• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4 
5 #include <linux/mm_types_task.h>
6 
7 #include <linux/auxvec.h>
8 #include <linux/kref.h>
9 #include <linux/list.h>
10 #include <linux/spinlock.h>
11 #include <linux/rbtree.h>
12 #include <linux/rwsem.h>
13 #include <linux/completion.h>
14 #include <linux/cpumask.h>
15 #include <linux/uprobes.h>
16 #include <linux/page-flags-layout.h>
17 #include <linux/workqueue.h>
18 #include <linux/seqlock.h>
19 #include <linux/xpm_types.h>
20 
21 #include <asm/mmu.h>
22 
23 #ifndef AT_VECTOR_SIZE_ARCH
24 #define AT_VECTOR_SIZE_ARCH 0
25 #endif
26 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
27 
28 #define INIT_PASID	0
29 
30 struct address_space;
31 struct mem_cgroup;
32 
33 /*
34  * Each physical page in the system has a struct page associated with
35  * it to keep track of whatever it is we are using the page for at the
36  * moment. Note that we have no way to track which tasks are using
37  * a page, though if it is a pagecache page, rmap structures can tell us
38  * who is mapping it.
39  *
40  * If you allocate the page using alloc_pages(), you can use some of the
41  * space in struct page for your own purposes.  The five words in the main
42  * union are available, except for bit 0 of the first word which must be
43  * kept clear.  Many users use this word to store a pointer to an object
44  * which is guaranteed to be aligned.  If you use the same storage as
45  * page->mapping, you must restore it to NULL before freeing the page.
46  *
47  * If your page will not be mapped to userspace, you can also use the four
48  * bytes in the mapcount union, but you must call page_mapcount_reset()
49  * before freeing it.
50  *
51  * If you want to use the refcount field, it must be used in such a way
52  * that other CPUs temporarily incrementing and then decrementing the
53  * refcount does not cause problems.  On receiving the page from
54  * alloc_pages(), the refcount will be positive.
55  *
56  * If you allocate pages of order > 0, you can use some of the fields
57  * in each subpage, but you may need to restore some of their values
58  * afterwards.
59  *
60  * SLUB uses cmpxchg_double() to atomically update its freelist and
61  * counters.  That requires that freelist & counters be adjacent and
62  * double-word aligned.  We align all struct pages to double-word
63  * boundaries, and ensure that 'freelist' is aligned within the
64  * struct.
65  */
66 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
67 #define _struct_page_alignment	__aligned(2 * sizeof(unsigned long))
68 #else
69 #define _struct_page_alignment
70 #endif
71 
72 struct page {
73 	unsigned long flags;		/* Atomic flags, some possibly
74 					 * updated asynchronously */
75 	/*
76 	 * Five words (20/40 bytes) are available in this union.
77 	 * WARNING: bit 0 of the first word is used for PageTail(). That
78 	 * means the other users of this union MUST NOT use the bit to
79 	 * avoid collision and false-positive PageTail().
80 	 */
81 	union {
82 		struct {	/* Page cache and anonymous pages */
83 			/**
84 			 * @lru: Pageout list, eg. active_list protected by
85 			 * pgdat->lru_lock.  Sometimes used as a generic list
86 			 * by the page owner.
87 			 */
88 			struct list_head lru;
89 			/* See page-flags.h for PAGE_MAPPING_FLAGS */
90 			struct address_space *mapping;
91 			pgoff_t index;		/* Our offset within mapping. */
92 			/**
93 			 * @private: Mapping-private opaque data.
94 			 * Usually used for buffer_heads if PagePrivate.
95 			 * Used for swp_entry_t if PageSwapCache.
96 			 * Indicates order in the buddy system if PageBuddy.
97 			 */
98 			unsigned long private;
99 		};
100 		struct {	/* page_pool used by netstack */
101 			/**
102 			 * @dma_addr: might require a 64-bit value on
103 			 * 32-bit architectures.
