1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 md.c : Multiple Devices driver for Linux
4 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5
6 completely rewritten, based on the MD driver code from Marc Zyngier
7
8 Changes:
9
10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
14 - kmod support by: Cyrus Durgin
15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17
18 - lots of fixes and improvements to the RAID1/RAID5 and generic
19 RAID code (such as request based resynchronization):
20
21 Neil Brown <neilb@cse.unsw.edu.au>.
22
23 - persistent bitmap code
24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25
26
27 Errors, Warnings, etc.
28 Please use:
29 pr_crit() for error conditions that risk data loss
30 pr_err() for error conditions that are unexpected, like an IO error
31 or internal inconsistency
32 pr_warn() for error conditions that could have been predicated, like
33 adding a device to an array when it has incompatible metadata
34 pr_info() for every interesting, very rare events, like an array starting
35 or stopping, or resync starting or stopping
36 pr_debug() for everything else.
37
38 */
39
40 #include <linux/sched/mm.h>
41 #include <linux/sched/signal.h>
42 #include <linux/kthread.h>
43 #include <linux/blkdev.h>
44 #include <linux/badblocks.h>
45 #include <linux/sysctl.h>
46 #include <linux/seq_file.h>
47 #include <linux/fs.h>
48 #include <linux/poll.h>
49 #include <linux/ctype.h>
50 #include <linux/string.h>
51 #include <linux/hdreg.h>
52 #include <linux/proc_fs.h>
53 #include <linux/random.h>
54 #include <linux/module.h>
55 #include <linux/reboot.h>
56 #include <linux/file.h>
57 #include <linux/compat.h>
58 #include <linux/delay.h>
59 #include <linux/raid/md_p.h>
60 #include <linux/raid/md_u.h>
61 #include <linux/raid/detect.h>
62 #include <linux/slab.h>
63 #include <linux/percpu-refcount.h>
64 #include <linux/part_stat.h>
65
66 #include <trace/events/block.h>
67 #include "md.h"
68 #include "md-bitmap.h"
69 #include "md-cluster.h"
70
71 /* pers_list is a list of registered personalities protected
72 * by pers_lock.
73 * pers_lock does extra service to protect accesses to
74 * mddev->thread when the mutex cannot be held.
75 */
76 static LIST_HEAD(pers_list);
77 static DEFINE_SPINLOCK(pers_lock);
78
79 static struct kobj_type md_ktype;
80
81 struct md_cluster_operations *md_cluster_ops;
82 EXPORT_SYMBOL(md_cluster_ops);
83 static struct module *md_cluster_mod;
84
85 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
86 static struct workqueue_struct *md_wq;
87 static struct workqueue_struct *md_misc_wq;
88 static struct workqueue_struct *md_rdev_misc_wq;
89
90 static int remove_and_add_spares(struct mddev *mddev,
91 struct md_rdev *this);
92 static void mddev_detach(struct mddev *mddev);
93
94 /*
95 * Default number of read corrections we'll attempt on an rdev
96 * before ejecting it from the array. We divide the read error
97 * count by 2 for every hour elapsed between read errors.
98 */
99 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
100 /* Default safemode delay: 200 msec */
101 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1)
102 /*
103 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
104 * is 1000 KB/sec, so the extra system load does not show up that much.
105 * Increase it if you want to have more _guaranteed_ speed. Note that
106 * the RAID driver will use the maximum available bandwidth if the IO
107 * subsystem is idle. There is also an 'absolute maximum' reconstruction
108 * speed limit - in case reconstruction slows down your system despite
109 * idle IO detection.
110 *
111 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
112 * or /sys/block/mdX/md/sync_speed_{min,max}
113 */
114
115 static int sysctl_speed_limit_min = 1000;
116 static int sysctl_speed_limit_max = 200000;
speed_min(struct mddev * mddev)117 static inline int speed_min(struct mddev *mddev)
118 {
119 return mddev->sync_speed_min ?
120 mddev->sync_speed_min : sysctl_speed_limit_min;
121 }
122
speed_max(struct mddev * mddev)123 static inline int speed_max(struct mddev *mddev)
124 {
125 return mddev->sync_speed_max ?
126 mddev->sync_speed_max : sysctl_speed_limit_max;
127 }
128
rdev_uninit_serial(struct md_rdev * rdev)129 static void rdev_uninit_serial(struct md_rdev *rdev)
130 {
131 if (!test_and_clear_bit(CollisionCheck, &rdev->flags))
132 return;
133
134 kvfree(rdev->serial);
135 rdev->serial = NULL;
136 }
137
rdevs_uninit_serial(struct mddev * mddev)138 static void rdevs_uninit_serial(struct mddev *mddev)
139 {
140 struct md_rdev *rdev;
141
142 rdev_for_each(rdev, mddev)
143 rdev_uninit_serial(rdev);
144 }
145
rdev_init_serial(struct md_rdev * rdev)146 static int rdev_init_serial(struct md_rdev *rdev)
147 {
148 /* serial_nums equals with BARRIER_BUCKETS_NR */
149 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t))));
150 struct serial_in_rdev *serial = NULL;
151
152 if (test_bit(CollisionCheck, &rdev->flags))
153 return 0;
154
155 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums,
156 GFP_KERNEL);
157 if (!serial)
158 return -ENOMEM;
159
160 for (i = 0; i < serial_nums; i++) {
161 struct serial_in_rdev *serial_tmp = &serial[i];
162
163 spin_lock_init(&serial_tmp->serial_lock);
164 serial_tmp->serial_rb = RB_ROOT_CACHED;
165 init_waitqueue_head(&serial_tmp->serial_io_wait);
166 }
167
168 rdev->serial = serial;
169 set_bit(CollisionCheck, &rdev->flags);
170
171 return 0;
172 }
173
rdevs_init_serial(struct mddev * mddev)174 static int rdevs_init_serial(struct mddev *mddev)
175 {
176 struct md_rdev *rdev;
177 int ret = 0;
178
179 rdev_for_each(rdev, mddev) {
180 ret = rdev_init_serial(rdev);
181 if (ret)
182 break;
183 }
184
185 /* Free all resources if pool is not existed */
186 if (ret && !mddev->serial_info_pool)
187 rdevs_uninit_serial(mddev);
188
189 return ret;
190 }
191
192 /*
193 * rdev needs to enable serial stuffs if it meets the conditions:
194 * 1. it is multi-queue device flaged with writemostly.
195 * 2. the write-behind mode is enabled.
196 */
rdev_need_serial(struct md_rdev * rdev)197 static int rdev_need_serial(struct md_rdev *rdev)
198 {
199 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 &&
200 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 &&
201 test_bit(WriteMostly, &rdev->flags));
202 }
203
204 /*
205 * Init resource for rdev(s), then create serial_info_pool if:
206 * 1. rdev is the first device which return true from rdev_enable_serial.
207 * 2. rdev is NULL, means we want to enable serialization for all rdevs.
208 */
mddev_create_serial_pool(struct mddev * mddev,struct md_rdev * rdev,bool is_suspend)209 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
210 bool is_suspend)
211 {
212 int ret = 0;
213
214 if (rdev && !rdev_need_serial(rdev) &&
215 !test_bit(CollisionCheck, &rdev->flags))
216 return;
217
218 if (!is_suspend)
219 mddev_suspend(mddev);
220
221 if (!rdev)
222 ret = rdevs_init_serial(mddev);
223 else
224 ret = rdev_init_serial(rdev);
225 if (ret)
226 goto abort;
227
228 if (mddev->serial_info_pool == NULL) {
229 /*
230 * already in memalloc noio context by
231 * mddev_suspend()
232 */
233 mddev->serial_info_pool =
234 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
235 sizeof(struct serial_info));
236 if (!mddev->serial_info_pool) {
237 rdevs_uninit_serial(mddev);
238 pr_err("can't alloc memory pool for serialization\n");
239 }
240 }
241
242 abort:
243 if (!is_suspend)
244 mddev_resume(mddev);
245 }
246
247 /*
248 * Free resource from rdev(s), and destroy serial_info_pool under conditions:
249 * 1. rdev is the last device flaged with CollisionCheck.
250 * 2. when bitmap is destroyed while policy is not enabled.
251 * 3. for disable policy, the pool is destroyed only when no rdev needs it.
252 */
mddev_destroy_serial_pool(struct mddev * mddev,struct md_rdev * rdev,bool is_suspend)253 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
254 bool is_suspend)
255 {
256 if (rdev && !test_bit(CollisionCheck, &rdev->flags))
257 return;
258
259 if (mddev->serial_info_pool) {
260 struct md_rdev *temp;
261 int num = 0; /* used to track if other rdevs need the pool */
262
263 if (!is_suspend)
264 mddev_suspend(mddev);
265 rdev_for_each(temp, mddev) {
266 if (!rdev) {
267 if (!mddev->serialize_policy ||
268 !rdev_need_serial(temp))
269 rdev_uninit_serial(temp);
270 else
271 num++;
272 } else if (temp != rdev &&
273 test_bit(CollisionCheck, &temp->flags))
274 num++;
275 }
276
277 if (rdev)
278 rdev_uninit_serial(rdev);
279
280 if (num)
281 pr_info("The mempool could be used by other devices\n");
282 else {
283 mempool_destroy(mddev->serial_info_pool);
284 mddev->serial_info_pool = NULL;
285 }
286 if (!is_suspend)
287 mddev_resume(mddev);
288 }
289 }
290
291 static struct ctl_table_header *raid_table_header;
292
293 static struct ctl_table raid_table[] = {
294 {
295 .procname = "speed_limit_min",
296 .data = &sysctl_speed_limit_min,
297 .maxlen = sizeof(int),
298 .mode = S_IRUGO|S_IWUSR,
299 .proc_handler = proc_dointvec,
300 },
301 {
302 .procname = "speed_limit_max",
303 .data = &sysctl_speed_limit_max,
304 .maxlen = sizeof(int),
305 .mode = S_IRUGO|S_IWUSR,
306 .proc_handler = proc_dointvec,
307 },
308 { }
309 };
310
311 static struct ctl_table raid_dir_table[] = {
312 {
313 .procname = "raid",
314 .maxlen = 0,
315 .mode = S_IRUGO|S_IXUGO,
316 .child = raid_table,
317 },
318 { }
319 };
320
321 static struct ctl_table raid_root_table[] = {
322 {
323 .procname = "dev",
324 .maxlen = 0,
325 .mode = 0555,
326 .child = raid_dir_table,
327 },
328 { }
329 };
330
331 static int start_readonly;
332
333 /*
334 * The original mechanism for creating an md device is to create
335 * a device node in /dev and to open it. This causes races with device-close.
336 * The preferred method is to write to the "new_array" module parameter.
337 * This can avoid races.
338 * Setting create_on_open to false disables the original mechanism
339 * so all the races disappear.
340 */
341 static bool create_on_open = true;
342
bio_alloc_mddev(gfp_t gfp_mask,int nr_iovecs,struct mddev * mddev)343 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
344 struct mddev *mddev)
345 {
346 if (!mddev || !bioset_initialized(&mddev->bio_set))
347 return bio_alloc(gfp_mask, nr_iovecs);
348
349 return bio_alloc_bioset(gfp_mask, nr_iovecs, &mddev->bio_set);
350 }
351 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
352
md_bio_alloc_sync(struct mddev * mddev)353 static struct bio *md_bio_alloc_sync(struct mddev *mddev)
354 {
355 if (!mddev || !bioset_initialized(&mddev->sync_set))
356 return bio_alloc(GFP_NOIO, 1);
357
358 return bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set);
359 }
360
361 /*
362 * We have a system wide 'event count' that is incremented
363 * on any 'interesting' event, and readers of /proc/mdstat
364 * can use 'poll' or 'select' to find out when the event
365 * count increases.
366 *
367 * Events are:
368 * start array, stop array, error, add device, remove device,
369 * start build, activate spare
370 */
371 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
372 static atomic_t md_event_count;
md_new_event(struct mddev * mddev)373 void md_new_event(struct mddev *mddev)
374 {
375 atomic_inc(&md_event_count);
376 wake_up(&md_event_waiters);
377 }
378 EXPORT_SYMBOL_GPL(md_new_event);
379
380 /*
381 * Enables to iterate over all existing md arrays
382 * all_mddevs_lock protects this list.
383 */
384 static LIST_HEAD(all_mddevs);
385 static DEFINE_SPINLOCK(all_mddevs_lock);
386
387 /*
388 * iterates through all used mddevs in the system.
389 * We take care to grab the all_mddevs_lock whenever navigating
390 * the list, and to always hold a refcount when unlocked.
391 * Any code which breaks out of this loop while own
392 * a reference to the current mddev and must mddev_put it.
393 */
394 #define for_each_mddev(_mddev,_tmp) \
395 \
396 for (({ spin_lock(&all_mddevs_lock); \
397 _tmp = all_mddevs.next; \
398 _mddev = NULL;}); \
399 ({ if (_tmp != &all_mddevs) \
400 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
401 spin_unlock(&all_mddevs_lock); \
402 if (_mddev) mddev_put(_mddev); \
403 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
404 _tmp != &all_mddevs;}); \
405 ({ spin_lock(&all_mddevs_lock); \
406 _tmp = _tmp->next;}) \
407 )
408
409 /* Rather than calling directly into the personality make_request function,
410 * IO requests come here first so that we can check if the device is
411 * being suspended pending a reconfiguration.
412 * We hold a refcount over the call to ->make_request. By the time that
413 * call has finished, the bio has been linked into some internal structure
414 * and so is visible to ->quiesce(), so we don't need the refcount any more.
415 */
is_suspended(struct mddev * mddev,struct bio * bio)416 static bool is_suspended(struct mddev *mddev, struct bio *bio)
417 {
418 if (mddev->suspended)
419 return true;
420 if (bio_data_dir(bio) != WRITE)
421 return false;
422 if (mddev->suspend_lo >= mddev->suspend_hi)
423 return false;
424 if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
425 return false;
426 if (bio_end_sector(bio) < mddev->suspend_lo)
427 return false;
428 return true;
429 }
430
md_handle_request(struct mddev * mddev,struct bio * bio)431 void md_handle_request(struct mddev *mddev, struct bio *bio)
432 {
433 check_suspended:
434 rcu_read_lock();
435 if (is_suspended(mddev, bio)) {
436 DEFINE_WAIT(__wait);
437 for (;;) {
438 prepare_to_wait(&mddev->sb_wait, &__wait,
439 TASK_UNINTERRUPTIBLE);
440 if (!is_suspended(mddev, bio))
441 break;
442 rcu_read_unlock();
443 schedule();
444 rcu_read_lock();
445 }
446 finish_wait(&mddev->sb_wait, &__wait);
447 }
448 atomic_inc(&mddev->active_io);
449 rcu_read_unlock();
450
451 if (!mddev->pers->make_request(mddev, bio)) {
452 atomic_dec(&mddev->active_io);
453 wake_up(&mddev->sb_wait);
454 goto check_suspended;
455 }
456
457 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
458 wake_up(&mddev->sb_wait);
459 }
460 EXPORT_SYMBOL(md_handle_request);
461
md_submit_bio(struct bio * bio)462 static blk_qc_t md_submit_bio(struct bio *bio)
463 {
464 const int rw = bio_data_dir(bio);
465 struct mddev *mddev = bio->bi_disk->private_data;
466
467 if (mddev == NULL || mddev->pers == NULL) {
468 bio_io_error(bio);
469 return BLK_QC_T_NONE;
470 }
471
472 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) {
473 bio_io_error(bio);
474 return BLK_QC_T_NONE;
475 }
476
477 blk_queue_split(&bio);
478
479 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
480 if (bio_sectors(bio) != 0)
481 bio->bi_status = BLK_STS_IOERR;
482 bio_endio(bio);
483 return BLK_QC_T_NONE;
484 }
485
486 /* bio could be mergeable after passing to underlayer */
487 bio->bi_opf &= ~REQ_NOMERGE;
488
489 md_handle_request(mddev, bio);
490
491 return BLK_QC_T_NONE;
492 }
493
494 /* mddev_suspend makes sure no new requests are submitted
495 * to the device, and that any requests that have been submitted
496 * are completely handled.
497 * Once mddev_detach() is called and completes, the module will be
498 * completely unused.
499 */
mddev_suspend(struct mddev * mddev)500 void mddev_suspend(struct mddev *mddev)
501 {
502 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
503 lockdep_assert_held(&mddev->reconfig_mutex);
504 if (mddev->suspended++)
505 return;
506 synchronize_rcu();
507 wake_up(&mddev->sb_wait);
508 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
509 smp_mb__after_atomic();
510 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
511 mddev->pers->quiesce(mddev, 1);
512 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
513 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
514
515 del_timer_sync(&mddev->safemode_timer);
516 /* restrict memory reclaim I/O during raid array is suspend */
517 mddev->noio_flag = memalloc_noio_save();
518 }
519 EXPORT_SYMBOL_GPL(mddev_suspend);
520
mddev_resume(struct mddev * mddev)521 void mddev_resume(struct mddev *mddev)
522 {
523 /* entred the memalloc scope from mddev_suspend() */
524 memalloc_noio_restore(mddev->noio_flag);
525 lockdep_assert_held(&mddev->reconfig_mutex);
526 if (--mddev->suspended)
527 return;
528 wake_up(&mddev->sb_wait);
529 mddev->pers->quiesce(mddev, 0);
530
531 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
532 md_wakeup_thread(mddev->thread);
533 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
534 }
535 EXPORT_SYMBOL_GPL(mddev_resume);
536
537 /*
538 * Generic flush handling for md
539 */
540
md_end_flush(struct bio * bio)541 static void md_end_flush(struct bio *bio)
542 {
543 struct md_rdev *rdev = bio->bi_private;
544 struct mddev *mddev = rdev->mddev;
545
546 bio_put(bio);
547
548 rdev_dec_pending(rdev, mddev);
549
550 if (atomic_dec_and_test(&mddev->flush_pending)) {
551 /* The pre-request flush has finished */
552 queue_work(md_wq, &mddev->flush_work);
553 }
554 }
555
556 static void md_submit_flush_data(struct work_struct *ws);
557
submit_flushes(struct work_struct * ws)558 static void submit_flushes(struct work_struct *ws)
559 {
560 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
561 struct md_rdev *rdev;
562
563 mddev->start_flush = ktime_get_boottime();
564 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
565 atomic_set(&mddev->flush_pending, 1);
566 rcu_read_lock();
567 rdev_for_each_rcu(rdev, mddev)
568 if (rdev->raid_disk >= 0 &&
569 !test_bit(Faulty, &rdev->flags)) {
570 /* Take two references, one is dropped
571 * when request finishes, one after
572 * we reclaim rcu_read_lock
573 */
574 struct bio *bi;
575 atomic_inc(&rdev->nr_pending);
576 atomic_inc(&rdev->nr_pending);
577 rcu_read_unlock();
578 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
579 bi->bi_end_io = md_end_flush;
580 bi->bi_private = rdev;
581 bio_set_dev(bi, rdev->bdev);
582 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
583 atomic_inc(&mddev->flush_pending);
584 submit_bio(bi);
585 rcu_read_lock();
586 rdev_dec_pending(rdev, mddev);
587 }
588 rcu_read_unlock();
589 if (atomic_dec_and_test(&mddev->flush_pending))
590 queue_work(md_wq, &mddev->flush_work);
591 }
592
md_submit_flush_data(struct work_struct * ws)593 static void md_submit_flush_data(struct work_struct *ws)
594 {
595 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
596 struct bio *bio = mddev->flush_bio;
597
598 /*
599 * must reset flush_bio before calling into md_handle_request to avoid a
600 * deadlock, because other bios passed md_handle_request suspend check
601 * could wait for this and below md_handle_request could wait for those
602 * bios because of suspend check
603 */
604 spin_lock_irq(&mddev->lock);
605 mddev->last_flush = mddev->start_flush;
606 mddev->flush_bio = NULL;
607 spin_unlock_irq(&mddev->lock);
608 wake_up(&mddev->sb_wait);
609
610 if (bio->bi_iter.bi_size == 0) {
611 /* an empty barrier - all done */
612 bio_endio(bio);
613 } else {
614 bio->bi_opf &= ~REQ_PREFLUSH;
615 md_handle_request(mddev, bio);
616 }
617 }
618
619 /*
620 * Manages consolidation of flushes and submitting any flushes needed for
621 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is
622 * being finished in another context. Returns false if the flushing is
623 * complete but still needs the I/O portion of the bio to be processed.
624 */
md_flush_request(struct mddev * mddev,struct bio * bio)625 bool md_flush_request(struct mddev *mddev, struct bio *bio)
626 {
627 ktime_t start = ktime_get_boottime();
628 spin_lock_irq(&mddev->lock);
629 wait_event_lock_irq(mddev->sb_wait,
630 !mddev->flush_bio ||
631 ktime_after(mddev->last_flush, start),
632 mddev->lock);
633 if (!ktime_after(mddev->last_flush, start)) {
634 WARN_ON(mddev->flush_bio);
635 mddev->flush_bio = bio;
636 bio = NULL;
637 }
638 spin_unlock_irq(&mddev->lock);
639
640 if (!bio) {
641 INIT_WORK(&mddev->flush_work, submit_flushes);
642 queue_work(md_wq, &mddev->flush_work);
643 } else {
644 /* flush was performed for some other bio while we waited. */
645 if (bio->bi_iter.bi_size == 0)
646 /* an empty barrier - all done */
647 bio_endio(bio);
648 else {
649 bio->bi_opf &= ~REQ_PREFLUSH;
650 return false;
651 }
652 }
653 return true;
654 }
655 EXPORT_SYMBOL(md_flush_request);
656
mddev_get(struct mddev * mddev)657 static inline struct mddev *mddev_get(struct mddev *mddev)
658 {
659 atomic_inc(&mddev->active);
660 return mddev;
661 }
662
663 static void mddev_delayed_delete(struct work_struct *ws);
664
mddev_put(struct mddev * mddev)665 static void mddev_put(struct mddev *mddev)
666 {
667 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
668 return;
669 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
670 mddev->ctime == 0 && !mddev->hold_active) {
671 /* Array is not configured at all, and not held active,
672 * so destroy it */
673 list_del_init(&mddev->all_mddevs);
674
675 /*
676 * Call queue_work inside the spinlock so that
677 * flush_workqueue() after mddev_find will succeed in waiting
678 * for the work to be done.
679 */
680 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
681 queue_work(md_misc_wq, &mddev->del_work);
682 }
683 spin_unlock(&all_mddevs_lock);
684 }
685
686 static void md_safemode_timeout(struct timer_list *t);
687
mddev_init(struct mddev * mddev)688 void mddev_init(struct mddev *mddev)
689 {
690 kobject_init(&mddev->kobj, &md_ktype);
691 mutex_init(&mddev->open_mutex);
692 mutex_init(&mddev->reconfig_mutex);
693 mutex_init(&mddev->bitmap_info.mutex);
694 INIT_LIST_HEAD(&mddev->disks);
695 INIT_LIST_HEAD(&mddev->all_mddevs);
696 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
697 atomic_set(&mddev->active, 1);
698 atomic_set(&mddev->openers, 0);
699 atomic_set(&mddev->active_io, 0);
700 spin_lock_init(&mddev->lock);
701 atomic_set(&mddev->flush_pending, 0);
702 init_waitqueue_head(&mddev->sb_wait);
703 init_waitqueue_head(&mddev->recovery_wait);
704 mddev->reshape_position = MaxSector;
705 mddev->reshape_backwards = 0;
706 mddev->last_sync_action = "none";
707 mddev->resync_min = 0;
708 mddev->resync_max = MaxSector;
709 mddev->level = LEVEL_NONE;
710 }
711 EXPORT_SYMBOL_GPL(mddev_init);
712
mddev_find_locked(dev_t unit)713 static struct mddev *mddev_find_locked(dev_t unit)
714 {
715 struct mddev *mddev;
716
717 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
718 if (mddev->unit == unit)
719 return mddev;
720
721 return NULL;
722 }
723
mddev_find(dev_t unit)724 static struct mddev *mddev_find(dev_t unit)
725 {
726 struct mddev *mddev;
727
728 if (MAJOR(unit) != MD_MAJOR)
729 unit &= ~((1 << MdpMinorShift) - 1);
730
731 spin_lock(&all_mddevs_lock);
732 mddev = mddev_find_locked(unit);
733 if (mddev)
734 mddev_get(mddev);
735 spin_unlock(&all_mddevs_lock);
736
737 return mddev;
738 }
739
mddev_find_or_alloc(dev_t unit)740 static struct mddev *mddev_find_or_alloc(dev_t unit)
741 {
742 struct mddev *mddev, *new = NULL;
743
744 if (unit && MAJOR(unit) != MD_MAJOR)
745 unit &= ~((1<<MdpMinorShift)-1);
746
747 retry:
748 spin_lock(&all_mddevs_lock);
749
750 if (unit) {
751 mddev = mddev_find_locked(unit);
752 if (mddev) {
753 mddev_get(mddev);
754 spin_unlock(&all_mddevs_lock);
755 kfree(new);
756 return mddev;
757 }
758
759 if (new) {
760 list_add(&new->all_mddevs, &all_mddevs);
761 spin_unlock(&all_mddevs_lock);
762 new->hold_active = UNTIL_IOCTL;
763 return new;
764 }
765 } else if (new) {
766 /* find an unused unit number */
767 static int next_minor = 512;
768 int start = next_minor;
769 int is_free = 0;
770 int dev = 0;
771 while (!is_free) {
772 dev = MKDEV(MD_MAJOR, next_minor);
773 next_minor++;
774 if (next_minor > MINORMASK)
775 next_minor = 0;
776 if (next_minor == start) {
777 /* Oh dear, all in use. */
778 spin_unlock(&all_mddevs_lock);
779 kfree(new);
780 return NULL;
781 }
782
783 is_free = !mddev_find_locked(dev);
784 }
785 new->unit = dev;
786 new->md_minor = MINOR(dev);
787 new->hold_active = UNTIL_STOP;
788 list_add(&new->all_mddevs, &all_mddevs);
789 spin_unlock(&all_mddevs_lock);
790 return new;
791 }
792 spin_unlock(&all_mddevs_lock);
793
794 new = kzalloc(sizeof(*new), GFP_KERNEL);
795 if (!new)
796 return NULL;
797
798 new->unit = unit;
799 if (MAJOR(unit) == MD_MAJOR)
800 new->md_minor = MINOR(unit);
801 else
802 new->md_minor = MINOR(unit) >> MdpMinorShift;
803
804 mddev_init(new);
805
806 goto retry;
807 }
808
809 static struct attribute_group md_redundancy_group;
810
mddev_unlock(struct mddev * mddev)811 void mddev_unlock(struct mddev *mddev)
812 {
813 if (mddev->to_remove) {
814 /* These cannot be removed under reconfig_mutex as
815 * an access to the files will try to take reconfig_mutex
816 * while holding the file unremovable, which leads to
817 * a deadlock.
818 * So hold set sysfs_active while the remove in happeing,
819 * and anything else which might set ->to_remove or my
820 * otherwise change the sysfs namespace will fail with
821 * -EBUSY if sysfs_active is still set.
822 * We set sysfs_active under reconfig_mutex and elsewhere
823 * test it under the same mutex to ensure its correct value
824 * is seen.
825 */
826 struct attribute_group *to_remove = mddev->to_remove;
827 mddev->to_remove = NULL;
828 mddev->sysfs_active = 1;
829 mutex_unlock(&mddev->reconfig_mutex);
830
831 if (mddev->kobj.sd) {
832 if (to_remove != &md_redundancy_group)
833 sysfs_remove_group(&mddev->kobj, to_remove);
834 if (mddev->pers == NULL ||
835 mddev->pers->sync_request == NULL) {
836 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
837 if (mddev->sysfs_action)
838 sysfs_put(mddev->sysfs_action);
839 if (mddev->sysfs_completed)
840 sysfs_put(mddev->sysfs_completed);
841 if (mddev->sysfs_degraded)
842 sysfs_put(mddev->sysfs_degraded);
843 mddev->sysfs_action = NULL;
844 mddev->sysfs_completed = NULL;
845 mddev->sysfs_degraded = NULL;
846 }
847 }
848 mddev->sysfs_active = 0;
849 } else
850 mutex_unlock(&mddev->reconfig_mutex);
851
852 /* As we've dropped the mutex we need a spinlock to
853 * make sure the thread doesn't disappear
854 */
855 spin_lock(&pers_lock);
856 md_wakeup_thread(mddev->thread);
857 wake_up(&mddev->sb_wait);
858 spin_unlock(&pers_lock);
859 }
860 EXPORT_SYMBOL_GPL(mddev_unlock);
861
md_find_rdev_nr_rcu(struct mddev * mddev,int nr)862 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
863 {
864 struct md_rdev *rdev;
865
866 rdev_for_each_rcu(rdev, mddev)
867 if (rdev->desc_nr == nr)
868 return rdev;
869
870 return NULL;
871 }
872 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
873
find_rdev(struct mddev * mddev,dev_t dev)874 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
875 {
876 struct md_rdev *rdev;
877
878 rdev_for_each(rdev, mddev)
879 if (rdev->bdev->bd_dev == dev)
880 return rdev;
881
882 return NULL;
883 }
884
md_find_rdev_rcu(struct mddev * mddev,dev_t dev)885 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
886 {
887 struct md_rdev *rdev;
888
889 rdev_for_each_rcu(rdev, mddev)
890 if (rdev->bdev->bd_dev == dev)
891 return rdev;
892
893 return NULL;
894 }
895 EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
896
find_pers(int level,char * clevel)897 static struct md_personality *find_pers(int level, char *clevel)
898 {
899 struct md_personality *pers;
900 list_for_each_entry(pers, &pers_list, list) {
901 if (level != LEVEL_NONE && pers->level == level)
902 return pers;
903 if (strcmp(pers->name, clevel)==0)
904 return pers;
905 }
906 return NULL;
907 }
908
909 /* return the offset of the super block in 512byte sectors */
calc_dev_sboffset(struct md_rdev * rdev)910 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
911 {
912 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
913 return MD_NEW_SIZE_SECTORS(num_sectors);
914 }
915
alloc_disk_sb(struct md_rdev * rdev)916 static int alloc_disk_sb(struct md_rdev *rdev)
917 {
918 rdev->sb_page = alloc_page(GFP_KERNEL);
919 if (!rdev->sb_page)
920 return -ENOMEM;
921 return 0;
922 }
923
md_rdev_clear(struct md_rdev * rdev)924 void md_rdev_clear(struct md_rdev *rdev)
925 {
926 if (rdev->sb_page) {
927 put_page(rdev->sb_page);
928 rdev->sb_loaded = 0;
929 rdev->sb_page = NULL;
930 rdev->sb_start = 0;
931 rdev->sectors = 0;
932 }
933 if (rdev->bb_page) {
934 put_page(rdev->bb_page);
935 rdev->bb_page = NULL;
936 }
937 badblocks_exit(&rdev->badblocks);
938 }
939 EXPORT_SYMBOL_GPL(md_rdev_clear);
940
super_written(struct bio * bio)941 static void super_written(struct bio *bio)
942 {
943 struct md_rdev *rdev = bio->bi_private;
944 struct mddev *mddev = rdev->mddev;
945
946 if (bio->bi_status) {
947 pr_err("md: %s gets error=%d\n", __func__,
948 blk_status_to_errno(bio->bi_status));
949 md_error(mddev, rdev);
950 if (!test_bit(Faulty, &rdev->flags)
951 && (bio->bi_opf & MD_FAILFAST)) {
952 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
953 set_bit(LastDev, &rdev->flags);
954 }
955 } else
956 clear_bit(LastDev, &rdev->flags);
957
958 bio_put(bio);
959
960 rdev_dec_pending(rdev, mddev);
961
962 if (atomic_dec_and_test(&mddev->pending_writes))
963 wake_up(&mddev->sb_wait);
964 }
965
md_super_write(struct mddev * mddev,struct md_rdev * rdev,sector_t sector,int size,struct page * page)966 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
967 sector_t sector, int size, struct page *page)
968 {
969 /* write first size bytes of page to sector of rdev
970 * Increment mddev->pending_writes before returning
971 * and decrement it on completion, waking up sb_wait
972 * if zero is reached.
973 * If an error occurred, call md_error
974 */
975 struct bio *bio;
976 int ff = 0;
977
978 if (!page)
979 return;
980
981 if (test_bit(Faulty, &rdev->flags))
982 return;
983
984 bio = md_bio_alloc_sync(mddev);
985
986 atomic_inc(&rdev->nr_pending);
987
988 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev);
989 bio->bi_iter.bi_sector = sector;
990 bio_add_page(bio, page, size, 0);
991 bio->bi_private = rdev;
992 bio->bi_end_io = super_written;
993
994 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
995 test_bit(FailFast, &rdev->flags) &&
996 !test_bit(LastDev, &rdev->flags))
997 ff = MD_FAILFAST;
998 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff;
999
1000 atomic_inc(&mddev->pending_writes);
1001 submit_bio(bio);
1002 }
1003
md_super_wait(struct mddev * mddev)1004 int md_super_wait(struct mddev *mddev)
1005 {
1006 /* wait for all superblock writes that were scheduled to complete */
1007 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1008 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
1009 return -EAGAIN;
1010 return 0;
1011 }
1012
sync_page_io(struct md_rdev * rdev,sector_t sector,int size,struct page * page,int op,int op_flags,bool metadata_op)1013 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
1014 struct page *page, int op, int op_flags, bool metadata_op)
1015 {
1016 struct bio *bio = md_bio_alloc_sync(rdev->mddev);
1017 int ret;
1018
1019 if (metadata_op && rdev->meta_bdev)
1020 bio_set_dev(bio, rdev->meta_bdev);
1021 else
1022 bio_set_dev(bio, rdev->bdev);
1023 bio_set_op_attrs(bio, op, op_flags);
1024 if (metadata_op)
1025 bio->bi_iter.bi_sector = sector + rdev->sb_start;
1026 else if (rdev->mddev->reshape_position != MaxSector &&
1027 (rdev->mddev->reshape_backwards ==
1028 (sector >= rdev->mddev->reshape_position)))
1029 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
1030 else
1031 bio->bi_iter.bi_sector = sector + rdev->data_offset;
1032 bio_add_page(bio, page, size, 0);
1033
1034 submit_bio_wait(bio);
1035
1036 ret = !bio->bi_status;
1037 bio_put(bio);
1038 return ret;
1039 }
1040 EXPORT_SYMBOL_GPL(sync_page_io);
1041
read_disk_sb(struct md_rdev * rdev,int size)1042 static int read_disk_sb(struct md_rdev *rdev, int size)
1043 {
1044 char b[BDEVNAME_SIZE];
1045
1046 if (rdev->sb_loaded)
1047 return 0;
1048
1049 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
1050 goto fail;
1051 rdev->sb_loaded = 1;
1052 return 0;
1053
1054 fail:
1055 pr_err("md: disabled device %s, could not read superblock.\n",
1056 bdevname(rdev->bdev,b));
1057 return -EINVAL;
1058 }
1059
md_uuid_equal(mdp_super_t * sb1,mdp_super_t * sb2)1060 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1061 {
1062 return sb1->set_uuid0 == sb2->set_uuid0 &&
1063 sb1->set_uuid1 == sb2->set_uuid1 &&
1064 sb1->set_uuid2 == sb2->set_uuid2 &&
1065 sb1->set_uuid3 == sb2->set_uuid3;
1066 }
1067
md_sb_equal(mdp_super_t * sb1,mdp_super_t * sb2)1068 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1069 {
1070 int ret;
1071 mdp_super_t *tmp1, *tmp2;
1072
1073 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
1074 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
1075
1076 if (!tmp1 || !tmp2) {
1077 ret = 0;
1078 goto abort;
1079 }
1080
1081 *tmp1 = *sb1;
1082 *tmp2 = *sb2;
1083
1084 /*
1085 * nr_disks is not constant
1086 */
1087 tmp1->nr_disks = 0;
1088 tmp2->nr_disks = 0;
1089
1090 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
1091 abort:
1092 kfree(tmp1);
1093 kfree(tmp2);
1094 return ret;
1095 }
1096
md_csum_fold(u32 csum)1097 static u32 md_csum_fold(u32 csum)
1098 {
1099 csum = (csum & 0xffff) + (csum >> 16);
1100 return (csum & 0xffff) + (csum >> 16);
1101 }
1102
calc_sb_csum(mdp_super_t * sb)1103 static unsigned int calc_sb_csum(mdp_super_t *sb)
1104 {
1105 u64 newcsum = 0;
1106 u32 *sb32 = (u32*)sb;
1107 int i;
1108 unsigned int disk_csum, csum;
1109
1110 disk_csum = sb->sb_csum;
1111 sb->sb_csum = 0;
1112
1113 for (i = 0; i < MD_SB_BYTES/4 ; i++)
1114 newcsum += sb32[i];
1115 csum = (newcsum & 0xffffffff) + (newcsum>>32);
1116
1117 #ifdef CONFIG_ALPHA
1118 /* This used to use csum_partial, which was wrong for several
1119 * reasons including that different results are returned on
1120 * different architectures. It isn't critical that we get exactly
1121 * the same return value as before (we always csum_fold before
1122 * testing, and that removes any differences). However as we
1123 * know that csum_partial always returned a 16bit value on
1124 * alphas, do a fold to maximise conformity to previous behaviour.
1125 */
1126 sb->sb_csum = md_csum_fold(disk_csum);
1127 #else
1128 sb->sb_csum = disk_csum;
1129 #endif
1130 return csum;
1131 }
1132
1133 /*
1134 * Handle superblock details.
1135 * We want to be able to handle multiple superblock formats
1136 * so we have a common interface to them all, and an array of
1137 * different handlers.
1138 * We rely on user-space to write the initial superblock, and support
1139 * reading and updating of superblocks.
1140 * Interface methods are:
1141 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1142 * loads and validates a superblock on dev.
1143 * if refdev != NULL, compare superblocks on both devices
1144 * Return:
1145 * 0 - dev has a superblock that is compatible with refdev
1146 * 1 - dev has a superblock that is compatible and newer than refdev
1147 * so dev should be used as the refdev in future
1148 * -EINVAL superblock incompatible or invalid
1149 * -othererror e.g. -EIO
1150 *
1151 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1152 * Verify that dev is acceptable into mddev.
1153 * The first time, mddev->raid_disks will be 0, and data from
1154 * dev should be merged in. Subsequent calls check that dev
1155 * is new enough. Return 0 or -EINVAL
1156 *
1157 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1158 * Update the superblock for rdev with data in mddev
1159 * This does not write to disc.
1160 *
1161 */
1162
1163 struct super_type {
1164 char *name;
1165 struct module *owner;
1166 int (*load_super)(struct md_rdev *rdev,
1167 struct md_rdev *refdev,
1168 int minor_version);
1169 int (*validate_super)(struct mddev *mddev,
1170 struct md_rdev *rdev);
1171 void (*sync_super)(struct mddev *mddev,
1172 struct md_rdev *rdev);
1173 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1174 sector_t num_sectors);
1175 int (*allow_new_offset)(struct md_rdev *rdev,
1176 unsigned long long new_offset);
1177 };
1178
1179 /*
1180 * Check that the given mddev has no bitmap.
1181 *
1182 * This function is called from the run method of all personalities that do not
1183 * support bitmaps. It prints an error message and returns non-zero if mddev
1184 * has a bitmap. Otherwise, it returns 0.
1185 *
1186 */
md_check_no_bitmap(struct mddev * mddev)1187 int md_check_no_bitmap(struct mddev *mddev)
1188 {
1189 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1190 return 0;
1191 pr_warn("%s: bitmaps are not supported for %s\n",
1192 mdname(mddev), mddev->pers->name);
1193 return 1;
1194 }
1195 EXPORT_SYMBOL(md_check_no_bitmap);
1196
1197 /*
1198 * load_super for 0.90.0
1199 */
super_90_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1200 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1201 {
1202 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1203 mdp_super_t *sb;
1204 int ret;
1205 bool spare_disk = true;
1206
1207 /*
1208 * Calculate the position of the superblock (512byte sectors),
1209 * it's at the end of the disk.
1210 *
1211 * It also happens to be a multiple of 4Kb.
