1 /*
2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
4 *
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
8 * (mailto: MPT-FusionLinux.pdl@avagotech.com)
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * NO WARRANTY
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
30
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
43 * USA.
44 */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h> /* To get host page size per arch */
63 #include <linux/aer.h>
64
65
66 #include "mpt3sas_base.h"
67
68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
69
70
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72
73 /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH 30000
75 #define MAX_CHAIN_DEPTH 100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0444);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors,
95 " max msix vectors");
96
97 static int irqpoll_weight = -1;
98 module_param(irqpoll_weight, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight,
100 "irq poll weight (default= one fourth of HBA queue depth)");
101
102 static int mpt3sas_fwfault_debug;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
104 " enable detection of firmware fault and halt firmware - (default=0)");
105
106 static int perf_mode = -1;
107 module_param(perf_mode, int, 0444);
108 MODULE_PARM_DESC(perf_mode,
109 "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110 "0 - balanced: high iops mode is enabled &\n\t\t"
111 "interrupt coalescing is enabled only on high iops queues,\n\t\t"
112 "1 - iops: high iops mode is disabled &\n\t\t"
113 "interrupt coalescing is enabled on all queues,\n\t\t"
114 "2 - latency: high iops mode is disabled &\n\t\t"
115 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116 "\t\tdefault - default perf_mode is 'balanced'"
117 );
118
119 enum mpt3sas_perf_mode {
120 MPT_PERF_MODE_DEFAULT = -1,
121 MPT_PERF_MODE_BALANCED = 0,
122 MPT_PERF_MODE_IOPS = 1,
123 MPT_PERF_MODE_LATENCY = 2,
124 };
125
126 static int
127 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
128 u32 ioc_state, int timeout);
129 static int
130 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
131 static void
132 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
133
134 /**
135 * mpt3sas_base_check_cmd_timeout - Function
136 * to check timeout and command termination due
137 * to Host reset.
138 *
139 * @ioc: per adapter object.
140 * @status: Status of issued command.
141 * @mpi_request:mf request pointer.
142 * @sz: size of buffer.
143 *
144 * @Returns - 1/0 Reset to be done or Not
145 */
146 u8
mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER * ioc,u8 status,void * mpi_request,int sz)147 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
148 u8 status, void *mpi_request, int sz)
149 {
150 u8 issue_reset = 0;
151
152 if (!(status & MPT3_CMD_RESET))
153 issue_reset = 1;
154
155 ioc_err(ioc, "Command %s\n",
156 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
157 _debug_dump_mf(mpi_request, sz);
158
159 return issue_reset;
160 }
161
162 /**
163 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
164 * @val: ?
165 * @kp: ?
166 *
167 * Return: ?
168 */
169 static int
_scsih_set_fwfault_debug(const char * val,const struct kernel_param * kp)170 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
171 {
172 int ret = param_set_int(val, kp);
173 struct MPT3SAS_ADAPTER *ioc;
174
175 if (ret)
176 return ret;
177
178 /* global ioc spinlock to protect controller list on list operations */
179 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
180 spin_lock(&gioc_lock);
181 list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
182 ioc->fwfault_debug = mpt3sas_fwfault_debug;
183 spin_unlock(&gioc_lock);
184 return 0;
185 }
186 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
187 param_get_int, &mpt3sas_fwfault_debug, 0644);
188
189 /**
190 * _base_readl_aero - retry readl for max three times.
191 * @addr: MPT Fusion system interface register address
192 *
193 * Retry the readl() for max three times if it gets zero value
194 * while reading the system interface register.
195 */
196 static inline u32
_base_readl_aero(const volatile void __iomem * addr)197 _base_readl_aero(const volatile void __iomem *addr)
198 {
199 u32 i = 0, ret_val;
200
201 do {
202 ret_val = readl(addr);
203 i++;
204 } while (ret_val == 0 && i < 3);
205
206 return ret_val;
207 }
208
209 static inline u32
_base_readl(const volatile void __iomem * addr)210 _base_readl(const volatile void __iomem *addr)
211 {
212 return readl(addr);
213 }
214
215 /**
216 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
217 * in BAR0 space.
218 *
219 * @ioc: per adapter object
220 * @reply: reply message frame(lower 32bit addr)
221 * @index: System request message index.
222 */
223 static void
_base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER * ioc,u32 reply,u32 index)224 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
225 u32 index)
226 {
227 /*
228 * 256 is offset within sys register.
229 * 256 offset MPI frame starts. Max MPI frame supported is 32.
230 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
231 */
232 u16 cmd_credit = ioc->facts.RequestCredit + 1;
233 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
234 MPI_FRAME_START_OFFSET +
235 (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
236
237 writel(reply, reply_free_iomem);
238 }
239
240 /**
241 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
242 * to system/BAR0 region.
243 *
244 * @dst_iomem: Pointer to the destination location in BAR0 space.
245 * @src: Pointer to the Source data.
246 * @size: Size of data to be copied.
247 */
248 static void
_base_clone_mpi_to_sys_mem(void * dst_iomem,void * src,u32 size)249 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
250 {
251 int i;
252 u32 *src_virt_mem = (u32 *)src;
253
254 for (i = 0; i < size/4; i++)
255 writel((u32)src_virt_mem[i],
256 (void __iomem *)dst_iomem + (i * 4));
257 }
258
259 /**
260 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
261 *
262 * @dst_iomem: Pointer to the destination location in BAR0 space.
263 * @src: Pointer to the Source data.
264 * @size: Size of data to be copied.
265 */
266 static void
_base_clone_to_sys_mem(void __iomem * dst_iomem,void * src,u32 size)267 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
268 {
269 int i;
270 u32 *src_virt_mem = (u32 *)(src);
271
272 for (i = 0; i < size/4; i++)
273 writel((u32)src_virt_mem[i],
274 (void __iomem *)dst_iomem + (i * 4));
275 }
276
277 /**
278 * _base_get_chain - Calculates and Returns virtual chain address
279 * for the provided smid in BAR0 space.
280 *
281 * @ioc: per adapter object
282 * @smid: system request message index
283 * @sge_chain_count: Scatter gather chain count.
284 *
285 * Return: the chain address.
286 */
287 static inline void __iomem*
_base_get_chain(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 sge_chain_count)288 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
289 u8 sge_chain_count)
290 {
291 void __iomem *base_chain, *chain_virt;
292 u16 cmd_credit = ioc->facts.RequestCredit + 1;
293
294 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
295 (cmd_credit * ioc->request_sz) +
296 REPLY_FREE_POOL_SIZE;
297 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
298 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
299 return chain_virt;
300 }
301
302 /**
303 * _base_get_chain_phys - Calculates and Returns physical address
304 * in BAR0 for scatter gather chains, for
305 * the provided smid.
306 *
307 * @ioc: per adapter object
308 * @smid: system request message index
309 * @sge_chain_count: Scatter gather chain count.
310 *
311 * Return: Physical chain address.
312 */
313 static inline phys_addr_t
_base_get_chain_phys(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 sge_chain_count)314 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
315 u8 sge_chain_count)
316 {
317 phys_addr_t base_chain_phys, chain_phys;
318 u16 cmd_credit = ioc->facts.RequestCredit + 1;
319
320 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET +
321 (cmd_credit * ioc->request_sz) +
322 REPLY_FREE_POOL_SIZE;
323 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
324 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
325 return chain_phys;
326 }
327
328 /**
329 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
330 * buffer address for the provided smid.
331 * (Each smid can have 64K starts from 17024)
332 *
333 * @ioc: per adapter object
334 * @smid: system request message index
335 *
336 * Return: Pointer to buffer location in BAR0.
337 */
338
339 static void __iomem *
_base_get_buffer_bar0(struct MPT3SAS_ADAPTER * ioc,u16 smid)340 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
341 {
342 u16 cmd_credit = ioc->facts.RequestCredit + 1;
343 // Added extra 1 to reach end of chain.
344 void __iomem *chain_end = _base_get_chain(ioc,
345 cmd_credit + 1,
346 ioc->facts.MaxChainDepth);
347 return chain_end + (smid * 64 * 1024);
348 }
349
350 /**
351 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
352 * Host buffer Physical address for the provided smid.
353 * (Each smid can have 64K starts from 17024)
354 *
355 * @ioc: per adapter object
356 * @smid: system request message index
357 *
358 * Return: Pointer to buffer location in BAR0.
359 */
360 static phys_addr_t
_base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER * ioc,u16 smid)361 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
362 {
363 u16 cmd_credit = ioc->facts.RequestCredit + 1;
364 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
365 cmd_credit + 1,
366 ioc->facts.MaxChainDepth);
367 return chain_end_phys + (smid * 64 * 1024);
368 }
369
370 /**
371 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
372 * lookup list and Provides chain_buffer
373 * address for the matching dma address.
374 * (Each smid can have 64K starts from 17024)
375 *
376 * @ioc: per adapter object
377 * @chain_buffer_dma: Chain buffer dma address.
378 *
379 * Return: Pointer to chain buffer. Or Null on Failure.
380 */
381 static void *
_base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER * ioc,dma_addr_t chain_buffer_dma)382 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
383 dma_addr_t chain_buffer_dma)
384 {
385 u16 index, j;
386 struct chain_tracker *ct;
387
388 for (index = 0; index < ioc->scsiio_depth; index++) {
389 for (j = 0; j < ioc->chains_needed_per_io; j++) {
390 ct = &ioc->chain_lookup[index].chains_per_smid[j];
391 if (ct && ct->chain_buffer_dma == chain_buffer_dma)
392 return ct->chain_buffer;
393 }
394 }
395 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
396 return NULL;
397 }
398
399 /**
400 * _clone_sg_entries - MPI EP's scsiio and config requests
401 * are handled here. Base function for
402 * double buffering, before submitting
403 * the requests.
404 *
405 * @ioc: per adapter object.
406 * @mpi_request: mf request pointer.
407 * @smid: system request message index.
408 */
_clone_sg_entries(struct MPT3SAS_ADAPTER * ioc,void * mpi_request,u16 smid)409 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
410 void *mpi_request, u16 smid)
411 {
412 Mpi2SGESimple32_t *sgel, *sgel_next;
413 u32 sgl_flags, sge_chain_count = 0;
414 bool is_write = false;
415 u16 i = 0;
416 void __iomem *buffer_iomem;
417 phys_addr_t buffer_iomem_phys;
418 void __iomem *buff_ptr;
419 phys_addr_t buff_ptr_phys;
420 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
421 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
422 phys_addr_t dst_addr_phys;
423 MPI2RequestHeader_t *request_hdr;
424 struct scsi_cmnd *scmd;
425 struct scatterlist *sg_scmd = NULL;
426 int is_scsiio_req = 0;
427
428 request_hdr = (MPI2RequestHeader_t *) mpi_request;
429
430 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
431 Mpi25SCSIIORequest_t *scsiio_request =
432 (Mpi25SCSIIORequest_t *)mpi_request;
433 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
434 is_scsiio_req = 1;
435 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
436 Mpi2ConfigRequest_t *config_req =
437 (Mpi2ConfigRequest_t *)mpi_request;
438 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
439 } else
440 return;
441
442 /* From smid we can get scsi_cmd, once we have sg_scmd,
443 * we just need to get sg_virt and sg_next to get virual
444 * address associated with sgel->Address.
445 */
446
447 if (is_scsiio_req) {
448 /* Get scsi_cmd using smid */
449 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
450 if (scmd == NULL) {
451 ioc_err(ioc, "scmd is NULL\n");
452 return;
453 }
454
455 /* Get sg_scmd from scmd provided */
456 sg_scmd = scsi_sglist(scmd);
457 }
458
459 /*
460 * 0 - 255 System register
461 * 256 - 4352 MPI Frame. (This is based on maxCredit 32)
462 * 4352 - 4864 Reply_free pool (512 byte is reserved
463 * considering maxCredit 32. Reply need extra
464 * room, for mCPU case kept four times of
465 * maxCredit).
466 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
467 * 128 byte size = 12288)
468 * 17152 - x Host buffer mapped with smid.
469 * (Each smid can have 64K Max IO.)
470 * BAR0+Last 1K MSIX Addr and Data
471 * Total size in use 2113664 bytes of 4MB BAR0
472 */
473
474 buffer_iomem = _base_get_buffer_bar0(ioc, smid);
475 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
476
477 buff_ptr = buffer_iomem;
478 buff_ptr_phys = buffer_iomem_phys;
479 WARN_ON(buff_ptr_phys > U32_MAX);
480
481 if (le32_to_cpu(sgel->FlagsLength) &
482 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
483 is_write = true;
484
485 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
486
487 sgl_flags =
488 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
489
490 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
491 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
492 /*
493 * Helper function which on passing
494 * chain_buffer_dma returns chain_buffer. Get
495 * the virtual address for sgel->Address
496 */
497 sgel_next =
498 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
499 le32_to_cpu(sgel->Address));
500 if (sgel_next == NULL)
501 return;
502 /*
503 * This is coping 128 byte chain
504 * frame (not a host buffer)
505 */
506 dst_chain_addr[sge_chain_count] =
507 _base_get_chain(ioc,
508 smid, sge_chain_count);
509 src_chain_addr[sge_chain_count] =
510 (void *) sgel_next;
511 dst_addr_phys = _base_get_chain_phys(ioc,
512 smid, sge_chain_count);
513 WARN_ON(dst_addr_phys > U32_MAX);
514 sgel->Address =
515 cpu_to_le32(lower_32_bits(dst_addr_phys));
516 sgel = sgel_next;
517 sge_chain_count++;
518 break;
519 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
520 if (is_write) {
521 if (is_scsiio_req) {
522 _base_clone_to_sys_mem(buff_ptr,
523 sg_virt(sg_scmd),
524 (le32_to_cpu(sgel->FlagsLength) &
525 0x00ffffff));
526 /*
527 * FIXME: this relies on a a zero
528 * PCI mem_offset.
529 */
530 sgel->Address =
531 cpu_to_le32((u32)buff_ptr_phys);
532 } else {
533 _base_clone_to_sys_mem(buff_ptr,
534 ioc->config_vaddr,
535 (le32_to_cpu(sgel->FlagsLength) &
536 0x00ffffff));
537 sgel->Address =
538 cpu_to_le32((u32)buff_ptr_phys);
539 }
540 }
541 buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
542 0x00ffffff);
543 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
544 0x00ffffff);
545 if ((le32_to_cpu(sgel->FlagsLength) &
546 (MPI2_SGE_FLAGS_END_OF_BUFFER
547 << MPI2_SGE_FLAGS_SHIFT)))
548 goto eob_clone_chain;
549 else {
550 /*
551 * Every single element in MPT will have
552 * associated sg_next. Better to sanity that
553 * sg_next is not NULL, but it will be a bug
554 * if it is null.
555 */
556 if (is_scsiio_req) {
557 sg_scmd = sg_next(sg_scmd);
558 if (sg_scmd)
559 sgel++;
560 else
561 goto eob_clone_chain;
562 }
563 }
564 break;
565 }
566 }
567
568 eob_clone_chain:
569 for (i = 0; i < sge_chain_count; i++) {
570 if (is_scsiio_req)
571 _base_clone_to_sys_mem(dst_chain_addr[i],
572 src_chain_addr[i], ioc->request_sz);
573 }
574 }
575
576 /**
577 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
578 * @arg: input argument, used to derive ioc
579 *
580 * Return:
581 * 0 if controller is removed from pci subsystem.
582 * -1 for other case.
583 */
mpt3sas_remove_dead_ioc_func(void * arg)584 static int mpt3sas_remove_dead_ioc_func(void *arg)
585 {
586 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
587 struct pci_dev *pdev;
588
589 if (!ioc)
590 return -1;
591
592 pdev = ioc->pdev;
593 if (!pdev)
594 return -1;
595 pci_stop_and_remove_bus_device_locked(pdev);
596 return 0;
597 }
598
599 /**
600 * _base_fault_reset_work - workq handling ioc fault conditions
601 * @work: input argument, used to derive ioc
602 *
603 * Context: sleep.
604 */
605 static void
_base_fault_reset_work(struct work_struct * work)606 _base_fault_reset_work(struct work_struct *work)
607 {
608 struct MPT3SAS_ADAPTER *ioc =
609 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
610 unsigned long flags;
611 u32 doorbell;
612 int rc;
613 struct task_struct *p;
614
615
616 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
617 if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
618 ioc->pci_error_recovery)
619 goto rearm_timer;
620 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
621
622 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
623 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
624 ioc_err(ioc, "SAS host is non-operational !!!!\n");
625
626 /* It may be possible that EEH recovery can resolve some of
627 * pci bus failure issues rather removing the dead ioc function
628 * by considering controller is in a non-operational state. So
629 * here priority is given to the EEH recovery. If it doesn't
630 * not resolve this issue, mpt3sas driver will consider this
631 * controller to non-operational state and remove the dead ioc
632 * function.
633 */
634 if (ioc->non_operational_loop++ < 5) {
635 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
636 flags);
637 goto rearm_timer;
638 }
639
640 /*
641 * Call _scsih_flush_pending_cmds callback so that we flush all
642 * pending commands back to OS. This call is required to aovid
643 * deadlock at block layer. Dead IOC will fail to do diag reset,
644 * and this call is safe since dead ioc will never return any
645 * command back from HW.
