• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60 
61 #include <trace/events/kvm.h>
62 
63 #include <asm/debugreg.h>
64 #include <asm/msr.h>
65 #include <asm/desc.h>
66 #include <asm/mce.h>
67 #include <linux/kernel_stat.h>
68 #include <asm/fpu/internal.h> /* Ugh! */
69 #include <asm/pvclock.h>
70 #include <asm/div64.h>
71 #include <asm/irq_remapping.h>
72 #include <asm/mshyperv.h>
73 #include <asm/hypervisor.h>
74 #include <asm/tlbflush.h>
75 #include <asm/intel_pt.h>
76 #include <asm/emulate_prefix.h>
77 #include <clocksource/hyperv_timer.h>
78 
79 #define CREATE_TRACE_POINTS
80 #include "trace.h"
81 
82 #define MAX_IO_MSRS 256
83 #define KVM_MAX_MCE_BANKS 32
84 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
85 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
86 
87 #define emul_to_vcpu(ctxt) \
88 	((struct kvm_vcpu *)(ctxt)->vcpu)
89 
90 /* EFER defaults:
91  * - enable syscall per default because its emulated by KVM
92  * - enable LME and LMA per default on 64 bit KVM
93  */
94 #ifdef CONFIG_X86_64
95 static
96 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
97 #else
98 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
99 #endif
100 
101 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
102 
103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
104                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
105 
106 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
107 static void process_nmi(struct kvm_vcpu *vcpu);
108 static void process_smi(struct kvm_vcpu *vcpu);
109 static void enter_smm(struct kvm_vcpu *vcpu);
110 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
111 static void store_regs(struct kvm_vcpu *vcpu);
112 static int sync_regs(struct kvm_vcpu *vcpu);
113 
114 struct kvm_x86_ops kvm_x86_ops __read_mostly;
115 EXPORT_SYMBOL_GPL(kvm_x86_ops);
116 
117 static bool __read_mostly ignore_msrs = 0;
118 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
119 
120 static bool __read_mostly report_ignored_msrs = true;
121 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
122 
123 unsigned int min_timer_period_us = 200;
124 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
125 
126 static bool __read_mostly kvmclock_periodic_sync = true;
127 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
128 
129 bool __read_mostly kvm_has_tsc_control;
130 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
131 u32  __read_mostly kvm_max_guest_tsc_khz;
132 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
133 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
134 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
135 u64  __read_mostly kvm_max_tsc_scaling_ratio;
136 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
137 u64 __read_mostly kvm_default_tsc_scaling_ratio;
138 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
139 
140 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
141 static u32 __read_mostly tsc_tolerance_ppm = 250;
142 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
143 
144 /*
145  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
146  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
147  * advancement entirely.  Any other value is used as-is and disables adaptive
148  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
149  */
150 static int __read_mostly lapic_timer_advance_ns = -1;
151 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
152 
153 static bool __read_mostly vector_hashing = true;
154 module_param(vector_hashing, bool, S_IRUGO);
155 
156 bool __read_mostly enable_vmware_backdoor = false;
157 module_param(enable_vmware_backdoor, bool, S_IRUGO);
158 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
159 
160 static bool __read_mostly force_emulation_prefix = false;
161 module_param(force_emulation_prefix, bool, S_IRUGO);
162 
163 int __read_mostly pi_inject_timer = -1;
164 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
165 
166 /*
167  * Restoring the host value for MSRs that are only consumed when running in
168  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
169  * returns to userspace, i.e. the kernel can run with the guest's value.
170  */
171 #define KVM_MAX_NR_USER_RETURN_MSRS 16
172 
173 struct kvm_user_return_msrs_global {
174 	int nr;
175 	u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
176 };
177 
178 struct kvm_user_return_msrs {
179 	struct user_return_notifier urn;
180 	bool registered;
181 	struct kvm_user_return_msr_values {
182 		u64 host;
183 		u64 curr;
184 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
185 };
186 
187 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
188 static struct kvm_user_return_msrs __percpu *user_return_msrs;
189 
190 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
191 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
192 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
193 				| XFEATURE_MASK_PKRU)
194 
195 u64 __read_mostly host_efer;
196 EXPORT_SYMBOL_GPL(host_efer);
197 
198 bool __read_mostly allow_smaller_maxphyaddr = 0;
199 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
200 
201 static u64 __read_mostly host_xss;
202 u64 __read_mostly supported_xss;
203 EXPORT_SYMBOL_GPL(supported_xss);
204 
205 struct kvm_stats_debugfs_item debugfs_entries[] = {
206 	VCPU_STAT("pf_fixed", pf_fixed),
207 	VCPU_STAT("pf_guest", pf_guest),
208 	VCPU_STAT("tlb_flush", tlb_flush),
209 	VCPU_STAT("invlpg", invlpg),
210 	VCPU_STAT("exits", exits),
211 	VCPU_STAT("io_exits", io_exits),
212 	VCPU_STAT("mmio_exits", mmio_exits),
213 	VCPU_STAT("signal_exits", signal_exits),
214 	VCPU_STAT("irq_window", irq_window_exits),
215 	VCPU_STAT("nmi_window", nmi_window_exits),
216 	VCPU_STAT("halt_exits", halt_exits),
217 	VCPU_STAT("halt_successful_poll", halt_successful_poll),
218 	VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
219 	VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
220 	VCPU_STAT("halt_wakeup", halt_wakeup),
221 	VCPU_STAT("hypercalls", hypercalls),
222 	VCPU_STAT("request_irq", request_irq_exits),
223 	VCPU_STAT("irq_exits", irq_exits),
224 	VCPU_STAT("host_state_reload", host_state_reload),
225 	VCPU_STAT("fpu_reload", fpu_reload),
226 	VCPU_STAT("insn_emulation", insn_emulation),
227 	VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
228 	VCPU_STAT("irq_injections", irq_injections),
229 	VCPU_STAT("nmi_injections", nmi_injections),
230 	VCPU_STAT("req_event", req_event),
231 	VCPU_STAT("l1d_flush", l1d_flush),
232 	VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
233 	VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
234 	VCPU_STAT("preemption_reported", preemption_reported),
235 	VCPU_STAT("preemption_other", preemption_other),
236 	VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
237 	VM_STAT("mmu_pte_write", mmu_pte_write),
238 	VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
239 	VM_STAT("mmu_flooded", mmu_flooded),
240 	VM_STAT("mmu_recycled", mmu_recycled),
241 	VM_STAT("mmu_cache_miss", mmu_cache_miss),
242 	VM_STAT("mmu_unsync", mmu_unsync),
243 	VM_STAT("remote_tlb_flush", remote_tlb_flush),
244 	VM_STAT("largepages", lpages, .mode = 0444),
245 	VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
246 	VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
247 	{ NULL }
248 };
249 
250 u64 __read_mostly host_xcr0;
251 u64 __read_mostly supported_xcr0;
252 EXPORT_SYMBOL_GPL(supported_xcr0);
253 
254 static struct kmem_cache *x86_fpu_cache;
255 
256 static struct kmem_cache *x86_emulator_cache;
257 
258 /*
259  * When called, it means the previous get/set msr reached an invalid msr.
260  * Return true if we want to ignore/silent this failed msr access.
261  */
kvm_msr_ignored_check(struct kvm_vcpu * vcpu,u32 msr,u64 data,bool write)262 static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
263 				  u64 data, bool write)
264 {
265 	const char *op = write ? "wrmsr" : "rdmsr";
266 
267 	if (ignore_msrs) {
268 		if (report_ignored_msrs)
269 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
270 				      op, msr, data);
271 		/* Mask the error */
272 		return true;
273 	} else {
274 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
275 				      op, msr, data);
276 		return false;
277 	}
278 }
279 
kvm_alloc_emulator_cache(void)280 static struct kmem_cache *kvm_alloc_emulator_cache(void)
281 {
282 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
283 	unsigned int size = sizeof(struct x86_emulate_ctxt);
284 
285 	return kmem_cache_create_usercopy("x86_emulator", size,
286 					  __alignof__(struct x86_emulate_ctxt),
287 					  SLAB_ACCOUNT, useroffset,
288 					  size - useroffset, NULL);
289 }
290 
291 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
292 
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)293 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
294 {
295 	int i;
296 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
297 		vcpu->arch.apf.gfns[i] = ~0;
298 }
299 
kvm_on_user_return(struct user_return_notifier * urn)300 static void kvm_on_user_return(struct user_return_notifier *urn)
301 {
302 	unsigned slot;
303 	struct kvm_user_return_msrs *msrs
304 		= container_of(urn, struct kvm_user_return_msrs, urn);
305 	struct kvm_user_return_msr_values *values;
306 	unsigned long flags;
307 
308 	/*
309 	 * Disabling irqs at this point since the following code could be
310 	 * interrupted and executed through kvm_arch_hardware_disable()
311 	 */
312 	local_irq_save(flags);
313 	if (msrs->registered) {
314 		msrs->registered = false;
315 		user_return_notifier_unregister(urn);
316 	}
317 	local_irq_restore(flags);
318 	for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
319 		values = &msrs->values[slot];
320 		if (values->host != values->curr) {
321 			wrmsrl(user_return_msrs_global.msrs[slot], values->host);
322 			values->curr = values->host;
323 		}
324 	}
325 }
326 
kvm_probe_user_return_msr(u32 msr)327 int kvm_probe_user_return_msr(u32 msr)
328 {
329 	u64 val;
330 	int ret;
331 
332 	preempt_disable();
333 	ret = rdmsrl_safe(msr, &val);
334 	if (ret)
335 		goto out;
336 	ret = wrmsrl_safe(msr, val);
337 out:
338 	preempt_enable();
339 	return ret;
340 }
341 EXPORT_SYMBOL_GPL(kvm_probe_user_return_msr);
342 
kvm_define_user_return_msr(unsigned slot,u32 msr)343 void kvm_define_user_return_msr(unsigned slot, u32 msr)
344 {
345 	BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
346 	user_return_msrs_global.msrs[slot] = msr;
347 	if (slot >= user_return_msrs_global.nr)
348 		user_return_msrs_global.nr = slot + 1;
349 }
350 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
351 
kvm_user_return_msr_cpu_online(void)352 static void kvm_user_return_msr_cpu_online(void)
353 {
354 	unsigned int cpu = smp_processor_id();
355 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
356 	u64 value;
357 	int i;
358 
359 	for (i = 0; i < user_return_msrs_global.nr; ++i) {
360 		rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
361 		msrs->values[i].host = value;
362 		msrs->values[i].curr = value;
363 	}
364 }
365 
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)366 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
367 {
368 	unsigned int cpu = smp_processor_id();
369 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
370 	int err;
371 
372 	value = (value & mask) | (msrs->values[slot].host & ~mask);
373 	if (value == msrs->values[slot].curr)
374 		return 0;
375 	err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
376 	if (err)
377 		return 1;
378 
379 	msrs->values[slot].curr = value;
380 	if (!msrs->registered) {
381 		msrs->urn.on_user_return = kvm_on_user_return;
382 		user_return_notifier_register(&msrs->urn);
383 		msrs->registered = true;
384 	}
385 	return 0;
386 }
387 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
388 
drop_user_return_notifiers(void)389 static void drop_user_return_notifiers(void)
390 {
391 	unsigned int cpu = smp_processor_id();
392 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
393 
394 	if (msrs->registered)
395 		kvm_on_user_return(&msrs->urn);
396 }
397 
kvm_get_apic_base(struct kvm_vcpu * vcpu)398 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
399 {
400 	return vcpu->arch.apic_base;
401 }
402 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
403 
kvm_get_apic_mode(struct kvm_vcpu * vcpu)404 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
405 {
406 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
407 }
408 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
409 
kvm_set_apic_base(struct kvm_vcpu * vcpu,struct msr_data * msr_info)410 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
411 {
412 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
413 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
414 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
415 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
416 
417 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
418 		return 1;
419 	if (!msr_info->host_initiated) {
420 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
421 			return 1;
422 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
423 			return 1;
424 	}
425 
426 	kvm_lapic_set_base(vcpu, msr_info->data);
427 	kvm_recalculate_apic_map(vcpu->kvm);
428 	return 0;
429 }
430 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
431 
kvm_spurious_fault(void)432 asmlinkage __visible noinstr void kvm_spurious_fault(void)
433 {
434 	/* Fault while not rebooting.  We want the trace. */
435 	BUG_ON(!kvm_rebooting);
436 }
437 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
438 
439 #define EXCPT_BENIGN		0
440 #define EXCPT_CONTRIBUTORY	1
441 #define EXCPT_PF		2
442 
exception_class(int vector)443 static int exception_class(int vector)
444 {
445 	switch (vector) {
446 	case PF_VECTOR:
447 		return EXCPT_PF;
448 	case DE_VECTOR:
449 	case TS_VECTOR:
450 	case NP_VECTOR:
451 	case SS_VECTOR:
452 	case GP_VECTOR:
453 		return EXCPT_CONTRIBUTORY;
454 	default:
455 		break;
456 	}
457 	return EXCPT_BENIGN;
458 }
459 
460 #define EXCPT_FAULT		0
461 #define EXCPT_TRAP		1
462 #define EXCPT_ABORT		2
463 #define EXCPT_INTERRUPT		3
464 #define EXCPT_DB		4
465 
exception_type(int vector)466 static int exception_type(int vector)
467 {
468 	unsigned int mask;
469 
470 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
471 		return EXCPT_INTERRUPT;
472 
473 	mask = 1 << vector;
474 
475 	/*
476 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
477 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
478 	 */
479 	if (mask & (1 << DB_VECTOR))
480 		return EXCPT_DB;
481 
482 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
483 		return EXCPT_TRAP;
484 
485 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
486 		return EXCPT_ABORT;
487 
488 	/* Reserved exceptions will result in fault */
489 	return EXCPT_FAULT;
490 }
491 
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu)492 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
493 {
494 	unsigned nr = vcpu->arch.exception.nr;
495 	bool has_payload = vcpu->arch.exception.has_payload;
496 	unsigned long payload = vcpu->arch.exception.payload;
497 
498 	if (!has_payload)
499 		return;
500 
501 	switch (nr) {
502 	case DB_VECTOR:
503 		/*
504 		 * "Certain debug exceptions may clear bit 0-3.  The
505 		 * remaining contents of the DR6 register are never
506 		 * cleared by the processor".
507 		 */
508 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
509 		/*
510 		 * DR6.RTM is set by all #DB exceptions that don't clear it.
511 		 */
512 		vcpu->arch.dr6 |= DR6_RTM;
513 		vcpu->arch.dr6 |= payload;
514 		/*
515 		 * Bit 16 should be set in the payload whenever the #DB
516 		 * exception should clear DR6.RTM. This makes the payload
517 		 * compatible with the pending debug exceptions under VMX.
518 		 * Though not currently documented in the SDM, this also
519 		 * makes the payload compatible with the exit qualification
520 		 * for #DB exceptions under VMX.
521 		 */
522 		vcpu->arch.dr6 ^= payload & DR6_RTM;
523 
524 		/*
525 		 * The #DB payload is defined as compatible with the 'pending
526 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
527 		 * defined in the 'pending debug exceptions' field (enabled
528 		 * breakpoint), it is reserved and must be zero in DR6.
529 		 */
530 		vcpu->arch.dr6 &= ~BIT(12);
531 		break;
532 	case PF_VECTOR:
533 		vcpu->arch.cr2 = payload;
534 		break;
535 	}
536 
537 	vcpu->arch.exception.has_payload = false;
538 	vcpu->arch.exception.payload = 0;
539 }
540 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
541 
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload,bool reinject)542 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
543 		unsigned nr, bool has_error, u32 error_code,
544 	        bool has_payload, unsigned long payload, bool reinject)
545 {
546 	u32 prev_nr;
547 	int class1, class2;
548 
549 	kvm_make_request(KVM_REQ_EVENT, vcpu);
550 
551 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
552 	queue:
553 		if (reinject) {
554 			/*
555 			 * On vmentry, vcpu->arch.exception.pending is only
556 			 * true if an event injection was blocked by
557 			 * nested_run_pending.  In that case, however,
558 			 * vcpu_enter_guest requests an immediate exit,
559 			 * and the guest shouldn't proceed far enough to
560 			 * need reinjection.
561 			 */
562 			WARN_ON_ONCE(vcpu->arch.exception.pending);
563 			vcpu->arch.exception.injected = true;
564 			if (WARN_ON_ONCE(has_payload)) {
565 				/*
566 				 * A reinjected event has already
567 				 * delivered its payload.
568 				 */
569 				has_payload = false;
570 				payload = 0;
571 			}
572 		} else {
573 			vcpu->arch.exception.pending = true;
574 			vcpu->arch.exception.injected = false;
575 		}
576 		vcpu->arch.exception.has_error_code = has_error;
577 		vcpu->arch.exception.nr = nr;
578 		vcpu->arch.exception.error_code = error_code;
579 		vcpu->arch.exception.has_payload = has_payload;
580 		vcpu->arch.exception.payload = payload;
581 		if (!is_guest_mode(vcpu))
582 			kvm_deliver_exception_payload(vcpu);
583 		return;
584 	}
585 
586 	/* to check exception */
587 	prev_nr = vcpu->arch.exception.nr;
588 	if (prev_nr == DF_VECTOR) {
589 		/* triple fault -> shutdown */
590 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
591 		return;
592 	}
593 	class1 = exception_class(prev_nr);
594 	class2 = exception_class(nr);
595 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
596 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
597 		/*
598 		 * Generate double fault per SDM Table 5-5.  Set
599 		 * exception.pending = true so that the double fault
600 		 * can trigger a nested vmexit.
601 		 */
602 		vcpu->arch.exception.pending = true;
603 		vcpu->arch.exception.injected = false;
604 		vcpu->arch.exception.has_error_code = true;
605 		vcpu->arch.exception.nr = DF_VECTOR;
606 		vcpu->arch.exception.error_code = 0;
607 		vcpu->arch.exception.has_payload = false;
608 		vcpu->arch.exception.payload = 0;
609 	} else
610 		/* replace previous exception with a new one in a hope
611 		   that instruction re-execution will regenerate lost
612 		   exception */
613 		goto queue;
614 }
615 
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)616 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
617 {
618 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
619 }
620 EXPORT_SYMBOL_GPL(kvm_queue_exception);
621 
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)622 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
623 {
624 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
625 }
626 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
627 
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)628 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
629 			   unsigned long payload)
630 {
631 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
632 }
633 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
634 
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)635 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
636 				    u32 error_code, unsigned long payload)
637 {
638 	kvm_multiple_exception(vcpu, nr, true, error_code,
639 			       true, payload, false);
640 }
641 
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)642 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
643 {
644 	if (err)
645 		kvm_inject_gp(vcpu, 0);
646 	else
647 		return kvm_skip_emulated_instruction(vcpu);
648 
649 	return 1;
650 }
651 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
652 
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)653 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
654 {
655 	++vcpu->stat.pf_guest;
656 	vcpu->arch.exception.nested_apf =
657 		is_guest_mode(vcpu) && fault->async_page_fault;
658 	if (vcpu->arch.exception.nested_apf) {
659 		vcpu->arch.apf.nested_apf_token = fault->address;
660 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
661 	} else {
662 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
663 					fault->address);
664 	}
665 }
666 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
667 
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)668 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
669 				    struct x86_exception *fault)
670 {
671 	struct kvm_mmu *fault_mmu;
672 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
673 
674 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
675 					       vcpu->arch.walk_mmu;
676 
677 	/*
678 	 * Invalidate the TLB entry for the faulting address, if it exists,
679 	 * else the access will fault indefinitely (and to emulate hardware).
680 	 */
681 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
682 	    !(fault->error_code & PFERR_RSVD_MASK))
683 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
684 				       fault_mmu->root_hpa);
685 
686 	fault_mmu->inject_page_fault(vcpu, fault);
687 	return fault->nested_page_fault;
688 }
689 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
690 
kvm_inject_nmi(struct kvm_vcpu * vcpu)691 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
692 {
693 	atomic_inc(&vcpu->arch.nmi_queued);
694 	kvm_make_request(KVM_REQ_NMI, vcpu);
695 }
696 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
697 
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)698 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
699 {
700 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
701 }
702 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
703 
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)704 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
705 {
706 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
707 }
708 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
709 
710 /*
711  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
712  * a #GP and return false.
713  */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)714 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
715 {
716 	if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
717 		return true;
718 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
719 	return false;
720 }
721 EXPORT_SYMBOL_GPL(kvm_require_cpl);
722 
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)723 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
724 {
725 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
726 		return true;
727 
728 	kvm_queue_exception(vcpu, UD_VECTOR);
729 	return false;
730 }
731 EXPORT_SYMBOL_GPL(kvm_require_dr);
732 
733 /*
734  * This function will be used to read from the physical memory of the currently
735  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
736  * can read from guest physical or from the guest's guest physical memory.
737  */
kvm_read_guest_page_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gfn_t ngfn,void * data,int offset,int len,u32 access)738 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
739 			    gfn_t ngfn, void *data, int offset, int len,
740 			    u32 access)
741 {
742 	struct x86_exception exception;
743 	gfn_t real_gfn;
744 	gpa_t ngpa;
745 
746 	ngpa     = gfn_to_gpa(ngfn);
747 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
748 	if (real_gfn == UNMAPPED_GVA)
749 		return -EFAULT;
750 
751 	real_gfn = gpa_to_gfn(real_gfn);
752 
753 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
754 }
755 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
756 
kvm_read_nested_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len,u32 access)757 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
758 			       void *data, int offset, int len, u32 access)
759 {
760 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
761 				       data, offset, len, access);
762 }
763 
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)764 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
765 {
766 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
767 	       rsvd_bits(1, 2);
768 }
769 
770 /*
771  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
772  */
load_pdptrs(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,unsigned long cr3)773 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
774 {
775 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
776 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
777 	int i;
778 	int ret;
779 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
780 
781 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
782 				      offset * sizeof(u64), sizeof(pdpte),
783 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
784 	if (ret < 0) {
785 		ret = 0;
786 		goto out;
787 	}
788 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
789 		if ((pdpte[i] & PT_PRESENT_MASK) &&
790 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
791 			ret = 0;
792 			goto out;
793 		}
794 	}
795 	ret = 1;
796 
797 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
798 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
799 
800 out:
801 
802 	return ret;
803 }
804 EXPORT_SYMBOL_GPL(load_pdptrs);
805 
pdptrs_changed(struct kvm_vcpu * vcpu)806 bool pdptrs_changed(struct kvm_vcpu *vcpu)
807 {
808 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
809 	int offset;
810 	gfn_t gfn;
811 	int r;
812 
813 	if (!is_pae_paging(vcpu))
814 		return false;
815 
816 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
817 		return true;
818 
819 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
820 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
821 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
822 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
823 	if (r < 0)
824 		return true;
825 
826 	return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
827 }
828 EXPORT_SYMBOL_GPL(pdptrs_changed);
829 
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)830 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
831 {
832 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
833 	unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
834 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
835 
836 	cr0 |= X86_CR0_ET;
837 
838 #ifdef CONFIG_X86_64
839 	if (cr0 & 0xffffffff00000000UL)
840 		return 1;
841 #endif
842 
843 	cr0 &= ~CR0_RESERVED_BITS;
844 
845 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
846 		return 1;
847 
848 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
849 		return 1;
850 
851 #ifdef CONFIG_X86_64
852 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
853 	    (cr0 & X86_CR0_PG)) {
854 		int cs_db, cs_l;
855 
856 		if (!is_pae(vcpu))
857 			return 1;
858 		kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
859 		if (cs_l)
860 			return 1;
861 	}
862 #endif
863 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
864 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
865 	    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
866 		return 1;
867 
868 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
869 		return 1;
870 
871 	kvm_x86_ops.set_cr0(vcpu, cr0);
872 
873 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
874 		kvm_clear_async_pf_completion_queue(vcpu);
875 		kvm_async_pf_hash_reset(vcpu);
876 	}
877 
878 	if ((cr0 ^ old_cr0) & update_bits)
879 		kvm_mmu_reset_context(vcpu);
880 
881 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
882 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
883 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
884 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
885 
886 	return 0;
887 }
888 EXPORT_SYMBOL_GPL(kvm_set_cr0);
889 
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)890 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
891 {
892 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
893 }
894 EXPORT_SYMBOL_GPL(kvm_lmsw);
895 
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)896 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
897 {
898 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
899 
900 		if (vcpu->arch.xcr0 != host_xcr0)
901 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
902 
903 		if (vcpu->arch.xsaves_enabled &&
904 		    vcpu->arch.ia32_xss != host_xss)
905 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
906 	}
907 
908 	if (static_cpu_has(X86_FEATURE_PKU) &&
909 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
910 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
911 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
912 		__write_pkru(vcpu->arch.pkru);
913 }
914 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
915 
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)916 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
917 {
918 	if (static_cpu_has(X86_FEATURE_PKU) &&
919 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
920 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
921 		vcpu->arch.pkru = rdpkru();
922 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
923 			__write_pkru(vcpu->arch.host_pkru);
924 	}
925 
926 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
927 
928 		if (vcpu->arch.xcr0 != host_xcr0)
929 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
930 
931 		if (vcpu->arch.xsaves_enabled &&
932 		    vcpu->arch.ia32_xss != host_xss)
933 			wrmsrl(MSR_IA32_XSS, host_xss);
934 	}
935 
936 }
937 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
938 
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)939 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
940 {
941 	u64 xcr0 = xcr;
942 	u64 old_xcr0 = vcpu->arch.xcr0;
943 	u64 valid_bits;
944 
945 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
946 	if (index != XCR_XFEATURE_ENABLED_MASK)
947 		return 1;
948 	if (!(xcr0 & XFEATURE_MASK_FP))
949 		return 1;
950 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
951 		return 1;
952 
953 	/*
954 	 * Do not allow the guest to set bits that we do not support
955 	 * saving.  However, xcr0 bit 0 is always set, even if the
956 	 * emulated CPU does not support XSAVE (see fx_init).
957 	 */
958 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
959 	if (xcr0 & ~valid_bits)
960 		return 1;
961 
962 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
963 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
964 		return 1;
965 
966 	if (xcr0 & XFEATURE_MASK_AVX512) {
967 		if (!(xcr0 & XFEATURE_MASK_YMM))
968 			return 1;
969 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
970 			return 1;
971 	}
972 	vcpu->arch.xcr0 = xcr0;
973 
974 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
975 		kvm_update_cpuid_runtime(vcpu);
976 	return 0;
977 }
978 
kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)979 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
980 {
981 	if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
982 	    __kvm_set_xcr(vcpu, index, xcr)) {
983 		kvm_inject_gp(vcpu, 0);
984 		return 1;
985 	}
986 	return 0;
987 }
988 EXPORT_SYMBOL_GPL(kvm_set_xcr);
989 
kvm_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)990 int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
991 {
992 	if (cr4 & cr4_reserved_bits)
993 		return -EINVAL;
994 
995 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
996 		return -EINVAL;
997 
998 	if (!kvm_x86_ops.is_valid_cr4(vcpu, cr4))
999 		return -EINVAL;
1000 
1001 	return 0;
1002 }
1003 EXPORT_SYMBOL_GPL(kvm_valid_cr4);
1004 
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1005 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1006 {
1007 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1008 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1009 				   X86_CR4_SMEP;
1010 	unsigned long mmu_role_bits = pdptr_bits | X86_CR4_SMAP | X86_CR4_PKE;
1011 
1012 	if (kvm_valid_cr4(vcpu, cr4))
1013 		return 1;
1014 
1015 	if (is_long_mode(vcpu)) {
1016 		if (!(cr4 & X86_CR4_PAE))
1017 			return 1;
1018 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1019 			return 1;
1020 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1021 		   && ((cr4 ^ old_cr4) & pdptr_bits)
1022 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1023 				   kvm_read_cr3(vcpu)))
1024 		return 1;
1025 
1026 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1027 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1028 			return 1;
1029 
1030 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1031 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1032 			return 1;
1033 	}
1034 
1035 	kvm_x86_ops.set_cr4(vcpu, cr4);
1036 
1037 	if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1038 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1039 		kvm_mmu_reset_context(vcpu);
1040 
1041 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1042 		kvm_update_cpuid_runtime(vcpu);
1043 
1044 	return 0;
1045 }
1046 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1047 
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1048 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1049 {
1050 	bool skip_tlb_flush = false;
1051 #ifdef CONFIG_X86_64
1052 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1053 
1054 	if (pcid_enabled) {
1055 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1056 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1057 	}
1058 #endif
1059 
1060 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1061 		if (!skip_tlb_flush) {
1062 			kvm_mmu_sync_roots(vcpu);
1063 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1064 		}
1065 		return 0;
1066 	}
1067 
1068 	if (is_long_mode(vcpu) &&
1069 	    (cr3 & vcpu->arch.cr3_lm_rsvd_bits))
1070 		return 1;
1071 	else if (is_pae_paging(vcpu) &&
1072 		 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1073 		return 1;
1074 
1075 	kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1076 	vcpu->arch.cr3 = cr3;
1077 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1078 
1079 	return 0;
1080 }
1081 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1082 
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1083 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1084 {
1085 	if (cr8 & CR8_RESERVED_BITS)
1086 		return 1;
1087 	if (lapic_in_kernel(vcpu))
1088 		kvm_lapic_set_tpr(vcpu, cr8);
1089 	else
1090 		vcpu->arch.cr8 = cr8;
1091 	return 0;
1092 }
1093 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1094 
kvm_get_cr8(struct kvm_vcpu * vcpu)1095 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1096 {
1097 	if (lapic_in_kernel(vcpu))
1098 		return kvm_lapic_get_cr8(vcpu);
1099 	else
1100 		return vcpu->arch.cr8;
1101 }
1102 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1103 
kvm_update_dr0123(struct kvm_vcpu * vcpu)1104 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1105 {
1106 	int i;
1107 
1108 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1109 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1110 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1111 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1112 	}
1113 }
1114 
kvm_update_dr7(struct kvm_vcpu * vcpu)1115 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1116 {
1117 	unsigned long dr7;
1118 
1119 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1120 		dr7 = vcpu->arch.guest_debug_dr7;
1121 	else
1122 		dr7 = vcpu->arch.dr7;
1123 	kvm_x86_ops.set_dr7(vcpu, dr7);
1124 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1125 	if (dr7 & DR7_BP_EN_MASK)
1126 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1127 }
1128 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1129 
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1130 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1131 {
1132 	u64 fixed = DR6_FIXED_1;
1133 
1134 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1135 		fixed |= DR6_RTM;
1136 	return fixed;
1137 }
1138 
__kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1139 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1140 {
1141 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1142 
1143 	switch (dr) {
1144 	case 0 ... 3:
1145 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1146 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1147 			vcpu->arch.eff_db[dr] = val;
1148 		break;
1149 	case 4:
1150 	case 6:
1151 		if (!kvm_dr6_valid(val))
1152 			return -1; /* #GP */
1153 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1154 		break;
1155 	case 5:
1156 	default: /* 7 */
1157 		if (!kvm_dr7_valid(val))
1158 			return -1; /* #GP */
1159 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1160 		kvm_update_dr7(vcpu);
1161 		break;
1162 	}
1163 
1164 	return 0;
1165 }
1166 
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1167 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1168 {
1169 	if (__kvm_set_dr(vcpu, dr, val)) {
1170 		kvm_inject_gp(vcpu, 0);
1171 		return 1;
1172 	}
1173 	return 0;
1174 }
1175 EXPORT_SYMBOL_GPL(kvm_set_dr);
1176 
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)1177 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1178 {
1179 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1180 
1181 	switch (dr) {
1182 	case 0 ... 3:
1183 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1184 		break;
1185 	case 4:
1186 	case 6:
1187 		*val = vcpu->arch.dr6;
1188 		break;
1189 	case 5:
1190 	default: /* 7 */
1191 		*val = vcpu->arch.dr7;
1192 		break;
1193 	}
1194 	return 0;
1195 }
1196 EXPORT_SYMBOL_GPL(kvm_get_dr);
1197 
kvm_rdpmc(struct kvm_vcpu * vcpu)1198 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1199 {
1200 	u32 ecx = kvm_rcx_read(vcpu);
1201 	u64 data;
1202 	int err;
1203 
1204 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1205 	if (err)
1206 		return err;
1207 	kvm_rax_write(vcpu, (u32)data);
1208 	kvm_rdx_write(vcpu, data >> 32);
1209 	return err;
1210 }
1211 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1212 
1213 /*
1214  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1215  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1216  *
1217  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1218  * extract the supported MSRs from the related const lists.
1219  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1220  * capabilities of the host cpu. This capabilities test skips MSRs that are
1221  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1222  * may depend on host virtualization features rather than host cpu features.
1223  */
1224 
1225 static const u32 msrs_to_save_all[] = {
1226 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1227 	MSR_STAR,
1228 #ifdef CONFIG_X86_64
1229 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1230 #endif
1231 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1232 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1233 	MSR_IA32_SPEC_CTRL,
1234 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1235 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1236 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1237 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1238 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1239 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1240 	MSR_IA32_UMWAIT_CONTROL,
1241 
1242 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1243 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1244 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1245 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1246 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1247 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1248 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1249 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1250 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1251 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1252 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1253 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1254 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1255 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1256 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1257 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1258 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1259 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1260 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1261 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1262 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1263 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1264 
1265 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1266 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1267 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1268 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1269 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1270 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1271 };
1272 
1273 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1274 static unsigned num_msrs_to_save;
1275 
1276 static const u32 emulated_msrs_all[] = {
1277 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1278 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1279 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1280 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1281 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1282 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1283 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1284 	HV_X64_MSR_RESET,
1285 	HV_X64_MSR_VP_INDEX,
1286 	HV_X64_MSR_VP_RUNTIME,
1287 	HV_X64_MSR_SCONTROL,
1288 	HV_X64_MSR_STIMER0_CONFIG,
1289 	HV_X64_MSR_VP_ASSIST_PAGE,
1290 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1291 	HV_X64_MSR_TSC_EMULATION_STATUS,
1292 	HV_X64_MSR_SYNDBG_OPTIONS,
1293 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1294 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1295 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1296 
1297 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1298 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1299 
1300 	MSR_IA32_TSC_ADJUST,
1301 	MSR_IA32_TSCDEADLINE,
1302 	MSR_IA32_ARCH_CAPABILITIES,
1303 	MSR_IA32_PERF_CAPABILITIES,
1304 	MSR_IA32_MISC_ENABLE,
1305 	MSR_IA32_MCG_STATUS,
1306 	MSR_IA32_MCG_CTL,
1307 	MSR_IA32_MCG_EXT_CTL,
1308 	MSR_IA32_SMBASE,
1309 	MSR_SMI_COUNT,
1310 	MSR_PLATFORM_INFO,
1311 	MSR_MISC_FEATURES_ENABLES,
1312 	MSR_AMD64_VIRT_SPEC_CTRL,
1313 	MSR_IA32_POWER_CTL,
1314 	MSR_IA32_UCODE_REV,
1315 
1316 	/*
1317 	 * The following list leaves out MSRs whose values are determined
1318 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1319 	 * We always support the "true" VMX control MSRs, even if the host
1320 	 * processor does not, so I am putting these registers here rather
1321 	 * than in msrs_to_save_all.
1322 	 */
1323 	MSR_IA32_VMX_BASIC,
1324 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1325 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1326 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1327 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1328 	MSR_IA32_VMX_MISC,
1329 	MSR_IA32_VMX_CR0_FIXED0,
1330 	MSR_IA32_VMX_CR4_FIXED0,
1331 	MSR_IA32_VMX_VMCS_ENUM,
1332 	MSR_IA32_VMX_PROCBASED_CTLS2,
1333 	MSR_IA32_VMX_EPT_VPID_CAP,
1334 	MSR_IA32_VMX_VMFUNC,
1335 
1336 	MSR_K7_HWCR,
1337 	MSR_KVM_POLL_CONTROL,
1338 };
1339 
1340 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1341 static unsigned num_emulated_msrs;
1342 
1343 /*
1344  * List of msr numbers which are used to expose MSR-based features that
1345  * can be used by a hypervisor to validate requested CPU features.
1346  */
1347 static const u32 msr_based_features_all[] = {
1348 	MSR_IA32_VMX_BASIC,
1349 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1350 	MSR_IA32_VMX_PINBASED_CTLS,
1351 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1352 	MSR_IA32_VMX_PROCBASED_CTLS,
1353 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1354 	MSR_IA32_VMX_EXIT_CTLS,
1355 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1356 	MSR_IA32_VMX_ENTRY_CTLS,
1357 	MSR_IA32_VMX_MISC,
1358 	MSR_IA32_VMX_CR0_FIXED0,
1359 	MSR_IA32_VMX_CR0_FIXED1,
1360 	MSR_IA32_VMX_CR4_FIXED0,
1361 	MSR_IA32_VMX_CR4_FIXED1,
1362 	MSR_IA32_VMX_VMCS_ENUM,
1363 	MSR_IA32_VMX_PROCBASED_CTLS2,
1364 	MSR_IA32_VMX_EPT_VPID_CAP,
1365 	MSR_IA32_VMX_VMFUNC,
1366 
1367 	MSR_AMD64_DE_CFG,
1368 	MSR_IA32_UCODE_REV,
1369 	MSR_IA32_ARCH_CAPABILITIES,
1370 	MSR_IA32_PERF_CAPABILITIES,
1371 };
1372 
1373 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1374 static unsigned int num_msr_based_features;
1375 
1376 /*
1377  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1378  * does not yet virtualize. These include:
1379  *   10 - MISC_PACKAGE_CTRLS
1380  *   11 - ENERGY_FILTERING_CTL
1381  *   12 - DOITM
1382  *   18 - FB_CLEAR_CTRL
1383  *   21 - XAPIC_DISABLE_STATUS
1384  *   23 - OVERCLOCKING_STATUS
1385  */
1386 
1387 #define KVM_SUPPORTED_ARCH_CAP \
1388 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1389 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1390 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1391 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1392 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO)
1393 
kvm_get_arch_capabilities(void)1394 static u64 kvm_get_arch_capabilities(void)
1395 {
1396 	u64 data = 0;
1397 
1398 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1399 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1400 		data &= KVM_SUPPORTED_ARCH_CAP;
1401 	}
1402 
1403 	/*
1404 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1405 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1406 	 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1407 	 * L1 guests, so it need not worry about its own (L2) guests.
1408 	 */
1409 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1410 
1411 	/*
1412 	 * If we're doing cache flushes (either "always" or "cond")
1413 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1414 	 * If an outer hypervisor is doing the cache flush for us
1415 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1416 	 * capability to the guest too, and if EPT is disabled we're not
1417 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1418 	 * require a nested hypervisor to do a flush of its own.
1419 	 */
1420 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1421 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1422 
1423 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1424 		data |= ARCH_CAP_RDCL_NO;
1425 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1426 		data |= ARCH_CAP_SSB_NO;
1427 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1428 		data |= ARCH_CAP_MDS_NO;
1429 
1430 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1431 		/*
1432 		 * If RTM=0 because the kernel has disabled TSX, the host might
1433 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1434 		 * and therefore knows that there cannot be TAA) but keep
1435 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1436 		 * and we want to allow migrating those guests to tsx=off hosts.
1437 		 */
1438 		data &= ~ARCH_CAP_TAA_NO;
1439 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1440 		data |= ARCH_CAP_TAA_NO;
1441 	} else {
1442 		/*
1443 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1444 		 * host so the guest can choose between disabling TSX or
1445 		 * using VERW to clear CPU buffers.
1446 		 */
1447 	}
1448 
1449 	return data;
1450 }
1451 
kvm_get_msr_feature(struct kvm_msr_entry * msr)1452 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1453 {
1454 	switch (msr->index) {
1455 	case MSR_IA32_ARCH_CAPABILITIES:
1456 		msr->data = kvm_get_arch_capabilities();
1457 		break;
1458 	case MSR_IA32_UCODE_REV:
1459 		rdmsrl_safe(msr->index, &msr->data);
1460 		break;
1461 	default:
1462 		return kvm_x86_ops.get_msr_feature(msr);
1463 	}
1464 	return 0;
1465 }
1466 
do_get_msr_feature(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1467 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1468 {
1469 	struct kvm_msr_entry msr;
1470 	int r;
1471 
1472 	msr.index = index;
1473 	r = kvm_get_msr_feature(&msr);
1474 
1475 	if (r == KVM_MSR_RET_INVALID) {
1476 		/* Unconditionally clear the output for simplicity */
1477 		*data = 0;
1478 		if (kvm_msr_ignored_check(vcpu, index, 0, false))
1479 			r = 0;
1480 	}
1481 
1482 	if (r)
1483 		return r;
1484 
1485 	*data = msr.data;
1486 
1487 	return 0;
1488 }
1489 
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1490 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1491 {
1492 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1493 		return false;
1494 
1495 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1496 		return false;
1497 
1498 	if (efer & (EFER_LME | EFER_LMA) &&
1499 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1500 		return false;
1501 
1502 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1503 		return false;
1504 
1505 	return true;
1506 
1507 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1508 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1509 {
1510 	if (efer & efer_reserved_bits)
1511 		return false;
1512 
1513 	return __kvm_valid_efer(vcpu, efer);
1514 }
1515 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1516 
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1517 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1518 {
1519 	u64 old_efer = vcpu->arch.efer;
1520 	u64 efer = msr_info->data;
1521 	int r;
1522 
1523 	if (efer & efer_reserved_bits)
1524 		return 1;
1525 
1526 	if (!msr_info->host_initiated) {
1527 		if (!__kvm_valid_efer(vcpu, efer))
1528 			return 1;
1529 
1530 		if (is_paging(vcpu) &&
1531 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1532 			return 1;
1533 	}
1534 
1535 	efer &= ~EFER_LMA;
1536 	efer |= vcpu->arch.efer & EFER_LMA;
1537 
1538 	r = kvm_x86_ops.set_efer(vcpu, efer);
1539 	if (r) {
1540 		WARN_ON(r > 0);
1541 		return r;
1542 	}
1543 
1544 	/* Update reserved bits */
1545 	if ((efer ^ old_efer) & EFER_NX)
1546 		kvm_mmu_reset_context(vcpu);
1547 
1548 	return 0;
1549 }
1550 
kvm_enable_efer_bits(u64 mask)1551 void kvm_enable_efer_bits(u64 mask)
1552 {
1553        efer_reserved_bits &= ~mask;
1554 }
1555 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1556 
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1557 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1558 {
1559 	struct kvm_x86_msr_filter *msr_filter;
1560 	struct msr_bitmap_range *ranges;
1561 	struct kvm *kvm = vcpu->kvm;
1562 	bool allowed;
1563 	int idx;
1564 	u32 i;
1565 
1566 	/* x2APIC MSRs do not support filtering. */
1567 	if (index >= 0x800 && index <= 0x8ff)
1568 		return true;
1569 
1570 	idx = srcu_read_lock(&kvm->srcu);
1571 
1572 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1573 	if (!msr_filter) {
1574 		allowed = true;
1575 		goto out;
1576 	}
1577 
1578 	allowed = msr_filter->default_allow;
1579 	ranges = msr_filter->ranges;
1580 
1581 	for (i = 0; i < msr_filter->count; i++) {
1582 		u32 start = ranges[i].base;
1583 		u32 end = start + ranges[i].nmsrs;
1584 		u32 flags = ranges[i].flags;
1585 		unsigned long *bitmap = ranges[i].bitmap;
1586 
1587 		if ((index >= start) && (index < end) && (flags & type)) {
1588 			allowed = !!test_bit(index - start, bitmap);
1589 			break;
1590 		}
1591 
1592 		/* Note, VM-Exits that go down the "slow" path are accounted below. */
1593 		++vcpu->stat.exits;
1594 	}
1595 
1596 out:
1597 	srcu_read_unlock(&kvm->srcu, idx);
1598 
1599 	return allowed;
1600 }
1601 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1602 
1603 /*
1604  * Write @data into the MSR specified by @index.  Select MSR specific fault
1605  * checks are bypassed if @host_initiated is %true.
