1 /*
2 * Copyright © 2019 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include "aco_builder.h"
26 #include "aco_ir.h"
27
28 #include <algorithm>
29 #include <map>
30 #include <vector>
31
32 namespace aco {
33
34 enum class pred_defined : uint8_t {
35 undef = 0,
36 const_1 = 1,
37 const_0 = 2,
38 temp = 3,
39 zero = 4, /* all disabled lanes are zero'd out */
40 };
41 MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(pred_defined);
42
43 struct ssa_state {
44 bool checked_preds_for_uniform;
45 bool all_preds_uniform;
46 unsigned loop_nest_depth;
47
48 std::vector<pred_defined> any_pred_defined;
49 std::vector<bool> visited;
50 std::vector<Operand> outputs; /* the output per block */
51 };
52
53 Operand
get_ssa(Program * program,unsigned block_idx,ssa_state * state,bool input)54 get_ssa(Program* program, unsigned block_idx, ssa_state* state, bool input)
55 {
56 if (!input) {
57 if (state->visited[block_idx])
58 return state->outputs[block_idx];
59
60 /* otherwise, output == input */
61 Operand output = get_ssa(program, block_idx, state, true);
62 state->visited[block_idx] = true;
63 state->outputs[block_idx] = output;
64 return output;
65 }
66
67 /* retrieve the Operand by checking the predecessors */
68 if (state->any_pred_defined[block_idx] == pred_defined::undef)
69 return Operand(program->lane_mask);
70
71 Block& block = program->blocks[block_idx];
72 size_t pred = block.linear_preds.size();
73 Operand op;
74 if (block.loop_nest_depth < state->loop_nest_depth) {
75 /* loop-carried value for loop exit phis */
76 op = Operand::zero(program->lane_mask.bytes());
77 } else if (block.loop_nest_depth > state->loop_nest_depth || pred == 1 ||
78 block.kind & block_kind_loop_exit) {
79 op = get_ssa(program, block.linear_preds[0], state, false);
80 } else {
81 assert(pred > 1);
82 bool previously_visited = state->visited[block_idx];
83 /* potential recursion: anchor at loop header */
84 if (block.kind & block_kind_loop_header) {
85 assert(!previously_visited);
86 previously_visited = true;
87 state->visited[block_idx] = true;
88 state->outputs[block_idx] = Operand(Temp(program->allocateTmp(program->lane_mask)));
89 }
90
91 /* collect predecessor output operands */
92 std::vector<Operand> ops(pred);
93 for (unsigned i = 0; i < pred; i++)
94 ops[i] = get_ssa(program, block.linear_preds[i], state, false);
95
96 /* check triviality */
97 if (std::all_of(ops.begin() + 1, ops.end(), [&](Operand same) { return same == ops[0]; }))
98 return ops[0];
99
100 /* Return if this was handled in a recursive call by a loop header phi */
101 if (!previously_visited && state->visited[block_idx])
102 return state->outputs[block_idx];
103
104 if (block.kind & block_kind_loop_header)
105 op = state->outputs[block_idx];
106 else
107 op = Operand(Temp(program->allocateTmp(program->lane_mask)));
108
109 /* create phi */
110 aco_ptr<Pseudo_instruction> phi{
111 create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, pred, 1)};
112 for (unsigned i = 0; i < pred; i++)
113 phi->operands[i] = ops[i];
114 phi->definitions[0] = Definition(op.getTemp());
115 block.instructions.emplace(block.instructions.begin(), std::move(phi));
116 }
117
118 assert(op.size() == program->lane_mask.size());
119 return op;
120 }
121
122 void
insert_before_logical_end(Block * block,aco_ptr<Instruction> instr)123 insert_before_logical_end(Block* block, aco_ptr<Instruction> instr)
124 {
125 auto IsLogicalEnd = [](const aco_ptr<Instruction>& inst) -> bool
126 { return inst->opcode == aco_opcode::p_logical_end; };
127 auto it = std::find_if(block->instructions.crbegin(), block->instructions.crend(), IsLogicalEnd);
128
129 if (it == block->instructions.crend()) {
130 assert(block->instructions.back()->isBranch());
131 block->instructions.insert(std::prev(block->instructions.end()), std::move(instr));
132 } else {
133 block->instructions.insert(std::prev(it.base()), std::move(instr));
134 }
135 }
136
137 void
build_merge_code(Program * program,ssa_state * state,Block * block,Operand cur)138 build_merge_code(Program* program, ssa_state* state, Block* block, Operand cur)
139 {
140 unsigned block_idx = block->index;
141 Definition dst = Definition(state->outputs[block_idx].getTemp());
142 Operand prev = get_ssa(program, block_idx, state, true);