646 */
647 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
648 /*
649 * Set remove_host flag early since kernel thread will
650 * take some time to execute.
651 */
652 ioc->remove_host = 1;
653 /*Remove the Dead Host */
654 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
655 "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
656 if (IS_ERR(p))
657 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
658 __func__);
659 else
660 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
661 __func__);
662 return; /* don't rearm timer */
663 }
664
665 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
666 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
667 ioc->manu_pg11.CoreDumpTOSec :
668 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
669
670 timeout /= (FAULT_POLLING_INTERVAL/1000);
671
672 if (ioc->ioc_coredump_loop == 0) {
673 mpt3sas_print_coredump_info(ioc,
674 doorbell & MPI2_DOORBELL_DATA_MASK);
675 /* do not accept any IOs and disable the interrupts */
676 spin_lock_irqsave(
677 &ioc->ioc_reset_in_progress_lock, flags);
678 ioc->shost_recovery = 1;
679 spin_unlock_irqrestore(
680 &ioc->ioc_reset_in_progress_lock, flags);
681 mpt3sas_base_mask_interrupts(ioc);
682 _base_clear_outstanding_commands(ioc);
683 }
684
685 ioc_info(ioc, "%s: CoreDump loop %d.",
686 __func__, ioc->ioc_coredump_loop);
687
688 /* Wait until CoreDump completes or times out */
689 if (ioc->ioc_coredump_loop++ < timeout) {
690 spin_lock_irqsave(
691 &ioc->ioc_reset_in_progress_lock, flags);
692 goto rearm_timer;
693 }
694 }
695
696 if (ioc->ioc_coredump_loop) {
697 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
698 ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
699 __func__, ioc->ioc_coredump_loop);
700 else
701 ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
702 __func__, ioc->ioc_coredump_loop);
703 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
704 }
705 ioc->non_operational_loop = 0;
706 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
707 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
708 ioc_warn(ioc, "%s: hard reset: %s\n",
709 __func__, rc == 0 ? "success" : "failed");
710 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
711 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
712 mpt3sas_print_fault_code(ioc, doorbell &
713 MPI2_DOORBELL_DATA_MASK);
714 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
715 MPI2_IOC_STATE_COREDUMP)
716 mpt3sas_print_coredump_info(ioc, doorbell &
717 MPI2_DOORBELL_DATA_MASK);
718 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
719 MPI2_IOC_STATE_OPERATIONAL)
720 return; /* don't rearm timer */
721 }
722 ioc->ioc_coredump_loop = 0;
723
724 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
725 rearm_timer:
726 if (ioc->fault_reset_work_q)
727 queue_delayed_work(ioc->fault_reset_work_q,
728 &ioc->fault_reset_work,
729 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
730 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
731 }
732
733 /**
734 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
735 * @ioc: per adapter object
736 *
737 * Context: sleep.
738 */
739 void
mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER * ioc)740 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
741 {
742 unsigned long flags;
743
744 if (ioc->fault_reset_work_q)
745 return;
746
747 /* initialize fault polling */
748
749 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
750 snprintf(ioc->fault_reset_work_q_name,
751 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
752 ioc->driver_name, ioc->id);
753 ioc->fault_reset_work_q =
754 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
755 if (!ioc->fault_reset_work_q) {
756 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
757 return;
758 }
759 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
760 if (ioc->fault_reset_work_q)
761 queue_delayed_work(ioc->fault_reset_work_q,
762 &ioc->fault_reset_work,
763 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
764 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
765 }
766
767 /**
768 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
769 * @ioc: per adapter object
770 *
771 * Context: sleep.
772 */
773 void
mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER * ioc)774 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
775 {
776 unsigned long flags;
777 struct workqueue_struct *wq;
778
779 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
780 wq = ioc->fault_reset_work_q;
781 ioc->fault_reset_work_q = NULL;
782 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
783 if (wq) {
784 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
785 flush_workqueue(wq);
786 destroy_workqueue(wq);
787 }
788 }
789
790 /**
791 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
792 * @ioc: per adapter object
793 * @fault_code: fault code
794 */
795 void
mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER * ioc,u16 fault_code)796 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
797 {
798 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
799 }
800
801 /**
802 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
803 * @ioc: per adapter object
804 * @fault_code: fault code
805 *
806 * Return nothing.
807 */
808 void
mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER * ioc,u16 fault_code)809 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
810 {
811 ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
812 }
813
814 /**
815 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
816 * completes or times out
817 * @ioc: per adapter object
818 * @caller: caller function name
819 *
820 * Returns 0 for success, non-zero for failure.
821 */
822 int
mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER * ioc,const char * caller)823 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
824 const char *caller)
825 {
826 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
827 ioc->manu_pg11.CoreDumpTOSec :
828 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
829
830 int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
831 timeout);
832
833 if (ioc_state)
834 ioc_err(ioc,
835 "%s: CoreDump timed out. (ioc_state=0x%x)\n",
836 caller, ioc_state);
837 else
838 ioc_info(ioc,
839 "%s: CoreDump completed. (ioc_state=0x%x)\n",
840 caller, ioc_state);
841
842 return ioc_state;
843 }
844
845 /**
846 * mpt3sas_halt_firmware - halt's mpt controller firmware
847 * @ioc: per adapter object
848 *
849 * For debugging timeout related issues. Writing 0xCOFFEE00
850 * to the doorbell register will halt controller firmware. With
851 * the purpose to stop both driver and firmware, the enduser can
852 * obtain a ring buffer from controller UART.
853 */
854 void
mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER * ioc)855 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
856 {
857 u32 doorbell;
858
859 if (!ioc->fwfault_debug)
860 return;
861
862 dump_stack();
863
864 doorbell = ioc->base_readl(&ioc->chip->Doorbell);
865 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
866 mpt3sas_print_fault_code(ioc, doorbell &
867 MPI2_DOORBELL_DATA_MASK);
868 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
869 MPI2_IOC_STATE_COREDUMP) {
870 mpt3sas_print_coredump_info(ioc, doorbell &
871 MPI2_DOORBELL_DATA_MASK);
872 } else {
873 writel(0xC0FFEE00, &ioc->chip->Doorbell);
874 ioc_err(ioc, "Firmware is halted due to command timeout\n");
875 }
876
877 if (ioc->fwfault_debug == 2)
878 for (;;)
879 ;
880 else
881 panic("panic in %s\n", __func__);
882 }
883
884 /**
885 * _base_sas_ioc_info - verbose translation of the ioc status
886 * @ioc: per adapter object
887 * @mpi_reply: reply mf payload returned from firmware
888 * @request_hdr: request mf
889 */
890 static void
_base_sas_ioc_info(struct MPT3SAS_ADAPTER * ioc,MPI2DefaultReply_t * mpi_reply,MPI2RequestHeader_t * request_hdr)891 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
892 MPI2RequestHeader_t *request_hdr)
893 {
894 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
895 MPI2_IOCSTATUS_MASK;
896 char *desc = NULL;
897 u16 frame_sz;
898 char *func_str = NULL;
899
900 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
901 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
902 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
903 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
904 return;
905
906 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
907 return;
908
909 switch (ioc_status) {
910
911 /****************************************************************************
912 * Common IOCStatus values for all replies
913 ****************************************************************************/
914
915 case MPI2_IOCSTATUS_INVALID_FUNCTION:
916 desc = "invalid function";
917 break;
918 case MPI2_IOCSTATUS_BUSY:
919 desc = "busy";
920 break;
921 case MPI2_IOCSTATUS_INVALID_SGL:
922 desc = "invalid sgl";
923 break;
924 case MPI2_IOCSTATUS_INTERNAL_ERROR:
925 desc = "internal error";
926 break;
927 case MPI2_IOCSTATUS_INVALID_VPID:
928 desc = "invalid vpid";
929 break;
930 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
931 desc = "insufficient resources";
932 break;
933 case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
934 desc = "insufficient power";
935 break;
936 case MPI2_IOCSTATUS_INVALID_FIELD:
937 desc = "invalid field";
938 break;
939 case MPI2_IOCSTATUS_INVALID_STATE:
940 desc = "invalid state";
941 break;
942 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
943 desc = "op state not supported";
944 break;
945
946 /****************************************************************************
947 * Config IOCStatus values
948 ****************************************************************************/
949
950 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
951 desc = "config invalid action";
952 break;
953 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
954 desc = "config invalid type";
955 break;
956 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
957 desc = "config invalid page";
958 break;
959 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
960 desc = "config invalid data";
961 break;
962 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
963 desc = "config no defaults";
964 break;
965 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
966 desc = "config cant commit";
967 break;
968
969 /****************************************************************************
970 * SCSI IO Reply
971 ****************************************************************************/
972
973 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
974 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
975 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
976 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
977 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
978 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
979 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
980 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
981 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
982 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
983 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
984 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
985 break;
986
987 /****************************************************************************
988 * For use by SCSI Initiator and SCSI Target end-to-end data protection
989 ****************************************************************************/
990
991 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
992 desc = "eedp guard error";
993 break;
994 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
995 desc = "eedp ref tag error";
996 break;
997 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
998 desc = "eedp app tag error";
999 break;
1000
1001 /****************************************************************************
1002 * SCSI Target values
1003 ****************************************************************************/
1004
1005 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1006 desc = "target invalid io index";
1007 break;
1008 case MPI2_IOCSTATUS_TARGET_ABORTED:
1009 desc = "target aborted";
1010 break;
1011 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1012 desc = "target no conn retryable";
1013 break;
1014 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1015 desc = "target no connection";
1016 break;
1017 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1018 desc = "target xfer count mismatch";
1019 break;
1020 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1021 desc = "target data offset error";
1022 break;
1023 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1024 desc = "target too much write data";
1025 break;
1026 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1027 desc = "target iu too short";
1028 break;
1029 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1030 desc = "target ack nak timeout";
1031 break;
1032 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1033 desc = "target nak received";
1034 break;
1035
1036 /****************************************************************************
1037 * Serial Attached SCSI values
1038 ****************************************************************************/
1039
1040 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1041 desc = "smp request failed";
1042 break;
1043 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1044 desc = "smp data overrun";
1045 break;
1046
1047 /****************************************************************************
1048 * Diagnostic Buffer Post / Diagnostic Release values
1049 ****************************************************************************/
1050
1051 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1052 desc = "diagnostic released";
1053 break;
1054 default:
1055 break;
1056 }
1057
1058 if (!desc)
1059 return;
1060
1061 switch (request_hdr->Function) {
1062 case MPI2_FUNCTION_CONFIG:
1063 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1064 func_str = "config_page";
1065 break;
1066 case MPI2_FUNCTION_SCSI_TASK_MGMT:
1067 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1068 func_str = "task_mgmt";
1069 break;
1070 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1071 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1072 func_str = "sas_iounit_ctl";
1073 break;
1074 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1075 frame_sz = sizeof(Mpi2SepRequest_t);
1076 func_str = "enclosure";
1077 break;
1078 case MPI2_FUNCTION_IOC_INIT:
1079 frame_sz = sizeof(Mpi2IOCInitRequest_t);
1080 func_str = "ioc_init";
1081 break;
1082 case MPI2_FUNCTION_PORT_ENABLE:
1083 frame_sz = sizeof(Mpi2PortEnableRequest_t);
1084 func_str = "port_enable";
1085 break;
1086 case MPI2_FUNCTION_SMP_PASSTHROUGH:
1087 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1088 func_str = "smp_passthru";
1089 break;
1090 case MPI2_FUNCTION_NVME_ENCAPSULATED:
1091 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1092 ioc->sge_size;
1093 func_str = "nvme_encapsulated";
1094 break;
1095 default:
1096 frame_sz = 32;
1097 func_str = "unknown";
1098 break;
1099 }
1100
1101 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1102 desc, ioc_status, request_hdr, func_str);
1103
1104 _debug_dump_mf(request_hdr, frame_sz/4);
1105 }
1106
1107 /**
1108 * _base_display_event_data - verbose translation of firmware asyn events
1109 * @ioc: per adapter object
1110 * @mpi_reply: reply mf payload returned from firmware
1111 */
1112 static void
_base_display_event_data(struct MPT3SAS_ADAPTER * ioc,Mpi2EventNotificationReply_t * mpi_reply)1113 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1114 Mpi2EventNotificationReply_t *mpi_reply)
1115 {
1116 char *desc = NULL;
1117 u16 event;
1118
1119 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1120 return;
1121
1122 event = le16_to_cpu(mpi_reply->Event);
1123
1124 switch (event) {
1125 case MPI2_EVENT_LOG_DATA:
1126 desc = "Log Data";
1127 break;
1128 case MPI2_EVENT_STATE_CHANGE:
1129 desc = "Status Change";
1130 break;
1131 case MPI2_EVENT_HARD_RESET_RECEIVED:
1132 desc = "Hard Reset Received";
1133 break;
1134 case MPI2_EVENT_EVENT_CHANGE:
1135 desc = "Event Change";
1136 break;
1137 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1138 desc = "Device Status Change";
1139 break;
1140 case MPI2_EVENT_IR_OPERATION_STATUS:
1141 if (!ioc->hide_ir_msg)
1142 desc = "IR Operation Status";
1143 break;
1144 case MPI2_EVENT_SAS_DISCOVERY:
1145 {
1146 Mpi2EventDataSasDiscovery_t *event_data =
1147 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1148 ioc_info(ioc, "Discovery: (%s)",
1149 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1150 "start" : "stop");
1151 if (event_data->DiscoveryStatus)
1152 pr_cont(" discovery_status(0x%08x)",
1153 le32_to_cpu(event_data->DiscoveryStatus));
1154 pr_cont("\n");
1155 return;
1156 }
1157 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1158 desc = "SAS Broadcast Primitive";
1159 break;
1160 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1161 desc = "SAS Init Device Status Change";
1162 break;
1163 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1164 desc = "SAS Init Table Overflow";
1165 break;
1166 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1167 desc = "SAS Topology Change List";
1168 break;
1169 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1170 desc = "SAS Enclosure Device Status Change";
1171 break;
1172 case MPI2_EVENT_IR_VOLUME:
1173 if (!ioc->hide_ir_msg)
1174 desc = "IR Volume";
1175 break;
1176 case MPI2_EVENT_IR_PHYSICAL_DISK:
1177 if (!ioc->hide_ir_msg)
1178 desc = "IR Physical Disk";
1179 break;
1180 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1181 if (!ioc->hide_ir_msg)
1182 desc = "IR Configuration Change List";
1183 break;
1184 case MPI2_EVENT_LOG_ENTRY_ADDED:
1185 if (!ioc->hide_ir_msg)
1186 desc = "Log Entry Added";
1187 break;
1188 case MPI2_EVENT_TEMP_THRESHOLD:
1189 desc = "Temperature Threshold";
1190 break;
1191 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1192 desc = "Cable Event";
1193 break;
1194 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1195 desc = "SAS Device Discovery Error";
1196 break;
1197 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1198 desc = "PCIE Device Status Change";
1199 break;
1200 case MPI2_EVENT_PCIE_ENUMERATION:
1201 {
1202 Mpi26EventDataPCIeEnumeration_t *event_data =
1203 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1204 ioc_info(ioc, "PCIE Enumeration: (%s)",
1205 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1206 "start" : "stop");
1207 if (event_data->EnumerationStatus)
1208 pr_cont("enumeration_status(0x%08x)",
1209 le32_to_cpu(event_data->EnumerationStatus));
1210 pr_cont("\n");
1211 return;
1212 }
1213 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1214 desc = "PCIE Topology Change List";
1215 break;
1216 }
1217
1218 if (!desc)
1219 return;
1220
1221 ioc_info(ioc, "%s\n", desc);
1222 }
1223
1224 /**
1225 * _base_sas_log_info - verbose translation of firmware log info
1226 * @ioc: per adapter object
1227 * @log_info: log info
1228 */
1229 static void
_base_sas_log_info(struct MPT3SAS_ADAPTER * ioc,u32 log_info)1230 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1231 {
1232 union loginfo_type {
1233 u32 loginfo;
1234 struct {
1235 u32 subcode:16;
1236 u32 code:8;
1237 u32 originator:4;
1238 u32 bus_type:4;
1239 } dw;
1240 };
1241 union loginfo_type sas_loginfo;
1242 char *originator_str = NULL;
1243
1244 sas_loginfo.loginfo = log_info;
1245 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1246 return;
1247
1248 /* each nexus loss loginfo */
1249 if (log_info == 0x31170000)
1250 return;
1251
1252 /* eat the loginfos associated with task aborts */
1253 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1254 0x31140000 || log_info == 0x31130000))
1255 return;
1256
1257 switch (sas_loginfo.dw.originator) {
1258 case 0:
1259 originator_str = "IOP";
1260 break;
1261 case 1:
1262 originator_str = "PL";
1263 break;
1264 case 2:
1265 if (!ioc->hide_ir_msg)
1266 originator_str = "IR";
1267 else
1268 originator_str = "WarpDrive";
1269 break;
1270 }
1271
1272 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1273 log_info,
1274 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1275 }
1276
1277 /**
1278 * _base_display_reply_info -
1279 * @ioc: per adapter object
1280 * @smid: system request message index
1281 * @msix_index: MSIX table index supplied by the OS
1282 * @reply: reply message frame(lower 32bit addr)
1283 */
1284 static void
_base_display_reply_info(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)1285 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1286 u32 reply)
1287 {
1288 MPI2DefaultReply_t *mpi_reply;
1289 u16 ioc_status;
1290 u32 loginfo = 0;
1291
1292 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1293 if (unlikely(!mpi_reply)) {
1294 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1295 __FILE__, __LINE__, __func__);
1296 return;
1297 }
1298 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1299
1300 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1301 (ioc->logging_level & MPT_DEBUG_REPLY)) {
1302 _base_sas_ioc_info(ioc , mpi_reply,
1303 mpt3sas_base_get_msg_frame(ioc, smid));
1304 }
1305
1306 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1307 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1308 _base_sas_log_info(ioc, loginfo);
1309 }
1310
1311 if (ioc_status || loginfo) {
1312 ioc_status &= MPI2_IOCSTATUS_MASK;
1313 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1314 }
1315 }
1316
1317 /**
1318 * mpt3sas_base_done - base internal command completion routine
1319 * @ioc: per adapter object
1320 * @smid: system request message index
1321 * @msix_index: MSIX table index supplied by the OS
1322 * @reply: reply message frame(lower 32bit addr)
1323 *
1324 * Return:
1325 * 1 meaning mf should be freed from _base_interrupt
1326 * 0 means the mf is freed from this function.