1606  * Returns 0 on success, non-0 otherwise.
1607  * Assumes vcpu_load() was already called.
1608  */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1609 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1610 			 bool host_initiated)
1611 {
1612 	struct msr_data msr;
1613 
1614 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1615 		return KVM_MSR_RET_FILTERED;
1616 
1617 	switch (index) {
1618 	case MSR_FS_BASE:
1619 	case MSR_GS_BASE:
1620 	case MSR_KERNEL_GS_BASE:
1621 	case MSR_CSTAR:
1622 	case MSR_LSTAR:
1623 		if (is_noncanonical_address(data, vcpu))
1624 			return 1;
1625 		break;
1626 	case MSR_IA32_SYSENTER_EIP:
1627 	case MSR_IA32_SYSENTER_ESP:
1628 		/*
1629 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1630 		 * non-canonical address is written on Intel but not on
1631 		 * AMD (which ignores the top 32-bits, because it does
1632 		 * not implement 64-bit SYSENTER).
1633 		 *
1634 		 * 64-bit code should hence be able to write a non-canonical
1635 		 * value on AMD.  Making the address canonical ensures that
1636 		 * vmentry does not fail on Intel after writing a non-canonical
1637 		 * value, and that something deterministic happens if the guest
1638 		 * invokes 64-bit SYSENTER.
1639 		 */
1640 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1641 	}
1642 
1643 	msr.data = data;
1644 	msr.index = index;
1645 	msr.host_initiated = host_initiated;
1646 
1647 	return kvm_x86_ops.set_msr(vcpu, &msr);
1648 }
1649 
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1650 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1651 				     u32 index, u64 data, bool host_initiated)
1652 {
1653 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1654 
1655 	if (ret == KVM_MSR_RET_INVALID)
1656 		if (kvm_msr_ignored_check(vcpu, index, data, true))
1657 			ret = 0;
1658 
1659 	return ret;
1660 }
1661 
1662 /*
1663  * Read the MSR specified by @index into @data.  Select MSR specific fault
1664  * checks are bypassed if @host_initiated is %true.
1665  * Returns 0 on success, non-0 otherwise.
1666  * Assumes vcpu_load() was already called.
1667  */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1668 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1669 		  bool host_initiated)
1670 {
1671 	struct msr_data msr;
1672 	int ret;
1673 
1674 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1675 		return KVM_MSR_RET_FILTERED;
1676 
1677 	msr.index = index;
1678 	msr.host_initiated = host_initiated;
1679 
1680 	ret = kvm_x86_ops.get_msr(vcpu, &msr);
1681 	if (!ret)
1682 		*data = msr.data;
1683 	return ret;
1684 }
1685 
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1686 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1687 				     u32 index, u64 *data, bool host_initiated)
1688 {
1689 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1690 
1691 	if (ret == KVM_MSR_RET_INVALID) {
1692 		/* Unconditionally clear *data for simplicity */
1693 		*data = 0;
1694 		if (kvm_msr_ignored_check(vcpu, index, 0, false))
1695 			ret = 0;
1696 	}
1697 
1698 	return ret;
1699 }
1700 
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1701 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1702 {
1703 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1704 }
1705 EXPORT_SYMBOL_GPL(kvm_get_msr);
1706 
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1707 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1708 {
1709 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_set_msr);
1712 
complete_emulated_msr(struct kvm_vcpu * vcpu,bool is_read)1713 static int complete_emulated_msr(struct kvm_vcpu *vcpu, bool is_read)
1714 {
1715 	if (vcpu->run->msr.error) {
1716 		kvm_inject_gp(vcpu, 0);
1717 		return 1;
1718 	} else if (is_read) {
1719 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1720 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1721 	}
1722 
1723 	return kvm_skip_emulated_instruction(vcpu);
1724 }
1725 
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)1726 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1727 {
1728 	return complete_emulated_msr(vcpu, true);
1729 }
1730 
complete_emulated_wrmsr(struct kvm_vcpu * vcpu)1731 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1732 {
1733 	return complete_emulated_msr(vcpu, false);
1734 }
1735 
kvm_msr_reason(int r)1736 static u64 kvm_msr_reason(int r)
1737 {
1738 	switch (r) {
1739 	case KVM_MSR_RET_INVALID:
1740 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1741 	case KVM_MSR_RET_FILTERED:
1742 		return KVM_MSR_EXIT_REASON_FILTER;
1743 	default:
1744 		return KVM_MSR_EXIT_REASON_INVAL;
1745 	}
1746 }
1747 
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)1748 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1749 			      u32 exit_reason, u64 data,
1750 			      int (*completion)(struct kvm_vcpu *vcpu),
1751 			      int r)
1752 {
1753 	u64 msr_reason = kvm_msr_reason(r);
1754 
1755 	/* Check if the user wanted to know about this MSR fault */
1756 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1757 		return 0;
1758 
1759 	vcpu->run->exit_reason = exit_reason;
1760 	vcpu->run->msr.error = 0;
1761 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1762 	vcpu->run->msr.reason = msr_reason;
1763 	vcpu->run->msr.index = index;
1764 	vcpu->run->msr.data = data;
1765 	vcpu->arch.complete_userspace_io = completion;
1766 
1767 	return 1;
1768 }
1769 
kvm_get_msr_user_space(struct kvm_vcpu * vcpu,u32 index,int r)1770 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1771 {
1772 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1773 				   complete_emulated_rdmsr, r);
1774 }
1775 
kvm_set_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u64 data,int r)1776 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1777 {
1778 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1779 				   complete_emulated_wrmsr, r);
1780 }
1781 
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)1782 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1783 {
1784 	u32 ecx = kvm_rcx_read(vcpu);
1785 	u64 data;
1786 	int r;
1787 
1788 	r = kvm_get_msr(vcpu, ecx, &data);
1789 
1790 	/* MSR read failed? See if we should ask user space */
1791 	if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1792 		/* Bounce to user space */
1793 		return 0;
1794 	}
1795 
1796 	/* MSR read failed? Inject a #GP */
1797 	if (r) {
1798 		trace_kvm_msr_read_ex(ecx);
1799 		kvm_inject_gp(vcpu, 0);
1800 		return 1;
1801 	}
1802 
1803 	trace_kvm_msr_read(ecx, data);
1804 
1805 	kvm_rax_write(vcpu, data & -1u);
1806 	kvm_rdx_write(vcpu, (data >> 32) & -1u);
1807 	return kvm_skip_emulated_instruction(vcpu);
1808 }
1809 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1810 
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)1811 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1812 {
1813 	u32 ecx = kvm_rcx_read(vcpu);
1814 	u64 data = kvm_read_edx_eax(vcpu);
1815 	int r;
1816 
1817 	r = kvm_set_msr(vcpu, ecx, data);
1818 
1819 	/* MSR write failed? See if we should ask user space */
1820 	if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1821 		/* Bounce to user space */
1822 		return 0;
1823 
1824 	/* Signal all other negative errors to userspace */
1825 	if (r < 0)
1826 		return r;
1827 
1828 	/* MSR write failed? Inject a #GP */
1829 	if (r > 0) {
1830 		trace_kvm_msr_write_ex(ecx, data);
1831 		kvm_inject_gp(vcpu, 0);
1832 		return 1;
1833 	}
1834 
1835 	trace_kvm_msr_write(ecx, data);
1836 	return kvm_skip_emulated_instruction(vcpu);
1837 }
1838 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1839 
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)1840 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1841 {
1842 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1843 		xfer_to_guest_mode_work_pending();
1844 }
1845 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request);
1846 
1847 /*
1848  * The fast path for frequent and performance sensitive wrmsr emulation,
1849  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1850  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1851  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1852  * other cases which must be called after interrupts are enabled on the host.
1853  */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu * vcpu,u64 data)1854 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1855 {
1856 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1857 		return 1;
1858 
1859 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1860 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1861 		((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1862 		((u32)(data >> 32) != X2APIC_BROADCAST)) {
1863 
1864 		data &= ~(1 << 12);
1865 		kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1866 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1867 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1868 		trace_kvm_apic_write(APIC_ICR, (u32)data);
1869 		return 0;
1870 	}
1871 
1872 	return 1;
1873 }
1874 
handle_fastpath_set_tscdeadline(struct kvm_vcpu * vcpu,u64 data)1875 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1876 {
1877 	if (!kvm_can_use_hv_timer(vcpu))
1878 		return 1;
1879 
1880 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
1881 	return 0;
1882 }
1883 
handle_fastpath_set_msr_irqoff(struct kvm_vcpu * vcpu)1884 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1885 {
1886 	u32 msr = kvm_rcx_read(vcpu);
1887 	u64 data;
1888 	fastpath_t ret = EXIT_FASTPATH_NONE;
1889 
1890 	switch (msr) {
1891 	case APIC_BASE_MSR + (APIC_ICR >> 4):
1892 		data = kvm_read_edx_eax(vcpu);
1893 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1894 			kvm_skip_emulated_instruction(vcpu);
1895 			ret = EXIT_FASTPATH_EXIT_HANDLED;
1896 		}
1897 		break;
1898 	case MSR_IA32_TSCDEADLINE:
1899 		data = kvm_read_edx_eax(vcpu);
1900 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1901 			kvm_skip_emulated_instruction(vcpu);
1902 			ret = EXIT_FASTPATH_REENTER_GUEST;
1903 		}
1904 		break;
1905 	default:
1906 		break;
1907 	}
1908 
1909 	if (ret != EXIT_FASTPATH_NONE)
1910 		trace_kvm_msr_write(msr, data);
1911 
1912 	return ret;
1913 }
1914 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1915 
1916 /*
1917  * Adapt set_msr() to msr_io()'s calling convention
1918  */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1919 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1920 {
1921 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
1922 }
1923 
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1924 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1925 {
1926 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1927 }
1928 
1929 #ifdef CONFIG_X86_64
1930 struct pvclock_clock {
1931 	int vclock_mode;
1932 	u64 cycle_last;
1933 	u64 mask;
1934 	u32 mult;
1935 	u32 shift;
1936 	u64 base_cycles;
1937 	u64 offset;
1938 };
1939 
1940 struct pvclock_gtod_data {
1941 	seqcount_t	seq;
1942 
1943 	struct pvclock_clock clock; /* extract of a clocksource struct */
1944 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1945 
1946 	ktime_t		offs_boot;
1947 	u64		wall_time_sec;
1948 };
1949 
1950 static struct pvclock_gtod_data pvclock_gtod_data;
1951 
update_pvclock_gtod(struct timekeeper * tk)1952 static void update_pvclock_gtod(struct timekeeper *tk)
1953 {
1954 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1955 
1956 	write_seqcount_begin(&vdata->seq);
1957 
1958 	/* copy pvclock gtod data */
1959 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
1960 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1961 	vdata->clock.mask		= tk->tkr_mono.mask;
1962 	vdata->clock.mult		= tk->tkr_mono.mult;
1963 	vdata->clock.shift		= tk->tkr_mono.shift;
1964 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
1965 	vdata->clock.offset		= tk->tkr_mono.base;
1966 
1967 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
1968 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
1969 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
1970 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
1971 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
1972 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
1973 	vdata->raw_clock.offset		= tk->tkr_raw.base;
1974 
1975 	vdata->wall_time_sec            = tk->xtime_sec;
1976 
1977 	vdata->offs_boot		= tk->offs_boot;
1978 
1979 	write_seqcount_end(&vdata->seq);
1980 }
1981 
get_kvmclock_base_ns(void)1982 static s64 get_kvmclock_base_ns(void)
1983 {
1984 	/* Count up from boot time, but with the frequency of the raw clock.  */
1985 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1986 }
1987 #else
get_kvmclock_base_ns(void)1988 static s64 get_kvmclock_base_ns(void)
1989 {
1990 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1991 	return ktime_get_boottime_ns();
1992 }
1993 #endif
1994 
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock)1995 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1996 {
1997 	int version;
1998 	int r;
1999 	struct pvclock_wall_clock wc;
2000 	u64 wall_nsec;
2001 
2002 	kvm->arch.wall_clock = wall_clock;
2003 
2004 	if (!wall_clock)
2005 		return;
2006 
2007 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2008 	if (r)
2009 		return;
2010 
2011 	if (version & 1)
2012 		++version;  /* first time write, random junk */
2013 
2014 	++version;
2015 
2016 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2017 		return;
2018 
2019 	/*
2020 	 * The guest calculates current wall clock time by adding
2021 	 * system time (updated by kvm_guest_time_update below) to the
2022 	 * wall clock specified here.  We do the reverse here.
2023 	 */
2024 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2025 
2026 	wc.nsec = do_div(wall_nsec, 1000000000);
2027 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2028 	wc.version = version;
2029 
2030 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2031 
2032 	version++;
2033 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2034 }
2035 
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2036 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2037 				  bool old_msr, bool host_initiated)
2038 {
2039 	struct kvm_arch *ka = &vcpu->kvm->arch;
2040 
2041 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2042 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2043 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2044 
2045 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2046 	}
2047 
2048 	vcpu->arch.time = system_time;
2049 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2050 
2051 	/* we verify if the enable bit is set... */
2052 	vcpu->arch.pv_time_enabled = false;
2053 	if (!(system_time & 1))
2054 		return;
2055 
2056 	if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2057 				       &vcpu->arch.pv_time, system_time & ~1ULL,
2058 				       sizeof(struct pvclock_vcpu_time_info)))
2059 		vcpu->arch.pv_time_enabled = true;
2060 
2061 	return;
2062 }
2063 
div_frac(uint32_t dividend,uint32_t divisor)2064 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2065 {
2066 	do_shl32_div32(dividend, divisor);
2067 	return dividend;
2068 }
2069 
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2070 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2071 			       s8 *pshift, u32 *pmultiplier)
2072 {
2073 	uint64_t scaled64;
2074 	int32_t  shift = 0;
2075 	uint64_t tps64;
2076 	uint32_t tps32;
2077 
2078 	tps64 = base_hz;
2079 	scaled64 = scaled_hz;
2080 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2081 		tps64 >>= 1;
2082 		shift--;
2083 	}
2084 
2085 	tps32 = (uint32_t)tps64;
2086 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2087 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2088 			scaled64 >>= 1;
2089 		else
2090 			tps32 <<= 1;
2091 		shift++;
2092 	}
2093 
2094 	*pshift = shift;
2095 	*pmultiplier = div_frac(scaled64, tps32);
2096 }
2097 
2098 #ifdef CONFIG_X86_64
2099 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2100 #endif
2101 
2102 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2103 static unsigned long max_tsc_khz;
2104 
adjust_tsc_khz(u32 khz,s32 ppm)2105 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2106 {
2107 	u64 v = (u64)khz * (1000000 + ppm);
2108 	do_div(v, 1000000);
2109 	return v;
2110 }
2111 
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2112 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2113 {
2114 	u64 ratio;
2115 
2116 	/* Guest TSC same frequency as host TSC? */
2117 	if (!scale) {
2118 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2119 		return 0;
2120 	}
2121 
2122 	/* TSC scaling supported? */
2123 	if (!kvm_has_tsc_control) {
2124 		if (user_tsc_khz > tsc_khz) {
2125 			vcpu->arch.tsc_catchup = 1;
2126 			vcpu->arch.tsc_always_catchup = 1;
2127 			return 0;
2128 		} else {
2129 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2130 			return -1;
2131 		}
2132 	}
2133 
2134 	/* TSC scaling required  - calculate ratio */
2135 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2136 				user_tsc_khz, tsc_khz);
2137 
2138 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2139 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2140 			            user_tsc_khz);
2141 		return -1;
2142 	}
2143 
2144 	vcpu->arch.tsc_scaling_ratio = ratio;
2145 	return 0;
2146 }
2147 
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2148 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2149 {
2150 	u32 thresh_lo, thresh_hi;
2151 	int use_scaling = 0;
2152 
2153 	/* tsc_khz can be zero if TSC calibration fails */
2154 	if (user_tsc_khz == 0) {
2155 		/* set tsc_scaling_ratio to a safe value */
2156 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2157 		return -1;
2158 	}
2159 
2160 	/* Compute a scale to convert nanoseconds in TSC cycles */
2161 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2162 			   &vcpu->arch.virtual_tsc_shift,
2163 			   &vcpu->arch.virtual_tsc_mult);
2164 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2165 
2166 	/*
2167 	 * Compute the variation in TSC rate which is acceptable
2168 	 * within the range of tolerance and decide if the
2169 	 * rate being applied is within that bounds of the hardware
2170 	 * rate.  If so, no scaling or compensation need be done.
2171 	 */
2172 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2173 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2174 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2175 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2176 		use_scaling = 1;
2177 	}
2178 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2179 }
2180 
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2181 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2182 {
2183 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2184 				      vcpu->arch.virtual_tsc_mult,
2185 				      vcpu->arch.virtual_tsc_shift);
2186 	tsc += vcpu->arch.this_tsc_write;
2187 	return tsc;
2188 }
2189 
gtod_is_based_on_tsc(int mode)2190 static inline int gtod_is_based_on_tsc(int mode)
2191 {
2192 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2193 }
2194 
kvm_track_tsc_matching(struct kvm_vcpu * vcpu)2195 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2196 {
2197 #ifdef CONFIG_X86_64
2198 	bool vcpus_matched;
2199 	struct kvm_arch *ka = &vcpu->kvm->arch;
2200 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2201 
2202 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2203 			 atomic_read(&vcpu->kvm->online_vcpus));
2204 
2205 	/*
2206 	 * Once the masterclock is enabled, always perform request in
2207 	 * order to update it.
2208 	 *
2209 	 * In order to enable masterclock, the host clocksource must be TSC
2210 	 * and the vcpus need to have matched TSCs.  When that happens,
2211 	 * perform request to enable masterclock.
2212 	 */
2213 	if (ka->use_master_clock ||
2214 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2215 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2216 
2217 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2218 			    atomic_read(&vcpu->kvm->online_vcpus),
2219 		            ka->use_master_clock, gtod->clock.vclock_mode);
2220 #endif
2221 }
2222 
2223 /*
2224  * Multiply tsc by a fixed point number represented by ratio.
2225  *
2226  * The most significant 64-N bits (mult) of ratio represent the
2227  * integral part of the fixed point number; the remaining N bits
2228  * (frac) represent the fractional part, ie. ratio represents a fixed
2229  * point number (mult + frac * 2^(-N)).
2230  *
2231  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2232  */
__scale_tsc(u64 ratio,u64 tsc)2233 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2234 {
2235 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2236 }
2237 
kvm_scale_tsc(struct kvm_vcpu * vcpu,u64 tsc)2238 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2239 {
2240 	u64 _tsc = tsc;
2241 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
2242 
2243 	if (ratio != kvm_default_tsc_scaling_ratio)
2244 		_tsc = __scale_tsc(ratio, tsc);
2245 
2246 	return _tsc;
2247 }
2248 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2249 
kvm_compute_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2250 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2251 {
2252 	u64 tsc;
2253 
2254 	tsc = kvm_scale_tsc(vcpu, rdtsc());
2255 
2256 	return target_tsc - tsc;
2257 }
2258 
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2259 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2260 {
2261 	return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2262 }
2263 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2264 
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)2265 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2266 {
2267 	vcpu->arch.l1_tsc_offset = offset;
2268 	vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
2269 }
2270 
kvm_check_tsc_unstable(void)2271 static inline bool kvm_check_tsc_unstable(void)
2272 {
2273 #ifdef CONFIG_X86_64
2274 	/*
2275 	 * TSC is marked unstable when we're running on Hyper-V,
2276 	 * 'TSC page' clocksource is good.
2277 	 */
2278 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2279 		return false;
2280 #endif
2281 	return check_tsc_unstable();
2282 }
2283 
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 data)2284 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2285 {
2286 	struct kvm *kvm = vcpu->kvm;
2287 	u64 offset, ns, elapsed;
2288 	unsigned long flags;
2289 	bool matched;
2290 	bool already_matched;
2291 	bool synchronizing = false;
2292 
2293 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2294 	offset = kvm_compute_tsc_offset(vcpu, data);
2295 	ns = get_kvmclock_base_ns();
2296 	elapsed = ns - kvm->arch.last_tsc_nsec;
2297 
2298 	if (vcpu->arch.virtual_tsc_khz) {
2299 		if (data == 0) {
2300 			/*
2301 			 * detection of vcpu initialization -- need to sync
2302 			 * with other vCPUs. This particularly helps to keep
2303 			 * kvm_clock stable after CPU hotplug
2304 			 */
2305 			synchronizing = true;
2306 		} else {
2307 			u64 tsc_exp = kvm->arch.last_tsc_write +
2308 						nsec_to_cycles(vcpu, elapsed);
2309 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2310 			/*
2311 			 * Special case: TSC write with a small delta (1 second)
2312 			 * of virtual cycle time against real time is
2313 			 * interpreted as an attempt to synchronize the CPU.
2314 			 */
2315 			synchronizing = data < tsc_exp + tsc_hz &&
2316 					data + tsc_hz > tsc_exp;
2317 		}
2318 	}
2319 
2320 	/*
2321 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2322 	 * TSC, we add elapsed time in this computation.  We could let the
2323 	 * compensation code attempt to catch up if we fall behind, but
2324 	 * it's better to try to match offsets from the beginning.
2325          */
2326 	if (synchronizing &&
2327 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2328 		if (!kvm_check_tsc_unstable()) {
2329 			offset = kvm->arch.cur_tsc_offset;
2330 		} else {
2331 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2332 			data += delta;
2333 			offset = kvm_compute_tsc_offset(vcpu, data);
2334 		}
2335 		matched = true;
2336 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2337 	} else {
2338 		/*
2339 		 * We split periods of matched TSC writes into generations.
2340 		 * For each generation, we track the original measured
2341 		 * nanosecond time, offset, and write, so if TSCs are in
2342 		 * sync, we can match exact offset, and if not, we can match
2343 		 * exact software computation in compute_guest_tsc()
2344 		 *
2345 		 * These values are tracked in kvm->arch.cur_xxx variables.
2346 		 */
2347 		kvm->arch.cur_tsc_generation++;
2348 		kvm->arch.cur_tsc_nsec = ns;
2349 		kvm->arch.cur_tsc_write = data;
2350 		kvm->arch.cur_tsc_offset = offset;
2351 		matched = false;
2352 	}
2353 
2354 	/*
2355 	 * We also track th most recent recorded KHZ, write and time to
2356 	 * allow the matching interval to be extended at each write.
2357 	 */
2358 	kvm->arch.last_tsc_nsec = ns;
2359 	kvm->arch.last_tsc_write = data;
2360 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2361 
2362 	vcpu->arch.last_guest_tsc = data;
2363 
2364 	/* Keep track of which generation this VCPU has synchronized to */
2365 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2366 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2367 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2368 
2369 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2370 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2371 
2372 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2373 	if (!matched) {
2374 		kvm->arch.nr_vcpus_matched_tsc = 0;
2375 	} else if (!already_matched) {
2376 		kvm->arch.nr_vcpus_matched_tsc++;
2377 	}
2378 
2379 	kvm_track_tsc_matching(vcpu);
2380 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2381 }
2382 
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2383 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2384 					   s64 adjustment)
2385 {
2386 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2387 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2388 }
2389 
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2390 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2391 {
2392 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2393 		WARN_ON(adjustment < 0);
2394 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2395 	adjust_tsc_offset_guest(vcpu, adjustment);
2396 }
2397 
2398 #ifdef CONFIG_X86_64
2399 
read_tsc(void)2400 static u64 read_tsc(void)
2401 {
2402 	u64 ret = (u64)rdtsc_ordered();
2403 	u64 last = pvclock_gtod_data.clock.cycle_last;
2404 
2405 	if (likely(ret >= last))
2406 		return ret;
2407 
2408 	/*
2409 	 * GCC likes to generate cmov here, but this branch is extremely
2410 	 * predictable (it's just a function of time and the likely is
2411 	 * very likely) and there's a data dependence, so force GCC
2412 	 * to generate a branch instead.  I don't barrier() because
2413 	 * we don't actually need a barrier, and if this function
2414 	 * ever gets inlined it will generate worse code.
2415 	 */
2416 	asm volatile ("");
2417 	return last;
2418 }
2419 
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2420 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2421 			  int *mode)
2422 {
2423 	long v;
2424 	u64 tsc_pg_val;
2425 
2426 	switch (clock->vclock_mode) {
2427 	case VDSO_CLOCKMODE_HVCLOCK:
2428 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2429 						  tsc_timestamp);
2430 		if (tsc_pg_val != U64_MAX) {
2431 			/* TSC page valid */
2432 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2433 			v = (tsc_pg_val - clock->cycle_last) &
2434 				clock->mask;
2435 		} else {
2436 			/* TSC page invalid */
2437 			*mode = VDSO_CLOCKMODE_NONE;
2438 		}
2439 		break;
2440 	case VDSO_CLOCKMODE_TSC:
2441 		*mode = VDSO_CLOCKMODE_TSC;
2442 		*tsc_timestamp = read_tsc();
2443 		v = (*tsc_timestamp - clock->cycle_last) &
2444 			clock->mask;
2445 		break;
2446 	default:
2447 		*mode = VDSO_CLOCKMODE_NONE;
2448 	}
2449 
2450 	if (*mode == VDSO_CLOCKMODE_NONE)
2451 		*tsc_timestamp = v = 0;
2452 
2453 	return v * clock->mult;
2454 }
2455 
do_monotonic_raw(s64 * t,u64 * tsc_timestamp)2456 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2457 {
2458 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2459 	unsigned long seq;
2460 	int mode;
2461 	u64 ns;
2462 
2463 	do {
2464 		seq = read_seqcount_begin(&gtod->seq);
2465 		ns = gtod->raw_clock.base_cycles;
2466 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2467 		ns >>= gtod->raw_clock.shift;
2468 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2469 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2470 	*t = ns;
2471 
2472 	return mode;
2473 }
2474 
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2475 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2476 {
2477 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2478 	unsigned long seq;
2479 	int mode;
2480 	u64 ns;
2481 
2482 	do {
2483 		seq = read_seqcount_begin(&gtod->seq);
2484 		ts->tv_sec = gtod->wall_time_sec;
2485 		ns = gtod->clock.base_cycles;
2486 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2487 		ns >>= gtod->clock.shift;
2488 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2489 
2490 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2491 	ts->tv_nsec = ns;
2492 
2493 	return mode;
2494 }
2495 
2496 /* returns true if host is using TSC based clocksource */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2497 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2498 {
2499 	/* checked again under seqlock below */
2500 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2501 		return false;
2502 
2503 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2504 						      tsc_timestamp));
2505 }
2506 
2507 /* returns true if host is using TSC based clocksource */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2508 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2509 					   u64 *tsc_timestamp)
2510 {
2511 	/* checked again under seqlock below */
2512 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2513 		return false;
2514 
2515 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2516 }
2517 #endif
2518 
2519 /*
2520  *
2521  * Assuming a stable TSC across physical CPUS, and a stable TSC
2522  * across virtual CPUs, the following condition is possible.
2523  * Each numbered line represents an event visible to both
2524  * CPUs at the next numbered event.
2525  *
2526  * "timespecX" represents host monotonic time. "tscX" represents
2527  * RDTSC value.
2528  *
2529  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2530  *
2531  * 1.  read timespec0,tsc0
2532  * 2.					| timespec1 = timespec0 + N
2533  * 					| tsc1 = tsc0 + M
2534  * 3. transition to guest		| transition to guest
2535  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2536  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2537  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2538  *
2539  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2540  *
2541  * 	- ret0 < ret1
2542  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2543  *		...
2544  *	- 0 < N - M => M < N
2545  *
2546  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2547  * always the case (the difference between two distinct xtime instances
2548  * might be smaller then the difference between corresponding TSC reads,
2549  * when updating guest vcpus pvclock areas).
2550  *
2551  * To avoid that problem, do not allow visibility of distinct
2552  * system_timestamp/tsc_timestamp values simultaneously: use a master
2553  * copy of host monotonic time values. Update that master copy
2554  * in lockstep.
2555  *
2556  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2557  *
2558  */
2559 
pvclock_update_vm_gtod_copy(struct kvm * kvm)2560 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2561 {
2562 #ifdef CONFIG_X86_64
2563 	struct kvm_arch *ka = &kvm->arch;
2564 	int vclock_mode;
2565 	bool host_tsc_clocksource, vcpus_matched;
2566 
2567 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2568 			atomic_read(&kvm->online_vcpus));
2569 
2570 	/*
2571 	 * If the host uses TSC clock, then passthrough TSC as stable
2572 	 * to the guest.
2573 	 */
2574 	host_tsc_clocksource = kvm_get_time_and_clockread(
2575 					&ka->master_kernel_ns,
2576 					&ka->master_cycle_now);
2577 
2578 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2579 				&& !ka->backwards_tsc_observed
2580 				&& !ka->boot_vcpu_runs_old_kvmclock;
2581 
2582 	if (ka->use_master_clock)
2583 		atomic_set(&kvm_guest_has_master_clock, 1);
2584 
2585 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2586 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2587 					vcpus_matched);
2588 #endif
2589 }
2590 
kvm_make_mclock_inprogress_request(struct kvm * kvm)2591 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2592 {
2593 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2594 }
2595 
kvm_gen_update_masterclock(struct kvm * kvm)2596 static void kvm_gen_update_masterclock(struct kvm *kvm)
2597 {
2598 #ifdef CONFIG_X86_64
2599 	int i;
2600 	struct kvm_vcpu *vcpu;
2601 	struct kvm_arch *ka = &kvm->arch;
2602 
2603 	spin_lock(&ka->pvclock_gtod_sync_lock);
2604 	kvm_make_mclock_inprogress_request(kvm);
2605 	/* no guest entries from this point */
2606 	pvclock_update_vm_gtod_copy(kvm);
2607 
2608 	kvm_for_each_vcpu(i, vcpu, kvm)
2609 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2610 
2611 	/* guest entries allowed */
2612 	kvm_for_each_vcpu(i, vcpu, kvm)
2613 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2614 
2615 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2616 #endif
2617 }
2618 
get_kvmclock_ns(struct kvm * kvm)2619 u64 get_kvmclock_ns(struct kvm *kvm)
2620 {
2621 	struct kvm_arch *ka = &kvm->arch;
2622 	struct pvclock_vcpu_time_info hv_clock;
2623 	u64 ret;
2624 
2625 	spin_lock(&ka->pvclock_gtod_sync_lock);
2626 	if (!ka->use_master_clock) {
2627 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2628 		return get_kvmclock_base_ns() + ka->kvmclock_offset;
2629 	}
2630 
2631 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2632 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2633 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2634 
2635 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2636 	get_cpu();
2637 
2638 	if (__this_cpu_read(cpu_tsc_khz)) {
2639 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2640 				   &hv_clock.tsc_shift,
2641 				   &hv_clock.tsc_to_system_mul);
2642 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2643 	} else
2644 		ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2645 
2646 	put_cpu();
2647 
2648 	return ret;
2649 }
2650 
kvm_setup_pvclock_page(struct kvm_vcpu * v)2651 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2652 {
2653 	struct kvm_vcpu_arch *vcpu = &v->arch;
2654 	struct pvclock_vcpu_time_info guest_hv_clock;
2655 
2656 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2657 		&guest_hv_clock, sizeof(guest_hv_clock))))
2658 		return;
2659 
2660 	/* This VCPU is paused, but it's legal for a guest to read another
2661 	 * VCPU's kvmclock, so we really have to follow the specification where
2662 	 * it says that version is odd if data is being modified, and even after
2663 	 * it is consistent.
2664 	 *
2665 	 * Version field updates must be kept separate.  This is because
2666 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2667 	 * writes within a string instruction are weakly ordered.  So there
2668 	 * are three writes overall.
2669 	 *
2670 	 * As a small optimization, only write the version field in the first
2671 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2672 	 * version field is the first in the struct.
2673 	 */
2674 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2675 
2676 	if (guest_hv_clock.version & 1)
2677 		++guest_hv_clock.version;  /* first time write, random junk */
2678 
2679 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2680 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2681 				&vcpu->hv_clock,
2682 				sizeof(vcpu->hv_clock.version));
2683 
2684 	smp_wmb();
2685 
2686 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2687 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2688 
2689 	if (vcpu->pvclock_set_guest_stopped_request) {
2690 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2691 		vcpu->pvclock_set_guest_stopped_request = false;
2692 	}
2693 
2694 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2695 
2696 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2697 				&vcpu->hv_clock,
2698 				sizeof(vcpu->hv_clock));
2699 
2700 	smp_wmb();
2701 
2702 	vcpu->hv_clock.version++;
2703 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2704 				&vcpu->hv_clock,
2705 				sizeof(vcpu->hv_clock.version));
2706 }
2707 
kvm_guest_time_update(struct kvm_vcpu * v)2708 static int kvm_guest_time_update(struct kvm_vcpu *v)
2709 {
2710 	unsigned long flags, tgt_tsc_khz;
2711 	struct kvm_vcpu_arch *vcpu = &v->arch;
2712 	struct kvm_arch *ka = &v->kvm->arch;
2713 	s64 kernel_ns;
2714 	u64 tsc_timestamp, host_tsc;
2715 	u8 pvclock_flags;
2716 	bool use_master_clock;
2717 
2718 	kernel_ns = 0;
2719 	host_tsc = 0;
2720 
2721 	/*
2722 	 * If the host uses TSC clock, then passthrough TSC as stable
2723 	 * to the guest.
2724 	 */
2725 	spin_lock(&ka->pvclock_gtod_sync_lock);
2726 	use_master_clock = ka->use_master_clock;
2727 	if (use_master_clock) {
2728 		host_tsc = ka->master_cycle_now;
2729 		kernel_ns = ka->master_kernel_ns;
2730 	}
2731 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2732 
2733 	/* Keep irq disabled to prevent changes to the clock */
2734 	local_irq_save(flags);
2735 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2736 	if (unlikely(tgt_tsc_khz == 0)) {
2737 		local_irq_restore(flags);
2738 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2739 		return 1;
2740 	}
2741 	if (!use_master_clock) {
2742 		host_tsc = rdtsc();
2743 		kernel_ns = get_kvmclock_base_ns();
2744 	}
2745 
2746 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2747 
2748 	/*
2749 	 * We may have to catch up the TSC to match elapsed wall clock
2750 	 * time for two reasons, even if kvmclock is used.
2751 	 *   1) CPU could have been running below the maximum TSC rate
2752 	 *   2) Broken TSC compensation resets the base at each VCPU
2753 	 *      entry to avoid unknown leaps of TSC even when running
2754 	 *      again on the same CPU.  This may cause apparent elapsed
2755 	 *      time to disappear, and the guest to stand still or run
2756 	 *	very slowly.
2757 	 */
2758 	if (vcpu->tsc_catchup) {
2759 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2760 		if (tsc > tsc_timestamp) {
2761 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2762 			tsc_timestamp = tsc;
2763 		}
2764 	}
2765 
2766 	local_irq_restore(flags);
2767 
2768 	/* With all the info we got, fill in the values */
2769 
2770 	if (kvm_has_tsc_control)
2771 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2772 
2773 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2774 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2775 				   &vcpu->hv_clock.tsc_shift,
2776 				   &vcpu->hv_clock.tsc_to_system_mul);
2777 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2778 	}
2779 
2780 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2781 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2782 	vcpu->last_guest_tsc = tsc_timestamp;
2783 
2784 	/* If the host uses TSC clocksource, then it is stable */
2785 	pvclock_flags = 0;
2786 	if (use_master_clock)
2787 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2788 
2789 	vcpu->hv_clock.flags = pvclock_flags;
2790 
2791 	if (vcpu->pv_time_enabled)
2792 		kvm_setup_pvclock_page(v);
2793 	if (v == kvm_get_vcpu(v->kvm, 0))
2794 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2795 	return 0;
2796 }
2797 
2798 /*
2799  * kvmclock updates which are isolated to a given vcpu, such as
2800  * vcpu->cpu migration, should not allow system_timestamp from
2801  * the rest of the vcpus to remain static. Otherwise ntp frequency
2802  * correction applies to one vcpu's system_timestamp but not
2803  * the others.
2804  *
2805  * So in those cases, request a kvmclock update for all vcpus.
2806  * We need to rate-limit these requests though, as they can
2807  * considerably slow guests that have a large number of vcpus.
2808  * The time for a remote vcpu to update its kvmclock is bound
2809  * by the delay we use to rate-limit the updates.
2810  */
2811 
2812 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2813 
kvmclock_update_fn(struct work_struct * work)2814 static void kvmclock_update_fn(struct work_struct *work)
2815 {
2816 	int i;
2817 	struct delayed_work *dwork = to_delayed_work(work);
2818 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2819 					   kvmclock_update_work);
2820 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2821 	struct kvm_vcpu *vcpu;
2822 
2823 	kvm_for_each_vcpu(i, vcpu, kvm) {
2824 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2825 		kvm_vcpu_kick(vcpu);
2826 	}
2827 }
2828 
kvm_gen_kvmclock_update(struct kvm_vcpu * v)2829 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2830 {
2831 	struct kvm *kvm = v->kvm;
2832 
2833 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2834 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2835 					KVMCLOCK_UPDATE_DELAY);
2836 }
2837 
2838 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2839 
kvmclock_sync_fn(struct work_struct * work)2840 static void kvmclock_sync_fn(struct work_struct *work)
2841 {
2842 	struct delayed_work *dwork = to_delayed_work(work);
2843 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2844 					   kvmclock_sync_work);
2845 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2846 
2847 	if (!kvmclock_periodic_sync)
2848 		return;
2849 
2850 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2851 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2852 					KVMCLOCK_SYNC_PERIOD);
2853 }
2854 
2855 /*
2856  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2857  */
can_set_mci_status(struct kvm_vcpu * vcpu)2858 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2859 {
2860 	/* McStatusWrEn enabled? */
2861 	if (guest_cpuid_is_amd_or_hygon(vcpu))
2862 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2863 
2864 	return false;
2865 }
2866 
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2867 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2868 {
2869 	u64 mcg_cap = vcpu->arch.mcg_cap;
2870 	unsigned bank_num = mcg_cap & 0xff;
2871 	u32 msr = msr_info->index;
2872 	u64 data = msr_info->data;
2873 
2874 	switch (msr) {
2875 	case MSR_IA32_MCG_STATUS:
2876 		vcpu->arch.mcg_status = data;
2877 		break;
2878 	case MSR_IA32_MCG_CTL:
2879 		if (!(mcg_cap & MCG_CTL_P) &&
2880 		    (data || !msr_info->host_initiated))
2881 			return 1;
2882 		if (data != 0 && data != ~(u64)0)
2883 			return 1;
2884 		vcpu->arch.mcg_ctl = data;
2885 		break;
2886 	default:
2887 		if (msr >= MSR_IA32_MC0_CTL &&
2888 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2889 			u32 offset = array_index_nospec(
2890 				msr - MSR_IA32_MC0_CTL,
2891 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2892 
2893 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2894 			 * some Linux kernels though clear bit 10 in bank 4 to
2895 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2896 			 * this to avoid an uncatched #GP in the guest.
2897 			 *
2898 			 * UNIXWARE clears bit 0 of MC1_CTL to ignore
2899 			 * correctable, single-bit ECC data errors.
2900 			 */
2901 			if ((offset & 0x3) == 0 &&
2902 			    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
2903 				return 1;
2904 
2905 			/* MCi_STATUS */
2906 			if (!msr_info->host_initiated &&
2907 			    (offset & 0x3) == 1 && data != 0) {
2908 				if (!can_set_mci_status(vcpu))
2909 					return 1;
2910 			}
2911 
2912 			vcpu->arch.mce_banks[offset] = data;
2913 			break;
2914 		}
2915 		return 1;
2916 	}
2917 	return 0;
2918 }
2919 
xen_hvm_config(struct kvm_vcpu * vcpu,u64 data)2920 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2921 {
2922 	struct kvm *kvm = vcpu->kvm;
2923 	int lm = is_long_mode(vcpu);
2924 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2925 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2926 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2927 		: kvm->arch.xen_hvm_config.blob_size_32;
2928 	u32 page_num = data & ~PAGE_MASK;
2929 	u64 page_addr = data & PAGE_MASK;
2930 	u8 *page;
2931 
2932 	if (page_num >= blob_size)
2933 		return 1;
2934 
2935 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2936 	if (IS_ERR(page))
2937 		return PTR_ERR(page);
2938 
2939 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
2940 		kfree(page);
2941 		return 1;
2942 	}
2943 	return 0;
2944 }
2945 
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)2946 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2947 {
2948 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2949 
2950 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
2951 }
2952 
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)2953 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2954 {
2955 	gpa_t gpa = data & ~0x3f;
2956 
2957 	/* Bits 4:5 are reserved, Should be zero */
2958 	if (data & 0x30)
2959 		return 1;
2960 
2961 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2962 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2963 		return 1;
2964 
2965 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2966 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2967 		return 1;
2968 
2969 	if (!lapic_in_kernel(vcpu))
2970 		return data ? 1 : 0;
2971 
2972 	vcpu->arch.apf.msr_en_val = data;
2973 
2974 	if (!kvm_pv_async_pf_enabled(vcpu)) {
2975 		kvm_clear_async_pf_completion_queue(vcpu);
2976 		kvm_async_pf_hash_reset(vcpu);
2977 		return 0;
2978 	}
2979 
2980 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2981 					sizeof(u64)))
2982 		return 1;
2983 
2984 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2985 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2986 
2987 	kvm_async_pf_wakeup_all(vcpu);
2988 
2989 	return 0;
2990 }
2991 
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)2992 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2993 {
2994 	/* Bits 8-63 are reserved */
2995 	if (data >> 8)
2996 		return 1;
2997 
2998 	if (!lapic_in_kernel(vcpu))
2999 		return 1;
3000 
3001 	vcpu->arch.apf.msr_int_val = data;
3002 
3003 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3004 
3005 	return 0;
3006 }
3007 
kvmclock_reset(struct kvm_vcpu * vcpu)3008 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3009 {
3010 	vcpu->arch.pv_time_enabled = false;
3011 	vcpu->arch.time = 0;
3012 }
3013 
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3014 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3015 {
3016 	++vcpu->stat.tlb_flush;
3017 	kvm_x86_ops.tlb_flush_all(vcpu);
3018 }
3019 
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3020 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3021 {
3022 	++vcpu->stat.tlb_flush;
3023 	kvm_x86_ops.tlb_flush_guest(vcpu);
3024 }
3025 
record_steal_time(struct kvm_vcpu * vcpu)3026 static void record_steal_time(struct kvm_vcpu *vcpu)
3027 {
3028 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3029 	struct kvm_steal_time __user *st;
3030 	struct kvm_memslots *slots;
3031 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3032 	u64 steal;
3033 	u32 version;
3034 
3035 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3036 		return;
3037 
3038 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3039 		return;
3040 
3041 	slots = kvm_memslots(vcpu->kvm);
3042 
3043 	if (unlikely(slots->generation != ghc->generation ||
3044 		     gpa != ghc->gpa ||
3045 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3046 		/* We rely on the fact that it fits in a single page. */
3047 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3048 
3049 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3050 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3051 			return;
3052 	}
3053 
3054 	st = (struct kvm_steal_time __user *)ghc->hva;
3055 	/*
3056 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3057 	 * expensive IPIs.