143 if (cur.isUndefined())
144 cur = Operand::zero(program->lane_mask.bytes());
145
146 Builder bld(program);
147 auto IsLogicalEnd = [](const aco_ptr<Instruction>& instr) -> bool
148 { return instr->opcode == aco_opcode::p_logical_end; };
149 auto it = std::find_if(block->instructions.rbegin(), block->instructions.rend(), IsLogicalEnd);
150 assert(it != block->instructions.rend());
151 bld.reset(&block->instructions, std::prev(it.base()));
152
153 pred_defined defined = state->any_pred_defined[block_idx];
154 if (defined == pred_defined::undef) {
155 return;
156 } else if (defined == pred_defined::const_0) {
157 bld.sop2(Builder::s_and, dst, bld.def(s1, scc), cur, Operand(exec, bld.lm));
158 return;
159 } else if (defined == pred_defined::const_1) {
160 bld.sop2(Builder::s_orn2, dst, bld.def(s1, scc), cur, Operand(exec, bld.lm));
161 return;
162 }
163
164 assert(prev.isTemp());
165 /* simpler sequence in case prev has only zeros in disabled lanes */
166 if ((defined & pred_defined::zero) == pred_defined::zero) {
167 if (cur.isConstant()) {
168 if (!cur.constantValue()) {
169 bld.copy(dst, prev);
170 return;
171 }
172 cur = Operand(exec, bld.lm);
173 } else {
174 cur =
175 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cur, Operand(exec, bld.lm));
176 }
177 bld.sop2(Builder::s_or, dst, bld.def(s1, scc), prev, cur);
178 return;
179 }
180
181 if (cur.isConstant()) {
182 if (cur.constantValue())
183 bld.sop2(Builder::s_or, dst, bld.def(s1, scc), prev, Operand(exec, bld.lm));
184 else
185 bld.sop2(Builder::s_andn2, dst, bld.def(s1, scc), prev, Operand(exec, bld.lm));
186 return;
187 }
188 prev =
189 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), prev, Operand(exec, bld.lm));
190 cur = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cur, Operand(exec, bld.lm));
191 bld.sop2(Builder::s_or, dst, bld.def(s1, scc), prev, cur);
192 return;
193 }
194
195 void
init_any_pred_defined(Program * program,ssa_state * state,Block * block,aco_ptr<Instruction> & phi)196 init_any_pred_defined(Program* program, ssa_state* state, Block* block, aco_ptr<Instruction>& phi)
197 {
198 std::fill(state->any_pred_defined.begin(), state->any_pred_defined.end(), pred_defined::undef);
199 for (unsigned i = 0; i < block->logical_preds.size(); i++) {
200 if (phi->operands[i].isUndefined())
201 continue;
202 pred_defined defined = pred_defined::temp;
203 if (phi->operands[i].isConstant())
204 defined = phi->operands[i].constantValue() ? pred_defined::const_1 : pred_defined::const_0;
205 for (unsigned succ : program->blocks[block->logical_preds[i]].linear_succs)
206 state->any_pred_defined[succ] |= defined;
207 }
208
209 unsigned start = block->logical_preds[0];
210 unsigned end = block->index;
211
212 /* for loop exit phis, start at the loop header */
213 if (block->kind & block_kind_loop_exit) {
214 while (program->blocks[start - 1].loop_nest_depth >= state->loop_nest_depth)
215 start--;
216 /* If the loop-header has a back-edge, we need to insert a phi.
217 * This will contain a defined value */
218 if (program->blocks[start].linear_preds.size() > 1)
219 state->any_pred_defined[start] = pred_defined::temp;
220 }
221 /* for loop header phis, end at the loop exit */
222 if (block->kind & block_kind_loop_header) {
223 while (program->blocks[end].loop_nest_depth >= state->loop_nest_depth)
224 end++;
225 /* don't propagate the incoming value */
226 state->any_pred_defined[block->index] = pred_defined::undef;
227 }
228
229 /* add dominating zero: this allows to emit simpler merge sequences
230 * if we can ensure that all disabled lanes are always zero on incoming values */
231 // TODO: find more occasions where pred_defined::zero is beneficial (e.g. with 2+ temp merges)
232 if (block->kind & block_kind_loop_exit) {
233 /* zero the loop-carried variable */
234 if (program->blocks[start].linear_preds.size() > 1) {
235 state->any_pred_defined[start] |= pred_defined::zero;
236 // TODO: emit this zero explicitly
237 state->any_pred_defined[start - 1] = pred_defined::const_0;
238 }
239 }
240
241 for (unsigned j = start; j < end; j++) {
242 if (state->any_pred_defined[j] == pred_defined::undef)
243 continue;
244 for (unsigned succ : program->blocks[j].linear_succs)