1212 */
1213 rdev->sb_start = calc_dev_sboffset(rdev);
1214
1215 ret = read_disk_sb(rdev, MD_SB_BYTES);
1216 if (ret)
1217 return ret;
1218
1219 ret = -EINVAL;
1220
1221 bdevname(rdev->bdev, b);
1222 sb = page_address(rdev->sb_page);
1223
1224 if (sb->md_magic != MD_SB_MAGIC) {
1225 pr_warn("md: invalid raid superblock magic on %s\n", b);
1226 goto abort;
1227 }
1228
1229 if (sb->major_version != 0 ||
1230 sb->minor_version < 90 ||
1231 sb->minor_version > 91) {
1232 pr_warn("Bad version number %d.%d on %s\n",
1233 sb->major_version, sb->minor_version, b);
1234 goto abort;
1235 }
1236
1237 if (sb->raid_disks <= 0)
1238 goto abort;
1239
1240 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1241 pr_warn("md: invalid superblock checksum on %s\n", b);
1242 goto abort;
1243 }
1244
1245 rdev->preferred_minor = sb->md_minor;
1246 rdev->data_offset = 0;
1247 rdev->new_data_offset = 0;
1248 rdev->sb_size = MD_SB_BYTES;
1249 rdev->badblocks.shift = -1;
1250
1251 if (sb->level == LEVEL_MULTIPATH)
1252 rdev->desc_nr = -1;
1253 else
1254 rdev->desc_nr = sb->this_disk.number;
1255
1256 /* not spare disk, or LEVEL_MULTIPATH */
1257 if (sb->level == LEVEL_MULTIPATH ||
1258 (rdev->desc_nr >= 0 &&
1259 rdev->desc_nr < MD_SB_DISKS &&
1260 sb->disks[rdev->desc_nr].state &
1261 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))))
1262 spare_disk = false;
1263
1264 if (!refdev) {
1265 if (!spare_disk)
1266 ret = 1;
1267 else
1268 ret = 0;
1269 } else {
1270 __u64 ev1, ev2;
1271 mdp_super_t *refsb = page_address(refdev->sb_page);
1272 if (!md_uuid_equal(refsb, sb)) {
1273 pr_warn("md: %s has different UUID to %s\n",
1274 b, bdevname(refdev->bdev,b2));
1275 goto abort;
1276 }
1277 if (!md_sb_equal(refsb, sb)) {
1278 pr_warn("md: %s has same UUID but different superblock to %s\n",
1279 b, bdevname(refdev->bdev, b2));
1280 goto abort;
1281 }
1282 ev1 = md_event(sb);
1283 ev2 = md_event(refsb);
1284
1285 if (!spare_disk && ev1 > ev2)
1286 ret = 1;
1287 else
1288 ret = 0;
1289 }
1290 rdev->sectors = rdev->sb_start;
1291 /* Limit to 4TB as metadata cannot record more than that.
1292 * (not needed for Linear and RAID0 as metadata doesn't
1293 * record this size)
1294 */
1295 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1296 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1297
1298 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1299 /* "this cannot possibly happen" ... */
1300 ret = -EINVAL;
1301
1302 abort:
1303 return ret;
1304 }
1305
1306 /*
1307 * validate_super for 0.90.0
1308 */
super_90_validate(struct mddev * mddev,struct md_rdev * rdev)1309 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1310 {
1311 mdp_disk_t *desc;
1312 mdp_super_t *sb = page_address(rdev->sb_page);
1313 __u64 ev1 = md_event(sb);
1314
1315 rdev->raid_disk = -1;
1316 clear_bit(Faulty, &rdev->flags);
1317 clear_bit(In_sync, &rdev->flags);
1318 clear_bit(Bitmap_sync, &rdev->flags);
1319 clear_bit(WriteMostly, &rdev->flags);
1320
1321 if (mddev->raid_disks == 0) {
1322 mddev->major_version = 0;
1323 mddev->minor_version = sb->minor_version;
1324 mddev->patch_version = sb->patch_version;
1325 mddev->external = 0;
1326 mddev->chunk_sectors = sb->chunk_size >> 9;
1327 mddev->ctime = sb->ctime;
1328 mddev->utime = sb->utime;
1329 mddev->level = sb->level;
1330 mddev->clevel[0] = 0;
1331 mddev->layout = sb->layout;
1332 mddev->raid_disks = sb->raid_disks;
1333 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1334 mddev->events = ev1;
1335 mddev->bitmap_info.offset = 0;
1336 mddev->bitmap_info.space = 0;
1337 /* bitmap can use 60 K after the 4K superblocks */
1338 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1339 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1340 mddev->reshape_backwards = 0;
1341
1342 if (mddev->minor_version >= 91) {
1343 mddev->reshape_position = sb->reshape_position;
1344 mddev->delta_disks = sb->delta_disks;
1345 mddev->new_level = sb->new_level;
1346 mddev->new_layout = sb->new_layout;
1347 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1348 if (mddev->delta_disks < 0)
1349 mddev->reshape_backwards = 1;
1350 } else {
1351 mddev->reshape_position = MaxSector;
1352 mddev->delta_disks = 0;
1353 mddev->new_level = mddev->level;
1354 mddev->new_layout = mddev->layout;
1355 mddev->new_chunk_sectors = mddev->chunk_sectors;
1356 }
1357 if (mddev->level == 0)
1358 mddev->layout = -1;
1359
1360 if (sb->state & (1<<MD_SB_CLEAN))
1361 mddev->recovery_cp = MaxSector;
1362 else {
1363 if (sb->events_hi == sb->cp_events_hi &&
1364 sb->events_lo == sb->cp_events_lo) {
1365 mddev->recovery_cp = sb->recovery_cp;
1366 } else
1367 mddev->recovery_cp = 0;
1368 }
1369
1370 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1371 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1372 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1373 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1374
1375 mddev->max_disks = MD_SB_DISKS;
1376
1377 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1378 mddev->bitmap_info.file == NULL) {
1379 mddev->bitmap_info.offset =
1380 mddev->bitmap_info.default_offset;
1381 mddev->bitmap_info.space =
1382 mddev->bitmap_info.default_space;
1383 }
1384
1385 } else if (mddev->pers == NULL) {
1386 /* Insist on good event counter while assembling, except
1387 * for spares (which don't need an event count) */
1388 ++ev1;
1389 if (sb->disks[rdev->desc_nr].state & (
1390 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1391 if (ev1 < mddev->events)
1392 return -EINVAL;
1393 } else if (mddev->bitmap) {
1394 /* if adding to array with a bitmap, then we can accept an
1395 * older device ... but not too old.
1396 */
1397 if (ev1 < mddev->bitmap->events_cleared)
1398 return 0;
1399 if (ev1 < mddev->events)
1400 set_bit(Bitmap_sync, &rdev->flags);
1401 } else {
1402 if (ev1 < mddev->events)
1403 /* just a hot-add of a new device, leave raid_disk at -1 */
1404 return 0;
1405 }
1406
1407 if (mddev->level != LEVEL_MULTIPATH) {
1408 desc = sb->disks + rdev->desc_nr;
1409
1410 if (desc->state & (1<<MD_DISK_FAULTY))
1411 set_bit(Faulty, &rdev->flags);
1412 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1413 desc->raid_disk < mddev->raid_disks */) {
1414 set_bit(In_sync, &rdev->flags);
1415 rdev->raid_disk = desc->raid_disk;
1416 rdev->saved_raid_disk = desc->raid_disk;
1417 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1418 /* active but not in sync implies recovery up to
1419 * reshape position. We don't know exactly where
1420 * that is, so set to zero for now */
1421 if (mddev->minor_version >= 91) {
1422 rdev->recovery_offset = 0;
1423 rdev->raid_disk = desc->raid_disk;
1424 }
1425 }
1426 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1427 set_bit(WriteMostly, &rdev->flags);
1428 if (desc->state & (1<<MD_DISK_FAILFAST))
1429 set_bit(FailFast, &rdev->flags);
1430 } else /* MULTIPATH are always insync */
1431 set_bit(In_sync, &rdev->flags);
1432 return 0;
1433 }
1434
1435 /*
1436 * sync_super for 0.90.0
1437 */
super_90_sync(struct mddev * mddev,struct md_rdev * rdev)1438 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1439 {
1440 mdp_super_t *sb;
1441 struct md_rdev *rdev2;
1442 int next_spare = mddev->raid_disks;
1443
1444 /* make rdev->sb match mddev data..
1445 *
1446 * 1/ zero out disks
1447 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1448 * 3/ any empty disks < next_spare become removed
1449 *
1450 * disks[0] gets initialised to REMOVED because
1451 * we cannot be sure from other fields if it has
1452 * been initialised or not.
1453 */
1454 int i;
1455 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1456
1457 rdev->sb_size = MD_SB_BYTES;
1458
1459 sb = page_address(rdev->sb_page);
1460
1461 memset(sb, 0, sizeof(*sb));
1462
1463 sb->md_magic = MD_SB_MAGIC;
1464 sb->major_version = mddev->major_version;
1465 sb->patch_version = mddev->patch_version;
1466 sb->gvalid_words = 0; /* ignored */
1467 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1468 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1469 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1470 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1471
1472 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1473 sb->level = mddev->level;
1474 sb->size = mddev->dev_sectors / 2;
1475 sb->raid_disks = mddev->raid_disks;
1476 sb->md_minor = mddev->md_minor;
1477 sb->not_persistent = 0;
1478 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1479 sb->state = 0;
1480 sb->events_hi = (mddev->events>>32);
1481 sb->events_lo = (u32)mddev->events;
1482
1483 if (mddev->reshape_position == MaxSector)
1484 sb->minor_version = 90;
1485 else {
1486 sb->minor_version = 91;
1487 sb->reshape_position = mddev->reshape_position;
1488 sb->new_level = mddev->new_level;
1489 sb->delta_disks = mddev->delta_disks;
1490 sb->new_layout = mddev->new_layout;
1491 sb->new_chunk = mddev->new_chunk_sectors << 9;
1492 }
1493 mddev->minor_version = sb->minor_version;
1494 if (mddev->in_sync)
1495 {
1496 sb->recovery_cp = mddev->recovery_cp;
1497 sb->cp_events_hi = (mddev->events>>32);
1498 sb->cp_events_lo = (u32)mddev->events;
1499 if (mddev->recovery_cp == MaxSector)
1500 sb->state = (1<< MD_SB_CLEAN);
1501 } else
1502 sb->recovery_cp = 0;
1503
1504 sb->layout = mddev->layout;
1505 sb->chunk_size = mddev->chunk_sectors << 9;
1506
1507 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1508 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1509
1510 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1511 rdev_for_each(rdev2, mddev) {
1512 mdp_disk_t *d;
1513 int desc_nr;
1514 int is_active = test_bit(In_sync, &rdev2->flags);
1515
1516 if (rdev2->raid_disk >= 0 &&
1517 sb->minor_version >= 91)
1518 /* we have nowhere to store the recovery_offset,
1519 * but if it is not below the reshape_position,
1520 * we can piggy-back on that.
1521 */
1522 is_active = 1;
1523 if (rdev2->raid_disk < 0 ||
1524 test_bit(Faulty, &rdev2->flags))
1525 is_active = 0;
1526 if (is_active)
1527 desc_nr = rdev2->raid_disk;
1528 else
1529 desc_nr = next_spare++;
1530 rdev2->desc_nr = desc_nr;
1531 d = &sb->disks[rdev2->desc_nr];
1532 nr_disks++;
1533 d->number = rdev2->desc_nr;
1534 d->major = MAJOR(rdev2->bdev->bd_dev);
1535 d->minor = MINOR(rdev2->bdev->bd_dev);
1536 if (is_active)
1537 d->raid_disk = rdev2->raid_disk;
1538 else
1539 d->raid_disk = rdev2->desc_nr; /* compatibility */
1540 if (test_bit(Faulty, &rdev2->flags))
1541 d->state = (1<<MD_DISK_FAULTY);
1542 else if (is_active) {
1543 d->state = (1<<MD_DISK_ACTIVE);
1544 if (test_bit(In_sync, &rdev2->flags))
1545 d->state |= (1<<MD_DISK_SYNC);
1546 active++;
1547 working++;
1548 } else {
1549 d->state = 0;
1550 spare++;
1551 working++;
1552 }
1553 if (test_bit(WriteMostly, &rdev2->flags))
1554 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1555 if (test_bit(FailFast, &rdev2->flags))
1556 d->state |= (1<<MD_DISK_FAILFAST);
1557 }
1558 /* now set the "removed" and "faulty" bits on any missing devices */
1559 for (i=0 ; i < mddev->raid_disks ; i++) {
1560 mdp_disk_t *d = &sb->disks[i];
1561 if (d->state == 0 && d->number == 0) {
1562 d->number = i;
1563 d->raid_disk = i;
1564 d->state = (1<<MD_DISK_REMOVED);
1565 d->state |= (1<<MD_DISK_FAULTY);
1566 failed++;
1567 }
1568 }
1569 sb->nr_disks = nr_disks;
1570 sb->active_disks = active;
1571 sb->working_disks = working;
1572 sb->failed_disks = failed;
1573 sb->spare_disks = spare;
1574
1575 sb->this_disk = sb->disks[rdev->desc_nr];
1576 sb->sb_csum = calc_sb_csum(sb);
1577 }
1578
1579 /*
1580 * rdev_size_change for 0.90.0
1581 */
1582 static unsigned long long
super_90_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1583 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1584 {
1585 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1586 return 0; /* component must fit device */
1587 if (rdev->mddev->bitmap_info.offset)
1588 return 0; /* can't move bitmap */
1589 rdev->sb_start = calc_dev_sboffset(rdev);
1590 if (!num_sectors || num_sectors > rdev->sb_start)
1591 num_sectors = rdev->sb_start;
1592 /* Limit to 4TB as metadata cannot record more than that.
1593 * 4TB == 2^32 KB, or 2*2^32 sectors.
1594 */
1595 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1596 num_sectors = (sector_t)(2ULL << 32) - 2;
1597 do {
1598 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1599 rdev->sb_page);
1600 } while (md_super_wait(rdev->mddev) < 0);
1601 return num_sectors;
1602 }
1603
1604 static int
super_90_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)1605 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1606 {
1607 /* non-zero offset changes not possible with v0.90 */
1608 return new_offset == 0;
1609 }
1610
1611 /*
1612 * version 1 superblock
1613 */
1614
calc_sb_1_csum(struct mdp_superblock_1 * sb)1615 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1616 {
1617 __le32 disk_csum;
1618 u32 csum;
1619 unsigned long long newcsum;
1620 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1621 __le32 *isuper = (__le32*)sb;
1622
1623 disk_csum = sb->sb_csum;
1624 sb->sb_csum = 0;
1625 newcsum = 0;
1626 for (; size >= 4; size -= 4)
1627 newcsum += le32_to_cpu(*isuper++);
1628
1629 if (size == 2)
1630 newcsum += le16_to_cpu(*(__le16*) isuper);
1631
1632 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1633 sb->sb_csum = disk_csum;
1634 return cpu_to_le32(csum);
1635 }
1636
super_1_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1637 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1638 {
1639 struct mdp_superblock_1 *sb;
1640 int ret;
1641 sector_t sb_start;
1642 sector_t sectors;
1643 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1644 int bmask;
1645 bool spare_disk = true;
1646
1647 /*
1648 * Calculate the position of the superblock in 512byte sectors.
1649 * It is always aligned to a 4K boundary and
1650 * depeding on minor_version, it can be:
1651 * 0: At least 8K, but less than 12K, from end of device
1652 * 1: At start of device
1653 * 2: 4K from start of device.
1654 */
1655 switch(minor_version) {
1656 case 0:
1657 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1658 sb_start -= 8*2;
1659 sb_start &= ~(sector_t)(4*2-1);
1660 break;
1661 case 1:
1662 sb_start = 0;
1663 break;
1664 case 2:
1665 sb_start = 8;
1666 break;
1667 default:
1668 return -EINVAL;
1669 }
1670 rdev->sb_start = sb_start;
1671
1672 /* superblock is rarely larger than 1K, but it can be larger,
1673 * and it is safe to read 4k, so we do that
1674 */
1675 ret = read_disk_sb(rdev, 4096);
1676 if (ret) return ret;
1677
1678 sb = page_address(rdev->sb_page);
1679
1680 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1681 sb->major_version != cpu_to_le32(1) ||
1682 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1683 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1684 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1685 return -EINVAL;
1686
1687 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1688 pr_warn("md: invalid superblock checksum on %s\n",
1689 bdevname(rdev->bdev,b));
1690 return -EINVAL;
1691 }
1692 if (le64_to_cpu(sb->data_size) < 10) {
1693 pr_warn("md: data_size too small on %s\n",
1694 bdevname(rdev->bdev,b));
1695 return -EINVAL;
1696 }
1697 if (sb->pad0 ||
1698 sb->pad3[0] ||
1699 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1700 /* Some padding is non-zero, might be a new feature */
1701 return -EINVAL;
1702
1703 rdev->preferred_minor = 0xffff;
1704 rdev->data_offset = le64_to_cpu(sb->data_offset);
1705 rdev->new_data_offset = rdev->data_offset;
1706 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1707 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1708 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1709 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1710
1711 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1712 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1713 if (rdev->sb_size & bmask)
1714 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1715
1716 if (minor_version
1717 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1718 return -EINVAL;
1719 if (minor_version
1720 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1721 return -EINVAL;
1722
1723 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1724 rdev->desc_nr = -1;
1725 else
1726 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1727
1728 if (!rdev->bb_page) {
1729 rdev->bb_page = alloc_page(GFP_KERNEL);
1730 if (!rdev->bb_page)
1731 return -ENOMEM;
1732 }
1733 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1734 rdev->badblocks.count == 0) {
1735 /* need to load the bad block list.
1736 * Currently we limit it to one page.
1737 */
1738 s32 offset;
1739 sector_t bb_sector;
1740 __le64 *bbp;
1741 int i;
1742 int sectors = le16_to_cpu(sb->bblog_size);
1743 if (sectors > (PAGE_SIZE / 512))
1744 return -EINVAL;
1745 offset = le32_to_cpu(sb->bblog_offset);
1746 if (offset == 0)
1747 return -EINVAL;
1748 bb_sector = (long long)offset;
1749 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1750 rdev->bb_page, REQ_OP_READ, 0, true))
1751 return -EIO;
1752 bbp = (__le64 *)page_address(rdev->bb_page);
1753 rdev->badblocks.shift = sb->bblog_shift;
1754 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1755 u64 bb = le64_to_cpu(*bbp);
1756 int count = bb & (0x3ff);
1757 u64 sector = bb >> 10;
1758 sector <<= sb->bblog_shift;
1759 count <<= sb->bblog_shift;
1760 if (bb + 1 == 0)
1761 break;
1762 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1763 return -EINVAL;
1764 }
1765 } else if (sb->bblog_offset != 0)
1766 rdev->badblocks.shift = 0;
1767
1768 if ((le32_to_cpu(sb->feature_map) &
1769 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1770 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1771 rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1772 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1773 }
1774
1775 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) &&
1776 sb->level != 0)
1777 return -EINVAL;
1778
1779 /* not spare disk, or LEVEL_MULTIPATH */
1780 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) ||
1781 (rdev->desc_nr >= 0 &&
1782 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1783 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1784 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)))
1785 spare_disk = false;
1786
1787 if (!refdev) {
1788 if (!spare_disk)
1789 ret = 1;
1790 else
1791 ret = 0;
1792 } else {
1793 __u64 ev1, ev2;
1794 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1795
1796 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1797 sb->level != refsb->level ||
1798 sb->layout != refsb->layout ||
1799 sb->chunksize != refsb->chunksize) {
1800 pr_warn("md: %s has strangely different superblock to %s\n",
1801 bdevname(rdev->bdev,b),
1802 bdevname(refdev->bdev,b2));
1803 return -EINVAL;
1804 }
1805 ev1 = le64_to_cpu(sb->events);
1806 ev2 = le64_to_cpu(refsb->events);
1807
1808 if (!spare_disk && ev1 > ev2)
1809 ret = 1;
1810 else
1811 ret = 0;
1812 }
1813 if (minor_version) {
1814 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1815 sectors -= rdev->data_offset;
1816 } else
1817 sectors = rdev->sb_start;
1818 if (sectors < le64_to_cpu(sb->data_size))
1819 return -EINVAL;
1820 rdev->sectors = le64_to_cpu(sb->data_size);
1821 return ret;
1822 }
1823
super_1_validate(struct mddev * mddev,struct md_rdev * rdev)1824 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1825 {
1826 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1827 __u64 ev1 = le64_to_cpu(sb->events);
1828
1829 rdev->raid_disk = -1;
1830 clear_bit(Faulty, &rdev->flags);
1831 clear_bit(In_sync, &rdev->flags);
1832 clear_bit(Bitmap_sync, &rdev->flags);
1833 clear_bit(WriteMostly, &rdev->flags);
1834
1835 if (mddev->raid_disks == 0) {
1836 mddev->major_version = 1;
1837 mddev->patch_version = 0;
1838 mddev->external = 0;
1839 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1840 mddev->ctime = le64_to_cpu(sb->ctime);
1841 mddev->utime = le64_to_cpu(sb->utime);
1842 mddev->level = le32_to_cpu(sb->level);
1843 mddev->clevel[0] = 0;
1844 mddev->layout = le32_to_cpu(sb->layout);
1845 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1846 mddev->dev_sectors = le64_to_cpu(sb->size);
1847 mddev->events = ev1;
1848 mddev->bitmap_info.offset = 0;
1849 mddev->bitmap_info.space = 0;
1850 /* Default location for bitmap is 1K after superblock
1851 * using 3K - total of 4K
1852 */
1853 mddev->bitmap_info.default_offset = 1024 >> 9;
1854 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1855 mddev->reshape_backwards = 0;
1856
1857 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1858 memcpy(mddev->uuid, sb->set_uuid, 16);
1859
1860 mddev->max_disks = (4096-256)/2;
1861
1862 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1863 mddev->bitmap_info.file == NULL) {
1864 mddev->bitmap_info.offset =
1865 (__s32)le32_to_cpu(sb->bitmap_offset);
1866 /* Metadata doesn't record how much space is available.
1867 * For 1.0, we assume we can use up to the superblock
1868 * if before, else to 4K beyond superblock.
1869 * For others, assume no change is possible.
1870 */
1871 if (mddev->minor_version > 0)
1872 mddev->bitmap_info.space = 0;
1873 else if (mddev->bitmap_info.offset > 0)
1874 mddev->bitmap_info.space =
1875 8 - mddev->bitmap_info.offset;
1876 else
1877 mddev->bitmap_info.space =
1878 -mddev->bitmap_info.offset;
1879 }
1880
1881 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1882 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1883 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1884 mddev->new_level = le32_to_cpu(sb->new_level);
1885 mddev->new_layout = le32_to_cpu(sb->new_layout);
1886 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1887 if (mddev->delta_disks < 0 ||
1888 (mddev->delta_disks == 0 &&
1889 (le32_to_cpu(sb->feature_map)
1890 & MD_FEATURE_RESHAPE_BACKWARDS)))
1891 mddev->reshape_backwards = 1;
1892 } else {
1893 mddev->reshape_position = MaxSector;
1894 mddev->delta_disks = 0;
1895 mddev->new_level = mddev->level;
1896 mddev->new_layout = mddev->layout;
1897 mddev->new_chunk_sectors = mddev->chunk_sectors;
1898 }
1899
1900 if (mddev->level == 0 &&
1901 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT))
1902 mddev->layout = -1;
1903
1904 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1905 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1906
1907 if (le32_to_cpu(sb->feature_map) &
1908 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1909 if (le32_to_cpu(sb->feature_map) &
1910 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1911 return -EINVAL;
1912 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1913 (le32_to_cpu(sb->feature_map) &
1914 MD_FEATURE_MULTIPLE_PPLS))
1915 return -EINVAL;
1916 set_bit(MD_HAS_PPL, &mddev->flags);
1917 }
1918 } else if (mddev->pers == NULL) {
1919 /* Insist of good event counter while assembling, except for
1920 * spares (which don't need an event count) */
1921 ++ev1;
1922 if (rdev->desc_nr >= 0 &&
1923 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1924 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1925 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1926 if (ev1 < mddev->events)
1927 return -EINVAL;
1928 } else if (mddev->bitmap) {
1929 /* If adding to array with a bitmap, then we can accept an
1930 * older device, but not too old.
1931 */
1932 if (ev1 < mddev->bitmap->events_cleared)
1933 return 0;
1934 if (ev1 < mddev->events)
1935 set_bit(Bitmap_sync, &rdev->flags);
1936 } else {
1937 if (ev1 < mddev->events)
1938 /* just a hot-add of a new device, leave raid_disk at -1 */
1939 return 0;
1940 }
1941 if (mddev->level != LEVEL_MULTIPATH) {
1942 int role;
1943 if (rdev->desc_nr < 0 ||
1944 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1945 role = MD_DISK_ROLE_SPARE;
1946 rdev->desc_nr = -1;
1947 } else
1948 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1949 switch(role) {
1950 case MD_DISK_ROLE_SPARE: /* spare */
1951 break;
1952 case MD_DISK_ROLE_FAULTY: /* faulty */
1953 set_bit(Faulty, &rdev->flags);
1954 break;
1955 case MD_DISK_ROLE_JOURNAL: /* journal device */
1956 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1957 /* journal device without journal feature */
1958 pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1959 return -EINVAL;
1960 }
1961 set_bit(Journal, &rdev->flags);
1962 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1963 rdev->raid_disk = 0;
1964 break;
1965 default:
1966 rdev->saved_raid_disk = role;
1967 if ((le32_to_cpu(sb->feature_map) &
1968 MD_FEATURE_RECOVERY_OFFSET)) {
1969 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1970 if (!(le32_to_cpu(sb->feature_map) &
1971 MD_FEATURE_RECOVERY_BITMAP))
1972 rdev->saved_raid_disk = -1;
1973 } else {
1974 /*
1975 * If the array is FROZEN, then the device can't
1976 * be in_sync with rest of array.
1977 */
1978 if (!test_bit(MD_RECOVERY_FROZEN,
1979 &mddev->recovery))
1980 set_bit(In_sync, &rdev->flags);
1981 }
1982 rdev->raid_disk = role;
1983 break;
1984 }
1985 if (sb->devflags & WriteMostly1)
1986 set_bit(WriteMostly, &rdev->flags);
1987 if (sb->devflags & FailFast1)
1988 set_bit(FailFast, &rdev->flags);
1989 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1990 set_bit(Replacement, &rdev->flags);
1991 } else /* MULTIPATH are always insync */
1992 set_bit(In_sync, &rdev->flags);
1993
1994 return 0;
1995 }
1996
super_1_sync(struct mddev * mddev,struct md_rdev * rdev)1997 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1998 {
1999 struct mdp_superblock_1 *sb;
2000 struct md_rdev *rdev2;
2001 int max_dev, i;
2002 /* make rdev->sb match mddev and rdev data. */
2003
2004 sb = page_address(rdev->sb_page);
2005
2006 sb->feature_map = 0;
2007 sb->pad0 = 0;
2008 sb->recovery_offset = cpu_to_le64(0);
2009 memset(sb->pad3, 0, sizeof(sb->pad3));
2010
2011 sb->utime = cpu_to_le64((__u64)mddev->utime);
2012 sb->events = cpu_to_le64(mddev->events);
2013 if (mddev->in_sync)
2014 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
2015 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
2016 sb->resync_offset = cpu_to_le64(MaxSector);
2017 else
2018 sb->resync_offset = cpu_to_le64(0);
2019
2020 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
2021
2022 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
2023 sb->size = cpu_to_le64(mddev->dev_sectors);
2024 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
2025 sb->level = cpu_to_le32(mddev->level);
2026 sb->layout = cpu_to_le32(mddev->layout);
2027 if (test_bit(FailFast, &rdev->flags))
2028 sb->devflags |= FailFast1;
2029 else
2030 sb->devflags &= ~FailFast1;
2031
2032 if (test_bit(WriteMostly, &rdev->flags))
2033 sb->devflags |= WriteMostly1;
2034 else
2035 sb->devflags &= ~WriteMostly1;
2036 sb->data_offset = cpu_to_le64(rdev->data_offset);
2037 sb->data_size = cpu_to_le64(rdev->sectors);
2038
2039 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
2040 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
2041 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
2042 }
2043
2044 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
2045 !test_bit(In_sync, &rdev->flags)) {
2046 sb->feature_map |=
2047 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
2048 sb->recovery_offset =
2049 cpu_to_le64(rdev->recovery_offset);
2050 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
2051 sb->feature_map |=
2052 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
2053 }
2054 /* Note: recovery_offset and journal_tail share space */
2055 if (test_bit(Journal, &rdev->flags))
2056 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
2057 if (test_bit(Replacement, &rdev->flags))
2058 sb->feature_map |=
2059 cpu_to_le32(MD_FEATURE_REPLACEMENT);
2060
2061 if (mddev->reshape_position != MaxSector) {
2062 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
2063 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2064 sb->new_layout = cpu_to_le32(mddev->new_layout);
2065 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2066 sb->new_level = cpu_to_le32(mddev->new_level);
2067 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
2068 if (mddev->delta_disks == 0 &&
2069 mddev->reshape_backwards)
2070 sb->feature_map
2071 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
2072 if (rdev->new_data_offset != rdev->data_offset) {
2073 sb->feature_map
2074 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
2075 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
2076 - rdev->data_offset));
2077 }
2078 }
2079
2080 if (mddev_is_clustered(mddev))
2081 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
2082
2083 if (rdev->badblocks.count == 0)
2084 /* Nothing to do for bad blocks*/ ;
2085 else if (sb->bblog_offset == 0)
2086 /* Cannot record bad blocks on this device */
2087 md_error(mddev, rdev);
2088 else {
2089 struct badblocks *bb = &rdev->badblocks;
2090 __le64 *bbp = (__le64 *)page_address(rdev->bb_page);
2091 u64 *p = bb->page;
2092 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
2093 if (bb->changed) {
2094 unsigned seq;
2095
2096 retry:
2097 seq = read_seqbegin(&bb->lock);
2098
2099 memset(bbp, 0xff, PAGE_SIZE);
2100
2101 for (i = 0 ; i < bb->count ; i++) {
2102 u64 internal_bb = p[i];
2103 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
2104 | BB_LEN(internal_bb));
2105 bbp[i] = cpu_to_le64(store_bb);
2106 }
2107 bb->changed = 0;
2108 if (read_seqretry(&bb->lock, seq))
2109 goto retry;
2110
2111 bb->sector = (rdev->sb_start +
2112 (int)le32_to_cpu(sb->bblog_offset));
2113 bb->size = le16_to_cpu(sb->bblog_size);
2114 }
2115 }
2116
2117 max_dev = 0;
2118 rdev_for_each(rdev2, mddev)
2119 if (rdev2->desc_nr+1 > max_dev)
2120 max_dev = rdev2->desc_nr+1;
2121
2122 if (max_dev > le32_to_cpu(sb->max_dev)) {
2123 int bmask;
2124 sb->max_dev = cpu_to_le32(max_dev);
2125 rdev->sb_size = max_dev * 2 + 256;
2126 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
2127 if (rdev->sb_size & bmask)
2128 rdev->sb_size = (rdev->sb_size | bmask) + 1;
2129 } else
2130 max_dev = le32_to_cpu(sb->max_dev);
2131
2132 for (i=0; i<max_dev;i++)
2133 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2134
2135 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
2136 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
2137
2138 if (test_bit(MD_HAS_PPL, &mddev->flags)) {
2139 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
2140 sb->feature_map |=
2141 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
2142 else
2143 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
2144 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
2145 sb->ppl.size = cpu_to_le16(rdev->ppl.size);
2146 }
2147
2148 rdev_for_each(rdev2, mddev) {
2149 i = rdev2->desc_nr;
2150 if (test_bit(Faulty, &rdev2->flags))
2151 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
2152 else if (test_bit(In_sync, &rdev2->flags))
2153 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2154 else if (test_bit(Journal, &rdev2->flags))
2155 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
2156 else if (rdev2->raid_disk >= 0)
2157 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2158 else
2159 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2160 }
2161
2162 sb->sb_csum = calc_sb_1_csum(sb);
2163 }
2164
super_1_choose_bm_space(sector_t dev_size)2165 static sector_t super_1_choose_bm_space(sector_t dev_size)
2166 {
2167 sector_t bm_space;
2168
2169 /* if the device is bigger than 8Gig, save 64k for bitmap
2170 * usage, if bigger than 200Gig, save 128k
2171 */
2172 if (dev_size < 64*2)
2173 bm_space = 0;
2174 else if (dev_size - 64*2 >= 200*1024*1024*2)
2175 bm_space = 128*2;
2176 else if (dev_size - 4*2 > 8*1024*1024*2)
2177 bm_space = 64*2;
2178 else
2179 bm_space = 4*2;
2180 return bm_space;
2181 }
2182
2183 static unsigned long long
super_1_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)2184 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
2185 {
2186 struct mdp_superblock_1 *sb;
2187 sector_t max_sectors;
2188 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
2189 return 0; /* component must fit device */
2190 if (rdev->data_offset != rdev->new_data_offset)
2191 return 0; /* too confusing */
2192 if (rdev->sb_start < rdev->data_offset) {
2193 /* minor versions 1 and 2; superblock before data */
2194 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
2195 max_sectors -= rdev->data_offset;
2196 if (!num_sectors || num_sectors > max_sectors)
2197 num_sectors = max_sectors;
2198 } else if (rdev->mddev->bitmap_info.offset) {
2199 /* minor version 0 with bitmap we can't move */
2200 return 0;
2201 } else {
2202 /* minor version 0; superblock after data */
2203 sector_t sb_start, bm_space;
2204 sector_t dev_size = i_size_read(rdev->bdev->bd_inode) >> 9;
2205
2206 /* 8K is for superblock */
2207 sb_start = dev_size - 8*2;
2208 sb_start &= ~(sector_t)(4*2 - 1);
2209
2210 bm_space = super_1_choose_bm_space(dev_size);
2211
2212 /* Space that can be used to store date needs to decrease
2213 * superblock bitmap space and bad block space(4K)
2214 */
2215 max_sectors = sb_start - bm_space - 4*2;
2216
2217 if (!num_sectors || num_sectors > max_sectors)
2218 num_sectors = max_sectors;
2219 rdev->sb_start = sb_start;
2220 }
2221 sb = page_address(rdev->sb_page);
2222 sb->data_size = cpu_to_le64(num_sectors);
2223 sb->super_offset = cpu_to_le64(rdev->sb_start);
2224 sb->sb_csum = calc_sb_1_csum(sb);
2225 do {
2226 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
2227 rdev->sb_page);
2228 } while (md_super_wait(rdev->mddev) < 0);
2229 return num_sectors;
2230
2231 }
2232
2233 static int
super_1_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)2234 super_1_allow_new_offset(struct md_rdev *rdev,
2235 unsigned long long new_offset)
2236 {
2237 /* All necessary checks on new >= old have been done */
2238 struct bitmap *bitmap;
2239 if (new_offset >= rdev->data_offset)
2240 return 1;
2241
2242 /* with 1.0 metadata, there is no metadata to tread on
2243 * so we can always move back */
2244 if (rdev->mddev->minor_version == 0)
2245 return 1;
2246
2247 /* otherwise we must be sure not to step on
2248 * any metadata, so stay:
2249 * 36K beyond start of superblock
2250 * beyond end of badblocks
2251 * beyond write-intent bitmap
2252 */
2253 if (rdev->sb_start + (32+4)*2 > new_offset)
2254 return 0;
2255 bitmap = rdev->mddev->bitmap;
2256 if (bitmap && !rdev->mddev->bitmap_info.file &&
2257 rdev->sb_start + rdev->mddev->bitmap_info.offset +
2258 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
2259 return 0;
2260 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2261 return 0;
2262
2263 return 1;
2264 }
2265
2266 static struct super_type super_types[] = {
2267 [0] = {
2268 .name = "0.90.0",
2269 .owner = THIS_MODULE,
2270 .load_super = super_90_load,
2271 .validate_super = super_90_validate,
2272 .sync_super = super_90_sync,
2273 .rdev_size_change = super_90_rdev_size_change,
2274 .allow_new_offset = super_90_allow_new_offset,
2275 },
2276 [1] = {
2277 .name = "md-1",
2278 .owner = THIS_MODULE,
2279 .load_super = super_1_load,
2280 .validate_super = super_1_validate,
2281 .sync_super = super_1_sync,
2282 .rdev_size_change = super_1_rdev_size_change,
2283 .allow_new_offset = super_1_allow_new_offset,
2284 },
2285 };
2286
sync_super(struct mddev * mddev,struct md_rdev * rdev)2287 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2288 {
2289 if (mddev->sync_super) {
2290 mddev->sync_super(mddev, rdev);
2291 return;
2292 }
2293
2294 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2295
2296 super_types[mddev->major_version].sync_super(mddev, rdev);
2297 }
2298
match_mddev_units(struct mddev * mddev1,struct mddev * mddev2)2299 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2300 {
2301 struct md_rdev *rdev, *rdev2;
2302
2303 rcu_read_lock();
2304 rdev_for_each_rcu(rdev, mddev1) {
2305 if (test_bit(Faulty, &rdev->flags) ||
2306 test_bit(Journal, &rdev->flags) ||
2307 rdev->raid_disk == -1)
2308 continue;
2309 rdev_for_each_rcu(rdev2, mddev2) {
2310 if (test_bit(Faulty, &rdev2->flags) ||
2311 test_bit(Journal, &rdev2->flags) ||
2312 rdev2->raid_disk == -1)
2313 continue;
2314 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) {
2315 rcu_read_unlock();
2316 return 1;
2317 }
2318 }
2319 }
2320 rcu_read_unlock();
2321 return 0;
2322 }
2323
2324 static LIST_HEAD(pending_raid_disks);
2325
2326 /*
2327 * Try to register data integrity profile for an mddev
2328 *
2329 * This is called when an array is started and after a disk has been kicked
2330 * from the array. It only succeeds if all working and active component devices
2331 * are integrity capable with matching profiles.
2332 */
md_integrity_register(struct mddev * mddev)2333 int md_integrity_register(struct mddev *mddev)
2334 {
2335 struct md_rdev *rdev, *reference = NULL;
2336
2337 if (list_empty(&mddev->disks))
2338 return 0; /* nothing to do */
2339 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2340 return 0; /* shouldn't register, or already is */
2341 rdev_for_each(rdev, mddev) {
2342 /* skip spares and non-functional disks */
2343 if (test_bit(Faulty, &rdev->flags))
2344 continue;
2345 if (rdev->raid_disk < 0)
2346 continue;
2347 if (!reference) {
2348 /* Use the first rdev as the reference */
2349 reference = rdev;
2350 continue;
2351 }
2352 /* does this rdev's profile match the reference profile? */
2353 if (blk_integrity_compare(reference->bdev->bd_disk,
2354 rdev->bdev->bd_disk) < 0)
2355 return -EINVAL;
2356 }
2357 if (!reference || !bdev_get_integrity(reference->bdev))
2358 return 0;
2359 /*
2360 * All component devices are integrity capable and have matching
2361 * profiles, register the common profile for the md device.
2362 */
2363 blk_integrity_register(mddev->gendisk,
2364 bdev_get_integrity(reference->bdev));
2365
2366 pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2367 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) {
2368 pr_err("md: failed to create integrity pool for %s\n",
2369 mdname(mddev));
2370 return -EINVAL;
2371 }
2372 return 0;
2373 }
2374 EXPORT_SYMBOL(md_integrity_register);
2375
2376 /*
2377 * Attempt to add an rdev, but only if it is consistent with the current
2378 * integrity profile
2379 */
md_integrity_add_rdev(struct md_rdev * rdev,struct mddev * mddev)2380 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2381 {
2382 struct blk_integrity *bi_mddev;
2383 char name[BDEVNAME_SIZE];
2384
2385 if (!mddev->gendisk)
2386 return 0;
2387
2388 bi_mddev = blk_get_integrity(mddev->gendisk);
2389
2390 if (!bi_mddev) /* nothing to do */
2391 return 0;
2392
2393 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2394 pr_err("%s: incompatible integrity profile for %s\n",
2395 mdname(mddev), bdevname(rdev->bdev, name));
2396 return -ENXIO;
2397 }
2398
2399 return 0;
2400 }
2401 EXPORT_SYMBOL(md_integrity_add_rdev);
2402
bind_rdev_to_array(struct md_rdev * rdev,struct mddev * mddev)2403 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2404 {
2405 char b[BDEVNAME_SIZE];
2406 struct kobject *ko;
2407 int err;
2408
2409 /* prevent duplicates */
2410 if (find_rdev(mddev, rdev->bdev->bd_dev))
2411 return -EEXIST;
2412
2413 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) &&
2414 mddev->pers)
2415 return -EROFS;
2416
2417 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2418 if (!test_bit(Journal, &rdev->flags) &&
2419 rdev->sectors &&
2420 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2421 if (mddev->pers) {
2422 /* Cannot change size, so fail
2423 * If mddev->level <= 0, then we don't care
2424 * about aligning sizes (e.g. linear)
2425 */
2426 if (mddev->level > 0)
2427 return -ENOSPC;
2428 } else
2429 mddev->dev_sectors = rdev->sectors;
2430 }
2431
2432 /* Verify rdev->desc_nr is unique.