3058 	 */
3059 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3060 		u8 st_preempted = 0;
3061 		int err = -EFAULT;
3062 
3063 		if (!user_access_begin(st, sizeof(*st)))
3064 			return;
3065 
3066 		asm volatile("1: xchgb %0, %2\n"
3067 			     "xor %1, %1\n"
3068 			     "2:\n"
3069 			     _ASM_EXTABLE_UA(1b, 2b)
3070 			     : "+q" (st_preempted),
3071 			       "+&r" (err),
3072 			       "+m" (st->preempted));
3073 		if (err)
3074 			goto out;
3075 
3076 		user_access_end();
3077 
3078 		vcpu->arch.st.preempted = 0;
3079 
3080 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3081 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3082 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3083 			kvm_vcpu_flush_tlb_guest(vcpu);
3084 
3085 		if (!user_access_begin(st, sizeof(*st)))
3086 			goto dirty;
3087 	} else {
3088 		if (!user_access_begin(st, sizeof(*st)))
3089 			return;
3090 
3091 		unsafe_put_user(0, &st->preempted, out);
3092 		vcpu->arch.st.preempted = 0;
3093 	}
3094 
3095 	unsafe_get_user(version, &st->version, out);
3096 	if (version & 1)
3097 		version += 1;  /* first time write, random junk */
3098 
3099 	version += 1;
3100 	unsafe_put_user(version, &st->version, out);
3101 
3102 	smp_wmb();
3103 
3104 	unsafe_get_user(steal, &st->steal, out);
3105 	steal += current->sched_info.run_delay -
3106 		vcpu->arch.st.last_steal;
3107 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3108 	unsafe_put_user(steal, &st->steal, out);
3109 
3110 	version += 1;
3111 	unsafe_put_user(version, &st->version, out);
3112 
3113  out:
3114 	user_access_end();
3115  dirty:
3116 	mark_page_dirty_in_slot(ghc->memslot, gpa_to_gfn(ghc->gpa));
3117 }
3118 
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3119 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3120 {
3121 	bool pr = false;
3122 	u32 msr = msr_info->index;
3123 	u64 data = msr_info->data;
3124 
3125 	switch (msr) {
3126 	case MSR_AMD64_NB_CFG:
3127 	case MSR_IA32_UCODE_WRITE:
3128 	case MSR_VM_HSAVE_PA:
3129 	case MSR_AMD64_PATCH_LOADER:
3130 	case MSR_AMD64_BU_CFG2:
3131 	case MSR_AMD64_DC_CFG:
3132 	case MSR_F15H_EX_CFG:
3133 		break;
3134 
3135 	case MSR_IA32_UCODE_REV:
3136 		if (msr_info->host_initiated)
3137 			vcpu->arch.microcode_version = data;
3138 		break;
3139 	case MSR_IA32_ARCH_CAPABILITIES:
3140 		if (!msr_info->host_initiated)
3141 			return 1;
3142 		vcpu->arch.arch_capabilities = data;
3143 		break;
3144 	case MSR_IA32_PERF_CAPABILITIES: {
3145 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3146 
3147 		if (!msr_info->host_initiated)
3148 			return 1;
3149 		if (kvm_get_msr_feature(&msr_ent))
3150 			return 1;
3151 		if (data & ~msr_ent.data)
3152 			return 1;
3153 
3154 		vcpu->arch.perf_capabilities = data;
3155 
3156 		return 0;
3157 		}
3158 	case MSR_EFER:
3159 		return set_efer(vcpu, msr_info);
3160 	case MSR_K7_HWCR:
3161 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3162 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3163 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3164 
3165 		/* Handle McStatusWrEn */
3166 		if (data == BIT_ULL(18)) {
3167 			vcpu->arch.msr_hwcr = data;
3168 		} else if (data != 0) {
3169 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3170 				    data);
3171 			return 1;
3172 		}
3173 		break;
3174 	case MSR_FAM10H_MMIO_CONF_BASE:
3175 		if (data != 0) {
3176 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3177 				    "0x%llx\n", data);
3178 			return 1;
3179 		}
3180 		break;
3181 	case MSR_IA32_DEBUGCTLMSR:
3182 		if (!data) {
3183 			/* We support the non-activated case already */
3184 			break;
3185 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
3186 			/* Values other than LBR and BTF are vendor-specific,
3187 			   thus reserved and should throw a #GP */
3188 			return 1;
3189 		} else if (report_ignored_msrs)
3190 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
3191 				    __func__, data);
3192 		break;
3193 	case 0x200 ... 0x2ff:
3194 		return kvm_mtrr_set_msr(vcpu, msr, data);
3195 	case MSR_IA32_APICBASE:
3196 		return kvm_set_apic_base(vcpu, msr_info);
3197 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3198 		return kvm_x2apic_msr_write(vcpu, msr, data);
3199 	case MSR_IA32_TSCDEADLINE:
3200 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3201 		break;
3202 	case MSR_IA32_TSC_ADJUST:
3203 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3204 			if (!msr_info->host_initiated) {
3205 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3206 				adjust_tsc_offset_guest(vcpu, adj);
3207 				/* Before back to guest, tsc_timestamp must be adjusted
3208 				 * as well, otherwise guest's percpu pvclock time could jump.
3209 				 */
3210 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3211 			}
3212 			vcpu->arch.ia32_tsc_adjust_msr = data;
3213 		}
3214 		break;
3215 	case MSR_IA32_MISC_ENABLE:
3216 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3217 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3218 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3219 				return 1;
3220 			vcpu->arch.ia32_misc_enable_msr = data;
3221 			kvm_update_cpuid_runtime(vcpu);
3222 		} else {
3223 			vcpu->arch.ia32_misc_enable_msr = data;
3224 		}
3225 		break;
3226 	case MSR_IA32_SMBASE:
3227 		if (!msr_info->host_initiated)
3228 			return 1;
3229 		vcpu->arch.smbase = data;
3230 		break;
3231 	case MSR_IA32_POWER_CTL:
3232 		vcpu->arch.msr_ia32_power_ctl = data;
3233 		break;
3234 	case MSR_IA32_TSC:
3235 		if (msr_info->host_initiated) {
3236 			kvm_synchronize_tsc(vcpu, data);
3237 		} else {
3238 			u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3239 			adjust_tsc_offset_guest(vcpu, adj);
3240 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3241 		}
3242 		break;
3243 	case MSR_IA32_XSS:
3244 		if (!msr_info->host_initiated &&
3245 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3246 			return 1;
3247 		/*
3248 		 * KVM supports exposing PT to the guest, but does not support
3249 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3250 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3251 		 */
3252 		if (data & ~supported_xss)
3253 			return 1;
3254 		vcpu->arch.ia32_xss = data;
3255 		kvm_update_cpuid_runtime(vcpu);
3256 		break;
3257 	case MSR_SMI_COUNT:
3258 		if (!msr_info->host_initiated)
3259 			return 1;
3260 		vcpu->arch.smi_count = data;
3261 		break;
3262 	case MSR_KVM_WALL_CLOCK_NEW:
3263 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3264 			return 1;
3265 
3266 		kvm_write_wall_clock(vcpu->kvm, data);
3267 		break;
3268 	case MSR_KVM_WALL_CLOCK:
3269 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3270 			return 1;
3271 
3272 		kvm_write_wall_clock(vcpu->kvm, data);
3273 		break;
3274 	case MSR_KVM_SYSTEM_TIME_NEW:
3275 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3276 			return 1;
3277 
3278 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3279 		break;
3280 	case MSR_KVM_SYSTEM_TIME:
3281 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3282 			return 1;
3283 
3284 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3285 		break;
3286 	case MSR_KVM_ASYNC_PF_EN:
3287 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3288 			return 1;
3289 
3290 		if (kvm_pv_enable_async_pf(vcpu, data))
3291 			return 1;
3292 		break;
3293 	case MSR_KVM_ASYNC_PF_INT:
3294 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3295 			return 1;
3296 
3297 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3298 			return 1;
3299 		break;
3300 	case MSR_KVM_ASYNC_PF_ACK:
3301 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3302 			return 1;
3303 		if (data & 0x1) {
3304 			vcpu->arch.apf.pageready_pending = false;
3305 			kvm_check_async_pf_completion(vcpu);
3306 		}
3307 		break;
3308 	case MSR_KVM_STEAL_TIME:
3309 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3310 			return 1;
3311 
3312 		if (unlikely(!sched_info_on()))
3313 			return 1;
3314 
3315 		if (data & KVM_STEAL_RESERVED_MASK)
3316 			return 1;
3317 
3318 		vcpu->arch.st.msr_val = data;
3319 
3320 		if (!(data & KVM_MSR_ENABLED))
3321 			break;
3322 
3323 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3324 
3325 		break;
3326 	case MSR_KVM_PV_EOI_EN:
3327 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3328 			return 1;
3329 
3330 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3331 			return 1;
3332 		break;
3333 
3334 	case MSR_KVM_POLL_CONTROL:
3335 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3336 			return 1;
3337 
3338 		/* only enable bit supported */
3339 		if (data & (-1ULL << 1))
3340 			return 1;
3341 
3342 		vcpu->arch.msr_kvm_poll_control = data;
3343 		break;
3344 
3345 	case MSR_IA32_MCG_CTL:
3346 	case MSR_IA32_MCG_STATUS:
3347 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3348 		return set_msr_mce(vcpu, msr_info);
3349 
3350 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3351 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3352 		pr = true;
3353 		fallthrough;
3354 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3355 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3356 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3357 			return kvm_pmu_set_msr(vcpu, msr_info);
3358 
3359 		if (pr || data != 0)
3360 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3361 				    "0x%x data 0x%llx\n", msr, data);
3362 		break;
3363 	case MSR_K7_CLK_CTL:
3364 		/*
3365 		 * Ignore all writes to this no longer documented MSR.
3366 		 * Writes are only relevant for old K7 processors,
3367 		 * all pre-dating SVM, but a recommended workaround from
3368 		 * AMD for these chips. It is possible to specify the
3369 		 * affected processor models on the command line, hence
3370 		 * the need to ignore the workaround.
3371 		 */
3372 		break;
3373 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3374 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3375 	case HV_X64_MSR_SYNDBG_OPTIONS:
3376 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3377 	case HV_X64_MSR_CRASH_CTL:
3378 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3379 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3380 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3381 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3382 		return kvm_hv_set_msr_common(vcpu, msr, data,
3383 					     msr_info->host_initiated);
3384 	case MSR_IA32_BBL_CR_CTL3:
3385 		/* Drop writes to this legacy MSR -- see rdmsr
3386 		 * counterpart for further detail.
3387 		 */
3388 		if (report_ignored_msrs)
3389 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3390 				msr, data);
3391 		break;
3392 	case MSR_AMD64_OSVW_ID_LENGTH:
3393 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3394 			return 1;
3395 		vcpu->arch.osvw.length = data;
3396 		break;
3397 	case MSR_AMD64_OSVW_STATUS:
3398 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3399 			return 1;
3400 		vcpu->arch.osvw.status = data;
3401 		break;
3402 	case MSR_PLATFORM_INFO:
3403 		if (!msr_info->host_initiated ||
3404 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3405 		     cpuid_fault_enabled(vcpu)))
3406 			return 1;
3407 		vcpu->arch.msr_platform_info = data;
3408 		break;
3409 	case MSR_MISC_FEATURES_ENABLES:
3410 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3411 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3412 		     !supports_cpuid_fault(vcpu)))
3413 			return 1;
3414 		vcpu->arch.msr_misc_features_enables = data;
3415 		break;
3416 	default:
3417 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
3418 			return xen_hvm_config(vcpu, data);
3419 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3420 			return kvm_pmu_set_msr(vcpu, msr_info);
3421 		return KVM_MSR_RET_INVALID;
3422 	}
3423 	return 0;
3424 }
3425 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3426 
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)3427 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3428 {
3429 	u64 data;
3430 	u64 mcg_cap = vcpu->arch.mcg_cap;
3431 	unsigned bank_num = mcg_cap & 0xff;
3432 
3433 	switch (msr) {
3434 	case MSR_IA32_P5_MC_ADDR:
3435 	case MSR_IA32_P5_MC_TYPE:
3436 		data = 0;
3437 		break;
3438 	case MSR_IA32_MCG_CAP:
3439 		data = vcpu->arch.mcg_cap;
3440 		break;
3441 	case MSR_IA32_MCG_CTL:
3442 		if (!(mcg_cap & MCG_CTL_P) && !host)
3443 			return 1;
3444 		data = vcpu->arch.mcg_ctl;
3445 		break;
3446 	case MSR_IA32_MCG_STATUS:
3447 		data = vcpu->arch.mcg_status;
3448 		break;
3449 	default:
3450 		if (msr >= MSR_IA32_MC0_CTL &&
3451 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3452 			u32 offset = array_index_nospec(
3453 				msr - MSR_IA32_MC0_CTL,
3454 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3455 
3456 			data = vcpu->arch.mce_banks[offset];
3457 			break;
3458 		}
3459 		return 1;
3460 	}
3461 	*pdata = data;
3462 	return 0;
3463 }
3464 
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3465 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3466 {
3467 	switch (msr_info->index) {
3468 	case MSR_IA32_PLATFORM_ID:
3469 	case MSR_IA32_EBL_CR_POWERON:
3470 	case MSR_IA32_DEBUGCTLMSR:
3471 	case MSR_IA32_LASTBRANCHFROMIP:
3472 	case MSR_IA32_LASTBRANCHTOIP:
3473 	case MSR_IA32_LASTINTFROMIP:
3474 	case MSR_IA32_LASTINTTOIP:
3475 	case MSR_K8_SYSCFG:
3476 	case MSR_K8_TSEG_ADDR:
3477 	case MSR_K8_TSEG_MASK:
3478 	case MSR_VM_HSAVE_PA:
3479 	case MSR_K8_INT_PENDING_MSG:
3480 	case MSR_AMD64_NB_CFG:
3481 	case MSR_FAM10H_MMIO_CONF_BASE:
3482 	case MSR_AMD64_BU_CFG2:
3483 	case MSR_IA32_PERF_CTL:
3484 	case MSR_AMD64_DC_CFG:
3485 	case MSR_F15H_EX_CFG:
3486 	/*
3487 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3488 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3489 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3490 	 * so for existing CPU-specific MSRs.
3491 	 */
3492 	case MSR_RAPL_POWER_UNIT:
3493 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3494 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3495 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3496 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3497 		msr_info->data = 0;
3498 		break;
3499 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3500 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3501 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3502 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3503 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3504 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3505 			return kvm_pmu_get_msr(vcpu, msr_info);
3506 		msr_info->data = 0;
3507 		break;
3508 	case MSR_IA32_UCODE_REV:
3509 		msr_info->data = vcpu->arch.microcode_version;
3510 		break;
3511 	case MSR_IA32_ARCH_CAPABILITIES:
3512 		if (!msr_info->host_initiated &&
3513 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3514 			return 1;
3515 		msr_info->data = vcpu->arch.arch_capabilities;
3516 		break;
3517 	case MSR_IA32_PERF_CAPABILITIES:
3518 		if (!msr_info->host_initiated &&
3519 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3520 			return 1;
3521 		msr_info->data = vcpu->arch.perf_capabilities;
3522 		break;
3523 	case MSR_IA32_POWER_CTL:
3524 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3525 		break;
3526 	case MSR_IA32_TSC: {
3527 		/*
3528 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3529 		 * even when not intercepted. AMD manual doesn't explicitly
3530 		 * state this but appears to behave the same.
3531 		 *
3532 		 * On userspace reads and writes, however, we unconditionally
3533 		 * return L1's TSC value to ensure backwards-compatible
3534 		 * behavior for migration.
3535 		 */
3536 		u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3537 							    vcpu->arch.tsc_offset;
3538 
3539 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3540 		break;
3541 	}
3542 	case MSR_MTRRcap:
3543 	case 0x200 ... 0x2ff:
3544 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3545 	case 0xcd: /* fsb frequency */
3546 		msr_info->data = 3;
3547 		break;
3548 		/*
3549 		 * MSR_EBC_FREQUENCY_ID
3550 		 * Conservative value valid for even the basic CPU models.
3551 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3552 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3553 		 * and 266MHz for model 3, or 4. Set Core Clock
3554 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3555 		 * 31:24) even though these are only valid for CPU
3556 		 * models > 2, however guests may end up dividing or
3557 		 * multiplying by zero otherwise.
3558 		 */
3559 	case MSR_EBC_FREQUENCY_ID:
3560 		msr_info->data = 1 << 24;
3561 		break;
3562 	case MSR_IA32_APICBASE:
3563 		msr_info->data = kvm_get_apic_base(vcpu);
3564 		break;
3565 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3566 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3567 	case MSR_IA32_TSCDEADLINE:
3568 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3569 		break;
3570 	case MSR_IA32_TSC_ADJUST:
3571 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3572 		break;
3573 	case MSR_IA32_MISC_ENABLE:
3574 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3575 		break;
3576 	case MSR_IA32_SMBASE:
3577 		if (!msr_info->host_initiated)
3578 			return 1;
3579 		msr_info->data = vcpu->arch.smbase;
3580 		break;
3581 	case MSR_SMI_COUNT:
3582 		msr_info->data = vcpu->arch.smi_count;
3583 		break;
3584 	case MSR_IA32_PERF_STATUS:
3585 		/* TSC increment by tick */
3586 		msr_info->data = 1000ULL;
3587 		/* CPU multiplier */
3588 		msr_info->data |= (((uint64_t)4ULL) << 40);
3589 		break;
3590 	case MSR_EFER:
3591 		msr_info->data = vcpu->arch.efer;
3592 		break;
3593 	case MSR_KVM_WALL_CLOCK:
3594 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3595 			return 1;
3596 
3597 		msr_info->data = vcpu->kvm->arch.wall_clock;
3598 		break;
3599 	case MSR_KVM_WALL_CLOCK_NEW:
3600 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3601 			return 1;
3602 
3603 		msr_info->data = vcpu->kvm->arch.wall_clock;
3604 		break;
3605 	case MSR_KVM_SYSTEM_TIME:
3606 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3607 			return 1;
3608 
3609 		msr_info->data = vcpu->arch.time;
3610 		break;
3611 	case MSR_KVM_SYSTEM_TIME_NEW:
3612 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3613 			return 1;
3614 
3615 		msr_info->data = vcpu->arch.time;
3616 		break;
3617 	case MSR_KVM_ASYNC_PF_EN:
3618 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3619 			return 1;
3620 
3621 		msr_info->data = vcpu->arch.apf.msr_en_val;
3622 		break;
3623 	case MSR_KVM_ASYNC_PF_INT:
3624 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3625 			return 1;
3626 
3627 		msr_info->data = vcpu->arch.apf.msr_int_val;
3628 		break;
3629 	case MSR_KVM_ASYNC_PF_ACK:
3630 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3631 			return 1;
3632 
3633 		msr_info->data = 0;
3634 		break;
3635 	case MSR_KVM_STEAL_TIME:
3636 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3637 			return 1;
3638 
3639 		msr_info->data = vcpu->arch.st.msr_val;
3640 		break;
3641 	case MSR_KVM_PV_EOI_EN:
3642 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3643 			return 1;
3644 
3645 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3646 		break;
3647 	case MSR_KVM_POLL_CONTROL:
3648 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3649 			return 1;
3650 
3651 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3652 		break;
3653 	case MSR_IA32_P5_MC_ADDR:
3654 	case MSR_IA32_P5_MC_TYPE:
3655 	case MSR_IA32_MCG_CAP:
3656 	case MSR_IA32_MCG_CTL:
3657 	case MSR_IA32_MCG_STATUS:
3658 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3659 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3660 				   msr_info->host_initiated);
3661 	case MSR_IA32_XSS:
3662 		if (!msr_info->host_initiated &&
3663 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3664 			return 1;
3665 		msr_info->data = vcpu->arch.ia32_xss;
3666 		break;
3667 	case MSR_K7_CLK_CTL:
3668 		/*
3669 		 * Provide expected ramp-up count for K7. All other
3670 		 * are set to zero, indicating minimum divisors for
3671 		 * every field.
3672 		 *
3673 		 * This prevents guest kernels on AMD host with CPU
3674 		 * type 6, model 8 and higher from exploding due to
3675 		 * the rdmsr failing.
3676 		 */
3677 		msr_info->data = 0x20000000;
3678 		break;
3679 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3680 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3681 	case HV_X64_MSR_SYNDBG_OPTIONS:
3682 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3683 	case HV_X64_MSR_CRASH_CTL:
3684 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3685 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3686 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3687 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3688 		return kvm_hv_get_msr_common(vcpu,
3689 					     msr_info->index, &msr_info->data,
3690 					     msr_info->host_initiated);
3691 	case MSR_IA32_BBL_CR_CTL3:
3692 		/* This legacy MSR exists but isn't fully documented in current
3693 		 * silicon.  It is however accessed by winxp in very narrow
3694 		 * scenarios where it sets bit #19, itself documented as
3695 		 * a "reserved" bit.  Best effort attempt to source coherent
3696 		 * read data here should the balance of the register be
3697 		 * interpreted by the guest:
3698 		 *
3699 		 * L2 cache control register 3: 64GB range, 256KB size,
3700 		 * enabled, latency 0x1, configured
3701 		 */
3702 		msr_info->data = 0xbe702111;
3703 		break;
3704 	case MSR_AMD64_OSVW_ID_LENGTH:
3705 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3706 			return 1;
3707 		msr_info->data = vcpu->arch.osvw.length;
3708 		break;
3709 	case MSR_AMD64_OSVW_STATUS:
3710 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3711 			return 1;
3712 		msr_info->data = vcpu->arch.osvw.status;
3713 		break;
3714 	case MSR_PLATFORM_INFO:
3715 		if (!msr_info->host_initiated &&
3716 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3717 			return 1;
3718 		msr_info->data = vcpu->arch.msr_platform_info;
3719 		break;
3720 	case MSR_MISC_FEATURES_ENABLES:
3721 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3722 		break;
3723 	case MSR_K7_HWCR:
3724 		msr_info->data = vcpu->arch.msr_hwcr;
3725 		break;
3726 	default:
3727 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3728 			return kvm_pmu_get_msr(vcpu, msr_info);
3729 		return KVM_MSR_RET_INVALID;
3730 	}
3731 	return 0;
3732 }
3733 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3734 
3735 /*
3736  * Read or write a bunch of msrs. All parameters are kernel addresses.
3737  *
3738  * @return number of msrs set successfully.
3739  */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))3740 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3741 		    struct kvm_msr_entry *entries,
3742 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3743 				  unsigned index, u64 *data))
3744 {
3745 	int i;
3746 
3747 	for (i = 0; i < msrs->nmsrs; ++i)
3748 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3749 			break;
3750 
3751 	return i;
3752 }
3753 
3754 /*
3755  * Read or write a bunch of msrs. Parameters are user addresses.
3756  *
3757  * @return number of msrs set successfully.
3758  */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)3759 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3760 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3761 				unsigned index, u64 *data),
3762 		  int writeback)
3763 {
3764 	struct kvm_msrs msrs;
3765 	struct kvm_msr_entry *entries;
3766 	int r, n;
3767 	unsigned size;
3768 
3769 	r = -EFAULT;
3770 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3771 		goto out;
3772 
3773 	r = -E2BIG;
3774 	if (msrs.nmsrs >= MAX_IO_MSRS)
3775 		goto out;
3776 
3777 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3778 	entries = memdup_user(user_msrs->entries, size);
3779 	if (IS_ERR(entries)) {
3780 		r = PTR_ERR(entries);
3781 		goto out;
3782 	}
3783 
3784 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3785 	if (r < 0)
3786 		goto out_free;
3787 
3788 	r = -EFAULT;
3789 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3790 		goto out_free;
3791 
3792 	r = n;
3793 
3794 out_free:
3795 	kfree(entries);
3796 out:
3797 	return r;
3798 }
3799 
kvm_can_mwait_in_guest(void)3800 static inline bool kvm_can_mwait_in_guest(void)
3801 {
3802 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3803 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3804 		boot_cpu_has(X86_FEATURE_ARAT);
3805 }
3806 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)3807 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3808 {
3809 	int r = 0;
3810 
3811 	switch (ext) {
3812 	case KVM_CAP_IRQCHIP:
3813 	case KVM_CAP_HLT:
3814 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3815 	case KVM_CAP_SET_TSS_ADDR:
3816 	case KVM_CAP_EXT_CPUID:
3817 	case KVM_CAP_EXT_EMUL_CPUID:
3818 	case KVM_CAP_CLOCKSOURCE:
3819 	case KVM_CAP_PIT:
3820 	case KVM_CAP_NOP_IO_DELAY:
3821 	case KVM_CAP_MP_STATE:
3822 	case KVM_CAP_SYNC_MMU:
3823 	case KVM_CAP_USER_NMI:
3824 	case KVM_CAP_REINJECT_CONTROL:
3825 	case KVM_CAP_IRQ_INJECT_STATUS:
3826 	case KVM_CAP_IOEVENTFD:
3827 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3828 	case KVM_CAP_PIT2:
3829 	case KVM_CAP_PIT_STATE2:
3830 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3831 	case KVM_CAP_XEN_HVM:
3832 	case KVM_CAP_VCPU_EVENTS:
3833 	case KVM_CAP_HYPERV:
3834 	case KVM_CAP_HYPERV_VAPIC:
3835 	case KVM_CAP_HYPERV_SPIN:
3836 	case KVM_CAP_HYPERV_SYNIC:
3837 	case KVM_CAP_HYPERV_SYNIC2:
3838 	case KVM_CAP_HYPERV_VP_INDEX:
3839 	case KVM_CAP_HYPERV_EVENTFD:
3840 	case KVM_CAP_HYPERV_TLBFLUSH:
3841 	case KVM_CAP_HYPERV_SEND_IPI:
3842 	case KVM_CAP_HYPERV_CPUID:
3843 	case KVM_CAP_PCI_SEGMENT:
3844 	case KVM_CAP_DEBUGREGS:
3845 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3846 	case KVM_CAP_XSAVE:
3847 	case KVM_CAP_ASYNC_PF:
3848 	case KVM_CAP_ASYNC_PF_INT:
3849 	case KVM_CAP_GET_TSC_KHZ:
3850 	case KVM_CAP_KVMCLOCK_CTRL:
3851 	case KVM_CAP_READONLY_MEM:
3852 	case KVM_CAP_HYPERV_TIME:
3853 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3854 	case KVM_CAP_TSC_DEADLINE_TIMER:
3855 	case KVM_CAP_DISABLE_QUIRKS:
3856 	case KVM_CAP_SET_BOOT_CPU_ID:
3857  	case KVM_CAP_SPLIT_IRQCHIP:
3858 	case KVM_CAP_IMMEDIATE_EXIT:
3859 	case KVM_CAP_PMU_EVENT_FILTER:
3860 	case KVM_CAP_GET_MSR_FEATURES:
3861 	case KVM_CAP_MSR_PLATFORM_INFO:
3862 	case KVM_CAP_EXCEPTION_PAYLOAD:
3863 	case KVM_CAP_SET_GUEST_DEBUG:
3864 	case KVM_CAP_LAST_CPU:
3865 	case KVM_CAP_X86_USER_SPACE_MSR:
3866 	case KVM_CAP_X86_MSR_FILTER:
3867 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3868 		r = 1;
3869 		break;
3870 	case KVM_CAP_SYNC_REGS:
3871 		r = KVM_SYNC_X86_VALID_FIELDS;
3872 		break;
3873 	case KVM_CAP_ADJUST_CLOCK:
3874 		r = KVM_CLOCK_TSC_STABLE;
3875 		break;
3876 	case KVM_CAP_X86_DISABLE_EXITS:
3877 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3878 		      KVM_X86_DISABLE_EXITS_CSTATE;
3879 		if(kvm_can_mwait_in_guest())
3880 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3881 		break;
3882 	case KVM_CAP_X86_SMM:
3883 		/* SMBASE is usually relocated above 1M on modern chipsets,
3884 		 * and SMM handlers might indeed rely on 4G segment limits,
3885 		 * so do not report SMM to be available if real mode is
3886 		 * emulated via vm86 mode.  Still, do not go to great lengths
3887 		 * to avoid userspace's usage of the feature, because it is a
3888 		 * fringe case that is not enabled except via specific settings
3889 		 * of the module parameters.
3890 		 */
3891 		r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
3892 		break;
3893 	case KVM_CAP_VAPIC:
3894 		r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3895 		break;
3896 	case KVM_CAP_NR_VCPUS:
3897 		r = KVM_SOFT_MAX_VCPUS;
3898 		break;
3899 	case KVM_CAP_MAX_VCPUS:
3900 		r = KVM_MAX_VCPUS;
3901 		break;
3902 	case KVM_CAP_MAX_VCPU_ID:
3903 		r = KVM_MAX_VCPU_ID;
3904 		break;
3905 	case KVM_CAP_PV_MMU:	/* obsolete */
3906 		r = 0;
3907 		break;
3908 	case KVM_CAP_MCE:
3909 		r = KVM_MAX_MCE_BANKS;
3910 		break;
3911 	case KVM_CAP_XCRS:
3912 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3913 		break;
3914 	case KVM_CAP_TSC_CONTROL:
3915 		r = kvm_has_tsc_control;
3916 		break;
3917 	case KVM_CAP_X2APIC_API:
3918 		r = KVM_X2APIC_API_VALID_FLAGS;
3919 		break;
3920 	case KVM_CAP_NESTED_STATE:
3921 		r = kvm_x86_ops.nested_ops->get_state ?
3922 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3923 		break;
3924 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3925 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3926 		break;
3927 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3928 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3929 		break;
3930 	case KVM_CAP_SMALLER_MAXPHYADDR:
3931 		r = (int) allow_smaller_maxphyaddr;
3932 		break;
3933 	case KVM_CAP_STEAL_TIME:
3934 		r = sched_info_on();
3935 		break;
3936 	default:
3937 		break;
3938 	}
3939 	return r;
3940 
3941 }
3942 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3943 long kvm_arch_dev_ioctl(struct file *filp,
3944 			unsigned int ioctl, unsigned long arg)
3945 {
3946 	void __user *argp = (void __user *)arg;
3947 	long r;
3948 
3949 	switch (ioctl) {
3950 	case KVM_GET_MSR_INDEX_LIST: {
3951 		struct kvm_msr_list __user *user_msr_list = argp;
3952 		struct kvm_msr_list msr_list;
3953 		unsigned n;
3954 
3955 		r = -EFAULT;
3956 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3957 			goto out;
3958 		n = msr_list.nmsrs;
3959 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3960 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3961 			goto out;
3962 		r = -E2BIG;
3963 		if (n < msr_list.nmsrs)
3964 			goto out;
3965 		r = -EFAULT;
3966 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3967 				 num_msrs_to_save * sizeof(u32)))
3968 			goto out;
3969 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3970 				 &emulated_msrs,
3971 				 num_emulated_msrs * sizeof(u32)))
3972 			goto out;
3973 		r = 0;
3974 		break;
3975 	}
3976 	case KVM_GET_SUPPORTED_CPUID:
3977 	case KVM_GET_EMULATED_CPUID: {
3978 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3979 		struct kvm_cpuid2 cpuid;
3980 
3981 		r = -EFAULT;
3982 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3983 			goto out;
3984 
3985 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3986 					    ioctl);
3987 		if (r)
3988 			goto out;
3989 
3990 		r = -EFAULT;
3991 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3992 			goto out;
3993 		r = 0;
3994 		break;
3995 	}
3996 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
3997 		r = -EFAULT;
3998 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3999 				 sizeof(kvm_mce_cap_supported)))
4000 			goto out;
4001 		r = 0;
4002 		break;
4003 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4004 		struct kvm_msr_list __user *user_msr_list = argp;
4005 		struct kvm_msr_list msr_list;
4006 		unsigned int n;
4007 
4008 		r = -EFAULT;
4009 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4010 			goto out;
4011 		n = msr_list.nmsrs;
4012 		msr_list.nmsrs = num_msr_based_features;
4013 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4014 			goto out;
4015 		r = -E2BIG;
4016 		if (n < msr_list.nmsrs)
4017 			goto out;
4018 		r = -EFAULT;
4019 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4020 				 num_msr_based_features * sizeof(u32)))
4021 			goto out;
4022 		r = 0;
4023 		break;
4024 	}
4025 	case KVM_GET_MSRS:
4026 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4027 		break;
4028 	default:
4029 		r = -EINVAL;
4030 		break;
4031 	}
4032 out:
4033 	return r;
4034 }
4035 
wbinvd_ipi(void * garbage)4036 static void wbinvd_ipi(void *garbage)
4037 {
4038 	wbinvd();
4039 }
4040 
need_emulate_wbinvd(struct kvm_vcpu * vcpu)4041 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4042 {
4043 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4044 }
4045 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)4046 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4047 {
4048 	/* Address WBINVD may be executed by guest */
4049 	if (need_emulate_wbinvd(vcpu)) {
4050 		if (kvm_x86_ops.has_wbinvd_exit())
4051 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4052 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4053 			smp_call_function_single(vcpu->cpu,
4054 					wbinvd_ipi, NULL, 1);
4055 	}
4056 
4057 	kvm_x86_ops.vcpu_load(vcpu, cpu);
4058 
4059 	/* Save host pkru register if supported */
4060 	vcpu->arch.host_pkru = read_pkru();
4061 
4062 	/* Apply any externally detected TSC adjustments (due to suspend) */
4063 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4064 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4065 		vcpu->arch.tsc_offset_adjustment = 0;
4066 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4067 	}
4068 
4069 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4070 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4071 				rdtsc() - vcpu->arch.last_host_tsc;
4072 		if (tsc_delta < 0)
4073 			mark_tsc_unstable("KVM discovered backwards TSC");
4074 
4075 		if (kvm_check_tsc_unstable()) {
4076 			u64 offset = kvm_compute_tsc_offset(vcpu,
4077 						vcpu->arch.last_guest_tsc);
4078 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4079 			vcpu->arch.tsc_catchup = 1;
4080 		}
4081 
4082 		if (kvm_lapic_hv_timer_in_use(vcpu))
4083 			kvm_lapic_restart_hv_timer(vcpu);
4084 
4085 		/*
4086 		 * On a host with synchronized TSC, there is no need to update
4087 		 * kvmclock on vcpu->cpu migration
4088 		 */
4089 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4090 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4091 		if (vcpu->cpu != cpu)
4092 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4093 		vcpu->cpu = cpu;
4094 	}
4095 
4096 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4097 }
4098 
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)4099 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4100 {
4101 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4102 	struct kvm_steal_time __user *st;
4103 	struct kvm_memslots *slots;
4104 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4105 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4106 
4107 	/*
4108 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4109 	 * an instruction boundary and will not trigger guest emulation of any
4110 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4111 	 * when this is true, for example allowing the vCPU to be marked
4112 	 * preempted if and only if the VM-Exit was due to a host interrupt.
4113 	 */
4114 	if (!vcpu->arch.at_instruction_boundary) {
4115 		vcpu->stat.preemption_other++;
4116 		return;
4117 	}
4118 
4119 	vcpu->stat.preemption_reported++;
4120 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4121 		return;
4122 
4123 	if (vcpu->arch.st.preempted)
4124 		return;
4125 
4126 	/* This happens on process exit */
4127 	if (unlikely(current->mm != vcpu->kvm->mm))
4128 		return;
4129 
4130 	slots = kvm_memslots(vcpu->kvm);
4131 
4132 	if (unlikely(slots->generation != ghc->generation ||
4133 		     gpa != ghc->gpa ||
4134 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4135 		return;
4136 
4137 	st = (struct kvm_steal_time __user *)ghc->hva;
4138 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4139 
4140 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4141 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4142 
4143 	mark_page_dirty_in_slot(ghc->memslot, gpa_to_gfn(ghc->gpa));
4144 }
4145 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)4146 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4147 {
4148 	int idx;
4149 
4150 	if (vcpu->preempted) {
4151 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
4152 
4153 		/*
4154 		 * Take the srcu lock as memslots will be accessed to check the gfn
4155 		 * cache generation against the memslots generation.
4156 		 */
4157 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4158 		kvm_steal_time_set_preempted(vcpu);
4159 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4160 	}
4161 
4162 	kvm_x86_ops.vcpu_put(vcpu);
4163 	vcpu->arch.last_host_tsc = rdtsc();
4164 	/*
4165 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
4166 	 * on every vmexit, but if not, we might have a stale dr6 from the
4167 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4168 	 */
4169 	set_debugreg(0, 6);
4170 }
4171 
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4172 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4173 				    struct kvm_lapic_state *s)
4174 {
4175 	if (vcpu->arch.apicv_active)
4176 		kvm_x86_ops.sync_pir_to_irr(vcpu);
4177 
4178 	return kvm_apic_get_state(vcpu, s);
4179 }
4180 
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4181 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4182 				    struct kvm_lapic_state *s)
4183 {
4184 	int r;
4185 
4186 	r = kvm_apic_set_state(vcpu, s);
4187 	if (r)
4188 		return r;
4189 	update_cr8_intercept(vcpu);
4190 
4191 	return 0;
4192 }
4193 
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)4194 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4195 {
4196 	/*
4197 	 * We can accept userspace's request for interrupt injection
4198 	 * as long as we have a place to store the interrupt number.
4199 	 * The actual injection will happen when the CPU is able to
4200 	 * deliver the interrupt.
4201 	 */
4202 	if (kvm_cpu_has_extint(vcpu))
4203 		return false;
4204 
4205 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4206 	return (!lapic_in_kernel(vcpu) ||
4207 		kvm_apic_accept_pic_intr(vcpu));
4208 }
4209 
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)4210 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4211 {
4212 	/*
4213 	 * Do not cause an interrupt window exit if an exception
4214 	 * is pending or an event needs reinjection; userspace
4215 	 * might want to inject the interrupt manually using KVM_SET_REGS
4216 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4217 	 * instruction boundary and with no events half-injected.
4218 	 */
4219 	return (kvm_arch_interrupt_allowed(vcpu) &&
4220 		kvm_cpu_accept_dm_intr(vcpu) &&
4221 		!kvm_event_needs_reinjection(vcpu) &&
4222 		!vcpu->arch.exception.pending);
4223 }
4224 
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)4225 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4226 				    struct kvm_interrupt *irq)
4227 {
4228 	if (irq->irq >= KVM_NR_INTERRUPTS)
4229 		return -EINVAL;
4230 
4231 	if (!irqchip_in_kernel(vcpu->kvm)) {
4232 		kvm_queue_interrupt(vcpu, irq->irq, false);
4233 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4234 		return 0;
4235 	}
4236 
4237 	/*
4238 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4239 	 * fail for in-kernel 8259.
4240 	 */
4241 	if (pic_in_kernel(vcpu->kvm))
4242 		return -ENXIO;
4243 
4244 	if (vcpu->arch.pending_external_vector != -1)
4245 		return -EEXIST;
4246 
4247 	vcpu->arch.pending_external_vector = irq->irq;
4248 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4249 	return 0;
4250 }
4251 
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)4252 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4253 {
4254 	kvm_inject_nmi(vcpu);
4255 
4256 	return 0;
4257 }
4258 
kvm_vcpu_ioctl_smi(struct kvm_vcpu * vcpu)4259 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4260 {
4261 	kvm_make_request(KVM_REQ_SMI, vcpu);
4262 
4263 	return 0;
4264 }
4265 
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)4266 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4267 					   struct kvm_tpr_access_ctl *tac)
4268 {
4269 	if (tac->flags)
4270 		return -EINVAL;
4271 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4272 	return 0;
4273 }
4274 
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)4275 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4276 					u64 mcg_cap)
4277 {
4278 	int r;
4279 	unsigned bank_num = mcg_cap & 0xff, bank;
4280 
4281 	r = -EINVAL;
4282 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4283 		goto out;
4284 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4285 		goto out;
4286 	r = 0;
4287 	vcpu->arch.mcg_cap = mcg_cap;
4288 	/* Init IA32_MCG_CTL to all 1s */
4289 	if (mcg_cap & MCG_CTL_P)
4290 		vcpu->arch.mcg_ctl = ~(u64)0;
4291 	/* Init IA32_MCi_CTL to all 1s */
4292 	for (bank = 0; bank < bank_num; bank++)
4293 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4294 
4295 	kvm_x86_ops.setup_mce(vcpu);
4296 out:
4297 	return r;
4298 }
4299 
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)4300 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4301 				      struct kvm_x86_mce *mce)
4302 {
4303 	u64 mcg_cap = vcpu->arch.mcg_cap;
4304 	unsigned bank_num = mcg_cap & 0xff;
4305 	u64 *banks = vcpu->arch.mce_banks;
4306 
4307 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4308 		return -EINVAL;
4309 	/*
4310 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4311 	 * reporting is disabled
4312 	 */
4313 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4314 	    vcpu->arch.mcg_ctl != ~(u64)0)
4315 		return 0;
4316 	banks += 4 * mce->bank;
4317 	/*
4318 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4319 	 * reporting is disabled for the bank
4320 	 */
4321 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4322 		return 0;
4323 	if (mce->status & MCI_STATUS_UC) {
4324 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4325 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4326 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4327 			return 0;
4328 		}
4329 		if (banks[1] & MCI_STATUS_VAL)
4330 			mce->status |= MCI_STATUS_OVER;
4331 		banks[2] = mce->addr;
4332 		banks[3] = mce->misc;
4333 		vcpu->arch.mcg_status = mce->mcg_status;
4334 		banks[1] = mce->status;
4335 		kvm_queue_exception(vcpu, MC_VECTOR);
4336 	} else if (!(banks[1] & MCI_STATUS_VAL)
4337 		   || !(banks[1] & MCI_STATUS_UC)) {
4338 		if (banks[1] & MCI_STATUS_VAL)
4339 			mce->status |= MCI_STATUS_OVER;
4340 		banks[2] = mce->addr;
4341 		banks[3] = mce->misc;
4342 		banks[1] = mce->status;
4343 	} else
4344 		banks[1] |= MCI_STATUS_OVER;
4345 	return 0;
4346 }
4347 
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)4348 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4349 					       struct kvm_vcpu_events *events)
4350 {
4351 	process_nmi(vcpu);
4352 
4353 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
4354 		process_smi(vcpu);
4355 
4356 	/*
4357 	 * In guest mode, payload delivery should be deferred,
4358 	 * so that the L1 hypervisor can intercept #PF before
4359 	 * CR2 is modified (or intercept #DB before DR6 is
4360 	 * modified under nVMX). Unless the per-VM capability,
4361 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4362 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4363 	 * opportunistically defer the exception payload, deliver it if the
4364 	 * capability hasn't been requested before processing a
4365 	 * KVM_GET_VCPU_EVENTS.
