1 /*
2 * Block driver for media (i.e., flash cards)
3 *
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
6 *
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
10 *
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
14 *
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
16 *
17 * Author: Andrew Christian
18 * 28 May 2002
19 */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/cdev.h>
32 #include <linux/mutex.h>
33 #include <linux/scatterlist.h>
34 #include <linux/string_helpers.h>
35 #include <linux/delay.h>
36 #include <linux/capability.h>
37 #include <linux/compat.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/idr.h>
40 #include <linux/debugfs.h>
41
42 #include <linux/mmc/ioctl.h>
43 #include <linux/mmc/card.h>
44 #include <linux/mmc/host.h>
45 #include <linux/mmc/mmc.h>
46 #include <linux/mmc/sd.h>
47
48 #include <linux/uaccess.h>
49
50 #include "queue.h"
51 #include "block.h"
52 #include "core.h"
53 #include "card.h"
54 #include "host.h"
55 #include "bus.h"
56 #include "mmc_ops.h"
57 #include "quirks.h"
58 #include "sd_ops.h"
59
60 MODULE_ALIAS("mmc:block");
61 #ifdef MODULE_PARAM_PREFIX
62 #undef MODULE_PARAM_PREFIX
63 #endif
64 #define MODULE_PARAM_PREFIX "mmcblk."
65
66 /*
67 * Set a 10 second timeout for polling write request busy state. Note, mmc core
68 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
69 * second software timer to timeout the whole request, so 10 seconds should be
70 * ample.
71 */
72 #define MMC_BLK_TIMEOUT_MS (10 * 1000)
73 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
74 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
75
76 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
77 (rq_data_dir(req) == WRITE))
78 static DEFINE_MUTEX(block_mutex);
79
80 /*
81 * The defaults come from config options but can be overriden by module
82 * or bootarg options.
83 */
84 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
85
86 /*
87 * We've only got one major, so number of mmcblk devices is
88 * limited to (1 << 20) / number of minors per device. It is also
89 * limited by the MAX_DEVICES below.
90 */
91 static int max_devices;
92
93 #define MAX_DEVICES 256
94
95 static DEFINE_IDA(mmc_blk_ida);
96 static DEFINE_IDA(mmc_rpmb_ida);
97
98 /*
99 * There is one mmc_blk_data per slot.
100 */
101 struct mmc_blk_data {
102 struct device *parent;
103 struct gendisk *disk;
104 struct mmc_queue queue;
105 struct list_head part;
106 struct list_head rpmbs;
107
108 unsigned int flags;
109 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
110 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
111
112 unsigned int usage;
113 unsigned int read_only;
114 unsigned int part_type;
115 unsigned int reset_done;
116 #define MMC_BLK_READ BIT(0)
117 #define MMC_BLK_WRITE BIT(1)
118 #define MMC_BLK_DISCARD BIT(2)
119 #define MMC_BLK_SECDISCARD BIT(3)
120 #define MMC_BLK_CQE_RECOVERY BIT(4)
121
122 /*
123 * Only set in main mmc_blk_data associated
124 * with mmc_card with dev_set_drvdata, and keeps
125 * track of the current selected device partition.
126 */
127 unsigned int part_curr;
128 struct device_attribute force_ro;
129 struct device_attribute power_ro_lock;
130 int area_type;
131
132 /* debugfs files (only in main mmc_blk_data) */
133 struct dentry *status_dentry;
134 struct dentry *ext_csd_dentry;
135 };
136
137 /* Device type for RPMB character devices */
138 static dev_t mmc_rpmb_devt;
139
140 /* Bus type for RPMB character devices */
141 static struct bus_type mmc_rpmb_bus_type = {
142 .name = "mmc_rpmb",
143 };
144
145 /**
146 * struct mmc_rpmb_data - special RPMB device type for these areas
147 * @dev: the device for the RPMB area
148 * @chrdev: character device for the RPMB area
149 * @id: unique device ID number
150 * @part_index: partition index (0 on first)
151 * @md: parent MMC block device
152 * @node: list item, so we can put this device on a list
153 */
154 struct mmc_rpmb_data {
155 struct device dev;
156 struct cdev chrdev;
157 int id;
158 unsigned int part_index;
159 struct mmc_blk_data *md;
160 struct list_head node;
161 };
162
163 static DEFINE_MUTEX(open_lock);
164
165 module_param(perdev_minors, int, 0444);
166 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
167
168 static inline int mmc_blk_part_switch(struct mmc_card *card,
169 unsigned int part_type);
170 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
171 struct mmc_card *card,
172 int recovery_mode,
173 struct mmc_queue *mq);
174 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
175
mmc_blk_get(struct gendisk * disk)176 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
177 {
178 struct mmc_blk_data *md;
179
180 mutex_lock(&open_lock);
181 md = disk->private_data;
182 if (md && md->usage == 0)
183 md = NULL;
184 if (md)
185 md->usage++;
186 mutex_unlock(&open_lock);
187
188 return md;
189 }
190
mmc_get_devidx(struct gendisk * disk)191 static inline int mmc_get_devidx(struct gendisk *disk)
192 {
193 int devidx = disk->first_minor / perdev_minors;
194 return devidx;
195 }
196
mmc_blk_put(struct mmc_blk_data * md)197 static void mmc_blk_put(struct mmc_blk_data *md)
198 {
199 mutex_lock(&open_lock);
200 md->usage--;
201 if (md->usage == 0) {
202 int devidx = mmc_get_devidx(md->disk);
203 blk_put_queue(md->queue.queue);
204 ida_simple_remove(&mmc_blk_ida, devidx);
205 put_disk(md->disk);
206 kfree(md);
207 }
208 mutex_unlock(&open_lock);
209 }
210
power_ro_lock_show(struct device * dev,struct device_attribute * attr,char * buf)211 static ssize_t power_ro_lock_show(struct device *dev,
212 struct device_attribute *attr, char *buf)
213 {
214 int ret;
215 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
216 struct mmc_card *card = md->queue.card;
217 int locked = 0;
218
219 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
220 locked = 2;
221 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
222 locked = 1;
223
224 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
225
226 mmc_blk_put(md);
227
228 return ret;
229 }
230
power_ro_lock_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)231 static ssize_t power_ro_lock_store(struct device *dev,
232 struct device_attribute *attr, const char *buf, size_t count)
233 {
234 int ret;
235 struct mmc_blk_data *md, *part_md;
236 struct mmc_queue *mq;
237 struct request *req;
238 unsigned long set;
239
240 if (kstrtoul(buf, 0, &set))
241 return -EINVAL;
242
243 if (set != 1)
244 return count;
245
246 md = mmc_blk_get(dev_to_disk(dev));
247 mq = &md->queue;
248
249 /* Dispatch locking to the block layer */
250 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
251 if (IS_ERR(req)) {
252 count = PTR_ERR(req);
253 goto out_put;
254 }
255 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
256 blk_execute_rq(mq->queue, NULL, req, 0);
257 ret = req_to_mmc_queue_req(req)->drv_op_result;
258 blk_put_request(req);
259
260 if (!ret) {
261 pr_info("%s: Locking boot partition ro until next power on\n",
262 md->disk->disk_name);
263 set_disk_ro(md->disk, 1);
264
265 list_for_each_entry(part_md, &md->part, part)
266 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
267 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
268 set_disk_ro(part_md->disk, 1);
269 }
270 }
271 out_put:
272 mmc_blk_put(md);
273 return count;
274 }
275
force_ro_show(struct device * dev,struct device_attribute * attr,char * buf)276 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
277 char *buf)
278 {
279 int ret;
280 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
281
282 ret = snprintf(buf, PAGE_SIZE, "%d\n",
283 get_disk_ro(dev_to_disk(dev)) ^
284 md->read_only);
285 mmc_blk_put(md);
286 return ret;
287 }
288
force_ro_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)289 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
290 const char *buf, size_t count)
291 {
292 int ret;
293 char *end;
294 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
295 unsigned long set = simple_strtoul(buf, &end, 0);
296 if (end == buf) {
297 ret = -EINVAL;
298 goto out;
299 }
300
301 set_disk_ro(dev_to_disk(dev), set || md->read_only);
302 ret = count;
303 out:
304 mmc_blk_put(md);
305 return ret;
306 }
307
mmc_blk_open(struct block_device * bdev,fmode_t mode)308 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
309 {
310 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
311 int ret = -ENXIO;
312
313 mutex_lock(&block_mutex);
314 if (md) {
315 ret = 0;
316 if ((mode & FMODE_WRITE) && md->read_only) {
317 mmc_blk_put(md);
318 ret = -EROFS;
319 }
320 }
321 mutex_unlock(&block_mutex);
322
323 return ret;
324 }
325
mmc_blk_release(struct gendisk * disk,fmode_t mode)326 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
327 {
328 struct mmc_blk_data *md = disk->private_data;
329
330 mutex_lock(&block_mutex);
331 mmc_blk_put(md);
332 mutex_unlock(&block_mutex);
333 }
334
335 static int
mmc_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)336 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
337 {
338 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
339 geo->heads = 4;
340 geo->sectors = 16;
341 return 0;
342 }
343
344 struct mmc_blk_ioc_data {
345 struct mmc_ioc_cmd ic;
346 unsigned char *buf;
347 u64 buf_bytes;
348 struct mmc_rpmb_data *rpmb;
349 };
350
mmc_blk_ioctl_copy_from_user(struct mmc_ioc_cmd __user * user)351 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
352 struct mmc_ioc_cmd __user *user)
353 {
354 struct mmc_blk_ioc_data *idata;
355 int err;
356
357 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
358 if (!idata) {
359 err = -ENOMEM;
360 goto out;
361 }
362
363 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
364 err = -EFAULT;
365 goto idata_err;
366 }
367
368 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
369 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
370 err = -EOVERFLOW;
371 goto idata_err;
372 }
373
374 if (!idata->buf_bytes) {
375 idata->buf = NULL;
376 return idata;
377 }
378
379 idata->buf = memdup_user((void __user *)(unsigned long)
380 idata->ic.data_ptr, idata->buf_bytes);
381 if (IS_ERR(idata->buf)) {
382 err = PTR_ERR(idata->buf);
383 goto idata_err;
384 }
385
386 return idata;
387
388 idata_err:
389 kfree(idata);
390 out:
391 return ERR_PTR(err);
392 }
393
mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user * ic_ptr,struct mmc_blk_ioc_data * idata)394 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
395 struct mmc_blk_ioc_data *idata)
396 {
397 struct mmc_ioc_cmd *ic = &idata->ic;
398
399 if (copy_to_user(&(ic_ptr->response), ic->response,
400 sizeof(ic->response)))
401 return -EFAULT;
402
403 if (!idata->ic.write_flag) {
404 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
405 idata->buf, idata->buf_bytes))
406 return -EFAULT;
407 }
408
409 return 0;
410 }
411
card_busy_detect(struct mmc_card * card,unsigned int timeout_ms,u32 * resp_errs)412 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
413 u32 *resp_errs)
414 {
415 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
416 int err = 0;
417 u32 status;
418
419 do {
420 bool done = time_after(jiffies, timeout);
421
422 err = __mmc_send_status(card, &status, 5);
423 if (err) {
424 dev_err(mmc_dev(card->host),
425 "error %d requesting status\n", err);
426 return err;
427 }
428
429 /* Accumulate any response error bits seen */
430 if (resp_errs)
431 *resp_errs |= status;
432
433 /*
434 * Timeout if the device never becomes ready for data and never
435 * leaves the program state.
436 */
437 if (done) {
438 dev_err(mmc_dev(card->host),
439 "Card stuck in wrong state! %s status: %#x\n",
440 __func__, status);
441 return -ETIMEDOUT;
442 }
443 } while (!mmc_ready_for_data(status));
444
445 return err;
446 }
447
__mmc_blk_ioctl_cmd(struct mmc_card * card,struct mmc_blk_data * md,struct mmc_blk_ioc_data * idata)448 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
449 struct mmc_blk_ioc_data *idata)
450 {
451 struct mmc_command cmd = {}, sbc = {};
452 struct mmc_data data = {};
453 struct mmc_request mrq = {};
454 struct scatterlist sg;
455 int err;
456 unsigned int target_part;
457
458 if (!card || !md || !idata)
459 return -EINVAL;
460
461 /*
462 * The RPMB accesses comes in from the character device, so we
463 * need to target these explicitly. Else we just target the
464 * partition type for the block device the ioctl() was issued
465 * on.