2433 * If it is -1, assign a free number, else
2434 * check number is not in use
2435 */
2436 rcu_read_lock();
2437 if (rdev->desc_nr < 0) {
2438 int choice = 0;
2439 if (mddev->pers)
2440 choice = mddev->raid_disks;
2441 while (md_find_rdev_nr_rcu(mddev, choice))
2442 choice++;
2443 rdev->desc_nr = choice;
2444 } else {
2445 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2446 rcu_read_unlock();
2447 return -EBUSY;
2448 }
2449 }
2450 rcu_read_unlock();
2451 if (!test_bit(Journal, &rdev->flags) &&
2452 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2453 pr_warn("md: %s: array is limited to %d devices\n",
2454 mdname(mddev), mddev->max_disks);
2455 return -EBUSY;
2456 }
2457 bdevname(rdev->bdev,b);
2458 strreplace(b, '/', '!');
2459
2460 rdev->mddev = mddev;
2461 pr_debug("md: bind<%s>\n", b);
2462
2463 if (mddev->raid_disks)
2464 mddev_create_serial_pool(mddev, rdev, false);
2465
2466 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2467 goto fail;
2468
2469 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2470 /* failure here is OK */
2471 err = sysfs_create_link(&rdev->kobj, ko, "block");
2472 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2473 rdev->sysfs_unack_badblocks =
2474 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks");
2475 rdev->sysfs_badblocks =
2476 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks");
2477
2478 list_add_rcu(&rdev->same_set, &mddev->disks);
2479 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2480
2481 /* May as well allow recovery to be retried once */
2482 mddev->recovery_disabled++;
2483
2484 return 0;
2485
2486 fail:
2487 pr_warn("md: failed to register dev-%s for %s\n",
2488 b, mdname(mddev));
2489 return err;
2490 }
2491
rdev_delayed_delete(struct work_struct * ws)2492 static void rdev_delayed_delete(struct work_struct *ws)
2493 {
2494 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2495 kobject_del(&rdev->kobj);
2496 kobject_put(&rdev->kobj);
2497 }
2498
unbind_rdev_from_array(struct md_rdev * rdev)2499 static void unbind_rdev_from_array(struct md_rdev *rdev)
2500 {
2501 char b[BDEVNAME_SIZE];
2502
2503 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2504 list_del_rcu(&rdev->same_set);
2505 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b));
2506 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
2507 rdev->mddev = NULL;
2508 sysfs_remove_link(&rdev->kobj, "block");
2509 sysfs_put(rdev->sysfs_state);
2510 sysfs_put(rdev->sysfs_unack_badblocks);
2511 sysfs_put(rdev->sysfs_badblocks);
2512 rdev->sysfs_state = NULL;
2513 rdev->sysfs_unack_badblocks = NULL;
2514 rdev->sysfs_badblocks = NULL;
2515 rdev->badblocks.count = 0;
2516 /* We need to delay this, otherwise we can deadlock when
2517 * writing to 'remove' to "dev/state". We also need
2518 * to delay it due to rcu usage.
2519 */
2520 synchronize_rcu();
2521 INIT_WORK(&rdev->del_work, rdev_delayed_delete);
2522 kobject_get(&rdev->kobj);
2523 queue_work(md_rdev_misc_wq, &rdev->del_work);
2524 }
2525
2526 /*
2527 * prevent the device from being mounted, repartitioned or
2528 * otherwise reused by a RAID array (or any other kernel
2529 * subsystem), by bd_claiming the device.
2530 */
lock_rdev(struct md_rdev * rdev,dev_t dev,int shared)2531 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2532 {
2533 int err = 0;
2534 struct block_device *bdev;
2535
2536 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2537 shared ? (struct md_rdev *)lock_rdev : rdev);
2538 if (IS_ERR(bdev)) {
2539 pr_warn("md: could not open device unknown-block(%u,%u).\n",
2540 MAJOR(dev), MINOR(dev));
2541 return PTR_ERR(bdev);
2542 }
2543 rdev->bdev = bdev;
2544 return err;
2545 }
2546
unlock_rdev(struct md_rdev * rdev)2547 static void unlock_rdev(struct md_rdev *rdev)
2548 {
2549 struct block_device *bdev = rdev->bdev;
2550 rdev->bdev = NULL;
2551 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2552 }
2553
2554 void md_autodetect_dev(dev_t dev);
2555
export_rdev(struct md_rdev * rdev)2556 static void export_rdev(struct md_rdev *rdev)
2557 {
2558 char b[BDEVNAME_SIZE];
2559
2560 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b));
2561 md_rdev_clear(rdev);
2562 #ifndef MODULE
2563 if (test_bit(AutoDetected, &rdev->flags))
2564 md_autodetect_dev(rdev->bdev->bd_dev);
2565 #endif
2566 unlock_rdev(rdev);
2567 kobject_put(&rdev->kobj);
2568 }
2569
md_kick_rdev_from_array(struct md_rdev * rdev)2570 void md_kick_rdev_from_array(struct md_rdev *rdev)
2571 {
2572 unbind_rdev_from_array(rdev);
2573 export_rdev(rdev);
2574 }
2575 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2576
export_array(struct mddev * mddev)2577 static void export_array(struct mddev *mddev)
2578 {
2579 struct md_rdev *rdev;
2580
2581 while (!list_empty(&mddev->disks)) {
2582 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2583 same_set);
2584 md_kick_rdev_from_array(rdev);
2585 }
2586 mddev->raid_disks = 0;
2587 mddev->major_version = 0;
2588 }
2589
set_in_sync(struct mddev * mddev)2590 static bool set_in_sync(struct mddev *mddev)
2591 {
2592 lockdep_assert_held(&mddev->lock);
2593 if (!mddev->in_sync) {
2594 mddev->sync_checkers++;
2595 spin_unlock(&mddev->lock);
2596 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2597 spin_lock(&mddev->lock);
2598 if (!mddev->in_sync &&
2599 percpu_ref_is_zero(&mddev->writes_pending)) {
2600 mddev->in_sync = 1;
2601 /*
2602 * Ensure ->in_sync is visible before we clear
2603 * ->sync_checkers.
2604 */
2605 smp_mb();
2606 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2607 sysfs_notify_dirent_safe(mddev->sysfs_state);
2608 }
2609 if (--mddev->sync_checkers == 0)
2610 percpu_ref_switch_to_percpu(&mddev->writes_pending);
2611 }
2612 if (mddev->safemode == 1)
2613 mddev->safemode = 0;
2614 return mddev->in_sync;
2615 }
2616
sync_sbs(struct mddev * mddev,int nospares)2617 static void sync_sbs(struct mddev *mddev, int nospares)
2618 {
2619 /* Update each superblock (in-memory image), but
2620 * if we are allowed to, skip spares which already
2621 * have the right event counter, or have one earlier
2622 * (which would mean they aren't being marked as dirty
2623 * with the rest of the array)
2624 */
2625 struct md_rdev *rdev;
2626 rdev_for_each(rdev, mddev) {
2627 if (rdev->sb_events == mddev->events ||
2628 (nospares &&
2629 rdev->raid_disk < 0 &&
2630 rdev->sb_events+1 == mddev->events)) {
2631 /* Don't update this superblock */
2632 rdev->sb_loaded = 2;
2633 } else {
2634 sync_super(mddev, rdev);
2635 rdev->sb_loaded = 1;
2636 }
2637 }
2638 }
2639
does_sb_need_changing(struct mddev * mddev)2640 static bool does_sb_need_changing(struct mddev *mddev)
2641 {
2642 struct md_rdev *rdev = NULL, *iter;
2643 struct mdp_superblock_1 *sb;
2644 int role;
2645
2646 /* Find a good rdev */
2647 rdev_for_each(iter, mddev)
2648 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) {
2649 rdev = iter;
2650 break;
2651 }
2652
2653 /* No good device found. */
2654 if (!rdev)
2655 return false;
2656
2657 sb = page_address(rdev->sb_page);
2658 /* Check if a device has become faulty or a spare become active */
2659 rdev_for_each(rdev, mddev) {
2660 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2661 /* Device activated? */
2662 if (role == 0xffff && rdev->raid_disk >=0 &&
2663 !test_bit(Faulty, &rdev->flags))
2664 return true;
2665 /* Device turned faulty? */
2666 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2667 return true;
2668 }
2669
2670 /* Check if any mddev parameters have changed */
2671 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2672 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2673 (mddev->layout != le32_to_cpu(sb->layout)) ||
2674 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2675 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2676 return true;
2677
2678 return false;
2679 }
2680
md_update_sb(struct mddev * mddev,int force_change)2681 void md_update_sb(struct mddev *mddev, int force_change)
2682 {
2683 struct md_rdev *rdev;
2684 int sync_req;
2685 int nospares = 0;
2686 int any_badblocks_changed = 0;
2687 int ret = -1;
2688
2689 if (mddev->ro) {
2690 if (force_change)
2691 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2692 return;
2693 }
2694
2695 repeat:
2696 if (mddev_is_clustered(mddev)) {
2697 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2698 force_change = 1;
2699 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2700 nospares = 1;
2701 ret = md_cluster_ops->metadata_update_start(mddev);
2702 /* Has someone else has updated the sb */
2703 if (!does_sb_need_changing(mddev)) {
2704 if (ret == 0)
2705 md_cluster_ops->metadata_update_cancel(mddev);
2706 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2707 BIT(MD_SB_CHANGE_DEVS) |
2708 BIT(MD_SB_CHANGE_CLEAN));
2709 return;
2710 }
2711 }
2712
2713 /*
2714 * First make sure individual recovery_offsets are correct
2715 * curr_resync_completed can only be used during recovery.
2716 * During reshape/resync it might use array-addresses rather
2717 * that device addresses.
2718 */
2719 rdev_for_each(rdev, mddev) {
2720 if (rdev->raid_disk >= 0 &&
2721 mddev->delta_disks >= 0 &&
2722 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
2723 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
2724 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2725 !test_bit(Journal, &rdev->flags) &&
2726 !test_bit(In_sync, &rdev->flags) &&
2727 mddev->curr_resync_completed > rdev->recovery_offset)
2728 rdev->recovery_offset = mddev->curr_resync_completed;
2729
2730 }
2731 if (!mddev->persistent) {
2732 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2733 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2734 if (!mddev->external) {
2735 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2736 rdev_for_each(rdev, mddev) {
2737 if (rdev->badblocks.changed) {
2738 rdev->badblocks.changed = 0;
2739 ack_all_badblocks(&rdev->badblocks);
2740 md_error(mddev, rdev);
2741 }
2742 clear_bit(Blocked, &rdev->flags);
2743 clear_bit(BlockedBadBlocks, &rdev->flags);
2744 wake_up(&rdev->blocked_wait);
2745 }
2746 }
2747 wake_up(&mddev->sb_wait);
2748 return;
2749 }
2750
2751 spin_lock(&mddev->lock);
2752
2753 mddev->utime = ktime_get_real_seconds();
2754
2755 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2756 force_change = 1;
2757 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2758 /* just a clean<-> dirty transition, possibly leave spares alone,
2759 * though if events isn't the right even/odd, we will have to do
2760 * spares after all
2761 */
2762 nospares = 1;
2763 if (force_change)
2764 nospares = 0;
2765 if (mddev->degraded)
2766 /* If the array is degraded, then skipping spares is both
2767 * dangerous and fairly pointless.
2768 * Dangerous because a device that was removed from the array
2769 * might have a event_count that still looks up-to-date,
2770 * so it can be re-added without a resync.
2771 * Pointless because if there are any spares to skip,
2772 * then a recovery will happen and soon that array won't
2773 * be degraded any more and the spare can go back to sleep then.
2774 */
2775 nospares = 0;
2776
2777 sync_req = mddev->in_sync;
2778
2779 /* If this is just a dirty<->clean transition, and the array is clean
2780 * and 'events' is odd, we can roll back to the previous clean state */
2781 if (nospares
2782 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2783 && mddev->can_decrease_events
2784 && mddev->events != 1) {
2785 mddev->events--;
2786 mddev->can_decrease_events = 0;
2787 } else {
2788 /* otherwise we have to go forward and ... */
2789 mddev->events ++;
2790 mddev->can_decrease_events = nospares;
2791 }
2792
2793 /*
2794 * This 64-bit counter should never wrap.
2795 * Either we are in around ~1 trillion A.C., assuming
2796 * 1 reboot per second, or we have a bug...
2797 */
2798 WARN_ON(mddev->events == 0);
2799
2800 rdev_for_each(rdev, mddev) {
2801 if (rdev->badblocks.changed)
2802 any_badblocks_changed++;
2803 if (test_bit(Faulty, &rdev->flags))
2804 set_bit(FaultRecorded, &rdev->flags);
2805 }
2806
2807 sync_sbs(mddev, nospares);
2808 spin_unlock(&mddev->lock);
2809
2810 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2811 mdname(mddev), mddev->in_sync);
2812
2813 if (mddev->queue)
2814 blk_add_trace_msg(mddev->queue, "md md_update_sb");
2815 rewrite:
2816 md_bitmap_update_sb(mddev->bitmap);
2817 rdev_for_each(rdev, mddev) {
2818 char b[BDEVNAME_SIZE];
2819
2820 if (rdev->sb_loaded != 1)
2821 continue; /* no noise on spare devices */
2822
2823 if (!test_bit(Faulty, &rdev->flags)) {
2824 md_super_write(mddev,rdev,
2825 rdev->sb_start, rdev->sb_size,
2826 rdev->sb_page);
2827 pr_debug("md: (write) %s's sb offset: %llu\n",
2828 bdevname(rdev->bdev, b),
2829 (unsigned long long)rdev->sb_start);
2830 rdev->sb_events = mddev->events;
2831 if (rdev->badblocks.size) {
2832 md_super_write(mddev, rdev,
2833 rdev->badblocks.sector,
2834 rdev->badblocks.size << 9,
2835 rdev->bb_page);
2836 rdev->badblocks.size = 0;
2837 }
2838
2839 } else
2840 pr_debug("md: %s (skipping faulty)\n",
2841 bdevname(rdev->bdev, b));
2842
2843 if (mddev->level == LEVEL_MULTIPATH)
2844 /* only need to write one superblock... */
2845 break;
2846 }
2847 if (md_super_wait(mddev) < 0)
2848 goto rewrite;
2849 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2850
2851 if (mddev_is_clustered(mddev) && ret == 0)
2852 md_cluster_ops->metadata_update_finish(mddev);
2853
2854 if (mddev->in_sync != sync_req ||
2855 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2856 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2857 /* have to write it out again */
2858 goto repeat;
2859 wake_up(&mddev->sb_wait);
2860 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2861 sysfs_notify_dirent_safe(mddev->sysfs_completed);
2862
2863 rdev_for_each(rdev, mddev) {
2864 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2865 clear_bit(Blocked, &rdev->flags);
2866
2867 if (any_badblocks_changed)
2868 ack_all_badblocks(&rdev->badblocks);
2869 clear_bit(BlockedBadBlocks, &rdev->flags);
2870 wake_up(&rdev->blocked_wait);
2871 }
2872 }
2873 EXPORT_SYMBOL(md_update_sb);
2874
add_bound_rdev(struct md_rdev * rdev)2875 static int add_bound_rdev(struct md_rdev *rdev)
2876 {
2877 struct mddev *mddev = rdev->mddev;
2878 int err = 0;
2879 bool add_journal = test_bit(Journal, &rdev->flags);
2880
2881 if (!mddev->pers->hot_remove_disk || add_journal) {
2882 /* If there is hot_add_disk but no hot_remove_disk
2883 * then added disks for geometry changes,
2884 * and should be added immediately.
2885 */
2886 super_types[mddev->major_version].
2887 validate_super(mddev, rdev);
2888 if (add_journal)
2889 mddev_suspend(mddev);
2890 err = mddev->pers->hot_add_disk(mddev, rdev);
2891 if (add_journal)
2892 mddev_resume(mddev);
2893 if (err) {
2894 md_kick_rdev_from_array(rdev);
2895 return err;
2896 }
2897 }
2898 sysfs_notify_dirent_safe(rdev->sysfs_state);
2899
2900 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2901 if (mddev->degraded)
2902 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2903 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2904 md_new_event(mddev);
2905 md_wakeup_thread(mddev->thread);
2906 return 0;
2907 }
2908
2909 /* words written to sysfs files may, or may not, be \n terminated.
2910 * We want to accept with case. For this we use cmd_match.
2911 */
cmd_match(const char * cmd,const char * str)2912 static int cmd_match(const char *cmd, const char *str)
2913 {
2914 /* See if cmd, written into a sysfs file, matches
2915 * str. They must either be the same, or cmd can
2916 * have a trailing newline
2917 */
2918 while (*cmd && *str && *cmd == *str) {
2919 cmd++;
2920 str++;
2921 }
2922 if (*cmd == '\n')
2923 cmd++;
2924 if (*str || *cmd)
2925 return 0;
2926 return 1;
2927 }
2928
2929 struct rdev_sysfs_entry {
2930 struct attribute attr;
2931 ssize_t (*show)(struct md_rdev *, char *);
2932 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2933 };
2934
2935 static ssize_t
state_show(struct md_rdev * rdev,char * page)2936 state_show(struct md_rdev *rdev, char *page)
2937 {
2938 char *sep = ",";
2939 size_t len = 0;
2940 unsigned long flags = READ_ONCE(rdev->flags);
2941
2942 if (test_bit(Faulty, &flags) ||
2943 (!test_bit(ExternalBbl, &flags) &&
2944 rdev->badblocks.unacked_exist))
2945 len += sprintf(page+len, "faulty%s", sep);
2946 if (test_bit(In_sync, &flags))
2947 len += sprintf(page+len, "in_sync%s", sep);
2948 if (test_bit(Journal, &flags))
2949 len += sprintf(page+len, "journal%s", sep);
2950 if (test_bit(WriteMostly, &flags))
2951 len += sprintf(page+len, "write_mostly%s", sep);
2952 if (test_bit(Blocked, &flags) ||
2953 (rdev->badblocks.unacked_exist
2954 && !test_bit(Faulty, &flags)))
2955 len += sprintf(page+len, "blocked%s", sep);
2956 if (!test_bit(Faulty, &flags) &&
2957 !test_bit(Journal, &flags) &&
2958 !test_bit(In_sync, &flags))
2959 len += sprintf(page+len, "spare%s", sep);
2960 if (test_bit(WriteErrorSeen, &flags))
2961 len += sprintf(page+len, "write_error%s", sep);
2962 if (test_bit(WantReplacement, &flags))
2963 len += sprintf(page+len, "want_replacement%s", sep);
2964 if (test_bit(Replacement, &flags))
2965 len += sprintf(page+len, "replacement%s", sep);
2966 if (test_bit(ExternalBbl, &flags))
2967 len += sprintf(page+len, "external_bbl%s", sep);
2968 if (test_bit(FailFast, &flags))
2969 len += sprintf(page+len, "failfast%s", sep);
2970
2971 if (len)
2972 len -= strlen(sep);
2973
2974 return len+sprintf(page+len, "\n");
2975 }
2976
2977 static ssize_t
state_store(struct md_rdev * rdev,const char * buf,size_t len)2978 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2979 {
2980 /* can write
2981 * faulty - simulates an error
2982 * remove - disconnects the device
2983 * writemostly - sets write_mostly
2984 * -writemostly - clears write_mostly
2985 * blocked - sets the Blocked flags
2986 * -blocked - clears the Blocked and possibly simulates an error
2987 * insync - sets Insync providing device isn't active
2988 * -insync - clear Insync for a device with a slot assigned,
2989 * so that it gets rebuilt based on bitmap
2990 * write_error - sets WriteErrorSeen
2991 * -write_error - clears WriteErrorSeen
2992 * {,-}failfast - set/clear FailFast
2993 */
2994
2995 struct mddev *mddev = rdev->mddev;
2996 int err = -EINVAL;
2997 bool need_update_sb = false;
2998
2999 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
3000 md_error(rdev->mddev, rdev);
3001 if (test_bit(Faulty, &rdev->flags))
3002 err = 0;
3003 else
3004 err = -EBUSY;
3005 } else if (cmd_match(buf, "remove")) {
3006 if (rdev->mddev->pers) {
3007 clear_bit(Blocked, &rdev->flags);
3008 remove_and_add_spares(rdev->mddev, rdev);
3009 }
3010 if (rdev->raid_disk >= 0)
3011 err = -EBUSY;
3012 else {
3013 err = 0;
3014 if (mddev_is_clustered(mddev))
3015 err = md_cluster_ops->remove_disk(mddev, rdev);
3016
3017 if (err == 0) {
3018 md_kick_rdev_from_array(rdev);
3019 if (mddev->pers) {
3020 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3021 md_wakeup_thread(mddev->thread);
3022 }
3023 md_new_event(mddev);
3024 }
3025 }
3026 } else if (cmd_match(buf, "writemostly")) {
3027 set_bit(WriteMostly, &rdev->flags);
3028 mddev_create_serial_pool(rdev->mddev, rdev, false);
3029 need_update_sb = true;
3030 err = 0;
3031 } else if (cmd_match(buf, "-writemostly")) {
3032 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
3033 clear_bit(WriteMostly, &rdev->flags);
3034 need_update_sb = true;
3035 err = 0;
3036 } else if (cmd_match(buf, "blocked")) {
3037 set_bit(Blocked, &rdev->flags);
3038 err = 0;
3039 } else if (cmd_match(buf, "-blocked")) {
3040 if (!test_bit(Faulty, &rdev->flags) &&
3041 !test_bit(ExternalBbl, &rdev->flags) &&
3042 rdev->badblocks.unacked_exist) {
3043 /* metadata handler doesn't understand badblocks,
3044 * so we need to fail the device
3045 */
3046 md_error(rdev->mddev, rdev);
3047 }
3048 clear_bit(Blocked, &rdev->flags);
3049 clear_bit(BlockedBadBlocks, &rdev->flags);
3050 wake_up(&rdev->blocked_wait);
3051 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3052 md_wakeup_thread(rdev->mddev->thread);
3053
3054 err = 0;
3055 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
3056 set_bit(In_sync, &rdev->flags);
3057 err = 0;
3058 } else if (cmd_match(buf, "failfast")) {
3059 set_bit(FailFast, &rdev->flags);
3060 need_update_sb = true;
3061 err = 0;
3062 } else if (cmd_match(buf, "-failfast")) {
3063 clear_bit(FailFast, &rdev->flags);
3064 need_update_sb = true;
3065 err = 0;
3066 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
3067 !test_bit(Journal, &rdev->flags)) {
3068 if (rdev->mddev->pers == NULL) {
3069 clear_bit(In_sync, &rdev->flags);
3070 rdev->saved_raid_disk = rdev->raid_disk;
3071 rdev->raid_disk = -1;
3072 err = 0;
3073 }
3074 } else if (cmd_match(buf, "write_error")) {
3075 set_bit(WriteErrorSeen, &rdev->flags);
3076 err = 0;
3077 } else if (cmd_match(buf, "-write_error")) {
3078 clear_bit(WriteErrorSeen, &rdev->flags);
3079 err = 0;
3080 } else if (cmd_match(buf, "want_replacement")) {
3081 /* Any non-spare device that is not a replacement can
3082 * become want_replacement at any time, but we then need to
3083 * check if recovery is needed.
3084 */
3085 if (rdev->raid_disk >= 0 &&
3086 !test_bit(Journal, &rdev->flags) &&
3087 !test_bit(Replacement, &rdev->flags))
3088 set_bit(WantReplacement, &rdev->flags);
3089 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3090 md_wakeup_thread(rdev->mddev->thread);
3091 err = 0;
3092 } else if (cmd_match(buf, "-want_replacement")) {
3093 /* Clearing 'want_replacement' is always allowed.
3094 * Once replacements starts it is too late though.
3095 */
3096 err = 0;
3097 clear_bit(WantReplacement, &rdev->flags);
3098 } else if (cmd_match(buf, "replacement")) {
3099 /* Can only set a device as a replacement when array has not
3100 * yet been started. Once running, replacement is automatic
3101 * from spares, or by assigning 'slot'.
3102 */
3103 if (rdev->mddev->pers)
3104 err = -EBUSY;
3105 else {
3106 set_bit(Replacement, &rdev->flags);
3107 err = 0;
3108 }
3109 } else if (cmd_match(buf, "-replacement")) {
3110 /* Similarly, can only clear Replacement before start */
3111 if (rdev->mddev->pers)
3112 err = -EBUSY;
3113 else {
3114 clear_bit(Replacement, &rdev->flags);
3115 err = 0;
3116 }
3117 } else if (cmd_match(buf, "re-add")) {
3118 if (!rdev->mddev->pers)
3119 err = -EINVAL;
3120 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
3121 rdev->saved_raid_disk >= 0) {
3122 /* clear_bit is performed _after_ all the devices
3123 * have their local Faulty bit cleared. If any writes
3124 * happen in the meantime in the local node, they
3125 * will land in the local bitmap, which will be synced
3126 * by this node eventually
3127 */
3128 if (!mddev_is_clustered(rdev->mddev) ||
3129 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
3130 clear_bit(Faulty, &rdev->flags);
3131 err = add_bound_rdev(rdev);
3132 }
3133 } else
3134 err = -EBUSY;
3135 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
3136 set_bit(ExternalBbl, &rdev->flags);
3137 rdev->badblocks.shift = 0;
3138 err = 0;
3139 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
3140 clear_bit(ExternalBbl, &rdev->flags);
3141 err = 0;
3142 }
3143 if (need_update_sb)
3144 md_update_sb(mddev, 1);
3145 if (!err)
3146 sysfs_notify_dirent_safe(rdev->sysfs_state);
3147 return err ? err : len;
3148 }
3149 static struct rdev_sysfs_entry rdev_state =
3150 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
3151
3152 static ssize_t
errors_show(struct md_rdev * rdev,char * page)3153 errors_show(struct md_rdev *rdev, char *page)
3154 {
3155 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
3156 }
3157
3158 static ssize_t
errors_store(struct md_rdev * rdev,const char * buf,size_t len)3159 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
3160 {
3161 unsigned int n;
3162 int rv;
3163
3164 rv = kstrtouint(buf, 10, &n);
3165 if (rv < 0)
3166 return rv;
3167 atomic_set(&rdev->corrected_errors, n);
3168 return len;
3169 }
3170 static struct rdev_sysfs_entry rdev_errors =
3171 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
3172
3173 static ssize_t
slot_show(struct md_rdev * rdev,char * page)3174 slot_show(struct md_rdev *rdev, char *page)
3175 {
3176 if (test_bit(Journal, &rdev->flags))
3177 return sprintf(page, "journal\n");
3178 else if (rdev->raid_disk < 0)
3179 return sprintf(page, "none\n");
3180 else
3181 return sprintf(page, "%d\n", rdev->raid_disk);
3182 }
3183
3184 static ssize_t
slot_store(struct md_rdev * rdev,const char * buf,size_t len)3185 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
3186 {
3187 int slot;
3188 int err;
3189
3190 if (test_bit(Journal, &rdev->flags))
3191 return -EBUSY;
3192 if (strncmp(buf, "none", 4)==0)
3193 slot = -1;
3194 else {
3195 err = kstrtouint(buf, 10, (unsigned int *)&slot);
3196 if (err < 0)
3197 return err;
3198 if (slot < 0)
3199 /* overflow */
3200 return -ENOSPC;
3201 }
3202 if (rdev->mddev->pers && slot == -1) {
3203 /* Setting 'slot' on an active array requires also
3204 * updating the 'rd%d' link, and communicating
3205 * with the personality with ->hot_*_disk.
3206 * For now we only support removing
3207 * failed/spare devices. This normally happens automatically,
3208 * but not when the metadata is externally managed.
3209 */
3210 if (rdev->raid_disk == -1)
3211 return -EEXIST;
3212 /* personality does all needed checks */
3213 if (rdev->mddev->pers->hot_remove_disk == NULL)
3214 return -EINVAL;
3215 clear_bit(Blocked, &rdev->flags);
3216 remove_and_add_spares(rdev->mddev, rdev);
3217 if (rdev->raid_disk >= 0)
3218 return -EBUSY;
3219 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3220 md_wakeup_thread(rdev->mddev->thread);
3221 } else if (rdev->mddev->pers) {
3222 /* Activating a spare .. or possibly reactivating
3223 * if we ever get bitmaps working here.
3224 */
3225 int err;
3226
3227 if (rdev->raid_disk != -1)
3228 return -EBUSY;
3229
3230 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
3231 return -EBUSY;
3232
3233 if (rdev->mddev->pers->hot_add_disk == NULL)
3234 return -EINVAL;
3235
3236 if (slot >= rdev->mddev->raid_disks &&
3237 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3238 return -ENOSPC;
3239
3240 rdev->raid_disk = slot;
3241 if (test_bit(In_sync, &rdev->flags))
3242 rdev->saved_raid_disk = slot;
3243 else
3244 rdev->saved_raid_disk = -1;
3245 clear_bit(In_sync, &rdev->flags);
3246 clear_bit(Bitmap_sync, &rdev->flags);
3247 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev);
3248 if (err) {
3249 rdev->raid_disk = -1;
3250 return err;
3251 } else
3252 sysfs_notify_dirent_safe(rdev->sysfs_state);
3253 /* failure here is OK */;
3254 sysfs_link_rdev(rdev->mddev, rdev);
3255 /* don't wakeup anyone, leave that to userspace. */
3256 } else {
3257 if (slot >= rdev->mddev->raid_disks &&
3258 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3259 return -ENOSPC;
3260 rdev->raid_disk = slot;
3261 /* assume it is working */
3262 clear_bit(Faulty, &rdev->flags);
3263 clear_bit(WriteMostly, &rdev->flags);
3264 set_bit(In_sync, &rdev->flags);
3265 sysfs_notify_dirent_safe(rdev->sysfs_state);
3266 }
3267 return len;
3268 }
3269
3270 static struct rdev_sysfs_entry rdev_slot =
3271 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
3272
3273 static ssize_t
offset_show(struct md_rdev * rdev,char * page)3274 offset_show(struct md_rdev *rdev, char *page)
3275 {
3276 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3277 }
3278
3279 static ssize_t
offset_store(struct md_rdev * rdev,const char * buf,size_t len)3280 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3281 {
3282 unsigned long long offset;
3283 if (kstrtoull(buf, 10, &offset) < 0)
3284 return -EINVAL;
3285 if (rdev->mddev->pers && rdev->raid_disk >= 0)
3286 return -EBUSY;
3287 if (rdev->sectors && rdev->mddev->external)
3288 /* Must set offset before size, so overlap checks
3289 * can be sane */
3290 return -EBUSY;
3291 rdev->data_offset = offset;
3292 rdev->new_data_offset = offset;
3293 return len;
3294 }
3295
3296 static struct rdev_sysfs_entry rdev_offset =
3297 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3298
new_offset_show(struct md_rdev * rdev,char * page)3299 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3300 {
3301 return sprintf(page, "%llu\n",
3302 (unsigned long long)rdev->new_data_offset);
3303 }
3304
new_offset_store(struct md_rdev * rdev,const char * buf,size_t len)3305 static ssize_t new_offset_store(struct md_rdev *rdev,
3306 const char *buf, size_t len)
3307 {
3308 unsigned long long new_offset;
3309 struct mddev *mddev = rdev->mddev;
3310
3311 if (kstrtoull(buf, 10, &new_offset) < 0)
3312 return -EINVAL;
3313
3314 if (mddev->sync_thread ||
3315 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3316 return -EBUSY;
3317 if (new_offset == rdev->data_offset)
3318 /* reset is always permitted */
3319 ;
3320 else if (new_offset > rdev->data_offset) {
3321 /* must not push array size beyond rdev_sectors */
3322 if (new_offset - rdev->data_offset
3323 + mddev->dev_sectors > rdev->sectors)
3324 return -E2BIG;
3325 }
3326 /* Metadata worries about other space details. */
3327
3328 /* decreasing the offset is inconsistent with a backwards
3329 * reshape.
3330 */
3331 if (new_offset < rdev->data_offset &&
3332 mddev->reshape_backwards)
3333 return -EINVAL;
3334 /* Increasing offset is inconsistent with forwards
3335 * reshape. reshape_direction should be set to
3336 * 'backwards' first.
3337 */
3338 if (new_offset > rdev->data_offset &&
3339 !mddev->reshape_backwards)
3340 return -EINVAL;
3341
3342 if (mddev->pers && mddev->persistent &&
3343 !super_types[mddev->major_version]
3344 .allow_new_offset(rdev, new_offset))
3345 return -E2BIG;
3346 rdev->new_data_offset = new_offset;
3347 if (new_offset > rdev->data_offset)
3348 mddev->reshape_backwards = 1;
3349 else if (new_offset < rdev->data_offset)
3350 mddev->reshape_backwards = 0;
3351
3352 return len;
3353 }
3354 static struct rdev_sysfs_entry rdev_new_offset =
3355 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3356
3357 static ssize_t
rdev_size_show(struct md_rdev * rdev,char * page)3358 rdev_size_show(struct md_rdev *rdev, char *page)
3359 {
3360 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3361 }
3362
overlaps(sector_t s1,sector_t l1,sector_t s2,sector_t l2)3363 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3364 {
3365 /* check if two start/length pairs overlap */
3366 if (s1+l1 <= s2)
3367 return 0;
3368 if (s2+l2 <= s1)
3369 return 0;
3370 return 1;
3371 }
3372
strict_blocks_to_sectors(const char * buf,sector_t * sectors)3373 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3374 {
3375 unsigned long long blocks;
3376 sector_t new;
3377
3378 if (kstrtoull(buf, 10, &blocks) < 0)
3379 return -EINVAL;
3380
3381 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3382 return -EINVAL; /* sector conversion overflow */
3383
3384 new = blocks * 2;
3385 if (new != blocks * 2)
3386 return -EINVAL; /* unsigned long long to sector_t overflow */
3387
3388 *sectors = new;
3389 return 0;
3390 }
3391
3392 static ssize_t
rdev_size_store(struct md_rdev * rdev,const char * buf,size_t len)3393 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3394 {
3395 struct mddev *my_mddev = rdev->mddev;
3396 sector_t oldsectors = rdev->sectors;
3397 sector_t sectors;
3398
3399 if (test_bit(Journal, &rdev->flags))
3400 return -EBUSY;
3401 if (strict_blocks_to_sectors(buf, §ors) < 0)
3402 return -EINVAL;
3403 if (rdev->data_offset != rdev->new_data_offset)
3404 return -EINVAL; /* too confusing */
3405 if (my_mddev->pers && rdev->raid_disk >= 0) {
3406 if (my_mddev->persistent) {
3407 sectors = super_types[my_mddev->major_version].
3408 rdev_size_change(rdev, sectors);
3409 if (!sectors)
3410 return -EBUSY;
3411 } else if (!sectors)
3412 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3413 rdev->data_offset;
3414 if (!my_mddev->pers->resize)
3415 /* Cannot change size for RAID0 or Linear etc */
3416 return -EINVAL;
3417 }
3418 if (sectors < my_mddev->dev_sectors)
3419 return -EINVAL; /* component must fit device */
3420
3421 rdev->sectors = sectors;
3422 if (sectors > oldsectors && my_mddev->external) {
3423 /* Need to check that all other rdevs with the same
3424 * ->bdev do not overlap. 'rcu' is sufficient to walk
3425 * the rdev lists safely.
3426 * This check does not provide a hard guarantee, it
3427 * just helps avoid dangerous mistakes.
3428 */
3429 struct mddev *mddev;
3430 int overlap = 0;
3431 struct list_head *tmp;
3432
3433 rcu_read_lock();
3434 for_each_mddev(mddev, tmp) {
3435 struct md_rdev *rdev2;
3436
3437 rdev_for_each(rdev2, mddev)
3438 if (rdev->bdev == rdev2->bdev &&
3439 rdev != rdev2 &&
3440 overlaps(rdev->data_offset, rdev->sectors,
3441 rdev2->data_offset,
3442 rdev2->sectors)) {
3443 overlap = 1;
3444 break;
3445 }
3446 if (overlap) {
3447 mddev_put(mddev);
3448 break;
3449 }
3450 }
3451 rcu_read_unlock();
3452 if (overlap) {
3453 /* Someone else could have slipped in a size
3454 * change here, but doing so is just silly.
3455 * We put oldsectors back because we *know* it is
3456 * safe, and trust userspace not to race with
3457 * itself
3458 */
3459 rdev->sectors = oldsectors;
3460 return -EBUSY;
3461 }
3462 }
3463 return len;
3464 }
3465
3466 static struct rdev_sysfs_entry rdev_size =
3467 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3468
recovery_start_show(struct md_rdev * rdev,char * page)3469 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3470 {
3471 unsigned long long recovery_start = rdev->recovery_offset;
3472
3473 if (test_bit(In_sync, &rdev->flags) ||
3474 recovery_start == MaxSector)
3475 return sprintf(page, "none\n");
3476
3477 return sprintf(page, "%llu\n", recovery_start);
3478 }
3479
recovery_start_store(struct md_rdev * rdev,const char * buf,size_t len)3480 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3481 {
3482 unsigned long long recovery_start;
3483
3484 if (cmd_match(buf, "none"))
3485 recovery_start = MaxSector;
3486 else if (kstrtoull(buf, 10, &recovery_start))
3487 return -EINVAL;
3488
3489 if (rdev->mddev->pers &&
3490 rdev->raid_disk >= 0)
3491 return -EBUSY;
3492
3493 rdev->recovery_offset = recovery_start;
3494 if (recovery_start == MaxSector)
3495 set_bit(In_sync, &rdev->flags);
3496 else
3497 clear_bit(In_sync, &rdev->flags);
3498 return len;
3499 }
3500
3501 static struct rdev_sysfs_entry rdev_recovery_start =
3502 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3503
3504 /* sysfs access to bad-blocks list.
3505 * We present two files.
3506 * 'bad-blocks' lists sector numbers and lengths of ranges that
3507 * are recorded as bad. The list is truncated to fit within
3508 * the one-page limit of sysfs.
3509 * Writing "sector length" to this file adds an acknowledged
3510 * bad block list.
3511 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3512 * been acknowledged. Writing to this file adds bad blocks
3513 * without acknowledging them. This is largely for testing.
3514 */
bb_show(struct md_rdev * rdev,char * page)3515 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3516 {
3517 return badblocks_show(&rdev->badblocks, page, 0);
3518 }
bb_store(struct md_rdev * rdev,const char * page,size_t len)3519 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3520 {
3521 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3522 /* Maybe that ack was all we needed */
3523 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3524 wake_up(&rdev->blocked_wait);
3525 return rv;
3526 }
3527 static struct rdev_sysfs_entry rdev_bad_blocks =
3528 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3529
ubb_show(struct md_rdev * rdev,char * page)3530 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3531 {
3532 return badblocks_show(&rdev->badblocks, page, 1);
3533 }
ubb_store(struct md_rdev * rdev,const char * page,size_t len)3534 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3535 {
3536 return badblocks_store(&rdev->badblocks, page, len, 1);
3537 }
3538 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3539 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3540
3541 static ssize_t
ppl_sector_show(struct md_rdev * rdev,char * page)3542 ppl_sector_show(struct md_rdev *rdev, char *page)
3543 {
3544 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3545 }
3546
3547 static ssize_t
ppl_sector_store(struct md_rdev * rdev,const char * buf,size_t len)3548 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3549 {
3550 unsigned long long sector;
3551
3552 if (kstrtoull(buf, 10, §or) < 0)
3553 return -EINVAL;
3554 if (sector != (sector_t)sector)
3555 return -EINVAL;
3556
3557 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3558 rdev->raid_disk >= 0)
3559 return -EBUSY;
3560
3561 if (rdev->mddev->persistent) {
3562 if (rdev->mddev->major_version == 0)
3563 return -EINVAL;
3564 if ((sector > rdev->sb_start &&
3565 sector - rdev->sb_start > S16_MAX) ||
3566 (sector < rdev->sb_start &&
3567 rdev->sb_start - sector > -S16_MIN))
3568 return -EINVAL;
3569 rdev->ppl.offset = sector - rdev->sb_start;
3570 } else if (!rdev->mddev->external) {
3571 return -EBUSY;
3572 }
3573 rdev->ppl.sector = sector;
3574 return len;
3575 }
3576
3577 static struct rdev_sysfs_entry rdev_ppl_sector =
3578 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3579
3580 static ssize_t
ppl_size_show(struct md_rdev * rdev,char * page)3581 ppl_size_show(struct md_rdev *rdev, char *page)
3582 {
3583 return sprintf(page, "%u\n", rdev->ppl.size);
3584 }
3585
3586 static ssize_t
ppl_size_store(struct md_rdev * rdev,const char * buf,size_t len)3587 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3588 {
3589 unsigned int size;
3590
3591 if (kstrtouint(buf, 10, &size) < 0)
3592 return -EINVAL;
3593
3594 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3595 rdev->raid_disk >= 0)
3596 return -EBUSY;
3597
3598 if (rdev->mddev->persistent) {
3599 if (rdev->mddev->major_version == 0)
3600 return -EINVAL;
3601 if (size > U16_MAX)
3602 return -EINVAL;
3603 } else if (!rdev->mddev->external) {
3604 return -EBUSY;
3605 }
3606 rdev->ppl.size = size;
3607 return len;
3608 }
3609
3610 static struct rdev_sysfs_entry rdev_ppl_size =
3611 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3612
3613 static struct attribute *rdev_default_attrs[] = {
3614 &rdev_state.attr,
3615 &rdev_errors.attr,
3616 &rdev_slot.attr,
3617 &rdev_offset.attr,
3618 &rdev_new_offset.attr,
3619 &rdev_size.attr,
3620 &rdev_recovery_start.attr,
3621 &rdev_bad_blocks.attr,
3622 &rdev_unack_bad_blocks.attr,
3623 &rdev_ppl_sector.attr,
3624 &rdev_ppl_size.attr,
3625 NULL,
3626 };
3627 static ssize_t
rdev_attr_show(struct kobject * kobj,struct attribute * attr,char * page)3628 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3629 {
3630 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3631 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3632
3633 if (!entry->show)
3634 return -EIO;
3635 if (!rdev->mddev)
3636 return -ENODEV;
3637 return entry->show(rdev, page);
3638 }
3639
3640 static ssize_t
rdev_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)3641 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3642 const char *page, size_t length)
3643 {
3644 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3645 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3646 ssize_t rv;
3647 struct mddev *mddev = rdev->mddev;
3648
3649 if (!entry->store)
3650 return -EIO;
3651 if (!capable(CAP_SYS_ADMIN))
3652 return -EACCES;
3653 rv = mddev ? mddev_lock(mddev) : -ENODEV;
3654 if (!rv) {
3655 if (rdev->mddev == NULL)
3656 rv = -ENODEV;
3657 else
3658 rv = entry->store(rdev, page, length);
3659 mddev_unlock(mddev);
3660 }
3661 return rv;
3662 }
3663
rdev_free(struct kobject * ko)3664 static void rdev_free(struct kobject *ko)
3665 {
3666 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3667 kfree(rdev);
3668 }
3669 static const struct sysfs_ops rdev_sysfs_ops = {
3670 .show = rdev_attr_show,
3671 .store = rdev_attr_store,
3672 };
3673 static struct kobj_type rdev_ktype = {
3674 .release = rdev_free,
3675 .sysfs_ops = &rdev_sysfs_ops,
3676 .default_attrs = rdev_default_attrs,
3677 };
3678
md_rdev_init(struct md_rdev * rdev)3679 int md_rdev_init(struct md_rdev *rdev)
3680 {
3681 rdev->desc_nr = -1;
3682 rdev->saved_raid_disk = -1;
3683 rdev->raid_disk = -1;
3684 rdev->flags = 0;
3685 rdev->data_offset = 0;
3686 rdev->new_data_offset = 0;
3687 rdev->sb_events = 0;
3688 rdev->last_read_error = 0;
3689 rdev->sb_loaded = 0;
3690 rdev->bb_page = NULL;
3691 atomic_set(&rdev->nr_pending, 0);
3692 atomic_set(&rdev->read_errors, 0);
3693 atomic_set(&rdev->corrected_errors, 0);
3694
3695 INIT_LIST_HEAD(&rdev->same_set);
3696 init_waitqueue_head(&rdev->blocked_wait);
3697
3698 /* Add space to store bad block list.
