entry;
2378 ent->end_addr = entry + size;
2379 INIT_LIST_HEAD(&ent->list);
2380 list_add_tail(&ent->list, &kprobe_blacklist);
2381
2382 return (int)size;
2383 }
2384
2385 /* Add all symbols in given area into kprobe blacklist */
kprobe_add_area_blacklist(unsigned long start,unsigned long end)2386 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2387 {
2388 unsigned long entry;
2389 int ret = 0;
2390
2391 for (entry = start; entry < end; entry += ret) {
2392 ret = kprobe_add_ksym_blacklist(entry);
2393 if (ret < 0)
2394 return ret;
2395 if (ret == 0) /* In case of alias symbol */
2396 ret = 1;
2397 }
2398 return 0;
2399 }
2400
2401 /* Remove all symbols in given area from kprobe blacklist */
kprobe_remove_area_blacklist(unsigned long start,unsigned long end)2402 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2403 {
2404 struct kprobe_blacklist_entry *ent, *n;
2405
2406 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2407 if (ent->start_addr < start || ent->start_addr >= end)
2408 continue;
2409 list_del(&ent->list);
2410 kfree(ent);
2411 }
2412 }
2413
kprobe_remove_ksym_blacklist(unsigned long entry)2414 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2415 {
2416 kprobe_remove_area_blacklist(entry, entry + 1);
2417 }
2418
arch_kprobe_get_kallsym(unsigned int * symnum,unsigned long * value,char * type,char * sym)2419 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2420 char *type, char *sym)
2421 {
2422 return -ERANGE;
2423 }
2424
kprobe_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)2425 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2426 char *sym)
2427 {
2428 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2429 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2430 return 0;
2431 #ifdef CONFIG_OPTPROBES
2432 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2433 return 0;
2434 #endif
2435 #endif
2436 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2437 return 0;
2438 return -ERANGE;
2439 }
2440
arch_populate_kprobe_blacklist(void)2441 int __init __weak arch_populate_kprobe_blacklist(void)
2442 {
2443 return 0;
2444 }
2445
2446 /*
2447 * Lookup and populate the kprobe_blacklist.
2448 *
2449 * Unlike the kretprobe blacklist, we'll need to determine
2450 * the range of addresses that belong to the said functions,
2451 * since a kprobe need not necessarily be at the beginning
2452 * of a function.
2453 */
populate_kprobe_blacklist(unsigned long * start,unsigned long * end)2454 static int __init populate_kprobe_blacklist(unsigned long *start,
2455 unsigned long *end)
2456 {
2457 unsigned long entry;
2458 unsigned long *iter;
2459 int ret;
2460
2461 for (iter = start; iter < end; iter++) {
2462 entry = arch_deref_entry_point((void *)*iter);
2463 ret = kprobe_add_ksym_blacklist(entry);
2464 if (ret == -EINVAL)
2465 continue;
2466 if (ret < 0)
2467 return ret;
2468 }
2469
2470 /* Symbols in __kprobes_text are blacklisted */
2471 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2472 (unsigned long)__kprobes_text_end);
2473 if (ret)
2474 return ret;
2475
2476 /* Symbols in noinstr section are blacklisted */
2477 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2478 (unsigned long)__noinstr_text_end);
2479
2480 return ret ? : arch_populate_kprobe_blacklist();
2481 }
2482
add_module_kprobe_blacklist(struct module * mod)2483 static void add_module_kprobe_blacklist(struct module *mod)
2484 {
2485 unsigned long start, end;
2486 int i;
2487
2488 if (mod->kprobe_blacklist) {