466 */
467 if (idata->rpmb) {
468 /* Support multiple RPMB partitions */
469 target_part = idata->rpmb->part_index;
470 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
471 } else {
472 target_part = md->part_type;
473 }
474
475 cmd.opcode = idata->ic.opcode;
476 cmd.arg = idata->ic.arg;
477 cmd.flags = idata->ic.flags;
478
479 if (idata->buf_bytes) {
480 data.sg = &sg;
481 data.sg_len = 1;
482 data.blksz = idata->ic.blksz;
483 data.blocks = idata->ic.blocks;
484
485 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
486
487 if (idata->ic.write_flag)
488 data.flags = MMC_DATA_WRITE;
489 else
490 data.flags = MMC_DATA_READ;
491
492 /* data.flags must already be set before doing this. */
493 mmc_set_data_timeout(&data, card);
494
495 /* Allow overriding the timeout_ns for empirical tuning. */
496 if (idata->ic.data_timeout_ns)
497 data.timeout_ns = idata->ic.data_timeout_ns;
498
499 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
500 /*
501 * Pretend this is a data transfer and rely on the
502 * host driver to compute timeout. When all host
503 * drivers support cmd.cmd_timeout for R1B, this
504 * can be changed to:
505 *
506 * mrq.data = NULL;
507 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
508 */
509 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
510 }
511
512 mrq.data = &data;
513 }
514
515 mrq.cmd = &cmd;
516
517 err = mmc_blk_part_switch(card, target_part);
518 if (err)
519 return err;
520
521 if (idata->ic.is_acmd) {
522 err = mmc_app_cmd(card->host, card);
523 if (err)
524 return err;
525 }
526
527 if (idata->rpmb) {
528 sbc.opcode = MMC_SET_BLOCK_COUNT;
529 /*
530 * We don't do any blockcount validation because the max size
531 * may be increased by a future standard. We just copy the
532 * 'Reliable Write' bit here.
533 */
534 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
535 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
536 mrq.sbc = &sbc;
537 }
538
539 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
540 (cmd.opcode == MMC_SWITCH))
541 return mmc_sanitize(card);
542
543 mmc_wait_for_req(card->host, &mrq);
544 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
545
546 if (cmd.error) {
547 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
548 __func__, cmd.error);
549 return cmd.error;
550 }
551 if (data.error) {
552 dev_err(mmc_dev(card->host), "%s: data error %d\n",
553 __func__, data.error);
554 return data.error;
555 }
556
557 /*
558 * Make sure the cache of the PARTITION_CONFIG register and
559 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
560 * changed it successfully.
561 */
562 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
563 (cmd.opcode == MMC_SWITCH)) {
564 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
565 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
566
567 /*
568 * Update cache so the next mmc_blk_part_switch call operates
569 * on up-to-date data.
570 */
571 card->ext_csd.part_config = value;
572 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
573 }
574
575 /*
576 * Make sure to update CACHE_CTRL in case it was changed. The cache
577 * will get turned back on if the card is re-initialized, e.g.
578 * suspend/resume or hw reset in recovery.
579 */
580 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
581 (cmd.opcode == MMC_SWITCH)) {
582 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
583
584 card->ext_csd.cache_ctrl = value;
585 }
586
587 /*
588 * According to the SD specs, some commands require a delay after
589 * issuing the command.
590 */
591 if (idata->ic.postsleep_min_us)
592 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
593
594 if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
595 /*
596 * Ensure RPMB/R1B command has completed by polling CMD13
597 * "Send Status".
598 */
599 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, NULL);
600 }
601
602 return err;
603 }
604
mmc_blk_ioctl_cmd(struct mmc_blk_data * md,struct mmc_ioc_cmd __user * ic_ptr,struct mmc_rpmb_data * rpmb)605 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
606 struct mmc_ioc_cmd __user *ic_ptr,
607 struct mmc_rpmb_data *rpmb)
608 {
609 struct mmc_blk_ioc_data *idata;
610 struct mmc_blk_ioc_data *idatas[1];
611 struct mmc_queue *mq;
612 struct mmc_card *card;
613 int err = 0, ioc_err = 0;
614 struct request *req;
615
616 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
617 if (IS_ERR(idata))
618 return PTR_ERR(idata);
619 /* This will be NULL on non-RPMB ioctl():s */
620 idata->rpmb = rpmb;
621
622 card = md->queue.card;
623 if (IS_ERR(card)) {
624 err = PTR_ERR(card);
625 goto cmd_done;
626 }
627
628 /*
629 * Dispatch the ioctl() into the block request queue.
630 */
631 mq = &md->queue;
632 req = blk_get_request(mq->queue,
633 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
634 if (IS_ERR(req)) {
635 err = PTR_ERR(req);
636 goto cmd_done;
637 }
638 idatas[0] = idata;
639 req_to_mmc_queue_req(req)->drv_op =
640 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
641 req_to_mmc_queue_req(req)->drv_op_data = idatas;
642 req_to_mmc_queue_req(req)->ioc_count = 1;
643 blk_execute_rq(mq->queue, NULL, req, 0);
644 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
645 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
646 blk_put_request(req);
647
648 cmd_done:
649 kfree(idata->buf);
650 kfree(idata);
651 return ioc_err ? ioc_err : err;
652 }
653
mmc_blk_ioctl_multi_cmd(struct mmc_blk_data * md,struct mmc_ioc_multi_cmd __user * user,struct mmc_rpmb_data * rpmb)654 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
655 struct mmc_ioc_multi_cmd __user *user,
656 struct mmc_rpmb_data *rpmb)
657 {
658 struct mmc_blk_ioc_data **idata = NULL;
659 struct mmc_ioc_cmd __user *cmds = user->cmds;
660 struct mmc_card *card;
661 struct mmc_queue *mq;
662 int i, err = 0, ioc_err = 0;
663 __u64 num_of_cmds;
664 struct request *req;
665
666 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
667 sizeof(num_of_cmds)))
668 return -EFAULT;
669
670 if (!num_of_cmds)
671 return 0;
672
673 if (num_of_cmds > MMC_IOC_MAX_CMDS)
674 return -EINVAL;
675
676 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
677 if (!idata)
678 return -ENOMEM;
679
680 for (i = 0; i < num_of_cmds; i++) {
681 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
682 if (IS_ERR(idata[i])) {
683 err = PTR_ERR(idata[i]);
684 num_of_cmds = i;
685 goto cmd_err;
686 }
687 /* This will be NULL on non-RPMB ioctl():s */
688 idata[i]->rpmb = rpmb;
689 }
690
691 card = md->queue.card;
692 if (IS_ERR(card)) {
693 err = PTR_ERR(card);
694 goto cmd_err;
695 }
696
697
698 /*
699 * Dispatch the ioctl()s into the block request queue.
700 */
701 mq = &md->queue;
702 req = blk_get_request(mq->queue,
703 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
704 if (IS_ERR(req)) {
705 err = PTR_ERR(req);
706 goto cmd_err;
707 }
708 req_to_mmc_queue_req(req)->drv_op =
709 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
710 req_to_mmc_queue_req(req)->drv_op_data = idata;
711 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
712 blk_execute_rq(mq->queue, NULL, req, 0);
713 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
714
715 /* copy to user if data and response */
716 for (i = 0; i < num_of_cmds && !err; i++)
717 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
718
719 blk_put_request(req);
720
721 cmd_err:
722 for (i = 0; i < num_of_cmds; i++) {
723 kfree(idata[i]->buf);
724 kfree(idata[i]);
725 }
726 kfree(idata);
727 return ioc_err ? ioc_err : err;
728 }
729
mmc_blk_check_blkdev(struct block_device * bdev)730 static int mmc_blk_check_blkdev(struct block_device *bdev)
731 {
732 /*
733 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
734 * whole block device, not on a partition. This prevents overspray
735 * between sibling partitions.
736 */
737 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
738 return -EPERM;
739 return 0;
740 }
741
mmc_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)742 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
743 unsigned int cmd, unsigned long arg)
744 {
745 struct mmc_blk_data *md;
746 int ret;
747
748 switch (cmd) {
749 case MMC_IOC_CMD:
750 ret = mmc_blk_check_blkdev(bdev);
751 if (ret)
752 return ret;
753 md = mmc_blk_get(bdev->bd_disk);
754 if (!md)
755 return -EINVAL;
756 ret = mmc_blk_ioctl_cmd(md,
757 (struct mmc_ioc_cmd __user *)arg,
758 NULL);
759 mmc_blk_put(md);
760 return ret;
761 case MMC_IOC_MULTI_CMD:
762 ret = mmc_blk_check_blkdev(bdev);
763 if (ret)
764 return ret;
765 md = mmc_blk_get(bdev->bd_disk);
766 if (!md)
767 return -EINVAL;
768 ret = mmc_blk_ioctl_multi_cmd(md,
769 (struct mmc_ioc_multi_cmd __user *)arg,
770 NULL);
771 mmc_blk_put(md);
772 return ret;
773 default:
774 return -EINVAL;
775 }
776 }
777
778 #ifdef CONFIG_COMPAT
mmc_blk_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)779 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
780 unsigned int cmd, unsigned long arg)
781 {
782 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
783 }
784 #endif
785
786 static const struct block_device_operations mmc_bdops = {
787 .open = mmc_blk_open,
788 .release = mmc_blk_release,
789 .getgeo = mmc_blk_getgeo,
790 .owner = THIS_MODULE,
791 .ioctl = mmc_blk_ioctl,
792 #ifdef CONFIG_COMPAT
793 .compat_ioctl = mmc_blk_compat_ioctl,
794 #endif
795 };
796
mmc_blk_part_switch_pre(struct mmc_card * card,unsigned int part_type)797 static int mmc_blk_part_switch_pre(struct mmc_card *card,
798 unsigned int part_type)
799 {
800 int ret = 0;
801
802 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
803 if (card->ext_csd.cmdq_en) {
804 ret = mmc_cmdq_disable(card);
805 if (ret)
806 return ret;
807 }
808 mmc_retune_pause(card->host);
809 }
810
811 return ret;
812 }
813
mmc_blk_part_switch_post(struct mmc_card * card,unsigned int part_type)814 static int mmc_blk_part_switch_post(struct mmc_card *card,
815 unsigned int part_type)
816 {
817 int ret = 0;
818
819 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
820 mmc_retune_unpause(card->host);
821 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
822 ret = mmc_cmdq_enable(card);
823 }
824
825 return ret;
826 }
827
mmc_blk_part_switch(struct mmc_card * card,unsigned int part_type)828 static inline int mmc_blk_part_switch(struct mmc_card *card,
829 unsigned int part_type)
830 {
831 int ret = 0;
832 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
833
834 if (main_md->part_curr == part_type)
835 return 0;
836
837 if (mmc_card_mmc(card)) {
838 u8 part_config = card->ext_csd.part_config;
839
840 ret = mmc_blk_part_switch_pre(card, part_type);
841 if (ret)
842 return ret;
843
844 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
845 part_config |= part_type;
846
847 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
848 EXT_CSD_PART_CONFIG, part_config,
849 card->ext_csd.part_time);
850 if (ret) {
851 mmc_blk_part_switch_post(card, part_type);
852 return ret;
853 }
854
855 card->ext_csd.part_config = part_config;
856
857 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
858 }
859
860 main_md->part_curr = part_type;
861 return ret;
862 }
863
mmc_sd_num_wr_blocks(struct mmc_card * card,u32 * written_blocks)864 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
865 {
866 int err;
867 u32 result;
868 __be32 *blocks;
869
870 struct mmc_request mrq = {};
871 struct mmc_command cmd = {};
872 struct mmc_data data = {};
873
874 struct scatterlist sg;
875
876 cmd.opcode = MMC_APP_CMD;
877 cmd.arg = card->rca << 16;
878 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
879
880 err = mmc_wait_for_cmd(card->host, &cmd, 0);
881 if (err)
882 return err;
883 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
884 return -EIO;
885
886 memset(&cmd, 0, sizeof(struct mmc_command));
887
888 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
889 cmd.arg = 0;
890 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
891
892 data.blksz = 4;
893 data.blocks = 1;
894 data.flags = MMC_DATA_READ;
895 data.sg = &sg;
896 data.sg_len = 1;
897 mmc_set_data_timeout(&data, card);
898
899 mrq.cmd = &cmd;
900 mrq.data = &data;
901
902 blocks = kmalloc(4, GFP_KERNEL);
903 if (!blocks)
904 return -ENOMEM;
905
906 sg_init_one(&sg, blocks, 4);
907
908 mmc_wait_for_req(card->host, &mrq);
909
910 result = ntohl(*blocks);
911 kfree(blocks);
912
913 if (cmd.error || data.error)
914 return -EIO;
915
916 *written_blocks = result;
917
918 return 0;
919 }
920
mmc_blk_clock_khz(struct mmc_host * host)921 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
922 {
923 if (host->actual_clock)
924 return host->actual_clock / 1000;
925
926 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
927 if (host->ios.clock)
928 return host->ios.clock / 2000;
929
930 /* How can there be no clock */
931 WARN_ON_ONCE(1);
932 return 100; /* 100 kHz is minimum possible value */
933 }
934
mmc_blk_data_timeout_ms(struct mmc_host * host,struct mmc_data * data)935 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
936 struct mmc_data *data)
937 {
938 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
939 unsigned int khz;
940
941 if (data->timeout_clks) {
942 khz = mmc_blk_clock_khz(host);
943 ms += DIV_ROUND_UP(data->timeout_clks, khz);
944 }
945
946 return ms;
947 }
948
mmc_blk_reset(struct mmc_blk_data * md,struct mmc_host * host,int type)949 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
950 int type)
951 {
952 int err;
953
954 if (md->reset_done & type)
955 return -EEXIST;
956
957 md->reset_done |= type;
958 err = mmc_hw_reset(host);
959 /* Ensure we switch back to the correct partition */
960 if (err != -EOPNOTSUPP) {
961 struct mmc_blk_data *main_md =
962 dev_get_drvdata(&host->card->dev);
963 int part_err;
964
965 main_md->part_curr = main_md->part_type;
966 part_err = mmc_blk_part_switch(host->card, md->part_type);
967 if (part_err) {
968 /*
969 * We have failed to get back into the correct
970 * partition, so we need to abort the whole request.