3699 * This reserves the space even on arrays where it cannot
3700 * be used - I wonder if that matters
3701 */
3702 return badblocks_init(&rdev->badblocks, 0);
3703 }
3704 EXPORT_SYMBOL_GPL(md_rdev_init);
3705 /*
3706 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3707 *
3708 * mark the device faulty if:
3709 *
3710 * - the device is nonexistent (zero size)
3711 * - the device has no valid superblock
3712 *
3713 * a faulty rdev _never_ has rdev->sb set.
3714 */
md_import_device(dev_t newdev,int super_format,int super_minor)3715 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3716 {
3717 char b[BDEVNAME_SIZE];
3718 int err;
3719 struct md_rdev *rdev;
3720 sector_t size;
3721
3722 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3723 if (!rdev)
3724 return ERR_PTR(-ENOMEM);
3725
3726 err = md_rdev_init(rdev);
3727 if (err)
3728 goto abort_free;
3729 err = alloc_disk_sb(rdev);
3730 if (err)
3731 goto abort_free;
3732
3733 err = lock_rdev(rdev, newdev, super_format == -2);
3734 if (err)
3735 goto abort_free;
3736
3737 kobject_init(&rdev->kobj, &rdev_ktype);
3738
3739 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3740 if (!size) {
3741 pr_warn("md: %s has zero or unknown size, marking faulty!\n",
3742 bdevname(rdev->bdev,b));
3743 err = -EINVAL;
3744 goto abort_free;
3745 }
3746
3747 if (super_format >= 0) {
3748 err = super_types[super_format].
3749 load_super(rdev, NULL, super_minor);
3750 if (err == -EINVAL) {
3751 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n",
3752 bdevname(rdev->bdev,b),
3753 super_format, super_minor);
3754 goto abort_free;
3755 }
3756 if (err < 0) {
3757 pr_warn("md: could not read %s's sb, not importing!\n",
3758 bdevname(rdev->bdev,b));
3759 goto abort_free;
3760 }
3761 }
3762
3763 return rdev;
3764
3765 abort_free:
3766 if (rdev->bdev)
3767 unlock_rdev(rdev);
3768 md_rdev_clear(rdev);
3769 kfree(rdev);
3770 return ERR_PTR(err);
3771 }
3772
3773 /*
3774 * Check a full RAID array for plausibility
3775 */
3776
analyze_sbs(struct mddev * mddev)3777 static int analyze_sbs(struct mddev *mddev)
3778 {
3779 int i;
3780 struct md_rdev *rdev, *freshest, *tmp;
3781 char b[BDEVNAME_SIZE];
3782
3783 freshest = NULL;
3784 rdev_for_each_safe(rdev, tmp, mddev)
3785 switch (super_types[mddev->major_version].
3786 load_super(rdev, freshest, mddev->minor_version)) {
3787 case 1:
3788 freshest = rdev;
3789 break;
3790 case 0:
3791 break;
3792 default:
3793 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n",
3794 bdevname(rdev->bdev,b));
3795 md_kick_rdev_from_array(rdev);
3796 }
3797
3798 /* Cannot find a valid fresh disk */
3799 if (!freshest) {
3800 pr_warn("md: cannot find a valid disk\n");
3801 return -EINVAL;
3802 }
3803
3804 super_types[mddev->major_version].
3805 validate_super(mddev, freshest);
3806
3807 i = 0;
3808 rdev_for_each_safe(rdev, tmp, mddev) {
3809 if (mddev->max_disks &&
3810 (rdev->desc_nr >= mddev->max_disks ||
3811 i > mddev->max_disks)) {
3812 pr_warn("md: %s: %s: only %d devices permitted\n",
3813 mdname(mddev), bdevname(rdev->bdev, b),
3814 mddev->max_disks);
3815 md_kick_rdev_from_array(rdev);
3816 continue;
3817 }
3818 if (rdev != freshest) {
3819 if (super_types[mddev->major_version].
3820 validate_super(mddev, rdev)) {
3821 pr_warn("md: kicking non-fresh %s from array!\n",
3822 bdevname(rdev->bdev,b));
3823 md_kick_rdev_from_array(rdev);
3824 continue;
3825 }
3826 }
3827 if (mddev->level == LEVEL_MULTIPATH) {
3828 rdev->desc_nr = i++;
3829 rdev->raid_disk = rdev->desc_nr;
3830 set_bit(In_sync, &rdev->flags);
3831 } else if (rdev->raid_disk >=
3832 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3833 !test_bit(Journal, &rdev->flags)) {
3834 rdev->raid_disk = -1;
3835 clear_bit(In_sync, &rdev->flags);
3836 }
3837 }
3838
3839 return 0;
3840 }
3841
3842 /* Read a fixed-point number.
3843 * Numbers in sysfs attributes should be in "standard" units where
3844 * possible, so time should be in seconds.
3845 * However we internally use a a much smaller unit such as
3846 * milliseconds or jiffies.
3847 * This function takes a decimal number with a possible fractional
3848 * component, and produces an integer which is the result of
3849 * multiplying that number by 10^'scale'.
3850 * all without any floating-point arithmetic.
3851 */
strict_strtoul_scaled(const char * cp,unsigned long * res,int scale)3852 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3853 {
3854 unsigned long result = 0;
3855 long decimals = -1;
3856 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3857 if (*cp == '.')
3858 decimals = 0;
3859 else if (decimals < scale) {
3860 unsigned int value;
3861 value = *cp - '0';
3862 result = result * 10 + value;
3863 if (decimals >= 0)
3864 decimals++;
3865 }
3866 cp++;
3867 }
3868 if (*cp == '\n')
3869 cp++;
3870 if (*cp)
3871 return -EINVAL;
3872 if (decimals < 0)
3873 decimals = 0;
3874 *res = result * int_pow(10, scale - decimals);
3875 return 0;
3876 }
3877
3878 static ssize_t
safe_delay_show(struct mddev * mddev,char * page)3879 safe_delay_show(struct mddev *mddev, char *page)
3880 {
3881 int msec = (mddev->safemode_delay*1000)/HZ;
3882 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3883 }
3884 static ssize_t
safe_delay_store(struct mddev * mddev,const char * cbuf,size_t len)3885 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3886 {
3887 unsigned long msec;
3888
3889 if (mddev_is_clustered(mddev)) {
3890 pr_warn("md: Safemode is disabled for clustered mode\n");
3891 return -EINVAL;
3892 }
3893
3894 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3895 return -EINVAL;
3896 if (msec == 0)
3897 mddev->safemode_delay = 0;
3898 else {
3899 unsigned long old_delay = mddev->safemode_delay;
3900 unsigned long new_delay = (msec*HZ)/1000;
3901
3902 if (new_delay == 0)
3903 new_delay = 1;
3904 mddev->safemode_delay = new_delay;
3905 if (new_delay < old_delay || old_delay == 0)
3906 mod_timer(&mddev->safemode_timer, jiffies+1);
3907 }
3908 return len;
3909 }
3910 static struct md_sysfs_entry md_safe_delay =
3911 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3912
3913 static ssize_t
level_show(struct mddev * mddev,char * page)3914 level_show(struct mddev *mddev, char *page)
3915 {
3916 struct md_personality *p;
3917 int ret;
3918 spin_lock(&mddev->lock);
3919 p = mddev->pers;
3920 if (p)
3921 ret = sprintf(page, "%s\n", p->name);
3922 else if (mddev->clevel[0])
3923 ret = sprintf(page, "%s\n", mddev->clevel);
3924 else if (mddev->level != LEVEL_NONE)
3925 ret = sprintf(page, "%d\n", mddev->level);
3926 else
3927 ret = 0;
3928 spin_unlock(&mddev->lock);
3929 return ret;
3930 }
3931
3932 static ssize_t
level_store(struct mddev * mddev,const char * buf,size_t len)3933 level_store(struct mddev *mddev, const char *buf, size_t len)
3934 {
3935 char clevel[16];
3936 ssize_t rv;
3937 size_t slen = len;
3938 struct md_personality *pers, *oldpers;
3939 long level;
3940 void *priv, *oldpriv;
3941 struct md_rdev *rdev;
3942
3943 if (slen == 0 || slen >= sizeof(clevel))
3944 return -EINVAL;
3945
3946 rv = mddev_lock(mddev);
3947 if (rv)
3948 return rv;
3949
3950 if (mddev->pers == NULL) {
3951 strncpy(mddev->clevel, buf, slen);
3952 if (mddev->clevel[slen-1] == '\n')
3953 slen--;
3954 mddev->clevel[slen] = 0;
3955 mddev->level = LEVEL_NONE;
3956 rv = len;
3957 goto out_unlock;
3958 }
3959 rv = -EROFS;
3960 if (mddev->ro)
3961 goto out_unlock;
3962
3963 /* request to change the personality. Need to ensure:
3964 * - array is not engaged in resync/recovery/reshape
3965 * - old personality can be suspended
3966 * - new personality will access other array.
3967 */
3968
3969 rv = -EBUSY;
3970 if (mddev->sync_thread ||
3971 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3972 mddev->reshape_position != MaxSector ||
3973 mddev->sysfs_active)
3974 goto out_unlock;
3975
3976 rv = -EINVAL;
3977 if (!mddev->pers->quiesce) {
3978 pr_warn("md: %s: %s does not support online personality change\n",
3979 mdname(mddev), mddev->pers->name);
3980 goto out_unlock;
3981 }
3982
3983 /* Now find the new personality */
3984 strncpy(clevel, buf, slen);
3985 if (clevel[slen-1] == '\n')
3986 slen--;
3987 clevel[slen] = 0;
3988 if (kstrtol(clevel, 10, &level))
3989 level = LEVEL_NONE;
3990
3991 if (request_module("md-%s", clevel) != 0)
3992 request_module("md-level-%s", clevel);
3993 spin_lock(&pers_lock);
3994 pers = find_pers(level, clevel);
3995 if (!pers || !try_module_get(pers->owner)) {
3996 spin_unlock(&pers_lock);
3997 pr_warn("md: personality %s not loaded\n", clevel);
3998 rv = -EINVAL;
3999 goto out_unlock;
4000 }
4001 spin_unlock(&pers_lock);
4002
4003 if (pers == mddev->pers) {
4004 /* Nothing to do! */
4005 module_put(pers->owner);
4006 rv = len;
4007 goto out_unlock;
4008 }
4009 if (!pers->takeover) {
4010 module_put(pers->owner);
4011 pr_warn("md: %s: %s does not support personality takeover\n",
4012 mdname(mddev), clevel);
4013 rv = -EINVAL;
4014 goto out_unlock;
4015 }
4016
4017 rdev_for_each(rdev, mddev)
4018 rdev->new_raid_disk = rdev->raid_disk;
4019
4020 /* ->takeover must set new_* and/or delta_disks
4021 * if it succeeds, and may set them when it fails.
4022 */
4023 priv = pers->takeover(mddev);
4024 if (IS_ERR(priv)) {
4025 mddev->new_level = mddev->level;
4026 mddev->new_layout = mddev->layout;
4027 mddev->new_chunk_sectors = mddev->chunk_sectors;
4028 mddev->raid_disks -= mddev->delta_disks;
4029 mddev->delta_disks = 0;
4030 mddev->reshape_backwards = 0;
4031 module_put(pers->owner);
4032 pr_warn("md: %s: %s would not accept array\n",
4033 mdname(mddev), clevel);
4034 rv = PTR_ERR(priv);
4035 goto out_unlock;
4036 }
4037
4038 /* Looks like we have a winner */
4039 mddev_suspend(mddev);
4040 mddev_detach(mddev);
4041
4042 spin_lock(&mddev->lock);
4043 oldpers = mddev->pers;
4044 oldpriv = mddev->private;
4045 mddev->pers = pers;
4046 mddev->private = priv;
4047 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4048 mddev->level = mddev->new_level;
4049 mddev->layout = mddev->new_layout;
4050 mddev->chunk_sectors = mddev->new_chunk_sectors;
4051 mddev->delta_disks = 0;
4052 mddev->reshape_backwards = 0;
4053 mddev->degraded = 0;
4054 spin_unlock(&mddev->lock);
4055
4056 if (oldpers->sync_request == NULL &&
4057 mddev->external) {
4058 /* We are converting from a no-redundancy array
4059 * to a redundancy array and metadata is managed
4060 * externally so we need to be sure that writes
4061 * won't block due to a need to transition
4062 * clean->dirty
4063 * until external management is started.
4064 */
4065 mddev->in_sync = 0;
4066 mddev->safemode_delay = 0;
4067 mddev->safemode = 0;
4068 }
4069
4070 oldpers->free(mddev, oldpriv);
4071
4072 if (oldpers->sync_request == NULL &&
4073 pers->sync_request != NULL) {
4074 /* need to add the md_redundancy_group */
4075 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4076 pr_warn("md: cannot register extra attributes for %s\n",
4077 mdname(mddev));
4078 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4079 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
4080 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
4081 }
4082 if (oldpers->sync_request != NULL &&
4083 pers->sync_request == NULL) {
4084 /* need to remove the md_redundancy_group */
4085 if (mddev->to_remove == NULL)
4086 mddev->to_remove = &md_redundancy_group;
4087 }
4088
4089 module_put(oldpers->owner);
4090
4091 rdev_for_each(rdev, mddev) {
4092 if (rdev->raid_disk < 0)
4093 continue;
4094 if (rdev->new_raid_disk >= mddev->raid_disks)
4095 rdev->new_raid_disk = -1;
4096 if (rdev->new_raid_disk == rdev->raid_disk)
4097 continue;
4098 sysfs_unlink_rdev(mddev, rdev);
4099 }
4100 rdev_for_each(rdev, mddev) {
4101 if (rdev->raid_disk < 0)
4102 continue;
4103 if (rdev->new_raid_disk == rdev->raid_disk)
4104 continue;
4105 rdev->raid_disk = rdev->new_raid_disk;
4106 if (rdev->raid_disk < 0)
4107 clear_bit(In_sync, &rdev->flags);
4108 else {
4109 if (sysfs_link_rdev(mddev, rdev))
4110 pr_warn("md: cannot register rd%d for %s after level change\n",
4111 rdev->raid_disk, mdname(mddev));
4112 }
4113 }
4114
4115 if (pers->sync_request == NULL) {
4116 /* this is now an array without redundancy, so
4117 * it must always be in_sync
4118 */
4119 mddev->in_sync = 1;
4120 del_timer_sync(&mddev->safemode_timer);
4121 }
4122 blk_set_stacking_limits(&mddev->queue->limits);
4123 pers->run(mddev);
4124 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4125 mddev_resume(mddev);
4126 if (!mddev->thread)
4127 md_update_sb(mddev, 1);
4128 sysfs_notify_dirent_safe(mddev->sysfs_level);
4129 md_new_event(mddev);
4130 rv = len;
4131 out_unlock:
4132 mddev_unlock(mddev);
4133 return rv;
4134 }
4135
4136 static struct md_sysfs_entry md_level =
4137 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
4138
4139 static ssize_t
layout_show(struct mddev * mddev,char * page)4140 layout_show(struct mddev *mddev, char *page)
4141 {
4142 /* just a number, not meaningful for all levels */
4143 if (mddev->reshape_position != MaxSector &&
4144 mddev->layout != mddev->new_layout)
4145 return sprintf(page, "%d (%d)\n",
4146 mddev->new_layout, mddev->layout);
4147 return sprintf(page, "%d\n", mddev->layout);
4148 }
4149
4150 static ssize_t
layout_store(struct mddev * mddev,const char * buf,size_t len)4151 layout_store(struct mddev *mddev, const char *buf, size_t len)
4152 {
4153 unsigned int n;
4154 int err;
4155
4156 err = kstrtouint(buf, 10, &n);
4157 if (err < 0)
4158 return err;
4159 err = mddev_lock(mddev);
4160 if (err)
4161 return err;
4162
4163 if (mddev->pers) {
4164 if (mddev->pers->check_reshape == NULL)
4165 err = -EBUSY;
4166 else if (mddev->ro)
4167 err = -EROFS;
4168 else {
4169 mddev->new_layout = n;
4170 err = mddev->pers->check_reshape(mddev);
4171 if (err)
4172 mddev->new_layout = mddev->layout;
4173 }
4174 } else {
4175 mddev->new_layout = n;
4176 if (mddev->reshape_position == MaxSector)
4177 mddev->layout = n;
4178 }
4179 mddev_unlock(mddev);
4180 return err ?: len;
4181 }
4182 static struct md_sysfs_entry md_layout =
4183 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
4184
4185 static ssize_t
raid_disks_show(struct mddev * mddev,char * page)4186 raid_disks_show(struct mddev *mddev, char *page)
4187 {
4188 if (mddev->raid_disks == 0)
4189 return 0;
4190 if (mddev->reshape_position != MaxSector &&
4191 mddev->delta_disks != 0)
4192 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
4193 mddev->raid_disks - mddev->delta_disks);
4194 return sprintf(page, "%d\n", mddev->raid_disks);
4195 }
4196
4197 static int update_raid_disks(struct mddev *mddev, int raid_disks);
4198
4199 static ssize_t
raid_disks_store(struct mddev * mddev,const char * buf,size_t len)4200 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
4201 {
4202 unsigned int n;
4203 int err;
4204
4205 err = kstrtouint(buf, 10, &n);
4206 if (err < 0)
4207 return err;
4208
4209 err = mddev_lock(mddev);
4210 if (err)
4211 return err;
4212 if (mddev->pers)
4213 err = update_raid_disks(mddev, n);
4214 else if (mddev->reshape_position != MaxSector) {
4215 struct md_rdev *rdev;
4216 int olddisks = mddev->raid_disks - mddev->delta_disks;
4217
4218 err = -EINVAL;
4219 rdev_for_each(rdev, mddev) {
4220 if (olddisks < n &&
4221 rdev->data_offset < rdev->new_data_offset)
4222 goto out_unlock;
4223 if (olddisks > n &&
4224 rdev->data_offset > rdev->new_data_offset)
4225 goto out_unlock;
4226 }
4227 err = 0;
4228 mddev->delta_disks = n - olddisks;
4229 mddev->raid_disks = n;
4230 mddev->reshape_backwards = (mddev->delta_disks < 0);
4231 } else
4232 mddev->raid_disks = n;
4233 out_unlock:
4234 mddev_unlock(mddev);
4235 return err ? err : len;
4236 }
4237 static struct md_sysfs_entry md_raid_disks =
4238 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
4239
4240 static ssize_t
uuid_show(struct mddev * mddev,char * page)4241 uuid_show(struct mddev *mddev, char *page)
4242 {
4243 return sprintf(page, "%pU\n", mddev->uuid);
4244 }
4245 static struct md_sysfs_entry md_uuid =
4246 __ATTR(uuid, S_IRUGO, uuid_show, NULL);
4247
4248 static ssize_t
chunk_size_show(struct mddev * mddev,char * page)4249 chunk_size_show(struct mddev *mddev, char *page)
4250 {
4251 if (mddev->reshape_position != MaxSector &&
4252 mddev->chunk_sectors != mddev->new_chunk_sectors)
4253 return sprintf(page, "%d (%d)\n",
4254 mddev->new_chunk_sectors << 9,
4255 mddev->chunk_sectors << 9);
4256 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
4257 }
4258
4259 static ssize_t
chunk_size_store(struct mddev * mddev,const char * buf,size_t len)4260 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
4261 {
4262 unsigned long n;
4263 int err;
4264
4265 err = kstrtoul(buf, 10, &n);
4266 if (err < 0)
4267 return err;
4268
4269 err = mddev_lock(mddev);
4270 if (err)
4271 return err;
4272 if (mddev->pers) {
4273 if (mddev->pers->check_reshape == NULL)
4274 err = -EBUSY;
4275 else if (mddev->ro)
4276 err = -EROFS;
4277 else {
4278 mddev->new_chunk_sectors = n >> 9;
4279 err = mddev->pers->check_reshape(mddev);
4280 if (err)
4281 mddev->new_chunk_sectors = mddev->chunk_sectors;
4282 }
4283 } else {
4284 mddev->new_chunk_sectors = n >> 9;
4285 if (mddev->reshape_position == MaxSector)
4286 mddev->chunk_sectors = n >> 9;
4287 }
4288 mddev_unlock(mddev);
4289 return err ?: len;
4290 }
4291 static struct md_sysfs_entry md_chunk_size =
4292 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4293
4294 static ssize_t
resync_start_show(struct mddev * mddev,char * page)4295 resync_start_show(struct mddev *mddev, char *page)
4296 {
4297 if (mddev->recovery_cp == MaxSector)
4298 return sprintf(page, "none\n");
4299 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
4300 }
4301
4302 static ssize_t
resync_start_store(struct mddev * mddev,const char * buf,size_t len)4303 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4304 {
4305 unsigned long long n;
4306 int err;
4307
4308 if (cmd_match(buf, "none"))
4309 n = MaxSector;
4310 else {
4311 err = kstrtoull(buf, 10, &n);
4312 if (err < 0)
4313 return err;
4314 if (n != (sector_t)n)
4315 return -EINVAL;
4316 }
4317
4318 err = mddev_lock(mddev);
4319 if (err)
4320 return err;
4321 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4322 err = -EBUSY;
4323
4324 if (!err) {
4325 mddev->recovery_cp = n;
4326 if (mddev->pers)
4327 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4328 }
4329 mddev_unlock(mddev);
4330 return err ?: len;
4331 }
4332 static struct md_sysfs_entry md_resync_start =
4333 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4334 resync_start_show, resync_start_store);
4335
4336 /*
4337 * The array state can be:
4338 *
4339 * clear
4340 * No devices, no size, no level
4341 * Equivalent to STOP_ARRAY ioctl
4342 * inactive
4343 * May have some settings, but array is not active
4344 * all IO results in error
4345 * When written, doesn't tear down array, but just stops it
4346 * suspended (not supported yet)
4347 * All IO requests will block. The array can be reconfigured.
4348 * Writing this, if accepted, will block until array is quiescent
4349 * readonly
4350 * no resync can happen. no superblocks get written.
4351 * write requests fail
4352 * read-auto
4353 * like readonly, but behaves like 'clean' on a write request.
4354 *
4355 * clean - no pending writes, but otherwise active.
4356 * When written to inactive array, starts without resync
4357 * If a write request arrives then
4358 * if metadata is known, mark 'dirty' and switch to 'active'.
4359 * if not known, block and switch to write-pending
4360 * If written to an active array that has pending writes, then fails.
4361 * active
4362 * fully active: IO and resync can be happening.
4363 * When written to inactive array, starts with resync
4364 *
4365 * write-pending
4366 * clean, but writes are blocked waiting for 'active' to be written.
4367 *
4368 * active-idle
4369 * like active, but no writes have been seen for a while (100msec).
4370 *
4371 * broken
4372 * RAID0/LINEAR-only: same as clean, but array is missing a member.
4373 * It's useful because RAID0/LINEAR mounted-arrays aren't stopped
4374 * when a member is gone, so this state will at least alert the
4375 * user that something is wrong.
4376 */
4377 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4378 write_pending, active_idle, broken, bad_word};
4379 static char *array_states[] = {
4380 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4381 "write-pending", "active-idle", "broken", NULL };
4382
match_word(const char * word,char ** list)4383 static int match_word(const char *word, char **list)
4384 {
4385 int n;
4386 for (n=0; list[n]; n++)
4387 if (cmd_match(word, list[n]))
4388 break;
4389 return n;
4390 }
4391
4392 static ssize_t
array_state_show(struct mddev * mddev,char * page)4393 array_state_show(struct mddev *mddev, char *page)
4394 {
4395 enum array_state st = inactive;
4396
4397 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) {
4398 switch(mddev->ro) {
4399 case 1:
4400 st = readonly;
4401 break;
4402 case 2:
4403 st = read_auto;
4404 break;
4405 case 0:
4406 spin_lock(&mddev->lock);
4407 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4408 st = write_pending;
4409 else if (mddev->in_sync)
4410 st = clean;
4411 else if (mddev->safemode)
4412 st = active_idle;
4413 else
4414 st = active;
4415 spin_unlock(&mddev->lock);
4416 }
4417
4418 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean)
4419 st = broken;
4420 } else {
4421 if (list_empty(&mddev->disks) &&
4422 mddev->raid_disks == 0 &&
4423 mddev->dev_sectors == 0)
4424 st = clear;
4425 else
4426 st = inactive;
4427 }
4428 return sprintf(page, "%s\n", array_states[st]);
4429 }
4430
4431 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4432 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4433 static int restart_array(struct mddev *mddev);
4434
4435 static ssize_t
array_state_store(struct mddev * mddev,const char * buf,size_t len)4436 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4437 {
4438 int err = 0;
4439 enum array_state st = match_word(buf, array_states);
4440
4441 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
4442 /* don't take reconfig_mutex when toggling between
4443 * clean and active
4444 */
4445 spin_lock(&mddev->lock);
4446 if (st == active) {
4447 restart_array(mddev);
4448 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4449 md_wakeup_thread(mddev->thread);
4450 wake_up(&mddev->sb_wait);
4451 } else /* st == clean */ {
4452 restart_array(mddev);
4453 if (!set_in_sync(mddev))
4454 err = -EBUSY;
4455 }
4456 if (!err)
4457 sysfs_notify_dirent_safe(mddev->sysfs_state);
4458 spin_unlock(&mddev->lock);
4459 return err ?: len;
4460 }
4461 err = mddev_lock(mddev);
4462 if (err)
4463 return err;
4464 err = -EINVAL;
4465 switch(st) {
4466 case bad_word:
4467 break;
4468 case clear:
4469 /* stopping an active array */
4470 err = do_md_stop(mddev, 0, NULL);
4471 break;
4472 case inactive:
4473 /* stopping an active array */
4474 if (mddev->pers)
4475 err = do_md_stop(mddev, 2, NULL);
4476 else
4477 err = 0; /* already inactive */
4478 break;
4479 case suspended:
4480 break; /* not supported yet */
4481 case readonly:
4482 if (mddev->pers)
4483 err = md_set_readonly(mddev, NULL);
4484 else {
4485 mddev->ro = 1;
4486 set_disk_ro(mddev->gendisk, 1);
4487 err = do_md_run(mddev);
4488 }
4489 break;
4490 case read_auto:
4491 if (mddev->pers) {
4492 if (mddev->ro == 0)
4493 err = md_set_readonly(mddev, NULL);
4494 else if (mddev->ro == 1)
4495 err = restart_array(mddev);
4496 if (err == 0) {
4497 mddev->ro = 2;
4498 set_disk_ro(mddev->gendisk, 0);
4499 }
4500 } else {
4501 mddev->ro = 2;
4502 err = do_md_run(mddev);
4503 }
4504 break;
4505 case clean:
4506 if (mddev->pers) {
4507 err = restart_array(mddev);
4508 if (err)
4509 break;
4510 spin_lock(&mddev->lock);
4511 if (!set_in_sync(mddev))
4512 err = -EBUSY;
4513 spin_unlock(&mddev->lock);
4514 } else
4515 err = -EINVAL;
4516 break;
4517 case active:
4518 if (mddev->pers) {
4519 err = restart_array(mddev);
4520 if (err)
4521 break;
4522 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4523 wake_up(&mddev->sb_wait);
4524 err = 0;
4525 } else {
4526 mddev->ro = 0;
4527 set_disk_ro(mddev->gendisk, 0);
4528 err = do_md_run(mddev);
4529 }
4530 break;
4531 case write_pending:
4532 case active_idle:
4533 case broken:
4534 /* these cannot be set */
4535 break;
4536 }
4537
4538 if (!err) {
4539 if (mddev->hold_active == UNTIL_IOCTL)
4540 mddev->hold_active = 0;
4541 sysfs_notify_dirent_safe(mddev->sysfs_state);
4542 }
4543 mddev_unlock(mddev);
4544 return err ?: len;
4545 }
4546 static struct md_sysfs_entry md_array_state =
4547 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4548
4549 static ssize_t
max_corrected_read_errors_show(struct mddev * mddev,char * page)4550 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4551 return sprintf(page, "%d\n",
4552 atomic_read(&mddev->max_corr_read_errors));
4553 }
4554
4555 static ssize_t
max_corrected_read_errors_store(struct mddev * mddev,const char * buf,size_t len)4556 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4557 {
4558 unsigned int n;
4559 int rv;
4560
4561 rv = kstrtouint(buf, 10, &n);
4562 if (rv < 0)
4563 return rv;
4564 atomic_set(&mddev->max_corr_read_errors, n);
4565 return len;
4566 }
4567
4568 static struct md_sysfs_entry max_corr_read_errors =
4569 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4570 max_corrected_read_errors_store);
4571
4572 static ssize_t
null_show(struct mddev * mddev,char * page)4573 null_show(struct mddev *mddev, char *page)
4574 {
4575 return -EINVAL;
4576 }
4577
4578 /* need to ensure rdev_delayed_delete() has completed */
flush_rdev_wq(struct mddev * mddev)4579 static void flush_rdev_wq(struct mddev *mddev)
4580 {
4581 struct md_rdev *rdev;
4582
4583 rcu_read_lock();
4584 rdev_for_each_rcu(rdev, mddev)
4585 if (work_pending(&rdev->del_work)) {
4586 flush_workqueue(md_rdev_misc_wq);
4587 break;
4588 }
4589 rcu_read_unlock();
4590 }
4591
4592 static ssize_t
new_dev_store(struct mddev * mddev,const char * buf,size_t len)4593 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4594 {
4595 /* buf must be %d:%d\n? giving major and minor numbers */
4596 /* The new device is added to the array.
4597 * If the array has a persistent superblock, we read the
4598 * superblock to initialise info and check validity.
4599 * Otherwise, only checking done is that in bind_rdev_to_array,
4600 * which mainly checks size.
4601 */
4602 char *e;
4603 int major = simple_strtoul(buf, &e, 10);
4604 int minor;
4605 dev_t dev;
4606 struct md_rdev *rdev;
4607 int err;
4608
4609 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4610 return -EINVAL;
4611 minor = simple_strtoul(e+1, &e, 10);
4612 if (*e && *e != '\n')
4613 return -EINVAL;
4614 dev = MKDEV(major, minor);
4615 if (major != MAJOR(dev) ||
4616 minor != MINOR(dev))
4617 return -EOVERFLOW;
4618
4619 flush_rdev_wq(mddev);
4620 err = mddev_lock(mddev);
4621 if (err)
4622 return err;
4623 if (mddev->persistent) {
4624 rdev = md_import_device(dev, mddev->major_version,
4625 mddev->minor_version);
4626 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4627 struct md_rdev *rdev0
4628 = list_entry(mddev->disks.next,
4629 struct md_rdev, same_set);
4630 err = super_types[mddev->major_version]
4631 .load_super(rdev, rdev0, mddev->minor_version);
4632 if (err < 0)
4633 goto out;
4634 }
4635 } else if (mddev->external)
4636 rdev = md_import_device(dev, -2, -1);
4637 else
4638 rdev = md_import_device(dev, -1, -1);
4639
4640 if (IS_ERR(rdev)) {
4641 mddev_unlock(mddev);
4642 return PTR_ERR(rdev);
4643 }
4644 err = bind_rdev_to_array(rdev, mddev);
4645 out:
4646 if (err)
4647 export_rdev(rdev);
4648 mddev_unlock(mddev);
4649 if (!err)
4650 md_new_event(mddev);
4651 return err ? err : len;
4652 }
4653
4654 static struct md_sysfs_entry md_new_device =
4655 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4656
4657 static ssize_t
bitmap_store(struct mddev * mddev,const char * buf,size_t len)4658 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4659 {
4660 char *end;
4661 unsigned long chunk, end_chunk;
4662 int err;
4663
4664 err = mddev_lock(mddev);
4665 if (err)
4666 return err;
4667 if (!mddev->bitmap)
4668 goto out;
4669 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4670 while (*buf) {
4671 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4672 if (buf == end) break;
4673 if (*end == '-') { /* range */
4674 buf = end + 1;
4675 end_chunk = simple_strtoul(buf, &end, 0);
4676 if (buf == end) break;
4677 }
4678 if (*end && !isspace(*end)) break;
4679 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4680 buf = skip_spaces(end);
4681 }
4682 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4683 out:
4684 mddev_unlock(mddev);
4685 return len;
4686 }
4687
4688 static struct md_sysfs_entry md_bitmap =
4689 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4690
4691 static ssize_t
size_show(struct mddev * mddev,char * page)4692 size_show(struct mddev *mddev, char *page)
4693 {
4694 return sprintf(page, "%llu\n",
4695 (unsigned long long)mddev->dev_sectors / 2);
4696 }
4697
4698 static int update_size(struct mddev *mddev, sector_t num_sectors);
4699
4700 static ssize_t
size_store(struct mddev * mddev,const char * buf,size_t len)4701 size_store(struct mddev *mddev, const char *buf, size_t len)
4702 {
4703 /* If array is inactive, we can reduce the component size, but
4704 * not increase it (except from 0).
4705 * If array is active, we can try an on-line resize
4706 */
4707 sector_t sectors;
4708 int err = strict_blocks_to_sectors(buf, §ors);
4709
4710 if (err < 0)
4711 return err;
4712 err = mddev_lock(mddev);
4713 if (err)
4714 return err;
4715 if (mddev->pers) {
4716 err = update_size(mddev, sectors);
4717 if (err == 0)
4718 md_update_sb(mddev, 1);
4719 } else {
4720 if (mddev->dev_sectors == 0 ||
4721 mddev->dev_sectors > sectors)
4722 mddev->dev_sectors = sectors;
4723 else
4724 err = -ENOSPC;
4725 }
4726 mddev_unlock(mddev);
4727 return err ? err : len;
4728 }
4729
4730 static struct md_sysfs_entry md_size =
4731 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4732
4733 /* Metadata version.
4734 * This is one of
4735 * 'none' for arrays with no metadata (good luck...)
4736 * 'external' for arrays with externally managed metadata,
4737 * or N.M for internally known formats
4738 */
4739 static ssize_t
metadata_show(struct mddev * mddev,char * page)4740 metadata_show(struct mddev *mddev, char *page)
4741 {
4742 if (mddev->persistent)
4743 return sprintf(page, "%d.%d\n",
4744 mddev->major_version, mddev->minor_version);
4745 else if (mddev->external)
4746 return sprintf(page, "external:%s\n", mddev->metadata_type);
4747 else
4748 return sprintf(page, "none\n");
4749 }
4750
4751 static ssize_t
metadata_store(struct mddev * mddev,const char * buf,size_t len)4752 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4753 {
4754 int major, minor;
4755 char *e;
4756 int err;
4757 /* Changing the details of 'external' metadata is
4758 * always permitted. Otherwise there must be
4759 * no devices attached to the array.
4760 */
4761
4762 err = mddev_lock(mddev);
4763 if (err)
4764 return err;
4765 err = -EBUSY;
4766 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4767 ;
4768 else if (!list_empty(&mddev->disks))
4769 goto out_unlock;
4770
4771 err = 0;
4772 if (cmd_match(buf, "none")) {
4773 mddev->persistent = 0;
4774 mddev->external = 0;
4775 mddev->major_version = 0;
4776 mddev->minor_version = 90;
4777 goto out_unlock;
4778 }
4779 if (strncmp(buf, "external:", 9) == 0) {
4780 size_t namelen = len-9;
4781 if (namelen >= sizeof(mddev->metadata_type))
4782 namelen = sizeof(mddev->metadata_type)-1;
4783 strncpy(mddev->metadata_type, buf+9, namelen);
4784 mddev->metadata_type[namelen] = 0;
4785 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4786 mddev->metadata_type[--namelen] = 0;
4787 mddev->persistent = 0;
4788 mddev->external = 1;
4789 mddev->major_version = 0;
4790 mddev->minor_version = 90;
4791 goto out_unlock;
4792 }
4793 major = simple_strtoul(buf, &e, 10);
4794 err = -EINVAL;
4795 if (e==buf || *e != '.')