4366 	 */
4367 	if (!vcpu->kvm->arch.exception_payload_enabled &&
4368 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4369 		kvm_deliver_exception_payload(vcpu);
4370 
4371 	/*
4372 	 * The API doesn't provide the instruction length for software
4373 	 * exceptions, so don't report them. As long as the guest RIP
4374 	 * isn't advanced, we should expect to encounter the exception
4375 	 * again.
4376 	 */
4377 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4378 		events->exception.injected = 0;
4379 		events->exception.pending = 0;
4380 	} else {
4381 		events->exception.injected = vcpu->arch.exception.injected;
4382 		events->exception.pending = vcpu->arch.exception.pending;
4383 		/*
4384 		 * For ABI compatibility, deliberately conflate
4385 		 * pending and injected exceptions when
4386 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4387 		 */
4388 		if (!vcpu->kvm->arch.exception_payload_enabled)
4389 			events->exception.injected |=
4390 				vcpu->arch.exception.pending;
4391 	}
4392 	events->exception.nr = vcpu->arch.exception.nr;
4393 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4394 	events->exception.error_code = vcpu->arch.exception.error_code;
4395 	events->exception_has_payload = vcpu->arch.exception.has_payload;
4396 	events->exception_payload = vcpu->arch.exception.payload;
4397 
4398 	events->interrupt.injected =
4399 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4400 	events->interrupt.nr = vcpu->arch.interrupt.nr;
4401 	events->interrupt.soft = 0;
4402 	events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
4403 
4404 	events->nmi.injected = vcpu->arch.nmi_injected;
4405 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
4406 	events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
4407 	events->nmi.pad = 0;
4408 
4409 	events->sipi_vector = 0; /* never valid when reporting to user space */
4410 
4411 	events->smi.smm = is_smm(vcpu);
4412 	events->smi.pending = vcpu->arch.smi_pending;
4413 	events->smi.smm_inside_nmi =
4414 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4415 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4416 
4417 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4418 			 | KVM_VCPUEVENT_VALID_SHADOW
4419 			 | KVM_VCPUEVENT_VALID_SMM);
4420 	if (vcpu->kvm->arch.exception_payload_enabled)
4421 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4422 
4423 	memset(&events->reserved, 0, sizeof(events->reserved));
4424 }
4425 
4426 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4427 
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)4428 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4429 					      struct kvm_vcpu_events *events)
4430 {
4431 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4432 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4433 			      | KVM_VCPUEVENT_VALID_SHADOW
4434 			      | KVM_VCPUEVENT_VALID_SMM
4435 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4436 		return -EINVAL;
4437 
4438 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4439 		if (!vcpu->kvm->arch.exception_payload_enabled)
4440 			return -EINVAL;
4441 		if (events->exception.pending)
4442 			events->exception.injected = 0;
4443 		else
4444 			events->exception_has_payload = 0;
4445 	} else {
4446 		events->exception.pending = 0;
4447 		events->exception_has_payload = 0;
4448 	}
4449 
4450 	if ((events->exception.injected || events->exception.pending) &&
4451 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4452 		return -EINVAL;
4453 
4454 	/* INITs are latched while in SMM */
4455 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4456 	    (events->smi.smm || events->smi.pending) &&
4457 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4458 		return -EINVAL;
4459 
4460 	process_nmi(vcpu);
4461 	vcpu->arch.exception.injected = events->exception.injected;
4462 	vcpu->arch.exception.pending = events->exception.pending;
4463 	vcpu->arch.exception.nr = events->exception.nr;
4464 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4465 	vcpu->arch.exception.error_code = events->exception.error_code;
4466 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4467 	vcpu->arch.exception.payload = events->exception_payload;
4468 
4469 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4470 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4471 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4472 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4473 		kvm_x86_ops.set_interrupt_shadow(vcpu,
4474 						  events->interrupt.shadow);
4475 
4476 	vcpu->arch.nmi_injected = events->nmi.injected;
4477 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4478 		vcpu->arch.nmi_pending = events->nmi.pending;
4479 	kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
4480 
4481 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4482 	    lapic_in_kernel(vcpu))
4483 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
4484 
4485 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4486 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4487 			if (events->smi.smm)
4488 				vcpu->arch.hflags |= HF_SMM_MASK;
4489 			else
4490 				vcpu->arch.hflags &= ~HF_SMM_MASK;
4491 
4492 			kvm_x86_ops.nested_ops->leave_nested(vcpu);
4493 			kvm_smm_changed(vcpu);
4494 		}
4495 
4496 		vcpu->arch.smi_pending = events->smi.pending;
4497 
4498 		if (events->smi.smm) {
4499 			if (events->smi.smm_inside_nmi)
4500 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4501 			else
4502 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4503 		}
4504 
4505 		if (lapic_in_kernel(vcpu)) {
4506 			if (events->smi.latched_init)
4507 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4508 			else
4509 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4510 		}
4511 	}
4512 
4513 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4514 
4515 	return 0;
4516 }
4517 
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)4518 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4519 					     struct kvm_debugregs *dbgregs)
4520 {
4521 	unsigned long val;
4522 
4523 	memset(dbgregs, 0, sizeof(*dbgregs));
4524 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4525 	kvm_get_dr(vcpu, 6, &val);
4526 	dbgregs->dr6 = val;
4527 	dbgregs->dr7 = vcpu->arch.dr7;
4528 }
4529 
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)4530 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4531 					    struct kvm_debugregs *dbgregs)
4532 {
4533 	if (dbgregs->flags)
4534 		return -EINVAL;
4535 
4536 	if (dbgregs->dr6 & ~0xffffffffull)
4537 		return -EINVAL;
4538 	if (dbgregs->dr7 & ~0xffffffffull)
4539 		return -EINVAL;
4540 
4541 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4542 	kvm_update_dr0123(vcpu);
4543 	vcpu->arch.dr6 = dbgregs->dr6;
4544 	vcpu->arch.dr7 = dbgregs->dr7;
4545 	kvm_update_dr7(vcpu);
4546 
4547 	return 0;
4548 }
4549 
4550 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4551 
fill_xsave(u8 * dest,struct kvm_vcpu * vcpu)4552 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4553 {
4554 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4555 	u64 xstate_bv = xsave->header.xfeatures;
4556 	u64 valid;
4557 
4558 	/*
4559 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4560 	 * leaves 0 and 1 in the loop below.
4561 	 */
4562 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4563 
4564 	/* Set XSTATE_BV */
4565 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4566 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4567 
4568 	/*
4569 	 * Copy each region from the possibly compacted offset to the
4570 	 * non-compacted offset.
4571 	 */
4572 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4573 	while (valid) {
4574 		u64 xfeature_mask = valid & -valid;
4575 		int xfeature_nr = fls64(xfeature_mask) - 1;
4576 		void *src = get_xsave_addr(xsave, xfeature_nr);
4577 
4578 		if (src) {
4579 			u32 size, offset, ecx, edx;
4580 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4581 				    &size, &offset, &ecx, &edx);
4582 			if (xfeature_nr == XFEATURE_PKRU)
4583 				memcpy(dest + offset, &vcpu->arch.pkru,
4584 				       sizeof(vcpu->arch.pkru));
4585 			else
4586 				memcpy(dest + offset, src, size);
4587 
4588 		}
4589 
4590 		valid -= xfeature_mask;
4591 	}
4592 }
4593 
load_xsave(struct kvm_vcpu * vcpu,u8 * src)4594 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4595 {
4596 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4597 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4598 	u64 valid;
4599 
4600 	/*
4601 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4602 	 * leaves 0 and 1 in the loop below.
4603 	 */
4604 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
4605 
4606 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
4607 	xsave->header.xfeatures = xstate_bv;
4608 	if (boot_cpu_has(X86_FEATURE_XSAVES))
4609 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4610 
4611 	/*
4612 	 * Copy each region from the non-compacted offset to the
4613 	 * possibly compacted offset.
4614 	 */
4615 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4616 	while (valid) {
4617 		u64 xfeature_mask = valid & -valid;
4618 		int xfeature_nr = fls64(xfeature_mask) - 1;
4619 		void *dest = get_xsave_addr(xsave, xfeature_nr);
4620 
4621 		if (dest) {
4622 			u32 size, offset, ecx, edx;
4623 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4624 				    &size, &offset, &ecx, &edx);
4625 			if (xfeature_nr == XFEATURE_PKRU)
4626 				memcpy(&vcpu->arch.pkru, src + offset,
4627 				       sizeof(vcpu->arch.pkru));
4628 			else
4629 				memcpy(dest, src + offset, size);
4630 		}
4631 
4632 		valid -= xfeature_mask;
4633 	}
4634 }
4635 
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)4636 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4637 					 struct kvm_xsave *guest_xsave)
4638 {
4639 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4640 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4641 		fill_xsave((u8 *) guest_xsave->region, vcpu);
4642 	} else {
4643 		memcpy(guest_xsave->region,
4644 			&vcpu->arch.guest_fpu->state.fxsave,
4645 			sizeof(struct fxregs_state));
4646 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4647 			XFEATURE_MASK_FPSSE;
4648 	}
4649 }
4650 
4651 #define XSAVE_MXCSR_OFFSET 24
4652 
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)4653 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4654 					struct kvm_xsave *guest_xsave)
4655 {
4656 	u64 xstate_bv =
4657 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4658 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4659 
4660 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4661 		/*
4662 		 * Here we allow setting states that are not present in
4663 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4664 		 * with old userspace.
4665 		 */
4666 		if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4667 			return -EINVAL;
4668 		load_xsave(vcpu, (u8 *)guest_xsave->region);
4669 	} else {
4670 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4671 			mxcsr & ~mxcsr_feature_mask)
4672 			return -EINVAL;
4673 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4674 			guest_xsave->region, sizeof(struct fxregs_state));
4675 	}
4676 	return 0;
4677 }
4678 
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)4679 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4680 					struct kvm_xcrs *guest_xcrs)
4681 {
4682 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4683 		guest_xcrs->nr_xcrs = 0;
4684 		return;
4685 	}
4686 
4687 	guest_xcrs->nr_xcrs = 1;
4688 	guest_xcrs->flags = 0;
4689 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4690 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4691 }
4692 
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)4693 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4694 				       struct kvm_xcrs *guest_xcrs)
4695 {
4696 	int i, r = 0;
4697 
4698 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
4699 		return -EINVAL;
4700 
4701 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4702 		return -EINVAL;
4703 
4704 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4705 		/* Only support XCR0 currently */
4706 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4707 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4708 				guest_xcrs->xcrs[i].value);
4709 			break;
4710 		}
4711 	if (r)
4712 		r = -EINVAL;
4713 	return r;
4714 }
4715 
4716 /*
4717  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4718  * stopped by the hypervisor.  This function will be called from the host only.
4719  * EINVAL is returned when the host attempts to set the flag for a guest that
4720  * does not support pv clocks.
4721  */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)4722 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4723 {
4724 	if (!vcpu->arch.pv_time_enabled)
4725 		return -EINVAL;
4726 	vcpu->arch.pvclock_set_guest_stopped_request = true;
4727 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4728 	return 0;
4729 }
4730 
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)4731 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4732 				     struct kvm_enable_cap *cap)
4733 {
4734 	int r;
4735 	uint16_t vmcs_version;
4736 	void __user *user_ptr;
4737 
4738 	if (cap->flags)
4739 		return -EINVAL;
4740 
4741 	switch (cap->cap) {
4742 	case KVM_CAP_HYPERV_SYNIC2:
4743 		if (cap->args[0])
4744 			return -EINVAL;
4745 		fallthrough;
4746 
4747 	case KVM_CAP_HYPERV_SYNIC:
4748 		if (!irqchip_in_kernel(vcpu->kvm))
4749 			return -EINVAL;
4750 		return kvm_hv_activate_synic(vcpu, cap->cap ==
4751 					     KVM_CAP_HYPERV_SYNIC2);
4752 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4753 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
4754 			return -ENOTTY;
4755 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4756 		if (!r) {
4757 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
4758 			if (copy_to_user(user_ptr, &vmcs_version,
4759 					 sizeof(vmcs_version)))
4760 				r = -EFAULT;
4761 		}
4762 		return r;
4763 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4764 		if (!kvm_x86_ops.enable_direct_tlbflush)
4765 			return -ENOTTY;
4766 
4767 		return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4768 
4769 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4770 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
4771 		if (vcpu->arch.pv_cpuid.enforce)
4772 			kvm_update_pv_runtime(vcpu);
4773 
4774 		return 0;
4775 
4776 	default:
4777 		return -EINVAL;
4778 	}
4779 }
4780 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4781 long kvm_arch_vcpu_ioctl(struct file *filp,
4782 			 unsigned int ioctl, unsigned long arg)
4783 {
4784 	struct kvm_vcpu *vcpu = filp->private_data;
4785 	void __user *argp = (void __user *)arg;
4786 	int r;
4787 	union {
4788 		struct kvm_lapic_state *lapic;
4789 		struct kvm_xsave *xsave;
4790 		struct kvm_xcrs *xcrs;
4791 		void *buffer;
4792 	} u;
4793 
4794 	vcpu_load(vcpu);
4795 
4796 	u.buffer = NULL;
4797 	switch (ioctl) {
4798 	case KVM_GET_LAPIC: {
4799 		r = -EINVAL;
4800 		if (!lapic_in_kernel(vcpu))
4801 			goto out;
4802 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4803 				GFP_KERNEL_ACCOUNT);
4804 
4805 		r = -ENOMEM;
4806 		if (!u.lapic)
4807 			goto out;
4808 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4809 		if (r)
4810 			goto out;
4811 		r = -EFAULT;
4812 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4813 			goto out;
4814 		r = 0;
4815 		break;
4816 	}
4817 	case KVM_SET_LAPIC: {
4818 		r = -EINVAL;
4819 		if (!lapic_in_kernel(vcpu))
4820 			goto out;
4821 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4822 		if (IS_ERR(u.lapic)) {
4823 			r = PTR_ERR(u.lapic);
4824 			goto out_nofree;
4825 		}
4826 
4827 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4828 		break;
4829 	}
4830 	case KVM_INTERRUPT: {
4831 		struct kvm_interrupt irq;
4832 
4833 		r = -EFAULT;
4834 		if (copy_from_user(&irq, argp, sizeof(irq)))
4835 			goto out;
4836 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4837 		break;
4838 	}
4839 	case KVM_NMI: {
4840 		r = kvm_vcpu_ioctl_nmi(vcpu);
4841 		break;
4842 	}
4843 	case KVM_SMI: {
4844 		r = kvm_vcpu_ioctl_smi(vcpu);
4845 		break;
4846 	}
4847 	case KVM_SET_CPUID: {
4848 		struct kvm_cpuid __user *cpuid_arg = argp;
4849 		struct kvm_cpuid cpuid;
4850 
4851 		r = -EFAULT;
4852 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4853 			goto out;
4854 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4855 		break;
4856 	}
4857 	case KVM_SET_CPUID2: {
4858 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4859 		struct kvm_cpuid2 cpuid;
4860 
4861 		r = -EFAULT;
4862 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4863 			goto out;
4864 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4865 					      cpuid_arg->entries);
4866 		break;
4867 	}
4868 	case KVM_GET_CPUID2: {
4869 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4870 		struct kvm_cpuid2 cpuid;
4871 
4872 		r = -EFAULT;
4873 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4874 			goto out;
4875 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4876 					      cpuid_arg->entries);
4877 		if (r)
4878 			goto out;
4879 		r = -EFAULT;
4880 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4881 			goto out;
4882 		r = 0;
4883 		break;
4884 	}
4885 	case KVM_GET_MSRS: {
4886 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4887 		r = msr_io(vcpu, argp, do_get_msr, 1);
4888 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4889 		break;
4890 	}
4891 	case KVM_SET_MSRS: {
4892 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4893 		r = msr_io(vcpu, argp, do_set_msr, 0);
4894 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4895 		break;
4896 	}
4897 	case KVM_TPR_ACCESS_REPORTING: {
4898 		struct kvm_tpr_access_ctl tac;
4899 
4900 		r = -EFAULT;
4901 		if (copy_from_user(&tac, argp, sizeof(tac)))
4902 			goto out;
4903 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4904 		if (r)
4905 			goto out;
4906 		r = -EFAULT;
4907 		if (copy_to_user(argp, &tac, sizeof(tac)))
4908 			goto out;
4909 		r = 0;
4910 		break;
4911 	};
4912 	case KVM_SET_VAPIC_ADDR: {
4913 		struct kvm_vapic_addr va;
4914 		int idx;
4915 
4916 		r = -EINVAL;
4917 		if (!lapic_in_kernel(vcpu))
4918 			goto out;
4919 		r = -EFAULT;
4920 		if (copy_from_user(&va, argp, sizeof(va)))
4921 			goto out;
4922 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4923 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4924 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4925 		break;
4926 	}
4927 	case KVM_X86_SETUP_MCE: {
4928 		u64 mcg_cap;
4929 
4930 		r = -EFAULT;
4931 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4932 			goto out;
4933 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4934 		break;
4935 	}
4936 	case KVM_X86_SET_MCE: {
4937 		struct kvm_x86_mce mce;
4938 
4939 		r = -EFAULT;
4940 		if (copy_from_user(&mce, argp, sizeof(mce)))
4941 			goto out;
4942 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4943 		break;
4944 	}
4945 	case KVM_GET_VCPU_EVENTS: {
4946 		struct kvm_vcpu_events events;
4947 
4948 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4949 
4950 		r = -EFAULT;
4951 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4952 			break;
4953 		r = 0;
4954 		break;
4955 	}
4956 	case KVM_SET_VCPU_EVENTS: {
4957 		struct kvm_vcpu_events events;
4958 
4959 		r = -EFAULT;
4960 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4961 			break;
4962 
4963 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4964 		break;
4965 	}
4966 	case KVM_GET_DEBUGREGS: {
4967 		struct kvm_debugregs dbgregs;
4968 
4969 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4970 
4971 		r = -EFAULT;
4972 		if (copy_to_user(argp, &dbgregs,
4973 				 sizeof(struct kvm_debugregs)))
4974 			break;
4975 		r = 0;
4976 		break;
4977 	}
4978 	case KVM_SET_DEBUGREGS: {
4979 		struct kvm_debugregs dbgregs;
4980 
4981 		r = -EFAULT;
4982 		if (copy_from_user(&dbgregs, argp,
4983 				   sizeof(struct kvm_debugregs)))
4984 			break;
4985 
4986 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4987 		break;
4988 	}
4989 	case KVM_GET_XSAVE: {
4990 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4991 		r = -ENOMEM;
4992 		if (!u.xsave)
4993 			break;
4994 
4995 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4996 
4997 		r = -EFAULT;
4998 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4999 			break;
5000 		r = 0;
5001 		break;
5002 	}
5003 	case KVM_SET_XSAVE: {
5004 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
5005 		if (IS_ERR(u.xsave)) {
5006 			r = PTR_ERR(u.xsave);
5007 			goto out_nofree;
5008 		}
5009 
5010 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5011 		break;
5012 	}
5013 	case KVM_GET_XCRS: {
5014 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5015 		r = -ENOMEM;
5016 		if (!u.xcrs)
5017 			break;
5018 
5019 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5020 
5021 		r = -EFAULT;
5022 		if (copy_to_user(argp, u.xcrs,
5023 				 sizeof(struct kvm_xcrs)))
5024 			break;
5025 		r = 0;
5026 		break;
5027 	}
5028 	case KVM_SET_XCRS: {
5029 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5030 		if (IS_ERR(u.xcrs)) {
5031 			r = PTR_ERR(u.xcrs);
5032 			goto out_nofree;
5033 		}
5034 
5035 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5036 		break;
5037 	}
5038 	case KVM_SET_TSC_KHZ: {
5039 		u32 user_tsc_khz;
5040 
5041 		r = -EINVAL;
5042 		user_tsc_khz = (u32)arg;
5043 
5044 		if (kvm_has_tsc_control &&
5045 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
5046 			goto out;
5047 
5048 		if (user_tsc_khz == 0)
5049 			user_tsc_khz = tsc_khz;
5050 
5051 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5052 			r = 0;
5053 
5054 		goto out;
5055 	}
5056 	case KVM_GET_TSC_KHZ: {
5057 		r = vcpu->arch.virtual_tsc_khz;
5058 		goto out;
5059 	}
5060 	case KVM_KVMCLOCK_CTRL: {
5061 		r = kvm_set_guest_paused(vcpu);
5062 		goto out;
5063 	}
5064 	case KVM_ENABLE_CAP: {
5065 		struct kvm_enable_cap cap;
5066 
5067 		r = -EFAULT;
5068 		if (copy_from_user(&cap, argp, sizeof(cap)))
5069 			goto out;
5070 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5071 		break;
5072 	}
5073 	case KVM_GET_NESTED_STATE: {
5074 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5075 		u32 user_data_size;
5076 
5077 		r = -EINVAL;
5078 		if (!kvm_x86_ops.nested_ops->get_state)
5079 			break;
5080 
5081 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5082 		r = -EFAULT;
5083 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5084 			break;
5085 
5086 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5087 						     user_data_size);
5088 		if (r < 0)
5089 			break;
5090 
5091 		if (r > user_data_size) {
5092 			if (put_user(r, &user_kvm_nested_state->size))
5093 				r = -EFAULT;
5094 			else
5095 				r = -E2BIG;
5096 			break;
5097 		}
5098 
5099 		r = 0;
5100 		break;
5101 	}
5102 	case KVM_SET_NESTED_STATE: {
5103 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5104 		struct kvm_nested_state kvm_state;
5105 		int idx;
5106 
5107 		r = -EINVAL;
5108 		if (!kvm_x86_ops.nested_ops->set_state)
5109 			break;
5110 
5111 		r = -EFAULT;
5112 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5113 			break;
5114 
5115 		r = -EINVAL;
5116 		if (kvm_state.size < sizeof(kvm_state))
5117 			break;
5118 
5119 		if (kvm_state.flags &
5120 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5121 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5122 		      | KVM_STATE_NESTED_GIF_SET))
5123 			break;
5124 
5125 		/* nested_run_pending implies guest_mode.  */
5126 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5127 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5128 			break;
5129 
5130 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5131 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5132 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5133 		break;
5134 	}
5135 	case KVM_GET_SUPPORTED_HV_CPUID: {
5136 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5137 		struct kvm_cpuid2 cpuid;
5138 
5139 		r = -EFAULT;
5140 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5141 			goto out;
5142 
5143 		r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
5144 						cpuid_arg->entries);
5145 		if (r)
5146 			goto out;
5147 
5148 		r = -EFAULT;
5149 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5150 			goto out;
5151 		r = 0;
5152 		break;
5153 	}
5154 	default:
5155 		r = -EINVAL;
5156 	}
5157 out:
5158 	kfree(u.buffer);
5159 out_nofree:
5160 	vcpu_put(vcpu);
5161 	return r;
5162 }
5163 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)5164 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5165 {
5166 	return VM_FAULT_SIGBUS;
5167 }
5168 
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)5169 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5170 {
5171 	int ret;
5172 
5173 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5174 		return -EINVAL;
5175 	ret = kvm_x86_ops.set_tss_addr(kvm, addr);
5176 	return ret;
5177 }
5178 
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5179 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5180 					      u64 ident_addr)
5181 {
5182 	return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
5183 }
5184 
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)5185 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5186 					 unsigned long kvm_nr_mmu_pages)
5187 {
5188 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5189 		return -EINVAL;
5190 
5191 	mutex_lock(&kvm->slots_lock);
5192 
5193 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5194 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5195 
5196 	mutex_unlock(&kvm->slots_lock);
5197 	return 0;
5198 }
5199 
kvm_vm_ioctl_get_nr_mmu_pages(struct kvm * kvm)5200 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5201 {
5202 	return kvm->arch.n_max_mmu_pages;
5203 }
5204 
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)5205 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5206 {
5207 	struct kvm_pic *pic = kvm->arch.vpic;
5208 	int r;
5209 
5210 	r = 0;
5211 	switch (chip->chip_id) {
5212 	case KVM_IRQCHIP_PIC_MASTER:
5213 		memcpy(&chip->chip.pic, &pic->pics[0],
5214 			sizeof(struct kvm_pic_state));
5215 		break;
5216 	case KVM_IRQCHIP_PIC_SLAVE:
5217 		memcpy(&chip->chip.pic, &pic->pics[1],
5218 			sizeof(struct kvm_pic_state));
5219 		break;
5220 	case KVM_IRQCHIP_IOAPIC:
5221 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5222 		break;
5223 	default:
5224 		r = -EINVAL;
5225 		break;
5226 	}
5227 	return r;
5228 }
5229 
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)5230 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5231 {
5232 	struct kvm_pic *pic = kvm->arch.vpic;
5233 	int r;
5234 
5235 	r = 0;
5236 	switch (chip->chip_id) {
5237 	case KVM_IRQCHIP_PIC_MASTER:
5238 		spin_lock(&pic->lock);
5239 		memcpy(&pic->pics[0], &chip->chip.pic,
5240 			sizeof(struct kvm_pic_state));
5241 		spin_unlock(&pic->lock);
5242 		break;
5243 	case KVM_IRQCHIP_PIC_SLAVE:
5244 		spin_lock(&pic->lock);
5245 		memcpy(&pic->pics[1], &chip->chip.pic,
5246 			sizeof(struct kvm_pic_state));
5247 		spin_unlock(&pic->lock);
5248 		break;
5249 	case KVM_IRQCHIP_IOAPIC:
5250 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
5251 		break;
5252 	default:
5253 		r = -EINVAL;
5254 		break;
5255 	}
5256 	kvm_pic_update_irq(pic);
5257 	return r;
5258 }
5259 
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)5260 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5261 {
5262 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5263 
5264 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5265 
5266 	mutex_lock(&kps->lock);
5267 	memcpy(ps, &kps->channels, sizeof(*ps));
5268 	mutex_unlock(&kps->lock);
5269 	return 0;
5270 }
5271 
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)5272 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5273 {
5274 	int i;
5275 	struct kvm_pit *pit = kvm->arch.vpit;
5276 
5277 	mutex_lock(&pit->pit_state.lock);
5278 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5279 	for (i = 0; i < 3; i++)
5280 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5281 	mutex_unlock(&pit->pit_state.lock);
5282 	return 0;
5283 }
5284 
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)5285 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5286 {
5287 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
5288 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5289 		sizeof(ps->channels));
5290 	ps->flags = kvm->arch.vpit->pit_state.flags;
5291 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5292 	memset(&ps->reserved, 0, sizeof(ps->reserved));
5293 	return 0;
5294 }
5295 
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)5296 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5297 {
5298 	int start = 0;
5299 	int i;
5300 	u32 prev_legacy, cur_legacy;
5301 	struct kvm_pit *pit = kvm->arch.vpit;
5302 
5303 	mutex_lock(&pit->pit_state.lock);
5304 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5305 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5306 	if (!prev_legacy && cur_legacy)
5307 		start = 1;
5308 	memcpy(&pit->pit_state.channels, &ps->channels,
5309 	       sizeof(pit->pit_state.channels));
5310 	pit->pit_state.flags = ps->flags;
5311 	for (i = 0; i < 3; i++)
5312 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5313 				   start && i == 0);
5314 	mutex_unlock(&pit->pit_state.lock);
5315 	return 0;
5316 }
5317 
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)5318 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5319 				 struct kvm_reinject_control *control)
5320 {
5321 	struct kvm_pit *pit = kvm->arch.vpit;
5322 
5323 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
5324 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5325 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5326 	 */
5327 	mutex_lock(&pit->pit_state.lock);
5328 	kvm_pit_set_reinject(pit, control->pit_reinject);
5329 	mutex_unlock(&pit->pit_state.lock);
5330 
5331 	return 0;
5332 }
5333 
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)5334 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5335 {
5336 	/*
5337 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
5338 	 */
5339 	if (kvm_x86_ops.flush_log_dirty)
5340 		kvm_x86_ops.flush_log_dirty(kvm);
5341 }
5342 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)5343 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5344 			bool line_status)
5345 {
5346 	if (!irqchip_in_kernel(kvm))
5347 		return -ENXIO;
5348 
5349 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5350 					irq_event->irq, irq_event->level,
5351 					line_status);
5352 	return 0;
5353 }
5354 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)5355 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5356 			    struct kvm_enable_cap *cap)
5357 {
5358 	int r;
5359 
5360 	if (cap->flags)
5361 		return -EINVAL;
5362 
5363 	switch (cap->cap) {
5364 	case KVM_CAP_DISABLE_QUIRKS:
5365 		kvm->arch.disabled_quirks = cap->args[0];
5366 		r = 0;
5367 		break;
5368 	case KVM_CAP_SPLIT_IRQCHIP: {
5369 		mutex_lock(&kvm->lock);
5370 		r = -EINVAL;
5371 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5372 			goto split_irqchip_unlock;
5373 		r = -EEXIST;
5374 		if (irqchip_in_kernel(kvm))
5375 			goto split_irqchip_unlock;
5376 		if (kvm->created_vcpus)
5377 			goto split_irqchip_unlock;
5378 		r = kvm_setup_empty_irq_routing(kvm);
5379 		if (r)
5380 			goto split_irqchip_unlock;
5381 		/* Pairs with irqchip_in_kernel. */
5382 		smp_wmb();
5383 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5384 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5385 		r = 0;
5386 split_irqchip_unlock:
5387 		mutex_unlock(&kvm->lock);
5388 		break;
5389 	}
5390 	case KVM_CAP_X2APIC_API:
5391 		r = -EINVAL;
5392 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5393 			break;
5394 
5395 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5396 			kvm->arch.x2apic_format = true;
5397 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5398 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
5399 
5400 		r = 0;
5401 		break;
5402 	case KVM_CAP_X86_DISABLE_EXITS:
5403 		r = -EINVAL;
5404 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5405 			break;
5406 
5407 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5408 			kvm_can_mwait_in_guest())
5409 			kvm->arch.mwait_in_guest = true;
5410 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5411 			kvm->arch.hlt_in_guest = true;
5412 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5413 			kvm->arch.pause_in_guest = true;
5414 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5415 			kvm->arch.cstate_in_guest = true;
5416 		r = 0;
5417 		break;
5418 	case KVM_CAP_MSR_PLATFORM_INFO:
5419 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5420 		r = 0;
5421 		break;
5422 	case KVM_CAP_EXCEPTION_PAYLOAD:
5423 		kvm->arch.exception_payload_enabled = cap->args[0];
5424 		r = 0;
5425 		break;
5426 	case KVM_CAP_X86_USER_SPACE_MSR:
5427 		r = -EINVAL;
5428 		if (cap->args[0] & ~(KVM_MSR_EXIT_REASON_INVAL |
5429 				     KVM_MSR_EXIT_REASON_UNKNOWN |
5430 				     KVM_MSR_EXIT_REASON_FILTER))
5431 			break;
5432 		kvm->arch.user_space_msr_mask = cap->args[0];
5433 		r = 0;
5434 		break;
5435 	default:
5436 		r = -EINVAL;
5437 		break;
5438 	}
5439 	return r;
5440 }
5441 
kvm_alloc_msr_filter(bool default_allow)5442 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5443 {
5444 	struct kvm_x86_msr_filter *msr_filter;
5445 
5446 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5447 	if (!msr_filter)
5448 		return NULL;
5449 
5450 	msr_filter->default_allow = default_allow;
5451 	return msr_filter;
5452 }
5453 
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)5454 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5455 {
5456 	u32 i;
5457 
5458 	if (!msr_filter)
5459 		return;
5460 
5461 	for (i = 0; i < msr_filter->count; i++)
5462 		kfree(msr_filter->ranges[i].bitmap);
5463 
5464 	kfree(msr_filter);
5465 }
5466 
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)5467 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5468 			      struct kvm_msr_filter_range *user_range)
5469 {
5470 	struct msr_bitmap_range range;
5471 	unsigned long *bitmap = NULL;
5472 	size_t bitmap_size;
5473 	int r;
5474 
5475 	if (!user_range->nmsrs)
5476 		return 0;
5477 
5478 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5479 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5480 		return -EINVAL;
5481 
5482 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5483 	if (IS_ERR(bitmap))
5484 		return PTR_ERR(bitmap);
5485 
5486 	range = (struct msr_bitmap_range) {
5487 		.flags = user_range->flags,
5488 		.base = user_range->base,
5489 		.nmsrs = user_range->nmsrs,
5490 		.bitmap = bitmap,
5491 	};
5492 
5493 	if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
5494 		r = -EINVAL;
5495 		goto err;
5496 	}
5497 
5498 	if (!range.flags) {
5499 		r = -EINVAL;
5500 		goto err;
5501 	}
5502 
5503 	/* Everything ok, add this range identifier. */
5504 	msr_filter->ranges[msr_filter->count] = range;
5505 	msr_filter->count++;
5506 
5507 	return 0;
5508 err:
5509 	kfree(bitmap);
5510 	return r;
5511 }
5512 
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)5513 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
5514 				       struct kvm_msr_filter *filter)
5515 {
5516 	struct kvm_x86_msr_filter *new_filter, *old_filter;
5517 	bool default_allow;
5518 	bool empty = true;
5519 	int r = 0;
5520 	u32 i;
5521 
5522 	if (filter->flags & ~KVM_MSR_FILTER_DEFAULT_DENY)
5523 		return -EINVAL;
5524 
5525 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
5526 		empty &= !filter->ranges[i].nmsrs;
5527 
5528 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
5529 	if (empty && !default_allow)
5530 		return -EINVAL;
5531 
5532 	new_filter = kvm_alloc_msr_filter(default_allow);
5533 	if (!new_filter)
5534 		return -ENOMEM;
5535 
5536 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
5537 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
5538 		if (r) {
5539 			kvm_free_msr_filter(new_filter);
5540 			return r;
5541 		}
5542 	}
5543 
5544 	mutex_lock(&kvm->lock);
5545 
5546 	/* The per-VM filter is protected by kvm->lock... */
5547 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5548 
5549 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5550 	synchronize_srcu(&kvm->srcu);
5551 
5552 	kvm_free_msr_filter(old_filter);
5553 
5554 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5555 	mutex_unlock(&kvm->lock);
5556 
5557 	return 0;
5558 }
5559 
5560 #ifdef CONFIG_KVM_COMPAT
5561 /* for KVM_X86_SET_MSR_FILTER */
5562 struct kvm_msr_filter_range_compat {
5563 	__u32 flags;
5564 	__u32 nmsrs;
5565 	__u32 base;
5566 	__u32 bitmap;
5567 };
5568 
5569 struct kvm_msr_filter_compat {
5570 	__u32 flags;
5571 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
5572 };
5573 
5574 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
5575 
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5576 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5577 			      unsigned long arg)
5578 {
5579 	void __user *argp = (void __user *)arg;
5580 	struct kvm *kvm = filp->private_data;
5581 	long r = -ENOTTY;
5582 
5583 	switch (ioctl) {
5584 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
5585 		struct kvm_msr_filter __user *user_msr_filter = argp;
5586 		struct kvm_msr_filter_compat filter_compat;
5587 		struct kvm_msr_filter filter;
5588 		int i;
5589 
5590 		if (copy_from_user(&filter_compat, user_msr_filter,
5591 				   sizeof(filter_compat)))
5592 			return -EFAULT;
5593 
5594 		filter.flags = filter_compat.flags;
5595 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5596 			struct kvm_msr_filter_range_compat *cr;
5597 
5598 			cr = &filter_compat.ranges[i];
5599 			filter.ranges[i] = (struct kvm_msr_filter_range) {
5600 				.flags = cr->flags,
5601 				.nmsrs = cr->nmsrs,
5602 				.base = cr->base,
5603 				.bitmap = (__u8 *)(ulong)cr->bitmap,
5604 			};
5605 		}
5606 
5607 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
5608 		break;
5609 	}
5610 	}
5611 
5612 	return r;
5613 }
5614 #endif
5615 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5616 long kvm_arch_vm_ioctl(struct file *filp,
5617 		       unsigned int ioctl, unsigned long arg)
5618 {
5619 	struct kvm *kvm = filp->private_data;
5620 	void __user *argp = (void __user *)arg;
5621 	int r = -ENOTTY;
5622 	/*
5623 	 * This union makes it completely explicit to gcc-3.x
5624 	 * that these two variables' stack usage should be
5625 	 * combined, not added together.
5626 	 */
5627 	union {
5628 		struct kvm_pit_state ps;
5629 		struct kvm_pit_state2 ps2;
5630 		struct kvm_pit_config pit_config;
5631 	} u;
5632 
5633 	switch (ioctl) {
5634 	case KVM_SET_TSS_ADDR:
5635 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5636 		break;
5637 	case KVM_SET_IDENTITY_MAP_ADDR: {
5638 		u64 ident_addr;
5639 
5640 		mutex_lock(&kvm->lock);
5641 		r = -EINVAL;
5642 		if (kvm->created_vcpus)
5643 			goto set_identity_unlock;
5644 		r = -EFAULT;
5645 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5646 			goto set_identity_unlock;
5647 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5648 set_identity_unlock:
5649 		mutex_unlock(&kvm->lock);
5650 		break;
5651 	}
5652 	case KVM_SET_NR_MMU_PAGES:
5653 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5654 		break;
5655 	case KVM_GET_NR_MMU_PAGES:
5656 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5657 		break;
5658 	case KVM_CREATE_IRQCHIP: {
5659 		mutex_lock(&kvm->lock);
5660 
5661 		r = -EEXIST;
5662 		if (irqchip_in_kernel(kvm))
5663 			goto create_irqchip_unlock;
5664 
5665 		r = -EINVAL;
5666 		if (kvm->created_vcpus)
5667 			goto create_irqchip_unlock;
5668 
5669 		r = kvm_pic_init(kvm);
5670 		if (r)
5671 			goto create_irqchip_unlock;
5672 
5673 		r = kvm_ioapic_init(kvm);
5674 		if (r) {
5675 			kvm_pic_destroy(kvm);
5676 			goto create_irqchip_unlock;
5677 		}
5678 
5679 		r = kvm_setup_default_irq_routing(kvm);
5680 		if (r) {
5681 			kvm_ioapic_destroy(kvm);
5682 			kvm_pic_destroy(kvm);
5683 			goto create_irqchip_unlock;
5684 		}
5685 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5686 		smp_wmb();
5687 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5688 	create_irqchip_unlock:
5689 		mutex_unlock(&kvm->lock);
5690 		break;
5691 	}
5692 	case KVM_CREATE_PIT:
5693 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5694 		goto create_pit;
5695 	case KVM_CREATE_PIT2:
5696 		r = -EFAULT;
5697 		if (copy_from_user(&u.pit_config, argp,
5698 				   sizeof(struct kvm_pit_config)))
5699 			goto out;
5700 	create_pit:
5701 		mutex_lock(&kvm->lock);
5702 		r = -EEXIST;
5703 		if (kvm->arch.vpit)
5704 			goto create_pit_unlock;
5705 		r = -ENOMEM;
5706 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5707 		if (kvm->arch.vpit)
5708 			r = 0;
5709 	create_pit_unlock:
5710 		mutex_unlock(&kvm->lock);
5711 		break;
5712 	case KVM_GET_IRQCHIP: {
5713 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5714 		struct kvm_irqchip *chip;
5715 
5716 		chip = memdup_user(argp, sizeof(*chip));
5717 		if (IS_ERR(chip)) {
5718 			r = PTR_ERR(chip);
5719 			goto out;
5720 		}
5721 
5722 		r = -ENXIO;
5723 		if (!irqchip_kernel(kvm))
5724 			goto get_irqchip_out;
5725 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5726 		if (r)
5727 			goto get_irqchip_out;
5728 		r = -EFAULT;
5729 		if (copy_to_user(argp, chip, sizeof(*chip)))
5730 			goto get_irqchip_out;
5731 		r = 0;
5732 	get_irqchip_out:
5733 		kfree(chip);
5734 		break;
5735 	}
5736 	case KVM_SET_IRQCHIP: {
5737 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5738 		struct kvm_irqchip *chip;
5739 
5740 		chip = memdup_user(argp, sizeof(*chip));
5741 		if (IS_ERR(chip)) {
5742 			r = PTR_ERR(chip);
5743 			goto out;
5744 		}
5745 
5746 		r = -ENXIO;
5747 		if (!irqchip_kernel(kvm))
5748 			goto set_irqchip_out;
5749 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5750 	set_irqchip_out:
5751 		kfree(chip);
5752 		break;
5753 	}
5754 	case KVM_GET_PIT: {
5755 		r = -EFAULT;
5756 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5757 			goto out;
5758 		r = -ENXIO;
5759 		if (!kvm->arch.vpit)
5760 			goto out;
5761 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5762 		if (r)
5763 			goto out;
5764 		r = -EFAULT;
5765 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5766 			goto out;
5767 		r = 0;
5768 		break;
5769 	}
5770 	case KVM_SET_PIT: {
5771 		r = -EFAULT;
5772 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5773 			goto out;
5774 		mutex_lock(&kvm->lock);
5775 		r = -ENXIO;
5776 		if (!kvm->arch.vpit)
5777 			goto set_pit_out;
5778 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5779 set_pit_out:
5780 		mutex_unlock(&kvm->lock);
5781 		break;
5782 	}
5783 	case KVM_GET_PIT2: {
5784 		r = -ENXIO;
5785 		if (!kvm->arch.vpit)
5786 			goto out;
5787 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5788 		if (r)
5789 			goto out;
5790 		r = -EFAULT;
5791 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5792 			goto out;
5793 		r = 0;
5794 		break;
5795 	}
5796 	case KVM_SET_PIT2: {
5797 		r = -EFAULT;
5798 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5799 			goto out;
5800 		mutex_lock(&kvm->lock);
5801 		r = -ENXIO;
5802 		if (!kvm->arch.vpit)
5803 			goto set_pit2_out;
5804 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5805 set_pit2_out:
5806 		mutex_unlock(&kvm->lock);
5807 		break;
5808 	}
5809 	case KVM_REINJECT_CONTROL: {
5810 		struct kvm_reinject_control control;
5811 		r =  -EFAULT;
5812 		if (copy_from_user(&control, argp, sizeof(control)))
5813 			goto out;
5814 		r = -ENXIO;
5815 		if (!kvm->arch.vpit)
5816 			goto out;
5817 		r = kvm_vm_ioctl_reinject(kvm, &control);
5818 		break;
5819 	}
5820 	case KVM_SET_BOOT_CPU_ID:
5821 		r = 0;
5822 		mutex_lock(&kvm->lock);
5823 		if (kvm->created_vcpus)
5824 			r = -EBUSY;
5825 		else
5826 			kvm->arch.bsp_vcpu_id = arg;
5827 		mutex_unlock(&kvm->lock);
5828 		break;
5829 	case KVM_XEN_HVM_CONFIG: {
5830 		struct kvm_xen_hvm_config xhc;
5831 		r = -EFAULT;
5832 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
5833 			goto out;
5834 		r = -EINVAL;
5835 		if (xhc.flags)
5836 			goto out;
5837 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5838 		r = 0;
5839 		break;
5840 	}
5841 	case KVM_SET_CLOCK: {
5842 		struct kvm_clock_data user_ns;
5843 		u64 now_ns;
5844 
5845 		r = -EFAULT;
5846 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5847 			goto out;
5848 
5849 		r = -EINVAL;
5850 		if (user_ns.flags)
5851 			goto out;
5852 
5853 		r = 0;
5854 		/*
5855 		 * TODO: userspace has to take care of races with VCPU_RUN, so
5856 		 * kvm_gen_update_masterclock() can be cut down to locked
5857 		 * pvclock_update_vm_gtod_copy().