104 			 */
105 			unsigned long dma_addr[2];
106 		};
107 		struct {	/* slab, slob and slub */
108 			union {
109 				struct list_head slab_list;
110 				struct {	/* Partial pages */
111 					struct page *next;
112 #ifdef CONFIG_64BIT
113 					int pages;	/* Nr of pages left */
114 					int pobjects;	/* Approximate count */
115 #else
116 					short int pages;
117 					short int pobjects;
118 #endif
119 				};
120 			};
121 			struct kmem_cache *slab_cache; /* not slob */
122 			/* Double-word boundary */
123 			void *freelist;		/* first free object */
124 			union {
125 				void *s_mem;	/* slab: first object */
126 				unsigned long counters;		/* SLUB */
127 				struct {			/* SLUB */
128 					unsigned inuse:16;
129 					unsigned objects:15;
130 					unsigned frozen:1;
131 				};
132 			};
133 		};
134 		struct {	/* Tail pages of compound page */
135 			unsigned long compound_head;	/* Bit zero is set */
136 
137 			/* First tail page only */
138 			unsigned char compound_dtor;
139 			unsigned char compound_order;
140 			atomic_t compound_mapcount;
141 			unsigned int compound_nr; /* 1 << compound_order */
142 		};
143 		struct {	/* Second tail page of compound page */
144 			unsigned long _compound_pad_1;	/* compound_head */
145 			atomic_t hpage_pinned_refcount;
146 			/* For both global and memcg */
147 			struct list_head deferred_list;
148 		};
149 		struct {	/* Page table pages */
150 			unsigned long _pt_pad_1;	/* compound_head */
151 			pgtable_t pmd_huge_pte; /* protected by page->ptl */
152 			unsigned long _pt_pad_2;	/* mapping */
153 			union {
154 				struct mm_struct *pt_mm; /* x86 pgds only */
155 				atomic_t pt_frag_refcount; /* powerpc */
156 			};
157 #if ALLOC_SPLIT_PTLOCKS
158 			spinlock_t *ptl;
159 #else
160 			spinlock_t ptl;
161 #endif
162 		};
163 		struct {	/* ZONE_DEVICE pages */
164 			/** @pgmap: Points to the hosting device page map. */
165 			struct dev_pagemap *pgmap;
166 			void *zone_device_data;
167 			/*
168 			 * ZONE_DEVICE private pages are counted as being
169 			 * mapped so the next 3 words hold the mapping, index,
170 			 * and private fields from the source anonymous or
171 			 * page cache page while the page is migrated to device
172 			 * private memory.
173 			 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
174 			 * use the mapping, index, and private fields when
175 			 * pmem backed DAX files are mapped.
176 			 */
177 		};
178 
179 		/** @rcu_head: You can use this to free a page by RCU. */
180 		struct rcu_head rcu_head;
181 	};
182 
183 	union {		/* This union is 4 bytes in size. */
184 		/*
185 		 * If the page can be mapped to userspace, encodes the number
186 		 * of times this page is referenced by a page table.
187 		 */
188 		atomic_t _mapcount;
189 
190 		/*
191 		 * If the page is neither PageSlab nor mappable to userspace,
192 		 * the value stored here may help determine what this page
193 		 * is used for.  See page-flags.h for a list of page types
194 		 * which are currently stored here.
195 		 */
196 		unsigned int page_type;
197 
198 		unsigned int active;		/* SLAB */
199 		int units;			/* SLOB */
200 	};
201 
202 	/* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
203 	atomic_t _refcount;
204 
205 #ifdef CONFIG_MEMCG
206 	union {
207 		struct mem_cgroup *mem_cgroup;
208 		struct obj_cgroup **obj_cgroups;
209 	};
210 #endif
211 
212 	/*
213 	 * On machines where all RAM is mapped into kernel address space,
214 	 * we can simply calculate the virtual address. On machines with
215 	 * highmem some memory is mapped into kernel virtual memory
216 	 * dynamically, so we need a place to store that address.