4796 goto out_unlock;
4797 buf = e+1;
4798 minor = simple_strtoul(buf, &e, 10);
4799 if (e==buf || (*e && *e != '\n') )
4800 goto out_unlock;
4801 err = -ENOENT;
4802 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4803 goto out_unlock;
4804 mddev->major_version = major;
4805 mddev->minor_version = minor;
4806 mddev->persistent = 1;
4807 mddev->external = 0;
4808 err = 0;
4809 out_unlock:
4810 mddev_unlock(mddev);
4811 return err ?: len;
4812 }
4813
4814 static struct md_sysfs_entry md_metadata =
4815 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4816
4817 static ssize_t
action_show(struct mddev * mddev,char * page)4818 action_show(struct mddev *mddev, char *page)
4819 {
4820 char *type = "idle";
4821 unsigned long recovery = mddev->recovery;
4822 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4823 type = "frozen";
4824 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4825 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4826 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4827 type = "reshape";
4828 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4829 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4830 type = "resync";
4831 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4832 type = "check";
4833 else
4834 type = "repair";
4835 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4836 type = "recover";
4837 else if (mddev->reshape_position != MaxSector)
4838 type = "reshape";
4839 }
4840 return sprintf(page, "%s\n", type);
4841 }
4842
4843 static ssize_t
action_store(struct mddev * mddev,const char * page,size_t len)4844 action_store(struct mddev *mddev, const char *page, size_t len)
4845 {
4846 if (!mddev->pers || !mddev->pers->sync_request)
4847 return -EINVAL;
4848
4849
4850 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4851 if (cmd_match(page, "frozen"))
4852 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4853 else
4854 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4855 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4856 mddev_lock(mddev) == 0) {
4857 if (work_pending(&mddev->del_work))
4858 flush_workqueue(md_misc_wq);
4859 if (mddev->sync_thread) {
4860 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4861 md_reap_sync_thread(mddev);
4862 }
4863 mddev_unlock(mddev);
4864 }
4865 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4866 return -EBUSY;
4867 else if (cmd_match(page, "resync"))
4868 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4869 else if (cmd_match(page, "recover")) {
4870 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4871 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4872 } else if (cmd_match(page, "reshape")) {
4873 int err;
4874 if (mddev->pers->start_reshape == NULL)
4875 return -EINVAL;
4876 err = mddev_lock(mddev);
4877 if (!err) {
4878 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4879 err = -EBUSY;
4880 else {
4881 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4882 err = mddev->pers->start_reshape(mddev);
4883 }
4884 mddev_unlock(mddev);
4885 }
4886 if (err)
4887 return err;
4888 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
4889 } else {
4890 if (cmd_match(page, "check"))
4891 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4892 else if (!cmd_match(page, "repair"))
4893 return -EINVAL;
4894 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4895 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4896 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4897 }
4898 if (mddev->ro == 2) {
4899 /* A write to sync_action is enough to justify
4900 * canceling read-auto mode
4901 */
4902 mddev->ro = 0;
4903 md_wakeup_thread(mddev->sync_thread);
4904 }
4905 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4906 md_wakeup_thread(mddev->thread);
4907 sysfs_notify_dirent_safe(mddev->sysfs_action);
4908 return len;
4909 }
4910
4911 static struct md_sysfs_entry md_scan_mode =
4912 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4913
4914 static ssize_t
last_sync_action_show(struct mddev * mddev,char * page)4915 last_sync_action_show(struct mddev *mddev, char *page)
4916 {
4917 return sprintf(page, "%s\n", mddev->last_sync_action);
4918 }
4919
4920 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4921
4922 static ssize_t
mismatch_cnt_show(struct mddev * mddev,char * page)4923 mismatch_cnt_show(struct mddev *mddev, char *page)
4924 {
4925 return sprintf(page, "%llu\n",
4926 (unsigned long long)
4927 atomic64_read(&mddev->resync_mismatches));
4928 }
4929
4930 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4931
4932 static ssize_t
sync_min_show(struct mddev * mddev,char * page)4933 sync_min_show(struct mddev *mddev, char *page)
4934 {
4935 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4936 mddev->sync_speed_min ? "local": "system");
4937 }
4938
4939 static ssize_t
sync_min_store(struct mddev * mddev,const char * buf,size_t len)4940 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4941 {
4942 unsigned int min;
4943 int rv;
4944
4945 if (strncmp(buf, "system", 6)==0) {
4946 min = 0;
4947 } else {
4948 rv = kstrtouint(buf, 10, &min);
4949 if (rv < 0)
4950 return rv;
4951 if (min == 0)
4952 return -EINVAL;
4953 }
4954 mddev->sync_speed_min = min;
4955 return len;
4956 }
4957
4958 static struct md_sysfs_entry md_sync_min =
4959 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4960
4961 static ssize_t
sync_max_show(struct mddev * mddev,char * page)4962 sync_max_show(struct mddev *mddev, char *page)
4963 {
4964 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4965 mddev->sync_speed_max ? "local": "system");
4966 }
4967
4968 static ssize_t
sync_max_store(struct mddev * mddev,const char * buf,size_t len)4969 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4970 {
4971 unsigned int max;
4972 int rv;
4973
4974 if (strncmp(buf, "system", 6)==0) {
4975 max = 0;
4976 } else {
4977 rv = kstrtouint(buf, 10, &max);
4978 if (rv < 0)
4979 return rv;
4980 if (max == 0)
4981 return -EINVAL;
4982 }
4983 mddev->sync_speed_max = max;
4984 return len;
4985 }
4986
4987 static struct md_sysfs_entry md_sync_max =
4988 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4989
4990 static ssize_t
degraded_show(struct mddev * mddev,char * page)4991 degraded_show(struct mddev *mddev, char *page)
4992 {
4993 return sprintf(page, "%d\n", mddev->degraded);
4994 }
4995 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4996
4997 static ssize_t
sync_force_parallel_show(struct mddev * mddev,char * page)4998 sync_force_parallel_show(struct mddev *mddev, char *page)
4999 {
5000 return sprintf(page, "%d\n", mddev->parallel_resync);
5001 }
5002
5003 static ssize_t
sync_force_parallel_store(struct mddev * mddev,const char * buf,size_t len)5004 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
5005 {
5006 long n;
5007
5008 if (kstrtol(buf, 10, &n))
5009 return -EINVAL;
5010
5011 if (n != 0 && n != 1)
5012 return -EINVAL;
5013
5014 mddev->parallel_resync = n;
5015
5016 if (mddev->sync_thread)
5017 wake_up(&resync_wait);
5018
5019 return len;
5020 }
5021
5022 /* force parallel resync, even with shared block devices */
5023 static struct md_sysfs_entry md_sync_force_parallel =
5024 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
5025 sync_force_parallel_show, sync_force_parallel_store);
5026
5027 static ssize_t
sync_speed_show(struct mddev * mddev,char * page)5028 sync_speed_show(struct mddev *mddev, char *page)
5029 {
5030 unsigned long resync, dt, db;
5031 if (mddev->curr_resync == 0)
5032 return sprintf(page, "none\n");
5033 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
5034 dt = (jiffies - mddev->resync_mark) / HZ;
5035 if (!dt) dt++;
5036 db = resync - mddev->resync_mark_cnt;
5037 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
5038 }
5039
5040 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
5041
5042 static ssize_t
sync_completed_show(struct mddev * mddev,char * page)5043 sync_completed_show(struct mddev *mddev, char *page)
5044 {
5045 unsigned long long max_sectors, resync;
5046
5047 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5048 return sprintf(page, "none\n");
5049
5050 if (mddev->curr_resync == 1 ||
5051 mddev->curr_resync == 2)
5052 return sprintf(page, "delayed\n");
5053
5054 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
5055 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5056 max_sectors = mddev->resync_max_sectors;
5057 else
5058 max_sectors = mddev->dev_sectors;
5059
5060 resync = mddev->curr_resync_completed;
5061 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
5062 }
5063
5064 static struct md_sysfs_entry md_sync_completed =
5065 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
5066
5067 static ssize_t
min_sync_show(struct mddev * mddev,char * page)5068 min_sync_show(struct mddev *mddev, char *page)
5069 {
5070 return sprintf(page, "%llu\n",
5071 (unsigned long long)mddev->resync_min);
5072 }
5073 static ssize_t
min_sync_store(struct mddev * mddev,const char * buf,size_t len)5074 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
5075 {
5076 unsigned long long min;
5077 int err;
5078
5079 if (kstrtoull(buf, 10, &min))
5080 return -EINVAL;
5081
5082 spin_lock(&mddev->lock);
5083 err = -EINVAL;
5084 if (min > mddev->resync_max)
5085 goto out_unlock;
5086
5087 err = -EBUSY;
5088 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5089 goto out_unlock;
5090
5091 /* Round down to multiple of 4K for safety */
5092 mddev->resync_min = round_down(min, 8);
5093 err = 0;
5094
5095 out_unlock:
5096 spin_unlock(&mddev->lock);
5097 return err ?: len;
5098 }
5099
5100 static struct md_sysfs_entry md_min_sync =
5101 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
5102
5103 static ssize_t
max_sync_show(struct mddev * mddev,char * page)5104 max_sync_show(struct mddev *mddev, char *page)
5105 {
5106 if (mddev->resync_max == MaxSector)
5107 return sprintf(page, "max\n");
5108 else
5109 return sprintf(page, "%llu\n",
5110 (unsigned long long)mddev->resync_max);
5111 }
5112 static ssize_t
max_sync_store(struct mddev * mddev,const char * buf,size_t len)5113 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
5114 {
5115 int err;
5116 spin_lock(&mddev->lock);
5117 if (strncmp(buf, "max", 3) == 0)
5118 mddev->resync_max = MaxSector;
5119 else {
5120 unsigned long long max;
5121 int chunk;
5122
5123 err = -EINVAL;
5124 if (kstrtoull(buf, 10, &max))
5125 goto out_unlock;
5126 if (max < mddev->resync_min)
5127 goto out_unlock;
5128
5129 err = -EBUSY;
5130 if (max < mddev->resync_max &&
5131 mddev->ro == 0 &&
5132 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5133 goto out_unlock;
5134
5135 /* Must be a multiple of chunk_size */
5136 chunk = mddev->chunk_sectors;
5137 if (chunk) {
5138 sector_t temp = max;
5139
5140 err = -EINVAL;
5141 if (sector_div(temp, chunk))
5142 goto out_unlock;
5143 }
5144 mddev->resync_max = max;
5145 }
5146 wake_up(&mddev->recovery_wait);
5147 err = 0;
5148 out_unlock:
5149 spin_unlock(&mddev->lock);
5150 return err ?: len;
5151 }
5152
5153 static struct md_sysfs_entry md_max_sync =
5154 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
5155
5156 static ssize_t
suspend_lo_show(struct mddev * mddev,char * page)5157 suspend_lo_show(struct mddev *mddev, char *page)
5158 {
5159 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
5160 }
5161
5162 static ssize_t
suspend_lo_store(struct mddev * mddev,const char * buf,size_t len)5163 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
5164 {
5165 unsigned long long new;
5166 int err;
5167
5168 err = kstrtoull(buf, 10, &new);
5169 if (err < 0)
5170 return err;
5171 if (new != (sector_t)new)
5172 return -EINVAL;
5173
5174 err = mddev_lock(mddev);
5175 if (err)
5176 return err;
5177 err = -EINVAL;
5178 if (mddev->pers == NULL ||
5179 mddev->pers->quiesce == NULL)
5180 goto unlock;
5181 mddev_suspend(mddev);
5182 mddev->suspend_lo = new;
5183 mddev_resume(mddev);
5184
5185 err = 0;
5186 unlock:
5187 mddev_unlock(mddev);
5188 return err ?: len;
5189 }
5190 static struct md_sysfs_entry md_suspend_lo =
5191 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
5192
5193 static ssize_t
suspend_hi_show(struct mddev * mddev,char * page)5194 suspend_hi_show(struct mddev *mddev, char *page)
5195 {
5196 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
5197 }
5198
5199 static ssize_t
suspend_hi_store(struct mddev * mddev,const char * buf,size_t len)5200 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
5201 {
5202 unsigned long long new;
5203 int err;
5204
5205 err = kstrtoull(buf, 10, &new);
5206 if (err < 0)
5207 return err;
5208 if (new != (sector_t)new)
5209 return -EINVAL;
5210
5211 err = mddev_lock(mddev);
5212 if (err)
5213 return err;
5214 err = -EINVAL;
5215 if (mddev->pers == NULL)
5216 goto unlock;
5217
5218 mddev_suspend(mddev);
5219 mddev->suspend_hi = new;
5220 mddev_resume(mddev);
5221
5222 err = 0;
5223 unlock:
5224 mddev_unlock(mddev);
5225 return err ?: len;
5226 }
5227 static struct md_sysfs_entry md_suspend_hi =
5228 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
5229
5230 static ssize_t
reshape_position_show(struct mddev * mddev,char * page)5231 reshape_position_show(struct mddev *mddev, char *page)
5232 {
5233 if (mddev->reshape_position != MaxSector)
5234 return sprintf(page, "%llu\n",
5235 (unsigned long long)mddev->reshape_position);
5236 strcpy(page, "none\n");
5237 return 5;
5238 }
5239
5240 static ssize_t
reshape_position_store(struct mddev * mddev,const char * buf,size_t len)5241 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
5242 {
5243 struct md_rdev *rdev;
5244 unsigned long long new;
5245 int err;
5246
5247 err = kstrtoull(buf, 10, &new);
5248 if (err < 0)
5249 return err;
5250 if (new != (sector_t)new)
5251 return -EINVAL;
5252 err = mddev_lock(mddev);
5253 if (err)
5254 return err;
5255 err = -EBUSY;
5256 if (mddev->pers)
5257 goto unlock;
5258 mddev->reshape_position = new;
5259 mddev->delta_disks = 0;
5260 mddev->reshape_backwards = 0;
5261 mddev->new_level = mddev->level;
5262 mddev->new_layout = mddev->layout;
5263 mddev->new_chunk_sectors = mddev->chunk_sectors;
5264 rdev_for_each(rdev, mddev)
5265 rdev->new_data_offset = rdev->data_offset;
5266 err = 0;
5267 unlock:
5268 mddev_unlock(mddev);
5269 return err ?: len;
5270 }
5271
5272 static struct md_sysfs_entry md_reshape_position =
5273 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
5274 reshape_position_store);
5275
5276 static ssize_t
reshape_direction_show(struct mddev * mddev,char * page)5277 reshape_direction_show(struct mddev *mddev, char *page)
5278 {
5279 return sprintf(page, "%s\n",
5280 mddev->reshape_backwards ? "backwards" : "forwards");
5281 }
5282
5283 static ssize_t
reshape_direction_store(struct mddev * mddev,const char * buf,size_t len)5284 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
5285 {
5286 int backwards = 0;
5287 int err;
5288
5289 if (cmd_match(buf, "forwards"))
5290 backwards = 0;
5291 else if (cmd_match(buf, "backwards"))
5292 backwards = 1;
5293 else
5294 return -EINVAL;
5295 if (mddev->reshape_backwards == backwards)
5296 return len;
5297
5298 err = mddev_lock(mddev);
5299 if (err)
5300 return err;
5301 /* check if we are allowed to change */
5302 if (mddev->delta_disks)
5303 err = -EBUSY;
5304 else if (mddev->persistent &&
5305 mddev->major_version == 0)
5306 err = -EINVAL;
5307 else
5308 mddev->reshape_backwards = backwards;
5309 mddev_unlock(mddev);
5310 return err ?: len;
5311 }
5312
5313 static struct md_sysfs_entry md_reshape_direction =
5314 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5315 reshape_direction_store);
5316
5317 static ssize_t
array_size_show(struct mddev * mddev,char * page)5318 array_size_show(struct mddev *mddev, char *page)
5319 {
5320 if (mddev->external_size)
5321 return sprintf(page, "%llu\n",
5322 (unsigned long long)mddev->array_sectors/2);
5323 else
5324 return sprintf(page, "default\n");
5325 }
5326
5327 static ssize_t
array_size_store(struct mddev * mddev,const char * buf,size_t len)5328 array_size_store(struct mddev *mddev, const char *buf, size_t len)
5329 {
5330 sector_t sectors;
5331 int err;
5332
5333 err = mddev_lock(mddev);
5334 if (err)
5335 return err;
5336
5337 /* cluster raid doesn't support change array_sectors */
5338 if (mddev_is_clustered(mddev)) {
5339 mddev_unlock(mddev);
5340 return -EINVAL;
5341 }
5342
5343 if (strncmp(buf, "default", 7) == 0) {
5344 if (mddev->pers)
5345 sectors = mddev->pers->size(mddev, 0, 0);
5346 else
5347 sectors = mddev->array_sectors;
5348
5349 mddev->external_size = 0;
5350 } else {
5351 if (strict_blocks_to_sectors(buf, §ors) < 0)
5352 err = -EINVAL;
5353 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5354 err = -E2BIG;
5355 else
5356 mddev->external_size = 1;
5357 }
5358
5359 if (!err) {
5360 mddev->array_sectors = sectors;
5361 if (mddev->pers) {
5362 set_capacity(mddev->gendisk, mddev->array_sectors);
5363 revalidate_disk_size(mddev->gendisk, true);
5364 }
5365 }
5366 mddev_unlock(mddev);
5367 return err ?: len;
5368 }
5369
5370 static struct md_sysfs_entry md_array_size =
5371 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5372 array_size_store);
5373
5374 static ssize_t
consistency_policy_show(struct mddev * mddev,char * page)5375 consistency_policy_show(struct mddev *mddev, char *page)
5376 {
5377 int ret;
5378
5379 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5380 ret = sprintf(page, "journal\n");
5381 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5382 ret = sprintf(page, "ppl\n");
5383 } else if (mddev->bitmap) {
5384 ret = sprintf(page, "bitmap\n");
5385 } else if (mddev->pers) {
5386 if (mddev->pers->sync_request)
5387 ret = sprintf(page, "resync\n");
5388 else
5389 ret = sprintf(page, "none\n");
5390 } else {
5391 ret = sprintf(page, "unknown\n");
5392 }
5393
5394 return ret;
5395 }
5396
5397 static ssize_t
consistency_policy_store(struct mddev * mddev,const char * buf,size_t len)5398 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5399 {
5400 int err = 0;
5401
5402 if (mddev->pers) {
5403 if (mddev->pers->change_consistency_policy)
5404 err = mddev->pers->change_consistency_policy(mddev, buf);
5405 else
5406 err = -EBUSY;
5407 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5408 set_bit(MD_HAS_PPL, &mddev->flags);
5409 } else {
5410 err = -EINVAL;
5411 }
5412
5413 return err ? err : len;
5414 }
5415
5416 static struct md_sysfs_entry md_consistency_policy =
5417 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5418 consistency_policy_store);
5419
fail_last_dev_show(struct mddev * mddev,char * page)5420 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page)
5421 {
5422 return sprintf(page, "%d\n", mddev->fail_last_dev);
5423 }
5424
5425 /*
5426 * Setting fail_last_dev to true to allow last device to be forcibly removed
5427 * from RAID1/RAID10.
5428 */
5429 static ssize_t
fail_last_dev_store(struct mddev * mddev,const char * buf,size_t len)5430 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len)
5431 {
5432 int ret;
5433 bool value;
5434
5435 ret = kstrtobool(buf, &value);
5436 if (ret)
5437 return ret;
5438
5439 if (value != mddev->fail_last_dev)
5440 mddev->fail_last_dev = value;
5441
5442 return len;
5443 }
5444 static struct md_sysfs_entry md_fail_last_dev =
5445 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show,
5446 fail_last_dev_store);
5447
serialize_policy_show(struct mddev * mddev,char * page)5448 static ssize_t serialize_policy_show(struct mddev *mddev, char *page)
5449 {
5450 if (mddev->pers == NULL || (mddev->pers->level != 1))
5451 return sprintf(page, "n/a\n");
5452 else
5453 return sprintf(page, "%d\n", mddev->serialize_policy);
5454 }
5455
5456 /*
5457 * Setting serialize_policy to true to enforce write IO is not reordered
5458 * for raid1.
5459 */
5460 static ssize_t
serialize_policy_store(struct mddev * mddev,const char * buf,size_t len)5461 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len)
5462 {
5463 int err;
5464 bool value;
5465
5466 err = kstrtobool(buf, &value);
5467 if (err)
5468 return err;
5469
5470 if (value == mddev->serialize_policy)
5471 return len;
5472
5473 err = mddev_lock(mddev);
5474 if (err)
5475 return err;
5476 if (mddev->pers == NULL || (mddev->pers->level != 1)) {
5477 pr_err("md: serialize_policy is only effective for raid1\n");
5478 err = -EINVAL;
5479 goto unlock;
5480 }
5481
5482 mddev_suspend(mddev);
5483 if (value)
5484 mddev_create_serial_pool(mddev, NULL, true);
5485 else
5486 mddev_destroy_serial_pool(mddev, NULL, true);
5487 mddev->serialize_policy = value;
5488 mddev_resume(mddev);
5489 unlock:
5490 mddev_unlock(mddev);
5491 return err ?: len;
5492 }
5493
5494 static struct md_sysfs_entry md_serialize_policy =
5495 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show,
5496 serialize_policy_store);
5497
5498
5499 static struct attribute *md_default_attrs[] = {
5500 &md_level.attr,
5501 &md_layout.attr,
5502 &md_raid_disks.attr,
5503 &md_uuid.attr,
5504 &md_chunk_size.attr,
5505 &md_size.attr,
5506 &md_resync_start.attr,
5507 &md_metadata.attr,
5508 &md_new_device.attr,
5509 &md_safe_delay.attr,
5510 &md_array_state.attr,
5511 &md_reshape_position.attr,
5512 &md_reshape_direction.attr,
5513 &md_array_size.attr,
5514 &max_corr_read_errors.attr,
5515 &md_consistency_policy.attr,
5516 &md_fail_last_dev.attr,
5517 &md_serialize_policy.attr,
5518 NULL,
5519 };
5520
5521 static struct attribute *md_redundancy_attrs[] = {
5522 &md_scan_mode.attr,
5523 &md_last_scan_mode.attr,
5524 &md_mismatches.attr,
5525 &md_sync_min.attr,
5526 &md_sync_max.attr,
5527 &md_sync_speed.attr,
5528 &md_sync_force_parallel.attr,
5529 &md_sync_completed.attr,
5530 &md_min_sync.attr,
5531 &md_max_sync.attr,
5532 &md_suspend_lo.attr,
5533 &md_suspend_hi.attr,
5534 &md_bitmap.attr,
5535 &md_degraded.attr,
5536 NULL,
5537 };
5538 static struct attribute_group md_redundancy_group = {
5539 .name = NULL,
5540 .attrs = md_redundancy_attrs,
5541 };
5542
5543 static ssize_t
md_attr_show(struct kobject * kobj,struct attribute * attr,char * page)5544 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5545 {
5546 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5547 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5548 ssize_t rv;
5549
5550 if (!entry->show)
5551 return -EIO;
5552 spin_lock(&all_mddevs_lock);
5553 if (list_empty(&mddev->all_mddevs)) {
5554 spin_unlock(&all_mddevs_lock);
5555 return -EBUSY;
5556 }
5557 mddev_get(mddev);
5558 spin_unlock(&all_mddevs_lock);
5559
5560 rv = entry->show(mddev, page);
5561 mddev_put(mddev);
5562 return rv;
5563 }
5564
5565 static ssize_t
md_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)5566 md_attr_store(struct kobject *kobj, struct attribute *attr,
5567 const char *page, size_t length)
5568 {
5569 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5570 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5571 ssize_t rv;
5572
5573 if (!entry->store)
5574 return -EIO;
5575 if (!capable(CAP_SYS_ADMIN))
5576 return -EACCES;
5577 spin_lock(&all_mddevs_lock);
5578 if (list_empty(&mddev->all_mddevs)) {
5579 spin_unlock(&all_mddevs_lock);
5580 return -EBUSY;
5581 }
5582 mddev_get(mddev);
5583 spin_unlock(&all_mddevs_lock);
5584 rv = entry->store(mddev, page, length);
5585 mddev_put(mddev);
5586 return rv;
5587 }
5588
md_free(struct kobject * ko)5589 static void md_free(struct kobject *ko)
5590 {
5591 struct mddev *mddev = container_of(ko, struct mddev, kobj);
5592
5593 if (mddev->sysfs_state)
5594 sysfs_put(mddev->sysfs_state);
5595 if (mddev->sysfs_level)
5596 sysfs_put(mddev->sysfs_level);
5597
5598 if (mddev->gendisk)
5599 del_gendisk(mddev->gendisk);
5600 if (mddev->queue)
5601 blk_cleanup_queue(mddev->queue);
5602 if (mddev->gendisk)
5603 put_disk(mddev->gendisk);
5604 percpu_ref_exit(&mddev->writes_pending);
5605
5606 bioset_exit(&mddev->bio_set);
5607 bioset_exit(&mddev->sync_set);
5608 kfree(mddev);
5609 }
5610
5611 static const struct sysfs_ops md_sysfs_ops = {
5612 .show = md_attr_show,
5613 .store = md_attr_store,
5614 };
5615 static struct kobj_type md_ktype = {
5616 .release = md_free,
5617 .sysfs_ops = &md_sysfs_ops,
5618 .default_attrs = md_default_attrs,
5619 };
5620
5621 int mdp_major = 0;
5622
mddev_delayed_delete(struct work_struct * ws)5623 static void mddev_delayed_delete(struct work_struct *ws)
5624 {
5625 struct mddev *mddev = container_of(ws, struct mddev, del_work);
5626
5627 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
5628 kobject_del(&mddev->kobj);
5629 kobject_put(&mddev->kobj);
5630 }
5631
no_op(struct percpu_ref * r)5632 static void no_op(struct percpu_ref *r) {}
5633
mddev_init_writes_pending(struct mddev * mddev)5634 int mddev_init_writes_pending(struct mddev *mddev)
5635 {
5636 if (mddev->writes_pending.percpu_count_ptr)
5637 return 0;
5638 if (percpu_ref_init(&mddev->writes_pending, no_op,
5639 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0)
5640 return -ENOMEM;
5641 /* We want to start with the refcount at zero */
5642 percpu_ref_put(&mddev->writes_pending);
5643 return 0;
5644 }
5645 EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5646
md_alloc(dev_t dev,char * name)5647 static int md_alloc(dev_t dev, char *name)
5648 {
5649 /*
5650 * If dev is zero, name is the name of a device to allocate with
5651 * an arbitrary minor number. It will be "md_???"
5652 * If dev is non-zero it must be a device number with a MAJOR of
5653 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
5654 * the device is being created by opening a node in /dev.
5655 * If "name" is not NULL, the device is being created by
5656 * writing to /sys/module/md_mod/parameters/new_array.
5657 */
5658 static DEFINE_MUTEX(disks_mutex);
5659 struct mddev *mddev = mddev_find_or_alloc(dev);
5660 struct gendisk *disk;
5661 int partitioned;
5662 int shift;
5663 int unit;
5664 int error;
5665
5666 if (!mddev)
5667 return -ENODEV;
5668
5669 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5670 shift = partitioned ? MdpMinorShift : 0;
5671 unit = MINOR(mddev->unit) >> shift;
5672
5673 /* wait for any previous instance of this device to be
5674 * completely removed (mddev_delayed_delete).
5675 */
5676 flush_workqueue(md_misc_wq);
5677 flush_workqueue(md_rdev_misc_wq);
5678
5679 mutex_lock(&disks_mutex);
5680 error = -EEXIST;
5681 if (mddev->gendisk)
5682 goto abort;
5683
5684 if (name && !dev) {
5685 /* Need to ensure that 'name' is not a duplicate.
5686 */
5687 struct mddev *mddev2;
5688 spin_lock(&all_mddevs_lock);
5689
5690 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5691 if (mddev2->gendisk &&
5692 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5693 spin_unlock(&all_mddevs_lock);
5694 goto abort;
5695 }
5696 spin_unlock(&all_mddevs_lock);
5697 }
5698 if (name && dev)
5699 /*
5700 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5701 */
5702 mddev->hold_active = UNTIL_STOP;
5703
5704 error = -ENOMEM;
5705 mddev->queue = blk_alloc_queue(NUMA_NO_NODE);
5706 if (!mddev->queue)
5707 goto abort;
5708
5709 blk_set_stacking_limits(&mddev->queue->limits);
5710
5711 disk = alloc_disk(1 << shift);
5712 if (!disk) {
5713 blk_cleanup_queue(mddev->queue);
5714 mddev->queue = NULL;
5715 goto abort;
5716 }
5717 disk->major = MAJOR(mddev->unit);
5718 disk->first_minor = unit << shift;
5719 if (name)
5720 strcpy(disk->disk_name, name);
5721 else if (partitioned)
5722 sprintf(disk->disk_name, "md_d%d", unit);
5723 else
5724 sprintf(disk->disk_name, "md%d", unit);
5725 disk->fops = &md_fops;
5726 disk->private_data = mddev;
5727 disk->queue = mddev->queue;
5728 blk_queue_write_cache(mddev->queue, true, true);
5729 /* Allow extended partitions. This makes the
5730 * 'mdp' device redundant, but we can't really
5731 * remove it now.
5732 */
5733 disk->flags |= GENHD_FL_EXT_DEVT;
5734 disk->events |= DISK_EVENT_MEDIA_CHANGE;
5735 mddev->gendisk = disk;
5736 add_disk(disk);
5737
5738 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
5739 if (error) {
5740 /* This isn't possible, but as kobject_init_and_add is marked
5741 * __must_check, we must do something with the result
5742 */
5743 pr_debug("md: cannot register %s/md - name in use\n",
5744 disk->disk_name);
5745 error = 0;
5746 }
5747 if (mddev->kobj.sd &&
5748 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5749 pr_debug("pointless warning\n");
5750 abort:
5751 mutex_unlock(&disks_mutex);
5752 if (!error && mddev->kobj.sd) {
5753 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5754 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5755 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level");
5756 }
5757 mddev_put(mddev);
5758 return error;
5759 }
5760
md_probe(dev_t dev,int * part,void * data)5761 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5762 {
5763 if (create_on_open)
5764 md_alloc(dev, NULL);
5765 return NULL;
5766 }
5767
add_named_array(const char * val,const struct kernel_param * kp)5768 static int add_named_array(const char *val, const struct kernel_param *kp)
5769 {
5770 /*
5771 * val must be "md_*" or "mdNNN".
5772 * For "md_*" we allocate an array with a large free minor number, and
5773 * set the name to val. val must not already be an active name.
5774 * For "mdNNN" we allocate an array with the minor number NNN
5775 * which must not already be in use.
5776 */
5777 int len = strlen(val);
5778 char buf[DISK_NAME_LEN];
5779 unsigned long devnum;
5780
5781 while (len && val[len-1] == '\n')
5782 len--;
5783 if (len >= DISK_NAME_LEN)
5784 return -E2BIG;
5785 strlcpy(buf, val, len+1);
5786 if (strncmp(buf, "md_", 3) == 0)
5787 return md_alloc(0, buf);
5788 if (strncmp(buf, "md", 2) == 0 &&
5789 isdigit(buf[2]) &&
5790 kstrtoul(buf+2, 10, &devnum) == 0 &&
5791 devnum <= MINORMASK)
5792 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL);
5793
5794 return -EINVAL;
5795 }
5796
md_safemode_timeout(struct timer_list * t)5797 static void md_safemode_timeout(struct timer_list *t)
5798 {
5799 struct mddev *mddev = from_timer(mddev, t, safemode_timer);
5800
5801 mddev->safemode = 1;
5802 if (mddev->external)
5803 sysfs_notify_dirent_safe(mddev->sysfs_state);
5804
5805 md_wakeup_thread(mddev->thread);
5806 }
5807
5808 static int start_dirty_degraded;
5809
md_run(struct mddev * mddev)5810 int md_run(struct mddev *mddev)
5811 {
5812 int err;
5813 struct md_rdev *rdev;
5814 struct md_personality *pers;
5815
5816 if (list_empty(&mddev->disks))
5817 /* cannot run an array with no devices.. */
5818 return -EINVAL;
5819
5820 if (mddev->pers)
5821 return -EBUSY;
5822 /* Cannot run until previous stop completes properly */
5823 if (mddev->sysfs_active)
5824 return -EBUSY;
5825
5826 /*
5827 * Analyze all RAID superblock(s)
5828 */
5829 if (!mddev->raid_disks) {
5830 if (!mddev->persistent)
5831 return -EINVAL;
5832 err = analyze_sbs(mddev);
5833 if (err)
5834 return -EINVAL;
5835 }
5836
5837 if (mddev->level != LEVEL_NONE)
5838 request_module("md-level-%d", mddev->level);
5839 else if (mddev->clevel[0])
5840 request_module("md-%s", mddev->clevel);
5841
5842 /*
5843 * Drop all container device buffers, from now on
5844 * the only valid external interface is through the md
5845 * device.
5846 */
5847 mddev->has_superblocks = false;
5848 rdev_for_each(rdev, mddev) {
5849 if (test_bit(Faulty, &rdev->flags))
5850 continue;
5851 sync_blockdev(rdev->bdev);
5852 invalidate_bdev(rdev->bdev);
5853 if (mddev->ro != 1 &&
5854 (bdev_read_only(rdev->bdev) ||
5855 bdev_read_only(rdev->meta_bdev))) {
5856 mddev->ro = 1;
5857 if (mddev->gendisk)
5858 set_disk_ro(mddev->gendisk, 1);
5859 }
5860
5861 if (rdev->sb_page)
5862 mddev->has_superblocks = true;
5863
5864 /* perform some consistency tests on the device.
5865 * We don't want the data to overlap the metadata,
5866 * Internal Bitmap issues have been handled elsewhere.
5867 */
5868 if (rdev->meta_bdev) {
5869 /* Nothing to check */;
5870 } else if (rdev->data_offset < rdev->sb_start) {
5871 if (mddev->dev_sectors &&
5872 rdev->data_offset + mddev->dev_sectors
5873 > rdev->sb_start) {
5874 pr_warn("md: %s: data overlaps metadata\n",
5875 mdname(mddev));
5876 return -EINVAL;
5877 }
5878 } else {
5879 if (rdev->sb_start + rdev->sb_size/512
5880 > rdev->data_offset) {
5881 pr_warn("md: %s: metadata overlaps data\n",
5882 mdname(mddev));
5883 return -EINVAL;
5884 }
5885 }
5886 sysfs_notify_dirent_safe(rdev->sysfs_state);
5887 }
5888
5889 if (!bioset_initialized(&mddev->bio_set)) {
5890 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5891 if (err)
5892 return err;
5893 }
5894 if (!bioset_initialized(&mddev->sync_set)) {
5895 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5896 if (err)
5897 return err;
5898 }
5899
5900 spin_lock(&pers_lock);
5901 pers = find_pers(mddev->level, mddev->clevel);
5902 if (!pers || !try_module_get(pers->owner)) {
5903 spin_unlock(&pers_lock);
5904 if (mddev->level != LEVEL_NONE)
5905 pr_warn("md: personality for level %d is not loaded!\n",
5906 mddev->level);
5907 else
5908 pr_warn("md: personality for level %s is not loaded!\n",
5909 mddev->clevel);
5910 err = -EINVAL;
5911 goto abort;
5912 }
5913 spin_unlock(&pers_lock);
5914 if (mddev->level != pers->level) {
5915 mddev->level = pers->level;
5916 mddev->new_level = pers->level;
5917 }
5918 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5919
5920 if (mddev->reshape_position != MaxSector &&
5921 pers->start_reshape == NULL) {
5922 /* This personality cannot handle reshaping... */
5923 module_put(pers->owner);
5924 err = -EINVAL;
5925 goto abort;
5926 }
5927
5928 if (pers->sync_request) {
5929 /* Warn if this is a potentially silly
5930 * configuration.
5931 */
5932 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5933 struct md_rdev *rdev2;
5934 int warned = 0;
5935
5936 rdev_for_each(rdev, mddev)
5937 rdev_for_each(rdev2, mddev) {
5938 if (rdev < rdev2 &&
5939 rdev->bdev->bd_disk ==
5940 rdev2->bdev->bd_disk) {
5941 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n",
5942 mdname(mddev),
5943 bdevname(rdev->bdev,b),
5944 bdevname(rdev2->bdev,b2));
5945 warned = 1;
5946 }
5947 }
5948
5949 if (warned)
5950 pr_warn("True protection against single-disk failure might be compromised.\n");
5951 }
5952
5953 mddev->recovery = 0;
5954 /* may be over-ridden by personality */
5955 mddev->resync_max_sectors = mddev->dev_sectors;
5956
5957 mddev->ok_start_degraded = start_dirty_degraded;
5958
5959 if (start_readonly && mddev->ro == 0)
5960 mddev->ro = 2; /* read-only, but switch on first write */
5961
5962 err = pers->run(mddev);
5963 if (err)
5964 pr_warn("md: pers->run() failed ...\n");
5965 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5966 WARN_ONCE(!mddev->external_size,
5967 "%s: default size too small, but 'external_size' not in effect?\n",
5968 __func__);
5969 pr_warn("md: invalid array_size %llu > default size %llu\n",
5970 (unsigned long long)mddev->array_sectors / 2,
5971 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5972 err = -EINVAL;
5973 }
5974 if (err == 0 && pers->sync_request &&
5975 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5976 struct bitmap *bitmap;
5977
5978 bitmap = md_bitmap_create(mddev, -1);
5979 if (IS_ERR(bitmap)) {
5980 err = PTR_ERR(bitmap);
5981 pr_warn("%s: failed to create bitmap (%d)\n",
5982 mdname(mddev), err);
5983 } else
5984 mddev->bitmap = bitmap;
5985
5986 }
5987 if (err)
5988 goto bitmap_abort;
5989
5990 if (mddev->bitmap_info.max_write_behind > 0) {
5991 bool create_pool = false;
5992
5993 rdev_for_each(rdev, mddev) {
5994 if (test_bit(WriteMostly, &rdev->flags) &&
5995 rdev_init_serial(rdev))
5996 create_pool = true;
5997 }
5998 if (create_pool && mddev->serial_info_pool == NULL) {
5999 mddev->serial_info_pool =
6000 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
6001 sizeof(struct serial_info));
6002 if (!mddev->serial_info_pool) {
6003 err = -ENOMEM;
6004 goto bitmap_abort;
6005 }
6006 }
6007 }
6008
6009 if (mddev->queue) {
6010 bool nonrot = true;
6011
6012 rdev_for_each(rdev, mddev) {
6013 if (rdev->raid_disk >= 0 &&
6014 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6015 nonrot = false;
6016 break;
6017 }
6018 }
6019 if (mddev->degraded)
6020 nonrot = false;
6021 if (nonrot)
6022 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
6023 else
6024 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
6025 }
6026 if (pers->sync_request) {
6027 if (mddev->kobj.sd &&
6028 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
6029 pr_warn("md: cannot register extra attributes for %s\n",
6030 mdname(mddev));
6031 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
6032 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
6033 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
6034 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
6035 mddev->ro = 0;
6036
6037 atomic_set(&mddev->max_corr_read_errors,
6038 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
6039 mddev->safemode = 0;
6040 if (mddev_is_clustered(mddev))
6041 mddev->safemode_delay = 0;
6042 else
6043 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
6044 mddev->in_sync = 1;
6045 smp_wmb();
6046 spin_lock(&mddev->lock);
6047 mddev->pers = pers;
6048 spin_unlock(&mddev->lock);
6049 rdev_for_each(rdev, mddev)
6050 if (rdev->raid_disk >= 0)
6051 sysfs_link_rdev(mddev, rdev); /* failure here is OK */
6052
6053 if (mddev->degraded && !mddev->ro)
6054 /* This ensures that recovering status is reported immediately
6055 * via sysfs - until a lack of spares is confirmed.
6056 */
6057 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6058 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6059
6060 if (mddev->sb_flags)
6061 md_update_sb(mddev, 0);
6062
6063 md_new_event(mddev);
6064 return 0;
6065
6066 bitmap_abort:
6067 mddev_detach(mddev);
6068 if (mddev->private)
6069 pers->free(mddev, mddev->private);
6070 mddev->private = NULL;
6071 module_put(pers->owner);
6072 md_bitmap_destroy(mddev);
6073 abort:
6074 bioset_exit(&mddev->bio_set);
6075 bioset_exit(&mddev->sync_set);
6076 return err;
6077 }
6078 EXPORT_SYMBOL_GPL(md_run);
6079
do_md_run(struct mddev * mddev)6080 int do_md_run(struct mddev *mddev)
6081 {
6082 int err;
6083
6084 set_bit(MD_NOT_READY, &mddev->flags);
6085 err = md_run(mddev);
6086 if (err)
6087 goto out;
6088 err = md_bitmap_load(mddev);
6089 if (err) {
6090 md_bitmap_destroy(mddev);
6091 goto out;
6092 }
6093
6094 if (mddev_is_clustered(mddev))
6095 md_allow_write(mddev);
6096
6097 /* run start up tasks that require md_thread */
6098 md_start(mddev);
6099
6100 md_wakeup_thread(mddev->thread);
6101 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
6102
6103 set_capacity(mddev->gendisk, mddev->array_sectors);
6104 revalidate_disk_size(mddev->gendisk, true);
6105 clear_bit(MD_NOT_READY, &mddev->flags);
6106 mddev->changed = 1;
6107 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
6108 sysfs_notify_dirent_safe(mddev->sysfs_state);
6109 sysfs_notify_dirent_safe(mddev->sysfs_action);
6110 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
6111 out:
6112 clear_bit(MD_NOT_READY, &mddev->flags);
6113 return err;
6114 }
6115
md_start(struct mddev * mddev)6116 int md_start(struct mddev *mddev)
6117 {
6118 int ret = 0;
6119
6120 if (mddev->pers->start) {
6121 set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6122 md_wakeup_thread(mddev->thread);
6123 ret = mddev->pers->start(mddev);
6124 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6125 md_wakeup_thread(mddev->sync_thread);
6126 }
6127 return ret;
6128 }
6129 EXPORT_SYMBOL_GPL(md_start);
6130
restart_array(struct mddev * mddev)6131 static int restart_array(struct mddev *mddev)
6132 {
6133 struct gendisk *disk = mddev->gendisk;
6134 struct md_rdev *rdev;
6135 bool has_journal = false;
6136 bool has_readonly = false;
6137
6138 /* Complain if it has no devices */
6139 if (list_empty(&mddev->disks))
6140 return -ENXIO;
6141 if (!mddev->pers)
6142 return -EINVAL;
6143 if (!mddev->ro)
6144 return -EBUSY;
6145
6146 rcu_read_lock();
6147 rdev_for_each_rcu(rdev, mddev) {
6148 if (test_bit(Journal, &rdev->flags) &&
6149 !test_bit(Faulty, &rdev->flags))
6150 has_journal = true;
6151 if (bdev_read_only(rdev->bdev))
6152 has_readonly = true;
6153 }
6154 rcu_read_unlock();
6155 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
6156 /* Don't restart rw with journal missing/faulty */
6157 return -EINVAL;
6158 if (has_readonly)
6159 return -EROFS;
6160
6161 mddev->safemode = 0;
6162 mddev->ro = 0;
6163 set_disk_ro(disk, 0);
6164 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
6165 /* Kick recovery or resync if necessary */
6166 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6167 md_wakeup_thread(mddev->thread);
6168 md_wakeup_thread(mddev->sync_thread);
6169 sysfs_notify_dirent_safe(mddev->sysfs_state);
6170 return 0;
6171 }
6172
md_clean(struct mddev * mddev)6173 static void md_clean(struct mddev *mddev)
6174 {
6175 mddev->array_sectors = 0;
6176 mddev->external_size = 0;
6177 mddev->dev_sectors = 0;
6178 mddev->raid_disks = 0;
6179 mddev->recovery_cp = 0;
6180 mddev->resync_min = 0;
6181 mddev->resync_max = MaxSector;
6182 mddev->reshape_position = MaxSector;
6183 mddev->external = 0;
6184 mddev->persistent = 0;
6185 mddev->level = LEVEL_NONE;
6186 mddev->clevel[0] = 0;
6187 mddev->flags = 0;
6188 mddev->sb_flags = 0;
6189 mddev->ro = 0;
6190 mddev->metadata_type[0] = 0;
6191 mddev->chunk_sectors = 0;
6192 mddev->ctime = mddev->utime = 0;
6193 mddev->layout = 0;
6194 mddev->max_disks = 0;
6195 mddev->events = 0;
6196 mddev->can_decrease_events = 0;
6197 mddev->delta_disks = 0;
6198 mddev->reshape_backwards = 0;
6199 mddev->new_level = LEVEL_NONE;
6200 mddev->new_layout = 0;
6201 mddev->new_chunk_sectors = 0;
6202 mddev->curr_resync = 0;
6203 atomic64_set(&mddev->resync_mismatches, 0);
6204 mddev->suspend_lo = mddev->suspend_hi = 0;
6205 mddev->sync_speed_min = mddev->sync_speed_max = 0;
6206 mddev->recovery = 0;
6207 mddev->in_sync = 0;
6208 mddev->changed = 0;
6209 mddev->degraded = 0;
6210 mddev->safemode = 0;
6211 mddev->private = NULL;
6212 mddev->cluster_info = NULL;
6213 mddev->bitmap_info.offset = 0;
6214 mddev->bitmap_info.default_offset = 0;
6215 mddev->bitmap_info.default_space = 0;
6216 mddev->bitmap_info.chunksize = 0;
6217 mddev->bitmap_info.daemon_sleep = 0;
6218 mddev->bitmap_info.max_write_behind = 0;
6219 mddev->bitmap_info.nodes = 0;
6220 }
6221
__md_stop_writes(struct mddev * mddev)6222 static void __md_stop_writes(struct mddev *mddev)
6223 {
6224 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6225 if (work_pending(&mddev->del_work))
6226 flush_workqueue(md_misc_wq);
6227 if (mddev->sync_thread) {
6228 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6229 md_reap_sync_thread(mddev);
6230 }
6231
6232 del_timer_sync(&mddev->safemode_timer);
6233
6234 if (mddev->pers && mddev->pers->quiesce) {
6235 mddev->pers->quiesce(mddev, 1);
6236 mddev->pers->quiesce(mddev, 0);
6237 }
6238 md_bitmap_flush(mddev);
6239
6240 if (mddev->ro == 0 &&
6241 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
6242 mddev->sb_flags)) {
6243 /* mark array as shutdown cleanly */
6244 if (!mddev_is_clustered(mddev))
6245 mddev->in_sync = 1;
6246 md_update_sb(mddev, 1);
6247 }
6248 /* disable policy to guarantee rdevs free resources for serialization */
6249 mddev->serialize_policy = 0;
6250 mddev_destroy_serial_pool(mddev, NULL, true);
6251 }
6252
md_stop_writes(struct mddev * mddev)6253 void md_stop_writes(struct mddev *mddev)
6254 {
6255 mddev_lock_nointr(mddev);
6256 __md_stop_writes(mddev);
6257 mddev_unlock(mddev);
6258 }
6259 EXPORT_SYMBOL_GPL(md_stop_writes);
6260
mddev_detach(struct mddev * mddev)6261 static void mddev_detach(struct mddev *mddev)
6262 {
6263 md_bitmap_wait_behind_writes(mddev);
6264 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) {
6265 mddev->pers->quiesce(mddev, 1);
6266 mddev->pers->quiesce(mddev, 0);
6267 }
6268 md_unregister_thread(&mddev->thread);
6269 if (mddev->queue)
6270 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
6271 }
6272
__md_stop(struct mddev * mddev)6273 static void __md_stop(struct mddev *mddev)
6274 {
6275 struct md_personality *pers = mddev->pers;
6276 md_bitmap_destroy(mddev);
6277 mddev_detach(mddev);
6278 /* Ensure ->event_work is done */
6279 if (mddev->event_work.func)
6280 flush_workqueue(md_misc_wq);
6281 spin_lock(&mddev->lock);
6282 mddev->pers = NULL;
6283 spin_unlock(&mddev->lock);
6284 pers->free(mddev, mddev->private);
6285 mddev->private = NULL;
6286 if (pers->sync_request && mddev->to_remove == NULL)
6287 mddev->to_remove = &md_redundancy_group;
6288 module_put(pers->owner);
6289 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6290 }
6291
md_stop(struct mddev * mddev)6292 void md_stop(struct mddev *mddev)
6293 {
6294 /* stop the array and free an attached data structures.