5858 		 */
5859 		kvm_gen_update_masterclock(kvm);
5860 		now_ns = get_kvmclock_ns(kvm);
5861 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5862 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5863 		break;
5864 	}
5865 	case KVM_GET_CLOCK: {
5866 		struct kvm_clock_data user_ns;
5867 		u64 now_ns;
5868 
5869 		now_ns = get_kvmclock_ns(kvm);
5870 		user_ns.clock = now_ns;
5871 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5872 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5873 
5874 		r = -EFAULT;
5875 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5876 			goto out;
5877 		r = 0;
5878 		break;
5879 	}
5880 	case KVM_MEMORY_ENCRYPT_OP: {
5881 		r = -ENOTTY;
5882 		if (kvm_x86_ops.mem_enc_op)
5883 			r = kvm_x86_ops.mem_enc_op(kvm, argp);
5884 		break;
5885 	}
5886 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
5887 		struct kvm_enc_region region;
5888 
5889 		r = -EFAULT;
5890 		if (copy_from_user(&region, argp, sizeof(region)))
5891 			goto out;
5892 
5893 		r = -ENOTTY;
5894 		if (kvm_x86_ops.mem_enc_reg_region)
5895 			r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
5896 		break;
5897 	}
5898 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5899 		struct kvm_enc_region region;
5900 
5901 		r = -EFAULT;
5902 		if (copy_from_user(&region, argp, sizeof(region)))
5903 			goto out;
5904 
5905 		r = -ENOTTY;
5906 		if (kvm_x86_ops.mem_enc_unreg_region)
5907 			r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
5908 		break;
5909 	}
5910 	case KVM_HYPERV_EVENTFD: {
5911 		struct kvm_hyperv_eventfd hvevfd;
5912 
5913 		r = -EFAULT;
5914 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5915 			goto out;
5916 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5917 		break;
5918 	}
5919 	case KVM_SET_PMU_EVENT_FILTER:
5920 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5921 		break;
5922 	case KVM_X86_SET_MSR_FILTER: {
5923 		struct kvm_msr_filter __user *user_msr_filter = argp;
5924 		struct kvm_msr_filter filter;
5925 
5926 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5927 			return -EFAULT;
5928 
5929 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
5930 		break;
5931 	}
5932 	default:
5933 		r = -ENOTTY;
5934 	}
5935 out:
5936 	return r;
5937 }
5938 
kvm_init_msr_list(void)5939 static void kvm_init_msr_list(void)
5940 {
5941 	struct x86_pmu_capability x86_pmu;
5942 	u32 dummy[2];
5943 	unsigned i;
5944 
5945 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5946 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
5947 
5948 	perf_get_x86_pmu_capability(&x86_pmu);
5949 
5950 	num_msrs_to_save = 0;
5951 	num_emulated_msrs = 0;
5952 	num_msr_based_features = 0;
5953 
5954 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5955 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5956 			continue;
5957 
5958 		/*
5959 		 * Even MSRs that are valid in the host may not be exposed
5960 		 * to the guests in some cases.
5961 		 */
5962 		switch (msrs_to_save_all[i]) {
5963 		case MSR_IA32_BNDCFGS:
5964 			if (!kvm_mpx_supported())
5965 				continue;
5966 			break;
5967 		case MSR_TSC_AUX:
5968 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5969 				continue;
5970 			break;
5971 		case MSR_IA32_UMWAIT_CONTROL:
5972 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5973 				continue;
5974 			break;
5975 		case MSR_IA32_RTIT_CTL:
5976 		case MSR_IA32_RTIT_STATUS:
5977 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5978 				continue;
5979 			break;
5980 		case MSR_IA32_RTIT_CR3_MATCH:
5981 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5982 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5983 				continue;
5984 			break;
5985 		case MSR_IA32_RTIT_OUTPUT_BASE:
5986 		case MSR_IA32_RTIT_OUTPUT_MASK:
5987 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5988 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5989 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5990 				continue;
5991 			break;
5992 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5993 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5994 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5995 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5996 				continue;
5997 			break;
5998 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5999 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6000 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6001 				continue;
6002 			break;
6003 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6004 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6005 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6006 				continue;
6007 			break;
6008 		default:
6009 			break;
6010 		}
6011 
6012 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6013 	}
6014 
6015 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6016 		if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
6017 			continue;
6018 
6019 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6020 	}
6021 
6022 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6023 		struct kvm_msr_entry msr;
6024 
6025 		msr.index = msr_based_features_all[i];
6026 		if (kvm_get_msr_feature(&msr))
6027 			continue;
6028 
6029 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6030 	}
6031 }
6032 
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)6033 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6034 			   const void *v)
6035 {
6036 	int handled = 0;
6037 	int n;
6038 
6039 	do {
6040 		n = min(len, 8);
6041 		if (!(lapic_in_kernel(vcpu) &&
6042 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6043 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6044 			break;
6045 		handled += n;
6046 		addr += n;
6047 		len -= n;
6048 		v += n;
6049 	} while (len);
6050 
6051 	return handled;
6052 }
6053 
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)6054 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6055 {
6056 	int handled = 0;
6057 	int n;
6058 
6059 	do {
6060 		n = min(len, 8);
6061 		if (!(lapic_in_kernel(vcpu) &&
6062 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6063 					 addr, n, v))
6064 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6065 			break;
6066 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6067 		handled += n;
6068 		addr += n;
6069 		len -= n;
6070 		v += n;
6071 	} while (len);
6072 
6073 	return handled;
6074 }
6075 
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)6076 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6077 			struct kvm_segment *var, int seg)
6078 {
6079 	kvm_x86_ops.set_segment(vcpu, var, seg);
6080 }
6081 
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)6082 void kvm_get_segment(struct kvm_vcpu *vcpu,
6083 		     struct kvm_segment *var, int seg)
6084 {
6085 	kvm_x86_ops.get_segment(vcpu, var, seg);
6086 }
6087 
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access,struct x86_exception * exception)6088 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6089 			   struct x86_exception *exception)
6090 {
6091 	gpa_t t_gpa;
6092 
6093 	BUG_ON(!mmu_is_nested(vcpu));
6094 
6095 	/* NPT walks are always user-walks */
6096 	access |= PFERR_USER_MASK;
6097 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6098 
6099 	return t_gpa;
6100 }
6101 
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)6102 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6103 			      struct x86_exception *exception)
6104 {
6105 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6106 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6107 }
6108 
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)6109  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6110 				struct x86_exception *exception)
6111 {
6112 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6113 	access |= PFERR_FETCH_MASK;
6114 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6115 }
6116 
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)6117 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6118 			       struct x86_exception *exception)
6119 {
6120 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6121 	access |= PFERR_WRITE_MASK;
6122 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6123 }
6124 
6125 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)6126 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6127 				struct x86_exception *exception)
6128 {
6129 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6130 }
6131 
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)6132 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6133 				      struct kvm_vcpu *vcpu, u32 access,
6134 				      struct x86_exception *exception)
6135 {
6136 	void *data = val;
6137 	int r = X86EMUL_CONTINUE;
6138 
6139 	while (bytes) {
6140 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6141 							    exception);
6142 		unsigned offset = addr & (PAGE_SIZE-1);
6143 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6144 		int ret;
6145 
6146 		if (gpa == UNMAPPED_GVA)
6147 			return X86EMUL_PROPAGATE_FAULT;
6148 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6149 					       offset, toread);
6150 		if (ret < 0) {
6151 			r = X86EMUL_IO_NEEDED;
6152 			goto out;
6153 		}
6154 
6155 		bytes -= toread;
6156 		data += toread;
6157 		addr += toread;
6158 	}
6159 out:
6160 	return r;
6161 }
6162 
6163 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)6164 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6165 				gva_t addr, void *val, unsigned int bytes,
6166 				struct x86_exception *exception)
6167 {
6168 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6169 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6170 	unsigned offset;
6171 	int ret;
6172 
6173 	/* Inline kvm_read_guest_virt_helper for speed.  */
6174 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6175 						    exception);
6176 	if (unlikely(gpa == UNMAPPED_GVA))
6177 		return X86EMUL_PROPAGATE_FAULT;
6178 
6179 	offset = addr & (PAGE_SIZE-1);
6180 	if (WARN_ON(offset + bytes > PAGE_SIZE))
6181 		bytes = (unsigned)PAGE_SIZE - offset;
6182 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6183 				       offset, bytes);
6184 	if (unlikely(ret < 0))
6185 		return X86EMUL_IO_NEEDED;
6186 
6187 	return X86EMUL_CONTINUE;
6188 }
6189 
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)6190 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6191 			       gva_t addr, void *val, unsigned int bytes,
6192 			       struct x86_exception *exception)
6193 {
6194 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
6195 
6196 	/*
6197 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6198 	 * is returned, but our callers are not ready for that and they blindly
6199 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
6200 	 * uninitialized kernel stack memory into cr2 and error code.
6201 	 */
6202 	memset(exception, 0, sizeof(*exception));
6203 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6204 					  exception);
6205 }
6206 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6207 
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)6208 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6209 			     gva_t addr, void *val, unsigned int bytes,
6210 			     struct x86_exception *exception, bool system)
6211 {
6212 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6213 	u32 access = 0;
6214 
6215 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
6216 		access |= PFERR_USER_MASK;
6217 
6218 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6219 }
6220 
kvm_read_guest_phys_system(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes)6221 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6222 		unsigned long addr, void *val, unsigned int bytes)
6223 {
6224 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6225 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6226 
6227 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6228 }
6229 
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)6230 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6231 				      struct kvm_vcpu *vcpu, u32 access,
6232 				      struct x86_exception *exception)
6233 {
6234 	void *data = val;
6235 	int r = X86EMUL_CONTINUE;
6236 
6237 	while (bytes) {
6238 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6239 							     access,
6240 							     exception);
6241 		unsigned offset = addr & (PAGE_SIZE-1);
6242 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6243 		int ret;
6244 
6245 		if (gpa == UNMAPPED_GVA)
6246 			return X86EMUL_PROPAGATE_FAULT;
6247 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6248 		if (ret < 0) {
6249 			r = X86EMUL_IO_NEEDED;
6250 			goto out;
6251 		}
6252 
6253 		bytes -= towrite;
6254 		data += towrite;
6255 		addr += towrite;
6256 	}
6257 out:
6258 	return r;
6259 }
6260 
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)6261 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6262 			      unsigned int bytes, struct x86_exception *exception,
6263 			      bool system)
6264 {
6265 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6266 	u32 access = PFERR_WRITE_MASK;
6267 
6268 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
6269 		access |= PFERR_USER_MASK;
6270 
6271 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6272 					   access, exception);
6273 }
6274 
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)6275 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6276 				unsigned int bytes, struct x86_exception *exception)
6277 {
6278 	/* kvm_write_guest_virt_system can pull in tons of pages. */
6279 	vcpu->arch.l1tf_flush_l1d = true;
6280 
6281 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6282 					   PFERR_WRITE_MASK, exception);
6283 }
6284 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6285 
handle_ud(struct kvm_vcpu * vcpu)6286 int handle_ud(struct kvm_vcpu *vcpu)
6287 {
6288 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6289 	int emul_type = EMULTYPE_TRAP_UD;
6290 	char sig[5]; /* ud2; .ascii "kvm" */
6291 	struct x86_exception e;
6292 
6293 	if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, NULL, 0)))
6294 		return 1;
6295 
6296 	if (force_emulation_prefix &&
6297 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6298 				sig, sizeof(sig), &e) == 0 &&
6299 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6300 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6301 		emul_type = EMULTYPE_TRAP_UD_FORCED;
6302 	}
6303 
6304 	return kvm_emulate_instruction(vcpu, emul_type);
6305 }
6306 EXPORT_SYMBOL_GPL(handle_ud);
6307 
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)6308 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6309 			    gpa_t gpa, bool write)
6310 {
6311 	/* For APIC access vmexit */
6312 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6313 		return 1;
6314 
6315 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6316 		trace_vcpu_match_mmio(gva, gpa, write, true);
6317 		return 1;
6318 	}
6319 
6320 	return 0;
6321 }
6322 
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)6323 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6324 				gpa_t *gpa, struct x86_exception *exception,
6325 				bool write)
6326 {
6327 	u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
6328 		| (write ? PFERR_WRITE_MASK : 0);
6329 
6330 	/*
6331 	 * currently PKRU is only applied to ept enabled guest so
6332 	 * there is no pkey in EPT page table for L1 guest or EPT
6333 	 * shadow page table for L2 guest.
6334 	 */
6335 	if (vcpu_match_mmio_gva(vcpu, gva)
6336 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6337 				 vcpu->arch.mmio_access, 0, access)) {
6338 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6339 					(gva & (PAGE_SIZE - 1));
6340 		trace_vcpu_match_mmio(gva, *gpa, write, false);
6341 		return 1;
6342 	}
6343 
6344 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6345 
6346 	if (*gpa == UNMAPPED_GVA)
6347 		return -1;
6348 
6349 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6350 }
6351 
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)6352 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6353 			const void *val, int bytes)
6354 {
6355 	int ret;
6356 
6357 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6358 	if (ret < 0)
6359 		return 0;
6360 	kvm_page_track_write(vcpu, gpa, val, bytes);
6361 	return 1;
6362 }
6363 
6364 struct read_write_emulator_ops {
6365 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6366 				  int bytes);
6367 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6368 				  void *val, int bytes);
6369 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6370 			       int bytes, void *val);
6371 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6372 				    void *val, int bytes);
6373 	bool write;
6374 };
6375 
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)6376 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6377 {
6378 	if (vcpu->mmio_read_completed) {
6379 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6380 			       vcpu->mmio_fragments[0].gpa, val);
6381 		vcpu->mmio_read_completed = 0;
6382 		return 1;
6383 	}
6384 
6385 	return 0;
6386 }
6387 
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6388 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6389 			void *val, int bytes)
6390 {
6391 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6392 }
6393 
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6394 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6395 			 void *val, int bytes)
6396 {
6397 	return emulator_write_phys(vcpu, gpa, val, bytes);
6398 }
6399 
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)6400 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6401 {
6402 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6403 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
6404 }
6405 
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6406 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6407 			  void *val, int bytes)
6408 {
6409 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6410 	return X86EMUL_IO_NEEDED;
6411 }
6412 
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6413 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6414 			   void *val, int bytes)
6415 {
6416 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6417 
6418 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6419 	return X86EMUL_CONTINUE;
6420 }
6421 
6422 static const struct read_write_emulator_ops read_emultor = {
6423 	.read_write_prepare = read_prepare,
6424 	.read_write_emulate = read_emulate,
6425 	.read_write_mmio = vcpu_mmio_read,
6426 	.read_write_exit_mmio = read_exit_mmio,
6427 };
6428 
6429 static const struct read_write_emulator_ops write_emultor = {
6430 	.read_write_emulate = write_emulate,
6431 	.read_write_mmio = write_mmio,
6432 	.read_write_exit_mmio = write_exit_mmio,
6433 	.write = true,
6434 };
6435 
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)6436 static int emulator_read_write_onepage(unsigned long addr, void *val,
6437 				       unsigned int bytes,
6438 				       struct x86_exception *exception,
6439 				       struct kvm_vcpu *vcpu,
6440 				       const struct read_write_emulator_ops *ops)
6441 {
6442 	gpa_t gpa;
6443 	int handled, ret;
6444 	bool write = ops->write;
6445 	struct kvm_mmio_fragment *frag;
6446 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6447 
6448 	/*
6449 	 * If the exit was due to a NPF we may already have a GPA.
6450 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6451 	 * Note, this cannot be used on string operations since string
6452 	 * operation using rep will only have the initial GPA from the NPF
6453 	 * occurred.
6454 	 */
6455 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6456 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6457 		gpa = ctxt->gpa_val;
6458 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6459 	} else {
6460 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6461 		if (ret < 0)
6462 			return X86EMUL_PROPAGATE_FAULT;
6463 	}
6464 
6465 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6466 		return X86EMUL_CONTINUE;
6467 
6468 	/*
6469 	 * Is this MMIO handled locally?
6470 	 */
6471 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6472 	if (handled == bytes)
6473 		return X86EMUL_CONTINUE;
6474 
6475 	gpa += handled;
6476 	bytes -= handled;
6477 	val += handled;
6478 
6479 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6480 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6481 	frag->gpa = gpa;
6482 	frag->data = val;
6483 	frag->len = bytes;
6484 	return X86EMUL_CONTINUE;
6485 }
6486 
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)6487 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6488 			unsigned long addr,
6489 			void *val, unsigned int bytes,
6490 			struct x86_exception *exception,
6491 			const struct read_write_emulator_ops *ops)
6492 {
6493 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6494 	gpa_t gpa;
6495 	int rc;
6496 
6497 	if (ops->read_write_prepare &&
6498 		  ops->read_write_prepare(vcpu, val, bytes))
6499 		return X86EMUL_CONTINUE;
6500 
6501 	vcpu->mmio_nr_fragments = 0;
6502 
6503 	/* Crossing a page boundary? */
6504 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6505 		int now;
6506 
6507 		now = -addr & ~PAGE_MASK;
6508 		rc = emulator_read_write_onepage(addr, val, now, exception,
6509 						 vcpu, ops);
6510 
6511 		if (rc != X86EMUL_CONTINUE)
6512 			return rc;
6513 		addr += now;
6514 		if (ctxt->mode != X86EMUL_MODE_PROT64)
6515 			addr = (u32)addr;
6516 		val += now;
6517 		bytes -= now;
6518 	}
6519 
6520 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
6521 					 vcpu, ops);
6522 	if (rc != X86EMUL_CONTINUE)
6523 		return rc;
6524 
6525 	if (!vcpu->mmio_nr_fragments)
6526 		return rc;
6527 
6528 	gpa = vcpu->mmio_fragments[0].gpa;
6529 
6530 	vcpu->mmio_needed = 1;
6531 	vcpu->mmio_cur_fragment = 0;
6532 
6533 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6534 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6535 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
6536 	vcpu->run->mmio.phys_addr = gpa;
6537 
6538 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6539 }
6540 
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)6541 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6542 				  unsigned long addr,
6543 				  void *val,
6544 				  unsigned int bytes,
6545 				  struct x86_exception *exception)
6546 {
6547 	return emulator_read_write(ctxt, addr, val, bytes,
6548 				   exception, &read_emultor);
6549 }
6550 
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)6551 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6552 			    unsigned long addr,
6553 			    const void *val,
6554 			    unsigned int bytes,
6555 			    struct x86_exception *exception)
6556 {
6557 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
6558 				   exception, &write_emultor);
6559 }
6560 
6561 #define CMPXCHG_TYPE(t, ptr, old, new) \
6562 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6563 
6564 #ifdef CONFIG_X86_64
6565 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6566 #else
6567 #  define CMPXCHG64(ptr, old, new) \
6568 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6569 #endif
6570 
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)6571 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6572 				     unsigned long addr,
6573 				     const void *old,
6574 				     const void *new,
6575 				     unsigned int bytes,
6576 				     struct x86_exception *exception)
6577 {
6578 	struct kvm_host_map map;
6579 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6580 	u64 page_line_mask;
6581 	gpa_t gpa;
6582 	char *kaddr;
6583 	bool exchanged;
6584 
6585 	/* guests cmpxchg8b have to be emulated atomically */
6586 	if (bytes > 8 || (bytes & (bytes - 1)))
6587 		goto emul_write;
6588 
6589 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6590 
6591 	if (gpa == UNMAPPED_GVA ||
6592 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6593 		goto emul_write;
6594 
6595 	/*
6596 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
6597 	 * enabled in the host and the access splits a cache line.
6598 	 */
6599 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6600 		page_line_mask = ~(cache_line_size() - 1);
6601 	else
6602 		page_line_mask = PAGE_MASK;
6603 
6604 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6605 		goto emul_write;
6606 
6607 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6608 		goto emul_write;
6609 
6610 	kaddr = map.hva + offset_in_page(gpa);
6611 
6612 	switch (bytes) {
6613 	case 1:
6614 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6615 		break;
6616 	case 2:
6617 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6618 		break;
6619 	case 4:
6620 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6621 		break;
6622 	case 8:
6623 		exchanged = CMPXCHG64(kaddr, old, new);
6624 		break;
6625 	default:
6626 		BUG();
6627 	}
6628 
6629 	kvm_vcpu_unmap(vcpu, &map, true);
6630 
6631 	if (!exchanged)
6632 		return X86EMUL_CMPXCHG_FAILED;
6633 
6634 	kvm_page_track_write(vcpu, gpa, new, bytes);
6635 
6636 	return X86EMUL_CONTINUE;
6637 
6638 emul_write:
6639 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6640 
6641 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6642 }
6643 
kernel_pio(struct kvm_vcpu * vcpu,void * pd)6644 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6645 {
6646 	int r = 0, i;
6647 
6648 	for (i = 0; i < vcpu->arch.pio.count; i++) {
6649 		if (vcpu->arch.pio.in)
6650 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6651 					    vcpu->arch.pio.size, pd);
6652 		else
6653 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6654 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
6655 					     pd);
6656 		if (r)
6657 			break;
6658 		pd += vcpu->arch.pio.size;
6659 	}
6660 	return r;
6661 }
6662 
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count,bool in)6663 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6664 			       unsigned short port, void *val,
6665 			       unsigned int count, bool in)
6666 {
6667 	vcpu->arch.pio.port = port;
6668 	vcpu->arch.pio.in = in;
6669 	vcpu->arch.pio.count  = count;
6670 	vcpu->arch.pio.size = size;
6671 
6672 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6673 		vcpu->arch.pio.count = 0;
6674 		return 1;
6675 	}
6676 
6677 	vcpu->run->exit_reason = KVM_EXIT_IO;
6678 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6679 	vcpu->run->io.size = size;
6680 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6681 	vcpu->run->io.count = count;
6682 	vcpu->run->io.port = port;
6683 
6684 	return 0;
6685 }
6686 
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)6687 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6688 			   unsigned short port, void *val, unsigned int count)
6689 {
6690 	int ret;
6691 
6692 	if (vcpu->arch.pio.count)
6693 		goto data_avail;
6694 
6695 	memset(vcpu->arch.pio_data, 0, size * count);
6696 
6697 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6698 	if (ret) {
6699 data_avail:
6700 		memcpy(val, vcpu->arch.pio_data, size * count);
6701 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6702 		vcpu->arch.pio.count = 0;
6703 		return 1;
6704 	}
6705 
6706 	return 0;
6707 }
6708 
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)6709 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6710 				    int size, unsigned short port, void *val,
6711 				    unsigned int count)
6712 {
6713 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6714 
6715 }
6716 
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)6717 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6718 			    unsigned short port, const void *val,
6719 			    unsigned int count)
6720 {
6721 	memcpy(vcpu->arch.pio_data, val, size * count);
6722 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6723 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6724 }
6725 
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)6726 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6727 				     int size, unsigned short port,
6728 				     const void *val, unsigned int count)
6729 {
6730 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6731 }
6732 
get_segment_base(struct kvm_vcpu * vcpu,int seg)6733 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6734 {
6735 	return kvm_x86_ops.get_segment_base(vcpu, seg);
6736 }
6737 
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)6738 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6739 {
6740 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6741 }
6742 
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)6743 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6744 {
6745 	if (!need_emulate_wbinvd(vcpu))
6746 		return X86EMUL_CONTINUE;
6747 
6748 	if (kvm_x86_ops.has_wbinvd_exit()) {
6749 		int cpu = get_cpu();
6750 
6751 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6752 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6753 				wbinvd_ipi, NULL, 1);
6754 		put_cpu();
6755 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6756 	} else
6757 		wbinvd();
6758 	return X86EMUL_CONTINUE;
6759 }
6760 
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)6761 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6762 {
6763 	kvm_emulate_wbinvd_noskip(vcpu);
6764 	return kvm_skip_emulated_instruction(vcpu);
6765 }
6766 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6767 
6768 
6769 
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)6770 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6771 {
6772 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6773 }
6774 
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)6775 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6776 			   unsigned long *dest)
6777 {
6778 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6779 }
6780 
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)6781 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6782 			   unsigned long value)
6783 {
6784 
6785 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6786 }
6787 
mk_cr_64(u64 curr_cr,u32 new_val)6788 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6789 {
6790 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6791 }
6792 
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)6793 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6794 {
6795 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6796 	unsigned long value;
6797 
6798 	switch (cr) {
6799 	case 0:
6800 		value = kvm_read_cr0(vcpu);
6801 		break;
6802 	case 2:
6803 		value = vcpu->arch.cr2;
6804 		break;
6805 	case 3:
6806 		value = kvm_read_cr3(vcpu);
6807 		break;
6808 	case 4:
6809 		value = kvm_read_cr4(vcpu);
6810 		break;
6811 	case 8:
6812 		value = kvm_get_cr8(vcpu);
6813 		break;
6814 	default:
6815 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6816 		return 0;
6817 	}
6818 
6819 	return value;
6820 }
6821 
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)6822 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6823 {
6824 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6825 	int res = 0;
6826 
6827 	switch (cr) {
6828 	case 0:
6829 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6830 		break;
6831 	case 2:
6832 		vcpu->arch.cr2 = val;
6833 		break;
6834 	case 3:
6835 		res = kvm_set_cr3(vcpu, val);
6836 		break;
6837 	case 4:
6838 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6839 		break;
6840 	case 8:
6841 		res = kvm_set_cr8(vcpu, val);
6842 		break;
6843 	default:
6844 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6845 		res = -1;
6846 	}
6847 
6848 	return res;
6849 }
6850 
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)6851 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6852 {
6853 	return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6854 }
6855 
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6856 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6857 {
6858 	kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6859 }
6860 
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6861 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6862 {
6863 	kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6864 }
6865 
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6866 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6867 {
6868 	kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6869 }
6870 
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6871 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6872 {
6873 	kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6874 }
6875 
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)6876 static unsigned long emulator_get_cached_segment_base(
6877 	struct x86_emulate_ctxt *ctxt, int seg)
6878 {
6879 	return get_segment_base(emul_to_vcpu(ctxt), seg);
6880 }
6881 
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)6882 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6883 				 struct desc_struct *desc, u32 *base3,
6884 				 int seg)
6885 {
6886 	struct kvm_segment var;
6887 
6888 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6889 	*selector = var.selector;
6890 
6891 	if (var.unusable) {
6892 		memset(desc, 0, sizeof(*desc));
6893 		if (base3)
6894 			*base3 = 0;
6895 		return false;
6896 	}
6897 
6898 	if (var.g)
6899 		var.limit >>= 12;
6900 	set_desc_limit(desc, var.limit);
6901 	set_desc_base(desc, (unsigned long)var.base);
6902 #ifdef CONFIG_X86_64
6903 	if (base3)
6904 		*base3 = var.base >> 32;
6905 #endif
6906 	desc->type = var.type;
6907 	desc->s = var.s;
6908 	desc->dpl = var.dpl;
6909 	desc->p = var.present;
6910 	desc->avl = var.avl;
6911 	desc->l = var.l;
6912 	desc->d = var.db;
6913 	desc->g = var.g;
6914 
6915 	return true;
6916 }
6917 
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)6918 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6919 				 struct desc_struct *desc, u32 base3,
6920 				 int seg)
6921 {
6922 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6923 	struct kvm_segment var;
6924 
6925 	var.selector = selector;
6926 	var.base = get_desc_base(desc);
6927 #ifdef CONFIG_X86_64
6928 	var.base |= ((u64)base3) << 32;
6929 #endif
6930 	var.limit = get_desc_limit(desc);
6931 	if (desc->g)
6932 		var.limit = (var.limit << 12) | 0xfff;
6933 	var.type = desc->type;
6934 	var.dpl = desc->dpl;
6935 	var.db = desc->d;
6936 	var.s = desc->s;
6937 	var.l = desc->l;
6938 	var.g = desc->g;
6939 	var.avl = desc->avl;
6940 	var.present = desc->p;
6941 	var.unusable = !var.present;
6942 	var.padding = 0;
6943 
6944 	kvm_set_segment(vcpu, &var, seg);
6945 	return;
6946 }
6947 
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)6948 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6949 			    u32 msr_index, u64 *pdata)
6950 {
6951 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6952 	int r;
6953 
6954 	r = kvm_get_msr(vcpu, msr_index, pdata);
6955 
6956 	if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6957 		/* Bounce to user space */
6958 		return X86EMUL_IO_NEEDED;
6959 	}
6960 
6961 	return r;
6962 }
6963 
emulator_set_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)6964 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6965 			    u32 msr_index, u64 data)
6966 {
6967 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6968 	int r;
6969 
6970 	r = kvm_set_msr(vcpu, msr_index, data);
6971 
6972 	if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6973 		/* Bounce to user space */
6974 		return X86EMUL_IO_NEEDED;
6975 	}
6976 
6977 	return r;
6978 }
6979 
emulator_get_smbase(struct x86_emulate_ctxt * ctxt)6980 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6981 {
6982 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6983 
6984 	return vcpu->arch.smbase;
6985 }
6986 
emulator_set_smbase(struct x86_emulate_ctxt * ctxt,u64 smbase)6987 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6988 {
6989 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6990 
6991 	vcpu->arch.smbase = smbase;
6992 }
6993 
emulator_check_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc)6994 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6995 			      u32 pmc)
6996 {
6997 	return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6998 }
6999 
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)7000 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7001 			     u32 pmc, u64 *pdata)
7002 {
7003 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7004 }
7005 
emulator_halt(struct x86_emulate_ctxt * ctxt)7006 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7007 {
7008 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
7009 }
7010 
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)7011 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7012 			      struct x86_instruction_info *info,
7013 			      enum x86_intercept_stage stage)
7014 {
7015 	return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
7016 					    &ctxt->exception);
7017 }
7018 
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)7019 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7020 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7021 			      bool exact_only)
7022 {
7023 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7024 }
7025 
emulator_guest_has_long_mode(struct x86_emulate_ctxt * ctxt)7026 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7027 {
7028 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7029 }
7030 
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)7031 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7032 {
7033 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7034 }
7035 
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)7036 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7037 {
7038 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7039 }
7040 
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)7041 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
7042 {
7043 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
7044 }
7045 
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)7046 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7047 {
7048 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
7049 }
7050 
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)7051 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7052 {
7053 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
7054 }
7055 
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)7056 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7057 {
7058 	kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
7059 }
7060 
emulator_get_hflags(struct x86_emulate_ctxt * ctxt)7061 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7062 {
7063 	return emul_to_vcpu(ctxt)->arch.hflags;
7064 }
7065 
emulator_set_hflags(struct x86_emulate_ctxt * ctxt,unsigned emul_flags)7066 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
7067 {
7068 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7069 
7070 	vcpu->arch.hflags = emul_flags;
7071 	kvm_mmu_reset_context(vcpu);
7072 }
7073 
emulator_pre_leave_smm(struct x86_emulate_ctxt * ctxt,const char * smstate)7074 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
7075 				  const char *smstate)
7076 {
7077 	return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
7078 }
7079 
emulator_post_leave_smm(struct x86_emulate_ctxt * ctxt)7080 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
7081 {
7082 	kvm_smm_changed(emul_to_vcpu(ctxt));
7083 }
7084 
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)7085 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7086 {
7087 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7088 }
7089 
7090 static const struct x86_emulate_ops emulate_ops = {
7091 	.read_gpr            = emulator_read_gpr,
7092 	.write_gpr           = emulator_write_gpr,
7093 	.read_std            = emulator_read_std,
7094 	.write_std           = emulator_write_std,
7095 	.read_phys           = kvm_read_guest_phys_system,
7096 	.fetch               = kvm_fetch_guest_virt,
7097 	.read_emulated       = emulator_read_emulated,
7098 	.write_emulated      = emulator_write_emulated,
7099 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
7100 	.invlpg              = emulator_invlpg,
7101 	.pio_in_emulated     = emulator_pio_in_emulated,
7102 	.pio_out_emulated    = emulator_pio_out_emulated,
7103 	.get_segment         = emulator_get_segment,
7104 	.set_segment         = emulator_set_segment,
7105 	.get_cached_segment_base = emulator_get_cached_segment_base,
7106 	.get_gdt             = emulator_get_gdt,
7107 	.get_idt	     = emulator_get_idt,
7108 	.set_gdt             = emulator_set_gdt,
7109 	.set_idt	     = emulator_set_idt,
7110 	.get_cr              = emulator_get_cr,
7111 	.set_cr              = emulator_set_cr,
7112 	.cpl                 = emulator_get_cpl,
7113 	.get_dr              = emulator_get_dr,
7114 	.set_dr              = emulator_set_dr,
7115 	.get_smbase          = emulator_get_smbase,
7116 	.set_smbase          = emulator_set_smbase,
7117 	.set_msr             = emulator_set_msr,
7118 	.get_msr             = emulator_get_msr,
7119 	.check_pmc	     = emulator_check_pmc,
7120 	.read_pmc            = emulator_read_pmc,
7121 	.halt                = emulator_halt,
7122 	.wbinvd              = emulator_wbinvd,
7123 	.fix_hypercall       = emulator_fix_hypercall,
7124 	.intercept           = emulator_intercept,
7125 	.get_cpuid           = emulator_get_cpuid,
7126 	.guest_has_long_mode = emulator_guest_has_long_mode,
7127 	.guest_has_movbe     = emulator_guest_has_movbe,
7128 	.guest_has_fxsr      = emulator_guest_has_fxsr,
7129 	.guest_has_rdpid     = emulator_guest_has_rdpid,
7130 	.set_nmi_mask        = emulator_set_nmi_mask,
7131 	.get_hflags          = emulator_get_hflags,
7132 	.set_hflags          = emulator_set_hflags,
7133 	.pre_leave_smm       = emulator_pre_leave_smm,
7134 	.post_leave_smm      = emulator_post_leave_smm,
7135 	.set_xcr             = emulator_set_xcr,
7136 };
7137 
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)7138 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7139 {
7140 	u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
7141 	/*
7142 	 * an sti; sti; sequence only disable interrupts for the first
7143 	 * instruction. So, if the last instruction, be it emulated or
7144 	 * not, left the system with the INT_STI flag enabled, it
7145 	 * means that the last instruction is an sti. We should not
7146 	 * leave the flag on in this case. The same goes for mov ss
7147 	 */
7148 	if (int_shadow & mask)
7149 		mask = 0;
7150 	if (unlikely(int_shadow || mask)) {
7151 		kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
7152 		if (!mask)
7153 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7154 	}
7155 }
7156 
inject_emulated_exception(struct kvm_vcpu * vcpu)7157 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7158 {
7159 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7160 	if (ctxt->exception.vector == PF_VECTOR)
7161 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7162 
7163 	if (ctxt->exception.error_code_valid)
7164 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7165 				      ctxt->exception.error_code);
7166 	else
7167 		kvm_queue_exception(vcpu, ctxt->exception.vector);
7168 	return false;
7169 }
7170 
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)7171 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7172 {
7173 	struct x86_emulate_ctxt *ctxt;
7174 
7175 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7176 	if (!ctxt) {
7177 		pr_err("kvm: failed to allocate vcpu's emulator\n");
7178 		return NULL;
7179 	}
7180 
7181 	ctxt->vcpu = vcpu;
7182 	ctxt->ops = &emulate_ops;
7183 	vcpu->arch.emulate_ctxt = ctxt;
7184 
7185 	return ctxt;
7186 }
7187 
init_emulate_ctxt(struct kvm_vcpu * vcpu)7188 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7189 {
7190 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7191 	int cs_db, cs_l;
7192 
7193 	kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
7194 
7195 	ctxt->gpa_available = false;
7196 	ctxt->eflags = kvm_get_rflags(vcpu);
7197 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7198 
7199 	ctxt->eip = kvm_rip_read(vcpu);
7200 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
7201 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
7202 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
7203 		     cs_db				? X86EMUL_MODE_PROT32 :
7204 							  X86EMUL_MODE_PROT16;
7205 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7206 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7207 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7208 
7209 	ctxt->interruptibility = 0;
7210 	ctxt->have_exception = false;
7211 	ctxt->exception.vector = -1;
7212 	ctxt->perm_ok = false;
7213 
7214 	init_decode_cache(ctxt);
7215 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7216 }
7217 
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)7218 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7219 {
7220 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7221 	int ret;
7222 
7223 	init_emulate_ctxt(vcpu);
7224 
7225 	ctxt->op_bytes = 2;
7226 	ctxt->ad_bytes = 2;
7227 	ctxt->_eip = ctxt->eip + inc_eip;
7228 	ret = emulate_int_real(ctxt, irq);
7229 
7230 	if (ret != X86EMUL_CONTINUE) {
7231 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7232 	} else {
7233 		ctxt->eip = ctxt->_eip;
7234 		kvm_rip_write(vcpu, ctxt->eip);
7235 		kvm_set_rflags(vcpu, ctxt->eflags);
7236 	}
7237 }
7238 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7239 
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)7240 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7241 {
7242 	++vcpu->stat.insn_emulation_fail;
7243 	trace_kvm_emulate_insn_failed(vcpu);
7244 
7245 	if (emulation_type & EMULTYPE_VMWARE_GP) {
7246 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7247 		return 1;
7248 	}
7249 
7250 	if (emulation_type & EMULTYPE_SKIP) {
7251 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7252 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7253 		vcpu->run->internal.ndata = 0;
7254 		return 0;
7255 	}
7256 
7257 	kvm_queue_exception(vcpu, UD_VECTOR);
7258 
7259 	if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
7260 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7261 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7262 		vcpu->run->internal.ndata = 0;
7263 		return 0;
7264 	}
7265 
7266 	return 1;
7267 }
7268 
reexecute_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,bool write_fault_to_shadow_pgtable,int emulation_type)7269 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7270 				  bool write_fault_to_shadow_pgtable,
7271 				  int emulation_type)
7272 {
7273 	gpa_t gpa = cr2_or_gpa;
7274 	kvm_pfn_t pfn;
7275 
7276 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7277 		return false;
7278 
7279 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7280 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7281 		return false;
7282 
7283 	if (!vcpu->arch.mmu->direct_map) {
7284 		/*
7285 		 * Write permission should be allowed since only
7286 		 * write access need to be emulated.
7287 		 */
7288 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7289 
7290 		/*
7291 		 * If the mapping is invalid in guest, let cpu retry
7292 		 * it to generate fault.
7293 		 */
7294 		if (gpa == UNMAPPED_GVA)
7295 			return true;
7296 	}
7297 
7298 	/*
7299 	 * Do not retry the unhandleable instruction if it faults on the
7300 	 * readonly host memory, otherwise it will goto a infinite loop:
7301 	 * retry instruction -> write #PF -> emulation fail -> retry
7302 	 * instruction -> ...
7303 	 */
7304 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7305 
7306 	/*
7307 	 * If the instruction failed on the error pfn, it can not be fixed,
7308 	 * report the error to userspace.
7309 	 */
7310 	if (is_error_noslot_pfn(pfn))
7311 		return false;
7312 
7313 	kvm_release_pfn_clean(pfn);
7314 
7315 	/* The instructions are well-emulated on direct mmu. */
7316 	if (vcpu->arch.mmu->direct_map) {
7317 		unsigned int indirect_shadow_pages;
7318 
7319 		spin_lock(&vcpu->kvm->mmu_lock);
7320 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7321 		spin_unlock(&vcpu->kvm->mmu_lock);
7322 
7323 		if (indirect_shadow_pages)
7324 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7325 
7326 		return true;
7327 	}
7328 
7329 	/*
7330 	 * if emulation was due to access to shadowed page table
7331 	 * and it failed try to unshadow page and re-enter the
7332 	 * guest to let CPU execute the instruction.
7333 	 */
7334 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7335 
7336 	/*
7337 	 * If the access faults on its page table, it can not
7338 	 * be fixed by unprotecting shadow page and it should
7339 	 * be reported to userspace.
7340 	 */
7341 	return !write_fault_to_shadow_pgtable;
7342 }
7343 
retry_instruction(struct x86_emulate_ctxt * ctxt,gpa_t cr2_or_gpa,int emulation_type)7344 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7345 			      gpa_t cr2_or_gpa,  int emulation_type)
7346 {
7347 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7348 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7349 
7350 	last_retry_eip = vcpu->arch.last_retry_eip;
7351 	last_retry_addr = vcpu->arch.last_retry_addr;
7352 
7353 	/*
7354 	 * If the emulation is caused by #PF and it is non-page_table
7355 	 * writing instruction, it means the VM-EXIT is caused by shadow
7356 	 * page protected, we can zap the shadow page and retry this
7357 	 * instruction directly.
7358 	 *
7359 	 * Note: if the guest uses a non-page-table modifying instruction
7360 	 * on the PDE that points to the instruction, then we will unmap
7361 	 * the instruction and go to an infinite loop. So, we cache the
7362 	 * last retried eip and the last fault address, if we meet the eip
7363 	 * and the address again, we can break out of the potential infinite
7364 	 * loop.
7365 	 */
7366 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7367 
7368 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7369 		return false;
7370 
7371 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7372 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7373 		return false;
7374 
7375 	if (x86_page_table_writing_insn(ctxt))
7376 		return false;
7377 
7378 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7379 		return false;
7380 
7381 	vcpu->arch.last_retry_eip = ctxt->eip;
7382 	vcpu->arch.last_retry_addr = cr2_or_gpa;
7383 
7384 	if (!vcpu->arch.mmu->direct_map)
7385 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7386 
7387 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7388 
7389 	return true;
7390 }
7391 
7392 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7393 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7394 
kvm_smm_changed(struct kvm_vcpu * vcpu)7395 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7396 {
7397 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7398 		/* This is a good place to trace that we are exiting SMM.  */
7399 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7400 
7401 		/* Process a latched INIT or SMI, if any.  */
7402 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7403 	}
7404 
7405 	kvm_mmu_reset_context(vcpu);
7406 }
7407 
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)7408 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7409 				unsigned long *db)
7410 {
7411 	u32 dr6 = 0;
7412 	int i;
7413 	u32 enable, rwlen;
7414 
7415 	enable = dr7;
7416 	rwlen = dr7 >> 16;
7417 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7418 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7419 			dr6 |= (1 << i);
7420 	return dr6;
7421 }
7422 
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)7423 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7424 {
7425 	struct kvm_run *kvm_run = vcpu->run;
7426 
7427 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7428 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
7429 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7430 		kvm_run->debug.arch.exception = DB_VECTOR;
7431 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
7432 		return 0;
7433 	}
7434 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7435 	return 1;
7436 }
7437 
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)7438 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7439 {
7440 	unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7441 	int r;
7442 
7443 	r = kvm_x86_ops.skip_emulated_instruction(vcpu);
7444 	if (unlikely(!r))
7445 		return 0;
7446 
7447 	/*
7448 	 * rflags is the old, "raw" value of the flags.  The new value has
7449 	 * not been saved yet.