217 	 * Note that this field could be 16 bits on x86 ... ;)
218 	 *
219 	 * Architectures with slow multiplication can define
220 	 * WANT_PAGE_VIRTUAL in asm/page.h
221 	 */
222 #if defined(WANT_PAGE_VIRTUAL)
223 	void *virtual;			/* Kernel virtual address (NULL if
224 					   not kmapped, ie. highmem) */
225 #endif /* WANT_PAGE_VIRTUAL */
226 
227 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
228 	int _last_cpupid;
229 #endif
230 } _struct_page_alignment;
231 
compound_mapcount_ptr(struct page * page)232 static inline atomic_t *compound_mapcount_ptr(struct page *page)
233 {
234 	return &page[1].compound_mapcount;
235 }
236 
compound_pincount_ptr(struct page * page)237 static inline atomic_t *compound_pincount_ptr(struct page *page)
238 {
239 	return &page[2].hpage_pinned_refcount;
240 }
241 
242 /*
243  * Used for sizing the vmemmap region on some architectures
244  */
245 #define STRUCT_PAGE_MAX_SHIFT	(order_base_2(sizeof(struct page)))
246 
247 #define PAGE_FRAG_CACHE_MAX_SIZE	__ALIGN_MASK(32768, ~PAGE_MASK)
248 #define PAGE_FRAG_CACHE_MAX_ORDER	get_order(PAGE_FRAG_CACHE_MAX_SIZE)
249 
250 #define page_private(page)		((page)->private)
251 
set_page_private(struct page * page,unsigned long private)252 static inline void set_page_private(struct page *page, unsigned long private)
253 {
254 	page->private = private;
255 }
256 
257 struct page_frag_cache {
258 	void * va;
259 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
260 	__u16 offset;
261 	__u16 size;
262 #else
263 	__u32 offset;
264 #endif
265 	/* we maintain a pagecount bias, so that we dont dirty cache line
266 	 * containing page->_refcount every time we allocate a fragment.
267 	 */
268 	unsigned int		pagecnt_bias;
269 	bool pfmemalloc;
270 };
271 
272 typedef unsigned long vm_flags_t;
273 
274 /*
275  * A region containing a mapping of a non-memory backed file under NOMMU
276  * conditions.  These are held in a global tree and are pinned by the VMAs that
277  * map parts of them.
278  */
279 struct vm_region {
280 	struct rb_node	vm_rb;		/* link in global region tree */
281 	vm_flags_t	vm_flags;	/* VMA vm_flags */
282 	unsigned long	vm_start;	/* start address of region */
283 	unsigned long	vm_end;		/* region initialised to here */
284 	unsigned long	vm_top;		/* region allocated to here */
285 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
286 	struct file	*vm_file;	/* the backing file or NULL */
287 
288 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
289 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
290 						* this region */
291 };
292 
293 #ifdef CONFIG_USERFAULTFD
294 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
295 struct vm_userfaultfd_ctx {
296 	struct userfaultfd_ctx *ctx;
297 };
298 #else /* CONFIG_USERFAULTFD */
299 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
300 struct vm_userfaultfd_ctx {};
301 #endif /* CONFIG_USERFAULTFD */
302 
303 struct anon_vma_name {
304 	struct kref kref;
305 	/* The name needs to be at the end because it is dynamically sized. */
306 	char name[];
307 };
308 
309 /*
310  * This struct describes a virtual memory area. There is one of these
311  * per VM-area/task. A VM area is any part of the process virtual memory
312  * space that has a special rule for the page-fault handlers (ie a shared
313  * library, the executable area etc).
314  */
315 struct vm_area_struct {
316 	/* The first cache line has the info for VMA tree walking. */
317 
318 	unsigned long vm_start;		/* Our start address within vm_mm. */
319 	unsigned long vm_end;		/* The first byte after our end address
320 					   within vm_mm. */
321 
322 	/* linked list of VM areas per task, sorted by address */
323 	struct vm_area_struct *vm_next, *vm_prev;
324 
325 	struct rb_node vm_rb;
326 
327 	/*
328 	 * Largest free memory gap in bytes to the left of this VMA.
329 	 * Either between this VMA and vma->vm_prev, or between one of the
330 	 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
331 	 * get_unmapped_area find a free area of the right size.