6295 * This is called from dm-raid
6296 */
6297 __md_stop_writes(mddev);
6298 __md_stop(mddev);
6299 bioset_exit(&mddev->bio_set);
6300 bioset_exit(&mddev->sync_set);
6301 }
6302
6303 EXPORT_SYMBOL_GPL(md_stop);
6304
md_set_readonly(struct mddev * mddev,struct block_device * bdev)6305 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
6306 {
6307 int err = 0;
6308 int did_freeze = 0;
6309
6310 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6311 did_freeze = 1;
6312 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6313 md_wakeup_thread(mddev->thread);
6314 }
6315 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6316 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6317 if (mddev->sync_thread)
6318 /* Thread might be blocked waiting for metadata update
6319 * which will now never happen */
6320 wake_up_process(mddev->sync_thread->tsk);
6321
6322 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6323 return -EBUSY;
6324 mddev_unlock(mddev);
6325 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
6326 &mddev->recovery));
6327 wait_event(mddev->sb_wait,
6328 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
6329 mddev_lock_nointr(mddev);
6330
6331 mutex_lock(&mddev->open_mutex);
6332 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6333 mddev->sync_thread ||
6334 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6335 pr_warn("md: %s still in use.\n",mdname(mddev));
6336 if (did_freeze) {
6337 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6338 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6339 md_wakeup_thread(mddev->thread);
6340 }
6341 err = -EBUSY;
6342 goto out;
6343 }
6344 if (mddev->pers) {
6345 __md_stop_writes(mddev);
6346
6347 err = -ENXIO;
6348 if (mddev->ro==1)
6349 goto out;
6350 mddev->ro = 1;
6351 set_disk_ro(mddev->gendisk, 1);
6352 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6353 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6354 md_wakeup_thread(mddev->thread);
6355 sysfs_notify_dirent_safe(mddev->sysfs_state);
6356 err = 0;
6357 }
6358 out:
6359 mutex_unlock(&mddev->open_mutex);
6360 return err;
6361 }
6362
6363 /* mode:
6364 * 0 - completely stop and dis-assemble array
6365 * 2 - stop but do not disassemble array
6366 */
do_md_stop(struct mddev * mddev,int mode,struct block_device * bdev)6367 static int do_md_stop(struct mddev *mddev, int mode,
6368 struct block_device *bdev)
6369 {
6370 struct gendisk *disk = mddev->gendisk;
6371 struct md_rdev *rdev;
6372 int did_freeze = 0;
6373
6374 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6375 did_freeze = 1;
6376 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6377 md_wakeup_thread(mddev->thread);
6378 }
6379 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6380 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6381 if (mddev->sync_thread)
6382 /* Thread might be blocked waiting for metadata update
6383 * which will now never happen */
6384 wake_up_process(mddev->sync_thread->tsk);
6385
6386 mddev_unlock(mddev);
6387 wait_event(resync_wait, (mddev->sync_thread == NULL &&
6388 !test_bit(MD_RECOVERY_RUNNING,
6389 &mddev->recovery)));
6390 mddev_lock_nointr(mddev);
6391
6392 mutex_lock(&mddev->open_mutex);
6393 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6394 mddev->sysfs_active ||
6395 mddev->sync_thread ||
6396 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6397 pr_warn("md: %s still in use.\n",mdname(mddev));
6398 mutex_unlock(&mddev->open_mutex);
6399 if (did_freeze) {
6400 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6401 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6402 md_wakeup_thread(mddev->thread);
6403 }
6404 return -EBUSY;
6405 }
6406 if (mddev->pers) {
6407 if (mddev->ro)
6408 set_disk_ro(disk, 0);
6409
6410 __md_stop_writes(mddev);
6411 __md_stop(mddev);
6412
6413 /* tell userspace to handle 'inactive' */
6414 sysfs_notify_dirent_safe(mddev->sysfs_state);
6415
6416 rdev_for_each(rdev, mddev)
6417 if (rdev->raid_disk >= 0)
6418 sysfs_unlink_rdev(mddev, rdev);
6419
6420 set_capacity(disk, 0);
6421 mutex_unlock(&mddev->open_mutex);
6422 mddev->changed = 1;
6423 revalidate_disk_size(disk, true);
6424
6425 if (mddev->ro)
6426 mddev->ro = 0;
6427 } else
6428 mutex_unlock(&mddev->open_mutex);
6429 /*
6430 * Free resources if final stop
6431 */
6432 if (mode == 0) {
6433 pr_info("md: %s stopped.\n", mdname(mddev));
6434
6435 if (mddev->bitmap_info.file) {
6436 struct file *f = mddev->bitmap_info.file;
6437 spin_lock(&mddev->lock);
6438 mddev->bitmap_info.file = NULL;
6439 spin_unlock(&mddev->lock);
6440 fput(f);
6441 }
6442 mddev->bitmap_info.offset = 0;
6443
6444 export_array(mddev);
6445
6446 md_clean(mddev);
6447 if (mddev->hold_active == UNTIL_STOP)
6448 mddev->hold_active = 0;
6449 }
6450 md_new_event(mddev);
6451 sysfs_notify_dirent_safe(mddev->sysfs_state);
6452 return 0;
6453 }
6454
6455 #ifndef MODULE
autorun_array(struct mddev * mddev)6456 static void autorun_array(struct mddev *mddev)
6457 {
6458 struct md_rdev *rdev;
6459 int err;
6460
6461 if (list_empty(&mddev->disks))
6462 return;
6463
6464 pr_info("md: running: ");
6465
6466 rdev_for_each(rdev, mddev) {
6467 char b[BDEVNAME_SIZE];
6468 pr_cont("<%s>", bdevname(rdev->bdev,b));
6469 }
6470 pr_cont("\n");
6471
6472 err = do_md_run(mddev);
6473 if (err) {
6474 pr_warn("md: do_md_run() returned %d\n", err);
6475 do_md_stop(mddev, 0, NULL);
6476 }
6477 }
6478
6479 /*
6480 * lets try to run arrays based on all disks that have arrived
6481 * until now. (those are in pending_raid_disks)
6482 *
6483 * the method: pick the first pending disk, collect all disks with
6484 * the same UUID, remove all from the pending list and put them into
6485 * the 'same_array' list. Then order this list based on superblock
6486 * update time (freshest comes first), kick out 'old' disks and
6487 * compare superblocks. If everything's fine then run it.
6488 *
6489 * If "unit" is allocated, then bump its reference count
6490 */
autorun_devices(int part)6491 static void autorun_devices(int part)
6492 {
6493 struct md_rdev *rdev0, *rdev, *tmp;
6494 struct mddev *mddev;
6495 char b[BDEVNAME_SIZE];
6496
6497 pr_info("md: autorun ...\n");
6498 while (!list_empty(&pending_raid_disks)) {
6499 int unit;
6500 dev_t dev;
6501 LIST_HEAD(candidates);
6502 rdev0 = list_entry(pending_raid_disks.next,
6503 struct md_rdev, same_set);
6504
6505 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b));
6506 INIT_LIST_HEAD(&candidates);
6507 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6508 if (super_90_load(rdev, rdev0, 0) >= 0) {
6509 pr_debug("md: adding %s ...\n",
6510 bdevname(rdev->bdev,b));
6511 list_move(&rdev->same_set, &candidates);
6512 }
6513 /*
6514 * now we have a set of devices, with all of them having
6515 * mostly sane superblocks. It's time to allocate the
6516 * mddev.
6517 */
6518 if (part) {
6519 dev = MKDEV(mdp_major,
6520 rdev0->preferred_minor << MdpMinorShift);
6521 unit = MINOR(dev) >> MdpMinorShift;
6522 } else {
6523 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6524 unit = MINOR(dev);
6525 }
6526 if (rdev0->preferred_minor != unit) {
6527 pr_warn("md: unit number in %s is bad: %d\n",
6528 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
6529 break;
6530 }
6531
6532 md_probe(dev, NULL, NULL);
6533 mddev = mddev_find(dev);
6534 if (!mddev)
6535 break;
6536
6537 if (mddev_lock(mddev))
6538 pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6539 else if (mddev->raid_disks || mddev->major_version
6540 || !list_empty(&mddev->disks)) {
6541 pr_warn("md: %s already running, cannot run %s\n",
6542 mdname(mddev), bdevname(rdev0->bdev,b));
6543 mddev_unlock(mddev);
6544 } else {
6545 pr_debug("md: created %s\n", mdname(mddev));
6546 mddev->persistent = 1;
6547 rdev_for_each_list(rdev, tmp, &candidates) {
6548 list_del_init(&rdev->same_set);
6549 if (bind_rdev_to_array(rdev, mddev))
6550 export_rdev(rdev);
6551 }
6552 autorun_array(mddev);
6553 mddev_unlock(mddev);
6554 }
6555 /* on success, candidates will be empty, on error
6556 * it won't...
6557 */
6558 rdev_for_each_list(rdev, tmp, &candidates) {
6559 list_del_init(&rdev->same_set);
6560 export_rdev(rdev);
6561 }
6562 mddev_put(mddev);
6563 }
6564 pr_info("md: ... autorun DONE.\n");
6565 }
6566 #endif /* !MODULE */
6567
get_version(void __user * arg)6568 static int get_version(void __user *arg)
6569 {
6570 mdu_version_t ver;
6571
6572 ver.major = MD_MAJOR_VERSION;
6573 ver.minor = MD_MINOR_VERSION;
6574 ver.patchlevel = MD_PATCHLEVEL_VERSION;
6575
6576 if (copy_to_user(arg, &ver, sizeof(ver)))
6577 return -EFAULT;
6578
6579 return 0;
6580 }
6581
get_array_info(struct mddev * mddev,void __user * arg)6582 static int get_array_info(struct mddev *mddev, void __user *arg)
6583 {
6584 mdu_array_info_t info;
6585 int nr,working,insync,failed,spare;
6586 struct md_rdev *rdev;
6587
6588 nr = working = insync = failed = spare = 0;
6589 rcu_read_lock();
6590 rdev_for_each_rcu(rdev, mddev) {
6591 nr++;
6592 if (test_bit(Faulty, &rdev->flags))
6593 failed++;
6594 else {
6595 working++;
6596 if (test_bit(In_sync, &rdev->flags))
6597 insync++;
6598 else if (test_bit(Journal, &rdev->flags))
6599 /* TODO: add journal count to md_u.h */
6600 ;
6601 else
6602 spare++;
6603 }
6604 }
6605 rcu_read_unlock();
6606
6607 info.major_version = mddev->major_version;
6608 info.minor_version = mddev->minor_version;
6609 info.patch_version = MD_PATCHLEVEL_VERSION;
6610 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6611 info.level = mddev->level;
6612 info.size = mddev->dev_sectors / 2;
6613 if (info.size != mddev->dev_sectors / 2) /* overflow */
6614 info.size = -1;
6615 info.nr_disks = nr;
6616 info.raid_disks = mddev->raid_disks;
6617 info.md_minor = mddev->md_minor;
6618 info.not_persistent= !mddev->persistent;
6619
6620 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6621 info.state = 0;
6622 if (mddev->in_sync)
6623 info.state = (1<<MD_SB_CLEAN);
6624 if (mddev->bitmap && mddev->bitmap_info.offset)
6625 info.state |= (1<<MD_SB_BITMAP_PRESENT);
6626 if (mddev_is_clustered(mddev))
6627 info.state |= (1<<MD_SB_CLUSTERED);
6628 info.active_disks = insync;
6629 info.working_disks = working;
6630 info.failed_disks = failed;
6631 info.spare_disks = spare;
6632
6633 info.layout = mddev->layout;
6634 info.chunk_size = mddev->chunk_sectors << 9;
6635
6636 if (copy_to_user(arg, &info, sizeof(info)))
6637 return -EFAULT;
6638
6639 return 0;
6640 }
6641
get_bitmap_file(struct mddev * mddev,void __user * arg)6642 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6643 {
6644 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6645 char *ptr;
6646 int err;
6647
6648 file = kzalloc(sizeof(*file), GFP_NOIO);
6649 if (!file)
6650 return -ENOMEM;
6651
6652 err = 0;
6653 spin_lock(&mddev->lock);
6654 /* bitmap enabled */
6655 if (mddev->bitmap_info.file) {
6656 ptr = file_path(mddev->bitmap_info.file, file->pathname,
6657 sizeof(file->pathname));
6658 if (IS_ERR(ptr))
6659 err = PTR_ERR(ptr);
6660 else
6661 memmove(file->pathname, ptr,
6662 sizeof(file->pathname)-(ptr-file->pathname));
6663 }
6664 spin_unlock(&mddev->lock);
6665
6666 if (err == 0 &&
6667 copy_to_user(arg, file, sizeof(*file)))
6668 err = -EFAULT;
6669
6670 kfree(file);
6671 return err;
6672 }
6673
get_disk_info(struct mddev * mddev,void __user * arg)6674 static int get_disk_info(struct mddev *mddev, void __user * arg)
6675 {
6676 mdu_disk_info_t info;
6677 struct md_rdev *rdev;
6678
6679 if (copy_from_user(&info, arg, sizeof(info)))
6680 return -EFAULT;
6681
6682 rcu_read_lock();
6683 rdev = md_find_rdev_nr_rcu(mddev, info.number);
6684 if (rdev) {
6685 info.major = MAJOR(rdev->bdev->bd_dev);
6686 info.minor = MINOR(rdev->bdev->bd_dev);
6687 info.raid_disk = rdev->raid_disk;
6688 info.state = 0;
6689 if (test_bit(Faulty, &rdev->flags))
6690 info.state |= (1<<MD_DISK_FAULTY);
6691 else if (test_bit(In_sync, &rdev->flags)) {
6692 info.state |= (1<<MD_DISK_ACTIVE);
6693 info.state |= (1<<MD_DISK_SYNC);
6694 }
6695 if (test_bit(Journal, &rdev->flags))
6696 info.state |= (1<<MD_DISK_JOURNAL);
6697 if (test_bit(WriteMostly, &rdev->flags))
6698 info.state |= (1<<MD_DISK_WRITEMOSTLY);
6699 if (test_bit(FailFast, &rdev->flags))
6700 info.state |= (1<<MD_DISK_FAILFAST);
6701 } else {
6702 info.major = info.minor = 0;
6703 info.raid_disk = -1;
6704 info.state = (1<<MD_DISK_REMOVED);
6705 }
6706 rcu_read_unlock();
6707
6708 if (copy_to_user(arg, &info, sizeof(info)))
6709 return -EFAULT;
6710
6711 return 0;
6712 }
6713
md_add_new_disk(struct mddev * mddev,struct mdu_disk_info_s * info)6714 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info)
6715 {
6716 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
6717 struct md_rdev *rdev;
6718 dev_t dev = MKDEV(info->major,info->minor);
6719
6720 if (mddev_is_clustered(mddev) &&
6721 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6722 pr_warn("%s: Cannot add to clustered mddev.\n",
6723 mdname(mddev));
6724 return -EINVAL;
6725 }
6726
6727 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6728 return -EOVERFLOW;
6729
6730 if (!mddev->raid_disks) {
6731 int err;
6732 /* expecting a device which has a superblock */
6733 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6734 if (IS_ERR(rdev)) {
6735 pr_warn("md: md_import_device returned %ld\n",
6736 PTR_ERR(rdev));
6737 return PTR_ERR(rdev);
6738 }
6739 if (!list_empty(&mddev->disks)) {
6740 struct md_rdev *rdev0
6741 = list_entry(mddev->disks.next,
6742 struct md_rdev, same_set);
6743 err = super_types[mddev->major_version]
6744 .load_super(rdev, rdev0, mddev->minor_version);
6745 if (err < 0) {
6746 pr_warn("md: %s has different UUID to %s\n",
6747 bdevname(rdev->bdev,b),
6748 bdevname(rdev0->bdev,b2));
6749 export_rdev(rdev);
6750 return -EINVAL;
6751 }
6752 }
6753 err = bind_rdev_to_array(rdev, mddev);
6754 if (err)
6755 export_rdev(rdev);
6756 return err;
6757 }
6758
6759 /*
6760 * md_add_new_disk can be used once the array is assembled
6761 * to add "hot spares". They must already have a superblock
6762 * written
6763 */
6764 if (mddev->pers) {
6765 int err;
6766 if (!mddev->pers->hot_add_disk) {
6767 pr_warn("%s: personality does not support diskops!\n",
6768 mdname(mddev));
6769 return -EINVAL;
6770 }
6771 if (mddev->persistent)
6772 rdev = md_import_device(dev, mddev->major_version,
6773 mddev->minor_version);
6774 else
6775 rdev = md_import_device(dev, -1, -1);
6776 if (IS_ERR(rdev)) {
6777 pr_warn("md: md_import_device returned %ld\n",
6778 PTR_ERR(rdev));
6779 return PTR_ERR(rdev);
6780 }
6781 /* set saved_raid_disk if appropriate */
6782 if (!mddev->persistent) {
6783 if (info->state & (1<<MD_DISK_SYNC) &&
6784 info->raid_disk < mddev->raid_disks) {
6785 rdev->raid_disk = info->raid_disk;
6786 set_bit(In_sync, &rdev->flags);
6787 clear_bit(Bitmap_sync, &rdev->flags);
6788 } else
6789 rdev->raid_disk = -1;
6790 rdev->saved_raid_disk = rdev->raid_disk;
6791 } else
6792 super_types[mddev->major_version].
6793 validate_super(mddev, rdev);
6794 if ((info->state & (1<<MD_DISK_SYNC)) &&
6795 rdev->raid_disk != info->raid_disk) {
6796 /* This was a hot-add request, but events doesn't
6797 * match, so reject it.
6798 */
6799 export_rdev(rdev);
6800 return -EINVAL;
6801 }
6802
6803 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6804 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6805 set_bit(WriteMostly, &rdev->flags);
6806 else
6807 clear_bit(WriteMostly, &rdev->flags);
6808 if (info->state & (1<<MD_DISK_FAILFAST))
6809 set_bit(FailFast, &rdev->flags);
6810 else
6811 clear_bit(FailFast, &rdev->flags);
6812
6813 if (info->state & (1<<MD_DISK_JOURNAL)) {
6814 struct md_rdev *rdev2;
6815 bool has_journal = false;
6816
6817 /* make sure no existing journal disk */
6818 rdev_for_each(rdev2, mddev) {
6819 if (test_bit(Journal, &rdev2->flags)) {
6820 has_journal = true;
6821 break;
6822 }
6823 }
6824 if (has_journal || mddev->bitmap) {
6825 export_rdev(rdev);
6826 return -EBUSY;
6827 }
6828 set_bit(Journal, &rdev->flags);
6829 }
6830 /*
6831 * check whether the device shows up in other nodes
6832 */
6833 if (mddev_is_clustered(mddev)) {
6834 if (info->state & (1 << MD_DISK_CANDIDATE))
6835 set_bit(Candidate, &rdev->flags);
6836 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6837 /* --add initiated by this node */
6838 err = md_cluster_ops->add_new_disk(mddev, rdev);
6839 if (err) {
6840 export_rdev(rdev);
6841 return err;
6842 }
6843 }
6844 }
6845
6846 rdev->raid_disk = -1;
6847 err = bind_rdev_to_array(rdev, mddev);
6848
6849 if (err)
6850 export_rdev(rdev);
6851
6852 if (mddev_is_clustered(mddev)) {
6853 if (info->state & (1 << MD_DISK_CANDIDATE)) {
6854 if (!err) {
6855 err = md_cluster_ops->new_disk_ack(mddev,
6856 err == 0);
6857 if (err)
6858 md_kick_rdev_from_array(rdev);
6859 }
6860 } else {
6861 if (err)
6862 md_cluster_ops->add_new_disk_cancel(mddev);
6863 else
6864 err = add_bound_rdev(rdev);
6865 }
6866
6867 } else if (!err)
6868 err = add_bound_rdev(rdev);
6869
6870 return err;
6871 }
6872
6873 /* otherwise, md_add_new_disk is only allowed
6874 * for major_version==0 superblocks
6875 */
6876 if (mddev->major_version != 0) {
6877 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6878 return -EINVAL;
6879 }
6880
6881 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6882 int err;
6883 rdev = md_import_device(dev, -1, 0);
6884 if (IS_ERR(rdev)) {
6885 pr_warn("md: error, md_import_device() returned %ld\n",
6886 PTR_ERR(rdev));
6887 return PTR_ERR(rdev);
6888 }
6889 rdev->desc_nr = info->number;
6890 if (info->raid_disk < mddev->raid_disks)
6891 rdev->raid_disk = info->raid_disk;
6892 else
6893 rdev->raid_disk = -1;
6894
6895 if (rdev->raid_disk < mddev->raid_disks)
6896 if (info->state & (1<<MD_DISK_SYNC))
6897 set_bit(In_sync, &rdev->flags);
6898
6899 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6900 set_bit(WriteMostly, &rdev->flags);
6901 if (info->state & (1<<MD_DISK_FAILFAST))
6902 set_bit(FailFast, &rdev->flags);
6903
6904 if (!mddev->persistent) {
6905 pr_debug("md: nonpersistent superblock ...\n");
6906 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6907 } else
6908 rdev->sb_start = calc_dev_sboffset(rdev);
6909 rdev->sectors = rdev->sb_start;
6910
6911 err = bind_rdev_to_array(rdev, mddev);
6912 if (err) {
6913 export_rdev(rdev);
6914 return err;
6915 }
6916 }
6917
6918 return 0;
6919 }
6920
hot_remove_disk(struct mddev * mddev,dev_t dev)6921 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6922 {
6923 char b[BDEVNAME_SIZE];
6924 struct md_rdev *rdev;
6925
6926 if (!mddev->pers)
6927 return -ENODEV;
6928
6929 rdev = find_rdev(mddev, dev);
6930 if (!rdev)
6931 return -ENXIO;
6932
6933 if (rdev->raid_disk < 0)
6934 goto kick_rdev;
6935
6936 clear_bit(Blocked, &rdev->flags);
6937 remove_and_add_spares(mddev, rdev);
6938
6939 if (rdev->raid_disk >= 0)
6940 goto busy;
6941
6942 kick_rdev:
6943 if (mddev_is_clustered(mddev)) {
6944 if (md_cluster_ops->remove_disk(mddev, rdev))
6945 goto busy;
6946 }
6947
6948 md_kick_rdev_from_array(rdev);
6949 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6950 if (mddev->thread)
6951 md_wakeup_thread(mddev->thread);
6952 else
6953 md_update_sb(mddev, 1);
6954 md_new_event(mddev);
6955
6956 return 0;
6957 busy:
6958 pr_debug("md: cannot remove active disk %s from %s ...\n",
6959 bdevname(rdev->bdev,b), mdname(mddev));
6960 return -EBUSY;
6961 }
6962
hot_add_disk(struct mddev * mddev,dev_t dev)6963 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6964 {
6965 char b[BDEVNAME_SIZE];
6966 int err;
6967 struct md_rdev *rdev;
6968
6969 if (!mddev->pers)
6970 return -ENODEV;
6971
6972 if (mddev->major_version != 0) {
6973 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
6974 mdname(mddev));
6975 return -EINVAL;
6976 }
6977 if (!mddev->pers->hot_add_disk) {
6978 pr_warn("%s: personality does not support diskops!\n",
6979 mdname(mddev));
6980 return -EINVAL;
6981 }
6982
6983 rdev = md_import_device(dev, -1, 0);
6984 if (IS_ERR(rdev)) {
6985 pr_warn("md: error, md_import_device() returned %ld\n",
6986 PTR_ERR(rdev));
6987 return -EINVAL;
6988 }
6989
6990 if (mddev->persistent)
6991 rdev->sb_start = calc_dev_sboffset(rdev);
6992 else
6993 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6994
6995 rdev->sectors = rdev->sb_start;
6996
6997 if (test_bit(Faulty, &rdev->flags)) {
6998 pr_warn("md: can not hot-add faulty %s disk to %s!\n",
6999 bdevname(rdev->bdev,b), mdname(mddev));
7000 err = -EINVAL;
7001 goto abort_export;
7002 }
7003
7004 clear_bit(In_sync, &rdev->flags);
7005 rdev->desc_nr = -1;
7006 rdev->saved_raid_disk = -1;
7007 err = bind_rdev_to_array(rdev, mddev);
7008 if (err)
7009 goto abort_export;
7010
7011 /*
7012 * The rest should better be atomic, we can have disk failures
7013 * noticed in interrupt contexts ...
7014 */
7015
7016 rdev->raid_disk = -1;
7017
7018 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7019 if (!mddev->thread)
7020 md_update_sb(mddev, 1);
7021 /*
7022 * Kick recovery, maybe this spare has to be added to the
7023 * array immediately.
7024 */
7025 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7026 md_wakeup_thread(mddev->thread);
7027 md_new_event(mddev);
7028 return 0;
7029
7030 abort_export:
7031 export_rdev(rdev);
7032 return err;
7033 }
7034
set_bitmap_file(struct mddev * mddev,int fd)7035 static int set_bitmap_file(struct mddev *mddev, int fd)
7036 {
7037 int err = 0;
7038
7039 if (mddev->pers) {
7040 if (!mddev->pers->quiesce || !mddev->thread)
7041 return -EBUSY;
7042 if (mddev->recovery || mddev->sync_thread)
7043 return -EBUSY;
7044 /* we should be able to change the bitmap.. */
7045 }
7046
7047 if (fd >= 0) {
7048 struct inode *inode;
7049 struct file *f;
7050
7051 if (mddev->bitmap || mddev->bitmap_info.file)
7052 return -EEXIST; /* cannot add when bitmap is present */
7053 f = fget(fd);
7054
7055 if (f == NULL) {
7056 pr_warn("%s: error: failed to get bitmap file\n",
7057 mdname(mddev));
7058 return -EBADF;
7059 }
7060
7061 inode = f->f_mapping->host;
7062 if (!S_ISREG(inode->i_mode)) {
7063 pr_warn("%s: error: bitmap file must be a regular file\n",
7064 mdname(mddev));
7065 err = -EBADF;
7066 } else if (!(f->f_mode & FMODE_WRITE)) {
7067 pr_warn("%s: error: bitmap file must open for write\n",
7068 mdname(mddev));
7069 err = -EBADF;
7070 } else if (atomic_read(&inode->i_writecount) != 1) {
7071 pr_warn("%s: error: bitmap file is already in use\n",
7072 mdname(mddev));
7073 err = -EBUSY;
7074 }
7075 if (err) {
7076 fput(f);
7077 return err;
7078 }
7079 mddev->bitmap_info.file = f;
7080 mddev->bitmap_info.offset = 0; /* file overrides offset */
7081 } else if (mddev->bitmap == NULL)
7082 return -ENOENT; /* cannot remove what isn't there */
7083 err = 0;
7084 if (mddev->pers) {
7085 if (fd >= 0) {
7086 struct bitmap *bitmap;
7087
7088 bitmap = md_bitmap_create(mddev, -1);
7089 mddev_suspend(mddev);
7090 if (!IS_ERR(bitmap)) {
7091 mddev->bitmap = bitmap;
7092 err = md_bitmap_load(mddev);
7093 } else
7094 err = PTR_ERR(bitmap);
7095 if (err) {
7096 md_bitmap_destroy(mddev);
7097 fd = -1;
7098 }
7099 mddev_resume(mddev);
7100 } else if (fd < 0) {
7101 mddev_suspend(mddev);
7102 md_bitmap_destroy(mddev);
7103 mddev_resume(mddev);
7104 }
7105 }
7106 if (fd < 0) {
7107 struct file *f = mddev->bitmap_info.file;
7108 if (f) {
7109 spin_lock(&mddev->lock);
7110 mddev->bitmap_info.file = NULL;
7111 spin_unlock(&mddev->lock);
7112 fput(f);
7113 }
7114 }
7115
7116 return err;
7117 }
7118
7119 /*
7120 * md_set_array_info is used two different ways
7121 * The original usage is when creating a new array.
7122 * In this usage, raid_disks is > 0 and it together with
7123 * level, size, not_persistent,layout,chunksize determine the
7124 * shape of the array.
7125 * This will always create an array with a type-0.90.0 superblock.
7126 * The newer usage is when assembling an array.
7127 * In this case raid_disks will be 0, and the major_version field is
7128 * use to determine which style super-blocks are to be found on the devices.
7129 * The minor and patch _version numbers are also kept incase the
7130 * super_block handler wishes to interpret them.
7131 */
md_set_array_info(struct mddev * mddev,struct mdu_array_info_s * info)7132 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info)
7133 {
7134 if (info->raid_disks == 0) {
7135 /* just setting version number for superblock loading */
7136 if (info->major_version < 0 ||
7137 info->major_version >= ARRAY_SIZE(super_types) ||
7138 super_types[info->major_version].name == NULL) {
7139 /* maybe try to auto-load a module? */
7140 pr_warn("md: superblock version %d not known\n",
7141 info->major_version);
7142 return -EINVAL;
7143 }
7144 mddev->major_version = info->major_version;
7145 mddev->minor_version = info->minor_version;
7146 mddev->patch_version = info->patch_version;
7147 mddev->persistent = !info->not_persistent;
7148 /* ensure mddev_put doesn't delete this now that there
7149 * is some minimal configuration.
7150 */
7151 mddev->ctime = ktime_get_real_seconds();
7152 return 0;
7153 }
7154 mddev->major_version = MD_MAJOR_VERSION;
7155 mddev->minor_version = MD_MINOR_VERSION;
7156 mddev->patch_version = MD_PATCHLEVEL_VERSION;
7157 mddev->ctime = ktime_get_real_seconds();
7158
7159 mddev->level = info->level;
7160 mddev->clevel[0] = 0;
7161 mddev->dev_sectors = 2 * (sector_t)info->size;
7162 mddev->raid_disks = info->raid_disks;
7163 /* don't set md_minor, it is determined by which /dev/md* was
7164 * openned
7165 */
7166 if (info->state & (1<<MD_SB_CLEAN))
7167 mddev->recovery_cp = MaxSector;
7168 else
7169 mddev->recovery_cp = 0;
7170 mddev->persistent = ! info->not_persistent;
7171 mddev->external = 0;
7172
7173 mddev->layout = info->layout;
7174 if (mddev->level == 0)
7175 /* Cannot trust RAID0 layout info here */
7176 mddev->layout = -1;
7177 mddev->chunk_sectors = info->chunk_size >> 9;
7178
7179 if (mddev->persistent) {
7180 mddev->max_disks = MD_SB_DISKS;
7181 mddev->flags = 0;
7182 mddev->sb_flags = 0;
7183 }
7184 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7185
7186 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
7187 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
7188 mddev->bitmap_info.offset = 0;
7189
7190 mddev->reshape_position = MaxSector;
7191
7192 /*
7193 * Generate a 128 bit UUID
7194 */
7195 get_random_bytes(mddev->uuid, 16);
7196
7197 mddev->new_level = mddev->level;
7198 mddev->new_chunk_sectors = mddev->chunk_sectors;
7199 mddev->new_layout = mddev->layout;
7200 mddev->delta_disks = 0;
7201 mddev->reshape_backwards = 0;
7202
7203 return 0;
7204 }
7205
md_set_array_sectors(struct mddev * mddev,sector_t array_sectors)7206 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
7207 {
7208 lockdep_assert_held(&mddev->reconfig_mutex);
7209
7210 if (mddev->external_size)
7211 return;
7212
7213 mddev->array_sectors = array_sectors;
7214 }
7215 EXPORT_SYMBOL(md_set_array_sectors);
7216
update_size(struct mddev * mddev,sector_t num_sectors)7217 static int update_size(struct mddev *mddev, sector_t num_sectors)
7218 {
7219 struct md_rdev *rdev;
7220 int rv;
7221 int fit = (num_sectors == 0);
7222 sector_t old_dev_sectors = mddev->dev_sectors;
7223
7224 if (mddev->pers->resize == NULL)
7225 return -EINVAL;
7226 /* The "num_sectors" is the number of sectors of each device that
7227 * is used. This can only make sense for arrays with redundancy.
7228 * linear and raid0 always use whatever space is available. We can only
7229 * consider changing this number if no resync or reconstruction is
7230 * happening, and if the new size is acceptable. It must fit before the
7231 * sb_start or, if that is <data_offset, it must fit before the size
7232 * of each device. If num_sectors is zero, we find the largest size
7233 * that fits.
7234 */
7235 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7236 mddev->sync_thread)
7237 return -EBUSY;
7238 if (mddev->ro)
7239 return -EROFS;
7240
7241 rdev_for_each(rdev, mddev) {
7242 sector_t avail = rdev->sectors;
7243
7244 if (fit && (num_sectors == 0 || num_sectors > avail))
7245 num_sectors = avail;
7246 if (avail < num_sectors)
7247 return -ENOSPC;
7248 }
7249 rv = mddev->pers->resize(mddev, num_sectors);
7250 if (!rv) {
7251 if (mddev_is_clustered(mddev))
7252 md_cluster_ops->update_size(mddev, old_dev_sectors);
7253 else if (mddev->queue) {
7254 set_capacity(mddev->gendisk, mddev->array_sectors);
7255 revalidate_disk_size(mddev->gendisk, true);
7256 }
7257 }
7258 return rv;
7259 }
7260
update_raid_disks(struct mddev * mddev,int raid_disks)7261 static int update_raid_disks(struct mddev *mddev, int raid_disks)
7262 {
7263 int rv;
7264 struct md_rdev *rdev;
7265 /* change the number of raid disks */
7266 if (mddev->pers->check_reshape == NULL)
7267 return -EINVAL;
7268 if (mddev->ro)
7269 return -EROFS;
7270 if (raid_disks <= 0 ||
7271 (mddev->max_disks && raid_disks >= mddev->max_disks))
7272 return -EINVAL;
7273 if (mddev->sync_thread ||
7274 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7275 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) ||
7276 mddev->reshape_position != MaxSector)
7277 return -EBUSY;
7278
7279 rdev_for_each(rdev, mddev) {
7280 if (mddev->raid_disks < raid_disks &&
7281 rdev->data_offset < rdev->new_data_offset)
7282 return -EINVAL;
7283 if (mddev->raid_disks > raid_disks &&
7284 rdev->data_offset > rdev->new_data_offset)
7285 return -EINVAL;
7286 }
7287
7288 mddev->delta_disks = raid_disks - mddev->raid_disks;
7289 if (mddev->delta_disks < 0)
7290 mddev->reshape_backwards = 1;
7291 else if (mddev->delta_disks > 0)
7292 mddev->reshape_backwards = 0;
7293
7294 rv = mddev->pers->check_reshape(mddev);
7295 if (rv < 0) {
7296 mddev->delta_disks = 0;
7297 mddev->reshape_backwards = 0;
7298 }
7299 return rv;
7300 }
7301
7302 /*
7303 * update_array_info is used to change the configuration of an
7304 * on-line array.
7305 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
7306 * fields in the info are checked against the array.
7307 * Any differences that cannot be handled will cause an error.
7308 * Normally, only one change can be managed at a time.
7309 */
update_array_info(struct mddev * mddev,mdu_array_info_t * info)7310 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
7311 {
7312 int rv = 0;
7313 int cnt = 0;
7314 int state = 0;
7315
7316 /* calculate expected state,ignoring low bits */
7317 if (mddev->bitmap && mddev->bitmap_info.offset)
7318 state |= (1 << MD_SB_BITMAP_PRESENT);
7319
7320 if (mddev->major_version != info->major_version ||
7321 mddev->minor_version != info->minor_version ||
7322 /* mddev->patch_version != info->patch_version || */
7323 mddev->ctime != info->ctime ||
7324 mddev->level != info->level ||
7325 /* mddev->layout != info->layout || */
7326 mddev->persistent != !info->not_persistent ||
7327 mddev->chunk_sectors != info->chunk_size >> 9 ||
7328 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
7329 ((state^info->state) & 0xfffffe00)
7330 )
7331 return -EINVAL;
7332 /* Check there is only one change */
7333 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7334 cnt++;
7335 if (mddev->raid_disks != info->raid_disks)
7336 cnt++;
7337 if (mddev->layout != info->layout)
7338 cnt++;
7339 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
7340 cnt++;
7341 if (cnt == 0)
7342 return 0;
7343 if (cnt > 1)
7344 return -EINVAL;
7345
7346 if (mddev->layout != info->layout) {
7347 /* Change layout
7348 * we don't need to do anything at the md level, the
7349 * personality will take care of it all.