2489 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2490 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2491 }
2492
2493 start = (unsigned long)mod->kprobes_text_start;
2494 if (start) {
2495 end = start + mod->kprobes_text_size;
2496 kprobe_add_area_blacklist(start, end);
2497 }
2498
2499 start = (unsigned long)mod->noinstr_text_start;
2500 if (start) {
2501 end = start + mod->noinstr_text_size;
2502 kprobe_add_area_blacklist(start, end);
2503 }
2504 }
2505
remove_module_kprobe_blacklist(struct module * mod)2506 static void remove_module_kprobe_blacklist(struct module *mod)
2507 {
2508 unsigned long start, end;
2509 int i;
2510
2511 if (mod->kprobe_blacklist) {
2512 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2513 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2514 }
2515
2516 start = (unsigned long)mod->kprobes_text_start;
2517 if (start) {
2518 end = start + mod->kprobes_text_size;
2519 kprobe_remove_area_blacklist(start, end);
2520 }
2521
2522 start = (unsigned long)mod->noinstr_text_start;
2523 if (start) {
2524 end = start + mod->noinstr_text_size;
2525 kprobe_remove_area_blacklist(start, end);
2526 }
2527 }
2528
2529 /* Module notifier call back, checking kprobes on the module */
kprobes_module_callback(struct notifier_block * nb,unsigned long val,void * data)2530 static int kprobes_module_callback(struct notifier_block *nb,
2531 unsigned long val, void *data)
2532 {
2533 struct module *mod = data;
2534 struct hlist_head *head;
2535 struct kprobe *p;
2536 unsigned int i;
2537 int checkcore = (val == MODULE_STATE_GOING);
2538
2539 if (val == MODULE_STATE_COMING) {
2540 mutex_lock(&kprobe_mutex);
2541 add_module_kprobe_blacklist(mod);
2542 mutex_unlock(&kprobe_mutex);
2543 }
2544 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2545 return NOTIFY_DONE;
2546
2547 /*
2548 * When MODULE_STATE_GOING was notified, both of module .text and
2549 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2550 * notified, only .init.text section would be freed. We need to
2551 * disable kprobes which have been inserted in the sections.
2552 */
2553 mutex_lock(&kprobe_mutex);
2554 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2555 head = &kprobe_table[i];
2556 hlist_for_each_entry(p, head, hlist) {
2557 if (kprobe_gone(p))
2558 continue;
2559
2560 if (within_module_init((unsigned long)p->addr, mod) ||
2561 (checkcore &&
2562 within_module_core((unsigned long)p->addr, mod))) {
2563 /*
2564 * The vaddr this probe is installed will soon
2565 * be vfreed buy not synced to disk. Hence,
2566 * disarming the breakpoint isn't needed.
2567 *
2568 * Note, this will also move any optimized probes
2569 * that are pending to be removed from their
2570 * corresponding lists to the freeing_list and
2571 * will not be touched by the delayed
2572 * kprobe_optimizer work handler.
2573 */
2574 kill_kprobe(p);
2575 }
2576 }
2577 }
2578 if (val == MODULE_STATE_GOING)
2579 remove_module_kprobe_blacklist(mod);
2580 mutex_unlock(&kprobe_mutex);
2581 return NOTIFY_DONE;
2582 }
2583
2584 static struct notifier_block kprobe_module_nb = {
2585 .notifier_call = kprobes_module_callback,
2586 .priority = 0
2587 };
2588
2589 /* Markers of _kprobe_blacklist section */
2590 extern unsigned long __start_kprobe_blacklist[];
2591 extern unsigned long __stop_kprobe_blacklist[];
2592
kprobe_free_init_mem(void)2593 void kprobe_free_init_mem(void)
2594 {
2595 void *start = (void *)(&__init_begin);
2596 void *end = (void *)(&__init_end);
2597 struct hlist_head *head;
2598 struct kprobe *p;
2599 int i;
2600