332 	 */
333 	unsigned long rb_subtree_gap;
334 
335 	/* Second cache line starts here. */
336 
337 	struct mm_struct *vm_mm;	/* The address space we belong to. */
338 
339 	/*
340 	 * Access permissions of this VMA.
341 	 * See vmf_insert_mixed_prot() for discussion.
342 	 */
343 	pgprot_t vm_page_prot;
344 	unsigned long vm_flags;		/* Flags, see mm.h. */
345 
346 	/*
347 	 * For areas with an address space and backing store,
348 	 * linkage into the address_space->i_mmap interval tree.
349 	 *
350 	 * For private anonymous mappings, a pointer to a null terminated string
351 	 * containing the name given to the vma, or NULL if unnamed.
352 	 */
353 
354 	union {
355 		struct {
356 			struct rb_node rb;
357 			unsigned long rb_subtree_last;
358 		} shared;
359 		/*
360 		 * Serialized by mmap_sem. Never use directly because it is
361 		 * valid only when vm_file is NULL. Use anon_vma_name instead.
362 		 */
363 		struct anon_vma_name *anon_name;
364 	};
365 
366 	/*
367 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
368 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
369 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
370 	 * or brk vma (with NULL file) can only be in an anon_vma list.
371 	 */
372 	struct list_head anon_vma_chain; /* Serialized by mmap_lock &
373 					  * page_table_lock */
374 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
375 
376 	/* Function pointers to deal with this struct. */
377 	const struct vm_operations_struct *vm_ops;
378 
379 	/* Information about our backing store: */
380 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
381 					   units */
382 	struct file * vm_file;		/* File we map to (can be NULL). */
383 	void * vm_private_data;		/* was vm_pte (shared mem) */
384 
385 #ifdef CONFIG_SWAP
386 	atomic_long_t swap_readahead_info;
387 #endif
388 #ifndef CONFIG_MMU
389 	struct vm_region *vm_region;	/* NOMMU mapping region */
390 #endif
391 #ifdef CONFIG_NUMA
392 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
393 #endif
394 	struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
395 } __randomize_layout;
396 
397 struct core_thread {
398 	struct task_struct *task;
399 	struct core_thread *next;
400 };
401 
402 struct core_state {
403 	atomic_t nr_threads;
404 	struct core_thread dumper;
405 	struct completion startup;
406 };
407 
408 struct kioctx_table;
409 struct mm_struct {
410 	struct {
411 		struct vm_area_struct *mmap;		/* list of VMAs */
412 		struct rb_root mm_rb;
413 		u64 vmacache_seqnum;                   /* per-thread vmacache */
414 #ifdef CONFIG_MMU
415 		unsigned long (*get_unmapped_area) (struct file *filp,
416 				unsigned long addr, unsigned long len,
417 				unsigned long pgoff, unsigned long flags);
418 #endif
419 		unsigned long mmap_base;	/* base of mmap area */
420 		unsigned long mmap_legacy_base;	/* base of mmap area in bottom-up allocations */
421 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
422 		/* Base adresses for compatible mmap() */
423 		unsigned long mmap_compat_base;
424 		unsigned long mmap_compat_legacy_base;
425 #endif
426 		unsigned long task_size;	/* size of task vm space */
427 		unsigned long highest_vm_end;	/* highest vma end address */
428 		pgd_t * pgd;
429 #ifdef CONFIG_MEM_PURGEABLE
430 		void *uxpgd;
431 		spinlock_t uxpgd_lock;
432 #endif
433 
434 #ifdef CONFIG_MEMBARRIER
435 		/**
436 		 * @membarrier_state: Flags controlling membarrier behavior.
437 		 *
438 		 * This field is close to @pgd to hopefully fit in the same
439 		 * cache-line, which needs to be touched by switch_mm().
440 		 */
441 		atomic_t membarrier_state;
442 #endif
443 
444 		/**
445 		 * @mm_users: The number of users including userspace.
446 		 *
447 		 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
448 		 * drops to 0 (i.e. when the task exits and there are no other
449 		 * temporary reference holders), we also release a reference on
450 		 * @mm_count (which may then free the &struct mm_struct if
451 		 * @mm_count also drops to 0).