7350 */
7351 if (mddev->pers->check_reshape == NULL)
7352 return -EINVAL;
7353 else {
7354 mddev->new_layout = info->layout;
7355 rv = mddev->pers->check_reshape(mddev);
7356 if (rv)
7357 mddev->new_layout = mddev->layout;
7358 return rv;
7359 }
7360 }
7361 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7362 rv = update_size(mddev, (sector_t)info->size * 2);
7363
7364 if (mddev->raid_disks != info->raid_disks)
7365 rv = update_raid_disks(mddev, info->raid_disks);
7366
7367 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
7368 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
7369 rv = -EINVAL;
7370 goto err;
7371 }
7372 if (mddev->recovery || mddev->sync_thread) {
7373 rv = -EBUSY;
7374 goto err;
7375 }
7376 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
7377 struct bitmap *bitmap;
7378 /* add the bitmap */
7379 if (mddev->bitmap) {
7380 rv = -EEXIST;
7381 goto err;
7382 }
7383 if (mddev->bitmap_info.default_offset == 0) {
7384 rv = -EINVAL;
7385 goto err;
7386 }
7387 mddev->bitmap_info.offset =
7388 mddev->bitmap_info.default_offset;
7389 mddev->bitmap_info.space =
7390 mddev->bitmap_info.default_space;
7391 bitmap = md_bitmap_create(mddev, -1);
7392 mddev_suspend(mddev);
7393 if (!IS_ERR(bitmap)) {
7394 mddev->bitmap = bitmap;
7395 rv = md_bitmap_load(mddev);
7396 } else
7397 rv = PTR_ERR(bitmap);
7398 if (rv)
7399 md_bitmap_destroy(mddev);
7400 mddev_resume(mddev);
7401 } else {
7402 /* remove the bitmap */
7403 if (!mddev->bitmap) {
7404 rv = -ENOENT;
7405 goto err;
7406 }
7407 if (mddev->bitmap->storage.file) {
7408 rv = -EINVAL;
7409 goto err;
7410 }
7411 if (mddev->bitmap_info.nodes) {
7412 /* hold PW on all the bitmap lock */
7413 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
7414 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
7415 rv = -EPERM;
7416 md_cluster_ops->unlock_all_bitmaps(mddev);
7417 goto err;
7418 }
7419
7420 mddev->bitmap_info.nodes = 0;
7421 md_cluster_ops->leave(mddev);
7422 module_put(md_cluster_mod);
7423 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
7424 }
7425 mddev_suspend(mddev);
7426 md_bitmap_destroy(mddev);
7427 mddev_resume(mddev);
7428 mddev->bitmap_info.offset = 0;
7429 }
7430 }
7431 md_update_sb(mddev, 1);
7432 return rv;
7433 err:
7434 return rv;
7435 }
7436
set_disk_faulty(struct mddev * mddev,dev_t dev)7437 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7438 {
7439 struct md_rdev *rdev;
7440 int err = 0;
7441
7442 if (mddev->pers == NULL)
7443 return -ENODEV;
7444
7445 rcu_read_lock();
7446 rdev = md_find_rdev_rcu(mddev, dev);
7447 if (!rdev)
7448 err = -ENODEV;
7449 else {
7450 md_error(mddev, rdev);
7451 if (!test_bit(Faulty, &rdev->flags))
7452 err = -EBUSY;
7453 }
7454 rcu_read_unlock();
7455 return err;
7456 }
7457
7458 /*
7459 * We have a problem here : there is no easy way to give a CHS
7460 * virtual geometry. We currently pretend that we have a 2 heads
7461 * 4 sectors (with a BIG number of cylinders...). This drives
7462 * dosfs just mad... ;-)
7463 */
md_getgeo(struct block_device * bdev,struct hd_geometry * geo)7464 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7465 {
7466 struct mddev *mddev = bdev->bd_disk->private_data;
7467
7468 geo->heads = 2;
7469 geo->sectors = 4;
7470 geo->cylinders = mddev->array_sectors / 8;
7471 return 0;
7472 }
7473
md_ioctl_valid(unsigned int cmd)7474 static inline bool md_ioctl_valid(unsigned int cmd)
7475 {
7476 switch (cmd) {
7477 case ADD_NEW_DISK:
7478 case BLKROSET:
7479 case GET_ARRAY_INFO:
7480 case GET_BITMAP_FILE:
7481 case GET_DISK_INFO:
7482 case HOT_ADD_DISK:
7483 case HOT_REMOVE_DISK:
7484 case RAID_VERSION:
7485 case RESTART_ARRAY_RW:
7486 case RUN_ARRAY:
7487 case SET_ARRAY_INFO:
7488 case SET_BITMAP_FILE:
7489 case SET_DISK_FAULTY:
7490 case STOP_ARRAY:
7491 case STOP_ARRAY_RO:
7492 case CLUSTERED_DISK_NACK:
7493 return true;
7494 default:
7495 return false;
7496 }
7497 }
7498
md_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)7499 static int md_ioctl(struct block_device *bdev, fmode_t mode,
7500 unsigned int cmd, unsigned long arg)
7501 {
7502 int err = 0;
7503 void __user *argp = (void __user *)arg;
7504 struct mddev *mddev = NULL;
7505 int ro;
7506 bool did_set_md_closing = false;
7507
7508 if (!md_ioctl_valid(cmd))
7509 return -ENOTTY;
7510
7511 switch (cmd) {
7512 case RAID_VERSION:
7513 case GET_ARRAY_INFO:
7514 case GET_DISK_INFO:
7515 break;
7516 default:
7517 if (!capable(CAP_SYS_ADMIN))
7518 return -EACCES;
7519 }
7520
7521 /*
7522 * Commands dealing with the RAID driver but not any
7523 * particular array:
7524 */
7525 switch (cmd) {
7526 case RAID_VERSION:
7527 err = get_version(argp);
7528 goto out;
7529 default:;
7530 }
7531
7532 /*
7533 * Commands creating/starting a new array:
7534 */
7535
7536 mddev = bdev->bd_disk->private_data;
7537
7538 if (!mddev) {
7539 BUG();
7540 goto out;
7541 }
7542
7543 /* Some actions do not requires the mutex */
7544 switch (cmd) {
7545 case GET_ARRAY_INFO:
7546 if (!mddev->raid_disks && !mddev->external)
7547 err = -ENODEV;
7548 else
7549 err = get_array_info(mddev, argp);
7550 goto out;
7551
7552 case GET_DISK_INFO:
7553 if (!mddev->raid_disks && !mddev->external)
7554 err = -ENODEV;
7555 else
7556 err = get_disk_info(mddev, argp);
7557 goto out;
7558
7559 case SET_DISK_FAULTY:
7560 err = set_disk_faulty(mddev, new_decode_dev(arg));
7561 goto out;
7562
7563 case GET_BITMAP_FILE:
7564 err = get_bitmap_file(mddev, argp);
7565 goto out;
7566
7567 }
7568
7569 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK)
7570 flush_rdev_wq(mddev);
7571
7572 if (cmd == HOT_REMOVE_DISK)
7573 /* need to ensure recovery thread has run */
7574 wait_event_interruptible_timeout(mddev->sb_wait,
7575 !test_bit(MD_RECOVERY_NEEDED,
7576 &mddev->recovery),
7577 msecs_to_jiffies(5000));
7578 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7579 /* Need to flush page cache, and ensure no-one else opens
7580 * and writes
7581 */
7582 mutex_lock(&mddev->open_mutex);
7583 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7584 mutex_unlock(&mddev->open_mutex);
7585 err = -EBUSY;
7586 goto out;
7587 }
7588 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) {
7589 mutex_unlock(&mddev->open_mutex);
7590 err = -EBUSY;
7591 goto out;
7592 }
7593 did_set_md_closing = true;
7594 mutex_unlock(&mddev->open_mutex);
7595 sync_blockdev(bdev);
7596 }
7597 err = mddev_lock(mddev);
7598 if (err) {
7599 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7600 err, cmd);
7601 goto out;
7602 }
7603
7604 if (cmd == SET_ARRAY_INFO) {
7605 mdu_array_info_t info;
7606 if (!arg)
7607 memset(&info, 0, sizeof(info));
7608 else if (copy_from_user(&info, argp, sizeof(info))) {
7609 err = -EFAULT;
7610 goto unlock;
7611 }
7612 if (mddev->pers) {
7613 err = update_array_info(mddev, &info);
7614 if (err) {
7615 pr_warn("md: couldn't update array info. %d\n", err);
7616 goto unlock;
7617 }
7618 goto unlock;
7619 }
7620 if (!list_empty(&mddev->disks)) {
7621 pr_warn("md: array %s already has disks!\n", mdname(mddev));
7622 err = -EBUSY;
7623 goto unlock;
7624 }
7625 if (mddev->raid_disks) {
7626 pr_warn("md: array %s already initialised!\n", mdname(mddev));
7627 err = -EBUSY;
7628 goto unlock;
7629 }
7630 err = md_set_array_info(mddev, &info);
7631 if (err) {
7632 pr_warn("md: couldn't set array info. %d\n", err);
7633 goto unlock;
7634 }
7635 goto unlock;
7636 }
7637
7638 /*
7639 * Commands querying/configuring an existing array:
7640 */
7641 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7642 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7643 if ((!mddev->raid_disks && !mddev->external)
7644 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7645 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7646 && cmd != GET_BITMAP_FILE) {
7647 err = -ENODEV;
7648 goto unlock;
7649 }
7650
7651 /*
7652 * Commands even a read-only array can execute:
7653 */
7654 switch (cmd) {
7655 case RESTART_ARRAY_RW:
7656 err = restart_array(mddev);
7657 goto unlock;
7658
7659 case STOP_ARRAY:
7660 err = do_md_stop(mddev, 0, bdev);
7661 goto unlock;
7662
7663 case STOP_ARRAY_RO:
7664 err = md_set_readonly(mddev, bdev);
7665 goto unlock;
7666
7667 case HOT_REMOVE_DISK:
7668 err = hot_remove_disk(mddev, new_decode_dev(arg));
7669 goto unlock;
7670
7671 case ADD_NEW_DISK:
7672 /* We can support ADD_NEW_DISK on read-only arrays
7673 * only if we are re-adding a preexisting device.
7674 * So require mddev->pers and MD_DISK_SYNC.
7675 */
7676 if (mddev->pers) {
7677 mdu_disk_info_t info;
7678 if (copy_from_user(&info, argp, sizeof(info)))
7679 err = -EFAULT;
7680 else if (!(info.state & (1<<MD_DISK_SYNC)))
7681 /* Need to clear read-only for this */
7682 break;
7683 else
7684 err = md_add_new_disk(mddev, &info);
7685 goto unlock;
7686 }
7687 break;
7688
7689 case BLKROSET:
7690 if (get_user(ro, (int __user *)(arg))) {
7691 err = -EFAULT;
7692 goto unlock;
7693 }
7694 err = -EINVAL;
7695
7696 /* if the bdev is going readonly the value of mddev->ro
7697 * does not matter, no writes are coming
7698 */
7699 if (ro)
7700 goto unlock;
7701
7702 /* are we are already prepared for writes? */
7703 if (mddev->ro != 1)
7704 goto unlock;
7705
7706 /* transitioning to readauto need only happen for
7707 * arrays that call md_write_start
7708 */
7709 if (mddev->pers) {
7710 err = restart_array(mddev);
7711 if (err == 0) {
7712 mddev->ro = 2;
7713 set_disk_ro(mddev->gendisk, 0);
7714 }
7715 }
7716 goto unlock;
7717 }
7718
7719 /*
7720 * The remaining ioctls are changing the state of the
7721 * superblock, so we do not allow them on read-only arrays.
7722 */
7723 if (mddev->ro && mddev->pers) {
7724 if (mddev->ro == 2) {
7725 mddev->ro = 0;
7726 sysfs_notify_dirent_safe(mddev->sysfs_state);
7727 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7728 /* mddev_unlock will wake thread */
7729 /* If a device failed while we were read-only, we
7730 * need to make sure the metadata is updated now.
7731 */
7732 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7733 mddev_unlock(mddev);
7734 wait_event(mddev->sb_wait,
7735 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7736 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7737 mddev_lock_nointr(mddev);
7738 }
7739 } else {
7740 err = -EROFS;
7741 goto unlock;
7742 }
7743 }
7744
7745 switch (cmd) {
7746 case ADD_NEW_DISK:
7747 {
7748 mdu_disk_info_t info;
7749 if (copy_from_user(&info, argp, sizeof(info)))
7750 err = -EFAULT;
7751 else
7752 err = md_add_new_disk(mddev, &info);
7753 goto unlock;
7754 }
7755
7756 case CLUSTERED_DISK_NACK:
7757 if (mddev_is_clustered(mddev))
7758 md_cluster_ops->new_disk_ack(mddev, false);
7759 else
7760 err = -EINVAL;
7761 goto unlock;
7762
7763 case HOT_ADD_DISK:
7764 err = hot_add_disk(mddev, new_decode_dev(arg));
7765 goto unlock;
7766
7767 case RUN_ARRAY:
7768 err = do_md_run(mddev);
7769 goto unlock;
7770
7771 case SET_BITMAP_FILE:
7772 err = set_bitmap_file(mddev, (int)arg);
7773 goto unlock;
7774
7775 default:
7776 err = -EINVAL;
7777 goto unlock;
7778 }
7779
7780 unlock:
7781 if (mddev->hold_active == UNTIL_IOCTL &&
7782 err != -EINVAL)
7783 mddev->hold_active = 0;
7784 mddev_unlock(mddev);
7785 out:
7786 if(did_set_md_closing)
7787 clear_bit(MD_CLOSING, &mddev->flags);
7788 return err;
7789 }
7790 #ifdef CONFIG_COMPAT
md_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)7791 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7792 unsigned int cmd, unsigned long arg)
7793 {
7794 switch (cmd) {
7795 case HOT_REMOVE_DISK:
7796 case HOT_ADD_DISK:
7797 case SET_DISK_FAULTY:
7798 case SET_BITMAP_FILE:
7799 /* These take in integer arg, do not convert */
7800 break;
7801 default:
7802 arg = (unsigned long)compat_ptr(arg);
7803 break;
7804 }
7805
7806 return md_ioctl(bdev, mode, cmd, arg);
7807 }
7808 #endif /* CONFIG_COMPAT */
7809
md_open(struct block_device * bdev,fmode_t mode)7810 static int md_open(struct block_device *bdev, fmode_t mode)
7811 {
7812 /*
7813 * Succeed if we can lock the mddev, which confirms that
7814 * it isn't being stopped right now.
7815 */
7816 struct mddev *mddev = mddev_find(bdev->bd_dev);
7817 int err;
7818
7819 if (!mddev)
7820 return -ENODEV;
7821
7822 if (mddev->gendisk != bdev->bd_disk) {
7823 /* we are racing with mddev_put which is discarding this
7824 * bd_disk.
7825 */
7826 mddev_put(mddev);
7827 /* Wait until bdev->bd_disk is definitely gone */
7828 if (work_pending(&mddev->del_work))
7829 flush_workqueue(md_misc_wq);
7830 return -EBUSY;
7831 }
7832 BUG_ON(mddev != bdev->bd_disk->private_data);
7833
7834 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7835 goto out;
7836
7837 if (test_bit(MD_CLOSING, &mddev->flags)) {
7838 mutex_unlock(&mddev->open_mutex);
7839 err = -ENODEV;
7840 goto out;
7841 }
7842
7843 err = 0;
7844 atomic_inc(&mddev->openers);
7845 mutex_unlock(&mddev->open_mutex);
7846
7847 bdev_check_media_change(bdev);
7848 out:
7849 if (err)
7850 mddev_put(mddev);
7851 return err;
7852 }
7853
md_release(struct gendisk * disk,fmode_t mode)7854 static void md_release(struct gendisk *disk, fmode_t mode)
7855 {
7856 struct mddev *mddev = disk->private_data;
7857
7858 BUG_ON(!mddev);
7859 atomic_dec(&mddev->openers);
7860 mddev_put(mddev);
7861 }
7862
md_check_events(struct gendisk * disk,unsigned int clearing)7863 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing)
7864 {
7865 struct mddev *mddev = disk->private_data;
7866 unsigned int ret = 0;
7867
7868 if (mddev->changed)
7869 ret = DISK_EVENT_MEDIA_CHANGE;
7870 mddev->changed = 0;
7871 return ret;
7872 }
7873
7874 const struct block_device_operations md_fops =
7875 {
7876 .owner = THIS_MODULE,
7877 .submit_bio = md_submit_bio,
7878 .open = md_open,
7879 .release = md_release,
7880 .ioctl = md_ioctl,
7881 #ifdef CONFIG_COMPAT
7882 .compat_ioctl = md_compat_ioctl,
7883 #endif
7884 .getgeo = md_getgeo,
7885 .check_events = md_check_events,
7886 };
7887
md_thread(void * arg)7888 static int md_thread(void *arg)
7889 {
7890 struct md_thread *thread = arg;
7891
7892 /*
7893 * md_thread is a 'system-thread', it's priority should be very
7894 * high. We avoid resource deadlocks individually in each
7895 * raid personality. (RAID5 does preallocation) We also use RR and
7896 * the very same RT priority as kswapd, thus we will never get
7897 * into a priority inversion deadlock.
7898 *
7899 * we definitely have to have equal or higher priority than
7900 * bdflush, otherwise bdflush will deadlock if there are too
7901 * many dirty RAID5 blocks.
7902 */
7903
7904 allow_signal(SIGKILL);
7905 while (!kthread_should_stop()) {
7906
7907 /* We need to wait INTERRUPTIBLE so that
7908 * we don't add to the load-average.
7909 * That means we need to be sure no signals are
7910 * pending
7911 */
7912 if (signal_pending(current))
7913 flush_signals(current);
7914
7915 wait_event_interruptible_timeout
7916 (thread->wqueue,
7917 test_bit(THREAD_WAKEUP, &thread->flags)
7918 || kthread_should_stop() || kthread_should_park(),
7919 thread->timeout);
7920
7921 clear_bit(THREAD_WAKEUP, &thread->flags);
7922 if (kthread_should_park())
7923 kthread_parkme();
7924 if (!kthread_should_stop())
7925 thread->run(thread);
7926 }
7927
7928 return 0;
7929 }
7930
md_wakeup_thread(struct md_thread * thread)7931 void md_wakeup_thread(struct md_thread *thread)
7932 {
7933 if (thread) {
7934 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7935 set_bit(THREAD_WAKEUP, &thread->flags);
7936 wake_up(&thread->wqueue);
7937 }
7938 }
7939 EXPORT_SYMBOL(md_wakeup_thread);
7940
md_register_thread(void (* run)(struct md_thread *),struct mddev * mddev,const char * name)7941 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7942 struct mddev *mddev, const char *name)
7943 {
7944 struct md_thread *thread;
7945
7946 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7947 if (!thread)
7948 return NULL;
7949
7950 init_waitqueue_head(&thread->wqueue);
7951
7952 thread->run = run;
7953 thread->mddev = mddev;
7954 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7955 thread->tsk = kthread_run(md_thread, thread,
7956 "%s_%s",
7957 mdname(thread->mddev),
7958 name);
7959 if (IS_ERR(thread->tsk)) {
7960 kfree(thread);
7961 return NULL;
7962 }
7963 return thread;
7964 }
7965 EXPORT_SYMBOL(md_register_thread);
7966
md_unregister_thread(struct md_thread ** threadp)7967 void md_unregister_thread(struct md_thread **threadp)
7968 {
7969 struct md_thread *thread;
7970
7971 /*
7972 * Locking ensures that mddev_unlock does not wake_up a
7973 * non-existent thread
7974 */
7975 spin_lock(&pers_lock);
7976 thread = *threadp;
7977 if (!thread) {
7978 spin_unlock(&pers_lock);
7979 return;
7980 }
7981 *threadp = NULL;
7982 spin_unlock(&pers_lock);
7983
7984 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7985 kthread_stop(thread->tsk);
7986 kfree(thread);
7987 }
7988 EXPORT_SYMBOL(md_unregister_thread);
7989
md_error(struct mddev * mddev,struct md_rdev * rdev)7990 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7991 {
7992 if (!rdev || test_bit(Faulty, &rdev->flags))
7993 return;
7994
7995 if (!mddev->pers || !mddev->pers->error_handler)
7996 return;
7997 mddev->pers->error_handler(mddev,rdev);
7998 if (mddev->degraded)
7999 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8000 sysfs_notify_dirent_safe(rdev->sysfs_state);
8001 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8002 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8003 md_wakeup_thread(mddev->thread);
8004 if (mddev->event_work.func)
8005 queue_work(md_misc_wq, &mddev->event_work);
8006 md_new_event(mddev);
8007 }
8008 EXPORT_SYMBOL(md_error);
8009
8010 /* seq_file implementation /proc/mdstat */
8011
status_unused(struct seq_file * seq)8012 static void status_unused(struct seq_file *seq)
8013 {
8014 int i = 0;
8015 struct md_rdev *rdev;
8016
8017 seq_printf(seq, "unused devices: ");
8018
8019 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
8020 char b[BDEVNAME_SIZE];
8021 i++;
8022 seq_printf(seq, "%s ",
8023 bdevname(rdev->bdev,b));
8024 }
8025 if (!i)
8026 seq_printf(seq, "<none>");
8027
8028 seq_printf(seq, "\n");
8029 }
8030
status_resync(struct seq_file * seq,struct mddev * mddev)8031 static int status_resync(struct seq_file *seq, struct mddev *mddev)
8032 {
8033 sector_t max_sectors, resync, res;
8034 unsigned long dt, db = 0;
8035 sector_t rt, curr_mark_cnt, resync_mark_cnt;
8036 int scale, recovery_active;
8037 unsigned int per_milli;
8038
8039 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8040 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8041 max_sectors = mddev->resync_max_sectors;
8042 else
8043 max_sectors = mddev->dev_sectors;
8044
8045 resync = mddev->curr_resync;
8046 if (resync <= 3) {
8047 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8048 /* Still cleaning up */
8049 resync = max_sectors;
8050 } else if (resync > max_sectors)
8051 resync = max_sectors;
8052 else
8053 resync -= atomic_read(&mddev->recovery_active);
8054
8055 if (resync == 0) {
8056 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
8057 struct md_rdev *rdev;
8058
8059 rdev_for_each(rdev, mddev)
8060 if (rdev->raid_disk >= 0 &&
8061 !test_bit(Faulty, &rdev->flags) &&
8062 rdev->recovery_offset != MaxSector &&
8063 rdev->recovery_offset) {
8064 seq_printf(seq, "\trecover=REMOTE");
8065 return 1;
8066 }
8067 if (mddev->reshape_position != MaxSector)
8068 seq_printf(seq, "\treshape=REMOTE");
8069 else
8070 seq_printf(seq, "\tresync=REMOTE");
8071 return 1;
8072 }
8073 if (mddev->recovery_cp < MaxSector) {
8074 seq_printf(seq, "\tresync=PENDING");
8075 return 1;
8076 }
8077 return 0;
8078 }
8079 if (resync < 3) {
8080 seq_printf(seq, "\tresync=DELAYED");
8081 return 1;
8082 }
8083
8084 WARN_ON(max_sectors == 0);
8085 /* Pick 'scale' such that (resync>>scale)*1000 will fit
8086 * in a sector_t, and (max_sectors>>scale) will fit in a
8087 * u32, as those are the requirements for sector_div.
8088 * Thus 'scale' must be at least 10
8089 */
8090 scale = 10;
8091 if (sizeof(sector_t) > sizeof(unsigned long)) {
8092 while ( max_sectors/2 > (1ULL<<(scale+32)))
8093 scale++;
8094 }
8095 res = (resync>>scale)*1000;
8096 sector_div(res, (u32)((max_sectors>>scale)+1));
8097
8098 per_milli = res;
8099 {
8100 int i, x = per_milli/50, y = 20-x;
8101 seq_printf(seq, "[");
8102 for (i = 0; i < x; i++)
8103 seq_printf(seq, "=");
8104 seq_printf(seq, ">");
8105 for (i = 0; i < y; i++)
8106 seq_printf(seq, ".");
8107 seq_printf(seq, "] ");
8108 }
8109 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
8110 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
8111 "reshape" :
8112 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
8113 "check" :
8114 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
8115 "resync" : "recovery"))),
8116 per_milli/10, per_milli % 10,
8117 (unsigned long long) resync/2,
8118 (unsigned long long) max_sectors/2);
8119
8120 /*
8121 * dt: time from mark until now
8122 * db: blocks written from mark until now
8123 * rt: remaining time
8124 *
8125 * rt is a sector_t, which is always 64bit now. We are keeping
8126 * the original algorithm, but it is not really necessary.
8127 *
8128 * Original algorithm:
8129 * So we divide before multiply in case it is 32bit and close
8130 * to the limit.
8131 * We scale the divisor (db) by 32 to avoid losing precision
8132 * near the end of resync when the number of remaining sectors
8133 * is close to 'db'.
8134 * We then divide rt by 32 after multiplying by db to compensate.
8135 * The '+1' avoids division by zero if db is very small.
8136 */
8137 dt = ((jiffies - mddev->resync_mark) / HZ);
8138 if (!dt) dt++;
8139
8140 curr_mark_cnt = mddev->curr_mark_cnt;
8141 recovery_active = atomic_read(&mddev->recovery_active);
8142 resync_mark_cnt = mddev->resync_mark_cnt;
8143
8144 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
8145 db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
8146
8147 rt = max_sectors - resync; /* number of remaining sectors */
8148 rt = div64_u64(rt, db/32+1);
8149 rt *= dt;
8150 rt >>= 5;
8151
8152 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
8153 ((unsigned long)rt % 60)/6);
8154
8155 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
8156 return 1;
8157 }
8158
md_seq_start(struct seq_file * seq,loff_t * pos)8159 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
8160 {
8161 struct list_head *tmp;
8162 loff_t l = *pos;
8163 struct mddev *mddev;
8164
8165 if (l == 0x10000) {
8166 ++*pos;
8167 return (void *)2;
8168 }
8169 if (l > 0x10000)
8170 return NULL;
8171 if (!l--)
8172 /* header */
8173 return (void*)1;
8174
8175 spin_lock(&all_mddevs_lock);
8176 list_for_each(tmp,&all_mddevs)
8177 if (!l--) {
8178 mddev = list_entry(tmp, struct mddev, all_mddevs);
8179 mddev_get(mddev);
8180 spin_unlock(&all_mddevs_lock);
8181 return mddev;
8182 }
8183 spin_unlock(&all_mddevs_lock);
8184 if (!l--)
8185 return (void*)2;/* tail */
8186 return NULL;
8187 }
8188
md_seq_next(struct seq_file * seq,void * v,loff_t * pos)8189 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
8190 {
8191 struct list_head *tmp;
8192 struct mddev *next_mddev, *mddev = v;
8193
8194 ++*pos;
8195 if (v == (void*)2)
8196 return NULL;
8197
8198 spin_lock(&all_mddevs_lock);
8199 if (v == (void*)1)
8200 tmp = all_mddevs.next;
8201 else
8202 tmp = mddev->all_mddevs.next;
8203 if (tmp != &all_mddevs)
8204 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
8205 else {
8206 next_mddev = (void*)2;
8207 *pos = 0x10000;
8208 }
8209 spin_unlock(&all_mddevs_lock);
8210
8211 if (v != (void*)1)
8212 mddev_put(mddev);
8213 return next_mddev;
8214
8215 }
8216
md_seq_stop(struct seq_file * seq,void * v)8217 static void md_seq_stop(struct seq_file *seq, void *v)
8218 {
8219 struct mddev *mddev = v;
8220
8221 if (mddev && v != (void*)1 && v != (void*)2)
8222 mddev_put(mddev);
8223 }
8224
md_seq_show(struct seq_file * seq,void * v)8225 static int md_seq_show(struct seq_file *seq, void *v)
8226 {
8227 struct mddev *mddev = v;
8228 sector_t sectors;
8229 struct md_rdev *rdev;
8230
8231 if (v == (void*)1) {
8232 struct md_personality *pers;
8233 seq_printf(seq, "Personalities : ");
8234 spin_lock(&pers_lock);
8235 list_for_each_entry(pers, &pers_list, list)
8236 seq_printf(seq, "[%s] ", pers->name);
8237
8238 spin_unlock(&pers_lock);
8239 seq_printf(seq, "\n");
8240 seq->poll_event = atomic_read(&md_event_count);
8241 return 0;
8242 }
8243 if (v == (void*)2) {
8244 status_unused(seq);
8245 return 0;
8246 }
8247
8248 spin_lock(&mddev->lock);
8249 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
8250 seq_printf(seq, "%s : %sactive", mdname(mddev),
8251 mddev->pers ? "" : "in");
8252 if (mddev->pers) {
8253 if (mddev->ro==1)
8254 seq_printf(seq, " (read-only)");
8255 if (mddev->ro==2)
8256 seq_printf(seq, " (auto-read-only)");
8257 seq_printf(seq, " %s", mddev->pers->name);
8258 }
8259
8260 sectors = 0;
8261 rcu_read_lock();
8262 rdev_for_each_rcu(rdev, mddev) {
8263 char b[BDEVNAME_SIZE];
8264 seq_printf(seq, " %s[%d]",
8265 bdevname(rdev->bdev,b), rdev->desc_nr);
8266 if (test_bit(WriteMostly, &rdev->flags))
8267 seq_printf(seq, "(W)");
8268 if (test_bit(Journal, &rdev->flags))
8269 seq_printf(seq, "(J)");
8270 if (test_bit(Faulty, &rdev->flags)) {
8271 seq_printf(seq, "(F)");
8272 continue;
8273 }
8274 if (rdev->raid_disk < 0)
8275 seq_printf(seq, "(S)"); /* spare */
8276 if (test_bit(Replacement, &rdev->flags))
8277 seq_printf(seq, "(R)");
8278 sectors += rdev->sectors;
8279 }
8280 rcu_read_unlock();
8281
8282 if (!list_empty(&mddev->disks)) {
8283 if (mddev->pers)
8284 seq_printf(seq, "\n %llu blocks",
8285 (unsigned long long)
8286 mddev->array_sectors / 2);
8287 else
8288 seq_printf(seq, "\n %llu blocks",
8289 (unsigned long long)sectors / 2);
8290 }
8291 if (mddev->persistent) {
8292 if (mddev->major_version != 0 ||
8293 mddev->minor_version != 90) {
8294 seq_printf(seq," super %d.%d",
8295 mddev->major_version,
8296 mddev->minor_version);
8297 }
8298 } else if (mddev->external)
8299 seq_printf(seq, " super external:%s",
8300 mddev->metadata_type);
8301 else
8302 seq_printf(seq, " super non-persistent");
8303
8304 if (mddev->pers) {
8305 mddev->pers->status(seq, mddev);
8306 seq_printf(seq, "\n ");
8307 if (mddev->pers->sync_request) {
8308 if (status_resync(seq, mddev))
8309 seq_printf(seq, "\n ");
8310 }
8311 } else
8312 seq_printf(seq, "\n ");
8313
8314 md_bitmap_status(seq, mddev->bitmap);
8315
8316 seq_printf(seq, "\n");
8317 }
8318 spin_unlock(&mddev->lock);
8319
8320 return 0;
8321 }
8322
8323 static const struct seq_operations md_seq_ops = {
8324 .start = md_seq_start,
8325 .next = md_seq_next,
8326 .stop = md_seq_stop,
8327 .show = md_seq_show,
8328 };
8329
md_seq_open(struct inode * inode,struct file * file)8330 static int md_seq_open(struct inode *inode, struct file *file)
8331 {
8332 struct seq_file *seq;
8333 int error;
8334
8335 error = seq_open(file, &md_seq_ops);
8336 if (error)
8337 return error;
8338
8339 seq = file->private_data;
8340 seq->poll_event = atomic_read(&md_event_count);
8341 return error;
8342 }
8343
8344 static int md_unloading;
mdstat_poll(struct file * filp,poll_table * wait)8345 static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
8346 {
8347 struct seq_file *seq = filp->private_data;
8348 __poll_t mask;
8349
8350 if (md_unloading)
8351 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
8352 poll_wait(filp, &md_event_waiters, wait);
8353
8354 /* always allow read */
8355 mask = EPOLLIN | EPOLLRDNORM;
8356
8357 if (seq->poll_event != atomic_read(&md_event_count))
8358 mask |= EPOLLERR | EPOLLPRI;
8359 return mask;
8360 }
8361
8362 static const struct proc_ops mdstat_proc_ops = {
8363 .proc_open = md_seq_open,
8364 .proc_read = seq_read,
8365 .proc_lseek = seq_lseek,
8366 .proc_release = seq_release,
8367 .proc_poll = mdstat_poll,
8368 };
8369
register_md_personality(struct md_personality * p)8370 int register_md_personality(struct md_personality *p)
8371 {
8372 pr_debug("md: %s personality registered for level %d\n",
8373 p->name, p->level);
8374 spin_lock(&pers_lock);
8375 list_add_tail(&p->list, &pers_list);
8376 spin_unlock(&pers_lock);
8377 return 0;
8378 }
8379 EXPORT_SYMBOL(register_md_personality);
8380
unregister_md_personality(struct md_personality * p)8381 int unregister_md_personality(struct md_personality *p)
8382 {
8383 pr_debug("md: %s personality unregistered\n", p->name);
8384 spin_lock(&pers_lock);
8385 list_del_init(&p->list);
8386 spin_unlock(&pers_lock);
8387 return 0;
8388 }
8389 EXPORT_SYMBOL(unregister_md_personality);
8390
register_md_cluster_operations(struct md_cluster_operations * ops,struct module * module)8391 int register_md_cluster_operations(struct md_cluster_operations *ops,
8392 struct module *module)
8393 {
8394 int ret = 0;
8395 spin_lock(&pers_lock);
8396 if (md_cluster_ops != NULL)
8397 ret = -EALREADY;
8398 else {
8399 md_cluster_ops = ops;
8400 md_cluster_mod = module;
8401 }
8402 spin_unlock(&pers_lock);
8403 return ret;
8404 }
8405 EXPORT_SYMBOL(register_md_cluster_operations);
8406
unregister_md_cluster_operations(void)8407 int unregister_md_cluster_operations(void)
8408 {
8409 spin_lock(&pers_lock);
8410 md_cluster_ops = NULL;
8411 spin_unlock(&pers_lock);
8412 return 0;
8413 }
8414 EXPORT_SYMBOL(unregister_md_cluster_operations);
8415
md_setup_cluster(struct mddev * mddev,int nodes)8416 int md_setup_cluster(struct mddev *mddev, int nodes)
8417 {
8418 int ret;
8419 if (!md_cluster_ops)
8420 request_module("md-cluster");
8421 spin_lock(&pers_lock);
8422 /* ensure module won't be unloaded */
8423 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
8424 pr_warn("can't find md-cluster module or get it's reference.\n");
8425 spin_unlock(&pers_lock);
8426 return -ENOENT;
8427 }
8428 spin_unlock(&pers_lock);
8429
8430 ret = md_cluster_ops->join(mddev, nodes);
8431 if (!ret)
8432 mddev->safemode_delay = 0;
8433 return ret;
8434 }
8435
md_cluster_stop(struct mddev * mddev)8436 void md_cluster_stop(struct mddev *mddev)
8437 {
8438 if (!md_cluster_ops)
8439 return;
8440 md_cluster_ops->leave(mddev);
8441 module_put(md_cluster_mod);
8442 }
8443
is_mddev_idle(struct mddev * mddev,int init)8444 static int is_mddev_idle(struct mddev *mddev, int init)
8445 {
8446 struct md_rdev *rdev;
8447 int idle;
8448 int curr_events;
8449
8450 idle = 1;
8451 rcu_read_lock();
8452 rdev_for_each_rcu(rdev, mddev) {
8453 struct gendisk *disk = rdev->bdev->bd_disk;
8454 curr_events = (int)part_stat_read_accum(&disk->part0, sectors) -
8455 atomic_read(&disk->sync_io);
8456 /* sync IO will cause sync_io to increase before the disk_stats
8457 * as sync_io is counted when a request starts, and
8458 * disk_stats is counted when it completes.
8459 * So resync activity will cause curr_events to be smaller than
8460 * when there was no such activity.
8461 * non-sync IO will cause disk_stat to increase without
8462 * increasing sync_io so curr_events will (eventually)
8463 * be larger than it was before. Once it becomes
8464 * substantially larger, the test below will cause
8465 * the array to appear non-idle, and resync will slow
8466 * down.
8467 * If there is a lot of outstanding resync activity when
8468 * we set last_event to curr_events, then all that activity
8469 * completing might cause the array to appear non-idle
8470 * and resync will be slowed down even though there might
8471 * not have been non-resync activity. This will only
8472 * happen once though. 'last_events' will soon reflect
8473 * the state where there is little or no outstanding
8474 * resync requests, and further resync activity will
8475 * always make curr_events less than last_events.
8476 *
8477 */
8478 if (init || curr_events - rdev->last_events > 64) {
8479 rdev->last_events = curr_events;
8480 idle = 0;
8481 }
8482 }
8483 rcu_read_unlock();
8484 return idle;
8485 }
8486
md_done_sync(struct mddev * mddev,int blocks,int ok)8487 void md_done_sync(struct mddev *mddev, int blocks, int ok)
8488 {
8489 /* another "blocks" (512byte) blocks have been synced */
8490 atomic_sub(blocks, &mddev->recovery_active);
8491 wake_up(&mddev->recovery_wait);
8492 if (!ok) {
8493 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8494 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8495 md_wakeup_thread(mddev->thread);
8496 // stop recovery, signal do_sync ....
8497 }
8498 }
8499 EXPORT_SYMBOL(md_done_sync);
8500
8501 /* md_write_start(mddev, bi)
8502 * If we need to update some array metadata (e.g. 'active' flag
8503 * in superblock) before writing, schedule a superblock update
8504 * and wait for it to complete.
8505 * A return value of 'false' means that the write wasn't recorded
8506 * and cannot proceed as the array is being suspend.
8507 */
md_write_start(struct mddev * mddev,struct bio * bi)8508 bool md_write_start(struct mddev *mddev, struct bio *bi)
8509 {
8510 int did_change = 0;
8511
8512 if (bio_data_dir(bi) != WRITE)
8513 return true;
8514
8515 BUG_ON(mddev->ro == 1);
8516 if (mddev->ro == 2) {
8517 /* need to switch to read/write */
8518 mddev->ro = 0;
8519 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8520 md_wakeup_thread(mddev->thread);
8521 md_wakeup_thread(mddev->sync_thread);
8522 did_change = 1;
8523 }
8524 rcu_read_lock();
8525 percpu_ref_get(&mddev->writes_pending);
8526 smp_mb(); /* Match smp_mb in set_in_sync() */
8527 if (mddev->safemode == 1)
8528 mddev->safemode = 0;
8529 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8530 if (mddev->in_sync || mddev->sync_checkers) {
8531 spin_lock(&mddev->lock);
8532 if (mddev->in_sync) {
8533 mddev->in_sync = 0;
8534 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8535 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8536 md_wakeup_thread(mddev->thread);
8537 did_change = 1;
8538 }
8539 spin_unlock(&mddev->lock);
8540 }
8541 rcu_read_unlock();
8542 if (did_change)
8543 sysfs_notify_dirent_safe(mddev->sysfs_state);
8544 if (!mddev->has_superblocks)
8545 return true;
8546 wait_event(mddev->sb_wait,
8547 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
8548 mddev->suspended);
8549 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8550 percpu_ref_put(&mddev->writes_pending);
8551 return false;
8552 }
8553 return true;
8554 }
8555 EXPORT_SYMBOL(md_write_start);
8556
8557 /* md_write_inc can only be called when md_write_start() has
8558 * already been called at least once of the current request.
8559 * It increments the counter and is useful when a single request
8560 * is split into several parts. Each part causes an increment and
8561 * so needs a matching md_write_end().
8562 * Unlike md_write_start(), it is safe to call md_write_inc() inside
8563 * a spinlocked region.
8564 */
md_write_inc(struct mddev * mddev,struct bio * bi)8565 void md_write_inc(struct mddev *mddev, struct bio *bi)
8566 {
8567 if (bio_data_dir(bi) != WRITE)
8568 return;
8569 WARN_ON_ONCE(mddev->in_sync || mddev->ro);
8570 percpu_ref_get(&mddev->writes_pending);
8571 }
8572 EXPORT_SYMBOL(md_write_inc);
8573
md_write_end(struct mddev * mddev)8574 void md_write_end(struct mddev *mddev)
8575 {
8576 percpu_ref_put(&mddev->writes_pending);
8577
8578 if (mddev->safemode == 2)
8579 md_wakeup_thread(mddev->thread);
8580 else if (mddev->safemode_delay)
8581 /* The roundup() ensures this only performs locking once
8582 * every ->safemode_delay jiffies
8583 */
8584 mod_timer(&mddev->safemode_timer,
8585 roundup(jiffies, mddev->safemode_delay) +
8586 mddev->safemode_delay);
8587 }
8588
8589 EXPORT_SYMBOL(md_write_end);
8590
8591 /* md_allow_write(mddev)
8592 * Calling this ensures that the array is marked 'active' so that writes
8593 * may proceed without blocking. It is important to call this before
8594 * attempting a GFP_KERNEL allocation while holding the mddev lock.
8595 * Must be called with mddev_lock held.