971 */
972 return -ENODEV;
973 }
974 }
975 return err;
976 }
977
mmc_blk_reset_success(struct mmc_blk_data * md,int type)978 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
979 {
980 md->reset_done &= ~type;
981 }
982
983 /*
984 * The non-block commands come back from the block layer after it queued it and
985 * processed it with all other requests and then they get issued in this
986 * function.
987 */
mmc_blk_issue_drv_op(struct mmc_queue * mq,struct request * req)988 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
989 {
990 struct mmc_queue_req *mq_rq;
991 struct mmc_card *card = mq->card;
992 struct mmc_blk_data *md = mq->blkdata;
993 struct mmc_blk_ioc_data **idata;
994 bool rpmb_ioctl;
995 u8 **ext_csd;
996 u32 status;
997 int ret;
998 int i;
999
1000 mq_rq = req_to_mmc_queue_req(req);
1001 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1002
1003 switch (mq_rq->drv_op) {
1004 case MMC_DRV_OP_IOCTL:
1005 if (card->ext_csd.cmdq_en) {
1006 ret = mmc_cmdq_disable(card);
1007 if (ret)
1008 break;
1009 }
1010 fallthrough;
1011 case MMC_DRV_OP_IOCTL_RPMB:
1012 idata = mq_rq->drv_op_data;
1013 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1014 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1015 if (ret)
1016 break;
1017 }
1018 /* Always switch back to main area after RPMB access */
1019 if (rpmb_ioctl)
1020 mmc_blk_part_switch(card, 0);
1021 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1022 mmc_cmdq_enable(card);
1023 break;
1024 case MMC_DRV_OP_BOOT_WP:
1025 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1026 card->ext_csd.boot_ro_lock |
1027 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1028 card->ext_csd.part_time);
1029 if (ret)
1030 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1031 md->disk->disk_name, ret);
1032 else
1033 card->ext_csd.boot_ro_lock |=
1034 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1035 break;
1036 case MMC_DRV_OP_GET_CARD_STATUS:
1037 ret = mmc_send_status(card, &status);
1038 if (!ret)
1039 ret = status;
1040 break;
1041 case MMC_DRV_OP_GET_EXT_CSD:
1042 ext_csd = mq_rq->drv_op_data;
1043 ret = mmc_get_ext_csd(card, ext_csd);
1044 break;
1045 default:
1046 pr_err("%s: unknown driver specific operation\n",
1047 md->disk->disk_name);
1048 ret = -EINVAL;
1049 break;
1050 }
1051 mq_rq->drv_op_result = ret;
1052 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1053 }
1054
mmc_blk_issue_discard_rq(struct mmc_queue * mq,struct request * req)1055 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1056 {
1057 struct mmc_blk_data *md = mq->blkdata;
1058 struct mmc_card *card = md->queue.card;
1059 unsigned int from, nr;
1060 int err = 0, type = MMC_BLK_DISCARD;
1061 blk_status_t status = BLK_STS_OK;
1062
1063 if (!mmc_can_erase(card)) {
1064 status = BLK_STS_NOTSUPP;
1065 goto fail;
1066 }
1067
1068 from = blk_rq_pos(req);
1069 nr = blk_rq_sectors(req);
1070
1071 do {
1072 unsigned int erase_arg = card->erase_arg;
1073
1074 if (mmc_card_broken_sd_discard(card))
1075 erase_arg = SD_ERASE_ARG;
1076
1077 err = 0;
1078 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1079 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1080 INAND_CMD38_ARG_EXT_CSD,
1081 card->erase_arg == MMC_TRIM_ARG ?
1082 INAND_CMD38_ARG_TRIM :
1083 INAND_CMD38_ARG_ERASE,
1084 card->ext_csd.generic_cmd6_time);
1085 }
1086 if (!err)
1087 err = mmc_erase(card, from, nr, erase_arg);
1088 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1089 if (err)
1090 status = BLK_STS_IOERR;
1091 else
1092 mmc_blk_reset_success(md, type);
1093 fail:
1094 blk_mq_end_request(req, status);
1095 }
1096
mmc_blk_issue_secdiscard_rq(struct mmc_queue * mq,struct request * req)1097 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1098 struct request *req)
1099 {
1100 struct mmc_blk_data *md = mq->blkdata;
1101 struct mmc_card *card = md->queue.card;
1102 unsigned int from, nr, arg;
1103 int err = 0, type = MMC_BLK_SECDISCARD;
1104 blk_status_t status = BLK_STS_OK;
1105
1106 if (!(mmc_can_secure_erase_trim(card))) {
1107 status = BLK_STS_NOTSUPP;
1108 goto out;
1109 }
1110
1111 from = blk_rq_pos(req);
1112 nr = blk_rq_sectors(req);
1113
1114 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1115 arg = MMC_SECURE_TRIM1_ARG;
1116 else
1117 arg = MMC_SECURE_ERASE_ARG;
1118
1119 retry:
1120 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1121 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1122 INAND_CMD38_ARG_EXT_CSD,
1123 arg == MMC_SECURE_TRIM1_ARG ?
1124 INAND_CMD38_ARG_SECTRIM1 :
1125 INAND_CMD38_ARG_SECERASE,
1126 card->ext_csd.generic_cmd6_time);
1127 if (err)
1128 goto out_retry;
1129 }
1130
1131 err = mmc_erase(card, from, nr, arg);
1132 if (err == -EIO)
1133 goto out_retry;
1134 if (err) {
1135 status = BLK_STS_IOERR;
1136 goto out;
1137 }
1138
1139 if (arg == MMC_SECURE_TRIM1_ARG) {
1140 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1141 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1142 INAND_CMD38_ARG_EXT_CSD,
1143 INAND_CMD38_ARG_SECTRIM2,
1144 card->ext_csd.generic_cmd6_time);
1145 if (err)
1146 goto out_retry;
1147 }
1148
1149 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1150 if (err == -EIO)
1151 goto out_retry;
1152 if (err) {
1153 status = BLK_STS_IOERR;
1154 goto out;
1155 }
1156 }
1157
1158 out_retry:
1159 if (err && !mmc_blk_reset(md, card->host, type))
1160 goto retry;
1161 if (!err)
1162 mmc_blk_reset_success(md, type);
1163 out:
1164 blk_mq_end_request(req, status);
1165 }
1166
mmc_blk_issue_flush(struct mmc_queue * mq,struct request * req)1167 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1168 {
1169 struct mmc_blk_data *md = mq->blkdata;
1170 struct mmc_card *card = md->queue.card;
1171 int ret = 0;
1172
1173 ret = mmc_flush_cache(card);
1174 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1175 }
1176
1177 /*
1178 * Reformat current write as a reliable write, supporting
1179 * both legacy and the enhanced reliable write MMC cards.
1180 * In each transfer we'll handle only as much as a single
1181 * reliable write can handle, thus finish the request in
1182 * partial completions.
1183 */
mmc_apply_rel_rw(struct mmc_blk_request * brq,struct mmc_card * card,struct request * req)1184 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1185 struct mmc_card *card,
1186 struct request *req)
1187 {
1188 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1189 /* Legacy mode imposes restrictions on transfers. */
1190 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1191 brq->data.blocks = 1;
1192
1193 if (brq->data.blocks > card->ext_csd.rel_sectors)
1194 brq->data.blocks = card->ext_csd.rel_sectors;
1195 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1196 brq->data.blocks = 1;
1197 }
1198 }
1199
1200 #define CMD_ERRORS_EXCL_OOR \
1201 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1202 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1203 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1204 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1205 R1_CC_ERROR | /* Card controller error */ \
1206 R1_ERROR) /* General/unknown error */
1207
1208 #define CMD_ERRORS \
1209 (CMD_ERRORS_EXCL_OOR | \
1210 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1211
mmc_blk_eval_resp_error(struct mmc_blk_request * brq)1212 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1213 {
1214 u32 val;
1215
1216 /*
1217 * Per the SD specification(physical layer version 4.10)[1],
1218 * section 4.3.3, it explicitly states that "When the last
1219 * block of user area is read using CMD18, the host should
1220 * ignore OUT_OF_RANGE error that may occur even the sequence
1221 * is correct". And JESD84-B51 for eMMC also has a similar
1222 * statement on section 6.8.3.
1223 *
1224 * Multiple block read/write could be done by either predefined
1225 * method, namely CMD23, or open-ending mode. For open-ending mode,
1226 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1227 *
1228 * However the spec[1] doesn't tell us whether we should also
1229 * ignore that for predefined method. But per the spec[1], section
1230 * 4.15 Set Block Count Command, it says"If illegal block count
1231 * is set, out of range error will be indicated during read/write
1232 * operation (For example, data transfer is stopped at user area
1233 * boundary)." In another word, we could expect a out of range error
1234 * in the response for the following CMD18/25. And if argument of
1235 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1236 * we could also expect to get a -ETIMEDOUT or any error number from
1237 * the host drivers due to missing data response(for write)/data(for
1238 * read), as the cards will stop the data transfer by itself per the
1239 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1240 */
1241
1242 if (!brq->stop.error) {
1243 bool oor_with_open_end;
1244 /* If there is no error yet, check R1 response */
1245
1246 val = brq->stop.resp[0] & CMD_ERRORS;
1247 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1248
1249 if (val && !oor_with_open_end)
1250 brq->stop.error = -EIO;
1251 }
1252 }
1253
mmc_blk_data_prep(struct mmc_queue * mq,struct mmc_queue_req * mqrq,int recovery_mode,bool * do_rel_wr_p,bool * do_data_tag_p)1254 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1255 int recovery_mode, bool *do_rel_wr_p,
1256 bool *do_data_tag_p)
1257 {
1258 struct mmc_blk_data *md = mq->blkdata;
1259 struct mmc_card *card = md->queue.card;
1260 struct mmc_blk_request *brq = &mqrq->brq;
1261 struct request *req = mmc_queue_req_to_req(mqrq);
1262 bool do_rel_wr, do_data_tag;
1263
1264 /*
1265 * Reliable writes are used to implement Forced Unit Access and
1266 * are supported only on MMCs.
