• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2019 Valve Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include "aco_builder.h"
26 #include "aco_ir.h"
27 
28 #include <algorithm>
29 #include <map>
30 #include <vector>
31 
32 namespace aco {
33 
34 enum class pred_defined : uint8_t {
35    undef = 0,
36    const_1 = 1,
37    const_0 = 2,
38    temp = 3,
39    zero = 4, /* all disabled lanes are zero'd out */
40 };
41 MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(pred_defined);
42 
43 struct ssa_state {
44    bool checked_preds_for_uniform;
45    bool all_preds_uniform;
46    unsigned loop_nest_depth;
47 
48    std::vector<pred_defined> any_pred_defined;
49    std::vector<bool> visited;
50    std::vector<Operand> outputs; /* the output per block */
51 };
52 
53 Operand
get_ssa(Program * program,unsigned block_idx,ssa_state * state,bool input)54 get_ssa(Program* program, unsigned block_idx, ssa_state* state, bool input)
55 {
56    if (!input) {
57       if (state->visited[block_idx])
58          return state->outputs[block_idx];
59 
60       /* otherwise, output == input */
61       Operand output = get_ssa(program, block_idx, state, true);
62       state->visited[block_idx] = true;
63       state->outputs[block_idx] = output;
64       return output;
65    }
66 
67    /* retrieve the Operand by checking the predecessors */
68    if (state->any_pred_defined[block_idx] == pred_defined::undef)
69       return Operand(program->lane_mask);
70 
71    Block& block = program->blocks[block_idx];
72    size_t pred = block.linear_preds.size();
73    Operand op;
74    if (block.loop_nest_depth < state->loop_nest_depth) {
75       /* loop-carried value for loop exit phis */
76       op = Operand::zero(program->lane_mask.bytes());
77    } else if (block.loop_nest_depth > state->loop_nest_depth || pred == 1 ||
78               block.kind & block_kind_loop_exit) {
79       op = get_ssa(program, block.linear_preds[0], state, false);
80    } else {
81       assert(pred > 1);
82       bool previously_visited = state->visited[block_idx];
83       /* potential recursion: anchor at loop header */
84       if (block.kind & block_kind_loop_header) {
85          assert(!previously_visited);
86          previously_visited = true;
87          state->visited[block_idx] = true;
88          state->outputs[block_idx] = Operand(Temp(program->allocateTmp(program->lane_mask)));
89       }
90 
91       /* collect predecessor output operands */
92       std::vector<Operand> ops(pred);
93       for (unsigned i = 0; i < pred; i++)
94          ops[i] = get_ssa(program, block.linear_preds[i], state, false);
95 
96       /* check triviality */
97       if (std::all_of(ops.begin() + 1, ops.end(), [&](Operand same) { return same == ops[0]; }))
98          return ops[0];
99 
100       /* Return if this was handled in a recursive call by a loop header phi */
101       if (!previously_visited && state->visited[block_idx])
102          return state->outputs[block_idx];
103 
104       if (block.kind & block_kind_loop_header)
105          op = state->outputs[block_idx];
106       else
107          op = Operand(Temp(program->allocateTmp(program->lane_mask)));
108 
109       /* create phi */
110       aco_ptr<Pseudo_instruction> phi{
111          create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, pred, 1)};
112       for (unsigned i = 0; i < pred; i++)
113          phi->operands[i] = ops[i];
114       phi->definitions[0] = Definition(op.getTemp());
115       block.instructions.emplace(block.instructions.begin(), std::move(phi));
116    }
117 
118    assert(op.size() == program->lane_mask.size());
119    return op;
120 }
121 
122 void
insert_before_logical_end(Block * block,aco_ptr<Instruction> instr)123 insert_before_logical_end(Block* block, aco_ptr<Instruction> instr)
124 {
125    auto IsLogicalEnd = [](const aco_ptr<Instruction>& inst) -> bool
126    { return inst->opcode == aco_opcode::p_logical_end; };
127    auto it = std::find_if(block->instructions.crbegin(), block->instructions.crend(), IsLogicalEnd);
128 
129    if (it == block->instructions.crend()) {
130       assert(block->instructions.back()->isBranch());
131       block->instructions.insert(std::prev(block->instructions.end()), std::move(instr));
132    } else {
133       block->instructions.insert(std::prev(it.base()), std::move(instr));
134    }
135 }
136 
137 void
build_merge_code(Program * program,ssa_state * state,Block * block,Operand cur)138 build_merge_code(Program* program, ssa_state* state, Block* block, Operand cur)
139 {
140    unsigned block_idx = block->index;
141    Definition dst = Definition(state->outputs[block_idx].getTemp());
142    Operand prev = get_ssa(program, block_idx, state, true);
143    if (cur.isUndefined())