1327 */
1328 u8
mpt3sas_base_done(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)1329 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1330 u32 reply)
1331 {
1332 MPI2DefaultReply_t *mpi_reply;
1333
1334 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1335 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1336 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1337
1338 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1339 return 1;
1340
1341 ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1342 if (mpi_reply) {
1343 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1344 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1345 }
1346 ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1347
1348 complete(&ioc->base_cmds.done);
1349 return 1;
1350 }
1351
1352 /**
1353 * _base_async_event - main callback handler for firmware asyn events
1354 * @ioc: per adapter object
1355 * @msix_index: MSIX table index supplied by the OS
1356 * @reply: reply message frame(lower 32bit addr)
1357 *
1358 * Return:
1359 * 1 meaning mf should be freed from _base_interrupt
1360 * 0 means the mf is freed from this function.
1361 */
1362 static u8
_base_async_event(struct MPT3SAS_ADAPTER * ioc,u8 msix_index,u32 reply)1363 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1364 {
1365 Mpi2EventNotificationReply_t *mpi_reply;
1366 Mpi2EventAckRequest_t *ack_request;
1367 u16 smid;
1368 struct _event_ack_list *delayed_event_ack;
1369
1370 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1371 if (!mpi_reply)
1372 return 1;
1373 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1374 return 1;
1375
1376 _base_display_event_data(ioc, mpi_reply);
1377
1378 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1379 goto out;
1380 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1381 if (!smid) {
1382 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1383 GFP_ATOMIC);
1384 if (!delayed_event_ack)
1385 goto out;
1386 INIT_LIST_HEAD(&delayed_event_ack->list);
1387 delayed_event_ack->Event = mpi_reply->Event;
1388 delayed_event_ack->EventContext = mpi_reply->EventContext;
1389 list_add_tail(&delayed_event_ack->list,
1390 &ioc->delayed_event_ack_list);
1391 dewtprintk(ioc,
1392 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1393 le16_to_cpu(mpi_reply->Event)));
1394 goto out;
1395 }
1396
1397 ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1398 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1399 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1400 ack_request->Event = mpi_reply->Event;
1401 ack_request->EventContext = mpi_reply->EventContext;
1402 ack_request->VF_ID = 0; /* TODO */
1403 ack_request->VP_ID = 0;
1404 ioc->put_smid_default(ioc, smid);
1405
1406 out:
1407
1408 /* scsih callback handler */
1409 mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1410
1411 /* ctl callback handler */
1412 mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1413
1414 return 1;
1415 }
1416
1417 static struct scsiio_tracker *
_get_st_from_smid(struct MPT3SAS_ADAPTER * ioc,u16 smid)1418 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1419 {
1420 struct scsi_cmnd *cmd;
1421
1422 if (WARN_ON(!smid) ||
1423 WARN_ON(smid >= ioc->hi_priority_smid))
1424 return NULL;
1425
1426 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1427 if (cmd)
1428 return scsi_cmd_priv(cmd);
1429
1430 return NULL;
1431 }
1432
1433 /**
1434 * _base_get_cb_idx - obtain the callback index
1435 * @ioc: per adapter object
1436 * @smid: system request message index
1437 *
1438 * Return: callback index.
1439 */
1440 static u8
_base_get_cb_idx(struct MPT3SAS_ADAPTER * ioc,u16 smid)1441 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1442 {
1443 int i;
1444 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1445 u8 cb_idx = 0xFF;
1446
1447 if (smid < ioc->hi_priority_smid) {
1448 struct scsiio_tracker *st;
1449
1450 if (smid < ctl_smid) {
1451 st = _get_st_from_smid(ioc, smid);
1452 if (st)
1453 cb_idx = st->cb_idx;
1454 } else if (smid == ctl_smid)
1455 cb_idx = ioc->ctl_cb_idx;
1456 } else if (smid < ioc->internal_smid) {
1457 i = smid - ioc->hi_priority_smid;
1458 cb_idx = ioc->hpr_lookup[i].cb_idx;
1459 } else if (smid <= ioc->hba_queue_depth) {
1460 i = smid - ioc->internal_smid;
1461 cb_idx = ioc->internal_lookup[i].cb_idx;
1462 }
1463 return cb_idx;
1464 }
1465
1466 /**
1467 * mpt3sas_base_mask_interrupts - disable interrupts
1468 * @ioc: per adapter object
1469 *
1470 * Disabling ResetIRQ, Reply and Doorbell Interrupts
1471 */
1472 void
mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER * ioc)1473 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1474 {
1475 u32 him_register;
1476
1477 ioc->mask_interrupts = 1;
1478 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1479 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1480 writel(him_register, &ioc->chip->HostInterruptMask);
1481 ioc->base_readl(&ioc->chip->HostInterruptMask);
1482 }
1483
1484 /**
1485 * mpt3sas_base_unmask_interrupts - enable interrupts
1486 * @ioc: per adapter object
1487 *
1488 * Enabling only Reply Interrupts
1489 */
1490 void
mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER * ioc)1491 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1492 {
1493 u32 him_register;
1494
1495 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1496 him_register &= ~MPI2_HIM_RIM;
1497 writel(him_register, &ioc->chip->HostInterruptMask);
1498 ioc->mask_interrupts = 0;
1499 }
1500
1501 union reply_descriptor {
1502 u64 word;
1503 struct {
1504 u32 low;
1505 u32 high;
1506 } u;
1507 };
1508
base_mod64(u64 dividend,u32 divisor)1509 static u32 base_mod64(u64 dividend, u32 divisor)
1510 {
1511 u32 remainder;
1512
1513 if (!divisor)
1514 pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1515 remainder = do_div(dividend, divisor);
1516 return remainder;
1517 }
1518
1519 /**
1520 * _base_process_reply_queue - Process reply descriptors from reply
1521 * descriptor post queue.
1522 * @reply_q: per IRQ's reply queue object.
1523 *
1524 * Return: number of reply descriptors processed from reply
1525 * descriptor queue.
1526 */
1527 static int
_base_process_reply_queue(struct adapter_reply_queue * reply_q)1528 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1529 {
1530 union reply_descriptor rd;
1531 u64 completed_cmds;
1532 u8 request_descript_type;
1533 u16 smid;
1534 u8 cb_idx;
1535 u32 reply;
1536 u8 msix_index = reply_q->msix_index;
1537 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1538 Mpi2ReplyDescriptorsUnion_t *rpf;
1539 u8 rc;
1540
1541 completed_cmds = 0;
1542 if (!atomic_add_unless(&reply_q->busy, 1, 1))
1543 return completed_cmds;
1544
1545 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1546 request_descript_type = rpf->Default.ReplyFlags
1547 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1548 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1549 atomic_dec(&reply_q->busy);
1550 return completed_cmds;
1551 }
1552
1553 cb_idx = 0xFF;
1554 do {
1555 rd.word = le64_to_cpu(rpf->Words);
1556 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1557 goto out;
1558 reply = 0;
1559 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1560 if (request_descript_type ==
1561 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1562 request_descript_type ==
1563 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1564 request_descript_type ==
1565 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1566 cb_idx = _base_get_cb_idx(ioc, smid);
1567 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1568 (likely(mpt_callbacks[cb_idx] != NULL))) {
1569 rc = mpt_callbacks[cb_idx](ioc, smid,
1570 msix_index, 0);
1571 if (rc)
1572 mpt3sas_base_free_smid(ioc, smid);
1573 }
1574 } else if (request_descript_type ==
1575 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1576 reply = le32_to_cpu(
1577 rpf->AddressReply.ReplyFrameAddress);
1578 if (reply > ioc->reply_dma_max_address ||
1579 reply < ioc->reply_dma_min_address)
1580 reply = 0;
1581 if (smid) {
1582 cb_idx = _base_get_cb_idx(ioc, smid);
1583 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1584 (likely(mpt_callbacks[cb_idx] != NULL))) {
1585 rc = mpt_callbacks[cb_idx](ioc, smid,
1586 msix_index, reply);
1587 if (reply)
1588 _base_display_reply_info(ioc,
1589 smid, msix_index, reply);
1590 if (rc)
1591 mpt3sas_base_free_smid(ioc,
1592 smid);
1593 }
1594 } else {
1595 _base_async_event(ioc, msix_index, reply);
1596 }
1597
1598 /* reply free queue handling */
1599 if (reply) {
1600 ioc->reply_free_host_index =
1601 (ioc->reply_free_host_index ==
1602 (ioc->reply_free_queue_depth - 1)) ?
1603 0 : ioc->reply_free_host_index + 1;
1604 ioc->reply_free[ioc->reply_free_host_index] =
1605 cpu_to_le32(reply);
1606 if (ioc->is_mcpu_endpoint)
1607 _base_clone_reply_to_sys_mem(ioc,
1608 reply,
1609 ioc->reply_free_host_index);
1610 writel(ioc->reply_free_host_index,
1611 &ioc->chip->ReplyFreeHostIndex);
1612 }
1613 }
1614
1615 rpf->Words = cpu_to_le64(ULLONG_MAX);
1616 reply_q->reply_post_host_index =
1617 (reply_q->reply_post_host_index ==
1618 (ioc->reply_post_queue_depth - 1)) ? 0 :
1619 reply_q->reply_post_host_index + 1;
1620 request_descript_type =
1621 reply_q->reply_post_free[reply_q->reply_post_host_index].
1622 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1623 completed_cmds++;
1624 /* Update the reply post host index after continuously
1625 * processing the threshold number of Reply Descriptors.
1626 * So that FW can find enough entries to post the Reply
1627 * Descriptors in the reply descriptor post queue.
1628 */
1629 if (completed_cmds >= ioc->thresh_hold) {
1630 if (ioc->combined_reply_queue) {
1631 writel(reply_q->reply_post_host_index |
1632 ((msix_index & 7) <<
1633 MPI2_RPHI_MSIX_INDEX_SHIFT),
1634 ioc->replyPostRegisterIndex[msix_index/8]);
1635 } else {
1636 writel(reply_q->reply_post_host_index |
1637 (msix_index <<
1638 MPI2_RPHI_MSIX_INDEX_SHIFT),
1639 &ioc->chip->ReplyPostHostIndex);
1640 }
1641 if (!reply_q->irq_poll_scheduled) {
1642 reply_q->irq_poll_scheduled = true;
1643 irq_poll_sched(&reply_q->irqpoll);
1644 }
1645 atomic_dec(&reply_q->busy);
1646 return completed_cmds;
1647 }
1648 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1649 goto out;
1650 if (!reply_q->reply_post_host_index)
1651 rpf = reply_q->reply_post_free;
1652 else
1653 rpf++;
1654 } while (1);
1655
1656 out:
1657
1658 if (!completed_cmds) {
1659 atomic_dec(&reply_q->busy);
1660 return completed_cmds;
1661 }
1662
1663 if (ioc->is_warpdrive) {
1664 writel(reply_q->reply_post_host_index,
1665 ioc->reply_post_host_index[msix_index]);
1666 atomic_dec(&reply_q->busy);
1667 return completed_cmds;
1668 }
1669
1670 /* Update Reply Post Host Index.
1671 * For those HBA's which support combined reply queue feature
1672 * 1. Get the correct Supplemental Reply Post Host Index Register.
1673 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1674 * Index Register address bank i.e replyPostRegisterIndex[],
1675 * 2. Then update this register with new reply host index value
1676 * in ReplyPostIndex field and the MSIxIndex field with
1677 * msix_index value reduced to a value between 0 and 7,
1678 * using a modulo 8 operation. Since each Supplemental Reply Post
1679 * Host Index Register supports 8 MSI-X vectors.
1680 *
1681 * For other HBA's just update the Reply Post Host Index register with
1682 * new reply host index value in ReplyPostIndex Field and msix_index
1683 * value in MSIxIndex field.
1684 */
1685 if (ioc->combined_reply_queue)
1686 writel(reply_q->reply_post_host_index | ((msix_index & 7) <<
1687 MPI2_RPHI_MSIX_INDEX_SHIFT),
1688 ioc->replyPostRegisterIndex[msix_index/8]);
1689 else
1690 writel(reply_q->reply_post_host_index | (msix_index <<
1691 MPI2_RPHI_MSIX_INDEX_SHIFT),
1692 &ioc->chip->ReplyPostHostIndex);
1693 atomic_dec(&reply_q->busy);
1694 return completed_cmds;
1695 }
1696
1697 /**
1698 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1699 * @irq: irq number (not used)
1700 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1701 *
1702 * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1703 */
1704 static irqreturn_t
_base_interrupt(int irq,void * bus_id)1705 _base_interrupt(int irq, void *bus_id)
1706 {
1707 struct adapter_reply_queue *reply_q = bus_id;
1708 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1709
1710 if (ioc->mask_interrupts)
1711 return IRQ_NONE;
1712 if (reply_q->irq_poll_scheduled)
1713 return IRQ_HANDLED;
1714 return ((_base_process_reply_queue(reply_q) > 0) ?
1715 IRQ_HANDLED : IRQ_NONE);
1716 }
1717
1718 /**
1719 * _base_irqpoll - IRQ poll callback handler
1720 * @irqpoll: irq_poll object
1721 * @budget: irq poll weight
1722 *
1723 * returns number of reply descriptors processed
1724 */
1725 static int
_base_irqpoll(struct irq_poll * irqpoll,int budget)1726 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1727 {
1728 struct adapter_reply_queue *reply_q;
1729 int num_entries = 0;
1730
1731 reply_q = container_of(irqpoll, struct adapter_reply_queue,
1732 irqpoll);
1733 if (reply_q->irq_line_enable) {
1734 disable_irq_nosync(reply_q->os_irq);
1735 reply_q->irq_line_enable = false;
1736 }
1737 num_entries = _base_process_reply_queue(reply_q);
1738 if (num_entries < budget) {
1739 irq_poll_complete(irqpoll);
1740 reply_q->irq_poll_scheduled = false;
1741 reply_q->irq_line_enable = true;
1742 enable_irq(reply_q->os_irq);
1743 /*
1744 * Go for one more round of processing the
1745 * reply descriptor post queue incase if HBA
1746 * Firmware has posted some reply descriptors
1747 * while reenabling the IRQ.
1748 */
1749 _base_process_reply_queue(reply_q);
1750 }
1751
1752 return num_entries;
1753 }
1754
1755 /**
1756 * _base_init_irqpolls - initliaze IRQ polls
1757 * @ioc: per adapter object
1758 *
1759 * returns nothing
1760 */
1761 static void
_base_init_irqpolls(struct MPT3SAS_ADAPTER * ioc)1762 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1763 {
1764 struct adapter_reply_queue *reply_q, *next;
1765
1766 if (list_empty(&ioc->reply_queue_list))
1767 return;
1768
1769 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1770 irq_poll_init(&reply_q->irqpoll,
1771 ioc->hba_queue_depth/4, _base_irqpoll);
1772 reply_q->irq_poll_scheduled = false;
1773 reply_q->irq_line_enable = true;
1774 reply_q->os_irq = pci_irq_vector(ioc->pdev,
1775 reply_q->msix_index);
1776 }
1777 }
1778
1779 /**
1780 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1781 * @ioc: per adapter object
1782 *
1783 * Return: Whether or not MSI/X is enabled.
1784 */
1785 static inline int
_base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER * ioc)1786 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1787 {
1788 return (ioc->facts.IOCCapabilities &
1789 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1790 }
1791
1792 /**
1793 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1794 * @ioc: per adapter object
1795 * @poll: poll over reply descriptor pools incase interrupt for
1796 * timed-out SCSI command got delayed
1797 * Context: non ISR conext
1798 *
1799 * Called when a Task Management request has completed.