1267 */
1268 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1269 rq_data_dir(req) == WRITE &&
1270 (md->flags & MMC_BLK_REL_WR);
1271
1272 memset(brq, 0, sizeof(struct mmc_blk_request));
1273
1274 brq->mrq.data = &brq->data;
1275 brq->mrq.tag = req->tag;
1276
1277 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1278 brq->stop.arg = 0;
1279
1280 if (rq_data_dir(req) == READ) {
1281 brq->data.flags = MMC_DATA_READ;
1282 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1283 } else {
1284 brq->data.flags = MMC_DATA_WRITE;
1285 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1286 }
1287
1288 brq->data.blksz = 512;
1289 brq->data.blocks = blk_rq_sectors(req);
1290 brq->data.blk_addr = blk_rq_pos(req);
1291
1292 /*
1293 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1294 * The eMMC will give "high" priority tasks priority over "simple"
1295 * priority tasks. Here we always set "simple" priority by not setting
1296 * MMC_DATA_PRIO.
1297 */
1298
1299 /*
1300 * The block layer doesn't support all sector count
1301 * restrictions, so we need to be prepared for too big
1302 * requests.
1303 */
1304 if (brq->data.blocks > card->host->max_blk_count)
1305 brq->data.blocks = card->host->max_blk_count;
1306
1307 if (brq->data.blocks > 1) {
1308 /*
1309 * Some SD cards in SPI mode return a CRC error or even lock up
1310 * completely when trying to read the last block using a
1311 * multiblock read command.
1312 */
1313 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1314 (blk_rq_pos(req) + blk_rq_sectors(req) ==
1315 get_capacity(md->disk)))
1316 brq->data.blocks--;
1317
1318 /*
1319 * After a read error, we redo the request one (native) sector
1320 * at a time in order to accurately determine which
1321 * sectors can be read successfully.
1322 */
1323 if (recovery_mode)
1324 brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1325
1326 /*
1327 * Some controllers have HW issues while operating
1328 * in multiple I/O mode
1329 */
1330 if (card->host->ops->multi_io_quirk)
1331 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1332 (rq_data_dir(req) == READ) ?
1333 MMC_DATA_READ : MMC_DATA_WRITE,
1334 brq->data.blocks);
1335 }
1336
1337 if (do_rel_wr) {
1338 mmc_apply_rel_rw(brq, card, req);
1339 brq->data.flags |= MMC_DATA_REL_WR;
1340 }
1341
1342 /*
1343 * Data tag is used only during writing meta data to speed
1344 * up write and any subsequent read of this meta data
1345 */
1346 do_data_tag = card->ext_csd.data_tag_unit_size &&
1347 (req->cmd_flags & REQ_META) &&
1348 (rq_data_dir(req) == WRITE) &&
1349 ((brq->data.blocks * brq->data.blksz) >=
1350 card->ext_csd.data_tag_unit_size);
1351
1352 if (do_data_tag)
1353 brq->data.flags |= MMC_DATA_DAT_TAG;
1354
1355 mmc_set_data_timeout(&brq->data, card);
1356
1357 brq->data.sg = mqrq->sg;
1358 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1359
1360 /*
1361 * Adjust the sg list so it is the same size as the
1362 * request.
1363 */
1364 if (brq->data.blocks != blk_rq_sectors(req)) {
1365 int i, data_size = brq->data.blocks << 9;
1366 struct scatterlist *sg;
1367
1368 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1369 data_size -= sg->length;
1370 if (data_size <= 0) {
1371 sg->length += data_size;
1372 i++;
1373 break;
1374 }
1375 }
1376 brq->data.sg_len = i;
1377 }
1378
1379 if (do_rel_wr_p)
1380 *do_rel_wr_p = do_rel_wr;
1381
1382 if (do_data_tag_p)
1383 *do_data_tag_p = do_data_tag;
1384 }
1385
1386 #define MMC_CQE_RETRIES 2
1387
mmc_blk_cqe_complete_rq(struct mmc_queue * mq,struct request * req)1388 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1389 {
1390 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1391 struct mmc_request *mrq = &mqrq->brq.mrq;
1392 struct request_queue *q = req->q;
1393 struct mmc_host *host = mq->card->host;
1394 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1395 unsigned long flags;
1396 bool put_card;
1397 int err;
1398
1399 mmc_cqe_post_req(host, mrq);
1400
1401 if (mrq->cmd && mrq->cmd->error)
1402 err = mrq->cmd->error;
1403 else if (mrq->data && mrq->data->error)
1404 err = mrq->data->error;
1405 else
1406 err = 0;
1407
1408 if (err) {
1409 if (mqrq->retries++ < MMC_CQE_RETRIES)
1410 blk_mq_requeue_request(req, true);
1411 else
1412 blk_mq_end_request(req, BLK_STS_IOERR);
1413 } else if (mrq->data) {
1414 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1415 blk_mq_requeue_request(req, true);
1416 else
1417 __blk_mq_end_request(req, BLK_STS_OK);
1418 } else {
1419 blk_mq_end_request(req, BLK_STS_OK);
1420 }
1421
1422 spin_lock_irqsave(&mq->lock, flags);
1423
1424 mq->in_flight[issue_type] -= 1;
1425
1426 put_card = (mmc_tot_in_flight(mq) == 0);
1427
1428 mmc_cqe_check_busy(mq);
1429
1430 spin_unlock_irqrestore(&mq->lock, flags);
1431
1432 if (!mq->cqe_busy)
1433 blk_mq_run_hw_queues(q, true);
1434
1435 if (put_card)
1436 mmc_put_card(mq->card, &mq->ctx);
1437 }
1438
mmc_blk_cqe_recovery(struct mmc_queue * mq)1439 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1440 {
1441 struct mmc_card *card = mq->card;
1442 struct mmc_host *host = card->host;
1443 int err;
1444
1445 pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1446
1447 err = mmc_cqe_recovery(host);
1448 if (err)
1449 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1450 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1451
1452 pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1453 }
1454
mmc_blk_cqe_req_done(struct mmc_request * mrq)1455 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1456 {
1457 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1458 brq.mrq);
1459 struct request *req = mmc_queue_req_to_req(mqrq);
1460 struct request_queue *q = req->q;
1461 struct mmc_queue *mq = q->queuedata;
1462
1463 /*
1464 * Block layer timeouts race with completions which means the normal
1465 * completion path cannot be used during recovery.
1466 */
1467 if (mq->in_recovery)
1468 mmc_blk_cqe_complete_rq(mq, req);
1469 else if (likely(!blk_should_fake_timeout(req->q)))
1470 blk_mq_complete_request(req);
1471 }
1472
mmc_blk_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)1473 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1474 {
1475 mrq->done = mmc_blk_cqe_req_done;
1476 mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1477
1478 return mmc_cqe_start_req(host, mrq);
1479 }
1480
mmc_blk_cqe_prep_dcmd(struct mmc_queue_req * mqrq,struct request * req)1481 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1482 struct request *req)
1483 {
1484 struct mmc_blk_request *brq = &mqrq->brq;
1485
1486 memset(brq, 0, sizeof(*brq));
1487
1488 brq->mrq.cmd = &brq->cmd;
1489 brq->mrq.tag = req->tag;
1490
1491 return &brq->mrq;
1492 }
1493
mmc_blk_cqe_issue_flush(struct mmc_queue * mq,struct request * req)1494 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1495 {
1496 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1497 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1498
1499 mrq->cmd->opcode = MMC_SWITCH;
1500 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1501 (EXT_CSD_FLUSH_CACHE << 16) |
1502 (1 << 8) |
1503 EXT_CSD_CMD_SET_NORMAL;
1504 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1505
1506 return mmc_blk_cqe_start_req(mq->card->host, mrq);
1507 }
1508
mmc_blk_hsq_issue_rw_rq(struct mmc_queue * mq,struct request * req)1509 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1510 {
1511 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1512 struct mmc_host *host = mq->card->host;
1513 int err;
1514
1515 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1516 mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1517 mmc_pre_req(host, &mqrq->brq.mrq);
1518
1519 err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1520 if (err)
1521 mmc_post_req(host, &mqrq->brq.mrq, err);
1522
1523 return err;
1524 }
1525
mmc_blk_cqe_issue_rw_rq(struct mmc_queue * mq,struct request * req)1526 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1527 {
1528 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1529 struct mmc_host *host = mq->card->host;
1530
1531 if (host->hsq_enabled)
1532 return mmc_blk_hsq_issue_rw_rq(mq, req);
1533
1534 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1535
1536 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1537 }
1538
mmc_blk_rw_rq_prep(struct mmc_queue_req * mqrq,struct mmc_card * card,int recovery_mode,struct mmc_queue * mq)1539 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1540 struct mmc_card *card,
1541 int recovery_mode,
1542 struct mmc_queue *mq)
1543 {
1544 u32 readcmd, writecmd;
1545 struct mmc_blk_request *brq = &mqrq->brq;
1546 struct request *req = mmc_queue_req_to_req(mqrq);
1547 struct mmc_blk_data *md = mq->blkdata;
1548 bool do_rel_wr, do_data_tag;
1549
1550 mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1551
1552 brq->mrq.cmd = &brq->cmd;
1553
1554 brq->cmd.arg = blk_rq_pos(req);
1555 if (!mmc_card_blockaddr(card))
1556 brq->cmd.arg <<= 9;
1557 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1558
1559 if (brq->data.blocks > 1 || do_rel_wr) {
1560 /* SPI multiblock writes terminate using a special
1561 * token, not a STOP_TRANSMISSION request.
1562 */
1563 if (!mmc_host_is_spi(card->host) ||
1564 rq_data_dir(req) == READ)
1565 brq->mrq.stop = &brq->stop;
1566 readcmd = MMC_READ_MULTIPLE_BLOCK;
1567 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1568 } else {
1569 brq->mrq.stop = NULL;
1570 readcmd = MMC_READ_SINGLE_BLOCK;
1571 writecmd = MMC_WRITE_BLOCK;
1572 }
1573 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1574
1575 /*
1576 * Pre-defined multi-block transfers are preferable to
1577 * open ended-ones (and necessary for reliable writes).
1578 * However, it is not sufficient to just send CMD23,
1579 * and avoid the final CMD12, as on an error condition
1580 * CMD12 (stop) needs to be sent anyway. This, coupled
1581 * with Auto-CMD23 enhancements provided by some
1582 * hosts, means that the complexity of dealing
1583 * with this is best left to the host. If CMD23 is
1584 * supported by card and host, we'll fill sbc in and let
1585 * the host deal with handling it correctly. This means
1586 * that for hosts that don't expose MMC_CAP_CMD23, no
1587 * change of behavior will be observed.
1588 *
1589 * N.B: Some MMC cards experience perf degradation.
1590 * We'll avoid using CMD23-bounded multiblock writes for
1591 * these, while retaining features like reliable writes.