7450 	 *
7451 	 * This is correct even for TF set by the guest, because "the
7452 	 * processor will not generate this exception after the instruction
7453 	 * that sets the TF flag".
7454 	 */
7455 	if (unlikely(rflags & X86_EFLAGS_TF))
7456 		r = kvm_vcpu_do_singlestep(vcpu);
7457 	return r;
7458 }
7459 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7460 
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int * r)7461 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r)
7462 {
7463 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7464 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7465 		struct kvm_run *kvm_run = vcpu->run;
7466 		unsigned long eip = kvm_get_linear_rip(vcpu);
7467 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7468 					   vcpu->arch.guest_debug_dr7,
7469 					   vcpu->arch.eff_db);
7470 
7471 		if (dr6 != 0) {
7472 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
7473 			kvm_run->debug.arch.pc = eip;
7474 			kvm_run->debug.arch.exception = DB_VECTOR;
7475 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
7476 			*r = 0;
7477 			return true;
7478 		}
7479 	}
7480 
7481 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7482 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7483 		unsigned long eip = kvm_get_linear_rip(vcpu);
7484 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7485 					   vcpu->arch.dr7,
7486 					   vcpu->arch.db);
7487 
7488 		if (dr6 != 0) {
7489 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7490 			*r = 1;
7491 			return true;
7492 		}
7493 	}
7494 
7495 	return false;
7496 }
7497 
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)7498 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7499 {
7500 	switch (ctxt->opcode_len) {
7501 	case 1:
7502 		switch (ctxt->b) {
7503 		case 0xe4:	/* IN */
7504 		case 0xe5:
7505 		case 0xec:
7506 		case 0xed:
7507 		case 0xe6:	/* OUT */
7508 		case 0xe7:
7509 		case 0xee:
7510 		case 0xef:
7511 		case 0x6c:	/* INS */
7512 		case 0x6d:
7513 		case 0x6e:	/* OUTS */
7514 		case 0x6f:
7515 			return true;
7516 		}
7517 		break;
7518 	case 2:
7519 		switch (ctxt->b) {
7520 		case 0x33:	/* RDPMC */
7521 			return true;
7522 		}
7523 		break;
7524 	}
7525 
7526 	return false;
7527 }
7528 
7529 /*
7530  * Decode an instruction for emulation.  The caller is responsible for handling
7531  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
7532  * (and wrong) when emulating on an intercepted fault-like exception[*], as
7533  * code breakpoints have higher priority and thus have already been done by
7534  * hardware.
7535  *
7536  * [*] Except #MC, which is higher priority, but KVM should never emulate in
7537  *     response to a machine check.
7538  */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)7539 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7540 				    void *insn, int insn_len)
7541 {
7542 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7543 	int r;
7544 
7545 	init_emulate_ctxt(vcpu);
7546 
7547 	ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7548 
7549 	r = x86_decode_insn(ctxt, insn, insn_len);
7550 
7551 	trace_kvm_emulate_insn_start(vcpu);
7552 	++vcpu->stat.insn_emulation;
7553 
7554 	return r;
7555 }
7556 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7557 
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)7558 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7559 			    int emulation_type, void *insn, int insn_len)
7560 {
7561 	int r;
7562 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7563 	bool writeback = true;
7564 	bool write_fault_to_spt;
7565 
7566 	if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, insn, insn_len)))
7567 		return 1;
7568 
7569 	vcpu->arch.l1tf_flush_l1d = true;
7570 
7571 	/*
7572 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
7573 	 * never reused.
7574 	 */
7575 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7576 	vcpu->arch.write_fault_to_shadow_pgtable = false;
7577 
7578 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7579 		kvm_clear_exception_queue(vcpu);
7580 
7581 		/*
7582 		 * Return immediately if RIP hits a code breakpoint, such #DBs
7583 		 * are fault-like and are higher priority than any faults on
7584 		 * the code fetch itself.
7585 		 */
7586 		if (!(emulation_type & EMULTYPE_SKIP) &&
7587 		    kvm_vcpu_check_code_breakpoint(vcpu, &r))
7588 			return r;
7589 
7590 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
7591 						    insn, insn_len);
7592 		if (r != EMULATION_OK)  {
7593 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
7594 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7595 				kvm_queue_exception(vcpu, UD_VECTOR);
7596 				return 1;
7597 			}
7598 			if (reexecute_instruction(vcpu, cr2_or_gpa,
7599 						  write_fault_to_spt,
7600 						  emulation_type))
7601 				return 1;
7602 
7603 			if (ctxt->have_exception &&
7604 			    !(emulation_type & EMULTYPE_SKIP)) {
7605 				/*
7606 				 * #UD should result in just EMULATION_FAILED, and trap-like
7607 				 * exception should not be encountered during decode.
7608 				 */
7609 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7610 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7611 				inject_emulated_exception(vcpu);
7612 				return 1;
7613 			}
7614 			return handle_emulation_failure(vcpu, emulation_type);
7615 		}
7616 	}
7617 
7618 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7619 	    !is_vmware_backdoor_opcode(ctxt)) {
7620 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7621 		return 1;
7622 	}
7623 
7624 	/*
7625 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7626 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
7627 	 * updating interruptibility state and injecting single-step #DBs.
7628 	 */
7629 	if (emulation_type & EMULTYPE_SKIP) {
7630 		kvm_rip_write(vcpu, ctxt->_eip);
7631 		if (ctxt->eflags & X86_EFLAGS_RF)
7632 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7633 		return 1;
7634 	}
7635 
7636 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7637 		return 1;
7638 
7639 	/* this is needed for vmware backdoor interface to work since it
7640 	   changes registers values  during IO operation */
7641 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7642 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7643 		emulator_invalidate_register_cache(ctxt);
7644 	}
7645 
7646 restart:
7647 	if (emulation_type & EMULTYPE_PF) {
7648 		/* Save the faulting GPA (cr2) in the address field */
7649 		ctxt->exception.address = cr2_or_gpa;
7650 
7651 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
7652 		if (vcpu->arch.mmu->direct_map) {
7653 			ctxt->gpa_available = true;
7654 			ctxt->gpa_val = cr2_or_gpa;
7655 		}
7656 	} else {
7657 		/* Sanitize the address out of an abundance of paranoia. */
7658 		ctxt->exception.address = 0;
7659 	}
7660 
7661 	r = x86_emulate_insn(ctxt);
7662 
7663 	if (r == EMULATION_INTERCEPTED)
7664 		return 1;
7665 
7666 	if (r == EMULATION_FAILED) {
7667 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7668 					emulation_type))
7669 			return 1;
7670 
7671 		return handle_emulation_failure(vcpu, emulation_type);
7672 	}
7673 
7674 	if (ctxt->have_exception) {
7675 		r = 1;
7676 		if (inject_emulated_exception(vcpu))
7677 			return r;
7678 	} else if (vcpu->arch.pio.count) {
7679 		if (!vcpu->arch.pio.in) {
7680 			/* FIXME: return into emulator if single-stepping.  */
7681 			vcpu->arch.pio.count = 0;
7682 		} else {
7683 			writeback = false;
7684 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
7685 		}
7686 		r = 0;
7687 	} else if (vcpu->mmio_needed) {
7688 		++vcpu->stat.mmio_exits;
7689 
7690 		if (!vcpu->mmio_is_write)
7691 			writeback = false;
7692 		r = 0;
7693 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7694 	} else if (r == EMULATION_RESTART)
7695 		goto restart;
7696 	else
7697 		r = 1;
7698 
7699 	if (writeback) {
7700 		unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7701 		toggle_interruptibility(vcpu, ctxt->interruptibility);
7702 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7703 
7704 		/*
7705 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
7706 		 * only supports code breakpoints and general detect #DB, both
7707 		 * of which are fault-like.
7708 		 */
7709 		if (!ctxt->have_exception ||
7710 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7711 			kvm_rip_write(vcpu, ctxt->eip);
7712 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7713 				r = kvm_vcpu_do_singlestep(vcpu);
7714 			if (kvm_x86_ops.update_emulated_instruction)
7715 				kvm_x86_ops.update_emulated_instruction(vcpu);
7716 			__kvm_set_rflags(vcpu, ctxt->eflags);
7717 		}
7718 
7719 		/*
7720 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7721 		 * do nothing, and it will be requested again as soon as
7722 		 * the shadow expires.  But we still need to check here,
7723 		 * because POPF has no interrupt shadow.
7724 		 */
7725 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7726 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7727 	} else
7728 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7729 
7730 	return r;
7731 }
7732 
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)7733 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7734 {
7735 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7736 }
7737 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7738 
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)7739 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7740 					void *insn, int insn_len)
7741 {
7742 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7743 }
7744 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7745 
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)7746 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7747 {
7748 	vcpu->arch.pio.count = 0;
7749 	return 1;
7750 }
7751 
complete_fast_pio_out(struct kvm_vcpu * vcpu)7752 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7753 {
7754 	vcpu->arch.pio.count = 0;
7755 
7756 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7757 		return 1;
7758 
7759 	return kvm_skip_emulated_instruction(vcpu);
7760 }
7761 
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)7762 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7763 			    unsigned short port)
7764 {
7765 	unsigned long val = kvm_rax_read(vcpu);
7766 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7767 
7768 	if (ret)
7769 		return ret;
7770 
7771 	/*
7772 	 * Workaround userspace that relies on old KVM behavior of %rip being
7773 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
7774 	 */
7775 	if (port == 0x7e &&
7776 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7777 		vcpu->arch.complete_userspace_io =
7778 			complete_fast_pio_out_port_0x7e;
7779 		kvm_skip_emulated_instruction(vcpu);
7780 	} else {
7781 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7782 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7783 	}
7784 	return 0;
7785 }
7786 
complete_fast_pio_in(struct kvm_vcpu * vcpu)7787 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7788 {
7789 	unsigned long val;
7790 
7791 	/* We should only ever be called with arch.pio.count equal to 1 */
7792 	BUG_ON(vcpu->arch.pio.count != 1);
7793 
7794 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7795 		vcpu->arch.pio.count = 0;
7796 		return 1;
7797 	}
7798 
7799 	/* For size less than 4 we merge, else we zero extend */
7800 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7801 
7802 	/*
7803 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7804 	 * the copy and tracing
7805 	 */
7806 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7807 	kvm_rax_write(vcpu, val);
7808 
7809 	return kvm_skip_emulated_instruction(vcpu);
7810 }
7811 
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)7812 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7813 			   unsigned short port)
7814 {
7815 	unsigned long val;
7816 	int ret;
7817 
7818 	/* For size less than 4 we merge, else we zero extend */
7819 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7820 
7821 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
7822 	if (ret) {
7823 		kvm_rax_write(vcpu, val);
7824 		return ret;
7825 	}
7826 
7827 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7828 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7829 
7830 	return 0;
7831 }
7832 
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)7833 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7834 {
7835 	int ret;
7836 
7837 	if (in)
7838 		ret = kvm_fast_pio_in(vcpu, size, port);
7839 	else
7840 		ret = kvm_fast_pio_out(vcpu, size, port);
7841 	return ret && kvm_skip_emulated_instruction(vcpu);
7842 }
7843 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7844 
kvmclock_cpu_down_prep(unsigned int cpu)7845 static int kvmclock_cpu_down_prep(unsigned int cpu)
7846 {
7847 	__this_cpu_write(cpu_tsc_khz, 0);
7848 	return 0;
7849 }
7850 
tsc_khz_changed(void * data)7851 static void tsc_khz_changed(void *data)
7852 {
7853 	struct cpufreq_freqs *freq = data;
7854 	unsigned long khz = 0;
7855 
7856 	if (data)
7857 		khz = freq->new;
7858 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7859 		khz = cpufreq_quick_get(raw_smp_processor_id());
7860 	if (!khz)
7861 		khz = tsc_khz;
7862 	__this_cpu_write(cpu_tsc_khz, khz);
7863 }
7864 
7865 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)7866 static void kvm_hyperv_tsc_notifier(void)
7867 {
7868 	struct kvm *kvm;
7869 	struct kvm_vcpu *vcpu;
7870 	int cpu;
7871 
7872 	mutex_lock(&kvm_lock);
7873 	list_for_each_entry(kvm, &vm_list, vm_list)
7874 		kvm_make_mclock_inprogress_request(kvm);
7875 
7876 	hyperv_stop_tsc_emulation();
7877 
7878 	/* TSC frequency always matches when on Hyper-V */
7879 	for_each_present_cpu(cpu)
7880 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7881 	kvm_max_guest_tsc_khz = tsc_khz;
7882 
7883 	list_for_each_entry(kvm, &vm_list, vm_list) {
7884 		struct kvm_arch *ka = &kvm->arch;
7885 
7886 		spin_lock(&ka->pvclock_gtod_sync_lock);
7887 
7888 		pvclock_update_vm_gtod_copy(kvm);
7889 
7890 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7891 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7892 
7893 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7894 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7895 
7896 		spin_unlock(&ka->pvclock_gtod_sync_lock);
7897 	}
7898 	mutex_unlock(&kvm_lock);
7899 }
7900 #endif
7901 
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)7902 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7903 {
7904 	struct kvm *kvm;
7905 	struct kvm_vcpu *vcpu;
7906 	int i, send_ipi = 0;
7907 
7908 	/*
7909 	 * We allow guests to temporarily run on slowing clocks,
7910 	 * provided we notify them after, or to run on accelerating
7911 	 * clocks, provided we notify them before.  Thus time never
7912 	 * goes backwards.
7913 	 *
7914 	 * However, we have a problem.  We can't atomically update
7915 	 * the frequency of a given CPU from this function; it is
7916 	 * merely a notifier, which can be called from any CPU.
7917 	 * Changing the TSC frequency at arbitrary points in time
7918 	 * requires a recomputation of local variables related to
7919 	 * the TSC for each VCPU.  We must flag these local variables
7920 	 * to be updated and be sure the update takes place with the
7921 	 * new frequency before any guests proceed.
7922 	 *
7923 	 * Unfortunately, the combination of hotplug CPU and frequency
7924 	 * change creates an intractable locking scenario; the order
7925 	 * of when these callouts happen is undefined with respect to
7926 	 * CPU hotplug, and they can race with each other.  As such,
7927 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7928 	 * undefined; you can actually have a CPU frequency change take
7929 	 * place in between the computation of X and the setting of the
7930 	 * variable.  To protect against this problem, all updates of
7931 	 * the per_cpu tsc_khz variable are done in an interrupt
7932 	 * protected IPI, and all callers wishing to update the value
7933 	 * must wait for a synchronous IPI to complete (which is trivial
7934 	 * if the caller is on the CPU already).  This establishes the
7935 	 * necessary total order on variable updates.
7936 	 *
7937 	 * Note that because a guest time update may take place
7938 	 * anytime after the setting of the VCPU's request bit, the
7939 	 * correct TSC value must be set before the request.  However,
7940 	 * to ensure the update actually makes it to any guest which
7941 	 * starts running in hardware virtualization between the set
7942 	 * and the acquisition of the spinlock, we must also ping the
7943 	 * CPU after setting the request bit.
7944 	 *
7945 	 */
7946 
7947 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7948 
7949 	mutex_lock(&kvm_lock);
7950 	list_for_each_entry(kvm, &vm_list, vm_list) {
7951 		kvm_for_each_vcpu(i, vcpu, kvm) {
7952 			if (vcpu->cpu != cpu)
7953 				continue;
7954 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7955 			if (vcpu->cpu != raw_smp_processor_id())
7956 				send_ipi = 1;
7957 		}
7958 	}
7959 	mutex_unlock(&kvm_lock);
7960 
7961 	if (freq->old < freq->new && send_ipi) {
7962 		/*
7963 		 * We upscale the frequency.  Must make the guest
7964 		 * doesn't see old kvmclock values while running with
7965 		 * the new frequency, otherwise we risk the guest sees
7966 		 * time go backwards.
7967 		 *
7968 		 * In case we update the frequency for another cpu
7969 		 * (which might be in guest context) send an interrupt
7970 		 * to kick the cpu out of guest context.  Next time
7971 		 * guest context is entered kvmclock will be updated,
7972 		 * so the guest will not see stale values.
7973 		 */
7974 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7975 	}
7976 }
7977 
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)7978 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7979 				     void *data)
7980 {
7981 	struct cpufreq_freqs *freq = data;
7982 	int cpu;
7983 
7984 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7985 		return 0;
7986 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7987 		return 0;
7988 
7989 	for_each_cpu(cpu, freq->policy->cpus)
7990 		__kvmclock_cpufreq_notifier(freq, cpu);
7991 
7992 	return 0;
7993 }
7994 
7995 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7996 	.notifier_call  = kvmclock_cpufreq_notifier
7997 };
7998 
kvmclock_cpu_online(unsigned int cpu)7999 static int kvmclock_cpu_online(unsigned int cpu)
8000 {
8001 	tsc_khz_changed(NULL);
8002 	return 0;
8003 }
8004 
kvm_timer_init(void)8005 static void kvm_timer_init(void)
8006 {
8007 	max_tsc_khz = tsc_khz;
8008 
8009 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8010 #ifdef CONFIG_CPU_FREQ
8011 		struct cpufreq_policy *policy;
8012 		int cpu;
8013 
8014 		cpu = get_cpu();
8015 		policy = cpufreq_cpu_get(cpu);
8016 		if (policy) {
8017 			if (policy->cpuinfo.max_freq)
8018 				max_tsc_khz = policy->cpuinfo.max_freq;
8019 			cpufreq_cpu_put(policy);
8020 		}
8021 		put_cpu();
8022 #endif
8023 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8024 					  CPUFREQ_TRANSITION_NOTIFIER);
8025 	}
8026 
8027 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8028 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
8029 }
8030 
8031 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8032 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8033 
kvm_is_in_guest(void)8034 int kvm_is_in_guest(void)
8035 {
8036 	return __this_cpu_read(current_vcpu) != NULL;
8037 }
8038 
kvm_is_user_mode(void)8039 static int kvm_is_user_mode(void)
8040 {
8041 	int user_mode = 3;
8042 
8043 	if (__this_cpu_read(current_vcpu))
8044 		user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
8045 
8046 	return user_mode != 0;
8047 }
8048 
kvm_get_guest_ip(void)8049 static unsigned long kvm_get_guest_ip(void)
8050 {
8051 	unsigned long ip = 0;
8052 
8053 	if (__this_cpu_read(current_vcpu))
8054 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8055 
8056 	return ip;
8057 }
8058 
kvm_handle_intel_pt_intr(void)8059 static void kvm_handle_intel_pt_intr(void)
8060 {
8061 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8062 
8063 	kvm_make_request(KVM_REQ_PMI, vcpu);
8064 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8065 			(unsigned long *)&vcpu->arch.pmu.global_status);
8066 }
8067 
8068 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8069 	.is_in_guest		= kvm_is_in_guest,
8070 	.is_user_mode		= kvm_is_user_mode,
8071 	.get_guest_ip		= kvm_get_guest_ip,
8072 	.handle_intel_pt_intr	= NULL,
8073 };
8074 
8075 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)8076 static void pvclock_gtod_update_fn(struct work_struct *work)
8077 {
8078 	struct kvm *kvm;
8079 
8080 	struct kvm_vcpu *vcpu;
8081 	int i;
8082 
8083 	mutex_lock(&kvm_lock);
8084 	list_for_each_entry(kvm, &vm_list, vm_list)
8085 		kvm_for_each_vcpu(i, vcpu, kvm)
8086 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8087 	atomic_set(&kvm_guest_has_master_clock, 0);
8088 	mutex_unlock(&kvm_lock);
8089 }
8090 
8091 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8092 
8093 /*
8094  * Indirection to move queue_work() out of the tk_core.seq write held
8095  * region to prevent possible deadlocks against time accessors which
8096  * are invoked with work related locks held.
8097  */
pvclock_irq_work_fn(struct irq_work * w)8098 static void pvclock_irq_work_fn(struct irq_work *w)
8099 {
8100 	queue_work(system_long_wq, &pvclock_gtod_work);
8101 }
8102 
8103 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8104 
8105 /*
8106  * Notification about pvclock gtod data update.
8107  */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)8108 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8109 			       void *priv)
8110 {
8111 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8112 	struct timekeeper *tk = priv;
8113 
8114 	update_pvclock_gtod(tk);
8115 
8116 	/*
8117 	 * Disable master clock if host does not trust, or does not use,
8118 	 * TSC based clocksource. Delegate queue_work() to irq_work as
8119 	 * this is invoked with tk_core.seq write held.
8120 	 */
8121 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8122 	    atomic_read(&kvm_guest_has_master_clock) != 0)
8123 		irq_work_queue(&pvclock_irq_work);
8124 	return 0;
8125 }
8126 
8127 static struct notifier_block pvclock_gtod_notifier = {
8128 	.notifier_call = pvclock_gtod_notify,
8129 };
8130 #endif
8131 
kvm_arch_init(void * opaque)8132 int kvm_arch_init(void *opaque)
8133 {
8134 	struct kvm_x86_init_ops *ops = opaque;
8135 	int r;
8136 
8137 	if (kvm_x86_ops.hardware_enable) {
8138 		printk(KERN_ERR "kvm: already loaded the other module\n");
8139 		r = -EEXIST;
8140 		goto out;
8141 	}
8142 
8143 	if (!ops->cpu_has_kvm_support()) {
8144 		pr_err_ratelimited("kvm: no hardware support\n");
8145 		r = -EOPNOTSUPP;
8146 		goto out;
8147 	}
8148 	if (ops->disabled_by_bios()) {
8149 		pr_err_ratelimited("kvm: disabled by bios\n");
8150 		r = -EOPNOTSUPP;
8151 		goto out;
8152 	}
8153 
8154 	/*
8155 	 * KVM explicitly assumes that the guest has an FPU and
8156 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8157 	 * vCPU's FPU state as a fxregs_state struct.
8158 	 */
8159 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8160 		printk(KERN_ERR "kvm: inadequate fpu\n");
8161 		r = -EOPNOTSUPP;
8162 		goto out;
8163 	}
8164 
8165 	r = -ENOMEM;
8166 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8167 					  __alignof__(struct fpu), SLAB_ACCOUNT,
8168 					  NULL);
8169 	if (!x86_fpu_cache) {
8170 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8171 		goto out;
8172 	}
8173 
8174 	x86_emulator_cache = kvm_alloc_emulator_cache();
8175 	if (!x86_emulator_cache) {
8176 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
8177 		goto out_free_x86_fpu_cache;
8178 	}
8179 
8180 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8181 	if (!user_return_msrs) {
8182 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8183 		goto out_free_x86_emulator_cache;
8184 	}
8185 
8186 	r = kvm_mmu_vendor_module_init();
8187 	if (r)
8188 		goto out_free_percpu;
8189 
8190 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
8191 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
8192 			PT_PRESENT_MASK, 0, sme_me_mask);
8193 	kvm_timer_init();
8194 
8195 	if (ops->intel_pt_intr_in_guest && ops->intel_pt_intr_in_guest())
8196 		kvm_guest_cbs.handle_intel_pt_intr = kvm_handle_intel_pt_intr;
8197 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
8198 
8199 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8200 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8201 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8202 	}
8203 
8204 	kvm_lapic_init();
8205 	if (pi_inject_timer == -1)
8206 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8207 #ifdef CONFIG_X86_64
8208 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8209 
8210 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8211 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8212 #endif
8213 
8214 	return 0;
8215 
8216 out_free_percpu:
8217 	free_percpu(user_return_msrs);
8218 out_free_x86_emulator_cache:
8219 	kmem_cache_destroy(x86_emulator_cache);
8220 out_free_x86_fpu_cache:
8221 	kmem_cache_destroy(x86_fpu_cache);
8222 out:
8223 	return r;
8224 }
8225 
kvm_arch_exit(void)8226 void kvm_arch_exit(void)
8227 {
8228 #ifdef CONFIG_X86_64
8229 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8230 		clear_hv_tscchange_cb();
8231 #endif
8232 	kvm_lapic_exit();
8233 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8234 	kvm_guest_cbs.handle_intel_pt_intr = NULL;
8235 
8236 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8237 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8238 					    CPUFREQ_TRANSITION_NOTIFIER);
8239 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8240 #ifdef CONFIG_X86_64
8241 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8242 	irq_work_sync(&pvclock_irq_work);
8243 	cancel_work_sync(&pvclock_gtod_work);
8244 #endif
8245 	kvm_x86_ops.hardware_enable = NULL;
8246 	kvm_mmu_vendor_module_exit();
8247 	free_percpu(user_return_msrs);
8248 	kmem_cache_destroy(x86_emulator_cache);
8249 	kmem_cache_destroy(x86_fpu_cache);
8250 }
8251 
kvm_vcpu_halt(struct kvm_vcpu * vcpu)8252 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8253 {
8254 	++vcpu->stat.halt_exits;
8255 	if (lapic_in_kernel(vcpu)) {
8256 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
8257 		return 1;
8258 	} else {
8259 		vcpu->run->exit_reason = KVM_EXIT_HLT;
8260 		return 0;
8261 	}
8262 }
8263 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8264 
kvm_emulate_halt(struct kvm_vcpu * vcpu)8265 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8266 {
8267 	int ret = kvm_skip_emulated_instruction(vcpu);
8268 	/*
8269 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8270 	 * KVM_EXIT_DEBUG here.
8271 	 */
8272 	return kvm_vcpu_halt(vcpu) && ret;
8273 }
8274 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8275 
8276 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)8277 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8278 			        unsigned long clock_type)
8279 {
8280 	struct kvm_clock_pairing clock_pairing;
8281 	struct timespec64 ts;
8282 	u64 cycle;
8283 	int ret;
8284 
8285 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8286 		return -KVM_EOPNOTSUPP;
8287 
8288 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
8289 		return -KVM_EOPNOTSUPP;
8290 
8291 	clock_pairing.sec = ts.tv_sec;
8292 	clock_pairing.nsec = ts.tv_nsec;
8293 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8294 	clock_pairing.flags = 0;
8295 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8296 
8297 	ret = 0;
8298 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8299 			    sizeof(struct kvm_clock_pairing)))
8300 		ret = -KVM_EFAULT;
8301 
8302 	return ret;
8303 }
8304 #endif
8305 
8306 /*
8307  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8308  *
8309  * @apicid - apicid of vcpu to be kicked.
8310  */
kvm_pv_kick_cpu_op(struct kvm * kvm,unsigned long flags,int apicid)8311 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8312 {
8313 	/*
8314 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
8315 	 * common code, e.g. for tracing. Defer initialization to the compiler.
8316 	 */
8317 	struct kvm_lapic_irq lapic_irq = {
8318 		.delivery_mode = APIC_DM_REMRD,
8319 		.dest_mode = APIC_DEST_PHYSICAL,
8320 		.shorthand = APIC_DEST_NOSHORT,
8321 		.dest_id = apicid,
8322 	};
8323 
8324 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8325 }
8326 
kvm_apicv_activated(struct kvm * kvm)8327 bool kvm_apicv_activated(struct kvm *kvm)
8328 {
8329 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8330 }
8331 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8332 
kvm_apicv_init(struct kvm * kvm,bool enable)8333 void kvm_apicv_init(struct kvm *kvm, bool enable)
8334 {
8335 	if (enable)
8336 		clear_bit(APICV_INHIBIT_REASON_DISABLE,
8337 			  &kvm->arch.apicv_inhibit_reasons);
8338 	else
8339 		set_bit(APICV_INHIBIT_REASON_DISABLE,
8340 			&kvm->arch.apicv_inhibit_reasons);
8341 }
8342 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8343 
kvm_sched_yield(struct kvm * kvm,unsigned long dest_id)8344 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
8345 {
8346 	struct kvm_vcpu *target = NULL;
8347 	struct kvm_apic_map *map;
8348 
8349 	rcu_read_lock();
8350 	map = rcu_dereference(kvm->arch.apic_map);
8351 
8352 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8353 		target = map->phys_map[dest_id]->vcpu;
8354 
8355 	rcu_read_unlock();
8356 
8357 	if (target && READ_ONCE(target->ready))
8358 		kvm_vcpu_yield_to(target);
8359 }
8360 
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)8361 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8362 {
8363 	unsigned long nr, a0, a1, a2, a3, ret;
8364 	int op_64_bit;
8365 
8366 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
8367 		return kvm_hv_hypercall(vcpu);
8368 
8369 	nr = kvm_rax_read(vcpu);
8370 	a0 = kvm_rbx_read(vcpu);
8371 	a1 = kvm_rcx_read(vcpu);
8372 	a2 = kvm_rdx_read(vcpu);
8373 	a3 = kvm_rsi_read(vcpu);
8374 
8375 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
8376 
8377 	op_64_bit = is_64_bit_mode(vcpu);
8378 	if (!op_64_bit) {
8379 		nr &= 0xFFFFFFFF;
8380 		a0 &= 0xFFFFFFFF;
8381 		a1 &= 0xFFFFFFFF;
8382 		a2 &= 0xFFFFFFFF;
8383 		a3 &= 0xFFFFFFFF;
8384 	}
8385 
8386 	if (kvm_x86_ops.get_cpl(vcpu) != 0) {
8387 		ret = -KVM_EPERM;
8388 		goto out;
8389 	}
8390 
8391 	ret = -KVM_ENOSYS;
8392 
8393 	switch (nr) {
8394 	case KVM_HC_VAPIC_POLL_IRQ:
8395 		ret = 0;
8396 		break;
8397 	case KVM_HC_KICK_CPU:
8398 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8399 			break;
8400 
8401 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8402 		kvm_sched_yield(vcpu->kvm, a1);
8403 		ret = 0;
8404 		break;
8405 #ifdef CONFIG_X86_64
8406 	case KVM_HC_CLOCK_PAIRING:
8407 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8408 		break;
8409 #endif
8410 	case KVM_HC_SEND_IPI:
8411 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8412 			break;
8413 
8414 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8415 		break;
8416 	case KVM_HC_SCHED_YIELD:
8417 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8418 			break;
8419 
8420 		kvm_sched_yield(vcpu->kvm, a0);
8421 		ret = 0;
8422 		break;
8423 	default:
8424 		ret = -KVM_ENOSYS;
8425 		break;
8426 	}
8427 out:
8428 	if (!op_64_bit)
8429 		ret = (u32)ret;
8430 	kvm_rax_write(vcpu, ret);
8431 
8432 	++vcpu->stat.hypercalls;
8433 	return kvm_skip_emulated_instruction(vcpu);
8434 }
8435 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8436 
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)8437 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8438 {
8439 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8440 	char instruction[3];
8441 	unsigned long rip = kvm_rip_read(vcpu);
8442 
8443 	kvm_x86_ops.patch_hypercall(vcpu, instruction);
8444 
8445 	return emulator_write_emulated(ctxt, rip, instruction, 3,
8446 		&ctxt->exception);
8447 }
8448 
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)8449 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8450 {
8451 	return vcpu->run->request_interrupt_window &&
8452 		likely(!pic_in_kernel(vcpu->kvm));
8453 }
8454 
post_kvm_run_save(struct kvm_vcpu * vcpu)8455 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8456 {
8457 	struct kvm_run *kvm_run = vcpu->run;
8458 
8459 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8460 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
8461 	kvm_run->cr8 = kvm_get_cr8(vcpu);
8462 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
8463 	kvm_run->ready_for_interrupt_injection =
8464 		pic_in_kernel(vcpu->kvm) ||
8465 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
8466 }
8467 
update_cr8_intercept(struct kvm_vcpu * vcpu)8468 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8469 {
8470 	int max_irr, tpr;
8471 
8472 	if (!kvm_x86_ops.update_cr8_intercept)
8473 		return;
8474 
8475 	if (!lapic_in_kernel(vcpu))
8476 		return;
8477 
8478 	if (vcpu->arch.apicv_active)
8479 		return;
8480 
8481 	if (!vcpu->arch.apic->vapic_addr)
8482 		max_irr = kvm_lapic_find_highest_irr(vcpu);
8483 	else
8484 		max_irr = -1;
8485 
8486 	if (max_irr != -1)
8487 		max_irr >>= 4;
8488 
8489 	tpr = kvm_lapic_get_cr8(vcpu);
8490 
8491 	kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
8492 }
8493 
kvm_inject_exception(struct kvm_vcpu * vcpu)8494 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8495 {
8496 	trace_kvm_inj_exception(vcpu->arch.exception.nr,
8497 				vcpu->arch.exception.has_error_code,
8498 				vcpu->arch.exception.error_code,
8499 				vcpu->arch.exception.injected);
8500 
8501 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8502 		vcpu->arch.exception.error_code = false;
8503 	kvm_x86_ops.queue_exception(vcpu);
8504 }
8505 
inject_pending_event(struct kvm_vcpu * vcpu,bool * req_immediate_exit)8506 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8507 {
8508 	int r;
8509 	bool can_inject = true;
8510 
8511 	/* try to reinject previous events if any */
8512 
8513 	if (vcpu->arch.exception.injected) {
8514 		kvm_inject_exception(vcpu);
8515 		can_inject = false;
8516 	}
8517 	/*
8518 	 * Do not inject an NMI or interrupt if there is a pending
8519 	 * exception.  Exceptions and interrupts are recognized at
8520 	 * instruction boundaries, i.e. the start of an instruction.
8521 	 * Trap-like exceptions, e.g. #DB, have higher priority than
8522 	 * NMIs and interrupts, i.e. traps are recognized before an
8523 	 * NMI/interrupt that's pending on the same instruction.
8524 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8525 	 * priority, but are only generated (pended) during instruction
8526 	 * execution, i.e. a pending fault-like exception means the
8527 	 * fault occurred on the *previous* instruction and must be
8528 	 * serviced prior to recognizing any new events in order to
8529 	 * fully complete the previous instruction.
8530 	 */
8531 	else if (!vcpu->arch.exception.pending) {
8532 		if (vcpu->arch.nmi_injected) {
8533 			kvm_x86_ops.set_nmi(vcpu);
8534 			can_inject = false;
8535 		} else if (vcpu->arch.interrupt.injected) {
8536 			kvm_x86_ops.set_irq(vcpu);
8537 			can_inject = false;
8538 		}
8539 	}
8540 
8541 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
8542 		     vcpu->arch.exception.pending);
8543 
8544 	/*
8545 	 * Call check_nested_events() even if we reinjected a previous event
8546 	 * in order for caller to determine if it should require immediate-exit
8547 	 * from L2 to L1 due to pending L1 events which require exit
8548 	 * from L2 to L1.
8549 	 */
8550 	if (is_guest_mode(vcpu)) {
8551 		r = kvm_x86_ops.nested_ops->check_events(vcpu);
8552 		if (r < 0)
8553 			goto busy;
8554 	}
8555 
8556 	/* try to inject new event if pending */
8557 	if (vcpu->arch.exception.pending) {
8558 		/*
8559 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
8560 		 * value pushed on the stack.  Trap-like exception and all #DBs
8561 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
8562 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
8563 		 *
8564 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
8565 		 * describe the behavior of General Detect #DBs, which are
8566 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
8567 		 */
8568 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8569 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8570 					     X86_EFLAGS_RF);
8571 
8572 		if (vcpu->arch.exception.nr == DB_VECTOR) {
8573 			kvm_deliver_exception_payload(vcpu);
8574 			if (vcpu->arch.dr7 & DR7_GD) {
8575 				vcpu->arch.dr7 &= ~DR7_GD;
8576 				kvm_update_dr7(vcpu);
8577 			}
8578 		}
8579 
8580 		kvm_inject_exception(vcpu);
8581 
8582 		vcpu->arch.exception.pending = false;
8583 		vcpu->arch.exception.injected = true;
8584 
8585 		can_inject = false;
8586 	}
8587 
8588 	/*
8589 	 * Finally, inject interrupt events.  If an event cannot be injected
8590 	 * due to architectural conditions (e.g. IF=0) a window-open exit
8591 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
8592 	 * and can architecturally be injected, but we cannot do it right now:
8593 	 * an interrupt could have arrived just now and we have to inject it
8594 	 * as a vmexit, or there could already an event in the queue, which is
8595 	 * indicated by can_inject.  In that case we request an immediate exit
8596 	 * in order to make progress and get back here for another iteration.
8597 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8598 	 */
8599 	if (vcpu->arch.smi_pending) {
8600 		r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY;
8601 		if (r < 0)
8602 			goto busy;
8603 		if (r) {
8604 			vcpu->arch.smi_pending = false;
8605 			++vcpu->arch.smi_count;
8606 			enter_smm(vcpu);
8607 			can_inject = false;
8608 		} else
8609 			kvm_x86_ops.enable_smi_window(vcpu);
8610 	}
8611 
8612 	if (vcpu->arch.nmi_pending) {
8613 		r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY;
8614 		if (r < 0)
8615 			goto busy;
8616 		if (r) {
8617 			--vcpu->arch.nmi_pending;
8618 			vcpu->arch.nmi_injected = true;
8619 			kvm_x86_ops.set_nmi(vcpu);
8620 			can_inject = false;
8621 			WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0);
8622 		}
8623 		if (vcpu->arch.nmi_pending)
8624 			kvm_x86_ops.enable_nmi_window(vcpu);
8625 	}
8626 
8627 	if (kvm_cpu_has_injectable_intr(vcpu)) {
8628 		r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY;
8629 		if (r < 0)
8630 			goto busy;
8631 		if (r) {
8632 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8633 			kvm_x86_ops.set_irq(vcpu);
8634 			WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0);
8635 		}
8636 		if (kvm_cpu_has_injectable_intr(vcpu))
8637 			kvm_x86_ops.enable_irq_window(vcpu);
8638 	}
8639 
8640 	if (is_guest_mode(vcpu) &&
8641 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
8642 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8643 		*req_immediate_exit = true;
8644 
8645 	WARN_ON(vcpu->arch.exception.pending);
8646 	return;
8647 
8648 busy:
8649 	*req_immediate_exit = true;
8650 	return;
8651 }
8652 
process_nmi(struct kvm_vcpu * vcpu)8653 static void process_nmi(struct kvm_vcpu *vcpu)
8654 {
8655 	unsigned limit = 2;
8656 
8657 	/*
8658 	 * x86 is limited to one NMI running, and one NMI pending after it.
8659 	 * If an NMI is already in progress, limit further NMIs to just one.
8660 	 * Otherwise, allow two (and we'll inject the first one immediately).
8661 	 */
8662 	if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
8663 		limit = 1;
8664 
8665 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8666 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8667 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8668 }
8669 
enter_smm_get_segment_flags(struct kvm_segment * seg)8670 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8671 {
8672 	u32 flags = 0;
8673 	flags |= seg->g       << 23;
8674 	flags |= seg->db      << 22;
8675 	flags |= seg->l       << 21;
8676 	flags |= seg->avl     << 20;
8677 	flags |= seg->present << 15;
8678 	flags |= seg->dpl     << 13;
8679 	flags |= seg->s       << 12;
8680 	flags |= seg->type    << 8;
8681 	return flags;
8682 }
8683 
enter_smm_save_seg_32(struct kvm_vcpu * vcpu,char * buf,int n)8684 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8685 {
8686 	struct kvm_segment seg;
8687 	int offset;
8688 
8689 	kvm_get_segment(vcpu, &seg, n);
8690 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8691 
8692 	if (n < 3)
8693 		offset = 0x7f84 + n * 12;
8694 	else
8695 		offset = 0x7f2c + (n - 3) * 12;
8696 
8697 	put_smstate(u32, buf, offset + 8, seg.base);
8698 	put_smstate(u32, buf, offset + 4, seg.limit);
8699 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8700 }
8701 
8702 #ifdef CONFIG_X86_64
enter_smm_save_seg_64(struct kvm_vcpu * vcpu,char * buf,int n)8703 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8704 {
8705 	struct kvm_segment seg;
8706 	int offset;
8707 	u16 flags;
8708 
8709 	kvm_get_segment(vcpu, &seg, n);
8710 	offset = 0x7e00 + n * 16;
8711 
8712 	flags = enter_smm_get_segment_flags(&seg) >> 8;
8713 	put_smstate(u16, buf, offset, seg.selector);
8714 	put_smstate(u16, buf, offset + 2, flags);
8715 	put_smstate(u32, buf, offset + 4, seg.limit);
8716 	put_smstate(u64, buf, offset + 8, seg.base);
8717 }
8718 #endif
8719 
enter_smm_save_state_32(struct kvm_vcpu * vcpu,char * buf)8720 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8721 {
8722 	struct desc_ptr dt;
8723 	struct kvm_segment seg;
8724 	unsigned long val;
8725 	int i;
8726 
8727 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8728 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8729 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8730 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8731 
8732 	for (i = 0; i < 8; i++)
8733 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8734 
8735 	kvm_get_dr(vcpu, 6, &val);
8736 	put_smstate(u32, buf, 0x7fcc, (u32)val);
8737 	kvm_get_dr(vcpu, 7, &val);
8738 	put_smstate(u32, buf, 0x7fc8, (u32)val);
8739 
8740 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8741 	put_smstate(u32, buf, 0x7fc4, seg.selector);
8742 	put_smstate(u32, buf, 0x7f64, seg.base);
8743 	put_smstate(u32, buf, 0x7f60, seg.limit);
8744 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8745 
8746 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8747 	put_smstate(u32, buf, 0x7fc0, seg.selector);
8748 	put_smstate(u32, buf, 0x7f80, seg.base);
8749 	put_smstate(u32, buf, 0x7f7c, seg.limit);
8750 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8751 
8752 	kvm_x86_ops.get_gdt(vcpu, &dt);
8753 	put_smstate(u32, buf, 0x7f74, dt.address);
8754 	put_smstate(u32, buf, 0x7f70, dt.size);
8755 
8756 	kvm_x86_ops.get_idt(vcpu, &dt);
8757 	put_smstate(u32, buf, 0x7f58, dt.address);
8758 	put_smstate(u32, buf, 0x7f54, dt.size);
8759 
8760 	for (i = 0; i < 6; i++)
8761 		enter_smm_save_seg_32(vcpu, buf, i);
8762 
8763 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8764 
8765 	/* revision id */
8766 	put_smstate(u32, buf, 0x7efc, 0x00020000);
8767 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8768 }
8769 
8770 #ifdef CONFIG_X86_64
enter_smm_save_state_64(struct kvm_vcpu * vcpu,char * buf)8771 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8772 {
8773 	struct desc_ptr dt;
8774 	struct kvm_segment seg;
8775 	unsigned long val;
8776 	int i;
8777 
8778 	for (i = 0; i < 16; i++)
8779 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8780 
8781 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8782 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8783 
8784 	kvm_get_dr(vcpu, 6, &val);
8785 	put_smstate(u64, buf, 0x7f68, val);
8786 	kvm_get_dr(vcpu, 7, &val);
8787 	put_smstate(u64, buf, 0x7f60, val);
8788 
8789 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8790 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8791 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8792 
8793 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8794 
8795 	/* revision id */
8796 	put_smstate(u32, buf, 0x7efc, 0x00020064);
8797 
8798 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8799 
8800 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8801 	put_smstate(u16, buf, 0x7e90, seg.selector);
8802 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8803 	put_smstate(u32, buf, 0x7e94, seg.limit);
8804 	put_smstate(u64, buf, 0x7e98, seg.base);
8805 
8806 	kvm_x86_ops.get_idt(vcpu, &dt);
8807 	put_smstate(u32, buf, 0x7e84, dt.size);
8808 	put_smstate(u64, buf, 0x7e88, dt.address);
8809 
8810 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8811 	put_smstate(u16, buf, 0x7e70, seg.selector);
8812 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8813 	put_smstate(u32, buf, 0x7e74, seg.limit);
8814 	put_smstate(u64, buf, 0x7e78, seg.base);
8815 
8816 	kvm_x86_ops.get_gdt(vcpu, &dt);
8817 	put_smstate(u32, buf, 0x7e64, dt.size);
8818 	put_smstate(u64, buf, 0x7e68, dt.address);
8819 
8820 	for (i = 0; i < 6; i++)
8821 		enter_smm_save_seg_64(vcpu, buf, i);
8822 }
8823 #endif
8824 
enter_smm(struct kvm_vcpu * vcpu)8825 static void enter_smm(struct kvm_vcpu *vcpu)
8826 {
8827 	struct kvm_segment cs, ds;
8828 	struct desc_ptr dt;
8829 	char buf[512];
8830 	u32 cr0;
8831 
8832 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8833 	memset(buf, 0, 512);
8834 #ifdef CONFIG_X86_64
8835 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8836 		enter_smm_save_state_64(vcpu, buf);
8837 	else
8838 #endif
8839 		enter_smm_save_state_32(vcpu, buf);
8840 
8841 	/*
8842 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
8843 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
8844 	 * the SMM state-save area.