1800 */
1801 void
mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER * ioc,u8 poll)1802 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1803 {
1804 struct adapter_reply_queue *reply_q;
1805
1806 /* If MSIX capability is turned off
1807 * then multi-queues are not enabled
1808 */
1809 if (!_base_is_controller_msix_enabled(ioc))
1810 return;
1811
1812 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1813 if (ioc->shost_recovery || ioc->remove_host ||
1814 ioc->pci_error_recovery)
1815 return;
1816 /* TMs are on msix_index == 0 */
1817 if (reply_q->msix_index == 0)
1818 continue;
1819 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1820 if (reply_q->irq_poll_scheduled) {
1821 /* Calling irq_poll_disable will wait for any pending
1822 * callbacks to have completed.
1823 */
1824 irq_poll_disable(&reply_q->irqpoll);
1825 irq_poll_enable(&reply_q->irqpoll);
1826 /* check how the scheduled poll has ended,
1827 * clean up only if necessary
1828 */
1829 if (reply_q->irq_poll_scheduled) {
1830 reply_q->irq_poll_scheduled = false;
1831 reply_q->irq_line_enable = true;
1832 enable_irq(reply_q->os_irq);
1833 }
1834 }
1835
1836 if (poll)
1837 _base_process_reply_queue(reply_q);
1838 }
1839 }
1840
1841 /**
1842 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1843 * @cb_idx: callback index
1844 */
1845 void
mpt3sas_base_release_callback_handler(u8 cb_idx)1846 mpt3sas_base_release_callback_handler(u8 cb_idx)
1847 {
1848 mpt_callbacks[cb_idx] = NULL;
1849 }
1850
1851 /**
1852 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1853 * @cb_func: callback function
1854 *
1855 * Return: Index of @cb_func.
1856 */
1857 u8
mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)1858 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1859 {
1860 u8 cb_idx;
1861
1862 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1863 if (mpt_callbacks[cb_idx] == NULL)
1864 break;
1865
1866 mpt_callbacks[cb_idx] = cb_func;
1867 return cb_idx;
1868 }
1869
1870 /**
1871 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1872 */
1873 void
mpt3sas_base_initialize_callback_handler(void)1874 mpt3sas_base_initialize_callback_handler(void)
1875 {
1876 u8 cb_idx;
1877
1878 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1879 mpt3sas_base_release_callback_handler(cb_idx);
1880 }
1881
1882
1883 /**
1884 * _base_build_zero_len_sge - build zero length sg entry
1885 * @ioc: per adapter object
1886 * @paddr: virtual address for SGE
1887 *
1888 * Create a zero length scatter gather entry to insure the IOCs hardware has
1889 * something to use if the target device goes brain dead and tries
1890 * to send data even when none is asked for.
1891 */
1892 static void
_base_build_zero_len_sge(struct MPT3SAS_ADAPTER * ioc,void * paddr)1893 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1894 {
1895 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1896 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1897 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1898 MPI2_SGE_FLAGS_SHIFT);
1899 ioc->base_add_sg_single(paddr, flags_length, -1);
1900 }
1901
1902 /**
1903 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1904 * @paddr: virtual address for SGE
1905 * @flags_length: SGE flags and data transfer length
1906 * @dma_addr: Physical address
1907 */
1908 static void
_base_add_sg_single_32(void * paddr,u32 flags_length,dma_addr_t dma_addr)1909 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1910 {
1911 Mpi2SGESimple32_t *sgel = paddr;
1912
1913 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1914 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1915 sgel->FlagsLength = cpu_to_le32(flags_length);
1916 sgel->Address = cpu_to_le32(dma_addr);
1917 }
1918
1919
1920 /**
1921 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1922 * @paddr: virtual address for SGE
1923 * @flags_length: SGE flags and data transfer length
1924 * @dma_addr: Physical address
1925 */
1926 static void
_base_add_sg_single_64(void * paddr,u32 flags_length,dma_addr_t dma_addr)1927 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1928 {
1929 Mpi2SGESimple64_t *sgel = paddr;
1930
1931 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1932 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1933 sgel->FlagsLength = cpu_to_le32(flags_length);
1934 sgel->Address = cpu_to_le64(dma_addr);
1935 }
1936
1937 /**
1938 * _base_get_chain_buffer_tracker - obtain chain tracker
1939 * @ioc: per adapter object
1940 * @scmd: SCSI commands of the IO request
1941 *
1942 * Return: chain tracker from chain_lookup table using key as
1943 * smid and smid's chain_offset.
1944 */
1945 static struct chain_tracker *
_base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)1946 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
1947 struct scsi_cmnd *scmd)
1948 {
1949 struct chain_tracker *chain_req;
1950 struct scsiio_tracker *st = scsi_cmd_priv(scmd);
1951 u16 smid = st->smid;
1952 u8 chain_offset =
1953 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
1954
1955 if (chain_offset == ioc->chains_needed_per_io)
1956 return NULL;
1957
1958 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
1959 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
1960 return chain_req;
1961 }
1962
1963
1964 /**
1965 * _base_build_sg - build generic sg
1966 * @ioc: per adapter object
1967 * @psge: virtual address for SGE
1968 * @data_out_dma: physical address for WRITES
1969 * @data_out_sz: data xfer size for WRITES
1970 * @data_in_dma: physical address for READS
1971 * @data_in_sz: data xfer size for READS
1972 */
1973 static void
_base_build_sg(struct MPT3SAS_ADAPTER * ioc,void * psge,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)1974 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1975 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1976 size_t data_in_sz)
1977 {
1978 u32 sgl_flags;
1979
1980 if (!data_out_sz && !data_in_sz) {
1981 _base_build_zero_len_sge(ioc, psge);
1982 return;
1983 }
1984
1985 if (data_out_sz && data_in_sz) {
1986 /* WRITE sgel first */
1987 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1988 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1989 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1990 ioc->base_add_sg_single(psge, sgl_flags |
1991 data_out_sz, data_out_dma);
1992
1993 /* incr sgel */
1994 psge += ioc->sge_size;
1995
1996 /* READ sgel last */
1997 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1998 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1999 MPI2_SGE_FLAGS_END_OF_LIST);
2000 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2001 ioc->base_add_sg_single(psge, sgl_flags |
2002 data_in_sz, data_in_dma);
2003 } else if (data_out_sz) /* WRITE */ {
2004 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2005 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2006 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2007 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2008 ioc->base_add_sg_single(psge, sgl_flags |
2009 data_out_sz, data_out_dma);
2010 } else if (data_in_sz) /* READ */ {
2011 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2012 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2013 MPI2_SGE_FLAGS_END_OF_LIST);
2014 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2015 ioc->base_add_sg_single(psge, sgl_flags |
2016 data_in_sz, data_in_dma);
2017 }
2018 }
2019
2020 /* IEEE format sgls */
2021
2022 /**
2023 * _base_build_nvme_prp - This function is called for NVMe end devices to build
2024 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
2025 * entry of the NVMe message (PRP1). If the data buffer is small enough to be
2026 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is
2027 * used to describe a larger data buffer. If the data buffer is too large to
2028 * describe using the two PRP entriess inside the NVMe message, then PRP1
2029 * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2030 * list located elsewhere in memory to describe the remaining data memory
2031 * segments. The PRP list will be contiguous.
2032 *
2033 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
2034 * consists of a list of PRP entries to describe a number of noncontigous
2035 * physical memory segments as a single memory buffer, just as a SGL does. Note
2036 * however, that this function is only used by the IOCTL call, so the memory
2037 * given will be guaranteed to be contiguous. There is no need to translate
2038 * non-contiguous SGL into a PRP in this case. All PRPs will describe
2039 * contiguous space that is one page size each.
2040 *
2041 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
2042 * a PRP list pointer or a PRP element, depending upon the command. PRP2
2043 * contains the second PRP element if the memory being described fits within 2
2044 * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2045 *
2046 * A PRP list pointer contains the address of a PRP list, structured as a linear
2047 * array of PRP entries. Each PRP entry in this list describes a segment of
2048 * physical memory.
2049 *
2050 * Each 64-bit PRP entry comprises an address and an offset field. The address
2051 * always points at the beginning of a 4KB physical memory page, and the offset
2052 * describes where within that 4KB page the memory segment begins. Only the
2053 * first element in a PRP list may contain a non-zero offest, implying that all
2054 * memory segments following the first begin at the start of a 4KB page.
2055 *
2056 * Each PRP element normally describes 4KB of physical memory, with exceptions
2057 * for the first and last elements in the list. If the memory being described
2058 * by the list begins at a non-zero offset within the first 4KB page, then the
2059 * first PRP element will contain a non-zero offset indicating where the region
2060 * begins within the 4KB page. The last memory segment may end before the end
2061 * of the 4KB segment, depending upon the overall size of the memory being
2062 * described by the PRP list.
2063 *
2064 * Since PRP entries lack any indication of size, the overall data buffer length
2065 * is used to determine where the end of the data memory buffer is located, and
2066 * how many PRP entries are required to describe it.
2067 *
2068 * @ioc: per adapter object
2069 * @smid: system request message index for getting asscociated SGL
2070 * @nvme_encap_request: the NVMe request msg frame pointer
2071 * @data_out_dma: physical address for WRITES
2072 * @data_out_sz: data xfer size for WRITES
2073 * @data_in_dma: physical address for READS
2074 * @data_in_sz: data xfer size for READS
2075 */
2076 static void
_base_build_nvme_prp(struct MPT3SAS_ADAPTER * ioc,u16 smid,Mpi26NVMeEncapsulatedRequest_t * nvme_encap_request,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)2077 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2078 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2079 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2080 size_t data_in_sz)
2081 {
2082 int prp_size = NVME_PRP_SIZE;
2083 __le64 *prp_entry, *prp1_entry, *prp2_entry;
2084 __le64 *prp_page;
2085 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
2086 u32 offset, entry_len;
2087 u32 page_mask_result, page_mask;
2088 size_t length;
2089 struct mpt3sas_nvme_cmd *nvme_cmd =
2090 (void *)nvme_encap_request->NVMe_Command;
2091
2092 /*
2093 * Not all commands require a data transfer. If no data, just return
2094 * without constructing any PRP.
2095 */
2096 if (!data_in_sz && !data_out_sz)
2097 return;
2098 prp1_entry = &nvme_cmd->prp1;
2099 prp2_entry = &nvme_cmd->prp2;
2100 prp_entry = prp1_entry;
2101 /*
2102 * For the PRP entries, use the specially allocated buffer of
2103 * contiguous memory.
2104 */
2105 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2106 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2107
2108 /*
2109 * Check if we are within 1 entry of a page boundary we don't
2110 * want our first entry to be a PRP List entry.
2111 */
2112 page_mask = ioc->page_size - 1;
2113 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2114 if (!page_mask_result) {
2115 /* Bump up to next page boundary. */
2116 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2117 prp_page_dma = prp_page_dma + prp_size;
2118 }
2119
2120 /*
2121 * Set PRP physical pointer, which initially points to the current PRP
2122 * DMA memory page.
2123 */
2124 prp_entry_dma = prp_page_dma;
2125
2126 /* Get physical address and length of the data buffer. */
2127 if (data_in_sz) {
2128 dma_addr = data_in_dma;
2129 length = data_in_sz;
2130 } else {
2131 dma_addr = data_out_dma;
2132 length = data_out_sz;
2133 }
2134
2135 /* Loop while the length is not zero. */
2136 while (length) {
2137 /*
2138 * Check if we need to put a list pointer here if we are at
2139 * page boundary - prp_size (8 bytes).
2140 */
2141 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2142 if (!page_mask_result) {
2143 /*
2144 * This is the last entry in a PRP List, so we need to
2145 * put a PRP list pointer here. What this does is:
2146 * - bump the current memory pointer to the next
2147 * address, which will be the next full page.
2148 * - set the PRP Entry to point to that page. This
2149 * is now the PRP List pointer.
2150 * - bump the PRP Entry pointer the start of the
2151 * next page. Since all of this PRP memory is
2152 * contiguous, no need to get a new page - it's
2153 * just the next address.
2154 */
2155 prp_entry_dma++;
2156 *prp_entry = cpu_to_le64(prp_entry_dma);
2157 prp_entry++;
2158 }
2159
2160 /* Need to handle if entry will be part of a page. */
2161 offset = dma_addr & page_mask;
2162 entry_len = ioc->page_size - offset;
2163
2164 if (prp_entry == prp1_entry) {
2165 /*
2166 * Must fill in the first PRP pointer (PRP1) before
2167 * moving on.
2168 */
2169 *prp1_entry = cpu_to_le64(dma_addr);
2170
2171 /*
2172 * Now point to the second PRP entry within the
2173 * command (PRP2).
2174 */
2175 prp_entry = prp2_entry;
2176 } else if (prp_entry == prp2_entry) {
2177 /*
2178 * Should the PRP2 entry be a PRP List pointer or just
2179 * a regular PRP pointer? If there is more than one
2180 * more page of data, must use a PRP List pointer.
2181 */
2182 if (length > ioc->page_size) {
2183 /*
2184 * PRP2 will contain a PRP List pointer because
2185 * more PRP's are needed with this command. The
2186 * list will start at the beginning of the
2187 * contiguous buffer.
2188 */
2189 *prp2_entry = cpu_to_le64(prp_entry_dma);
2190
2191 /*
2192 * The next PRP Entry will be the start of the
2193 * first PRP List.
2194 */
2195 prp_entry = prp_page;
2196 } else {
2197 /*
2198 * After this, the PRP Entries are complete.
2199 * This command uses 2 PRP's and no PRP list.
2200 */
2201 *prp2_entry = cpu_to_le64(dma_addr);
2202 }
2203 } else {
2204 /*
2205 * Put entry in list and bump the addresses.
2206 *
2207 * After PRP1 and PRP2 are filled in, this will fill in
2208 * all remaining PRP entries in a PRP List, one per
2209 * each time through the loop.
2210 */
2211 *prp_entry = cpu_to_le64(dma_addr);
2212 prp_entry++;
2213 prp_entry_dma++;
2214 }
2215
2216 /*
2217 * Bump the phys address of the command's data buffer by the
2218 * entry_len.
2219 */
2220 dma_addr += entry_len;
2221
2222 /* Decrement length accounting for last partial page. */
2223 if (entry_len > length)
2224 length = 0;
2225 else
2226 length -= entry_len;
2227 }
2228 }
2229
2230 /**
2231 * base_make_prp_nvme -
2232 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
2233 *
2234 * @ioc: per adapter object
2235 * @scmd: SCSI command from the mid-layer
2236 * @mpi_request: mpi request
2237 * @smid: msg Index
2238 * @sge_count: scatter gather element count.
2239 *
2240 * Return: true: PRPs are built
2241 * false: IEEE SGLs needs to be built
2242 */
2243 static void
base_make_prp_nvme(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,Mpi25SCSIIORequest_t * mpi_request,u16 smid,int sge_count)2244 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2245 struct scsi_cmnd *scmd,
2246 Mpi25SCSIIORequest_t *mpi_request,
2247 u16 smid, int sge_count)
2248 {
2249 int sge_len, num_prp_in_chain = 0;
2250 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2251 __le64 *curr_buff;
2252 dma_addr_t msg_dma, sge_addr, offset;
2253 u32 page_mask, page_mask_result;
2254 struct scatterlist *sg_scmd;
2255 u32 first_prp_len;
2256 int data_len = scsi_bufflen(scmd);
2257 u32 nvme_pg_size;
2258
2259 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2260 /*
2261 * Nvme has a very convoluted prp format. One prp is required
2262 * for each page or partial page. Driver need to split up OS sg_list
2263 * entries if it is longer than one page or cross a page
2264 * boundary. Driver also have to insert a PRP list pointer entry as
2265 * the last entry in each physical page of the PRP list.
2266 *
2267 * NOTE: The first PRP "entry" is actually placed in the first
2268 * SGL entry in the main message as IEEE 64 format. The 2nd
2269 * entry in the main message is the chain element, and the rest
2270 * of the PRP entries are built in the contiguous pcie buffer.
2271 */
2272 page_mask = nvme_pg_size - 1;
2273
2274 /*
2275 * Native SGL is needed.
2276 * Put a chain element in main message frame that points to the first
2277 * chain buffer.
2278 *
2279 * NOTE: The ChainOffset field must be 0 when using a chain pointer to
2280 * a native SGL.
2281 */
2282
2283 /* Set main message chain element pointer */
2284 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2285 /*
2286 * For NVMe the chain element needs to be the 2nd SG entry in the main
2287 * message.
2288 */
2289 main_chain_element = (Mpi25IeeeSgeChain64_t *)
2290 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2291
2292 /*
2293 * For the PRP entries, use the specially allocated buffer of
2294 * contiguous memory. Normal chain buffers can't be used
2295 * because each chain buffer would need to be the size of an OS
2296 * page (4k).