1592 */
1593 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1594 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1595 do_data_tag)) {
1596 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1597 brq->sbc.arg = brq->data.blocks |
1598 (do_rel_wr ? (1 << 31) : 0) |
1599 (do_data_tag ? (1 << 29) : 0);
1600 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1601 brq->mrq.sbc = &brq->sbc;
1602 }
1603 }
1604
1605 #define MMC_MAX_RETRIES 5
1606 #define MMC_DATA_RETRIES 2
1607 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1608
mmc_blk_send_stop(struct mmc_card * card,unsigned int timeout)1609 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1610 {
1611 struct mmc_command cmd = {
1612 .opcode = MMC_STOP_TRANSMISSION,
1613 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1614 /* Some hosts wait for busy anyway, so provide a busy timeout */
1615 .busy_timeout = timeout,
1616 };
1617
1618 return mmc_wait_for_cmd(card->host, &cmd, 5);
1619 }
1620
mmc_blk_fix_state(struct mmc_card * card,struct request * req)1621 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1622 {
1623 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1624 struct mmc_blk_request *brq = &mqrq->brq;
1625 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1626 int err;
1627
1628 mmc_retune_hold_now(card->host);
1629
1630 mmc_blk_send_stop(card, timeout);
1631
1632 err = card_busy_detect(card, timeout, NULL);
1633
1634 mmc_retune_release(card->host);
1635
1636 return err;
1637 }
1638
1639 #define MMC_READ_SINGLE_RETRIES 2
1640
1641 /* Single (native) sector read during recovery */
mmc_blk_read_single(struct mmc_queue * mq,struct request * req)1642 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1643 {
1644 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1645 struct mmc_request *mrq = &mqrq->brq.mrq;
1646 struct mmc_card *card = mq->card;
1647 struct mmc_host *host = card->host;
1648 blk_status_t error = BLK_STS_OK;
1649 size_t bytes_per_read = queue_physical_block_size(mq->queue);
1650
1651 do {
1652 u32 status;
1653 int err;
1654 int retries = 0;
1655
1656 while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1657 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1658
1659 mmc_wait_for_req(host, mrq);
1660
1661 err = mmc_send_status(card, &status);
1662 if (err)
1663 goto error_exit;
1664
1665 if (!mmc_host_is_spi(host) &&
1666 !mmc_ready_for_data(status)) {
1667 err = mmc_blk_fix_state(card, req);
1668 if (err)
1669 goto error_exit;
1670 }
1671
1672 if (!mrq->cmd->error)
1673 break;
1674 }
1675
1676 if (mrq->cmd->error ||
1677 mrq->data->error ||
1678 (!mmc_host_is_spi(host) &&
1679 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1680 error = BLK_STS_IOERR;
1681 else
1682 error = BLK_STS_OK;
1683
1684 } while (blk_update_request(req, error, bytes_per_read));
1685
1686 return;
1687
1688 error_exit:
1689 mrq->data->bytes_xfered = 0;
1690 blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1691 /* Let it try the remaining request again */
1692 if (mqrq->retries > MMC_MAX_RETRIES - 1)
1693 mqrq->retries = MMC_MAX_RETRIES - 1;
1694 }
1695
mmc_blk_oor_valid(struct mmc_blk_request * brq)1696 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1697 {
1698 return !!brq->mrq.sbc;
1699 }
1700
mmc_blk_stop_err_bits(struct mmc_blk_request * brq)1701 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1702 {
1703 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1704 }
1705
1706 /*
1707 * Check for errors the host controller driver might not have seen such as
1708 * response mode errors or invalid card state.
1709 */
mmc_blk_status_error(struct request * req,u32 status)1710 static bool mmc_blk_status_error(struct request *req, u32 status)
1711 {
1712 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1713 struct mmc_blk_request *brq = &mqrq->brq;
1714 struct mmc_queue *mq = req->q->queuedata;
1715 u32 stop_err_bits;
1716
1717 if (mmc_host_is_spi(mq->card->host))
1718 return false;
1719
1720 stop_err_bits = mmc_blk_stop_err_bits(brq);
1721
1722 return brq->cmd.resp[0] & CMD_ERRORS ||
1723 brq->stop.resp[0] & stop_err_bits ||
1724 status & stop_err_bits ||
1725 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1726 }
1727
mmc_blk_cmd_started(struct mmc_blk_request * brq)1728 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1729 {
1730 return !brq->sbc.error && !brq->cmd.error &&
1731 !(brq->cmd.resp[0] & CMD_ERRORS);
1732 }
1733
1734 /*
1735 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1736 * policy:
1737 * 1. A request that has transferred at least some data is considered
1738 * successful and will be requeued if there is remaining data to
1739 * transfer.
1740 * 2. Otherwise the number of retries is incremented and the request
1741 * will be requeued if there are remaining retries.
1742 * 3. Otherwise the request will be errored out.
1743 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1744 * mqrq->retries. So there are only 4 possible actions here:
1745 * 1. do not accept the bytes_xfered value i.e. set it to zero
1746 * 2. change mqrq->retries to determine the number of retries
1747 * 3. try to reset the card
1748 * 4. read one sector at a time
1749 */
mmc_blk_mq_rw_recovery(struct mmc_queue * mq,struct request * req)1750 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1751 {
1752 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1753 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1754 struct mmc_blk_request *brq = &mqrq->brq;
1755 struct mmc_blk_data *md = mq->blkdata;
1756 struct mmc_card *card = mq->card;
1757 u32 status;
1758 u32 blocks;
1759 int err;
1760
1761 /*
1762 * Some errors the host driver might not have seen. Set the number of
1763 * bytes transferred to zero in that case.
1764 */
1765 err = __mmc_send_status(card, &status, 0);
1766 if (err || mmc_blk_status_error(req, status))
1767 brq->data.bytes_xfered = 0;
1768
1769 mmc_retune_release(card->host);
1770
1771 /*
1772 * Try again to get the status. This also provides an opportunity for
1773 * re-tuning.
1774 */
1775 if (err)
1776 err = __mmc_send_status(card, &status, 0);
1777
1778 /*
1779 * Nothing more to do after the number of bytes transferred has been
1780 * updated and there is no card.
1781 */
1782 if (err && mmc_detect_card_removed(card->host))
1783 return;
1784
1785 /* Try to get back to "tran" state */
1786 if (!mmc_host_is_spi(mq->card->host) &&
1787 (err || !mmc_ready_for_data(status)))
1788 err = mmc_blk_fix_state(mq->card, req);
1789
1790 /*
1791 * Special case for SD cards where the card might record the number of
1792 * blocks written.
1793 */
1794 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1795 rq_data_dir(req) == WRITE) {
1796 if (mmc_sd_num_wr_blocks(card, &blocks))
1797 brq->data.bytes_xfered = 0;
1798 else
1799 brq->data.bytes_xfered = blocks << 9;
1800 }
1801
1802 /* Reset if the card is in a bad state */
1803 if (!mmc_host_is_spi(mq->card->host) &&
1804 err && mmc_blk_reset(md, card->host, type)) {
1805 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1806 mqrq->retries = MMC_NO_RETRIES;
1807 return;
1808 }
1809
1810 /*
1811 * If anything was done, just return and if there is anything remaining
1812 * on the request it will get requeued.
1813 */
1814 if (brq->data.bytes_xfered)
1815 return;
1816
1817 /* Reset before last retry */
1818 if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1819 mmc_blk_reset(md, card->host, type);
1820
1821 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1822 if (brq->sbc.error || brq->cmd.error)
1823 return;
1824
1825 /* Reduce the remaining retries for data errors */
1826 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1827 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1828 return;
1829 }
1830
1831 if (rq_data_dir(req) == READ && brq->data.blocks >
1832 queue_physical_block_size(mq->queue) >> 9) {
1833 /* Read one (native) sector at a time */
1834 mmc_blk_read_single(mq, req);
1835 return;
1836 }
1837 }
1838
mmc_blk_rq_error(struct mmc_blk_request * brq)1839 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1840 {
1841 mmc_blk_eval_resp_error(brq);
1842
1843 return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1844 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1845 }
1846
mmc_blk_card_busy(struct mmc_card * card,struct request * req)1847 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1848 {
1849 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1850 u32 status = 0;
1851 int err;
1852
1853 if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1854 return 0;
1855
1856 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, &status);
1857
1858 /*
1859 * Do not assume data transferred correctly if there are any error bits
1860 * set.
1861 */
1862 if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1863 mqrq->brq.data.bytes_xfered = 0;
1864 err = err ? err : -EIO;
1865 }
1866
1867 /* Copy the exception bit so it will be seen later on */
1868 if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1869 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1870
1871 return err;
1872 }
1873
mmc_blk_rw_reset_success(struct mmc_queue * mq,struct request * req)1874 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1875 struct request *req)
1876 {
1877 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1878
1879 mmc_blk_reset_success(mq->blkdata, type);
1880 }
1881
mmc_blk_mq_complete_rq(struct mmc_queue * mq,struct request * req)1882 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1883 {
1884 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1885 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1886
1887 if (nr_bytes) {
1888 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1889 blk_mq_requeue_request(req, true);
1890 else
1891 __blk_mq_end_request(req, BLK_STS_OK);
1892 } else if (!blk_rq_bytes(req)) {
1893 __blk_mq_end_request(req, BLK_STS_IOERR);
1894 } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1895 blk_mq_requeue_request(req, true);
1896 } else {
1897 if (mmc_card_removed(mq->card))
1898 req->rq_flags |= RQF_QUIET;
1899 blk_mq_end_request(req, BLK_STS_IOERR);
1900 }
1901 }
1902
mmc_blk_urgent_bkops_needed(struct mmc_queue * mq,struct mmc_queue_req * mqrq)1903 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1904 struct mmc_queue_req *mqrq)
1905 {
1906 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1907 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1908 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1909 }
1910
mmc_blk_urgent_bkops(struct mmc_queue * mq,struct mmc_queue_req * mqrq)1911 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1912 struct mmc_queue_req *mqrq)
1913 {
1914 if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1915 mmc_run_bkops(mq->card);
1916 }
1917
mmc_blk_hsq_req_done(struct mmc_request * mrq)1918 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
1919 {
1920 struct mmc_queue_req *mqrq =
1921 container_of(mrq, struct mmc_queue_req, brq.mrq);
1922 struct request *req = mmc_queue_req_to_req(mqrq);
1923 struct request_queue *q = req->q;
1924 struct mmc_queue *mq = q->queuedata;
1925 struct mmc_host *host = mq->card->host;
1926 unsigned long flags;
1927
1928 if (mmc_blk_rq_error(&mqrq->brq) ||
1929 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
1930 spin_lock_irqsave(&mq->lock, flags);
1931 mq->recovery_needed = true;
1932 mq->recovery_req = req;
1933 spin_unlock_irqrestore(&mq->lock, flags);
1934
1935 host->cqe_ops->cqe_recovery_start(host);
1936
1937 schedule_work(&mq->recovery_work);
1938 return;
1939 }
1940
1941 mmc_blk_rw_reset_success(mq, req);
1942
1943 /*
1944 * Block layer timeouts race with completions which means the normal
1945 * completion path cannot be used during recovery.
1946 */
1947 if (mq->in_recovery)
1948 mmc_blk_cqe_complete_rq(mq, req);
1949 else if (likely(!blk_should_fake_timeout(req->q)))
1950 blk_mq_complete_request(req);
1951 }
1952
mmc_blk_mq_complete(struct request * req)1953 void mmc_blk_mq_complete(struct request *req)
1954 {
1955 struct mmc_queue *mq = req->q->queuedata;
1956
1957 if (mq->use_cqe)
1958 mmc_blk_cqe_complete_rq(mq, req);
1959 else if (likely(!blk_should_fake_timeout(req->q)))
1960 mmc_blk_mq_complete_rq(mq, req);
1961 }
1962
mmc_blk_mq_poll_completion(struct mmc_queue * mq,struct request * req)1963 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1964 struct request *req)
1965 {
1966 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1967 struct mmc_host *host = mq->card->host;
1968
1969 if (mmc_blk_rq_error(&mqrq->brq) ||
1970 mmc_blk_card_busy(mq->card, req)) {
1971 mmc_blk_mq_rw_recovery(mq, req);
1972 } else {
1973 mmc_blk_rw_reset_success(mq, req);
1974 mmc_retune_release(host);
1975 }
1976
1977 mmc_blk_urgent_bkops(mq, mqrq);
1978 }
1979
mmc_blk_mq_dec_in_flight(struct mmc_queue * mq,struct request * req)1980 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1981 {
1982 unsigned long flags;
1983 bool put_card;
1984
1985 spin_lock_irqsave(&mq->lock, flags);
1986
1987 mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1988
1989 put_card = (mmc_tot_in_flight(mq) == 0);
1990
1991 spin_unlock_irqrestore(&mq->lock, flags);
1992
1993 if (put_card)
1994 mmc_put_card(mq->card, &mq->ctx);
1995 }
1996
mmc_blk_mq_post_req(struct mmc_queue * mq,struct request * req)1997 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
1998 {
1999 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2000 struct mmc_request *mrq = &mqrq->brq.mrq;
2001 struct mmc_host *host = mq->card->host;
2002
2003 mmc_post_req(host, mrq, 0);
2004
2005 /*
2006 * Block layer timeouts race with completions which means the normal
2007 * completion path cannot be used during recovery.