2601 mutex_lock(&kprobe_mutex);
2602
2603 /* Kill all kprobes on initmem */
2604 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2605 head = &kprobe_table[i];
2606 hlist_for_each_entry(p, head, hlist) {
2607 if (start <= (void *)p->addr && (void *)p->addr < end)
2608 kill_kprobe(p);
2609 }
2610 }
2611
2612 mutex_unlock(&kprobe_mutex);
2613 }
2614
init_kprobes(void)2615 static int __init init_kprobes(void)
2616 {
2617 int i, err = 0;
2618
2619 /* FIXME allocate the probe table, currently defined statically */
2620 /* initialize all list heads */
2621 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2622 INIT_HLIST_HEAD(&kprobe_table[i]);
2623 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2624 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2625 }
2626
2627 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2628 __stop_kprobe_blacklist);
2629 if (err) {
2630 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2631 pr_err("Please take care of using kprobes.\n");
2632 }
2633
2634 if (kretprobe_blacklist_size) {
2635 /* lookup the function address from its name */
2636 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2637 kretprobe_blacklist[i].addr =
2638 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2639 if (!kretprobe_blacklist[i].addr)
2640 printk("kretprobe: lookup failed: %s\n",
2641 kretprobe_blacklist[i].name);
2642 }
2643 }
2644
2645 /* By default, kprobes are armed */
2646 kprobes_all_disarmed = false;
2647
2648 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2649 /* Init kprobe_optinsn_slots for allocation */
2650 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2651 #endif
2652
2653 err = arch_init_kprobes();
2654 if (!err)
2655 err = register_die_notifier(&kprobe_exceptions_nb);
2656 if (!err)
2657 err = register_module_notifier(&kprobe_module_nb);
2658
2659 kprobes_initialized = (err == 0);
2660
2661 if (!err)
2662 init_test_probes();
2663 return err;
2664 }
2665 early_initcall(init_kprobes);
2666
2667 #if defined(CONFIG_OPTPROBES)
init_optprobes(void)2668 static int __init init_optprobes(void)
2669 {
2670 /*
2671 * Enable kprobe optimization - this kicks the optimizer which
2672 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2673 * not spawned in early initcall. So delay the optimization.
2674 */
2675 optimize_all_kprobes();
2676
2677 return 0;
2678 }
2679 subsys_initcall(init_optprobes);
2680 #endif
2681
2682 #ifdef CONFIG_DEBUG_FS
report_probe(struct seq_file * pi,struct kprobe * p,const char * sym,int offset,char * modname,struct kprobe * pp)2683 static void report_probe(struct seq_file *pi, struct kprobe *p,
2684 const char *sym, int offset, char *modname, struct kprobe *pp)
2685 {
2686 char *kprobe_type;
2687 void *addr = p->addr;
2688
2689 if (p->pre_handler == pre_handler_kretprobe)
2690 kprobe_type = "r";
2691 else
2692 kprobe_type = "k";
2693
2694 if (!kallsyms_show_value(pi->file->f_cred))
2695 addr = NULL;
2696
2697 if (sym)
2698 seq_printf(pi, "%px %s %s+0x%x %s ",
2699 addr, kprobe_type, sym, offset,
2700 (modname ? modname : " "));
2701 else /* try to use %pS */
2702 seq_printf(pi, "%px %s %pS ",
2703 addr, kprobe_type, p->addr);
2704
2705 if (!pp)
2706 pp = p;
2707 seq_printf(pi, "%s%s%s%s\n",
2708 (kprobe_gone(p) ? "[GONE]" : ""),
2709 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2710 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2711 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2712 }
2713
kprobe_seq_start(struct seq_file * f,loff_t * pos)2714 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2715 {