8845 	 */
8846 	kvm_x86_ops.pre_enter_smm(vcpu, buf);
8847 
8848 	vcpu->arch.hflags |= HF_SMM_MASK;
8849 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8850 
8851 	if (kvm_x86_ops.get_nmi_mask(vcpu))
8852 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8853 	else
8854 		kvm_x86_ops.set_nmi_mask(vcpu, true);
8855 
8856 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8857 	kvm_rip_write(vcpu, 0x8000);
8858 
8859 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8860 	kvm_x86_ops.set_cr0(vcpu, cr0);
8861 	vcpu->arch.cr0 = cr0;
8862 
8863 	kvm_x86_ops.set_cr4(vcpu, 0);
8864 
8865 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
8866 	dt.address = dt.size = 0;
8867 	kvm_x86_ops.set_idt(vcpu, &dt);
8868 
8869 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8870 
8871 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8872 	cs.base = vcpu->arch.smbase;
8873 
8874 	ds.selector = 0;
8875 	ds.base = 0;
8876 
8877 	cs.limit    = ds.limit = 0xffffffff;
8878 	cs.type     = ds.type = 0x3;
8879 	cs.dpl      = ds.dpl = 0;
8880 	cs.db       = ds.db = 0;
8881 	cs.s        = ds.s = 1;
8882 	cs.l        = ds.l = 0;
8883 	cs.g        = ds.g = 1;
8884 	cs.avl      = ds.avl = 0;
8885 	cs.present  = ds.present = 1;
8886 	cs.unusable = ds.unusable = 0;
8887 	cs.padding  = ds.padding = 0;
8888 
8889 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8890 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8891 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8892 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8893 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8894 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8895 
8896 #ifdef CONFIG_X86_64
8897 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8898 		kvm_x86_ops.set_efer(vcpu, 0);
8899 #endif
8900 
8901 	kvm_update_cpuid_runtime(vcpu);
8902 	kvm_mmu_reset_context(vcpu);
8903 }
8904 
process_smi(struct kvm_vcpu * vcpu)8905 static void process_smi(struct kvm_vcpu *vcpu)
8906 {
8907 	vcpu->arch.smi_pending = true;
8908 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8909 }
8910 
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)8911 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8912 				       unsigned long *vcpu_bitmap)
8913 {
8914 	cpumask_var_t cpus;
8915 
8916 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8917 
8918 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8919 				    NULL, vcpu_bitmap, cpus);
8920 
8921 	free_cpumask_var(cpus);
8922 }
8923 
kvm_make_scan_ioapic_request(struct kvm * kvm)8924 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8925 {
8926 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8927 }
8928 
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)8929 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8930 {
8931 	if (!lapic_in_kernel(vcpu))
8932 		return;
8933 
8934 	vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8935 	kvm_apic_update_apicv(vcpu);
8936 	kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8937 }
8938 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8939 
8940 /*
8941  * NOTE: Do not hold any lock prior to calling this.
8942  *
8943  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8944  * locked, because it calls __x86_set_memory_region() which does
8945  * synchronize_srcu(&kvm->srcu).
8946  */
kvm_request_apicv_update(struct kvm * kvm,bool activate,ulong bit)8947 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8948 {
8949 	struct kvm_vcpu *except;
8950 	unsigned long old, new, expected;
8951 
8952 	if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8953 	    !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8954 		return;
8955 
8956 	old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8957 	do {
8958 		expected = new = old;
8959 		if (activate)
8960 			__clear_bit(bit, &new);
8961 		else
8962 			__set_bit(bit, &new);
8963 		if (new == old)
8964 			break;
8965 		old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8966 	} while (old != expected);
8967 
8968 	if (!!old == !!new)
8969 		return;
8970 
8971 	trace_kvm_apicv_update_request(activate, bit);
8972 	if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8973 		kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8974 
8975 	/*
8976 	 * Sending request to update APICV for all other vcpus,
8977 	 * while update the calling vcpu immediately instead of
8978 	 * waiting for another #VMEXIT to handle the request.
8979 	 */
8980 	except = kvm_get_running_vcpu();
8981 	kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8982 					 except);
8983 	if (except)
8984 		kvm_vcpu_update_apicv(except);
8985 }
8986 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8987 
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)8988 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8989 {
8990 	if (!kvm_apic_present(vcpu))
8991 		return;
8992 
8993 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8994 
8995 	if (irqchip_split(vcpu->kvm))
8996 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8997 	else {
8998 		if (vcpu->arch.apicv_active)
8999 			kvm_x86_ops.sync_pir_to_irr(vcpu);
9000 		if (ioapic_in_kernel(vcpu->kvm))
9001 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9002 	}
9003 
9004 	if (is_guest_mode(vcpu))
9005 		vcpu->arch.load_eoi_exitmap_pending = true;
9006 	else
9007 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9008 }
9009 
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)9010 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9011 {
9012 	u64 eoi_exit_bitmap[4];
9013 
9014 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9015 		return;
9016 
9017 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
9018 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
9019 	kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
9020 }
9021 
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end)9022 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9023 					    unsigned long start, unsigned long end)
9024 {
9025 	unsigned long apic_address;
9026 
9027 	/*
9028 	 * The physical address of apic access page is stored in the VMCS.
9029 	 * Update it when it becomes invalid.
9030 	 */
9031 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9032 	if (start <= apic_address && apic_address < end)
9033 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9034 }
9035 
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)9036 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
9037 {
9038 	if (kvm_x86_ops.guest_memory_reclaimed)
9039 		kvm_x86_ops.guest_memory_reclaimed(kvm);
9040 }
9041 
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)9042 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9043 {
9044 	if (!lapic_in_kernel(vcpu))
9045 		return;
9046 
9047 	if (!kvm_x86_ops.set_apic_access_page_addr)
9048 		return;
9049 
9050 	kvm_x86_ops.set_apic_access_page_addr(vcpu);
9051 }
9052 
__kvm_request_immediate_exit(struct kvm_vcpu * vcpu)9053 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9054 {
9055 	smp_send_reschedule(vcpu->cpu);
9056 }
9057 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9058 
9059 /*
9060  * Returns 1 to let vcpu_run() continue the guest execution loop without
9061  * exiting to the userspace.  Otherwise, the value will be returned to the
9062  * userspace.
9063  */
vcpu_enter_guest(struct kvm_vcpu * vcpu)9064 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9065 {
9066 	int r;
9067 	bool req_int_win =
9068 		dm_request_for_irq_injection(vcpu) &&
9069 		kvm_cpu_accept_dm_intr(vcpu);
9070 	fastpath_t exit_fastpath;
9071 
9072 	bool req_immediate_exit = false;
9073 
9074 	if (kvm_request_pending(vcpu)) {
9075 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9076 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9077 				r = 0;
9078 				goto out;
9079 			}
9080 		}
9081 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9082 			kvm_mmu_unload(vcpu);
9083 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9084 			__kvm_migrate_timers(vcpu);
9085 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9086 			kvm_gen_update_masterclock(vcpu->kvm);
9087 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9088 			kvm_gen_kvmclock_update(vcpu);
9089 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9090 			r = kvm_guest_time_update(vcpu);
9091 			if (unlikely(r))
9092 				goto out;
9093 		}
9094 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9095 			kvm_mmu_sync_roots(vcpu);
9096 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9097 			kvm_mmu_load_pgd(vcpu);
9098 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9099 			kvm_vcpu_flush_tlb_all(vcpu);
9100 
9101 			/* Flushing all ASIDs flushes the current ASID... */
9102 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9103 		}
9104 		if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
9105 			kvm_vcpu_flush_tlb_current(vcpu);
9106 		if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
9107 			kvm_vcpu_flush_tlb_guest(vcpu);
9108 
9109 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9110 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9111 			r = 0;
9112 			goto out;
9113 		}
9114 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9115 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9116 			vcpu->mmio_needed = 0;
9117 			r = 0;
9118 			goto out;
9119 		}
9120 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9121 			/* Page is swapped out. Do synthetic halt */
9122 			vcpu->arch.apf.halted = true;
9123 			r = 1;
9124 			goto out;
9125 		}
9126 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9127 			record_steal_time(vcpu);
9128 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
9129 			process_smi(vcpu);
9130 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
9131 			process_nmi(vcpu);
9132 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
9133 			kvm_pmu_handle_event(vcpu);
9134 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
9135 			kvm_pmu_deliver_pmi(vcpu);
9136 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9137 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9138 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
9139 				     vcpu->arch.ioapic_handled_vectors)) {
9140 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9141 				vcpu->run->eoi.vector =
9142 						vcpu->arch.pending_ioapic_eoi;
9143 				r = 0;
9144 				goto out;
9145 			}
9146 		}
9147 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9148 			vcpu_scan_ioapic(vcpu);
9149 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9150 			vcpu_load_eoi_exitmap(vcpu);
9151 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9152 			kvm_vcpu_reload_apic_access_page(vcpu);
9153 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9154 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9155 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9156 			r = 0;
9157 			goto out;
9158 		}
9159 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9160 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9161 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9162 			r = 0;
9163 			goto out;
9164 		}
9165 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9166 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9167 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
9168 			r = 0;
9169 			goto out;
9170 		}
9171 
9172 		/*
9173 		 * KVM_REQ_HV_STIMER has to be processed after
9174 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9175 		 * depend on the guest clock being up-to-date
9176 		 */
9177 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9178 			kvm_hv_process_stimers(vcpu);
9179 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9180 			kvm_vcpu_update_apicv(vcpu);
9181 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9182 			kvm_check_async_pf_completion(vcpu);
9183 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9184 			kvm_x86_ops.msr_filter_changed(vcpu);
9185 	}
9186 
9187 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
9188 		++vcpu->stat.req_event;
9189 		kvm_apic_accept_events(vcpu);
9190 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9191 			r = 1;
9192 			goto out;
9193 		}
9194 
9195 		inject_pending_event(vcpu, &req_immediate_exit);
9196 		if (req_int_win)
9197 			kvm_x86_ops.enable_irq_window(vcpu);
9198 
9199 		if (kvm_lapic_enabled(vcpu)) {
9200 			update_cr8_intercept(vcpu);
9201 			kvm_lapic_sync_to_vapic(vcpu);
9202 		}
9203 	}
9204 
9205 	r = kvm_mmu_reload(vcpu);
9206 	if (unlikely(r)) {
9207 		goto cancel_injection;
9208 	}
9209 
9210 	preempt_disable();
9211 
9212 	kvm_x86_ops.prepare_guest_switch(vcpu);
9213 
9214 	/*
9215 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
9216 	 * IPI are then delayed after guest entry, which ensures that they
9217 	 * result in virtual interrupt delivery.
9218 	 */
9219 	local_irq_disable();
9220 	vcpu->mode = IN_GUEST_MODE;
9221 
9222 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9223 
9224 	/*
9225 	 * 1) We should set ->mode before checking ->requests.  Please see
9226 	 * the comment in kvm_vcpu_exiting_guest_mode().
9227 	 *
9228 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
9229 	 * pairs with the memory barrier implicit in pi_test_and_set_on
9230 	 * (see vmx_deliver_posted_interrupt).
9231 	 *
9232 	 * 3) This also orders the write to mode from any reads to the page
9233 	 * tables done while the VCPU is running.  Please see the comment
9234 	 * in kvm_flush_remote_tlbs.
9235 	 */
9236 	smp_mb__after_srcu_read_unlock();
9237 
9238 	/*
9239 	 * This handles the case where a posted interrupt was
9240 	 * notified with kvm_vcpu_kick.
9241 	 */
9242 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9243 		kvm_x86_ops.sync_pir_to_irr(vcpu);
9244 
9245 	if (kvm_vcpu_exit_request(vcpu)) {
9246 		vcpu->mode = OUTSIDE_GUEST_MODE;
9247 		smp_wmb();
9248 		local_irq_enable();
9249 		preempt_enable();
9250 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9251 		r = 1;
9252 		goto cancel_injection;
9253 	}
9254 
9255 	if (req_immediate_exit) {
9256 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9257 		kvm_x86_ops.request_immediate_exit(vcpu);
9258 	}
9259 
9260 	trace_kvm_entry(vcpu);
9261 
9262 	fpregs_assert_state_consistent();
9263 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
9264 		switch_fpu_return();
9265 
9266 	if (unlikely(vcpu->arch.switch_db_regs)) {
9267 		set_debugreg(0, 7);
9268 		set_debugreg(vcpu->arch.eff_db[0], 0);
9269 		set_debugreg(vcpu->arch.eff_db[1], 1);
9270 		set_debugreg(vcpu->arch.eff_db[2], 2);
9271 		set_debugreg(vcpu->arch.eff_db[3], 3);
9272 		set_debugreg(vcpu->arch.dr6, 6);
9273 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9274 	} else if (unlikely(hw_breakpoint_active())) {
9275 		set_debugreg(0, 7);
9276 	}
9277 
9278 	exit_fastpath = kvm_x86_ops.run(vcpu);
9279 
9280 	/*
9281 	 * Do this here before restoring debug registers on the host.  And
9282 	 * since we do this before handling the vmexit, a DR access vmexit
9283 	 * can (a) read the correct value of the debug registers, (b) set
9284 	 * KVM_DEBUGREG_WONT_EXIT again.
9285 	 */
9286 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9287 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9288 		kvm_x86_ops.sync_dirty_debug_regs(vcpu);
9289 		kvm_update_dr0123(vcpu);
9290 		kvm_update_dr7(vcpu);
9291 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9292 	}
9293 
9294 	/*
9295 	 * If the guest has used debug registers, at least dr7
9296 	 * will be disabled while returning to the host.
9297 	 * If we don't have active breakpoints in the host, we don't
9298 	 * care about the messed up debug address registers. But if
9299 	 * we have some of them active, restore the old state.
9300 	 */
9301 	if (hw_breakpoint_active())
9302 		hw_breakpoint_restore();
9303 
9304 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9305 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9306 
9307 	vcpu->mode = OUTSIDE_GUEST_MODE;
9308 	smp_wmb();
9309 
9310 	kvm_x86_ops.handle_exit_irqoff(vcpu);
9311 
9312 	/*
9313 	 * Consume any pending interrupts, including the possible source of
9314 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9315 	 * An instruction is required after local_irq_enable() to fully unblock
9316 	 * interrupts on processors that implement an interrupt shadow, the
9317 	 * stat.exits increment will do nicely.
9318 	 */
9319 	kvm_before_interrupt(vcpu);
9320 	local_irq_enable();
9321 	++vcpu->stat.exits;
9322 	local_irq_disable();
9323 	kvm_after_interrupt(vcpu);
9324 
9325 	/*
9326 	 * Wait until after servicing IRQs to account guest time so that any
9327 	 * ticks that occurred while running the guest are properly accounted
9328 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
9329 	 * of accounting via context tracking, but the loss of accuracy is
9330 	 * acceptable for all known use cases.
9331 	 */
9332 	vtime_account_guest_exit();
9333 
9334 	if (lapic_in_kernel(vcpu)) {
9335 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9336 		if (delta != S64_MIN) {
9337 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9338 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9339 		}
9340 	}
9341 
9342 	local_irq_enable();
9343 	preempt_enable();
9344 
9345 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9346 
9347 	/*
9348 	 * Profile KVM exit RIPs:
9349 	 */
9350 	if (unlikely(prof_on == KVM_PROFILING)) {
9351 		unsigned long rip = kvm_rip_read(vcpu);
9352 		profile_hit(KVM_PROFILING, (void *)rip);
9353 	}
9354 
9355 	if (unlikely(vcpu->arch.tsc_always_catchup))
9356 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9357 
9358 	if (vcpu->arch.apic_attention)
9359 		kvm_lapic_sync_from_vapic(vcpu);
9360 
9361 	r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
9362 	return r;
9363 
9364 cancel_injection:
9365 	if (req_immediate_exit)
9366 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9367 	kvm_x86_ops.cancel_injection(vcpu);
9368 	if (unlikely(vcpu->arch.apic_attention))
9369 		kvm_lapic_sync_from_vapic(vcpu);
9370 out:
9371 	return r;
9372 }
9373 
vcpu_block(struct kvm * kvm,struct kvm_vcpu * vcpu)9374 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9375 {
9376 	if (!kvm_arch_vcpu_runnable(vcpu) &&
9377 	    (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
9378 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9379 		kvm_vcpu_block(vcpu);
9380 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9381 
9382 		if (kvm_x86_ops.post_block)
9383 			kvm_x86_ops.post_block(vcpu);
9384 
9385 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9386 			return 1;
9387 	}
9388 
9389 	kvm_apic_accept_events(vcpu);
9390 	switch(vcpu->arch.mp_state) {
9391 	case KVM_MP_STATE_HALTED:
9392 		vcpu->arch.pv.pv_unhalted = false;
9393 		vcpu->arch.mp_state =
9394 			KVM_MP_STATE_RUNNABLE;
9395 		fallthrough;
9396 	case KVM_MP_STATE_RUNNABLE:
9397 		vcpu->arch.apf.halted = false;
9398 		break;
9399 	case KVM_MP_STATE_INIT_RECEIVED:
9400 		break;
9401 	default:
9402 		return -EINTR;
9403 	}
9404 	return 1;
9405 }
9406 
kvm_vcpu_running(struct kvm_vcpu * vcpu)9407 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9408 {
9409 	if (is_guest_mode(vcpu))
9410 		kvm_x86_ops.nested_ops->check_events(vcpu);
9411 
9412 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9413 		!vcpu->arch.apf.halted);
9414 }
9415 
vcpu_run(struct kvm_vcpu * vcpu)9416 static int vcpu_run(struct kvm_vcpu *vcpu)
9417 {
9418 	int r;
9419 	struct kvm *kvm = vcpu->kvm;
9420 
9421 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9422 	vcpu->arch.l1tf_flush_l1d = true;
9423 
9424 	for (;;) {
9425 		/*
9426 		 * If another guest vCPU requests a PV TLB flush in the middle
9427 		 * of instruction emulation, the rest of the emulation could
9428 		 * use a stale page translation. Assume that any code after
9429 		 * this point can start executing an instruction.
9430 		 */
9431 		vcpu->arch.at_instruction_boundary = false;
9432 		if (kvm_vcpu_running(vcpu)) {
9433 			r = vcpu_enter_guest(vcpu);
9434 		} else {
9435 			r = vcpu_block(kvm, vcpu);
9436 		}
9437 
9438 		if (r <= 0)
9439 			break;
9440 
9441 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9442 		if (kvm_cpu_has_pending_timer(vcpu))
9443 			kvm_inject_pending_timer_irqs(vcpu);
9444 
9445 		if (dm_request_for_irq_injection(vcpu) &&
9446 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9447 			r = 0;
9448 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9449 			++vcpu->stat.request_irq_exits;
9450 			break;
9451 		}
9452 
9453 		if (__xfer_to_guest_mode_work_pending()) {
9454 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9455 			r = xfer_to_guest_mode_handle_work(vcpu);
9456 			if (r)
9457 				return r;
9458 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9459 		}
9460 	}
9461 
9462 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9463 
9464 	return r;
9465 }
9466 
complete_emulated_io(struct kvm_vcpu * vcpu)9467 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9468 {
9469 	int r;
9470 
9471 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9472 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9473 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9474 	return r;
9475 }
9476 
complete_emulated_pio(struct kvm_vcpu * vcpu)9477 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9478 {
9479 	BUG_ON(!vcpu->arch.pio.count);
9480 
9481 	return complete_emulated_io(vcpu);
9482 }
9483 
9484 /*
9485  * Implements the following, as a state machine:
9486  *
9487  * read:
9488  *   for each fragment
9489  *     for each mmio piece in the fragment
9490  *       write gpa, len
9491  *       exit
9492  *       copy data
9493  *   execute insn
9494  *
9495  * write:
9496  *   for each fragment
9497  *     for each mmio piece in the fragment
9498  *       write gpa, len
9499  *       copy data
9500  *       exit
9501  */
complete_emulated_mmio(struct kvm_vcpu * vcpu)9502 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9503 {
9504 	struct kvm_run *run = vcpu->run;
9505 	struct kvm_mmio_fragment *frag;
9506 	unsigned len;
9507 
9508 	BUG_ON(!vcpu->mmio_needed);
9509 
9510 	/* Complete previous fragment */
9511 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9512 	len = min(8u, frag->len);
9513 	if (!vcpu->mmio_is_write)
9514 		memcpy(frag->data, run->mmio.data, len);
9515 
9516 	if (frag->len <= 8) {
9517 		/* Switch to the next fragment. */
9518 		frag++;
9519 		vcpu->mmio_cur_fragment++;
9520 	} else {
9521 		/* Go forward to the next mmio piece. */
9522 		frag->data += len;
9523 		frag->gpa += len;
9524 		frag->len -= len;
9525 	}
9526 
9527 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9528 		vcpu->mmio_needed = 0;
9529 
9530 		/* FIXME: return into emulator if single-stepping.  */
9531 		if (vcpu->mmio_is_write)
9532 			return 1;
9533 		vcpu->mmio_read_completed = 1;
9534 		return complete_emulated_io(vcpu);
9535 	}
9536 
9537 	run->exit_reason = KVM_EXIT_MMIO;
9538 	run->mmio.phys_addr = frag->gpa;
9539 	if (vcpu->mmio_is_write)
9540 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9541 	run->mmio.len = min(8u, frag->len);
9542 	run->mmio.is_write = vcpu->mmio_is_write;
9543 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9544 	return 0;
9545 }
9546 
kvm_save_current_fpu(struct fpu * fpu)9547 static void kvm_save_current_fpu(struct fpu *fpu)
9548 {
9549 	/*
9550 	 * If the target FPU state is not resident in the CPU registers, just
9551 	 * memcpy() from current, else save CPU state directly to the target.
9552 	 */
9553 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
9554 		memcpy(&fpu->state, &current->thread.fpu.state,
9555 		       fpu_kernel_xstate_size);
9556 	else
9557 		copy_fpregs_to_fpstate(fpu);
9558 }
9559 
9560 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)9561 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9562 {
9563 	fpregs_lock();
9564 
9565 	kvm_save_current_fpu(vcpu->arch.user_fpu);
9566 
9567 	/* PKRU is separately restored in kvm_x86_ops.run.  */
9568 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9569 				~XFEATURE_MASK_PKRU);
9570 
9571 	fpregs_mark_activate();
9572 	fpregs_unlock();
9573 
9574 	trace_kvm_fpu(1);
9575 }
9576 
9577 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)9578 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9579 {
9580 	fpregs_lock();
9581 
9582 	kvm_save_current_fpu(vcpu->arch.guest_fpu);
9583 
9584 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9585 
9586 	fpregs_mark_activate();
9587 	fpregs_unlock();
9588 
9589 	++vcpu->stat.fpu_reload;
9590 	trace_kvm_fpu(0);
9591 }
9592 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)9593 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9594 {
9595 	struct kvm_run *kvm_run = vcpu->run;
9596 	int r;
9597 
9598 	vcpu_load(vcpu);
9599 	kvm_sigset_activate(vcpu);
9600 	kvm_load_guest_fpu(vcpu);
9601 
9602 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9603 		if (kvm_run->immediate_exit) {
9604 			r = -EINTR;
9605 			goto out;
9606 		}
9607 		kvm_vcpu_block(vcpu);
9608 		kvm_apic_accept_events(vcpu);
9609 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9610 		r = -EAGAIN;
9611 		if (signal_pending(current)) {
9612 			r = -EINTR;
9613 			kvm_run->exit_reason = KVM_EXIT_INTR;
9614 			++vcpu->stat.signal_exits;
9615 		}
9616 		goto out;
9617 	}
9618 
9619 	if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9620 		r = -EINVAL;
9621 		goto out;
9622 	}
9623 
9624 	if (kvm_run->kvm_dirty_regs) {
9625 		r = sync_regs(vcpu);
9626 		if (r != 0)
9627 			goto out;
9628 	}
9629 
9630 	/* re-sync apic's tpr */
9631 	if (!lapic_in_kernel(vcpu)) {
9632 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9633 			r = -EINVAL;
9634 			goto out;
9635 		}
9636 	}
9637 
9638 	if (unlikely(vcpu->arch.complete_userspace_io)) {
9639 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9640 		vcpu->arch.complete_userspace_io = NULL;
9641 		r = cui(vcpu);
9642 		if (r <= 0)
9643 			goto out;
9644 	} else
9645 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9646 
9647 	if (kvm_run->immediate_exit)
9648 		r = -EINTR;
9649 	else
9650 		r = vcpu_run(vcpu);
9651 
9652 out:
9653 	kvm_put_guest_fpu(vcpu);
9654 	if (kvm_run->kvm_valid_regs)
9655 		store_regs(vcpu);
9656 	post_kvm_run_save(vcpu);
9657 	kvm_sigset_deactivate(vcpu);
9658 
9659 	vcpu_put(vcpu);
9660 	return r;
9661 }
9662 
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)9663 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9664 {
9665 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9666 		/*
9667 		 * We are here if userspace calls get_regs() in the middle of
9668 		 * instruction emulation. Registers state needs to be copied
9669 		 * back from emulation context to vcpu. Userspace shouldn't do
9670 		 * that usually, but some bad designed PV devices (vmware
9671 		 * backdoor interface) need this to work
9672 		 */
9673 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9674 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9675 	}
9676 	regs->rax = kvm_rax_read(vcpu);
9677 	regs->rbx = kvm_rbx_read(vcpu);
9678 	regs->rcx = kvm_rcx_read(vcpu);
9679 	regs->rdx = kvm_rdx_read(vcpu);
9680 	regs->rsi = kvm_rsi_read(vcpu);
9681 	regs->rdi = kvm_rdi_read(vcpu);
9682 	regs->rsp = kvm_rsp_read(vcpu);
9683 	regs->rbp = kvm_rbp_read(vcpu);
9684 #ifdef CONFIG_X86_64
9685 	regs->r8 = kvm_r8_read(vcpu);
9686 	regs->r9 = kvm_r9_read(vcpu);
9687 	regs->r10 = kvm_r10_read(vcpu);
9688 	regs->r11 = kvm_r11_read(vcpu);
9689 	regs->r12 = kvm_r12_read(vcpu);
9690 	regs->r13 = kvm_r13_read(vcpu);
9691 	regs->r14 = kvm_r14_read(vcpu);
9692 	regs->r15 = kvm_r15_read(vcpu);
9693 #endif
9694 
9695 	regs->rip = kvm_rip_read(vcpu);
9696 	regs->rflags = kvm_get_rflags(vcpu);
9697 }
9698 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)9699 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9700 {
9701 	vcpu_load(vcpu);
9702 	__get_regs(vcpu, regs);
9703 	vcpu_put(vcpu);
9704 	return 0;
9705 }
9706 
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)9707 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9708 {
9709 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9710 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9711 
9712 	kvm_rax_write(vcpu, regs->rax);
9713 	kvm_rbx_write(vcpu, regs->rbx);
9714 	kvm_rcx_write(vcpu, regs->rcx);
9715 	kvm_rdx_write(vcpu, regs->rdx);
9716 	kvm_rsi_write(vcpu, regs->rsi);
9717 	kvm_rdi_write(vcpu, regs->rdi);
9718 	kvm_rsp_write(vcpu, regs->rsp);
9719 	kvm_rbp_write(vcpu, regs->rbp);
9720 #ifdef CONFIG_X86_64
9721 	kvm_r8_write(vcpu, regs->r8);
9722 	kvm_r9_write(vcpu, regs->r9);
9723 	kvm_r10_write(vcpu, regs->r10);
9724 	kvm_r11_write(vcpu, regs->r11);
9725 	kvm_r12_write(vcpu, regs->r12);
9726 	kvm_r13_write(vcpu, regs->r13);
9727 	kvm_r14_write(vcpu, regs->r14);
9728 	kvm_r15_write(vcpu, regs->r15);
9729 #endif
9730 
9731 	kvm_rip_write(vcpu, regs->rip);
9732 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9733 
9734 	vcpu->arch.exception.pending = false;
9735 
9736 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9737 }
9738 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)9739 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9740 {
9741 	vcpu_load(vcpu);
9742 	__set_regs(vcpu, regs);
9743 	vcpu_put(vcpu);
9744 	return 0;
9745 }
9746 
kvm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)9747 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9748 {
9749 	struct kvm_segment cs;
9750 
9751 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9752 	*db = cs.db;
9753 	*l = cs.l;
9754 }
9755 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9756 
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9757 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9758 {
9759 	struct desc_ptr dt;
9760 
9761 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9762 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9763 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9764 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9765 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9766 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9767 
9768 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9769 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9770 
9771 	kvm_x86_ops.get_idt(vcpu, &dt);
9772 	sregs->idt.limit = dt.size;
9773 	sregs->idt.base = dt.address;
9774 	kvm_x86_ops.get_gdt(vcpu, &dt);
9775 	sregs->gdt.limit = dt.size;
9776 	sregs->gdt.base = dt.address;
9777 
9778 	sregs->cr0 = kvm_read_cr0(vcpu);
9779 	sregs->cr2 = vcpu->arch.cr2;
9780 	sregs->cr3 = kvm_read_cr3(vcpu);
9781 	sregs->cr4 = kvm_read_cr4(vcpu);
9782 	sregs->cr8 = kvm_get_cr8(vcpu);
9783 	sregs->efer = vcpu->arch.efer;
9784 	sregs->apic_base = kvm_get_apic_base(vcpu);
9785 
9786 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9787 
9788 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9789 		set_bit(vcpu->arch.interrupt.nr,
9790 			(unsigned long *)sregs->interrupt_bitmap);
9791 }
9792 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9793 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9794 				  struct kvm_sregs *sregs)
9795 {
9796 	vcpu_load(vcpu);
9797 	__get_sregs(vcpu, sregs);
9798 	vcpu_put(vcpu);
9799 	return 0;
9800 }
9801 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)9802 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9803 				    struct kvm_mp_state *mp_state)
9804 {
9805 	vcpu_load(vcpu);
9806 	if (kvm_mpx_supported())
9807 		kvm_load_guest_fpu(vcpu);
9808 
9809 	kvm_apic_accept_events(vcpu);
9810 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
9811 					vcpu->arch.pv.pv_unhalted)
9812 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9813 	else
9814 		mp_state->mp_state = vcpu->arch.mp_state;
9815 
9816 	if (kvm_mpx_supported())
9817 		kvm_put_guest_fpu(vcpu);
9818 	vcpu_put(vcpu);
9819 	return 0;
9820 }
9821 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)9822 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9823 				    struct kvm_mp_state *mp_state)
9824 {
9825 	int ret = -EINVAL;
9826 
9827 	vcpu_load(vcpu);
9828 
9829 	if (!lapic_in_kernel(vcpu) &&
9830 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9831 		goto out;
9832 
9833 	/*
9834 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9835 	 * INIT state; latched init should be reported using
9836 	 * KVM_SET_VCPU_EVENTS, so reject it here.
9837 	 */
9838 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9839 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9840 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9841 		goto out;
9842 
9843 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9844 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9845 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9846 	} else
9847 		vcpu->arch.mp_state = mp_state->mp_state;
9848 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9849 
9850 	ret = 0;
9851 out:
9852 	vcpu_put(vcpu);
9853 	return ret;
9854 }
9855 
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)9856 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9857 		    int reason, bool has_error_code, u32 error_code)
9858 {
9859 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9860 	int ret;
9861 
9862 	init_emulate_ctxt(vcpu);
9863 
9864 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9865 				   has_error_code, error_code);
9866 	if (ret) {
9867 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9868 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9869 		vcpu->run->internal.ndata = 0;
9870 		return 0;
9871 	}
9872 
9873 	kvm_rip_write(vcpu, ctxt->eip);
9874 	kvm_set_rflags(vcpu, ctxt->eflags);
9875 	return 1;
9876 }
9877 EXPORT_SYMBOL_GPL(kvm_task_switch);
9878 
kvm_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9879 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9880 {
9881 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9882 		/*
9883 		 * When EFER.LME and CR0.PG are set, the processor is in
9884 		 * 64-bit mode (though maybe in a 32-bit code segment).
9885 		 * CR4.PAE and EFER.LMA must be set.
9886 		 */
9887 		if (!(sregs->cr4 & X86_CR4_PAE)
9888 		    || !(sregs->efer & EFER_LMA))
9889 			return -EINVAL;
9890 		if (sregs->cr3 & vcpu->arch.cr3_lm_rsvd_bits)
9891 			return -EINVAL;
9892 	} else {
9893 		/*
9894 		 * Not in 64-bit mode: EFER.LMA is clear and the code
9895 		 * segment cannot be 64-bit.
9896 		 */
9897 		if (sregs->efer & EFER_LMA || sregs->cs.l)
9898 			return -EINVAL;
9899 	}
9900 
9901 	return kvm_valid_cr4(vcpu, sregs->cr4);
9902 }
9903 
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9904 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9905 {
9906 	struct msr_data apic_base_msr;
9907 	int mmu_reset_needed = 0;
9908 	int cpuid_update_needed = 0;
9909 	int pending_vec, max_bits, idx;
9910 	struct desc_ptr dt;
9911 	int ret = -EINVAL;
9912 
9913 	if (kvm_valid_sregs(vcpu, sregs))
9914 		goto out;
9915 
9916 	apic_base_msr.data = sregs->apic_base;
9917 	apic_base_msr.host_initiated = true;
9918 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
9919 		goto out;
9920 
9921 	dt.size = sregs->idt.limit;
9922 	dt.address = sregs->idt.base;
9923 	kvm_x86_ops.set_idt(vcpu, &dt);
9924 	dt.size = sregs->gdt.limit;
9925 	dt.address = sregs->gdt.base;
9926 	kvm_x86_ops.set_gdt(vcpu, &dt);
9927 
9928 	vcpu->arch.cr2 = sregs->cr2;
9929 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9930 	vcpu->arch.cr3 = sregs->cr3;
9931 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9932 
9933 	kvm_set_cr8(vcpu, sregs->cr8);
9934 
9935 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9936 	kvm_x86_ops.set_efer(vcpu, sregs->efer);
9937 
9938 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9939 	kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9940 	vcpu->arch.cr0 = sregs->cr0;
9941 
9942 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9943 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9944 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
9945 	kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9946 	if (cpuid_update_needed)
9947 		kvm_update_cpuid_runtime(vcpu);
9948 
9949 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9950 	if (is_pae_paging(vcpu)) {
9951 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9952 		mmu_reset_needed = 1;
9953 	}
9954 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9955 
9956 	if (mmu_reset_needed)
9957 		kvm_mmu_reset_context(vcpu);
9958 
9959 	max_bits = KVM_NR_INTERRUPTS;
9960 	pending_vec = find_first_bit(
9961 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
9962 	if (pending_vec < max_bits) {
9963 		kvm_queue_interrupt(vcpu, pending_vec, false);
9964 		pr_debug("Set back pending irq %d\n", pending_vec);
9965 	}
9966 
9967 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9968 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9969 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9970 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9971 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9972 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9973 
9974 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9975 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9976 
9977 	update_cr8_intercept(vcpu);
9978 
9979 	/* Older userspace won't unhalt the vcpu on reset. */
9980 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9981 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9982 	    !is_protmode(vcpu))
9983 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9984 
9985 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9986 
9987 	ret = 0;
9988 out:
9989 	return ret;
9990 }
9991 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9992 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9993 				  struct kvm_sregs *sregs)
9994 {
9995 	int ret;
9996 
9997 	vcpu_load(vcpu);
9998 	ret = __set_sregs(vcpu, sregs);
9999 	vcpu_put(vcpu);
10000 	return ret;
10001 }
10002 
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)10003 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10004 					struct kvm_guest_debug *dbg)
10005 {
10006 	unsigned long rflags;
10007 	int i, r;
10008 
10009 	vcpu_load(vcpu);
10010 
10011 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10012 		r = -EBUSY;
10013 		if (vcpu->arch.exception.pending)
10014 			goto out;
10015 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10016 			kvm_queue_exception(vcpu, DB_VECTOR);
10017 		else
10018 			kvm_queue_exception(vcpu, BP_VECTOR);
10019 	}
10020 
10021 	/*
10022 	 * Read rflags as long as potentially injected trace flags are still
10023 	 * filtered out.
10024 	 */
10025 	rflags = kvm_get_rflags(vcpu);
10026 
10027 	vcpu->guest_debug = dbg->control;
10028 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10029 		vcpu->guest_debug = 0;
10030 
10031 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10032 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
10033 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10034 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10035 	} else {
10036 		for (i = 0; i < KVM_NR_DB_REGS; i++)
10037 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10038 	}
10039 	kvm_update_dr7(vcpu);
10040 
10041 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10042 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
10043 			get_segment_base(vcpu, VCPU_SREG_CS);
10044 
10045 	/*
10046 	 * Trigger an rflags update that will inject or remove the trace
10047 	 * flags.
10048 	 */
10049 	kvm_set_rflags(vcpu, rflags);
10050 
10051 	kvm_x86_ops.update_exception_bitmap(vcpu);
10052 
10053 	r = 0;
10054 
10055 out:
10056 	vcpu_put(vcpu);
10057 	return r;
10058 }
10059 
10060 /*
10061  * Translate a guest virtual address to a guest physical address.