2008 */
2009 if (mq->in_recovery)
2010 mmc_blk_mq_complete_rq(mq, req);
2011 else if (likely(!blk_should_fake_timeout(req->q)))
2012 blk_mq_complete_request(req);
2013
2014 mmc_blk_mq_dec_in_flight(mq, req);
2015 }
2016
mmc_blk_mq_recovery(struct mmc_queue * mq)2017 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2018 {
2019 struct request *req = mq->recovery_req;
2020 struct mmc_host *host = mq->card->host;
2021 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2022
2023 mq->recovery_req = NULL;
2024 mq->rw_wait = false;
2025
2026 if (mmc_blk_rq_error(&mqrq->brq)) {
2027 mmc_retune_hold_now(host);
2028 mmc_blk_mq_rw_recovery(mq, req);
2029 }
2030
2031 mmc_blk_urgent_bkops(mq, mqrq);
2032
2033 mmc_blk_mq_post_req(mq, req);
2034 }
2035
mmc_blk_mq_complete_prev_req(struct mmc_queue * mq,struct request ** prev_req)2036 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2037 struct request **prev_req)
2038 {
2039 if (mmc_host_done_complete(mq->card->host))
2040 return;
2041
2042 mutex_lock(&mq->complete_lock);
2043
2044 if (!mq->complete_req)
2045 goto out_unlock;
2046
2047 mmc_blk_mq_poll_completion(mq, mq->complete_req);
2048
2049 if (prev_req)
2050 *prev_req = mq->complete_req;
2051 else
2052 mmc_blk_mq_post_req(mq, mq->complete_req);
2053
2054 mq->complete_req = NULL;
2055
2056 out_unlock:
2057 mutex_unlock(&mq->complete_lock);
2058 }
2059
mmc_blk_mq_complete_work(struct work_struct * work)2060 void mmc_blk_mq_complete_work(struct work_struct *work)
2061 {
2062 struct mmc_queue *mq = container_of(work, struct mmc_queue,
2063 complete_work);
2064
2065 mmc_blk_mq_complete_prev_req(mq, NULL);
2066 }
2067
mmc_blk_mq_req_done(struct mmc_request * mrq)2068 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2069 {
2070 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2071 brq.mrq);
2072 struct request *req = mmc_queue_req_to_req(mqrq);
2073 struct request_queue *q = req->q;
2074 struct mmc_queue *mq = q->queuedata;
2075 struct mmc_host *host = mq->card->host;
2076 unsigned long flags;
2077
2078 if (!mmc_host_done_complete(host)) {
2079 bool waiting;
2080
2081 /*
2082 * We cannot complete the request in this context, so record
2083 * that there is a request to complete, and that a following
2084 * request does not need to wait (although it does need to
2085 * complete complete_req first).
2086 */
2087 spin_lock_irqsave(&mq->lock, flags);
2088 mq->complete_req = req;
2089 mq->rw_wait = false;
2090 waiting = mq->waiting;
2091 spin_unlock_irqrestore(&mq->lock, flags);
2092
2093 /*
2094 * If 'waiting' then the waiting task will complete this
2095 * request, otherwise queue a work to do it. Note that
2096 * complete_work may still race with the dispatch of a following
2097 * request.
2098 */
2099 if (waiting)
2100 wake_up(&mq->wait);
2101 else
2102 queue_work(mq->card->complete_wq, &mq->complete_work);
2103
2104 return;
2105 }
2106
2107 /* Take the recovery path for errors or urgent background operations */
2108 if (mmc_blk_rq_error(&mqrq->brq) ||
2109 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2110 spin_lock_irqsave(&mq->lock, flags);
2111 mq->recovery_needed = true;
2112 mq->recovery_req = req;
2113 spin_unlock_irqrestore(&mq->lock, flags);
2114 wake_up(&mq->wait);
2115 schedule_work(&mq->recovery_work);
2116 return;
2117 }
2118
2119 mmc_blk_rw_reset_success(mq, req);
2120
2121 mq->rw_wait = false;
2122 wake_up(&mq->wait);
2123
2124 mmc_blk_mq_post_req(mq, req);
2125 }
2126
mmc_blk_rw_wait_cond(struct mmc_queue * mq,int * err)2127 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2128 {
2129 unsigned long flags;
2130 bool done;
2131
2132 /*
2133 * Wait while there is another request in progress, but not if recovery
2134 * is needed. Also indicate whether there is a request waiting to start.
2135 */
2136 spin_lock_irqsave(&mq->lock, flags);
2137 if (mq->recovery_needed) {
2138 *err = -EBUSY;
2139 done = true;
2140 } else {
2141 done = !mq->rw_wait;
2142 }
2143 mq->waiting = !done;
2144 spin_unlock_irqrestore(&mq->lock, flags);
2145
2146 return done;
2147 }
2148
mmc_blk_rw_wait(struct mmc_queue * mq,struct request ** prev_req)2149 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2150 {
2151 int err = 0;
2152
2153 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2154
2155 /* Always complete the previous request if there is one */
2156 mmc_blk_mq_complete_prev_req(mq, prev_req);
2157
2158 return err;
2159 }
2160
mmc_blk_mq_issue_rw_rq(struct mmc_queue * mq,struct request * req)2161 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2162 struct request *req)
2163 {
2164 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2165 struct mmc_host *host = mq->card->host;
2166 struct request *prev_req = NULL;
2167 int err = 0;
2168
2169 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2170
2171 mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2172
2173 mmc_pre_req(host, &mqrq->brq.mrq);
2174
2175 err = mmc_blk_rw_wait(mq, &prev_req);
2176 if (err)
2177 goto out_post_req;
2178
2179 mq->rw_wait = true;
2180
2181 err = mmc_start_request(host, &mqrq->brq.mrq);
2182
2183 if (prev_req)
2184 mmc_blk_mq_post_req(mq, prev_req);
2185
2186 if (err)
2187 mq->rw_wait = false;
2188
2189 /* Release re-tuning here where there is no synchronization required */
2190 if (err || mmc_host_done_complete(host))
2191 mmc_retune_release(host);
2192
2193 out_post_req:
2194 if (err)
2195 mmc_post_req(host, &mqrq->brq.mrq, err);
2196
2197 return err;
2198 }
2199
mmc_blk_wait_for_idle(struct mmc_queue * mq,struct mmc_host * host)2200 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2201 {
2202 if (mq->use_cqe)
2203 return host->cqe_ops->cqe_wait_for_idle(host);
2204
2205 return mmc_blk_rw_wait(mq, NULL);
2206 }
2207
mmc_blk_mq_issue_rq(struct mmc_queue * mq,struct request * req)2208 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2209 {
2210 struct mmc_blk_data *md = mq->blkdata;
2211 struct mmc_card *card = md->queue.card;
2212 struct mmc_host *host = card->host;
2213 int ret;
2214
2215 ret = mmc_blk_part_switch(card, md->part_type);
2216 if (ret)
2217 return MMC_REQ_FAILED_TO_START;
2218
2219 switch (mmc_issue_type(mq, req)) {
2220 case MMC_ISSUE_SYNC:
2221 ret = mmc_blk_wait_for_idle(mq, host);
2222 if (ret)
2223 return MMC_REQ_BUSY;
2224 switch (req_op(req)) {
2225 case REQ_OP_DRV_IN:
2226 case REQ_OP_DRV_OUT:
2227 mmc_blk_issue_drv_op(mq, req);
2228 break;
2229 case REQ_OP_DISCARD:
2230 mmc_blk_issue_discard_rq(mq, req);
2231 break;
2232 case REQ_OP_SECURE_ERASE:
2233 mmc_blk_issue_secdiscard_rq(mq, req);
2234 break;
2235 case REQ_OP_FLUSH:
2236 mmc_blk_issue_flush(mq, req);
2237 break;
2238 default:
2239 WARN_ON_ONCE(1);
2240 return MMC_REQ_FAILED_TO_START;
2241 }
2242 return MMC_REQ_FINISHED;
2243 case MMC_ISSUE_DCMD:
2244 case MMC_ISSUE_ASYNC:
2245 switch (req_op(req)) {
2246 case REQ_OP_FLUSH:
2247 if (!mmc_cache_enabled(host)) {
2248 blk_mq_end_request(req, BLK_STS_OK);
2249 return MMC_REQ_FINISHED;
2250 }
2251 ret = mmc_blk_cqe_issue_flush(mq, req);
2252 break;
2253 case REQ_OP_READ:
2254 case REQ_OP_WRITE:
2255 if (mq->use_cqe)
2256 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2257 else
2258 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2259 break;
2260 default:
2261 WARN_ON_ONCE(1);
2262 ret = -EINVAL;
2263 }
2264 if (!ret)
2265 return MMC_REQ_STARTED;
2266 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2267 default:
2268 WARN_ON_ONCE(1);
2269 return MMC_REQ_FAILED_TO_START;
2270 }
2271 }
2272
mmc_blk_readonly(struct mmc_card * card)2273 static inline int mmc_blk_readonly(struct mmc_card *card)
2274 {
2275 return mmc_card_readonly(card) ||
2276 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2277 }
2278
mmc_blk_alloc_req(struct mmc_card * card,struct device * parent,sector_t size,bool default_ro,const char * subname,int area_type)2279 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2280 struct device *parent,
2281 sector_t size,
2282 bool default_ro,
2283 const char *subname,
2284 int area_type)
2285 {
2286 struct mmc_blk_data *md;
2287 int devidx, ret;
2288
2289 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2290 if (devidx < 0) {
2291 /*
2292 * We get -ENOSPC because there are no more any available
2293 * devidx. The reason may be that, either userspace haven't yet
2294 * unmounted the partitions, which postpones mmc_blk_release()
2295 * from being called, or the device has more partitions than
2296 * what we support.
2297 */
2298 if (devidx == -ENOSPC)
2299 dev_err(mmc_dev(card->host),
2300 "no more device IDs available\n");
2301
2302 return ERR_PTR(devidx);
2303 }
2304
2305 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2306 if (!md) {
2307 ret = -ENOMEM;
2308 goto out;
2309 }
2310
2311 md->area_type = area_type;
2312
2313 /*
2314 * Set the read-only status based on the supported commands
2315 * and the write protect switch.
2316 */
2317 md->read_only = mmc_blk_readonly(card);
2318
2319 md->disk = alloc_disk(perdev_minors);
2320 if (md->disk == NULL) {
2321 ret = -ENOMEM;
2322 goto err_kfree;
2323 }
2324
2325 INIT_LIST_HEAD(&md->part);
2326 INIT_LIST_HEAD(&md->rpmbs);
2327 md->usage = 1;
2328
2329 ret = mmc_init_queue(&md->queue, card);
2330 if (ret)
2331 goto err_putdisk;
2332
2333 md->queue.blkdata = md;
2334
2335 /*
2336 * Keep an extra reference to the queue so that we can shutdown the
2337 * queue (i.e. call blk_cleanup_queue()) while there are still
2338 * references to the 'md'. The corresponding blk_put_queue() is in
2339 * mmc_blk_put().