452 		 */
453 		atomic_t mm_users;
454 
455 		/**
456 		 * @mm_count: The number of references to &struct mm_struct
457 		 * (@mm_users count as 1).
458 		 *
459 		 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
460 		 * &struct mm_struct is freed.
461 		 */
462 		atomic_t mm_count;
463 
464 		/**
465 		 * @has_pinned: Whether this mm has pinned any pages.  This can
466 		 * be either replaced in the future by @pinned_vm when it
467 		 * becomes stable, or grow into a counter on its own. We're
468 		 * aggresive on this bit now - even if the pinned pages were
469 		 * unpinned later on, we'll still keep this bit set for the
470 		 * lifecycle of this mm just for simplicity.
471 		 */
472 		atomic_t has_pinned;
473 
474 #ifdef CONFIG_MMU
475 		atomic_long_t pgtables_bytes;	/* PTE page table pages */
476 #endif
477 		int map_count;			/* number of VMAs */
478 
479 		spinlock_t page_table_lock; /* Protects page tables and some
480 					     * counters
481 					     */
482 		/*
483 		 * With some kernel config, the current mmap_lock's offset
484 		 * inside 'mm_struct' is at 0x120, which is very optimal, as
485 		 * its two hot fields 'count' and 'owner' sit in 2 different
486 		 * cachelines,  and when mmap_lock is highly contended, both
487 		 * of the 2 fields will be accessed frequently, current layout
488 		 * will help to reduce cache bouncing.
489 		 *
490 		 * So please be careful with adding new fields before
491 		 * mmap_lock, which can easily push the 2 fields into one
492 		 * cacheline.
493 		 */
494 		struct rw_semaphore mmap_lock;
495 
496 		struct list_head mmlist; /* List of maybe swapped mm's.	These
497 					  * are globally strung together off
498 					  * init_mm.mmlist, and are protected
499 					  * by mmlist_lock
500 					  */
501 
502 
503 		unsigned long hiwater_rss; /* High-watermark of RSS usage */
504 		unsigned long hiwater_vm;  /* High-water virtual memory usage */
505 #ifdef CONFIG_RSS_THRESHOLD
506 		unsigned long rss_threshold; /* A threshold monitor RSS */
507 #endif
508 
509 		unsigned long total_vm;	   /* Total pages mapped */
510 		unsigned long locked_vm;   /* Pages that have PG_mlocked set */
511 		atomic64_t    pinned_vm;   /* Refcount permanently increased */
512 		unsigned long data_vm;	   /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
513 		unsigned long exec_vm;	   /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
514 		unsigned long stack_vm;	   /* VM_STACK */
515 		unsigned long def_flags;
516 
517 		/**
518 		 * @write_protect_seq: Locked when any thread is write
519 		 * protecting pages mapped by this mm to enforce a later COW,
520 		 * for instance during page table copying for fork().
521 		 */
522 		seqcount_t write_protect_seq;
523 
524 		spinlock_t arg_lock; /* protect the below fields */
525 
526 		unsigned long start_code, end_code, start_data, end_data;
527 		unsigned long start_brk, brk, start_stack;
528 		unsigned long arg_start, arg_end, env_start, env_end;
529 
530 		unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
531 
532 		/*
533 		 * Special counters, in some configurations protected by the
534 		 * page_table_lock, in other configurations by being atomic.