10062  */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)10063 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10064 				    struct kvm_translation *tr)
10065 {
10066 	unsigned long vaddr = tr->linear_address;
10067 	gpa_t gpa;
10068 	int idx;
10069 
10070 	vcpu_load(vcpu);
10071 
10072 	idx = srcu_read_lock(&vcpu->kvm->srcu);
10073 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10074 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
10075 	tr->physical_address = gpa;
10076 	tr->valid = gpa != UNMAPPED_GVA;
10077 	tr->writeable = 1;
10078 	tr->usermode = 0;
10079 
10080 	vcpu_put(vcpu);
10081 	return 0;
10082 }
10083 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)10084 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10085 {
10086 	struct fxregs_state *fxsave;
10087 
10088 	vcpu_load(vcpu);
10089 
10090 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10091 	memcpy(fpu->fpr, fxsave->st_space, 128);
10092 	fpu->fcw = fxsave->cwd;
10093 	fpu->fsw = fxsave->swd;
10094 	fpu->ftwx = fxsave->twd;
10095 	fpu->last_opcode = fxsave->fop;
10096 	fpu->last_ip = fxsave->rip;
10097 	fpu->last_dp = fxsave->rdp;
10098 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10099 
10100 	vcpu_put(vcpu);
10101 	return 0;
10102 }
10103 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)10104 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10105 {
10106 	struct fxregs_state *fxsave;
10107 
10108 	vcpu_load(vcpu);
10109 
10110 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10111 
10112 	memcpy(fxsave->st_space, fpu->fpr, 128);
10113 	fxsave->cwd = fpu->fcw;
10114 	fxsave->swd = fpu->fsw;
10115 	fxsave->twd = fpu->ftwx;
10116 	fxsave->fop = fpu->last_opcode;
10117 	fxsave->rip = fpu->last_ip;
10118 	fxsave->rdp = fpu->last_dp;
10119 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10120 
10121 	vcpu_put(vcpu);
10122 	return 0;
10123 }
10124 
store_regs(struct kvm_vcpu * vcpu)10125 static void store_regs(struct kvm_vcpu *vcpu)
10126 {
10127 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10128 
10129 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10130 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
10131 
10132 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10133 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10134 
10135 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10136 		kvm_vcpu_ioctl_x86_get_vcpu_events(
10137 				vcpu, &vcpu->run->s.regs.events);
10138 }
10139 
sync_regs(struct kvm_vcpu * vcpu)10140 static int sync_regs(struct kvm_vcpu *vcpu)
10141 {
10142 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
10143 		return -EINVAL;
10144 
10145 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10146 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
10147 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10148 	}
10149 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10150 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10151 			return -EINVAL;
10152 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10153 	}
10154 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10155 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10156 				vcpu, &vcpu->run->s.regs.events))
10157 			return -EINVAL;
10158 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10159 	}
10160 
10161 	return 0;
10162 }
10163 
fx_init(struct kvm_vcpu * vcpu)10164 static void fx_init(struct kvm_vcpu *vcpu)
10165 {
10166 	fpstate_init(&vcpu->arch.guest_fpu->state);
10167 	if (boot_cpu_has(X86_FEATURE_XSAVES))
10168 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10169 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
10170 
10171 	/*
10172 	 * Ensure guest xcr0 is valid for loading
10173 	 */
10174 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10175 
10176 	vcpu->arch.cr0 |= X86_CR0_ET;
10177 }
10178 
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)10179 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10180 {
10181 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10182 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10183 			     "guest TSC will not be reliable\n");
10184 
10185 	return 0;
10186 }
10187 
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)10188 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10189 {
10190 	struct page *page;
10191 	int r;
10192 
10193 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10194 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10195 	else
10196 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10197 
10198 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
10199 
10200 	r = kvm_mmu_create(vcpu);
10201 	if (r < 0)
10202 		return r;
10203 
10204 	if (irqchip_in_kernel(vcpu->kvm)) {
10205 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10206 		if (r < 0)
10207 			goto fail_mmu_destroy;
10208 		if (kvm_apicv_activated(vcpu->kvm))
10209 			vcpu->arch.apicv_active = true;
10210 	} else
10211 		static_key_slow_inc(&kvm_no_apic_vcpu);
10212 
10213 	r = -ENOMEM;
10214 
10215 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
10216 	if (!page)
10217 		goto fail_free_lapic;
10218 	vcpu->arch.pio_data = page_address(page);
10219 
10220 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10221 				       GFP_KERNEL_ACCOUNT);
10222 	if (!vcpu->arch.mce_banks)
10223 		goto fail_free_pio_data;
10224 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10225 
10226 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10227 				GFP_KERNEL_ACCOUNT))
10228 		goto fail_free_mce_banks;
10229 
10230 	if (!alloc_emulate_ctxt(vcpu))
10231 		goto free_wbinvd_dirty_mask;
10232 
10233 	vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10234 						GFP_KERNEL_ACCOUNT);
10235 	if (!vcpu->arch.user_fpu) {
10236 		pr_err("kvm: failed to allocate userspace's fpu\n");
10237 		goto free_emulate_ctxt;
10238 	}
10239 
10240 	vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10241 						 GFP_KERNEL_ACCOUNT);
10242 	if (!vcpu->arch.guest_fpu) {
10243 		pr_err("kvm: failed to allocate vcpu's fpu\n");
10244 		goto free_user_fpu;
10245 	}
10246 	fx_init(vcpu);
10247 
10248 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10249 	vcpu->arch.cr3_lm_rsvd_bits = rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
10250 
10251 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10252 
10253 	kvm_async_pf_hash_reset(vcpu);
10254 	kvm_pmu_init(vcpu);
10255 
10256 	vcpu->arch.pending_external_vector = -1;
10257 	vcpu->arch.preempted_in_kernel = false;
10258 
10259 	kvm_hv_vcpu_init(vcpu);
10260 
10261 	r = kvm_x86_ops.vcpu_create(vcpu);
10262 	if (r)
10263 		goto free_guest_fpu;
10264 
10265 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10266 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10267 	kvm_vcpu_mtrr_init(vcpu);
10268 	vcpu_load(vcpu);
10269 	kvm_vcpu_reset(vcpu, false);
10270 	kvm_init_mmu(vcpu, false);
10271 	vcpu_put(vcpu);
10272 	return 0;
10273 
10274 free_guest_fpu:
10275 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10276 free_user_fpu:
10277 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10278 free_emulate_ctxt:
10279 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10280 free_wbinvd_dirty_mask:
10281 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10282 fail_free_mce_banks:
10283 	kfree(vcpu->arch.mce_banks);
10284 fail_free_pio_data:
10285 	free_page((unsigned long)vcpu->arch.pio_data);
10286 fail_free_lapic:
10287 	kvm_free_lapic(vcpu);
10288 fail_mmu_destroy:
10289 	kvm_mmu_destroy(vcpu);
10290 	return r;
10291 }
10292 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)10293 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10294 {
10295 	struct kvm *kvm = vcpu->kvm;
10296 
10297 	kvm_hv_vcpu_postcreate(vcpu);
10298 
10299 	if (mutex_lock_killable(&vcpu->mutex))
10300 		return;
10301 	vcpu_load(vcpu);
10302 	kvm_synchronize_tsc(vcpu, 0);
10303 	vcpu_put(vcpu);
10304 
10305 	/* poll control enabled by default */
10306 	vcpu->arch.msr_kvm_poll_control = 1;
10307 
10308 	mutex_unlock(&vcpu->mutex);
10309 
10310 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10311 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10312 						KVMCLOCK_SYNC_PERIOD);
10313 }
10314 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)10315 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10316 {
10317 	int idx;
10318 
10319 	kvmclock_reset(vcpu);
10320 
10321 	kvm_x86_ops.vcpu_free(vcpu);
10322 
10323 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10324 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10325 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10326 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10327 
10328 	kvm_hv_vcpu_uninit(vcpu);
10329 	kvm_pmu_destroy(vcpu);
10330 	kfree(vcpu->arch.mce_banks);
10331 	kvm_free_lapic(vcpu);
10332 	idx = srcu_read_lock(&vcpu->kvm->srcu);
10333 	kvm_mmu_destroy(vcpu);
10334 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
10335 	free_page((unsigned long)vcpu->arch.pio_data);
10336 	kvfree(vcpu->arch.cpuid_entries);
10337 	if (!lapic_in_kernel(vcpu))
10338 		static_key_slow_dec(&kvm_no_apic_vcpu);
10339 }
10340 
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)10341 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10342 {
10343 	kvm_lapic_reset(vcpu, init_event);
10344 
10345 	vcpu->arch.hflags = 0;
10346 
10347 	vcpu->arch.smi_pending = 0;
10348 	vcpu->arch.smi_count = 0;
10349 	atomic_set(&vcpu->arch.nmi_queued, 0);
10350 	vcpu->arch.nmi_pending = 0;
10351 	vcpu->arch.nmi_injected = false;
10352 	kvm_clear_interrupt_queue(vcpu);
10353 	kvm_clear_exception_queue(vcpu);
10354 
10355 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10356 	kvm_update_dr0123(vcpu);
10357 	vcpu->arch.dr6 = DR6_INIT;
10358 	vcpu->arch.dr7 = DR7_FIXED_1;
10359 	kvm_update_dr7(vcpu);
10360 
10361 	vcpu->arch.cr2 = 0;
10362 
10363 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10364 	vcpu->arch.apf.msr_en_val = 0;
10365 	vcpu->arch.apf.msr_int_val = 0;
10366 	vcpu->arch.st.msr_val = 0;
10367 
10368 	kvmclock_reset(vcpu);
10369 
10370 	kvm_clear_async_pf_completion_queue(vcpu);
10371 	kvm_async_pf_hash_reset(vcpu);
10372 	vcpu->arch.apf.halted = false;
10373 
10374 	if (kvm_mpx_supported()) {
10375 		void *mpx_state_buffer;
10376 
10377 		/*
10378 		 * To avoid have the INIT path from kvm_apic_has_events() that be
10379 		 * called with loaded FPU and does not let userspace fix the state.
10380 		 */
10381 		if (init_event)
10382 			kvm_put_guest_fpu(vcpu);
10383 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10384 					XFEATURE_BNDREGS);
10385 		if (mpx_state_buffer)
10386 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10387 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10388 					XFEATURE_BNDCSR);
10389 		if (mpx_state_buffer)
10390 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10391 		if (init_event)
10392 			kvm_load_guest_fpu(vcpu);
10393 	}
10394 
10395 	if (!init_event) {
10396 		kvm_pmu_reset(vcpu);
10397 		vcpu->arch.smbase = 0x30000;
10398 
10399 		vcpu->arch.msr_misc_features_enables = 0;
10400 
10401 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10402 	}
10403 
10404 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10405 	vcpu->arch.regs_avail = ~0;
10406 	vcpu->arch.regs_dirty = ~0;
10407 
10408 	vcpu->arch.ia32_xss = 0;
10409 
10410 	kvm_x86_ops.vcpu_reset(vcpu, init_event);
10411 }
10412 
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)10413 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10414 {
10415 	struct kvm_segment cs;
10416 
10417 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10418 	cs.selector = vector << 8;
10419 	cs.base = vector << 12;
10420 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10421 	kvm_rip_write(vcpu, 0);
10422 }
10423 
kvm_arch_hardware_enable(void)10424 int kvm_arch_hardware_enable(void)
10425 {
10426 	struct kvm *kvm;
10427 	struct kvm_vcpu *vcpu;
10428 	int i;
10429 	int ret;
10430 	u64 local_tsc;
10431 	u64 max_tsc = 0;
10432 	bool stable, backwards_tsc = false;
10433 
10434 	kvm_user_return_msr_cpu_online();
10435 	ret = kvm_x86_ops.hardware_enable();
10436 	if (ret != 0)
10437 		return ret;
10438 
10439 	local_tsc = rdtsc();
10440 	stable = !kvm_check_tsc_unstable();
10441 	list_for_each_entry(kvm, &vm_list, vm_list) {
10442 		kvm_for_each_vcpu(i, vcpu, kvm) {
10443 			if (!stable && vcpu->cpu == smp_processor_id())
10444 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10445 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10446 				backwards_tsc = true;
10447 				if (vcpu->arch.last_host_tsc > max_tsc)
10448 					max_tsc = vcpu->arch.last_host_tsc;
10449 			}
10450 		}
10451 	}
10452 
10453 	/*
10454 	 * Sometimes, even reliable TSCs go backwards.  This happens on
10455 	 * platforms that reset TSC during suspend or hibernate actions, but
10456 	 * maintain synchronization.  We must compensate.  Fortunately, we can
10457 	 * detect that condition here, which happens early in CPU bringup,
10458 	 * before any KVM threads can be running.  Unfortunately, we can't
10459 	 * bring the TSCs fully up to date with real time, as we aren't yet far
10460 	 * enough into CPU bringup that we know how much real time has actually
10461 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10462 	 * variables that haven't been updated yet.
10463 	 *
10464 	 * So we simply find the maximum observed TSC above, then record the
10465 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
10466 	 * the adjustment will be applied.  Note that we accumulate
10467 	 * adjustments, in case multiple suspend cycles happen before some VCPU
10468 	 * gets a chance to run again.  In the event that no KVM threads get a
10469 	 * chance to run, we will miss the entire elapsed period, as we'll have
10470 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10471 	 * loose cycle time.  This isn't too big a deal, since the loss will be
10472 	 * uniform across all VCPUs (not to mention the scenario is extremely
10473 	 * unlikely). It is possible that a second hibernate recovery happens
10474 	 * much faster than a first, causing the observed TSC here to be
10475 	 * smaller; this would require additional padding adjustment, which is
10476 	 * why we set last_host_tsc to the local tsc observed here.
10477 	 *
10478 	 * N.B. - this code below runs only on platforms with reliable TSC,
10479 	 * as that is the only way backwards_tsc is set above.  Also note
10480 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10481 	 * have the same delta_cyc adjustment applied if backwards_tsc
10482 	 * is detected.  Note further, this adjustment is only done once,
10483 	 * as we reset last_host_tsc on all VCPUs to stop this from being
10484 	 * called multiple times (one for each physical CPU bringup).
10485 	 *
10486 	 * Platforms with unreliable TSCs don't have to deal with this, they
10487 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
10488 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
10489 	 * guarantee that they stay in perfect synchronization.
10490 	 */
10491 	if (backwards_tsc) {
10492 		u64 delta_cyc = max_tsc - local_tsc;
10493 		list_for_each_entry(kvm, &vm_list, vm_list) {
10494 			kvm->arch.backwards_tsc_observed = true;
10495 			kvm_for_each_vcpu(i, vcpu, kvm) {
10496 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
10497 				vcpu->arch.last_host_tsc = local_tsc;
10498 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10499 			}
10500 
10501 			/*
10502 			 * We have to disable TSC offset matching.. if you were
10503 			 * booting a VM while issuing an S4 host suspend....
10504 			 * you may have some problem.  Solving this issue is
10505 			 * left as an exercise to the reader.
10506 			 */
10507 			kvm->arch.last_tsc_nsec = 0;
10508 			kvm->arch.last_tsc_write = 0;
10509 		}
10510 
10511 	}
10512 	return 0;
10513 }
10514 
kvm_arch_hardware_disable(void)10515 void kvm_arch_hardware_disable(void)
10516 {
10517 	kvm_x86_ops.hardware_disable();
10518 	drop_user_return_notifiers();
10519 }
10520 
kvm_arch_hardware_setup(void * opaque)10521 int kvm_arch_hardware_setup(void *opaque)
10522 {
10523 	struct kvm_x86_init_ops *ops = opaque;
10524 	int r;
10525 
10526 	rdmsrl_safe(MSR_EFER, &host_efer);
10527 
10528 	if (boot_cpu_has(X86_FEATURE_XSAVES))
10529 		rdmsrl(MSR_IA32_XSS, host_xss);
10530 
10531 	r = ops->hardware_setup();
10532 	if (r != 0)
10533 		return r;
10534 
10535 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10536 
10537 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10538 		supported_xss = 0;
10539 
10540 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10541 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10542 #undef __kvm_cpu_cap_has
10543 
10544 	if (kvm_has_tsc_control) {
10545 		/*
10546 		 * Make sure the user can only configure tsc_khz values that
10547 		 * fit into a signed integer.
10548 		 * A min value is not calculated because it will always
10549 		 * be 1 on all machines.
10550 		 */
10551 		u64 max = min(0x7fffffffULL,
10552 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10553 		kvm_max_guest_tsc_khz = max;
10554 
10555 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10556 	}
10557 
10558 	kvm_init_msr_list();
10559 	return 0;
10560 }
10561 
kvm_arch_hardware_unsetup(void)10562 void kvm_arch_hardware_unsetup(void)
10563 {
10564 	kvm_x86_ops.hardware_unsetup();
10565 }
10566 
kvm_arch_check_processor_compat(void * opaque)10567 int kvm_arch_check_processor_compat(void *opaque)
10568 {
10569 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10570 	struct kvm_x86_init_ops *ops = opaque;
10571 
10572 	WARN_ON(!irqs_disabled());
10573 
10574 	if (__cr4_reserved_bits(cpu_has, c) !=
10575 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10576 		return -EIO;
10577 
10578 	return ops->check_processor_compatibility();
10579 }
10580 
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)10581 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10582 {
10583 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10584 }
10585 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10586 
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)10587 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10588 {
10589 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10590 }
10591 
10592 struct static_key kvm_no_apic_vcpu __read_mostly;
10593 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
10594 
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)10595 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10596 {
10597 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10598 
10599 	vcpu->arch.l1tf_flush_l1d = true;
10600 	if (pmu->version && unlikely(pmu->event_count)) {
10601 		pmu->need_cleanup = true;
10602 		kvm_make_request(KVM_REQ_PMU, vcpu);
10603 	}
10604 	kvm_x86_ops.sched_in(vcpu, cpu);
10605 }
10606 
kvm_arch_free_vm(struct kvm * kvm)10607 void kvm_arch_free_vm(struct kvm *kvm)
10608 {
10609 	kfree(kvm->arch.hyperv.hv_pa_pg);
10610 	vfree(kvm);
10611 }
10612 
10613 
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)10614 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10615 {
10616 	int ret;
10617 
10618 	if (type)
10619 		return -EINVAL;
10620 
10621 	ret = kvm_page_track_init(kvm);
10622 	if (ret)
10623 		return ret;
10624 
10625 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10626 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10627 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10628 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10629 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10630 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10631 
10632 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10633 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10634 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10635 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10636 		&kvm->arch.irq_sources_bitmap);
10637 
10638 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10639 	mutex_init(&kvm->arch.apic_map_lock);
10640 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10641 
10642 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10643 	pvclock_update_vm_gtod_copy(kvm);
10644 
10645 	kvm->arch.guest_can_read_msr_platform_info = true;
10646 
10647 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10648 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10649 
10650 	kvm_hv_init_vm(kvm);
10651 	kvm_mmu_init_vm(kvm);
10652 
10653 	return kvm_x86_ops.vm_init(kvm);
10654 }
10655 
kvm_arch_post_init_vm(struct kvm * kvm)10656 int kvm_arch_post_init_vm(struct kvm *kvm)
10657 {
10658 	return kvm_mmu_post_init_vm(kvm);
10659 }
10660 
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)10661 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10662 {
10663 	vcpu_load(vcpu);
10664 	kvm_mmu_unload(vcpu);
10665 	vcpu_put(vcpu);
10666 }
10667 
kvm_free_vcpus(struct kvm * kvm)10668 static void kvm_free_vcpus(struct kvm *kvm)
10669 {
10670 	unsigned int i;
10671 	struct kvm_vcpu *vcpu;
10672 
10673 	/*
10674 	 * Unpin any mmu pages first.
10675 	 */
10676 	kvm_for_each_vcpu(i, vcpu, kvm) {
10677 		kvm_clear_async_pf_completion_queue(vcpu);
10678 		kvm_unload_vcpu_mmu(vcpu);
10679 	}
10680 	kvm_for_each_vcpu(i, vcpu, kvm)
10681 		kvm_vcpu_destroy(vcpu);
10682 
10683 	mutex_lock(&kvm->lock);
10684 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10685 		kvm->vcpus[i] = NULL;
10686 
10687 	atomic_set(&kvm->online_vcpus, 0);
10688 	mutex_unlock(&kvm->lock);
10689 }
10690 
kvm_arch_sync_events(struct kvm * kvm)10691 void kvm_arch_sync_events(struct kvm *kvm)
10692 {
10693 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10694 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10695 	kvm_free_pit(kvm);
10696 }
10697 
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)10698 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
10699 {
10700 	int i, r;
10701 	unsigned long hva, old_npages;
10702 	struct kvm_memslots *slots = kvm_memslots(kvm);
10703 	struct kvm_memory_slot *slot;
10704 
10705 	/* Called with kvm->slots_lock held.  */
10706 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10707 		return -EINVAL;
10708 
10709 	slot = id_to_memslot(slots, id);
10710 	if (size) {
10711 		if (slot && slot->npages)
10712 			return -EEXIST;
10713 
10714 		/*
10715 		 * MAP_SHARED to prevent internal slot pages from being moved
10716 		 * by fork()/COW.
10717 		 */
10718 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10719 			      MAP_SHARED | MAP_ANONYMOUS, 0);
10720 		if (IS_ERR((void *)hva))
10721 			return PTR_ERR((void *)hva);
10722 	} else {
10723 		if (!slot || !slot->npages)
10724 			return 0;
10725 
10726 		old_npages = slot->npages;
10727 		hva = 0;
10728 	}
10729 
10730 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10731 		struct kvm_userspace_memory_region m;
10732 
10733 		m.slot = id | (i << 16);
10734 		m.flags = 0;
10735 		m.guest_phys_addr = gpa;
10736 		m.userspace_addr = hva;
10737 		m.memory_size = size;
10738 		r = __kvm_set_memory_region(kvm, &m);
10739 		if (r < 0)
10740 			return r;
10741 	}
10742 
10743 	if (!size)
10744 		vm_munmap(hva, old_npages * PAGE_SIZE);
10745 
10746 	return 0;
10747 }
10748 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10749 
kvm_arch_pre_destroy_vm(struct kvm * kvm)10750 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10751 {
10752 	kvm_mmu_pre_destroy_vm(kvm);
10753 }
10754 
kvm_arch_destroy_vm(struct kvm * kvm)10755 void kvm_arch_destroy_vm(struct kvm *kvm)
10756 {
10757 	if (current->mm == kvm->mm) {
10758 		/*
10759 		 * Free memory regions allocated on behalf of userspace,
10760 		 * unless the the memory map has changed due to process exit
10761 		 * or fd copying.
10762 		 */
10763 		mutex_lock(&kvm->slots_lock);
10764 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10765 					0, 0);
10766 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10767 					0, 0);
10768 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10769 		mutex_unlock(&kvm->slots_lock);
10770 	}
10771 	if (kvm_x86_ops.vm_destroy)
10772 		kvm_x86_ops.vm_destroy(kvm);
10773 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
10774 	kvm_pic_destroy(kvm);
10775 	kvm_ioapic_destroy(kvm);
10776 	kvm_free_vcpus(kvm);
10777 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10778 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10779 	kvm_mmu_uninit_vm(kvm);
10780 	kvm_page_track_cleanup(kvm);
10781 	kvm_hv_destroy_vm(kvm);
10782 }
10783 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)10784 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10785 {
10786 	int i;
10787 
10788 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10789 		kvfree(slot->arch.rmap[i]);
10790 		slot->arch.rmap[i] = NULL;
10791 
10792 		if (i == 0)
10793 			continue;
10794 
10795 		kvfree(slot->arch.lpage_info[i - 1]);
10796 		slot->arch.lpage_info[i - 1] = NULL;
10797 	}
10798 
10799 	kvm_page_track_free_memslot(slot);
10800 }
10801 
kvm_alloc_memslot_metadata(struct kvm_memory_slot * slot,unsigned long npages)10802 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10803 				      unsigned long npages)
10804 {
10805 	int i;
10806 
10807 	/*
10808 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10809 	 * old arrays will be freed by __kvm_set_memory_region() if installing
10810 	 * the new memslot is successful.
10811 	 */
10812 	memset(&slot->arch, 0, sizeof(slot->arch));
10813 
10814 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10815 		struct kvm_lpage_info *linfo;
10816 		unsigned long ugfn;
10817 		int lpages;
10818 		int level = i + 1;
10819 
10820 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
10821 				      slot->base_gfn, level) + 1;
10822 
10823 		slot->arch.rmap[i] =
10824 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10825 				 GFP_KERNEL_ACCOUNT);
10826 		if (!slot->arch.rmap[i])
10827 			goto out_free;
10828 		if (i == 0)
10829 			continue;
10830 
10831 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10832 		if (!linfo)
10833 			goto out_free;
10834 
10835 		slot->arch.lpage_info[i - 1] = linfo;
10836 
10837 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10838 			linfo[0].disallow_lpage = 1;
10839 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10840 			linfo[lpages - 1].disallow_lpage = 1;
10841 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
10842 		/*
10843 		 * If the gfn and userspace address are not aligned wrt each
10844 		 * other, disable large page support for this slot.
10845 		 */
10846 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10847 			unsigned long j;
10848 
10849 			for (j = 0; j < lpages; ++j)
10850 				linfo[j].disallow_lpage = 1;
10851 		}
10852 	}
10853 
10854 	if (kvm_page_track_create_memslot(slot, npages))
10855 		goto out_free;
10856 
10857 	return 0;
10858 
10859 out_free:
10860 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10861 		kvfree(slot->arch.rmap[i]);
10862 		slot->arch.rmap[i] = NULL;
10863 		if (i == 0)
10864 			continue;
10865 
10866 		kvfree(slot->arch.lpage_info[i - 1]);
10867 		slot->arch.lpage_info[i - 1] = NULL;
10868 	}
10869 	return -ENOMEM;
10870 }
10871 
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)10872 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10873 {
10874 	struct kvm_vcpu *vcpu;
10875 	int i;
10876 
10877 	/*
10878 	 * memslots->generation has been incremented.
10879 	 * mmio generation may have reached its maximum value.
10880 	 */
10881 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10882 
10883 	/* Force re-initialization of steal_time cache */
10884 	kvm_for_each_vcpu(i, vcpu, kvm)
10885 		kvm_vcpu_kick(vcpu);
10886 }
10887 
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)10888 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10889 				struct kvm_memory_slot *memslot,
10890 				const struct kvm_userspace_memory_region *mem,
10891 				enum kvm_mr_change change)
10892 {
10893 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10894 		return kvm_alloc_memslot_metadata(memslot,
10895 						  mem->memory_size >> PAGE_SHIFT);
10896 	return 0;
10897 }
10898 
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)10899 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10900 				     struct kvm_memory_slot *old,
10901 				     struct kvm_memory_slot *new,
10902 				     enum kvm_mr_change change)
10903 {
10904 	/*
10905 	 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10906 	 * See comments below.
10907 	 */
10908 	if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10909 		return;
10910 
10911 	/*
10912 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
10913 	 * sptes have to be split.  If live migration is successful, the guest
10914 	 * in the source machine will be destroyed and large sptes will be
10915 	 * created in the destination. However, if the guest continues to run
10916 	 * in the source machine (for example if live migration fails), small
10917 	 * sptes will remain around and cause bad performance.
10918 	 *
10919 	 * Scan sptes if dirty logging has been stopped, dropping those
10920 	 * which can be collapsed into a single large-page spte.  Later
10921 	 * page faults will create the large-page sptes.
10922 	 *
10923 	 * There is no need to do this in any of the following cases:
10924 	 * CREATE:      No dirty mappings will already exist.
10925 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
10926 	 *		kvm_arch_flush_shadow_memslot()
10927 	 */
10928 	if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10929 	    !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10930 		kvm_mmu_zap_collapsible_sptes(kvm, new);
10931 
10932 	/*
10933 	 * Enable or disable dirty logging for the slot.
10934 	 *
10935 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10936 	 * slot have been zapped so no dirty logging updates are needed for
10937 	 * the old slot.
10938 	 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10939 	 * any mappings that might be created in it will consume the
10940 	 * properties of the new slot and do not need to be updated here.
10941 	 *
10942 	 * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10943 	 * called to enable/disable dirty logging.
10944 	 *
10945 	 * When disabling dirty logging with PML enabled, the D-bit is set
10946 	 * for sptes in the slot in order to prevent unnecessary GPA
10947 	 * logging in the PML buffer (and potential PML buffer full VMEXIT).
10948 	 * This guarantees leaving PML enabled for the guest's lifetime
10949 	 * won't have any additional overhead from PML when the guest is
10950 	 * running with dirty logging disabled.
10951 	 *
10952 	 * When enabling dirty logging, large sptes are write-protected
10953 	 * so they can be split on first write.  New large sptes cannot
10954 	 * be created for this slot until the end of the logging.
10955 	 * See the comments in fast_page_fault().
10956 	 * For small sptes, nothing is done if the dirty log is in the
10957 	 * initial-all-set state.  Otherwise, depending on whether pml
10958 	 * is enabled the D-bit or the W-bit will be cleared.
10959 	 */
10960 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10961 		if (kvm_x86_ops.slot_enable_log_dirty) {
10962 			kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10963 		} else {
10964 			int level =
10965 				kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10966 				PG_LEVEL_2M : PG_LEVEL_4K;
10967 
10968 			/*
10969 			 * If we're with initial-all-set, we don't need
10970 			 * to write protect any small page because
10971 			 * they're reported as dirty already.  However
10972 			 * we still need to write-protect huge pages
10973 			 * so that the page split can happen lazily on
10974 			 * the first write to the huge page.
10975 			 */
10976 			kvm_mmu_slot_remove_write_access(kvm, new, level);
10977 		}
10978 	} else {
10979 		if (kvm_x86_ops.slot_disable_log_dirty)
10980 			kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10981 	}
10982 }
10983 
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)10984 void kvm_arch_commit_memory_region(struct kvm *kvm,
10985 				const struct kvm_userspace_memory_region *mem,
10986 				struct kvm_memory_slot *old,
10987 				const struct kvm_memory_slot *new,
10988 				enum kvm_mr_change change)
10989 {
10990 	if (!kvm->arch.n_requested_mmu_pages)
10991 		kvm_mmu_change_mmu_pages(kvm,
10992 				kvm_mmu_calculate_default_mmu_pages(kvm));
10993 
10994 	/*
10995 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
10996 	 */
10997 	kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10998 
10999 	/* Free the arrays associated with the old memslot. */
11000 	if (change == KVM_MR_MOVE)
11001 		kvm_arch_free_memslot(kvm, old);
11002 }
11003 
kvm_arch_flush_shadow_all(struct kvm * kvm)11004 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11005 {
11006 	kvm_mmu_zap_all(kvm);
11007 }
11008 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)11009 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11010 				   struct kvm_memory_slot *slot)
11011 {
11012 	kvm_page_track_flush_slot(kvm, slot);
11013 }
11014 
kvm_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)11015 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11016 {
11017 	return (is_guest_mode(vcpu) &&
11018 			kvm_x86_ops.guest_apic_has_interrupt &&
11019 			kvm_x86_ops.guest_apic_has_interrupt(vcpu));
11020 }
11021 
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)11022 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11023 {
11024 	if (!list_empty_careful(&vcpu->async_pf.done))
11025 		return true;
11026 
11027 	if (kvm_apic_has_events(vcpu))
11028 		return true;
11029 
11030 	if (vcpu->arch.pv.pv_unhalted)
11031 		return true;
11032 
11033 	if (vcpu->arch.exception.pending)
11034 		return true;
11035 
11036 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11037 	    (vcpu->arch.nmi_pending &&
11038 	     kvm_x86_ops.nmi_allowed(vcpu, false)))
11039 		return true;
11040 
11041 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11042 	    (vcpu->arch.smi_pending &&
11043 	     kvm_x86_ops.smi_allowed(vcpu, false)))
11044 		return true;
11045 
11046 	if (kvm_arch_interrupt_allowed(vcpu) &&
11047 	    (kvm_cpu_has_interrupt(vcpu) ||
11048 	    kvm_guest_apic_has_interrupt(vcpu)))
11049 		return true;
11050 
11051 	if (kvm_hv_has_stimer_pending(vcpu))
11052 		return true;
11053 
11054 	if (is_guest_mode(vcpu) &&
11055 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
11056 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11057 		return true;
11058 
11059 	return false;
11060 }
11061 
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)11062 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11063 {
11064 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11065 }
11066 
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)11067 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11068 {
11069 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11070 		return true;
11071 
11072 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11073 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
11074 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
11075 		return true;
11076 
11077 	if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
11078 		return true;
11079 
11080 	return false;
11081 }
11082 
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)11083 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11084 {
11085 	return vcpu->arch.preempted_in_kernel;
11086 }
11087 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)11088 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11089 {
11090 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11091 }
11092 
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)11093 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11094 {
11095 	return kvm_x86_ops.interrupt_allowed(vcpu, false);
11096 }
11097 
kvm_get_linear_rip(struct kvm_vcpu * vcpu)11098 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11099 {
11100 	if (is_64_bit_mode(vcpu))
11101 		return kvm_rip_read(vcpu);
11102 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11103 		     kvm_rip_read(vcpu));
11104 }
11105 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11106 
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)11107 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11108 {
11109 	return kvm_get_linear_rip(vcpu) == linear_rip;
11110 }
11111 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11112 
kvm_get_rflags(struct kvm_vcpu * vcpu)11113 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11114 {
11115 	unsigned long rflags;
11116 
11117 	rflags = kvm_x86_ops.get_rflags(vcpu);
11118 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11119 		rflags &= ~X86_EFLAGS_TF;
11120 	return rflags;
11121 }
11122 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11123 
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)11124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11125 {
11126 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11127 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11128 		rflags |= X86_EFLAGS_TF;
11129 	kvm_x86_ops.set_rflags(vcpu, rflags);
11130 }
11131 
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)11132 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11133 {
11134 	__kvm_set_rflags(vcpu, rflags);
11135 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11136 }
11137 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11138 
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)11139 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11140 {
11141 	int r;
11142 
11143 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11144 	      work->wakeup_all)
11145 		return;
11146 
11147 	r = kvm_mmu_reload(vcpu);
11148 	if (unlikely(r))
11149 		return;
11150 
11151 	if (!vcpu->arch.mmu->direct_map &&
11152 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11153 		return;
11154 
11155 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11156 }
11157 
kvm_async_pf_hash_fn(gfn_t gfn)11158 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11159 {
11160 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11161 
11162 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11163 }
11164 
kvm_async_pf_next_probe(u32 key)11165 static inline u32 kvm_async_pf_next_probe(u32 key)
11166 {
11167 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11168 }
11169 
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)11170 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11171 {
11172 	u32 key = kvm_async_pf_hash_fn(gfn);
11173 
11174 	while (vcpu->arch.apf.gfns[key] != ~0)
11175 		key = kvm_async_pf_next_probe(key);
11176 
11177 	vcpu->arch.apf.gfns[key] = gfn;
11178 }
11179 
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)11180 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11181 {
11182 	int i;
11183 	u32 key = kvm_async_pf_hash_fn(gfn);
11184 
11185 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
11186 		     (vcpu->arch.apf.gfns[key] != gfn &&
11187 		      vcpu->arch.apf.gfns[key] != ~0); i++)
11188 		key = kvm_async_pf_next_probe(key);
11189 
11190 	return key;
11191 }
11192 
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)11193 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11194 {
11195 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11196 }
11197 
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)11198 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11199 {
11200 	u32 i, j, k;
11201 
11202 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11203 
11204 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11205 		return;
11206 
11207 	while (true) {
11208 		vcpu->arch.apf.gfns[i] = ~0;
11209 		do {
11210 			j = kvm_async_pf_next_probe(j);
11211 			if (vcpu->arch.apf.gfns[j] == ~0)
11212 				return;
11213 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11214 			/*
11215 			 * k lies cyclically in ]i,j]
11216 			 * |    i.k.j |
11217 			 * |....j i.k.| or  |.k..j i...|
11218 			 */
11219 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11220 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11221 		i = j;
11222 	}
11223 }
11224 
apf_put_user_notpresent(struct kvm_vcpu * vcpu)11225 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11226 {
11227 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11228 
11229 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11230 				      sizeof(reason));
11231 }
11232 
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)11233 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11234 {
11235 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11236 
11237 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11238 					     &token, offset, sizeof(token));
11239 }
11240 
apf_pageready_slot_free(struct kvm_vcpu * vcpu)11241 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11242 {
11243 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11244 	u32 val;
11245 
11246 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11247 					 &val, offset, sizeof(val)))
11248 		return false;
11249 
11250 	return !val;
11251 }
11252 
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)11253 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11254 {
11255 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11256 		return false;
11257 
11258 	if (!kvm_pv_async_pf_enabled(vcpu) ||
11259 	    (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0))
11260 		return false;
11261 
11262 	return true;
11263 }
11264 
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)11265 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11266 {
11267 	if (unlikely(!lapic_in_kernel(vcpu) ||
11268 		     kvm_event_needs_reinjection(vcpu) ||
11269 		     vcpu->arch.exception.pending))
11270 		return false;
11271 
11272 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11273 		return false;
11274 
11275 	/*
11276 	 * If interrupts are off we cannot even use an artificial
11277 	 * halt state.
11278 	 */
11279 	return kvm_arch_interrupt_allowed(vcpu);
11280 }
11281 
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)11282 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11283 				     struct kvm_async_pf *work)
11284 {
11285 	struct x86_exception fault;
11286 
11287 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11288 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11289 
11290 	if (kvm_can_deliver_async_pf(vcpu) &&
11291 	    !apf_put_user_notpresent(vcpu)) {
11292 		fault.vector = PF_VECTOR;
11293 		fault.error_code_valid = true;
11294 		fault.error_code = 0;
11295 		fault.nested_page_fault = false;
11296 		fault.address = work->arch.token;
11297 		fault.async_page_fault = true;
11298 		kvm_inject_page_fault(vcpu, &fault);
11299 		return true;
11300 	} else {
11301 		/*
11302 		 * It is not possible to deliver a paravirtualized asynchronous
11303 		 * page fault, but putting the guest in an artificial halt state
11304 		 * can be beneficial nevertheless: if an interrupt arrives, we
11305 		 * can deliver it timely and perhaps the guest will schedule
11306 		 * another process.  When the instruction that triggered a page
11307 		 * fault is retried, hopefully the page will be ready in the host.
11308 		 */
11309 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11310 		return false;
11311 	}
11312 }
11313 
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)11314 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11315 				 struct kvm_async_pf *work)
11316 {
11317 	struct kvm_lapic_irq irq = {
11318 		.delivery_mode = APIC_DM_FIXED,
11319 		.vector = vcpu->arch.apf.vec
11320 	};
11321 
11322 	if (work->wakeup_all)
11323 		work->arch.token = ~0; /* broadcast wakeup */
11324 	else
11325 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11326 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11327 
11328 	if ((work->wakeup_all || work->notpresent_injected) &&
11329 	    kvm_pv_async_pf_enabled(vcpu) &&
11330 	    !apf_put_user_ready(vcpu, work->arch.token)) {
11331 		vcpu->arch.apf.pageready_pending = true;
11332 		kvm_apic_set_irq(vcpu, &irq, NULL);
11333 	}
11334 
11335 	vcpu->arch.apf.halted = false;
11336 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11337 }
11338 
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)11339 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11340 {
11341 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
11342 	if (!vcpu->arch.apf.pageready_pending)
11343 		kvm_vcpu_kick(vcpu);
11344 }
11345 
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)11346 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11347 {
11348 	if (!kvm_pv_async_pf_enabled(vcpu))
11349 		return true;
11350 	else
11351 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
11352 }
11353 
kvm_arch_start_assignment(struct kvm * kvm)11354 void kvm_arch_start_assignment(struct kvm *kvm)
11355 {
11356 	atomic_inc(&kvm->arch.assigned_device_count);
11357 }
11358 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11359 
kvm_arch_end_assignment(struct kvm * kvm)11360 void kvm_arch_end_assignment(struct kvm *kvm)
11361 {
11362 	atomic_dec(&kvm->arch.assigned_device_count);
11363 }
11364 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11365 
kvm_arch_has_assigned_device(struct kvm * kvm)11366 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
11367 {
11368 	return arch_atomic_read(&kvm->arch.assigned_device_count);
11369 }
11370 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11371 
kvm_arch_register_noncoherent_dma(struct kvm * kvm)11372 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11373 {
11374 	atomic_inc(&kvm->arch.noncoherent_dma_count);
11375 }
11376 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11377 
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)11378 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11379 {
11380 	atomic_dec(&kvm->arch.noncoherent_dma_count);
11381 }
11382 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11383 
kvm_arch_has_noncoherent_dma(struct kvm * kvm)11384 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11385 {
11386 	return atomic_read(&kvm->arch.noncoherent_dma_count);
11387 }
11388 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11389 
kvm_arch_has_irq_bypass(void)11390 bool kvm_arch_has_irq_bypass(void)
11391 {
11392 	return true;
11393 }
11394 
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)11395 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11396 				      struct irq_bypass_producer *prod)
11397 {
11398 	struct kvm_kernel_irqfd *irqfd =
11399 		container_of(cons, struct kvm_kernel_irqfd, consumer);
11400 	int ret;
11401 
11402 	irqfd->producer = prod;
11403 	kvm_arch_start_assignment(irqfd->kvm);
11404 	ret = kvm_x86_ops.update_pi_irte(irqfd->kvm,
11405 					 prod->irq, irqfd->gsi, 1);
11406 
11407 	if (ret)
11408 		kvm_arch_end_assignment(irqfd->kvm);
11409 
11410 	return ret;
11411 }
11412 
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)11413 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11414 				      struct irq_bypass_producer *prod)
11415 {
11416 	int ret;
11417 	struct kvm_kernel_irqfd *irqfd =
11418 		container_of(cons, struct kvm_kernel_irqfd, consumer);
11419 
11420 	WARN_ON(irqfd->producer != prod);
11421 	irqfd->producer = NULL;
11422 
11423 	/*
11424 	 * When producer of consumer is unregistered, we change back to
11425 	 * remapped mode, so we can re-use the current implementation
11426 	 * when the irq is masked/disabled or the consumer side (KVM
11427 	 * int this case doesn't want to receive the interrupts.
11428 	*/
11429 	ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11430 	if (ret)
11431 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11432 		       " fails: %d\n", irqfd->consumer.token, ret);
11433 
11434 	kvm_arch_end_assignment(irqfd->kvm);
11435 }
11436 
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)11437 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11438 				   uint32_t guest_irq, bool set)
11439 {
11440 	return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
11441 }
11442 
kvm_vector_hashing_enabled(void)11443 bool kvm_vector_hashing_enabled(void)
11444 {
11445 	return vector_hashing;
11446 }
11447 
kvm_arch_no_poll(struct kvm_vcpu * vcpu)11448 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11449 {
11450 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11451 }
11452 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11453 
11454 
kvm_spec_ctrl_test_value(u64 value)11455 int kvm_spec_ctrl_test_value(u64 value)
11456 {
11457 	/*
11458 	 * test that setting IA32_SPEC_CTRL to given value
11459 	 * is allowed by the host processor
11460 	 */
11461 
11462 	u64 saved_value;
11463 	unsigned long flags;
11464 	int ret = 0;
11465 
11466 	local_irq_save(flags);
11467 
11468 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11469 		ret = 1;
11470 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11471 		ret = 1;
11472 	else
11473 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11474 
11475 	local_irq_restore(flags);
11476 
11477 	return ret;
11478 }
11479 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11480 
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)11481 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11482 {
11483 	struct x86_exception fault;
11484 	u32 access = error_code &
11485 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11486 
11487 	if (!(error_code & PFERR_PRESENT_MASK) ||
11488 	    vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11489 		/*
11490 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11491 		 * tables probably do not match the TLB.  Just proceed
11492 		 * with the error code that the processor gave.
11493 		 */
11494 		fault.vector = PF_VECTOR;
11495 		fault.error_code_valid = true;
11496 		fault.error_code = error_code;
11497 		fault.nested_page_fault = false;
11498 		fault.address = gva;
11499 	}
11500 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11501 }
11502 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11503 
11504 /*
11505  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11506  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11507  * indicates whether exit to userspace is needed.
11508  */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)11509 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11510 			      struct x86_exception *e)
11511 {
11512 	if (r == X86EMUL_PROPAGATE_FAULT) {
11513 		kvm_inject_emulated_page_fault(vcpu, e);
11514 		return 1;
11515 	}
11516 
11517 	/*
11518 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11519 	 * while handling a VMX instruction KVM could've handled the request
11520 	 * correctly by exiting to userspace and performing I/O but there
11521 	 * doesn't seem to be a real use-case behind such requests, just return
11522 	 * KVM_EXIT_INTERNAL_ERROR for now.
11523 	 */
11524 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11525 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11526 	vcpu->run->internal.ndata = 0;
11527 
11528 	return 0;
11529 }
11530 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11531 
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)11532 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11533 {
11534 	bool pcid_enabled;
11535 	struct x86_exception e;
11536 	unsigned i;
11537 	unsigned long roots_to_free = 0;
11538 	struct {
11539 		u64 pcid;
11540 		u64 gla;
11541 	} operand;
11542 	int r;
11543 
11544 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11545 	if (r != X86EMUL_CONTINUE)
11546 		return kvm_handle_memory_failure(vcpu, r, &e);
11547 
11548 	if (operand.pcid >> 12 != 0) {
11549 		kvm_inject_gp(vcpu, 0);
11550 		return 1;
11551 	}
11552 
11553 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11554 
11555 	switch (type) {
11556 	case INVPCID_TYPE_INDIV_ADDR:
11557 		if ((!pcid_enabled && (operand.pcid != 0)) ||
11558 		    is_noncanonical_address(operand.gla, vcpu)) {
11559 			kvm_inject_gp(vcpu, 0);
11560 			return 1;
11561 		}
11562 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11563 		return kvm_skip_emulated_instruction(vcpu);
11564 
11565 	case INVPCID_TYPE_SINGLE_CTXT:
11566 		if (!pcid_enabled && (operand.pcid != 0)) {
11567 			kvm_inject_gp(vcpu, 0);
11568 			return 1;
11569 		}
11570 
11571 		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11572 			kvm_mmu_sync_roots(vcpu);
11573 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11574 		}
11575 
11576 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11577 			if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11578 			    == operand.pcid)
11579 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11580 
11581 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11582 		/*
11583 		 * If neither the current cr3 nor any of the prev_roots use the
11584 		 * given PCID, then nothing needs to be done here because a
11585 		 * resync will happen anyway before switching to any other CR3.
11586 		 */
11587 
11588 		return kvm_skip_emulated_instruction(vcpu);
11589 
11590 	case INVPCID_TYPE_ALL_NON_GLOBAL:
11591 		/*
11592 		 * Currently, KVM doesn't mark global entries in the shadow
11593 		 * page tables, so a non-global flush just degenerates to a
11594 		 * global flush. If needed, we could optimize this later by
11595 		 * keeping track of global entries in shadow page tables.
11596 		 */
11597 
11598 		fallthrough;
11599 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
11600 		kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
11601 		return kvm_skip_emulated_instruction(vcpu);
11602 
11603 	default:
11604 		BUG(); /* We have already checked above that type <= 3 */
11605 	}
11606 }
11607 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11608 
11609 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11610 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11611 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11612 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11613 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11614 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11615 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11616 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11617 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11618 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11619 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11620 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11621 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11622 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11623 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11624 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11625 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11626 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11627 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11628 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11629 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11630 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
11631 
kvm_x86_init(void)11632 static int __init kvm_x86_init(void)
11633 {
11634 	kvm_mmu_x86_module_init();
11635 	return 0;
11636 }
11637 module_init(kvm_x86_init);
11638 
kvm_x86_exit(void)11639 static void __exit kvm_x86_exit(void)
11640 {
11641 	/*
11642 	 * If module_init() is implemented, module_exit() must also be
11643 	 * implemented to allow module unload.
11644 	 */
11645 }
11646 module_exit(kvm_x86_exit);
11647