2340 */
2341 if (!blk_get_queue(md->queue.queue)) {
2342 mmc_cleanup_queue(&md->queue);
2343 ret = -ENODEV;
2344 goto err_putdisk;
2345 }
2346
2347 md->disk->major = MMC_BLOCK_MAJOR;
2348 md->disk->first_minor = devidx * perdev_minors;
2349 md->disk->fops = &mmc_bdops;
2350 md->disk->private_data = md;
2351 md->disk->queue = md->queue.queue;
2352 md->parent = parent;
2353 set_disk_ro(md->disk, md->read_only || default_ro);
2354 md->disk->flags = GENHD_FL_EXT_DEVT;
2355 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2356 md->disk->flags |= GENHD_FL_NO_PART_SCAN
2357 | GENHD_FL_SUPPRESS_PARTITION_INFO;
2358
2359 /*
2360 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2361 *
2362 * - be set for removable media with permanent block devices
2363 * - be unset for removable block devices with permanent media
2364 *
2365 * Since MMC block devices clearly fall under the second
2366 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2367 * should use the block device creation/destruction hotplug
2368 * messages to tell when the card is present.
2369 */
2370
2371 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2372 "mmcblk%u%s", card->host->index, subname ? subname : "");
2373
2374 set_capacity(md->disk, size);
2375
2376 if (mmc_host_cmd23(card->host)) {
2377 if ((mmc_card_mmc(card) &&
2378 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2379 (mmc_card_sd(card) &&
2380 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2381 md->flags |= MMC_BLK_CMD23;
2382 }
2383
2384 if (mmc_card_mmc(card) &&
2385 md->flags & MMC_BLK_CMD23 &&
2386 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2387 card->ext_csd.rel_sectors)) {
2388 md->flags |= MMC_BLK_REL_WR;
2389 blk_queue_write_cache(md->queue.queue, true, true);
2390 }
2391
2392 return md;
2393
2394 err_putdisk:
2395 put_disk(md->disk);
2396 err_kfree:
2397 kfree(md);
2398 out:
2399 ida_simple_remove(&mmc_blk_ida, devidx);
2400 return ERR_PTR(ret);
2401 }
2402
mmc_blk_alloc(struct mmc_card * card)2403 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2404 {
2405 sector_t size;
2406
2407 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2408 /*
2409 * The EXT_CSD sector count is in number or 512 byte
2410 * sectors.
2411 */
2412 size = card->ext_csd.sectors;
2413 } else {
2414 /*
2415 * The CSD capacity field is in units of read_blkbits.
2416 * set_capacity takes units of 512 bytes.
2417 */
2418 size = (typeof(sector_t))card->csd.capacity
2419 << (card->csd.read_blkbits - 9);
2420 }
2421
2422 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2423 MMC_BLK_DATA_AREA_MAIN);
2424 }
2425
mmc_blk_alloc_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_type,sector_t size,bool default_ro,const char * subname,int area_type)2426 static int mmc_blk_alloc_part(struct mmc_card *card,
2427 struct mmc_blk_data *md,
2428 unsigned int part_type,
2429 sector_t size,
2430 bool default_ro,
2431 const char *subname,
2432 int area_type)
2433 {
2434 char cap_str[10];
2435 struct mmc_blk_data *part_md;
2436
2437 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2438 subname, area_type);
2439 if (IS_ERR(part_md))
2440 return PTR_ERR(part_md);
2441 part_md->part_type = part_type;
2442 list_add(&part_md->part, &md->part);
2443
2444 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2445 cap_str, sizeof(cap_str));
2446 pr_info("%s: %s %s partition %u %s\n",
2447 part_md->disk->disk_name, mmc_card_id(card),
2448 mmc_card_name(card), part_md->part_type, cap_str);
2449 return 0;
2450 }
2451
2452 /**
2453 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2454 * @filp: the character device file
2455 * @cmd: the ioctl() command
2456 * @arg: the argument from userspace
2457 *
2458 * This will essentially just redirect the ioctl()s coming in over to
2459 * the main block device spawning the RPMB character device.
2460 */
mmc_rpmb_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2461 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2462 unsigned long arg)
2463 {
2464 struct mmc_rpmb_data *rpmb = filp->private_data;
2465 int ret;
2466
2467 switch (cmd) {
2468 case MMC_IOC_CMD:
2469 ret = mmc_blk_ioctl_cmd(rpmb->md,
2470 (struct mmc_ioc_cmd __user *)arg,
2471 rpmb);
2472 break;
2473 case MMC_IOC_MULTI_CMD:
2474 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2475 (struct mmc_ioc_multi_cmd __user *)arg,
2476 rpmb);
2477 break;
2478 default:
2479 ret = -EINVAL;
2480 break;
2481 }
2482
2483 return ret;
2484 }
2485
2486 #ifdef CONFIG_COMPAT
mmc_rpmb_ioctl_compat(struct file * filp,unsigned int cmd,unsigned long arg)2487 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2488 unsigned long arg)
2489 {
2490 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2491 }
2492 #endif
2493
mmc_rpmb_chrdev_open(struct inode * inode,struct file * filp)2494 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2495 {
2496 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2497 struct mmc_rpmb_data, chrdev);
2498
2499 get_device(&rpmb->dev);
2500 filp->private_data = rpmb;
2501 mmc_blk_get(rpmb->md->disk);
2502
2503 return nonseekable_open(inode, filp);
2504 }
2505
mmc_rpmb_chrdev_release(struct inode * inode,struct file * filp)2506 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2507 {
2508 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2509 struct mmc_rpmb_data, chrdev);
2510
2511 mmc_blk_put(rpmb->md);
2512 put_device(&rpmb->dev);
2513
2514 return 0;
2515 }
2516
2517 static const struct file_operations mmc_rpmb_fileops = {
2518 .release = mmc_rpmb_chrdev_release,
2519 .open = mmc_rpmb_chrdev_open,
2520 .owner = THIS_MODULE,
2521 .llseek = no_llseek,
2522 .unlocked_ioctl = mmc_rpmb_ioctl,
2523 #ifdef CONFIG_COMPAT
2524 .compat_ioctl = mmc_rpmb_ioctl_compat,
2525 #endif
2526 };
2527
mmc_blk_rpmb_device_release(struct device * dev)2528 static void mmc_blk_rpmb_device_release(struct device *dev)
2529 {
2530 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2531
2532 ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2533 kfree(rpmb);
2534 }
2535
mmc_blk_alloc_rpmb_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_index,sector_t size,const char * subname)2536 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2537 struct mmc_blk_data *md,
2538 unsigned int part_index,
2539 sector_t size,
2540 const char *subname)
2541 {
2542 int devidx, ret;
2543 char rpmb_name[DISK_NAME_LEN];
2544 char cap_str[10];
2545 struct mmc_rpmb_data *rpmb;
2546
2547 /* This creates the minor number for the RPMB char device */
2548 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2549 if (devidx < 0)
2550 return devidx;
2551
2552 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2553 if (!rpmb) {
2554 ida_simple_remove(&mmc_rpmb_ida, devidx);
2555 return -ENOMEM;
2556 }
2557
2558 snprintf(rpmb_name, sizeof(rpmb_name),
2559 "mmcblk%u%s", card->host->index, subname ? subname : "");
2560
2561 rpmb->id = devidx;
2562 rpmb->part_index = part_index;
2563 rpmb->dev.init_name = rpmb_name;
2564 rpmb->dev.bus = &mmc_rpmb_bus_type;
2565 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2566 rpmb->dev.parent = &card->dev;
2567 rpmb->dev.release = mmc_blk_rpmb_device_release;
2568 device_initialize(&rpmb->dev);
2569 dev_set_drvdata(&rpmb->dev, rpmb);
2570 rpmb->md = md;
2571
2572 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2573 rpmb->chrdev.owner = THIS_MODULE;
2574 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2575 if (ret) {
2576 pr_err("%s: could not add character device\n", rpmb_name);
2577 goto out_put_device;
2578 }
2579
2580 list_add(&rpmb->node, &md->rpmbs);
2581
2582 string_get_size((u64)size, 512, STRING_UNITS_2,
2583 cap_str, sizeof(cap_str));
2584
2585 pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2586 rpmb_name, mmc_card_id(card),
2587 mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
2588 MAJOR(mmc_rpmb_devt), rpmb->id);
2589
2590 return 0;
2591
2592 out_put_device:
2593 put_device(&rpmb->dev);
2594 return ret;
2595 }
2596
mmc_blk_remove_rpmb_part(struct mmc_rpmb_data * rpmb)2597 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2598
2599 {
2600 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2601 put_device(&rpmb->dev);
2602 }
2603
2604 /* MMC Physical partitions consist of two boot partitions and
2605 * up to four general purpose partitions.
2606 * For each partition enabled in EXT_CSD a block device will be allocatedi
2607 * to provide access to the partition.
2608 */
2609
mmc_blk_alloc_parts(struct mmc_card * card,struct mmc_blk_data * md)2610 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2611 {
2612 int idx, ret;
2613
2614 if (!mmc_card_mmc(card))
2615 return 0;
2616
2617 for (idx = 0; idx < card->nr_parts; idx++) {
2618 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2619 /*
2620 * RPMB partitions does not provide block access, they
2621 * are only accessed using ioctl():s. Thus create
2622 * special RPMB block devices that do not have a
2623 * backing block queue for these.
2624 */
2625 ret = mmc_blk_alloc_rpmb_part(card, md,
2626 card->part[idx].part_cfg,
2627 card->part[idx].size >> 9,
2628 card->part[idx].name);
2629 if (ret)
2630 return ret;
2631 } else if (card->part[idx].size) {
2632 ret = mmc_blk_alloc_part(card, md,
2633 card->part[idx].part_cfg,
2634 card->part[idx].size >> 9,
2635 card->part[idx].force_ro,
2636 card->part[idx].name,
2637 card->part[idx].area_type);
2638 if (ret)
2639 return ret;
2640 }
2641 }
2642
2643 return 0;
2644 }
2645
mmc_blk_remove_req(struct mmc_blk_data * md)2646 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2647 {
2648 struct mmc_card *card;
2649
2650 if (md) {
2651 /*
2652 * Flush remaining requests and free queues. It
2653 * is freeing the queue that stops new requests
2654 * from being accepted.