2297 */
2298 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2299 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2300
2301 main_chain_element->Address = cpu_to_le64(msg_dma);
2302 main_chain_element->NextChainOffset = 0;
2303 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2304 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2305 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2306
2307 /* Build first prp, sge need not to be page aligned*/
2308 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2309 sg_scmd = scsi_sglist(scmd);
2310 sge_addr = sg_dma_address(sg_scmd);
2311 sge_len = sg_dma_len(sg_scmd);
2312
2313 offset = sge_addr & page_mask;
2314 first_prp_len = nvme_pg_size - offset;
2315
2316 ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2317 ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2318
2319 data_len -= first_prp_len;
2320
2321 if (sge_len > first_prp_len) {
2322 sge_addr += first_prp_len;
2323 sge_len -= first_prp_len;
2324 } else if (data_len && (sge_len == first_prp_len)) {
2325 sg_scmd = sg_next(sg_scmd);
2326 sge_addr = sg_dma_address(sg_scmd);
2327 sge_len = sg_dma_len(sg_scmd);
2328 }
2329
2330 for (;;) {
2331 offset = sge_addr & page_mask;
2332
2333 /* Put PRP pointer due to page boundary*/
2334 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2335 if (unlikely(!page_mask_result)) {
2336 scmd_printk(KERN_NOTICE,
2337 scmd, "page boundary curr_buff: 0x%p\n",
2338 curr_buff);
2339 msg_dma += 8;
2340 *curr_buff = cpu_to_le64(msg_dma);
2341 curr_buff++;
2342 num_prp_in_chain++;
2343 }
2344
2345 *curr_buff = cpu_to_le64(sge_addr);
2346 curr_buff++;
2347 msg_dma += 8;
2348 num_prp_in_chain++;
2349
2350 sge_addr += nvme_pg_size;
2351 sge_len -= nvme_pg_size;
2352 data_len -= nvme_pg_size;
2353
2354 if (data_len <= 0)
2355 break;
2356
2357 if (sge_len > 0)
2358 continue;
2359
2360 sg_scmd = sg_next(sg_scmd);
2361 sge_addr = sg_dma_address(sg_scmd);
2362 sge_len = sg_dma_len(sg_scmd);
2363 }
2364
2365 main_chain_element->Length =
2366 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2367 return;
2368 }
2369
2370 static bool
base_is_prp_possible(struct MPT3SAS_ADAPTER * ioc,struct _pcie_device * pcie_device,struct scsi_cmnd * scmd,int sge_count)2371 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2372 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2373 {
2374 u32 data_length = 0;
2375 bool build_prp = true;
2376
2377 data_length = scsi_bufflen(scmd);
2378 if (pcie_device &&
2379 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2380 build_prp = false;
2381 return build_prp;
2382 }
2383
2384 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2385 * we built IEEE SGL
2386 */
2387 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2388 build_prp = false;
2389
2390 return build_prp;
2391 }
2392
2393 /**
2394 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2395 * determine if the driver needs to build a native SGL. If so, that native
2396 * SGL is built in the special contiguous buffers allocated especially for
2397 * PCIe SGL creation. If the driver will not build a native SGL, return
2398 * TRUE and a normal IEEE SGL will be built. Currently this routine
2399 * supports NVMe.
2400 * @ioc: per adapter object
2401 * @mpi_request: mf request pointer
2402 * @smid: system request message index
2403 * @scmd: scsi command
2404 * @pcie_device: points to the PCIe device's info
2405 *
2406 * Return: 0 if native SGL was built, 1 if no SGL was built
2407 */
2408 static int
_base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER * ioc,Mpi25SCSIIORequest_t * mpi_request,u16 smid,struct scsi_cmnd * scmd,struct _pcie_device * pcie_device)2409 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2410 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2411 struct _pcie_device *pcie_device)
2412 {
2413 int sges_left;
2414
2415 /* Get the SG list pointer and info. */
2416 sges_left = scsi_dma_map(scmd);
2417 if (sges_left < 0) {
2418 sdev_printk(KERN_ERR, scmd->device,
2419 "scsi_dma_map failed: request for %d bytes!\n",
2420 scsi_bufflen(scmd));
2421 return 1;
2422 }
2423
2424 /* Check if we need to build a native SG list. */
2425 if (base_is_prp_possible(ioc, pcie_device,
2426 scmd, sges_left) == 0) {
2427 /* We built a native SG list, just return. */
2428 goto out;
2429 }
2430
2431 /*
2432 * Build native NVMe PRP.
2433 */
2434 base_make_prp_nvme(ioc, scmd, mpi_request,
2435 smid, sges_left);
2436
2437 return 0;
2438 out:
2439 scsi_dma_unmap(scmd);
2440 return 1;
2441 }
2442
2443 /**
2444 * _base_add_sg_single_ieee - add sg element for IEEE format
2445 * @paddr: virtual address for SGE
2446 * @flags: SGE flags
2447 * @chain_offset: number of 128 byte elements from start of segment
2448 * @length: data transfer length
2449 * @dma_addr: Physical address
2450 */
2451 static void
_base_add_sg_single_ieee(void * paddr,u8 flags,u8 chain_offset,u32 length,dma_addr_t dma_addr)2452 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2453 dma_addr_t dma_addr)
2454 {
2455 Mpi25IeeeSgeChain64_t *sgel = paddr;
2456
2457 sgel->Flags = flags;
2458 sgel->NextChainOffset = chain_offset;
2459 sgel->Length = cpu_to_le32(length);
2460 sgel->Address = cpu_to_le64(dma_addr);
2461 }
2462
2463 /**
2464 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2465 * @ioc: per adapter object
2466 * @paddr: virtual address for SGE
2467 *
2468 * Create a zero length scatter gather entry to insure the IOCs hardware has
2469 * something to use if the target device goes brain dead and tries
2470 * to send data even when none is asked for.
2471 */
2472 static void
_base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER * ioc,void * paddr)2473 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2474 {
2475 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2476 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2477 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2478
2479 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2480 }
2481
2482 /**
2483 * _base_build_sg_scmd - main sg creation routine
2484 * pcie_device is unused here!
2485 * @ioc: per adapter object
2486 * @scmd: scsi command
2487 * @smid: system request message index
2488 * @unused: unused pcie_device pointer
2489 * Context: none.
2490 *
2491 * The main routine that builds scatter gather table from a given
2492 * scsi request sent via the .queuecommand main handler.
2493 *
2494 * Return: 0 success, anything else error
2495 */
2496 static int
_base_build_sg_scmd(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,u16 smid,struct _pcie_device * unused)2497 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2498 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2499 {
2500 Mpi2SCSIIORequest_t *mpi_request;
2501 dma_addr_t chain_dma;
2502 struct scatterlist *sg_scmd;
2503 void *sg_local, *chain;
2504 u32 chain_offset;
2505 u32 chain_length;
2506 u32 chain_flags;
2507 int sges_left;
2508 u32 sges_in_segment;
2509 u32 sgl_flags;
2510 u32 sgl_flags_last_element;
2511 u32 sgl_flags_end_buffer;
2512 struct chain_tracker *chain_req;
2513
2514 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2515
2516 /* init scatter gather flags */
2517 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2518 if (scmd->sc_data_direction == DMA_TO_DEVICE)
2519 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2520 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2521 << MPI2_SGE_FLAGS_SHIFT;
2522 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2523 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2524 << MPI2_SGE_FLAGS_SHIFT;
2525 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2526
2527 sg_scmd = scsi_sglist(scmd);
2528 sges_left = scsi_dma_map(scmd);
2529 if (sges_left < 0) {
2530 sdev_printk(KERN_ERR, scmd->device,
2531 "scsi_dma_map failed: request for %d bytes!\n",
2532 scsi_bufflen(scmd));
2533 return -ENOMEM;
2534 }
2535
2536 sg_local = &mpi_request->SGL;
2537 sges_in_segment = ioc->max_sges_in_main_message;
2538 if (sges_left <= sges_in_segment)
2539 goto fill_in_last_segment;
2540
2541 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2542 (sges_in_segment * ioc->sge_size))/4;
2543
2544 /* fill in main message segment when there is a chain following */
2545 while (sges_in_segment) {
2546 if (sges_in_segment == 1)
2547 ioc->base_add_sg_single(sg_local,
2548 sgl_flags_last_element | sg_dma_len(sg_scmd),
2549 sg_dma_address(sg_scmd));
2550 else
2551 ioc->base_add_sg_single(sg_local, sgl_flags |
2552 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2553 sg_scmd = sg_next(sg_scmd);
2554 sg_local += ioc->sge_size;
2555 sges_left--;
2556 sges_in_segment--;
2557 }
2558
2559 /* initializing the chain flags and pointers */
2560 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2561 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2562 if (!chain_req)
2563 return -1;
2564 chain = chain_req->chain_buffer;
2565 chain_dma = chain_req->chain_buffer_dma;
2566 do {
2567 sges_in_segment = (sges_left <=
2568 ioc->max_sges_in_chain_message) ? sges_left :
2569 ioc->max_sges_in_chain_message;
2570 chain_offset = (sges_left == sges_in_segment) ?
2571 0 : (sges_in_segment * ioc->sge_size)/4;
2572 chain_length = sges_in_segment * ioc->sge_size;
2573 if (chain_offset) {
2574 chain_offset = chain_offset <<
2575 MPI2_SGE_CHAIN_OFFSET_SHIFT;
2576 chain_length += ioc->sge_size;
2577 }
2578 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2579 chain_length, chain_dma);
2580 sg_local = chain;
2581 if (!chain_offset)
2582 goto fill_in_last_segment;
2583
2584 /* fill in chain segments */
2585 while (sges_in_segment) {
2586 if (sges_in_segment == 1)
2587 ioc->base_add_sg_single(sg_local,
2588 sgl_flags_last_element |
2589 sg_dma_len(sg_scmd),
2590 sg_dma_address(sg_scmd));
2591 else
2592 ioc->base_add_sg_single(sg_local, sgl_flags |
2593 sg_dma_len(sg_scmd),
2594 sg_dma_address(sg_scmd));
2595 sg_scmd = sg_next(sg_scmd);
2596 sg_local += ioc->sge_size;
2597 sges_left--;
2598 sges_in_segment--;
2599 }
2600
2601 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2602 if (!chain_req)
2603 return -1;
2604 chain = chain_req->chain_buffer;
2605 chain_dma = chain_req->chain_buffer_dma;
2606 } while (1);
2607
2608
2609 fill_in_last_segment:
2610
2611 /* fill the last segment */
2612 while (sges_left) {
2613 if (sges_left == 1)
2614 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2615 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2616 else
2617 ioc->base_add_sg_single(sg_local, sgl_flags |
2618 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2619 sg_scmd = sg_next(sg_scmd);
2620 sg_local += ioc->sge_size;
2621 sges_left--;
2622 }
2623
2624 return 0;
2625 }
2626
2627 /**
2628 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2629 * @ioc: per adapter object
2630 * @scmd: scsi command
2631 * @smid: system request message index
2632 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2633 * constructed on need.
2634 * Context: none.
2635 *
2636 * The main routine that builds scatter gather table from a given
2637 * scsi request sent via the .queuecommand main handler.
2638 *
2639 * Return: 0 success, anything else error
2640 */
2641 static int
_base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,u16 smid,struct _pcie_device * pcie_device)2642 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2643 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2644 {
2645 Mpi25SCSIIORequest_t *mpi_request;
2646 dma_addr_t chain_dma;
2647 struct scatterlist *sg_scmd;
2648 void *sg_local, *chain;
2649 u32 chain_offset;
2650 u32 chain_length;
2651 int sges_left;
2652 u32 sges_in_segment;
2653 u8 simple_sgl_flags;
2654 u8 simple_sgl_flags_last;
2655 u8 chain_sgl_flags;
2656 struct chain_tracker *chain_req;
2657
2658 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2659
2660 /* init scatter gather flags */
2661 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2662 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2663 simple_sgl_flags_last = simple_sgl_flags |
2664 MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2665 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2666 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2667
2668 /* Check if we need to build a native SG list. */
2669 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2670 smid, scmd, pcie_device) == 0)) {
2671 /* We built a native SG list, just return. */
2672 return 0;
2673 }
2674
2675 sg_scmd = scsi_sglist(scmd);
2676 sges_left = scsi_dma_map(scmd);
2677 if (sges_left < 0) {
2678 sdev_printk(KERN_ERR, scmd->device,
2679 "scsi_dma_map failed: request for %d bytes!\n",
2680 scsi_bufflen(scmd));
2681 return -ENOMEM;
2682 }
2683
2684 sg_local = &mpi_request->SGL;
2685 sges_in_segment = (ioc->request_sz -
2686 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2687 if (sges_left <= sges_in_segment)
2688 goto fill_in_last_segment;
2689
2690 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2691 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2692
2693 /* fill in main message segment when there is a chain following */
2694 while (sges_in_segment > 1) {
2695 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2696 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2697 sg_scmd = sg_next(sg_scmd);
2698 sg_local += ioc->sge_size_ieee;
2699 sges_left--;
2700 sges_in_segment--;
2701 }
2702
2703 /* initializing the pointers */
2704 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2705 if (!chain_req)
2706 return -1;
2707 chain = chain_req->chain_buffer;
2708 chain_dma = chain_req->chain_buffer_dma;
2709 do {
2710 sges_in_segment = (sges_left <=
2711 ioc->max_sges_in_chain_message) ? sges_left :
2712 ioc->max_sges_in_chain_message;
2713 chain_offset = (sges_left == sges_in_segment) ?
2714 0 : sges_in_segment;
2715 chain_length = sges_in_segment * ioc->sge_size_ieee;
2716 if (chain_offset)
2717 chain_length += ioc->sge_size_ieee;
2718 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2719 chain_offset, chain_length, chain_dma);
2720
2721 sg_local = chain;
2722 if (!chain_offset)
2723 goto fill_in_last_segment;
2724
2725 /* fill in chain segments */
2726 while (sges_in_segment) {
2727 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2728 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2729 sg_scmd = sg_next(sg_scmd);
2730 sg_local += ioc->sge_size_ieee;
2731 sges_left--;
2732 sges_in_segment--;
2733 }
2734
2735 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2736 if (!chain_req)
2737 return -1;
2738 chain = chain_req->chain_buffer;
2739 chain_dma = chain_req->chain_buffer_dma;
2740 } while (1);
2741
2742
2743 fill_in_last_segment:
2744
2745 /* fill the last segment */
2746 while (sges_left > 0) {
2747 if (sges_left == 1)
2748 _base_add_sg_single_ieee(sg_local,
2749 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2750 sg_dma_address(sg_scmd));
2751 else
2752 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2753 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2754 sg_scmd = sg_next(sg_scmd);
2755 sg_local += ioc->sge_size_ieee;
2756 sges_left--;
2757 }
2758
2759 return 0;
2760 }
2761
2762 /**
2763 * _base_build_sg_ieee - build generic sg for IEEE format
2764 * @ioc: per adapter object
2765 * @psge: virtual address for SGE
2766 * @data_out_dma: physical address for WRITES
2767 * @data_out_sz: data xfer size for WRITES
2768 * @data_in_dma: physical address for READS
2769 * @data_in_sz: data xfer size for READS
2770 */
2771 static void
_base_build_sg_ieee(struct MPT3SAS_ADAPTER * ioc,void * psge,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)2772 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2773 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2774 size_t data_in_sz)
2775 {
2776 u8 sgl_flags;
2777
2778 if (!data_out_sz && !data_in_sz) {
2779 _base_build_zero_len_sge_ieee(ioc, psge);
2780 return;
2781 }
2782
2783 if (data_out_sz && data_in_sz) {
2784 /* WRITE sgel first */
2785 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2786 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2787 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2788 data_out_dma);
2789
2790 /* incr sgel */
2791 psge += ioc->sge_size_ieee;
2792
2793 /* READ sgel last */
2794 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2795 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2796 data_in_dma);
2797 } else if (data_out_sz) /* WRITE */ {
2798 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2799 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2800 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2801 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2802 data_out_dma);
2803 } else if (data_in_sz) /* READ */ {
2804 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2805 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2806 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2807 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2808 data_in_dma);
2809 }
2810 }
2811
2812 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2813
2814 /**
2815 * _base_config_dma_addressing - set dma addressing
2816 * @ioc: per adapter object
2817 * @pdev: PCI device struct
2818 *
2819 * Return: 0 for success, non-zero for failure.