535 		 */
536 		struct mm_rss_stat rss_stat;
537 
538 		struct linux_binfmt *binfmt;
539 
540 		/* Architecture-specific MM context */
541 		mm_context_t context;
542 
543 		unsigned long flags; /* Must use atomic bitops to access */
544 
545 		struct core_state *core_state; /* coredumping support */
546 
547 #ifdef CONFIG_AIO
548 		spinlock_t			ioctx_lock;
549 		struct kioctx_table __rcu	*ioctx_table;
550 #endif
551 #ifdef CONFIG_MEMCG
552 		/*
553 		 * "owner" points to a task that is regarded as the canonical
554 		 * user/owner of this mm. All of the following must be true in
555 		 * order for it to be changed:
556 		 *
557 		 * current == mm->owner
558 		 * current->mm != mm
559 		 * new_owner->mm == mm
560 		 * new_owner->alloc_lock is held
561 		 */
562 		struct task_struct __rcu *owner;
563 #endif
564 		struct user_namespace *user_ns;
565 
566 		/* store ref to file /proc/<pid>/exe symlink points to */
567 		struct file __rcu *exe_file;
568 #ifdef CONFIG_MMU_NOTIFIER
569 		struct mmu_notifier_subscriptions *notifier_subscriptions;
570 #endif
571 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
572 		pgtable_t pmd_huge_pte; /* protected by page_table_lock */
573 #endif
574 #ifdef CONFIG_NUMA_BALANCING
575 		/*
576 		 * numa_next_scan is the next time that the PTEs will be marked
577 		 * pte_numa. NUMA hinting faults will gather statistics and
578 		 * migrate pages to new nodes if necessary.
579 		 */
580 		unsigned long numa_next_scan;
581 
582 		/* Restart point for scanning and setting pte_numa */
583 		unsigned long numa_scan_offset;
584 
585 		/* numa_scan_seq prevents two threads setting pte_numa */
586 		int numa_scan_seq;
587 #endif
588 		/*
589 		 * An operation with batched TLB flushing is going on. Anything
590 		 * that can move process memory needs to flush the TLB when
591 		 * moving a PROT_NONE or PROT_NUMA mapped page.
592 		 */
593 		atomic_t tlb_flush_pending;
594 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
595 		/* See flush_tlb_batched_pending() */
596 		bool tlb_flush_batched;
597 #endif
598 		struct uprobes_state uprobes_state;
599 #ifdef CONFIG_HUGETLB_PAGE
600 		atomic_long_t hugetlb_usage;
601 #endif
602 		struct work_struct async_put_work;
603 
604 #ifdef CONFIG_IOMMU_SUPPORT
605 		u32 pasid;
606 #endif
607 
608 #ifdef CONFIG_SECURITY_XPM
609 		struct xpm_region xpm_region;
610 #endif
611 
612 #ifdef CONFIG_SECURITY_CODE_SIGN
613 		struct cs_info pcs_info;
614 #endif
615 	} __randomize_layout;
616 
617 	/*
618 	 * The mm_cpumask needs to be at the end of mm_struct, because it
619 	 * is dynamically sized based on nr_cpu_ids.
620 	 */
621 	unsigned long cpu_bitmap[];
622 };
623 
624 extern struct mm_struct init_mm;
625 
626 /* Pointer magic because the dynamic array size confuses some compilers. */
mm_init_cpumask(struct mm_struct * mm)627 static inline void mm_init_cpumask(struct mm_struct *mm)
628 {
629 	unsigned long cpu_bitmap = (unsigned long)mm;
630 
631 	cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
632 	cpumask_clear((struct cpumask *)cpu_bitmap);
633 }
634 
635 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
mm_cpumask(struct mm_struct * mm)636 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
637 {
638 	return (struct cpumask *)&mm->cpu_bitmap;
639 }
640 
641 struct mmu_gather;
642 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
643 				unsigned long start, unsigned long end);
644 extern void tlb_finish_mmu(struct mmu_gather *tlb,
645 				unsigned long start, unsigned long end);
646 
init_tlb_flush_pending(struct mm_struct * mm)647 static inline void init_tlb_flush_pending(struct mm_struct *mm)
648 {
649 	atomic_set(&mm->tlb_flush_pending, 0);
650 }
651 
inc_tlb_flush_pending(struct mm_struct * mm)652 static inline void inc_tlb_flush_pending(struct mm_struct *mm)
653 {
654 	atomic_inc(&mm->tlb_flush_pending);
655 	/*
656 	 * The only time this value is relevant is when there are indeed pages
657 	 * to flush. And we'll only flush pages after changing them, which
658 	 * requires the PTL.
659 	 *
660 	 * So the ordering here is:
661 	 *
662 	 *	atomic_inc(&mm->tlb_flush_pending);
663 	 *	spin_lock(&ptl);
664 	 *	...