2655 */
2656 card = md->queue.card;
2657 if (md->disk->flags & GENHD_FL_UP) {
2658 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2659 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2660 card->ext_csd.boot_ro_lockable)
2661 device_remove_file(disk_to_dev(md->disk),
2662 &md->power_ro_lock);
2663
2664 del_gendisk(md->disk);
2665 }
2666 mmc_cleanup_queue(&md->queue);
2667 mmc_blk_put(md);
2668 }
2669 }
2670
mmc_blk_remove_parts(struct mmc_card * card,struct mmc_blk_data * md)2671 static void mmc_blk_remove_parts(struct mmc_card *card,
2672 struct mmc_blk_data *md)
2673 {
2674 struct list_head *pos, *q;
2675 struct mmc_blk_data *part_md;
2676 struct mmc_rpmb_data *rpmb;
2677
2678 /* Remove RPMB partitions */
2679 list_for_each_safe(pos, q, &md->rpmbs) {
2680 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2681 list_del(pos);
2682 mmc_blk_remove_rpmb_part(rpmb);
2683 }
2684 /* Remove block partitions */
2685 list_for_each_safe(pos, q, &md->part) {
2686 part_md = list_entry(pos, struct mmc_blk_data, part);
2687 list_del(pos);
2688 mmc_blk_remove_req(part_md);
2689 }
2690 }
2691
mmc_add_disk(struct mmc_blk_data * md)2692 static int mmc_add_disk(struct mmc_blk_data *md)
2693 {
2694 int ret;
2695 struct mmc_card *card = md->queue.card;
2696
2697 device_add_disk(md->parent, md->disk, NULL);
2698 md->force_ro.show = force_ro_show;
2699 md->force_ro.store = force_ro_store;
2700 sysfs_attr_init(&md->force_ro.attr);
2701 md->force_ro.attr.name = "force_ro";
2702 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2703 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2704 if (ret)
2705 goto force_ro_fail;
2706
2707 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2708 card->ext_csd.boot_ro_lockable) {
2709 umode_t mode;
2710
2711 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2712 mode = S_IRUGO;
2713 else
2714 mode = S_IRUGO | S_IWUSR;
2715
2716 md->power_ro_lock.show = power_ro_lock_show;
2717 md->power_ro_lock.store = power_ro_lock_store;
2718 sysfs_attr_init(&md->power_ro_lock.attr);
2719 md->power_ro_lock.attr.mode = mode;
2720 md->power_ro_lock.attr.name =
2721 "ro_lock_until_next_power_on";
2722 ret = device_create_file(disk_to_dev(md->disk),
2723 &md->power_ro_lock);
2724 if (ret)
2725 goto power_ro_lock_fail;
2726 }
2727 return ret;
2728
2729 power_ro_lock_fail:
2730 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2731 force_ro_fail:
2732 del_gendisk(md->disk);
2733
2734 return ret;
2735 }
2736
2737 #ifdef CONFIG_DEBUG_FS
2738
mmc_dbg_card_status_get(void * data,u64 * val)2739 static int mmc_dbg_card_status_get(void *data, u64 *val)
2740 {
2741 struct mmc_card *card = data;
2742 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2743 struct mmc_queue *mq = &md->queue;
2744 struct request *req;
2745 int ret;
2746
2747 /* Ask the block layer about the card status */
2748 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2749 if (IS_ERR(req))
2750 return PTR_ERR(req);
2751 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2752 blk_execute_rq(mq->queue, NULL, req, 0);
2753 ret = req_to_mmc_queue_req(req)->drv_op_result;
2754 if (ret >= 0) {
2755 *val = ret;
2756 ret = 0;
2757 }
2758 blk_put_request(req);
2759
2760 return ret;
2761 }
2762 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2763 NULL, "%08llx\n");
2764
2765 /* That is two digits * 512 + 1 for newline */
2766 #define EXT_CSD_STR_LEN 1025
2767
mmc_ext_csd_open(struct inode * inode,struct file * filp)2768 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2769 {
2770 struct mmc_card *card = inode->i_private;
2771 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2772 struct mmc_queue *mq = &md->queue;
2773 struct request *req;
2774 char *buf;
2775 ssize_t n = 0;
2776 u8 *ext_csd;
2777 int err, i;
2778
2779 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2780 if (!buf)
2781 return -ENOMEM;
2782
2783 /* Ask the block layer for the EXT CSD */
2784 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2785 if (IS_ERR(req)) {
2786 err = PTR_ERR(req);
2787 goto out_free;
2788 }
2789 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2790 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2791 blk_execute_rq(mq->queue, NULL, req, 0);
2792 err = req_to_mmc_queue_req(req)->drv_op_result;
2793 blk_put_request(req);
2794 if (err) {
2795 pr_err("FAILED %d\n", err);
2796 goto out_free;
2797 }
2798
2799 for (i = 0; i < 512; i++)
2800 n += sprintf(buf + n, "%02x", ext_csd[i]);
2801 n += sprintf(buf + n, "\n");
2802
2803 if (n != EXT_CSD_STR_LEN) {
2804 err = -EINVAL;
2805 kfree(ext_csd);
2806 goto out_free;
2807 }
2808
2809 filp->private_data = buf;
2810 kfree(ext_csd);
2811 return 0;
2812
2813 out_free:
2814 kfree(buf);
2815 return err;
2816 }
2817
mmc_ext_csd_read(struct file * filp,char __user * ubuf,size_t cnt,loff_t * ppos)2818 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2819 size_t cnt, loff_t *ppos)
2820 {
2821 char *buf = filp->private_data;
2822
2823 return simple_read_from_buffer(ubuf, cnt, ppos,
2824 buf, EXT_CSD_STR_LEN);
2825 }
2826
mmc_ext_csd_release(struct inode * inode,struct file * file)2827 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2828 {
2829 kfree(file->private_data);
2830 return 0;
2831 }
2832
2833 static const struct file_operations mmc_dbg_ext_csd_fops = {
2834 .open = mmc_ext_csd_open,
2835 .read = mmc_ext_csd_read,
2836 .release = mmc_ext_csd_release,
2837 .llseek = default_llseek,
2838 };
2839
mmc_blk_add_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2840 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2841 {
2842 struct dentry *root;
2843
2844 if (!card->debugfs_root)
2845 return 0;
2846
2847 root = card->debugfs_root;
2848
2849 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2850 md->status_dentry =
2851 debugfs_create_file_unsafe("status", 0400, root,
2852 card,
2853 &mmc_dbg_card_status_fops);
2854 if (!md->status_dentry)
2855 return -EIO;
2856 }
2857
2858 if (mmc_card_mmc(card)) {
2859 md->ext_csd_dentry =
2860 debugfs_create_file("ext_csd", S_IRUSR, root, card,
2861 &mmc_dbg_ext_csd_fops);
2862 if (!md->ext_csd_dentry)
2863 return -EIO;
2864 }
2865
2866 return 0;
2867 }
2868
mmc_blk_remove_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2869 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2870 struct mmc_blk_data *md)
2871 {
2872 if (!card->debugfs_root)
2873 return;
2874
2875 if (!IS_ERR_OR_NULL(md->status_dentry)) {
2876 debugfs_remove(md->status_dentry);
2877 md->status_dentry = NULL;
2878 }
2879
2880 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2881 debugfs_remove(md->ext_csd_dentry);
2882 md->ext_csd_dentry = NULL;
2883 }
2884 }
2885
2886 #else
2887
mmc_blk_add_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2888 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2889 {
2890 return 0;
2891 }
2892
mmc_blk_remove_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2893 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2894 struct mmc_blk_data *md)
2895 {
2896 }
2897
2898 #endif /* CONFIG_DEBUG_FS */
2899
mmc_blk_probe(struct mmc_card * card)2900 static int mmc_blk_probe(struct mmc_card *card)
2901 {
2902 struct mmc_blk_data *md, *part_md;
2903 char cap_str[10];
2904
2905 /*
2906 * Check that the card supports the command class(es) we need.
2907 */
2908 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2909 return -ENODEV;
2910
2911 mmc_fixup_device(card, mmc_blk_fixups);
2912
2913 card->complete_wq = alloc_workqueue("mmc_complete",
2914 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2915 if (unlikely(!card->complete_wq)) {
2916 pr_err("Failed to create mmc completion workqueue");
2917 return -ENOMEM;
2918 }
2919
2920 md = mmc_blk_alloc(card);
2921 if (IS_ERR(md))
2922 return PTR_ERR(md);
2923
2924 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2925 cap_str, sizeof(cap_str));
2926 pr_info("%s: %s %s %s %s\n",
2927 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2928 cap_str, md->read_only ? "(ro)" : "");
2929
2930 if (mmc_blk_alloc_parts(card, md))
2931 goto out;
2932
2933 dev_set_drvdata(&card->dev, md);
2934
2935 if (mmc_add_disk(md))
2936 goto out;
2937
2938 list_for_each_entry(part_md, &md->part, part) {
2939 if (mmc_add_disk(part_md))
2940 goto out;
2941 }
2942
2943 /* Add two debugfs entries */
2944 mmc_blk_add_debugfs(card, md);
2945
2946 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2947 pm_runtime_use_autosuspend(&card->dev);
2948
2949 /*
2950 * Don't enable runtime PM for SD-combo cards here. Leave that
2951 * decision to be taken during the SDIO init sequence instead.
2952 */
2953 if (card->type != MMC_TYPE_SD_COMBO) {
2954 pm_runtime_set_active(&card->dev);
2955 pm_runtime_enable(&card->dev);
2956 }
2957
2958 return 0;
2959
2960 out:
2961 mmc_blk_remove_parts(card, md);
2962 mmc_blk_remove_req(md);
2963 return 0;
2964 }
2965
mmc_blk_remove(struct mmc_card * card)2966 static void mmc_blk_remove(struct mmc_card *card)
2967 {
2968 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2969
2970 mmc_blk_remove_debugfs(card, md);
2971 mmc_blk_remove_parts(card, md);
2972 pm_runtime_get_sync(&card->dev);
2973 if (md->part_curr != md->part_type) {
2974 mmc_claim_host(card->host);
2975 mmc_blk_part_switch(card, md->part_type);
2976 mmc_release_host(card->host);
2977 }
2978 if (card->type != MMC_TYPE_SD_COMBO)
2979 pm_runtime_disable(&card->dev);
2980 pm_runtime_put_noidle(&card->dev);
2981 mmc_blk_remove_req(md);
2982 dev_set_drvdata(&card->dev, NULL);
2983 destroy_workqueue(card->complete_wq);
2984 }
2985
_mmc_blk_suspend(struct mmc_card * card)2986 static int _mmc_blk_suspend(struct mmc_card *card)
2987 {
2988 struct mmc_blk_data *part_md;
2989 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2990
2991 if (md) {
2992 mmc_queue_suspend(&md->queue);
2993 list_for_each_entry(part_md, &md->part, part) {
2994 mmc_queue_suspend(&part_md->queue);
2995 }
2996 }
2997 return 0;
2998 }
2999
mmc_blk_shutdown(struct mmc_card * card)3000 static void mmc_blk_shutdown(struct mmc_card *card)
3001 {
3002 _mmc_blk_suspend(card);
3003 }
3004
3005 #ifdef CONFIG_PM_SLEEP
mmc_blk_suspend(struct device * dev)3006 static int mmc_blk_suspend(struct device *dev)
3007 {
3008 struct mmc_card *card = mmc_dev_to_card(dev);
3009
3010 return _mmc_blk_suspend(card);
3011 }
3012
mmc_blk_resume(struct device * dev)3013 static int mmc_blk_resume(struct device *dev)
3014 {
3015 struct mmc_blk_data *part_md;
3016 struct mmc_blk_data *md = dev_get_drvdata(dev);
3017
3018 if (md) {
3019 /*
3020 * Resume involves the card going into idle state,
3021 * so current partition is always the main one.
3022 */
3023 md->part_curr = md->part_type;
3024 mmc_queue_resume(&md->queue);
3025 list_for_each_entry(part_md, &md->part, part) {
3026 mmc_queue_resume(&part_md->queue);
3027 }
3028 }
3029 return 0;
3030 }
3031 #endif
3032
3033 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3034
3035 static struct mmc_driver mmc_driver = {
3036 .drv = {
3037 .name = "mmcblk",
3038 .pm = &mmc_blk_pm_ops,
3039 },
3040 .probe = mmc_blk_probe,
3041 .remove = mmc_blk_remove,
3042 .shutdown = mmc_blk_shutdown,
3043 };
3044
mmc_blk_init(void)3045 static int __init mmc_blk_init(void)
3046 {
3047 int res;
3048
3049 res = bus_register(&mmc_rpmb_bus_type);
3050 if (res < 0) {
3051 pr_err("mmcblk: could not register RPMB bus type\n");
3052 return res;
3053 }
3054 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3055 if (res < 0) {
3056 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3057 goto out_bus_unreg;
3058 }
3059
3060 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3061 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3062
3063 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3064
3065 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3066 if (res)
3067 goto out_chrdev_unreg;
3068
3069 res = mmc_register_driver(&mmc_driver);
3070 if (res)
3071 goto out_blkdev_unreg;
3072
3073 return 0;
3074
3075 out_blkdev_unreg:
3076 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3077 out_chrdev_unreg:
3078 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3079 out_bus_unreg:
3080 bus_unregister(&mmc_rpmb_bus_type);
3081 return res;
3082 }
3083
mmc_blk_exit(void)3084 static void __exit mmc_blk_exit(void)
3085 {
3086 mmc_unregister_driver(&mmc_driver);
3087 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3088 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3089 bus_unregister(&mmc_rpmb_bus_type);
3090 }
3091
3092 module_init(mmc_blk_init);
3093 module_exit(mmc_blk_exit);
3094
3095 MODULE_LICENSE("GPL");
3096 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3097
3098