144       cur = Operand::zero(program->lane_mask.bytes());
145 
146    Builder bld(program);
147    auto IsLogicalEnd = [](const aco_ptr<Instruction>& instr) -> bool
148    { return instr->opcode == aco_opcode::p_logical_end; };
149    auto it = std::find_if(block->instructions.rbegin(), block->instructions.rend(), IsLogicalEnd);
150    assert(it != block->instructions.rend());
151    bld.reset(&block->instructions, std::prev(it.base()));
152 
153    pred_defined defined = state->any_pred_defined[block_idx];
154    if (defined == pred_defined::undef) {
155       return;
156    } else if (defined == pred_defined::const_0) {
157       bld.sop2(Builder::s_and, dst, bld.def(s1, scc), cur, Operand(exec, bld.lm));
158       return;
159    } else if (defined == pred_defined::const_1) {
160       bld.sop2(Builder::s_orn2, dst, bld.def(s1, scc), cur, Operand(exec, bld.lm));
161       return;
162    }
163 
164    assert(prev.isTemp());
165    /* simpler sequence in case prev has only zeros in disabled lanes */
166    if ((defined & pred_defined::zero) == pred_defined::zero) {
167       if (cur.isConstant()) {
168          if (!cur.constantValue()) {
169             bld.copy(dst, prev);
170             return;
171          }
172          cur = Operand(exec, bld.lm);
173       } else {
174          cur =
175             bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cur, Operand(exec, bld.lm));
176       }
177       bld.sop2(Builder::s_or, dst, bld.def(s1, scc), prev, cur);
178       return;
179    }
180 
181    if (cur.isConstant()) {
182       if (cur.constantValue())
183          bld.sop2(Builder::s_or, dst, bld.def(s1, scc), prev, Operand(exec, bld.lm));
184       else
185          bld.sop2(Builder::s_andn2, dst, bld.def(s1, scc), prev, Operand(exec, bld.lm));
186       return;
187    }
188    prev =
189       bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), prev, Operand(exec, bld.lm));
190    cur = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cur, Operand(exec, bld.lm));
191    bld.sop2(Builder::s_or, dst, bld.def(s1, scc), prev, cur);
192    return;
193 }
194 
195 void
init_any_pred_defined(Program * program,ssa_state * state,Block * block,aco_ptr<Instruction> & phi)196 init_any_pred_defined(Program* program, ssa_state* state, Block* block, aco_ptr<Instruction>& phi)
197 {
198    std::fill(state->any_pred_defined.begin(), state->any_pred_defined.end(), pred_defined::undef);
199    for (unsigned i = 0; i < block->logical_preds.size(); i++) {
200       if (phi->operands[i].isUndefined())
201          continue;
202       pred_defined defined = pred_defined::temp;
203       if (phi->operands[i].isConstant())
204          defined = phi->operands[i].constantValue() ? pred_defined::const_1 : pred_defined::const_0;
205       for (unsigned succ : program->blocks[block->logical_preds[i]].linear_succs)
206          state->any_pred_defined[succ] |= defined;
207    }
208 
209    unsigned start = block->logical_preds[0];
210    unsigned end = block->index;
211 
212    /* for loop exit phis, start at the loop header */
213    if (block->kind & block_kind_loop_exit) {
214       while (program->blocks[start - 1].loop_nest_depth >= state->loop_nest_depth)
215          start--;
216       /* If the loop-header has a back-edge, we need to insert a phi.
217        * This will contain a defined value */
218       if (program->blocks[start].linear_preds.size() > 1)
219          state->any_pred_defined[start] = pred_defined::temp;
220    }
221    /* for loop header phis, end at the loop exit */
222    if (block->kind & block_kind_loop_header) {
223       while (program->blocks[end].loop_nest_depth >= state->loop_nest_depth)
224          end++;
225       /* don't propagate the incoming value */
226       state->any_pred_defined[block->index] = pred_defined::undef;
227    }
228 
229    /* add dominating zero: this allows to emit simpler merge sequences
230     * if we can ensure that all disabled lanes are always zero on incoming values */
231    // TODO: find more occasions where pred_defined::zero is beneficial (e.g. with 2+ temp merges)
232    if (block->kind & block_kind_loop_exit) {
233       /* zero the loop-carried variable */
234       if (program->blocks[start].linear_preds.size() > 1) {
235          state->any_pred_defined[start] |= pred_defined::zero;
236          // TODO: emit this zero explicitly
237          state->any_pred_defined[start - 1] = pred_defined::const_0;
238       }
239    }
240 
241    for (unsigned j = start; j < end; j++) {
242       if (state->any_pred_defined[j] == pred_defined::undef)
243          continue;
244       for (unsigned succ : program->blocks[j].linear_succs)
245          state->any_pred_defined[succ] |= state->any_pred_defined[j];
246    }
247 
248    state->any_pred_defined[block->index] = pred_defined::undef;