665 	 *	set_pte_at();
666 	 *	spin_unlock(&ptl);
667 	 *
668 	 *				spin_lock(&ptl)
669 	 *				mm_tlb_flush_pending();
670 	 *				....
671 	 *				spin_unlock(&ptl);
672 	 *
673 	 *	flush_tlb_range();
674 	 *	atomic_dec(&mm->tlb_flush_pending);
675 	 *
676 	 * Where the increment if constrained by the PTL unlock, it thus
677 	 * ensures that the increment is visible if the PTE modification is
678 	 * visible. After all, if there is no PTE modification, nobody cares
679 	 * about TLB flushes either.
680 	 *
681 	 * This very much relies on users (mm_tlb_flush_pending() and
682 	 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
683 	 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
684 	 * locks (PPC) the unlock of one doesn't order against the lock of
685 	 * another PTL.
686 	 *
687 	 * The decrement is ordered by the flush_tlb_range(), such that
688 	 * mm_tlb_flush_pending() will not return false unless all flushes have
689 	 * completed.
690 	 */
691 }
692 
dec_tlb_flush_pending(struct mm_struct * mm)693 static inline void dec_tlb_flush_pending(struct mm_struct *mm)
694 {
695 	/*
696 	 * See inc_tlb_flush_pending().
697 	 *
698 	 * This cannot be smp_mb__before_atomic() because smp_mb() simply does
699 	 * not order against TLB invalidate completion, which is what we need.
700 	 *
701 	 * Therefore we must rely on tlb_flush_*() to guarantee order.
702 	 */
703 	atomic_dec(&mm->tlb_flush_pending);
704 }
705 
mm_tlb_flush_pending(struct mm_struct * mm)706 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
707 {
708 	/*
709 	 * Must be called after having acquired the PTL; orders against that
710 	 * PTLs release and therefore ensures that if we observe the modified
711 	 * PTE we must also observe the increment from inc_tlb_flush_pending().
712 	 *
713 	 * That is, it only guarantees to return true if there is a flush
714 	 * pending for _this_ PTL.
715 	 */
716 	return atomic_read(&mm->tlb_flush_pending);
717 }
718 
mm_tlb_flush_nested(struct mm_struct * mm)719 static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
720 {
721 	/*
722 	 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
723 	 * for which there is a TLB flush pending in order to guarantee
724 	 * we've seen both that PTE modification and the increment.
725 	 *
726 	 * (no requirement on actually still holding the PTL, that is irrelevant)
727 	 */
728 	return atomic_read(&mm->tlb_flush_pending) > 1;
729 }
730 
731 struct vm_fault;
732 
733 /**
734  * typedef vm_fault_t - Return type for page fault handlers.
735  *
736  * Page fault handlers return a bitmask of %VM_FAULT values.
737  */
738 typedef __bitwise unsigned int vm_fault_t;
739 
740 /**
741  * enum vm_fault_reason - Page fault handlers return a bitmask of
742  * these values to tell the core VM what happened when handling the
743  * fault. Used to decide whether a process gets delivered SIGBUS or
744  * just gets major/minor fault counters bumped up.