2820 */
2821 static int
_base_config_dma_addressing(struct MPT3SAS_ADAPTER * ioc,struct pci_dev * pdev)2822 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2823 {
2824 struct sysinfo s;
2825 u64 coherent_dma_mask, dma_mask;
2826
2827 if (ioc->is_mcpu_endpoint || sizeof(dma_addr_t) == 4) {
2828 ioc->dma_mask = 32;
2829 coherent_dma_mask = dma_mask = DMA_BIT_MASK(32);
2830 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
2831 } else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) {
2832 ioc->dma_mask = 63;
2833 coherent_dma_mask = dma_mask = DMA_BIT_MASK(63);
2834 } else {
2835 ioc->dma_mask = 64;
2836 coherent_dma_mask = dma_mask = DMA_BIT_MASK(64);
2837 }
2838
2839 if (ioc->use_32bit_dma)
2840 coherent_dma_mask = DMA_BIT_MASK(32);
2841
2842 if (dma_set_mask(&pdev->dev, dma_mask) ||
2843 dma_set_coherent_mask(&pdev->dev, coherent_dma_mask))
2844 return -ENODEV;
2845
2846 if (ioc->dma_mask > 32) {
2847 ioc->base_add_sg_single = &_base_add_sg_single_64;
2848 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2849 } else {
2850 ioc->base_add_sg_single = &_base_add_sg_single_32;
2851 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2852 }
2853
2854 si_meminfo(&s);
2855 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2856 ioc->dma_mask, convert_to_kb(s.totalram));
2857
2858 return 0;
2859 }
2860
2861 /**
2862 * _base_check_enable_msix - checks MSIX capabable.
2863 * @ioc: per adapter object
2864 *
2865 * Check to see if card is capable of MSIX, and set number
2866 * of available msix vectors
2867 */
2868 static int
_base_check_enable_msix(struct MPT3SAS_ADAPTER * ioc)2869 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2870 {
2871 int base;
2872 u16 message_control;
2873
2874 /* Check whether controller SAS2008 B0 controller,
2875 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2876 */
2877 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2878 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2879 return -EINVAL;
2880 }
2881
2882 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2883 if (!base) {
2884 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
2885 return -EINVAL;
2886 }
2887
2888 /* get msix vector count */
2889 /* NUMA_IO not supported for older controllers */
2890 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2891 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2892 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2893 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2894 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2895 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2896 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2897 ioc->msix_vector_count = 1;
2898 else {
2899 pci_read_config_word(ioc->pdev, base + 2, &message_control);
2900 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2901 }
2902 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
2903 ioc->msix_vector_count));
2904 return 0;
2905 }
2906
2907 /**
2908 * _base_free_irq - free irq
2909 * @ioc: per adapter object
2910 *
2911 * Freeing respective reply_queue from the list.
2912 */
2913 static void
_base_free_irq(struct MPT3SAS_ADAPTER * ioc)2914 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2915 {
2916 struct adapter_reply_queue *reply_q, *next;
2917
2918 if (list_empty(&ioc->reply_queue_list))
2919 return;
2920
2921 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
2922 list_del(&reply_q->list);
2923 if (ioc->smp_affinity_enable)
2924 irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
2925 reply_q->msix_index), NULL);
2926 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
2927 reply_q);
2928 kfree(reply_q);
2929 }
2930 }
2931
2932 /**
2933 * _base_request_irq - request irq
2934 * @ioc: per adapter object
2935 * @index: msix index into vector table
2936 *
2937 * Inserting respective reply_queue into the list.
2938 */
2939 static int
_base_request_irq(struct MPT3SAS_ADAPTER * ioc,u8 index)2940 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
2941 {
2942 struct pci_dev *pdev = ioc->pdev;
2943 struct adapter_reply_queue *reply_q;
2944 int r;
2945
2946 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
2947 if (!reply_q) {
2948 ioc_err(ioc, "unable to allocate memory %zu!\n",
2949 sizeof(struct adapter_reply_queue));
2950 return -ENOMEM;
2951 }
2952 reply_q->ioc = ioc;
2953 reply_q->msix_index = index;
2954
2955 atomic_set(&reply_q->busy, 0);
2956 if (ioc->msix_enable)
2957 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
2958 ioc->driver_name, ioc->id, index);
2959 else
2960 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
2961 ioc->driver_name, ioc->id);
2962 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
2963 IRQF_SHARED, reply_q->name, reply_q);
2964 if (r) {
2965 pr_err("%s: unable to allocate interrupt %d!\n",
2966 reply_q->name, pci_irq_vector(pdev, index));
2967 kfree(reply_q);
2968 return -EBUSY;
2969 }
2970
2971 INIT_LIST_HEAD(&reply_q->list);
2972 list_add_tail(&reply_q->list, &ioc->reply_queue_list);
2973 return 0;
2974 }
2975
2976 /**
2977 * _base_assign_reply_queues - assigning msix index for each cpu
2978 * @ioc: per adapter object
2979 *
2980 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
2981 *
2982 * It would nice if we could call irq_set_affinity, however it is not
2983 * an exported symbol
2984 */
2985 static void
_base_assign_reply_queues(struct MPT3SAS_ADAPTER * ioc)2986 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
2987 {
2988 unsigned int cpu, nr_cpus, nr_msix, index = 0;
2989 struct adapter_reply_queue *reply_q;
2990 int local_numa_node;
2991
2992 if (!_base_is_controller_msix_enabled(ioc))
2993 return;
2994
2995 if (ioc->msix_load_balance)
2996 return;
2997
2998 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
2999
3000 nr_cpus = num_online_cpus();
3001 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3002 ioc->facts.MaxMSIxVectors);
3003 if (!nr_msix)
3004 return;
3005
3006 if (ioc->smp_affinity_enable) {
3007
3008 /*
3009 * set irq affinity to local numa node for those irqs
3010 * corresponding to high iops queues.
3011 */
3012 if (ioc->high_iops_queues) {
3013 local_numa_node = dev_to_node(&ioc->pdev->dev);
3014 for (index = 0; index < ioc->high_iops_queues;
3015 index++) {
3016 irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
3017 index), cpumask_of_node(local_numa_node));
3018 }
3019 }
3020
3021 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3022 const cpumask_t *mask;
3023
3024 if (reply_q->msix_index < ioc->high_iops_queues)
3025 continue;
3026
3027 mask = pci_irq_get_affinity(ioc->pdev,
3028 reply_q->msix_index);
3029 if (!mask) {
3030 ioc_warn(ioc, "no affinity for msi %x\n",
3031 reply_q->msix_index);
3032 goto fall_back;
3033 }
3034
3035 for_each_cpu_and(cpu, mask, cpu_online_mask) {
3036 if (cpu >= ioc->cpu_msix_table_sz)
3037 break;
3038 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3039 }
3040 }
3041 return;
3042 }
3043
3044 fall_back:
3045 cpu = cpumask_first(cpu_online_mask);
3046 nr_msix -= ioc->high_iops_queues;
3047 index = 0;
3048
3049 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3050 unsigned int i, group = nr_cpus / nr_msix;
3051
3052 if (reply_q->msix_index < ioc->high_iops_queues)
3053 continue;
3054
3055 if (cpu >= nr_cpus)
3056 break;
3057
3058 if (index < nr_cpus % nr_msix)
3059 group++;
3060
3061 for (i = 0 ; i < group ; i++) {
3062 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3063 cpu = cpumask_next(cpu, cpu_online_mask);
3064 }
3065 index++;
3066 }
3067 }
3068
3069 /**
3070 * _base_check_and_enable_high_iops_queues - enable high iops mode
3071 * @ioc: per adapter object
3072 * @hba_msix_vector_count: msix vectors supported by HBA
3073 *
3074 * Enable high iops queues only if
3075 * - HBA is a SEA/AERO controller and
3076 * - MSI-Xs vector supported by the HBA is 128 and
3077 * - total CPU count in the system >=16 and
3078 * - loaded driver with default max_msix_vectors module parameter and
3079 * - system booted in non kdump mode
3080 *
3081 * returns nothing.
3082 */
3083 static void
_base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER * ioc,int hba_msix_vector_count)3084 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3085 int hba_msix_vector_count)
3086 {
3087 u16 lnksta, speed;
3088
3089 if (perf_mode == MPT_PERF_MODE_IOPS ||
3090 perf_mode == MPT_PERF_MODE_LATENCY) {
3091 ioc->high_iops_queues = 0;
3092 return;
3093 }
3094
3095 if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3096
3097 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3098 speed = lnksta & PCI_EXP_LNKSTA_CLS;
3099
3100 if (speed < 0x4) {
3101 ioc->high_iops_queues = 0;
3102 return;
3103 }
3104 }
3105
3106 if (!reset_devices && ioc->is_aero_ioc &&
3107 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3108 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3109 max_msix_vectors == -1)
3110 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3111 else
3112 ioc->high_iops_queues = 0;
3113 }
3114
3115 /**
3116 * _base_disable_msix - disables msix
3117 * @ioc: per adapter object
3118 *
3119 */
3120 static void
_base_disable_msix(struct MPT3SAS_ADAPTER * ioc)3121 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3122 {
3123 if (!ioc->msix_enable)
3124 return;
3125 pci_free_irq_vectors(ioc->pdev);
3126 ioc->msix_enable = 0;
3127 }
3128
3129 /**
3130 * _base_alloc_irq_vectors - allocate msix vectors
3131 * @ioc: per adapter object
3132 *
3133 */
3134 static int
_base_alloc_irq_vectors(struct MPT3SAS_ADAPTER * ioc)3135 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3136 {
3137 int i, irq_flags = PCI_IRQ_MSIX;
3138 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3139 struct irq_affinity *descp = &desc;
3140
3141 if (ioc->smp_affinity_enable)
3142 irq_flags |= PCI_IRQ_AFFINITY;
3143 else
3144 descp = NULL;
3145
3146 ioc_info(ioc, " %d %d\n", ioc->high_iops_queues,
3147 ioc->reply_queue_count);
3148
3149 i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3150 ioc->high_iops_queues,
3151 ioc->reply_queue_count, irq_flags, descp);
3152
3153 return i;
3154 }
3155
3156 /**
3157 * _base_enable_msix - enables msix, failback to io_apic
3158 * @ioc: per adapter object
3159 *
3160 */
3161 static int
_base_enable_msix(struct MPT3SAS_ADAPTER * ioc)3162 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3163 {
3164 int r;
3165 int i, local_max_msix_vectors;
3166 u8 try_msix = 0;
3167
3168 ioc->msix_load_balance = false;
3169
3170 if (msix_disable == -1 || msix_disable == 0)
3171 try_msix = 1;
3172
3173 if (!try_msix)
3174 goto try_ioapic;
3175
3176 if (_base_check_enable_msix(ioc) != 0)
3177 goto try_ioapic;
3178
3179 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3180 pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3181 ioc->cpu_count, max_msix_vectors);
3182 if (ioc->is_aero_ioc)
3183 _base_check_and_enable_high_iops_queues(ioc,
3184 ioc->msix_vector_count);
3185 ioc->reply_queue_count =
3186 min_t(int, ioc->cpu_count + ioc->high_iops_queues,
3187 ioc->msix_vector_count);
3188
3189 if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3190 local_max_msix_vectors = (reset_devices) ? 1 : 8;
3191 else
3192 local_max_msix_vectors = max_msix_vectors;
3193
3194 if (local_max_msix_vectors > 0)
3195 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3196 ioc->reply_queue_count);
3197 else if (local_max_msix_vectors == 0)
3198 goto try_ioapic;
3199
3200 /*
3201 * Enable msix_load_balance only if combined reply queue mode is
3202 * disabled on SAS3 & above generation HBA devices.
3203 */
3204 if (!ioc->combined_reply_queue &&
3205 ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3206 ioc_info(ioc,
3207 "combined ReplyQueue is off, Enabling msix load balance\n");
3208 ioc->msix_load_balance = true;
3209 }
3210
3211 /*
3212 * smp affinity setting is not need when msix load balance
3213 * is enabled.
3214 */
3215 if (ioc->msix_load_balance)
3216 ioc->smp_affinity_enable = 0;
3217
3218 r = _base_alloc_irq_vectors(ioc);
3219 if (r < 0) {
3220 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3221 goto try_ioapic;
3222 }
3223
3224 ioc->msix_enable = 1;
3225 ioc->reply_queue_count = r;
3226 for (i = 0; i < ioc->reply_queue_count; i++) {
3227 r = _base_request_irq(ioc, i);
3228 if (r) {
3229 _base_free_irq(ioc);
3230 _base_disable_msix(ioc);
3231 goto try_ioapic;
3232 }
3233 }
3234
3235 ioc_info(ioc, "High IOPs queues : %s\n",
3236 ioc->high_iops_queues ? "enabled" : "disabled");
3237
3238 return 0;
3239
3240 /* failback to io_apic interrupt routing */
3241 try_ioapic:
3242 ioc->high_iops_queues = 0;
3243 ioc_info(ioc, "High IOPs queues : disabled\n");
3244 ioc->reply_queue_count = 1;
3245 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3246 if (r < 0) {
3247 dfailprintk(ioc,
3248 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3249 r));
3250 } else
3251 r = _base_request_irq(ioc, 0);
3252
3253 return r;
3254 }
3255
3256 /**
3257 * mpt3sas_base_unmap_resources - free controller resources
3258 * @ioc: per adapter object
3259 */
3260 static void
mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER * ioc)3261 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3262 {
3263 struct pci_dev *pdev = ioc->pdev;
3264
3265 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3266
3267 _base_free_irq(ioc);
3268 _base_disable_msix(ioc);
3269
3270 kfree(ioc->replyPostRegisterIndex);
3271 ioc->replyPostRegisterIndex = NULL;
3272
3273
3274 if (ioc->chip_phys) {
3275 iounmap(ioc->chip);
3276 ioc->chip_phys = 0;
3277 }
3278
3279 if (pci_is_enabled(pdev)) {
3280 pci_release_selected_regions(ioc->pdev, ioc->bars);
3281 pci_disable_pcie_error_reporting(pdev);
3282 pci_disable_device(pdev);
3283 }
3284 }
3285
3286 static int
3287 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3288
3289 /**
3290 * _base_check_for_fault_and_issue_reset - check if IOC is in fault state
3291 * and if it is in fault state then issue diag reset.
3292 * @ioc: per adapter object
3293 *
3294 * Returns: 0 for success, non-zero for failure.
3295 */
3296 static int
_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER * ioc)3297 _base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3298 {
3299 u32 ioc_state;
3300 int rc = -EFAULT;
3301
3302 dinitprintk(ioc, pr_info("%s\n", __func__));
3303 if (ioc->pci_error_recovery)
3304 return 0;
3305 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3306 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3307
3308 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3309 mpt3sas_print_fault_code(ioc, ioc_state &
3310 MPI2_DOORBELL_DATA_MASK);
3311 rc = _base_diag_reset(ioc);
3312 } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3313 MPI2_IOC_STATE_COREDUMP) {
3314 mpt3sas_print_coredump_info(ioc, ioc_state &
3315 MPI2_DOORBELL_DATA_MASK);
3316 mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3317 rc = _base_diag_reset(ioc);
3318 }
3319
3320 return rc;
3321 }
3322
3323 /**
3324 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3325 * @ioc: per adapter object
3326 *
3327 * Return: 0 for success, non-zero for failure.
3328 */
3329 int
mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER * ioc)3330 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3331 {
3332 struct pci_dev *pdev = ioc->pdev;
3333 u32 memap_sz;
3334 u32 pio_sz;
3335 int i, r = 0, rc;
3336 u64 pio_chip = 0;
3337 phys_addr_t chip_phys = 0;
3338 struct adapter_reply_queue *reply_q;
3339
3340 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3341
3342 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3343 if (pci_enable_device_mem(pdev)) {
3344 ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3345 ioc->bars = 0;
3346 return -ENODEV;
3347 }
3348
3349
3350 if (pci_request_selected_regions(pdev, ioc->bars,
3351 ioc->driver_name)) {
3352 ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3353 ioc->bars = 0;
3354 r = -ENODEV;
3355 goto out_fail;
3356 }
3357
3358 /* AER (Advanced Error Reporting) hooks */
3359 pci_enable_pcie_error_reporting(pdev);
3360
3361 pci_set_master(pdev);
3362
3363
3364 if (_base_config_dma_addressing(ioc, pdev) != 0) {
3365 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3366 r = -ENODEV;
3367 goto out_fail;
3368 }
3369
3370 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3371 (!memap_sz || !pio_sz); i++) {
3372 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3373 if (pio_sz)
3374 continue;
3375 pio_chip = (u64)pci_resource_start(pdev, i);
3376 pio_sz = pci_resource_len(pdev, i);
3377 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3378 if (memap_sz)
3379 continue;
3380 ioc->chip_phys = pci_resource_start(pdev, i);
3381 chip_phys = ioc->chip_phys;
3382 memap_sz = pci_resource_len(pdev, i);
3383 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3384 }
3385 }
3386
3387 if (ioc->chip == NULL) {
3388 ioc_err(ioc,
3389 "unable to map adapter memory! or resource not found\n");
3390 r = -EINVAL;
3391 goto out_fail;
3392 }
3393
3394 mpt3sas_base_mask_interrupts(ioc);
3395
3396 r = _base_get_ioc_facts(ioc);
3397 if (r) {
3398 rc = _base_check_for_fault_and_issue_reset(ioc);
3399 if (rc || (_base_get_ioc_facts(ioc)))
3400 goto out_fail;
3401 }
3402
3403 if (!ioc->rdpq_array_enable_assigned) {
3404 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3405 ioc->rdpq_array_enable_assigned = 1;
3406 }
3407
3408 r = _base_enable_msix(ioc);
3409 if (r)
3410 goto out_fail;
3411
3412 if (!ioc->is_driver_loading)
3413 _base_init_irqpolls(ioc);
3414 /* Use the Combined reply queue feature only for SAS3 C0 & higher
3415 * revision HBAs and also only when reply queue count is greater than 8
3416 */
3417 if (ioc->combined_reply_queue) {
3418 /* Determine the Supplemental Reply Post Host Index Registers
3419 * Addresse. Supplemental Reply Post Host Index Registers
3420 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3421 * each register is at offset bytes of
3422 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3423 */
3424 ioc->replyPostRegisterIndex = kcalloc(
3425 ioc->combined_reply_index_count,
3426 sizeof(resource_size_t *), GFP_KERNEL);
3427 if (!ioc->replyPostRegisterIndex) {
3428 ioc_err(ioc,
3429 "allocation for replyPostRegisterIndex failed!\n");
3430 r = -ENOMEM;
3431 goto out_fail;
3432 }
3433
3434 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3435 ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3436 ((u8 __force *)&ioc->chip->Doorbell +
3437 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3438 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3439 }
3440 }
3441
3442 if (ioc->is_warpdrive) {
3443 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3444 &ioc->chip->ReplyPostHostIndex;
3445
3446 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3447 ioc->reply_post_host_index[i] =
3448 (resource_size_t __iomem *)
3449 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3450 * 4)));
3451 }
3452
3453 list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
3454 pr_info("%s: %s enabled: IRQ %d\n",
3455 reply_q->name,
3456 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3457 pci_irq_vector(ioc->pdev, reply_q->msix_index));
3458
3459 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3460 &chip_phys, ioc->chip, memap_sz);
3461 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3462 (unsigned long long)pio_chip, pio_sz);
3463
3464 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3465 pci_save_state(pdev);
3466 return 0;
3467
3468 out_fail:
3469 mpt3sas_base_unmap_resources(ioc);
3470 return r;
3471 }
3472
3473 /**
3474 * mpt3sas_base_get_msg_frame - obtain request mf pointer
3475 * @ioc: per adapter object
3476 * @smid: system request message index(smid zero is invalid)
3477 *
3478 * Return: virt pointer to message frame.