249 }
250 
251 void
lower_divergent_bool_phi(Program * program,ssa_state * state,Block * block,aco_ptr<Instruction> & phi)252 lower_divergent_bool_phi(Program* program, ssa_state* state, Block* block,
253                          aco_ptr<Instruction>& phi)
254 {
255    Builder bld(program);
256 
257    if (!state->checked_preds_for_uniform) {
258       state->all_preds_uniform = !(block->kind & block_kind_merge) &&
259                                  block->linear_preds.size() == block->logical_preds.size();
260       for (unsigned pred : block->logical_preds)
261          state->all_preds_uniform =
262             state->all_preds_uniform && (program->blocks[pred].kind & block_kind_uniform);
263       state->checked_preds_for_uniform = true;
264    }
265 
266    if (state->all_preds_uniform) {
267       phi->opcode = aco_opcode::p_linear_phi;
268       return;
269    }
270 
271    /* do this here to avoid resizing in case of no boolean phis */
272    state->visited.resize(program->blocks.size());
273    state->outputs.resize(program->blocks.size());
274    state->any_pred_defined.resize(program->blocks.size());
275    state->loop_nest_depth = block->loop_nest_depth;
276    if (block->kind & block_kind_loop_exit)
277       state->loop_nest_depth += 1;
278    std::fill(state->visited.begin(), state->visited.end(), false);
279    init_any_pred_defined(program, state, block, phi);
280 
281    for (unsigned i = 0; i < phi->operands.size(); i++) {
282       unsigned pred = block->logical_preds[i];
283       if (state->any_pred_defined[pred] != pred_defined::undef)
284          state->outputs[pred] = Operand(bld.tmp(bld.lm));
285       else
286          state->outputs[pred] = phi->operands[i];
287       assert(state->outputs[pred].size() == bld.lm.size());
288       state->visited[pred] = true;
289    }
290 
291    for (unsigned i = 0; i < phi->operands.size(); i++)
292       build_merge_code(program, state, &program->blocks[block->logical_preds[i]], phi->operands[i]);
293 
294    unsigned num_preds = block->linear_preds.size();
295    if (phi->operands.size() != num_preds) {
296       Pseudo_instruction* new_phi{create_instruction<Pseudo_instruction>(
297          aco_opcode::p_linear_phi, Format::PSEUDO, num_preds, 1)};
298       new_phi->definitions[0] = phi->definitions[0];
299       phi.reset(new_phi);
300    } else {
301       phi->opcode = aco_opcode::p_linear_phi;
302    }
303    assert(phi->operands.size() == num_preds);
304 
305    for (unsigned i = 0; i < num_preds; i++)
306       phi->operands[i] = get_ssa(program, block->linear_preds[i], state, false);
307 
308    return;
309 }
310 
311 void
lower_subdword_phis(Program * program,Block * block,aco_ptr<Instruction> & phi)312 lower_subdword_phis(Program* program, Block* block, aco_ptr<Instruction>& phi)
313 {
314    Builder bld(program);
315    for (unsigned i = 0; i < phi->operands.size(); i++) {
316       if (phi->operands[i].isUndefined())
317          continue;
318       if (phi->operands[i].regClass() == phi->definitions[0].regClass())
319          continue;
320 
321       assert(phi->operands[i].isTemp());
322       Block* pred = &program->blocks[block->logical_preds[i]];
323       Temp phi_src = phi->operands[i].getTemp();
324 
325       assert(phi_src.regClass().type() == RegType::sgpr);
326       Temp tmp = bld.tmp(RegClass(RegType::vgpr, phi_src.size()));
327       insert_before_logical_end(pred, bld.copy(Definition(tmp), phi_src).get_ptr());
328       Temp new_phi_src = bld.tmp(phi->definitions[0].regClass());
329       insert_before_logical_end(pred, bld.pseudo(aco_opcode::p_extract_vector,
330                                                  Definition(new_phi_src), tmp, Operand::zero())
331                                          .get_ptr());
332 
333       phi->operands[i].setTemp(new_phi_src);
334    }
335    return;
336 }
337 
338 void
lower_phis(Program * program)339 lower_phis(Program* program)
340 {
341    ssa_state state;
342 
343    for (Block& block : program->blocks) {
344       state.checked_preds_for_uniform = false;
345       for (aco_ptr<Instruction>& phi : block.instructions) {
346          if (phi->opcode == aco_opcode::p_phi) {
347             assert(program->wave_size == 64 ? phi->definitions[0].regClass() != s1
348                                             : phi->definitions[0].regClass() != s2);
349             if (phi->definitions[0].regClass() == program->lane_mask)
350                lower_divergent_bool_phi(program, &state, &block, phi);
351             else if (phi->definitions[0].regClass().is_subdword())
352                lower_subdword_phis(program, &block, phi);
353          } else if (!is_phi(phi)) {
354             break;
355          }
356       }
357    }
358 }
359 
360 } // namespace aco
361