2716 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2717 }
2718
kprobe_seq_next(struct seq_file * f,void * v,loff_t * pos)2719 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2720 {
2721 (*pos)++;
2722 if (*pos >= KPROBE_TABLE_SIZE)
2723 return NULL;
2724 return pos;
2725 }
2726
kprobe_seq_stop(struct seq_file * f,void * v)2727 static void kprobe_seq_stop(struct seq_file *f, void *v)
2728 {
2729 /* Nothing to do */
2730 }
2731
show_kprobe_addr(struct seq_file * pi,void * v)2732 static int show_kprobe_addr(struct seq_file *pi, void *v)
2733 {
2734 struct hlist_head *head;
2735 struct kprobe *p, *kp;
2736 const char *sym = NULL;
2737 unsigned int i = *(loff_t *) v;
2738 unsigned long offset = 0;
2739 char *modname, namebuf[KSYM_NAME_LEN];
2740
2741 head = &kprobe_table[i];
2742 preempt_disable();
2743 hlist_for_each_entry_rcu(p, head, hlist) {
2744 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2745 &offset, &modname, namebuf);
2746 if (kprobe_aggrprobe(p)) {
2747 list_for_each_entry_rcu(kp, &p->list, list)
2748 report_probe(pi, kp, sym, offset, modname, p);
2749 } else
2750 report_probe(pi, p, sym, offset, modname, NULL);
2751 }
2752 preempt_enable();
2753 return 0;
2754 }
2755
2756 static const struct seq_operations kprobes_sops = {
2757 .start = kprobe_seq_start,
2758 .next = kprobe_seq_next,
2759 .stop = kprobe_seq_stop,
2760 .show = show_kprobe_addr
2761 };
2762
2763 DEFINE_SEQ_ATTRIBUTE(kprobes);
2764
2765 /* kprobes/blacklist -- shows which functions can not be probed */
kprobe_blacklist_seq_start(struct seq_file * m,loff_t * pos)2766 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2767 {
2768 mutex_lock(&kprobe_mutex);
2769 return seq_list_start(&kprobe_blacklist, *pos);
2770 }
2771
kprobe_blacklist_seq_next(struct seq_file * m,void * v,loff_t * pos)2772 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2773 {
2774 return seq_list_next(v, &kprobe_blacklist, pos);
2775 }
2776
kprobe_blacklist_seq_show(struct seq_file * m,void * v)2777 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2778 {
2779 struct kprobe_blacklist_entry *ent =
2780 list_entry(v, struct kprobe_blacklist_entry, list);
2781
2782 /*
2783 * If /proc/kallsyms is not showing kernel address, we won't
2784 * show them here either.
2785 */
2786 if (!kallsyms_show_value(m->file->f_cred))
2787 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2788 (void *)ent->start_addr);
2789 else
2790 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2791 (void *)ent->end_addr, (void *)ent->start_addr);
2792 return 0;
2793 }
2794
kprobe_blacklist_seq_stop(struct seq_file * f,void * v)2795 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2796 {
2797 mutex_unlock(&kprobe_mutex);
2798 }
2799
2800 static const struct seq_operations kprobe_blacklist_sops = {
2801 .start = kprobe_blacklist_seq_start,
2802 .next = kprobe_blacklist_seq_next,
2803 .stop = kprobe_blacklist_seq_stop,
2804 .show = kprobe_blacklist_seq_show,
2805 };
2806 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2807
arm_all_kprobes(void)2808 static int arm_all_kprobes(void)
2809 {
2810 struct hlist_head *head;
2811 struct kprobe *p;
2812 unsigned int i, total = 0, errors = 0;
2813 int err, ret = 0;
2814
2815 mutex_lock(&kprobe_mutex);
2816
2817 /* If kprobes are armed, just return */
2818 if (!kprobes_all_disarmed)
2819 goto already_enabled;
2820
2821 /*
2822 * optimize_kprobe() called by arm_kprobe() checks
2823 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2824 * arm_kprobe.