3479 */
3480 void *
mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER * ioc,u16 smid)3481 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3482 {
3483 return (void *)(ioc->request + (smid * ioc->request_sz));
3484 }
3485
3486 /**
3487 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3488 * @ioc: per adapter object
3489 * @smid: system request message index
3490 *
3491 * Return: virt pointer to sense buffer.
3492 */
3493 void *
mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER * ioc,u16 smid)3494 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3495 {
3496 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3497 }
3498
3499 /**
3500 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3501 * @ioc: per adapter object
3502 * @smid: system request message index
3503 *
3504 * Return: phys pointer to the low 32bit address of the sense buffer.
3505 */
3506 __le32
mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER * ioc,u16 smid)3507 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3508 {
3509 return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3510 SCSI_SENSE_BUFFERSIZE));
3511 }
3512
3513 /**
3514 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3515 * @ioc: per adapter object
3516 * @smid: system request message index
3517 *
3518 * Return: virt pointer to a PCIe SGL.
3519 */
3520 void *
mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER * ioc,u16 smid)3521 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3522 {
3523 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3524 }
3525
3526 /**
3527 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3528 * @ioc: per adapter object
3529 * @smid: system request message index
3530 *
3531 * Return: phys pointer to the address of the PCIe buffer.
3532 */
3533 dma_addr_t
mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER * ioc,u16 smid)3534 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3535 {
3536 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3537 }
3538
3539 /**
3540 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3541 * @ioc: per adapter object
3542 * @phys_addr: lower 32 physical addr of the reply
3543 *
3544 * Converts 32bit lower physical addr into a virt address.
3545 */
3546 void *
mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER * ioc,u32 phys_addr)3547 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3548 {
3549 if (!phys_addr)
3550 return NULL;
3551 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3552 }
3553
3554 /**
3555 * _base_get_msix_index - get the msix index
3556 * @ioc: per adapter object
3557 * @scmd: scsi_cmnd object
3558 *
3559 * returns msix index of general reply queues,
3560 * i.e. reply queue on which IO request's reply
3561 * should be posted by the HBA firmware.
3562 */
3563 static inline u8
_base_get_msix_index(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)3564 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3565 struct scsi_cmnd *scmd)
3566 {
3567 /* Enables reply_queue load balancing */
3568 if (ioc->msix_load_balance)
3569 return ioc->reply_queue_count ?
3570 base_mod64(atomic64_add_return(1,
3571 &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3572
3573 return ioc->cpu_msix_table[raw_smp_processor_id()];
3574 }
3575
3576 /**
3577 * _base_sdev_nr_inflight_request -get number of inflight requests
3578 * of a request queue.
3579 * @q: request_queue object
3580 *
3581 * returns number of inflight request of a request queue.
3582 */
3583 inline unsigned long
_base_sdev_nr_inflight_request(struct request_queue * q)3584 _base_sdev_nr_inflight_request(struct request_queue *q)
3585 {
3586 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[0];
3587
3588 return atomic_read(&hctx->nr_active);
3589 }
3590
3591
3592 /**
3593 * _base_get_high_iops_msix_index - get the msix index of
3594 * high iops queues
3595 * @ioc: per adapter object
3596 * @scmd: scsi_cmnd object
3597 *
3598 * Returns: msix index of high iops reply queues.
3599 * i.e. high iops reply queue on which IO request's
3600 * reply should be posted by the HBA firmware.
3601 */
3602 static inline u8
_base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)3603 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3604 struct scsi_cmnd *scmd)
3605 {
3606 /**
3607 * Round robin the IO interrupts among the high iops
3608 * reply queues in terms of batch count 16 when outstanding
3609 * IOs on the target device is >=8.
3610 */
3611 if (_base_sdev_nr_inflight_request(scmd->device->request_queue) >
3612 MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3613 return base_mod64((
3614 atomic64_add_return(1, &ioc->high_iops_outstanding) /
3615 MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3616 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3617
3618 return _base_get_msix_index(ioc, scmd);
3619 }
3620
3621 /**
3622 * mpt3sas_base_get_smid - obtain a free smid from internal queue
3623 * @ioc: per adapter object
3624 * @cb_idx: callback index
3625 *
3626 * Return: smid (zero is invalid)
3627 */
3628 u16
mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx)3629 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3630 {
3631 unsigned long flags;
3632 struct request_tracker *request;
3633 u16 smid;
3634
3635 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3636 if (list_empty(&ioc->internal_free_list)) {
3637 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3638 ioc_err(ioc, "%s: smid not available\n", __func__);
3639 return 0;
3640 }
3641
3642 request = list_entry(ioc->internal_free_list.next,
3643 struct request_tracker, tracker_list);
3644 request->cb_idx = cb_idx;
3645 smid = request->smid;
3646 list_del(&request->tracker_list);
3647 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3648 return smid;
3649 }
3650
3651 /**
3652 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3653 * @ioc: per adapter object
3654 * @cb_idx: callback index
3655 * @scmd: pointer to scsi command object
3656 *
3657 * Return: smid (zero is invalid)
3658 */
3659 u16
mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx,struct scsi_cmnd * scmd)3660 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3661 struct scsi_cmnd *scmd)
3662 {
3663 struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3664 unsigned int tag = scmd->request->tag;
3665 u16 smid;
3666
3667 smid = tag + 1;
3668 request->cb_idx = cb_idx;
3669 request->smid = smid;
3670 request->scmd = scmd;
3671 INIT_LIST_HEAD(&request->chain_list);
3672 return smid;
3673 }
3674
3675 /**
3676 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3677 * @ioc: per adapter object
3678 * @cb_idx: callback index
3679 *
3680 * Return: smid (zero is invalid)
3681 */
3682 u16
mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx)3683 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3684 {
3685 unsigned long flags;
3686 struct request_tracker *request;
3687 u16 smid;
3688
3689 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3690 if (list_empty(&ioc->hpr_free_list)) {
3691 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3692 return 0;
3693 }
3694
3695 request = list_entry(ioc->hpr_free_list.next,
3696 struct request_tracker, tracker_list);
3697 request->cb_idx = cb_idx;
3698 smid = request->smid;
3699 list_del(&request->tracker_list);
3700 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3701 return smid;
3702 }
3703
3704 static void
_base_recovery_check(struct MPT3SAS_ADAPTER * ioc)3705 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3706 {
3707 /*
3708 * See _wait_for_commands_to_complete() call with regards to this code.
3709 */
3710 if (ioc->shost_recovery && ioc->pending_io_count) {
3711 ioc->pending_io_count = scsi_host_busy(ioc->shost);
3712 if (ioc->pending_io_count == 0)
3713 wake_up(&ioc->reset_wq);
3714 }
3715 }
3716
mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER * ioc,struct scsiio_tracker * st)3717 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3718 struct scsiio_tracker *st)
3719 {
3720 if (WARN_ON(st->smid == 0))
3721 return;
3722 st->cb_idx = 0xFF;
3723 st->direct_io = 0;
3724 st->scmd = NULL;
3725 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
3726 st->smid = 0;
3727 }
3728
3729 /**
3730 * mpt3sas_base_free_smid - put smid back on free_list
3731 * @ioc: per adapter object
3732 * @smid: system request message index
3733 */
3734 void
mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER * ioc,u16 smid)3735 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3736 {
3737 unsigned long flags;
3738 int i;
3739
3740 if (smid < ioc->hi_priority_smid) {
3741 struct scsiio_tracker *st;
3742 void *request;
3743
3744 st = _get_st_from_smid(ioc, smid);
3745 if (!st) {
3746 _base_recovery_check(ioc);
3747 return;
3748 }
3749
3750 /* Clear MPI request frame */
3751 request = mpt3sas_base_get_msg_frame(ioc, smid);
3752 memset(request, 0, ioc->request_sz);
3753
3754 mpt3sas_base_clear_st(ioc, st);
3755 _base_recovery_check(ioc);
3756 return;
3757 }
3758
3759 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3760 if (smid < ioc->internal_smid) {
3761 /* hi-priority */
3762 i = smid - ioc->hi_priority_smid;
3763 ioc->hpr_lookup[i].cb_idx = 0xFF;
3764 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
3765 } else if (smid <= ioc->hba_queue_depth) {
3766 /* internal queue */
3767 i = smid - ioc->internal_smid;
3768 ioc->internal_lookup[i].cb_idx = 0xFF;
3769 list_add(&ioc->internal_lookup[i].tracker_list,
3770 &ioc->internal_free_list);
3771 }
3772 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3773 }
3774
3775 /**
3776 * _base_mpi_ep_writeq - 32 bit write to MMIO
3777 * @b: data payload
3778 * @addr: address in MMIO space
3779 * @writeq_lock: spin lock
3780 *
3781 * This special handling for MPI EP to take care of 32 bit
3782 * environment where its not quarenteed to send the entire word
3783 * in one transfer.
3784 */
3785 static inline void
_base_mpi_ep_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)3786 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
3787 spinlock_t *writeq_lock)
3788 {
3789 unsigned long flags;
3790
3791 spin_lock_irqsave(writeq_lock, flags);
3792 __raw_writel((u32)(b), addr);
3793 __raw_writel((u32)(b >> 32), (addr + 4));
3794 spin_unlock_irqrestore(writeq_lock, flags);
3795 }
3796
3797 /**
3798 * _base_writeq - 64 bit write to MMIO
3799 * @b: data payload
3800 * @addr: address in MMIO space
3801 * @writeq_lock: spin lock
3802 *
3803 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3804 * care of 32 bit environment where its not quarenteed to send the entire word
3805 * in one transfer.
3806 */
3807 #if defined(writeq) && defined(CONFIG_64BIT)
3808 static inline void
_base_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)3809 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3810 {
3811 wmb();
3812 __raw_writeq(b, addr);
3813 barrier();
3814 }
3815 #else
3816 static inline void
_base_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)3817 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3818 {
3819 _base_mpi_ep_writeq(b, addr, writeq_lock);
3820 }
3821 #endif
3822
3823 /**
3824 * _base_set_and_get_msix_index - get the msix index and assign to msix_io
3825 * variable of scsi tracker
3826 * @ioc: per adapter object
3827 * @smid: system request message index
3828 *
3829 * returns msix index.
3830 */
3831 static u8
_base_set_and_get_msix_index(struct MPT3SAS_ADAPTER * ioc,u16 smid)3832 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3833 {
3834 struct scsiio_tracker *st = NULL;
3835
3836 if (smid < ioc->hi_priority_smid)
3837 st = _get_st_from_smid(ioc, smid);
3838
3839 if (st == NULL)
3840 return _base_get_msix_index(ioc, NULL);
3841
3842 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
3843 return st->msix_io;
3844 }
3845
3846 /**
3847 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3848 * @ioc: per adapter object
3849 * @smid: system request message index
3850 * @handle: device handle
3851 */
3852 static void
_base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)3853 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
3854 u16 smid, u16 handle)
3855 {
3856 Mpi2RequestDescriptorUnion_t descriptor;
3857 u64 *request = (u64 *)&descriptor;
3858 void *mpi_req_iomem;
3859 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3860
3861 _clone_sg_entries(ioc, (void *) mfp, smid);
3862 mpi_req_iomem = (void __force *)ioc->chip +
3863 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3864 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3865 ioc->request_sz);
3866 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3867 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3868 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3869 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3870 descriptor.SCSIIO.LMID = 0;
3871 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3872 &ioc->scsi_lookup_lock);
3873 }
3874
3875 /**
3876 * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3877 * @ioc: per adapter object
3878 * @smid: system request message index
3879 * @handle: device handle
3880 */
3881 static void
_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)3882 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3883 {
3884 Mpi2RequestDescriptorUnion_t descriptor;
3885 u64 *request = (u64 *)&descriptor;
3886
3887
3888 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3889 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3890 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3891 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3892 descriptor.SCSIIO.LMID = 0;
3893 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3894 &ioc->scsi_lookup_lock);
3895 }
3896
3897 /**
3898 * _base_put_smid_fast_path - send fast path request to firmware
3899 * @ioc: per adapter object
3900 * @smid: system request message index
3901 * @handle: device handle
3902 */
3903 static void
_base_put_smid_fast_path(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)3904 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3905 u16 handle)
3906 {
3907 Mpi2RequestDescriptorUnion_t descriptor;
3908 u64 *request = (u64 *)&descriptor;
3909
3910 descriptor.SCSIIO.RequestFlags =
3911 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3912 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3913 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3914 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3915 descriptor.SCSIIO.LMID = 0;
3916 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3917 &ioc->scsi_lookup_lock);
3918 }
3919
3920 /**
3921 * _base_put_smid_hi_priority - send Task Management request to firmware
3922 * @ioc: per adapter object
3923 * @smid: system request message index
3924 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
3925 */
3926 static void
_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 msix_task)3927 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3928 u16 msix_task)
3929 {
3930 Mpi2RequestDescriptorUnion_t descriptor;
3931 void *mpi_req_iomem;
3932 u64 *request;
3933
3934 if (ioc->is_mcpu_endpoint) {
3935 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3936
3937 /* TBD 256 is offset within sys register. */
3938 mpi_req_iomem = (void __force *)ioc->chip
3939 + MPI_FRAME_START_OFFSET
3940 + (smid * ioc->request_sz);
3941 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3942 ioc->request_sz);
3943 }
3944
3945 request = (u64 *)&descriptor;
3946
3947 descriptor.HighPriority.RequestFlags =
3948 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3949 descriptor.HighPriority.MSIxIndex = msix_task;
3950 descriptor.HighPriority.SMID = cpu_to_le16(smid);
3951 descriptor.HighPriority.LMID = 0;
3952 descriptor.HighPriority.Reserved1 = 0;
3953 if (ioc->is_mcpu_endpoint)
3954 _base_mpi_ep_writeq(*request,
3955 &ioc->chip->RequestDescriptorPostLow,
3956 &ioc->scsi_lookup_lock);
3957 else
3958 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3959 &ioc->scsi_lookup_lock);
3960 }
3961
3962 /**
3963 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
3964 * firmware
3965 * @ioc: per adapter object
3966 * @smid: system request message index
3967 */
3968 void
mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER * ioc,u16 smid)3969 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3970 {
3971 Mpi2RequestDescriptorUnion_t descriptor;
3972 u64 *request = (u64 *)&descriptor;
3973
3974 descriptor.Default.RequestFlags =
3975 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
3976 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3977 descriptor.Default.SMID = cpu_to_le16(smid);
3978 descriptor.Default.LMID = 0;
3979 descriptor.Default.DescriptorTypeDependent = 0;
3980 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3981 &ioc->scsi_lookup_lock);
3982 }
3983
3984 /**
3985 * _base_put_smid_default - Default, primarily used for config pages
3986 * @ioc: per adapter object
3987 * @smid: system request message index
3988 */
3989 static void
_base_put_smid_default(struct MPT3SAS_ADAPTER * ioc,u16 smid)3990 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3991 {
3992 Mpi2RequestDescriptorUnion_t descriptor;
3993 void *mpi_req_iomem;
3994 u64 *request;
3995
3996 if (ioc->is_mcpu_endpoint) {
3997 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3998
3999 _clone_sg_entries(ioc, (void *) mfp, smid);
4000 /* TBD 256 is offset within sys register */
4001 mpi_req_iomem = (void __force *)ioc->chip +
4002 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4003 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4004 ioc->request_sz);
4005 }
4006 request = (u64 *)&descriptor;
4007 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4008 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4009 descriptor.Default.SMID = cpu_to_le16(smid);
4010 descriptor.Default.LMID = 0;
4011 descriptor.Default.DescriptorTypeDependent = 0;
4012 if (ioc->is_mcpu_endpoint)
4013 _base_mpi_ep_writeq(*request,
4014 &ioc->chip->RequestDescriptorPostLow,
4015 &ioc->scsi_lookup_lock);
4016 else
4017 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4018 &ioc->scsi_lookup_lock);
4019 }
4020
4021 /**
4022 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4023 * Atomic Request Descriptor
4024 * @ioc: per adapter object
4025 * @smid: system request message index
4026 * @handle: device handle, unused in this function, for function type match
4027 *
4028 * Return nothing.