8596 */
md_allow_write(struct mddev * mddev)8597 void md_allow_write(struct mddev *mddev)
8598 {
8599 if (!mddev->pers)
8600 return;
8601 if (mddev->ro)
8602 return;
8603 if (!mddev->pers->sync_request)
8604 return;
8605
8606 spin_lock(&mddev->lock);
8607 if (mddev->in_sync) {
8608 mddev->in_sync = 0;
8609 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8610 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8611 if (mddev->safemode_delay &&
8612 mddev->safemode == 0)
8613 mddev->safemode = 1;
8614 spin_unlock(&mddev->lock);
8615 md_update_sb(mddev, 0);
8616 sysfs_notify_dirent_safe(mddev->sysfs_state);
8617 /* wait for the dirty state to be recorded in the metadata */
8618 wait_event(mddev->sb_wait,
8619 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8620 } else
8621 spin_unlock(&mddev->lock);
8622 }
8623 EXPORT_SYMBOL_GPL(md_allow_write);
8624
8625 #define SYNC_MARKS 10
8626 #define SYNC_MARK_STEP (3*HZ)
8627 #define UPDATE_FREQUENCY (5*60*HZ)
md_do_sync(struct md_thread * thread)8628 void md_do_sync(struct md_thread *thread)
8629 {
8630 struct mddev *mddev = thread->mddev;
8631 struct mddev *mddev2;
8632 unsigned int currspeed = 0, window;
8633 sector_t max_sectors,j, io_sectors, recovery_done;
8634 unsigned long mark[SYNC_MARKS];
8635 unsigned long update_time;
8636 sector_t mark_cnt[SYNC_MARKS];
8637 int last_mark,m;
8638 struct list_head *tmp;
8639 sector_t last_check;
8640 int skipped = 0;
8641 struct md_rdev *rdev;
8642 char *desc, *action = NULL;
8643 struct blk_plug plug;
8644 int ret;
8645
8646 /* just incase thread restarts... */
8647 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8648 test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
8649 return;
8650 if (mddev->ro) {/* never try to sync a read-only array */
8651 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8652 return;
8653 }
8654
8655 if (mddev_is_clustered(mddev)) {
8656 ret = md_cluster_ops->resync_start(mddev);
8657 if (ret)
8658 goto skip;
8659
8660 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8661 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8662 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8663 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8664 && ((unsigned long long)mddev->curr_resync_completed
8665 < (unsigned long long)mddev->resync_max_sectors))
8666 goto skip;
8667 }
8668
8669 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8670 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8671 desc = "data-check";
8672 action = "check";
8673 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8674 desc = "requested-resync";
8675 action = "repair";
8676 } else
8677 desc = "resync";
8678 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8679 desc = "reshape";
8680 else
8681 desc = "recovery";
8682
8683 mddev->last_sync_action = action ?: desc;
8684
8685 /* we overload curr_resync somewhat here.
8686 * 0 == not engaged in resync at all
8687 * 2 == checking that there is no conflict with another sync
8688 * 1 == like 2, but have yielded to allow conflicting resync to
8689 * commence
8690 * other == active in resync - this many blocks
8691 *
8692 * Before starting a resync we must have set curr_resync to
8693 * 2, and then checked that every "conflicting" array has curr_resync
8694 * less than ours. When we find one that is the same or higher
8695 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
8696 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8697 * This will mean we have to start checking from the beginning again.
8698 *
8699 */
8700
8701 do {
8702 int mddev2_minor = -1;
8703 mddev->curr_resync = 2;
8704
8705 try_again:
8706 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8707 goto skip;
8708 for_each_mddev(mddev2, tmp) {
8709 if (mddev2 == mddev)
8710 continue;
8711 if (!mddev->parallel_resync
8712 && mddev2->curr_resync
8713 && match_mddev_units(mddev, mddev2)) {
8714 DEFINE_WAIT(wq);
8715 if (mddev < mddev2 && mddev->curr_resync == 2) {
8716 /* arbitrarily yield */
8717 mddev->curr_resync = 1;
8718 wake_up(&resync_wait);
8719 }
8720 if (mddev > mddev2 && mddev->curr_resync == 1)
8721 /* no need to wait here, we can wait the next
8722 * time 'round when curr_resync == 2
8723 */
8724 continue;
8725 /* We need to wait 'interruptible' so as not to
8726 * contribute to the load average, and not to
8727 * be caught by 'softlockup'
8728 */
8729 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8730 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8731 mddev2->curr_resync >= mddev->curr_resync) {
8732 if (mddev2_minor != mddev2->md_minor) {
8733 mddev2_minor = mddev2->md_minor;
8734 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8735 desc, mdname(mddev),
8736 mdname(mddev2));
8737 }
8738 mddev_put(mddev2);
8739 if (signal_pending(current))
8740 flush_signals(current);
8741 schedule();
8742 finish_wait(&resync_wait, &wq);
8743 goto try_again;
8744 }
8745 finish_wait(&resync_wait, &wq);
8746 }
8747 }
8748 } while (mddev->curr_resync < 2);
8749
8750 j = 0;
8751 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8752 /* resync follows the size requested by the personality,
8753 * which defaults to physical size, but can be virtual size
8754 */
8755 max_sectors = mddev->resync_max_sectors;
8756 atomic64_set(&mddev->resync_mismatches, 0);
8757 /* we don't use the checkpoint if there's a bitmap */
8758 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8759 j = mddev->resync_min;
8760 else if (!mddev->bitmap)
8761 j = mddev->recovery_cp;
8762
8763 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
8764 max_sectors = mddev->resync_max_sectors;
8765 /*
8766 * If the original node aborts reshaping then we continue the
8767 * reshaping, so set j again to avoid restart reshape from the
8768 * first beginning
8769 */
8770 if (mddev_is_clustered(mddev) &&
8771 mddev->reshape_position != MaxSector)
8772 j = mddev->reshape_position;
8773 } else {
8774 /* recovery follows the physical size of devices */
8775 max_sectors = mddev->dev_sectors;
8776 j = MaxSector;
8777 rcu_read_lock();
8778 rdev_for_each_rcu(rdev, mddev)
8779 if (rdev->raid_disk >= 0 &&
8780 !test_bit(Journal, &rdev->flags) &&
8781 !test_bit(Faulty, &rdev->flags) &&
8782 !test_bit(In_sync, &rdev->flags) &&
8783 rdev->recovery_offset < j)
8784 j = rdev->recovery_offset;
8785 rcu_read_unlock();
8786
8787 /* If there is a bitmap, we need to make sure all
8788 * writes that started before we added a spare
8789 * complete before we start doing a recovery.
8790 * Otherwise the write might complete and (via
8791 * bitmap_endwrite) set a bit in the bitmap after the
8792 * recovery has checked that bit and skipped that
8793 * region.
8794 */
8795 if (mddev->bitmap) {
8796 mddev->pers->quiesce(mddev, 1);
8797 mddev->pers->quiesce(mddev, 0);
8798 }
8799 }
8800
8801 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8802 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
8803 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8804 speed_max(mddev), desc);
8805
8806 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8807
8808 io_sectors = 0;
8809 for (m = 0; m < SYNC_MARKS; m++) {
8810 mark[m] = jiffies;
8811 mark_cnt[m] = io_sectors;
8812 }
8813 last_mark = 0;
8814 mddev->resync_mark = mark[last_mark];
8815 mddev->resync_mark_cnt = mark_cnt[last_mark];
8816
8817 /*
8818 * Tune reconstruction:
8819 */
8820 window = 32 * (PAGE_SIZE / 512);
8821 pr_debug("md: using %dk window, over a total of %lluk.\n",
8822 window/2, (unsigned long long)max_sectors/2);
8823
8824 atomic_set(&mddev->recovery_active, 0);
8825 last_check = 0;
8826
8827 if (j>2) {
8828 pr_debug("md: resuming %s of %s from checkpoint.\n",
8829 desc, mdname(mddev));
8830 mddev->curr_resync = j;
8831 } else
8832 mddev->curr_resync = 3; /* no longer delayed */
8833 mddev->curr_resync_completed = j;
8834 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8835 md_new_event(mddev);
8836 update_time = jiffies;
8837
8838 blk_start_plug(&plug);
8839 while (j < max_sectors) {
8840 sector_t sectors;
8841
8842 skipped = 0;
8843
8844 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8845 ((mddev->curr_resync > mddev->curr_resync_completed &&
8846 (mddev->curr_resync - mddev->curr_resync_completed)
8847 > (max_sectors >> 4)) ||
8848 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8849 (j - mddev->curr_resync_completed)*2
8850 >= mddev->resync_max - mddev->curr_resync_completed ||
8851 mddev->curr_resync_completed > mddev->resync_max
8852 )) {
8853 /* time to update curr_resync_completed */
8854 wait_event(mddev->recovery_wait,
8855 atomic_read(&mddev->recovery_active) == 0);
8856 mddev->curr_resync_completed = j;
8857 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8858 j > mddev->recovery_cp)
8859 mddev->recovery_cp = j;
8860 update_time = jiffies;
8861 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8862 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8863 }
8864
8865 while (j >= mddev->resync_max &&
8866 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8867 /* As this condition is controlled by user-space,
8868 * we can block indefinitely, so use '_interruptible'
8869 * to avoid triggering warnings.
8870 */
8871 flush_signals(current); /* just in case */
8872 wait_event_interruptible(mddev->recovery_wait,
8873 mddev->resync_max > j
8874 || test_bit(MD_RECOVERY_INTR,
8875 &mddev->recovery));
8876 }
8877
8878 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8879 break;
8880
8881 sectors = mddev->pers->sync_request(mddev, j, &skipped);
8882 if (sectors == 0) {
8883 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8884 break;
8885 }
8886
8887 if (!skipped) { /* actual IO requested */
8888 io_sectors += sectors;
8889 atomic_add(sectors, &mddev->recovery_active);
8890 }
8891
8892 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8893 break;
8894
8895 j += sectors;
8896 if (j > max_sectors)
8897 /* when skipping, extra large numbers can be returned. */
8898 j = max_sectors;
8899 if (j > 2)
8900 mddev->curr_resync = j;
8901 mddev->curr_mark_cnt = io_sectors;
8902 if (last_check == 0)
8903 /* this is the earliest that rebuild will be
8904 * visible in /proc/mdstat
8905 */
8906 md_new_event(mddev);
8907
8908 if (last_check + window > io_sectors || j == max_sectors)
8909 continue;
8910
8911 last_check = io_sectors;
8912 repeat:
8913 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8914 /* step marks */
8915 int next = (last_mark+1) % SYNC_MARKS;
8916
8917 mddev->resync_mark = mark[next];
8918 mddev->resync_mark_cnt = mark_cnt[next];
8919 mark[next] = jiffies;
8920 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8921 last_mark = next;
8922 }
8923
8924 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8925 break;
8926
8927 /*
8928 * this loop exits only if either when we are slower than
8929 * the 'hard' speed limit, or the system was IO-idle for
8930 * a jiffy.
8931 * the system might be non-idle CPU-wise, but we only care
8932 * about not overloading the IO subsystem. (things like an
8933 * e2fsck being done on the RAID array should execute fast)
8934 */
8935 cond_resched();
8936
8937 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8938 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8939 /((jiffies-mddev->resync_mark)/HZ +1) +1;
8940
8941 if (currspeed > speed_min(mddev)) {
8942 if (currspeed > speed_max(mddev)) {
8943 msleep(500);
8944 goto repeat;
8945 }
8946 if (!is_mddev_idle(mddev, 0)) {
8947 /*
8948 * Give other IO more of a chance.
8949 * The faster the devices, the less we wait.
8950 */
8951 wait_event(mddev->recovery_wait,
8952 !atomic_read(&mddev->recovery_active));
8953 }
8954 }
8955 }
8956 pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
8957 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8958 ? "interrupted" : "done");
8959 /*
8960 * this also signals 'finished resyncing' to md_stop
8961 */
8962 blk_finish_plug(&plug);
8963 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8964
8965 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8966 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8967 mddev->curr_resync > 3) {
8968 mddev->curr_resync_completed = mddev->curr_resync;
8969 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8970 }
8971 mddev->pers->sync_request(mddev, max_sectors, &skipped);
8972
8973 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8974 mddev->curr_resync > 3) {
8975 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8976 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8977 if (mddev->curr_resync >= mddev->recovery_cp) {
8978 pr_debug("md: checkpointing %s of %s.\n",
8979 desc, mdname(mddev));
8980 if (test_bit(MD_RECOVERY_ERROR,
8981 &mddev->recovery))
8982 mddev->recovery_cp =
8983 mddev->curr_resync_completed;
8984 else
8985 mddev->recovery_cp =
8986 mddev->curr_resync;
8987 }
8988 } else
8989 mddev->recovery_cp = MaxSector;
8990 } else {
8991 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8992 mddev->curr_resync = MaxSector;
8993 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8994 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
8995 rcu_read_lock();
8996 rdev_for_each_rcu(rdev, mddev)
8997 if (rdev->raid_disk >= 0 &&
8998 mddev->delta_disks >= 0 &&
8999 !test_bit(Journal, &rdev->flags) &&
9000 !test_bit(Faulty, &rdev->flags) &&
9001 !test_bit(In_sync, &rdev->flags) &&
9002 rdev->recovery_offset < mddev->curr_resync)
9003 rdev->recovery_offset = mddev->curr_resync;
9004 rcu_read_unlock();
9005 }
9006 }
9007 }
9008 skip:
9009 /* set CHANGE_PENDING here since maybe another update is needed,
9010 * so other nodes are informed. It should be harmless for normal
9011 * raid */
9012 set_mask_bits(&mddev->sb_flags, 0,
9013 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
9014
9015 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9016 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9017 mddev->delta_disks > 0 &&
9018 mddev->pers->finish_reshape &&
9019 mddev->pers->size &&
9020 mddev->queue) {
9021 mddev_lock_nointr(mddev);
9022 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
9023 mddev_unlock(mddev);
9024 if (!mddev_is_clustered(mddev)) {
9025 set_capacity(mddev->gendisk, mddev->array_sectors);
9026 revalidate_disk_size(mddev->gendisk, true);
9027 }
9028 }
9029
9030 spin_lock(&mddev->lock);
9031 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9032 /* We completed so min/max setting can be forgotten if used. */
9033 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9034 mddev->resync_min = 0;
9035 mddev->resync_max = MaxSector;
9036 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9037 mddev->resync_min = mddev->curr_resync_completed;
9038 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
9039 mddev->curr_resync = 0;
9040 spin_unlock(&mddev->lock);
9041
9042 wake_up(&resync_wait);
9043 md_wakeup_thread(mddev->thread);
9044 return;
9045 }
9046 EXPORT_SYMBOL_GPL(md_do_sync);
9047
remove_and_add_spares(struct mddev * mddev,struct md_rdev * this)9048 static int remove_and_add_spares(struct mddev *mddev,
9049 struct md_rdev *this)
9050 {
9051 struct md_rdev *rdev;
9052 int spares = 0;
9053 int removed = 0;
9054 bool remove_some = false;
9055
9056 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
9057 /* Mustn't remove devices when resync thread is running */
9058 return 0;
9059
9060 rdev_for_each(rdev, mddev) {
9061 if ((this == NULL || rdev == this) &&
9062 rdev->raid_disk >= 0 &&
9063 !test_bit(Blocked, &rdev->flags) &&
9064 test_bit(Faulty, &rdev->flags) &&
9065 atomic_read(&rdev->nr_pending)==0) {
9066 /* Faulty non-Blocked devices with nr_pending == 0
9067 * never get nr_pending incremented,
9068 * never get Faulty cleared, and never get Blocked set.
9069 * So we can synchronize_rcu now rather than once per device
9070 */
9071 remove_some = true;
9072 set_bit(RemoveSynchronized, &rdev->flags);
9073 }
9074 }
9075
9076 if (remove_some)
9077 synchronize_rcu();
9078 rdev_for_each(rdev, mddev) {
9079 if ((this == NULL || rdev == this) &&
9080 rdev->raid_disk >= 0 &&
9081 !test_bit(Blocked, &rdev->flags) &&
9082 ((test_bit(RemoveSynchronized, &rdev->flags) ||
9083 (!test_bit(In_sync, &rdev->flags) &&
9084 !test_bit(Journal, &rdev->flags))) &&
9085 atomic_read(&rdev->nr_pending)==0)) {
9086 if (mddev->pers->hot_remove_disk(
9087 mddev, rdev) == 0) {
9088 sysfs_unlink_rdev(mddev, rdev);
9089 rdev->saved_raid_disk = rdev->raid_disk;
9090 rdev->raid_disk = -1;
9091 removed++;
9092 }
9093 }
9094 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
9095 clear_bit(RemoveSynchronized, &rdev->flags);
9096 }
9097
9098 if (removed && mddev->kobj.sd)
9099 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9100
9101 if (this && removed)
9102 goto no_add;
9103
9104 rdev_for_each(rdev, mddev) {
9105 if (this && this != rdev)
9106 continue;
9107 if (test_bit(Candidate, &rdev->flags))
9108 continue;
9109 if (rdev->raid_disk >= 0 &&
9110 !test_bit(In_sync, &rdev->flags) &&
9111 !test_bit(Journal, &rdev->flags) &&
9112 !test_bit(Faulty, &rdev->flags))
9113 spares++;
9114 if (rdev->raid_disk >= 0)
9115 continue;
9116 if (test_bit(Faulty, &rdev->flags))
9117 continue;
9118 if (!test_bit(Journal, &rdev->flags)) {
9119 if (mddev->ro &&
9120 ! (rdev->saved_raid_disk >= 0 &&
9121 !test_bit(Bitmap_sync, &rdev->flags)))
9122 continue;
9123
9124 rdev->recovery_offset = 0;
9125 }
9126 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) {
9127 /* failure here is OK */
9128 sysfs_link_rdev(mddev, rdev);
9129 if (!test_bit(Journal, &rdev->flags))
9130 spares++;
9131 md_new_event(mddev);
9132 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9133 }
9134 }
9135 no_add:
9136 if (removed)
9137 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9138 return spares;
9139 }
9140
md_start_sync(struct work_struct * ws)9141 static void md_start_sync(struct work_struct *ws)
9142 {
9143 struct mddev *mddev = container_of(ws, struct mddev, del_work);
9144
9145 mddev->sync_thread = md_register_thread(md_do_sync,
9146 mddev,
9147 "resync");
9148 if (!mddev->sync_thread) {
9149 pr_warn("%s: could not start resync thread...\n",
9150 mdname(mddev));
9151 /* leave the spares where they are, it shouldn't hurt */
9152 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9153 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9154 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9155 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9156 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9157 wake_up(&resync_wait);
9158 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9159 &mddev->recovery))
9160 if (mddev->sysfs_action)
9161 sysfs_notify_dirent_safe(mddev->sysfs_action);
9162 } else
9163 md_wakeup_thread(mddev->sync_thread);
9164 sysfs_notify_dirent_safe(mddev->sysfs_action);
9165 md_new_event(mddev);
9166 }
9167
9168 /*
9169 * This routine is regularly called by all per-raid-array threads to
9170 * deal with generic issues like resync and super-block update.
9171 * Raid personalities that don't have a thread (linear/raid0) do not
9172 * need this as they never do any recovery or update the superblock.
9173 *
9174 * It does not do any resync itself, but rather "forks" off other threads
9175 * to do that as needed.
9176 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
9177 * "->recovery" and create a thread at ->sync_thread.
9178 * When the thread finishes it sets MD_RECOVERY_DONE
9179 * and wakeups up this thread which will reap the thread and finish up.
9180 * This thread also removes any faulty devices (with nr_pending == 0).
9181 *
9182 * The overall approach is:
9183 * 1/ if the superblock needs updating, update it.
9184 * 2/ If a recovery thread is running, don't do anything else.
9185 * 3/ If recovery has finished, clean up, possibly marking spares active.
9186 * 4/ If there are any faulty devices, remove them.
9187 * 5/ If array is degraded, try to add spares devices
9188 * 6/ If array has spares or is not in-sync, start a resync thread.
9189 */
md_check_recovery(struct mddev * mddev)9190 void md_check_recovery(struct mddev *mddev)
9191 {
9192 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
9193 /* Write superblock - thread that called mddev_suspend()
9194 * holds reconfig_mutex for us.
9195 */
9196 set_bit(MD_UPDATING_SB, &mddev->flags);
9197 smp_mb__after_atomic();
9198 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
9199 md_update_sb(mddev, 0);
9200 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
9201 wake_up(&mddev->sb_wait);
9202 }
9203
9204 if (mddev->suspended)
9205 return;
9206
9207 if (mddev->bitmap)
9208 md_bitmap_daemon_work(mddev);
9209
9210 if (signal_pending(current)) {
9211 if (mddev->pers->sync_request && !mddev->external) {
9212 pr_debug("md: %s in immediate safe mode\n",
9213 mdname(mddev));
9214 mddev->safemode = 2;
9215 }
9216 flush_signals(current);
9217 }
9218
9219 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
9220 return;
9221 if ( ! (
9222 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
9223 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9224 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
9225 (mddev->external == 0 && mddev->safemode == 1) ||
9226 (mddev->safemode == 2
9227 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
9228 ))
9229 return;
9230
9231 if (mddev_trylock(mddev)) {
9232 int spares = 0;
9233 bool try_set_sync = mddev->safemode != 0;
9234
9235 if (!mddev->external && mddev->safemode == 1)
9236 mddev->safemode = 0;
9237
9238 if (mddev->ro) {
9239 struct md_rdev *rdev;
9240 if (!mddev->external && mddev->in_sync)
9241 /* 'Blocked' flag not needed as failed devices
9242 * will be recorded if array switched to read/write.
9243 * Leaving it set will prevent the device
9244 * from being removed.
9245 */
9246 rdev_for_each(rdev, mddev)
9247 clear_bit(Blocked, &rdev->flags);
9248 /* On a read-only array we can:
9249 * - remove failed devices
9250 * - add already-in_sync devices if the array itself
9251 * is in-sync.
9252 * As we only add devices that are already in-sync,
9253 * we can activate the spares immediately.
9254 */
9255 remove_and_add_spares(mddev, NULL);
9256 /* There is no thread, but we need to call
9257 * ->spare_active and clear saved_raid_disk
9258 */
9259 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9260 md_reap_sync_thread(mddev);
9261 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9262 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9263 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
9264 goto unlock;
9265 }
9266
9267 if (mddev_is_clustered(mddev)) {
9268 struct md_rdev *rdev, *tmp;
9269 /* kick the device if another node issued a
9270 * remove disk.
9271 */
9272 rdev_for_each_safe(rdev, tmp, mddev) {
9273 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
9274 rdev->raid_disk < 0)
9275 md_kick_rdev_from_array(rdev);
9276 }
9277 }
9278
9279 if (try_set_sync && !mddev->external && !mddev->in_sync) {
9280 spin_lock(&mddev->lock);
9281 set_in_sync(mddev);
9282 spin_unlock(&mddev->lock);
9283 }
9284
9285 if (mddev->sb_flags)
9286 md_update_sb(mddev, 0);
9287
9288 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
9289 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
9290 /* resync/recovery still happening */
9291 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9292 goto unlock;
9293 }
9294 if (mddev->sync_thread) {
9295 md_reap_sync_thread(mddev);
9296 goto unlock;
9297 }
9298 /* Set RUNNING before clearing NEEDED to avoid
9299 * any transients in the value of "sync_action".
9300 */
9301 mddev->curr_resync_completed = 0;
9302 spin_lock(&mddev->lock);
9303 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9304 spin_unlock(&mddev->lock);
9305 /* Clear some bits that don't mean anything, but
9306 * might be left set
9307 */
9308 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
9309 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9310
9311 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9312 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
9313 goto not_running;
9314 /* no recovery is running.
9315 * remove any failed drives, then
9316 * add spares if possible.
9317 * Spares are also removed and re-added, to allow
9318 * the personality to fail the re-add.
9319 */
9320
9321 if (mddev->reshape_position != MaxSector) {
9322 if (mddev->pers->check_reshape == NULL ||
9323 mddev->pers->check_reshape(mddev) != 0)
9324 /* Cannot proceed */
9325 goto not_running;
9326 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9327 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9328 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
9329 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9330 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9331 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9332 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9333 } else if (mddev->recovery_cp < MaxSector) {
9334 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9335 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9336 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
9337 /* nothing to be done ... */
9338 goto not_running;
9339
9340 if (mddev->pers->sync_request) {
9341 if (spares) {
9342 /* We are adding a device or devices to an array
9343 * which has the bitmap stored on all devices.
9344 * So make sure all bitmap pages get written
9345 */
9346 md_bitmap_write_all(mddev->bitmap);
9347 }
9348 INIT_WORK(&mddev->del_work, md_start_sync);
9349 queue_work(md_misc_wq, &mddev->del_work);
9350 goto unlock;
9351 }
9352 not_running:
9353 if (!mddev->sync_thread) {
9354 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9355 wake_up(&resync_wait);
9356 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9357 &mddev->recovery))
9358 if (mddev->sysfs_action)
9359 sysfs_notify_dirent_safe(mddev->sysfs_action);
9360 }
9361 unlock:
9362 wake_up(&mddev->sb_wait);
9363 mddev_unlock(mddev);
9364 }
9365 }
9366 EXPORT_SYMBOL(md_check_recovery);
9367
md_reap_sync_thread(struct mddev * mddev)9368 void md_reap_sync_thread(struct mddev *mddev)
9369 {
9370 struct md_rdev *rdev;
9371 sector_t old_dev_sectors = mddev->dev_sectors;
9372 bool is_reshaped = false;
9373
9374 /* resync has finished, collect result */
9375 md_unregister_thread(&mddev->sync_thread);
9376 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9377 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
9378 mddev->degraded != mddev->raid_disks) {
9379 /* success...*/
9380 /* activate any spares */
9381 if (mddev->pers->spare_active(mddev)) {
9382 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9383 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9384 }
9385 }
9386 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9387 mddev->pers->finish_reshape) {
9388 mddev->pers->finish_reshape(mddev);
9389 if (mddev_is_clustered(mddev))
9390 is_reshaped = true;
9391 }
9392
9393 /* If array is no-longer degraded, then any saved_raid_disk
9394 * information must be scrapped.
9395 */
9396 if (!mddev->degraded)
9397 rdev_for_each(rdev, mddev)
9398 rdev->saved_raid_disk = -1;
9399
9400 md_update_sb(mddev, 1);
9401 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
9402 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
9403 * clustered raid */
9404 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
9405 md_cluster_ops->resync_finish(mddev);
9406 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9407 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9408 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9409 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9410 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9411 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9412 /*
9413 * We call md_cluster_ops->update_size here because sync_size could
9414 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
9415 * so it is time to update size across cluster.
9416 */
9417 if (mddev_is_clustered(mddev) && is_reshaped
9418 && !test_bit(MD_CLOSING, &mddev->flags))
9419 md_cluster_ops->update_size(mddev, old_dev_sectors);
9420 wake_up(&resync_wait);
9421 /* flag recovery needed just to double check */
9422 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9423 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9424 sysfs_notify_dirent_safe(mddev->sysfs_action);
9425 md_new_event(mddev);
9426 if (mddev->event_work.func)
9427 queue_work(md_misc_wq, &mddev->event_work);
9428 }
9429 EXPORT_SYMBOL(md_reap_sync_thread);
9430
md_wait_for_blocked_rdev(struct md_rdev * rdev,struct mddev * mddev)9431 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
9432 {
9433 sysfs_notify_dirent_safe(rdev->sysfs_state);
9434 wait_event_timeout(rdev->blocked_wait,
9435 !test_bit(Blocked, &rdev->flags) &&
9436 !test_bit(BlockedBadBlocks, &rdev->flags),
9437 msecs_to_jiffies(5000));
9438 rdev_dec_pending(rdev, mddev);
9439 }
9440 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
9441
md_finish_reshape(struct mddev * mddev)9442 void md_finish_reshape(struct mddev *mddev)
9443 {
9444 /* called be personality module when reshape completes. */
9445 struct md_rdev *rdev;
9446
9447 rdev_for_each(rdev, mddev) {
9448 if (rdev->data_offset > rdev->new_data_offset)
9449 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
9450 else
9451 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
9452 rdev->data_offset = rdev->new_data_offset;
9453 }
9454 }
9455 EXPORT_SYMBOL(md_finish_reshape);
9456
9457 /* Bad block management */
9458
9459 /* Returns 1 on success, 0 on failure */
rdev_set_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)9460 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9461 int is_new)
9462 {
9463 struct mddev *mddev = rdev->mddev;
9464 int rv;
9465 if (is_new)
9466 s += rdev->new_data_offset;
9467 else
9468 s += rdev->data_offset;
9469 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
9470 if (rv == 0) {
9471 /* Make sure they get written out promptly */
9472 if (test_bit(ExternalBbl, &rdev->flags))
9473 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks);
9474 sysfs_notify_dirent_safe(rdev->sysfs_state);
9475 set_mask_bits(&mddev->sb_flags, 0,
9476 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
9477 md_wakeup_thread(rdev->mddev->thread);
9478 return 1;
9479 } else
9480 return 0;
9481 }
9482 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
9483
rdev_clear_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)9484 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9485 int is_new)
9486 {
9487 int rv;
9488 if (is_new)
9489 s += rdev->new_data_offset;
9490 else
9491 s += rdev->data_offset;
9492 rv = badblocks_clear(&rdev->badblocks, s, sectors);
9493 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
9494 sysfs_notify_dirent_safe(rdev->sysfs_badblocks);
9495 return rv;
9496 }
9497 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
9498
md_notify_reboot(struct notifier_block * this,unsigned long code,void * x)9499 static int md_notify_reboot(struct notifier_block *this,
9500 unsigned long code, void *x)
9501 {
9502 struct list_head *tmp;
9503 struct mddev *mddev;
9504 int need_delay = 0;
9505
9506 for_each_mddev(mddev, tmp) {
9507 if (mddev_trylock(mddev)) {
9508 if (mddev->pers)
9509 __md_stop_writes(mddev);
9510 if (mddev->persistent)
9511 mddev->safemode = 2;
9512 mddev_unlock(mddev);
9513 }
9514 need_delay = 1;
9515 }
9516 /*
9517 * certain more exotic SCSI devices are known to be
9518 * volatile wrt too early system reboots. While the
9519 * right place to handle this issue is the given
9520 * driver, we do want to have a safe RAID driver ...
9521 */
9522 if (need_delay)
9523 mdelay(1000*1);
9524
9525 return NOTIFY_DONE;
9526 }
9527
9528 static struct notifier_block md_notifier = {
9529 .notifier_call = md_notify_reboot,
9530 .next = NULL,
9531 .priority = INT_MAX, /* before any real devices */
9532 };
9533
md_geninit(void)9534 static void md_geninit(void)
9535 {
9536 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9537
9538 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops);
9539 }
9540
md_init(void)9541 static int __init md_init(void)
9542 {
9543 int ret = -ENOMEM;
9544
9545 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9546 if (!md_wq)
9547 goto err_wq;
9548
9549 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9550 if (!md_misc_wq)
9551 goto err_misc_wq;
9552
9553 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0);
9554 if (!md_rdev_misc_wq)
9555 goto err_rdev_misc_wq;
9556
9557 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
9558 goto err_md;
9559
9560 if ((ret = register_blkdev(0, "mdp")) < 0)
9561 goto err_mdp;
9562 mdp_major = ret;
9563
9564 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
9565 md_probe, NULL, NULL);
9566 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
9567 md_probe, NULL, NULL);
9568
9569 register_reboot_notifier(&md_notifier);
9570 raid_table_header = register_sysctl_table(raid_root_table);
9571
9572 md_geninit();
9573 return 0;
9574
9575 err_mdp:
9576 unregister_blkdev(MD_MAJOR, "md");
9577 err_md:
9578 destroy_workqueue(md_rdev_misc_wq);
9579 err_rdev_misc_wq:
9580 destroy_workqueue(md_misc_wq);
9581 err_misc_wq:
9582 destroy_workqueue(md_wq);
9583 err_wq:
9584 return ret;
9585 }
9586
check_sb_changes(struct mddev * mddev,struct md_rdev * rdev)9587 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9588 {
9589 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9590 struct md_rdev *rdev2, *tmp;
9591 int role, ret;
9592 char b[BDEVNAME_SIZE];
9593
9594 /*
9595 * If size is changed in another node then we need to
9596 * do resize as well.
9597 */
9598 if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9599 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9600 if (ret)
9601 pr_info("md-cluster: resize failed\n");
9602 else
9603 md_bitmap_update_sb(mddev->bitmap);
9604 }
9605
9606 /* Check for change of roles in the active devices */
9607 rdev_for_each_safe(rdev2, tmp, mddev) {
9608 if (test_bit(Faulty, &rdev2->flags))
9609 continue;
9610
9611 /* Check if the roles changed */
9612 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9613
9614 if (test_bit(Candidate, &rdev2->flags)) {
9615 if (role == 0xfffe) {
9616 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9617 md_kick_rdev_from_array(rdev2);
9618 continue;
9619 }
9620 else
9621 clear_bit(Candidate, &rdev2->flags);
9622 }
9623
9624 if (role != rdev2->raid_disk) {
9625 /*
9626 * got activated except reshape is happening.
9627 */
9628 if (rdev2->raid_disk == -1 && role != 0xffff &&
9629 !(le32_to_cpu(sb->feature_map) &
9630 MD_FEATURE_RESHAPE_ACTIVE)) {
9631 rdev2->saved_raid_disk = role;
9632 ret = remove_and_add_spares(mddev, rdev2);
9633 pr_info("Activated spare: %s\n",
9634 bdevname(rdev2->bdev,b));
9635 /* wakeup mddev->thread here, so array could
9636 * perform resync with the new activated disk */
9637 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9638 md_wakeup_thread(mddev->thread);
9639 }
9640 /* device faulty
9641 * We just want to do the minimum to mark the disk
9642 * as faulty. The recovery is performed by the
9643 * one who initiated the error.
9644 */
9645 if ((role == 0xfffe) || (role == 0xfffd)) {
9646 md_error(mddev, rdev2);
9647 clear_bit(Blocked, &rdev2->flags);
9648 }
9649 }
9650 }
9651
9652 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) {
9653 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9654 if (ret)
9655 pr_warn("md: updating array disks failed. %d\n", ret);
9656 }
9657
9658 /*
9659 * Since mddev->delta_disks has already updated in update_raid_disks,
9660 * so it is time to check reshape.
9661 */
9662 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9663 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9664 /*
9665 * reshape is happening in the remote node, we need to
9666 * update reshape_position and call start_reshape.
9667 */
9668 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
9669 if (mddev->pers->update_reshape_pos)
9670 mddev->pers->update_reshape_pos(mddev);
9671 if (mddev->pers->start_reshape)
9672 mddev->pers->start_reshape(mddev);
9673 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9674 mddev->reshape_position != MaxSector &&
9675 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9676 /* reshape is just done in another node. */
9677 mddev->reshape_position = MaxSector;
9678 if (mddev->pers->update_reshape_pos)
9679 mddev->pers->update_reshape_pos(mddev);
9680 }
9681
9682 /* Finally set the event to be up to date */
9683 mddev->events = le64_to_cpu(sb->events);
9684 }
9685
read_rdev(struct mddev * mddev,struct md_rdev * rdev)9686 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9687 {
9688 int err;
9689 struct page *swapout = rdev->sb_page;
9690 struct mdp_superblock_1 *sb;
9691
9692 /* Store the sb page of the rdev in the swapout temporary
9693 * variable in case we err in the future
9694 */
9695 rdev->sb_page = NULL;
9696 err = alloc_disk_sb(rdev);
9697 if (err == 0) {
9698 ClearPageUptodate(rdev->sb_page);
9699 rdev->sb_loaded = 0;
9700 err = super_types[mddev->major_version].
9701 load_super(rdev, NULL, mddev->minor_version);
9702 }
9703 if (err < 0) {
9704 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9705 __func__, __LINE__, rdev->desc_nr, err);
9706 if (rdev->sb_page)
9707 put_page(rdev->sb_page);
9708 rdev->sb_page = swapout;
9709 rdev->sb_loaded = 1;
9710 return err;
9711 }
9712
9713 sb = page_address(rdev->sb_page);
9714 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9715 * is not set
9716 */
9717
9718 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9719 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9720
9721 /* The other node finished recovery, call spare_active to set
9722 * device In_sync and mddev->degraded
9723 */
9724 if (rdev->recovery_offset == MaxSector &&
9725 !test_bit(In_sync, &rdev->flags) &&
9726 mddev->pers->spare_active(mddev))
9727 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9728
9729 put_page(swapout);
9730 return 0;
9731 }
9732
md_reload_sb(struct mddev * mddev,int nr)9733 void md_reload_sb(struct mddev *mddev, int nr)
9734 {
9735 struct md_rdev *rdev = NULL, *iter;
9736 int err;
9737
9738 /* Find the rdev */
9739 rdev_for_each_rcu(iter, mddev) {
9740 if (iter->desc_nr == nr) {
9741 rdev = iter;
9742 break;
9743 }
9744 }
9745
9746 if (!rdev) {
9747 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9748 return;
9749 }
9750
9751 err = read_rdev(mddev, rdev);
9752 if (err < 0)
9753 return;
9754
9755 check_sb_changes(mddev, rdev);
9756
9757 /* Read all rdev's to update recovery_offset */
9758 rdev_for_each_rcu(rdev, mddev) {
9759 if (!test_bit(Faulty, &rdev->flags))
9760 read_rdev(mddev, rdev);
9761 }
9762 }
9763 EXPORT_SYMBOL(md_reload_sb);
9764
9765 #ifndef MODULE
9766
9767 /*
9768 * Searches all registered partitions for autorun RAID arrays
9769 * at boot time.
9770 */
9771
9772 static DEFINE_MUTEX(detected_devices_mutex);
9773 static LIST_HEAD(all_detected_devices);
9774 struct detected_devices_node {
9775 struct list_head list;
9776 dev_t dev;
9777 };
9778
md_autodetect_dev(dev_t dev)9779 void md_autodetect_dev(dev_t dev)
9780 {
9781 struct detected_devices_node *node_detected_dev;
9782
9783 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9784 if (node_detected_dev) {
9785 node_detected_dev->dev = dev;
9786 mutex_lock(&detected_devices_mutex);
9787 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9788 mutex_unlock(&detected_devices_mutex);
9789 }
9790 }
9791
md_autostart_arrays(int part)9792 void md_autostart_arrays(int part)
9793 {
9794 struct md_rdev *rdev;
9795 struct detected_devices_node *node_detected_dev;
9796 dev_t dev;
9797 int i_scanned, i_passed;
9798
9799 i_scanned = 0;
9800 i_passed = 0;
9801
9802 pr_info("md: Autodetecting RAID arrays.\n");
9803
9804 mutex_lock(&detected_devices_mutex);
9805 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9806 i_scanned++;
9807 node_detected_dev = list_entry(all_detected_devices.next,
9808 struct detected_devices_node, list);
9809 list_del(&node_detected_dev->list);
9810 dev = node_detected_dev->dev;
9811 kfree(node_detected_dev);
9812 mutex_unlock(&detected_devices_mutex);
9813 rdev = md_import_device(dev,0, 90);
9814 mutex_lock(&detected_devices_mutex);
9815 if (IS_ERR(rdev))
9816 continue;
9817
9818 if (test_bit(Faulty, &rdev->flags))
9819 continue;
9820
9821 set_bit(AutoDetected, &rdev->flags);
9822 list_add(&rdev->same_set, &pending_raid_disks);
9823 i_passed++;
9824 }
9825 mutex_unlock(&detected_devices_mutex);
9826
9827 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9828
9829 autorun_devices(part);
9830 }
9831
9832 #endif /* !MODULE */
9833
md_exit(void)9834 static __exit void md_exit(void)
9835 {
9836 struct mddev *mddev;
9837 struct list_head *tmp;
9838 int delay = 1;
9839
9840 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9841 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9842
9843 unregister_blkdev(MD_MAJOR,"md");
9844 unregister_blkdev(mdp_major, "mdp");
9845 unregister_reboot_notifier(&md_notifier);
9846 unregister_sysctl_table(raid_table_header);
9847
9848 /* We cannot unload the modules while some process is
9849 * waiting for us in select() or poll() - wake them up
9850 */
9851 md_unloading = 1;
9852 while (waitqueue_active(&md_event_waiters)) {
9853 /* not safe to leave yet */
9854 wake_up(&md_event_waiters);
9855 msleep(delay);
9856 delay += delay;
9857 }
9858 remove_proc_entry("mdstat", NULL);
9859
9860 for_each_mddev(mddev, tmp) {
9861 export_array(mddev);
9862 mddev->ctime = 0;
9863 mddev->hold_active = 0;
9864 /*
9865 * for_each_mddev() will call mddev_put() at the end of each
9866 * iteration. As the mddev is now fully clear, this will
9867 * schedule the mddev for destruction by a workqueue, and the
9868 * destroy_workqueue() below will wait for that to complete.
9869 */
9870 }
9871 destroy_workqueue(md_rdev_misc_wq);
9872 destroy_workqueue(md_misc_wq);
9873 destroy_workqueue(md_wq);
9874 }
9875
9876 subsys_initcall(md_init);
module_exit(md_exit)9877 module_exit(md_exit)
9878
9879 static int get_ro(char *buffer, const struct kernel_param *kp)
9880 {
9881 return sprintf(buffer, "%d\n", start_readonly);
9882 }
set_ro(const char * val,const struct kernel_param * kp)9883 static int set_ro(const char *val, const struct kernel_param *kp)
9884 {
9885 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9886 }
9887
9888 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9889 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9890 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9891 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
9892
9893 MODULE_LICENSE("GPL");
9894 MODULE_DESCRIPTION("MD RAID framework");
9895 MODULE_ALIAS("md");
9896 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
9897