2825 */
2826 kprobes_all_disarmed = false;
2827 /* Arming kprobes doesn't optimize kprobe itself */
2828 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2829 head = &kprobe_table[i];
2830 /* Arm all kprobes on a best-effort basis */
2831 hlist_for_each_entry(p, head, hlist) {
2832 if (!kprobe_disabled(p)) {
2833 err = arm_kprobe(p);
2834 if (err) {
2835 errors++;
2836 ret = err;
2837 }
2838 total++;
2839 }
2840 }
2841 }
2842
2843 if (errors)
2844 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2845 errors, total);
2846 else
2847 pr_info("Kprobes globally enabled\n");
2848
2849 already_enabled:
2850 mutex_unlock(&kprobe_mutex);
2851 return ret;
2852 }
2853
disarm_all_kprobes(void)2854 static int disarm_all_kprobes(void)
2855 {
2856 struct hlist_head *head;
2857 struct kprobe *p;
2858 unsigned int i, total = 0, errors = 0;
2859 int err, ret = 0;
2860
2861 mutex_lock(&kprobe_mutex);
2862
2863 /* If kprobes are already disarmed, just return */
2864 if (kprobes_all_disarmed) {
2865 mutex_unlock(&kprobe_mutex);
2866 return 0;
2867 }
2868
2869 kprobes_all_disarmed = true;
2870
2871 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2872 head = &kprobe_table[i];
2873 /* Disarm all kprobes on a best-effort basis */
2874 hlist_for_each_entry(p, head, hlist) {
2875 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2876 err = disarm_kprobe(p, false);
2877 if (err) {
2878 errors++;
2879 ret = err;
2880 }
2881 total++;
2882 }
2883 }
2884 }
2885
2886 if (errors)
2887 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2888 errors, total);
2889 else
2890 pr_info("Kprobes globally disabled\n");
2891
2892 mutex_unlock(&kprobe_mutex);
2893
2894 /* Wait for disarming all kprobes by optimizer */
2895 wait_for_kprobe_optimizer();
2896
2897 return ret;
2898 }
2899
2900 /*
2901 * XXX: The debugfs bool file interface doesn't allow for callbacks
2902 * when the bool state is switched. We can reuse that facility when
2903 * available
2904 */
read_enabled_file_bool(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)2905 static ssize_t read_enabled_file_bool(struct file *file,
2906 char __user *user_buf, size_t count, loff_t *ppos)
2907 {
2908 char buf[3];
2909
2910 if (!kprobes_all_disarmed)
2911 buf[0] = '1';
2912 else
2913 buf[0] = '0';
2914 buf[1] = '\n';
2915 buf[2] = 0x00;
2916 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2917 }
2918
write_enabled_file_bool(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)2919 static ssize_t write_enabled_file_bool(struct file *file,
2920 const char __user *user_buf, size_t count, loff_t *ppos)
2921 {
2922 char buf[32];
2923 size_t buf_size;
2924 int ret = 0;
2925
2926 buf_size = min(count, (sizeof(buf)-1));
2927 if (copy_from_user(buf, user_buf, buf_size))
2928 return -EFAULT;
2929
2930 buf[buf_size] = '\0';
2931 switch (buf[0]) {
2932 case 'y':
2933 case 'Y':
2934 case '1':
2935 ret = arm_all_kprobes();
2936 break;
2937 case 'n':
2938 case 'N':
2939 case '0':
2940 ret = disarm_all_kprobes();
2941 break;
2942 default:
2943 return -EINVAL;
2944 }
2945
2946 if (ret)
2947 return ret;
2948
2949 return count;
2950 }
2951
2952 static const struct file_operations fops_kp = {
2953 .read = read_enabled_file_bool,
2954 .write = write_enabled_file_bool,
2955 .llseek = default_llseek,
2956 };
2957
debugfs_kprobe_init(void)2958 static int __init debugfs_kprobe_init(void)
2959 {
2960 struct dentry *dir;
2961
2962 dir = debugfs_create_dir("kprobes", NULL);
2963
2964 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2965
2966 debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
2967
2968 debugfs_create_file("blacklist", 0400, dir, NULL,
2969 &kprobe_blacklist_fops);
2970
2971 return 0;
2972 }
2973
2974 late_initcall(debugfs_kprobe_init);
2975 #endif /* CONFIG_DEBUG_FS */
2976