245 state->any_pred_defined[succ] |= state->any_pred_defined[j];
246 }
247
248 state->any_pred_defined[block->index] = pred_defined::undef;
249 }
250
251 void
lower_divergent_bool_phi(Program * program,ssa_state * state,Block * block,aco_ptr<Instruction> & phi)252 lower_divergent_bool_phi(Program* program, ssa_state* state, Block* block,
253 aco_ptr<Instruction>& phi)
254 {
255 Builder bld(program);
256
257 if (!state->checked_preds_for_uniform) {
258 state->all_preds_uniform = !(block->kind & block_kind_merge) &&
259 block->linear_preds.size() == block->logical_preds.size();
260 for (unsigned pred : block->logical_preds)
261 state->all_preds_uniform =
262 state->all_preds_uniform && (program->blocks[pred].kind & block_kind_uniform);
263 state->checked_preds_for_uniform = true;
264 }
265
266 if (state->all_preds_uniform) {
267 phi->opcode = aco_opcode::p_linear_phi;
268 return;
269 }
270
271 /* do this here to avoid resizing in case of no boolean phis */
272 state->visited.resize(program->blocks.size());
273 state->outputs.resize(program->blocks.size());
274 state->any_pred_defined.resize(program->blocks.size());
275 state->loop_nest_depth = block->loop_nest_depth;
276 if (block->kind & block_kind_loop_exit)
277 state->loop_nest_depth += 1;
278 std::fill(state->visited.begin(), state->visited.end(), false);
279 init_any_pred_defined(program, state, block, phi);
280
281 for (unsigned i = 0; i < phi->operands.size(); i++) {
282 unsigned pred = block->logical_preds[i];
283 if (state->any_pred_defined[pred] != pred_defined::undef)
284 state->outputs[pred] = Operand(bld.tmp(bld.lm));
285 else
286 state->outputs[pred] = phi->operands[i];
287 assert(state->outputs[pred].size() == bld.lm.size());
288 state->visited[pred] = true;
289 }
290
291 for (unsigned i = 0; i < phi->operands.size(); i++)
292 build_merge_code(program, state, &program->blocks[block->logical_preds[i]], phi->operands[i]);
293
294 unsigned num_preds = block->linear_preds.size();
295 if (phi->operands.size() != num_preds) {
296 Pseudo_instruction* new_phi{create_instruction<Pseudo_instruction>(
297 aco_opcode::p_linear_phi, Format::PSEUDO, num_preds, 1)};
298 new_phi->definitions[0] = phi->definitions[0];
299 phi.reset(new_phi);
300 } else {
301 phi->opcode = aco_opcode::p_linear_phi;
302 }
303 assert(phi->operands.size() == num_preds);
304
305 for (unsigned i = 0; i < num_preds; i++)
306 phi->operands[i] = get_ssa(program, block->linear_preds[i], state, false);
307
308 return;
309 }
310
311 void
lower_subdword_phis(Program * program,Block * block,aco_ptr<Instruction> & phi)312 lower_subdword_phis(Program* program, Block* block, aco_ptr<Instruction>& phi)
313 {
314 Builder bld(program);
315 for (unsigned i = 0; i < phi->operands.size(); i++) {
316 if (phi->operands[i].isUndefined())
317 continue;
318 if (phi->operands[i].regClass() == phi->definitions[0].regClass())
319 continue;
320
321 assert(phi->operands[i].isTemp());
322 Block* pred = &program->blocks[block->logical_preds[i]];
323 Temp phi_src = phi->operands[i].getTemp();
324
325 assert(phi_src.regClass().type() == RegType::sgpr);
326 Temp tmp = bld.tmp(RegClass(RegType::vgpr, phi_src.size()));
327 insert_before_logical_end(pred, bld.copy(Definition(tmp), phi_src).get_ptr());
328 Temp new_phi_src = bld.tmp(phi->definitions[0].regClass());
329 insert_before_logical_end(pred, bld.pseudo(aco_opcode::p_extract_vector,
330 Definition(new_phi_src), tmp, Operand::zero())
331 .get_ptr());
332
333 phi->operands[i].setTemp(new_phi_src);
334 }
335 return;
336 }
337
338 void
lower_phis(Program * program)339 lower_phis(Program* program)
340 {
341 ssa_state state;
342
343 for (Block& block : program->blocks) {
344 state.checked_preds_for_uniform = false;
345 for (aco_ptr<Instruction>& phi : block.instructions) {
346 if (phi->opcode == aco_opcode::p_phi) {
347 assert(program->wave_size == 64 ? phi->definitions[0].regClass() != s1
348 : phi->definitions[0].regClass() != s2);
349 if (phi->definitions[0].regClass() == program->lane_mask)
350 lower_divergent_bool_phi(program, &state, &block, phi);
351 else if (phi->definitions[0].regClass().is_subdword())
352 lower_subdword_phis(program, &block, phi);
353 } else if (!is_phi(phi)) {
354 break;
355 }
356 }
357 }
358 }
359
360 } // namespace aco
361