745  *
746  * @VM_FAULT_OOM:		Out Of Memory
747  * @VM_FAULT_SIGBUS:		Bad access
748  * @VM_FAULT_MAJOR:		Page read from storage
749  * @VM_FAULT_WRITE:		Special case for get_user_pages
750  * @VM_FAULT_HWPOISON:		Hit poisoned small page
751  * @VM_FAULT_HWPOISON_LARGE:	Hit poisoned large page. Index encoded
752  *				in upper bits
753  * @VM_FAULT_SIGSEGV:		segmentation fault
754  * @VM_FAULT_NOPAGE:		->fault installed the pte, not return page
755  * @VM_FAULT_LOCKED:		->fault locked the returned page
756  * @VM_FAULT_RETRY:		->fault blocked, must retry
757  * @VM_FAULT_FALLBACK:		huge page fault failed, fall back to small
758  * @VM_FAULT_DONE_COW:		->fault has fully handled COW
759  * @VM_FAULT_NEEDDSYNC:		->fault did not modify page tables and needs
760  *				fsync() to complete (for synchronous page faults
761  *				in DAX)
762  * @VM_FAULT_HINDEX_MASK:	mask HINDEX value
763  *
764  */
765 enum vm_fault_reason {
766 	VM_FAULT_OOM            = (__force vm_fault_t)0x000001,
767 	VM_FAULT_SIGBUS         = (__force vm_fault_t)0x000002,
768 	VM_FAULT_MAJOR          = (__force vm_fault_t)0x000004,
769 	VM_FAULT_WRITE          = (__force vm_fault_t)0x000008,
770 	VM_FAULT_HWPOISON       = (__force vm_fault_t)0x000010,
771 	VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
772 	VM_FAULT_SIGSEGV        = (__force vm_fault_t)0x000040,
773 	VM_FAULT_NOPAGE         = (__force vm_fault_t)0x000100,
774 	VM_FAULT_LOCKED         = (__force vm_fault_t)0x000200,
775 	VM_FAULT_RETRY          = (__force vm_fault_t)0x000400,
776 	VM_FAULT_FALLBACK       = (__force vm_fault_t)0x000800,
777 	VM_FAULT_DONE_COW       = (__force vm_fault_t)0x001000,
778 	VM_FAULT_NEEDDSYNC      = (__force vm_fault_t)0x002000,
779 	VM_FAULT_HINDEX_MASK    = (__force vm_fault_t)0x0f0000,
780 };
781 
782 /* Encode hstate index for a hwpoisoned large page */
783 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
784 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
785 
786 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS |	\
787 			VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON |	\
788 			VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
789 
790 #define VM_FAULT_RESULT_TRACE \
791 	{ VM_FAULT_OOM,                 "OOM" },	\
792 	{ VM_FAULT_SIGBUS,              "SIGBUS" },	\
793 	{ VM_FAULT_MAJOR,               "MAJOR" },	\
794 	{ VM_FAULT_WRITE,               "WRITE" },	\
795 	{ VM_FAULT_HWPOISON,            "HWPOISON" },	\
796 	{ VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" },	\
797 	{ VM_FAULT_SIGSEGV,             "SIGSEGV" },	\
798 	{ VM_FAULT_NOPAGE,              "NOPAGE" },	\
799 	{ VM_FAULT_LOCKED,              "LOCKED" },	\
800 	{ VM_FAULT_RETRY,               "RETRY" },	\
801 	{ VM_FAULT_FALLBACK,            "FALLBACK" },	\
802 	{ VM_FAULT_DONE_COW,            "DONE_COW" },	\
803 	{ VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" }
804 
805 struct vm_special_mapping {
806 	const char *name;	/* The name, e.g. "[vdso]". */
807 
808 	/*
809 	 * If .fault is not provided, this points to a
810 	 * NULL-terminated array of pages that back the special mapping.
811 	 *
812 	 * This must not be NULL unless .fault is provided.
813 	 */
814 	struct page **pages;
815 
816 	/*
817 	 * If non-NULL, then this is called to resolve page faults
818 	 * on the special mapping.  If used, .pages is not checked.
819 	 */
820 	vm_fault_t (*fault)(const struct vm_special_mapping *sm,
821 				struct vm_area_struct *vma,
822 				struct vm_fault *vmf);
823 
824 	int (*mremap)(const struct vm_special_mapping *sm,
825 		     struct vm_area_struct *new_vma);
826 };
827 
828 enum tlb_flush_reason {
829 	TLB_FLUSH_ON_TASK_SWITCH,
830 	TLB_REMOTE_SHOOTDOWN,
831 	TLB_LOCAL_SHOOTDOWN,
832 	TLB_LOCAL_MM_SHOOTDOWN,
833 	TLB_REMOTE_SEND_IPI,
834 	NR_TLB_FLUSH_REASONS,
835 };
836 
837  /*
838   * A swap entry has to fit into a "unsigned long", as the entry is hidden
839   * in the "index" field of the swapper address space.
840   */
841 typedef struct {
842 	unsigned long val;
843 } swp_entry_t;
844 
845 #endif /* _LINUX_MM_TYPES_H */
846