4029 */
4030 static void
_base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4031 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4032 u16 handle)
4033 {
4034 Mpi26AtomicRequestDescriptor_t descriptor;
4035 u32 *request = (u32 *)&descriptor;
4036
4037 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4038 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4039 descriptor.SMID = cpu_to_le16(smid);
4040
4041 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4042 }
4043
4044 /**
4045 * _base_put_smid_fast_path_atomic - send fast path request to firmware
4046 * using Atomic Request Descriptor
4047 * @ioc: per adapter object
4048 * @smid: system request message index
4049 * @handle: device handle, unused in this function, for function type match
4050 * Return nothing
4051 */
4052 static void
_base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4053 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4054 u16 handle)
4055 {
4056 Mpi26AtomicRequestDescriptor_t descriptor;
4057 u32 *request = (u32 *)&descriptor;
4058
4059 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4060 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4061 descriptor.SMID = cpu_to_le16(smid);
4062
4063 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4064 }
4065
4066 /**
4067 * _base_put_smid_hi_priority_atomic - send Task Management request to
4068 * firmware using Atomic Request Descriptor
4069 * @ioc: per adapter object
4070 * @smid: system request message index
4071 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0
4072 *
4073 * Return nothing.
4074 */
4075 static void
_base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 msix_task)4076 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4077 u16 msix_task)
4078 {
4079 Mpi26AtomicRequestDescriptor_t descriptor;
4080 u32 *request = (u32 *)&descriptor;
4081
4082 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4083 descriptor.MSIxIndex = msix_task;
4084 descriptor.SMID = cpu_to_le16(smid);
4085
4086 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4087 }
4088
4089 /**
4090 * _base_put_smid_default - Default, primarily used for config pages
4091 * use Atomic Request Descriptor
4092 * @ioc: per adapter object
4093 * @smid: system request message index
4094 *
4095 * Return nothing.
4096 */
4097 static void
_base_put_smid_default_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid)4098 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4099 {
4100 Mpi26AtomicRequestDescriptor_t descriptor;
4101 u32 *request = (u32 *)&descriptor;
4102
4103 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4104 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4105 descriptor.SMID = cpu_to_le16(smid);
4106
4107 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4108 }
4109
4110 /**
4111 * _base_display_OEMs_branding - Display branding string
4112 * @ioc: per adapter object
4113 */
4114 static void
_base_display_OEMs_branding(struct MPT3SAS_ADAPTER * ioc)4115 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4116 {
4117 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4118 return;
4119
4120 switch (ioc->pdev->subsystem_vendor) {
4121 case PCI_VENDOR_ID_INTEL:
4122 switch (ioc->pdev->device) {
4123 case MPI2_MFGPAGE_DEVID_SAS2008:
4124 switch (ioc->pdev->subsystem_device) {
4125 case MPT2SAS_INTEL_RMS2LL080_SSDID:
4126 ioc_info(ioc, "%s\n",
4127 MPT2SAS_INTEL_RMS2LL080_BRANDING);
4128 break;
4129 case MPT2SAS_INTEL_RMS2LL040_SSDID:
4130 ioc_info(ioc, "%s\n",
4131 MPT2SAS_INTEL_RMS2LL040_BRANDING);
4132 break;
4133 case MPT2SAS_INTEL_SSD910_SSDID:
4134 ioc_info(ioc, "%s\n",
4135 MPT2SAS_INTEL_SSD910_BRANDING);
4136 break;
4137 default:
4138 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4139 ioc->pdev->subsystem_device);
4140 break;
4141 }
4142 break;
4143 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4144 switch (ioc->pdev->subsystem_device) {
4145 case MPT2SAS_INTEL_RS25GB008_SSDID:
4146 ioc_info(ioc, "%s\n",
4147 MPT2SAS_INTEL_RS25GB008_BRANDING);
4148 break;
4149 case MPT2SAS_INTEL_RMS25JB080_SSDID:
4150 ioc_info(ioc, "%s\n",
4151 MPT2SAS_INTEL_RMS25JB080_BRANDING);
4152 break;
4153 case MPT2SAS_INTEL_RMS25JB040_SSDID:
4154 ioc_info(ioc, "%s\n",
4155 MPT2SAS_INTEL_RMS25JB040_BRANDING);
4156 break;
4157 case MPT2SAS_INTEL_RMS25KB080_SSDID:
4158 ioc_info(ioc, "%s\n",
4159 MPT2SAS_INTEL_RMS25KB080_BRANDING);
4160 break;
4161 case MPT2SAS_INTEL_RMS25KB040_SSDID:
4162 ioc_info(ioc, "%s\n",
4163 MPT2SAS_INTEL_RMS25KB040_BRANDING);
4164 break;
4165 case MPT2SAS_INTEL_RMS25LB040_SSDID:
4166 ioc_info(ioc, "%s\n",
4167 MPT2SAS_INTEL_RMS25LB040_BRANDING);
4168 break;
4169 case MPT2SAS_INTEL_RMS25LB080_SSDID:
4170 ioc_info(ioc, "%s\n",
4171 MPT2SAS_INTEL_RMS25LB080_BRANDING);
4172 break;
4173 default:
4174 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4175 ioc->pdev->subsystem_device);
4176 break;
4177 }
4178 break;
4179 case MPI25_MFGPAGE_DEVID_SAS3008:
4180 switch (ioc->pdev->subsystem_device) {
4181 case MPT3SAS_INTEL_RMS3JC080_SSDID:
4182 ioc_info(ioc, "%s\n",
4183 MPT3SAS_INTEL_RMS3JC080_BRANDING);
4184 break;
4185
4186 case MPT3SAS_INTEL_RS3GC008_SSDID:
4187 ioc_info(ioc, "%s\n",
4188 MPT3SAS_INTEL_RS3GC008_BRANDING);
4189 break;
4190 case MPT3SAS_INTEL_RS3FC044_SSDID:
4191 ioc_info(ioc, "%s\n",
4192 MPT3SAS_INTEL_RS3FC044_BRANDING);
4193 break;
4194 case MPT3SAS_INTEL_RS3UC080_SSDID:
4195 ioc_info(ioc, "%s\n",
4196 MPT3SAS_INTEL_RS3UC080_BRANDING);
4197 break;
4198 default:
4199 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4200 ioc->pdev->subsystem_device);
4201 break;
4202 }
4203 break;
4204 default:
4205 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4206 ioc->pdev->subsystem_device);
4207 break;
4208 }
4209 break;
4210 case PCI_VENDOR_ID_DELL:
4211 switch (ioc->pdev->device) {
4212 case MPI2_MFGPAGE_DEVID_SAS2008:
4213 switch (ioc->pdev->subsystem_device) {
4214 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4215 ioc_info(ioc, "%s\n",
4216 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4217 break;
4218 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4219 ioc_info(ioc, "%s\n",
4220 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4221 break;
4222 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4223 ioc_info(ioc, "%s\n",
4224 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4225 break;
4226 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4227 ioc_info(ioc, "%s\n",
4228 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4229 break;
4230 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4231 ioc_info(ioc, "%s\n",
4232 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4233 break;
4234 case MPT2SAS_DELL_PERC_H200_SSDID:
4235 ioc_info(ioc, "%s\n",
4236 MPT2SAS_DELL_PERC_H200_BRANDING);
4237 break;
4238 case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4239 ioc_info(ioc, "%s\n",
4240 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4241 break;
4242 default:
4243 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4244 ioc->pdev->subsystem_device);
4245 break;
4246 }
4247 break;
4248 case MPI25_MFGPAGE_DEVID_SAS3008:
4249 switch (ioc->pdev->subsystem_device) {
4250 case MPT3SAS_DELL_12G_HBA_SSDID:
4251 ioc_info(ioc, "%s\n",
4252 MPT3SAS_DELL_12G_HBA_BRANDING);
4253 break;
4254 default:
4255 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4256 ioc->pdev->subsystem_device);
4257 break;
4258 }
4259 break;
4260 default:
4261 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4262 ioc->pdev->subsystem_device);
4263 break;
4264 }
4265 break;
4266 case PCI_VENDOR_ID_CISCO:
4267 switch (ioc->pdev->device) {
4268 case MPI25_MFGPAGE_DEVID_SAS3008:
4269 switch (ioc->pdev->subsystem_device) {
4270 case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4271 ioc_info(ioc, "%s\n",
4272 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4273 break;
4274 case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4275 ioc_info(ioc, "%s\n",
4276 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4277 break;
4278 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4279 ioc_info(ioc, "%s\n",
4280 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4281 break;
4282 default:
4283 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4284 ioc->pdev->subsystem_device);
4285 break;
4286 }
4287 break;
4288 case MPI25_MFGPAGE_DEVID_SAS3108_1:
4289 switch (ioc->pdev->subsystem_device) {
4290 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4291 ioc_info(ioc, "%s\n",
4292 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4293 break;
4294 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4295 ioc_info(ioc, "%s\n",
4296 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4297 break;
4298 default:
4299 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4300 ioc->pdev->subsystem_device);
4301 break;
4302 }
4303 break;
4304 default:
4305 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4306 ioc->pdev->subsystem_device);
4307 break;
4308 }
4309 break;
4310 case MPT2SAS_HP_3PAR_SSVID:
4311 switch (ioc->pdev->device) {
4312 case MPI2_MFGPAGE_DEVID_SAS2004:
4313 switch (ioc->pdev->subsystem_device) {
4314 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4315 ioc_info(ioc, "%s\n",
4316 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4317 break;
4318 default:
4319 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4320 ioc->pdev->subsystem_device);
4321 break;
4322 }
4323 break;
4324 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4325 switch (ioc->pdev->subsystem_device) {
4326 case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4327 ioc_info(ioc, "%s\n",
4328 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4329 break;
4330 case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4331 ioc_info(ioc, "%s\n",
4332 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4333 break;
4334 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4335 ioc_info(ioc, "%s\n",
4336 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4337 break;
4338 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4339 ioc_info(ioc, "%s\n",
4340 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4341 break;
4342 default:
4343 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4344 ioc->pdev->subsystem_device);
4345 break;
4346 }
4347 break;
4348 default:
4349 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4350 ioc->pdev->subsystem_device);
4351 break;
4352 }
4353 default:
4354 break;
4355 }
4356 }
4357
4358 /**
4359 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4360 * version from FW Image Header.
4361 * @ioc: per adapter object
4362 *
4363 * Return: 0 for success, non-zero for failure.
4364 */
4365 static int
_base_display_fwpkg_version(struct MPT3SAS_ADAPTER * ioc)4366 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4367 {
4368 Mpi2FWImageHeader_t *fw_img_hdr;
4369 Mpi26ComponentImageHeader_t *cmp_img_hdr;
4370 Mpi25FWUploadRequest_t *mpi_request;
4371 Mpi2FWUploadReply_t mpi_reply;
4372 int r = 0;
4373 u32 package_version = 0;
4374 void *fwpkg_data = NULL;
4375 dma_addr_t fwpkg_data_dma;
4376 u16 smid, ioc_status;
4377 size_t data_length;
4378
4379 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4380
4381 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4382 ioc_err(ioc, "%s: internal command already in use\n", __func__);
4383 return -EAGAIN;
4384 }
4385
4386 data_length = sizeof(Mpi2FWImageHeader_t);
4387 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4388 &fwpkg_data_dma, GFP_KERNEL);
4389 if (!fwpkg_data) {
4390 ioc_err(ioc,
4391 "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4392 __FILE__, __LINE__, __func__);
4393 return -ENOMEM;
4394 }
4395
4396 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4397 if (!smid) {
4398 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4399 r = -EAGAIN;
4400 goto out;
4401 }
4402
4403 ioc->base_cmds.status = MPT3_CMD_PENDING;
4404 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4405 ioc->base_cmds.smid = smid;
4406 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4407 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4408 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4409 mpi_request->ImageSize = cpu_to_le32(data_length);
4410 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4411 data_length);
4412 init_completion(&ioc->base_cmds.done);
4413 ioc->put_smid_default(ioc, smid);
4414 /* Wait for 15 seconds */
4415 wait_for_completion_timeout(&ioc->base_cmds.done,
4416 FW_IMG_HDR_READ_TIMEOUT*HZ);
4417 ioc_info(ioc, "%s: complete\n", __func__);
4418 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4419 ioc_err(ioc, "%s: timeout\n", __func__);
4420 _debug_dump_mf(mpi_request,
4421 sizeof(Mpi25FWUploadRequest_t)/4);
4422 r = -ETIME;
4423 } else {
4424 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4425 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4426 memcpy(&mpi_reply, ioc->base_cmds.reply,
4427 sizeof(Mpi2FWUploadReply_t));
4428 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4429 MPI2_IOCSTATUS_MASK;
4430 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4431 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4432 if (le32_to_cpu(fw_img_hdr->Signature) ==
4433 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4434 cmp_img_hdr =
4435 (Mpi26ComponentImageHeader_t *)
4436 (fwpkg_data);
4437 package_version =
4438 le32_to_cpu(
4439 cmp_img_hdr->ApplicationSpecific);
4440 } else
4441 package_version =
4442 le32_to_cpu(
4443 fw_img_hdr->PackageVersion.Word);
4444 if (package_version)
4445 ioc_info(ioc,
4446 "FW Package Ver(%02d.%02d.%02d.%02d)\n",
4447 ((package_version) & 0xFF000000) >> 24,
4448 ((package_version) & 0x00FF0000) >> 16,
4449 ((package_version) & 0x0000FF00) >> 8,
4450 (package_version) & 0x000000FF);
4451 } else {
4452 _debug_dump_mf(&mpi_reply,
4453 sizeof(Mpi2FWUploadReply_t)/4);
4454 }
4455 }
4456 }
4457 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4458 out:
4459 if (fwpkg_data)
4460 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4461 fwpkg_data_dma);
4462 return r;
4463 }
4464
4465 /**
4466 * _base_display_ioc_capabilities - Disply IOC's capabilities.
4467 * @ioc: per adapter object
4468 */
4469 static void
_base_display_ioc_capabilities(struct MPT3SAS_ADAPTER * ioc)4470 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4471 {
4472 int i = 0;
4473 char desc[16];
4474 u32 iounit_pg1_flags;
4475 u32 bios_version;
4476
4477 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4478 strncpy(desc, ioc->manu_pg0.ChipName, 16);
4479 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4480 desc,
4481 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4482 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4483 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4484 ioc->facts.FWVersion.Word & 0x000000FF,
4485 ioc->pdev->revision,
4486 (bios_version & 0xFF000000) >> 24,
4487 (bios_version & 0x00FF0000) >> 16,
4488 (bios_version & 0x0000FF00) >> 8,
4489 bios_version & 0x000000FF);
4490
4491 _base_display_OEMs_branding(ioc);
4492
4493 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4494 pr_info("%sNVMe", i ? "," : "");
4495 i++;
4496 }
4497
4498 ioc_info(ioc, "Protocol=(");
4499
4500 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4501 pr_cont("Initiator");
4502 i++;
4503 }
4504
4505 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4506 pr_cont("%sTarget", i ? "," : "");
4507 i++;
4508 }
4509
4510 i = 0;
4511 pr_cont("), Capabilities=(");
4512
4513 if (!ioc->hide_ir_msg) {
4514 if (ioc->facts.IOCCapabilities &
4515 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4516 pr_cont("Raid");
4517 i++;
4518 }
4519 }
4520
4521 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4522 pr_cont("%sTLR", i ? "," : "");
4523 i++;
4524 }
4525
4526 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4527 pr_cont("%sMulticast", i ? "," : "");
4528 i++;
4529 }
4530
4531 if (ioc->facts.IOCCapabilities &
4532 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4533 pr_cont("%sBIDI Target", i ? "," : "");
4534 i++;
4535 }
4536
4537 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4538 pr_cont("%sEEDP", i ? "," : "");
4539 i++;
4540 }
4541
4542 if (ioc->facts.IOCCapabilities &
4543 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4544 pr_cont("%sSnapshot Buffer", i ? "," : "");
4545 i++;
4546 }
4547
4548 if (ioc->facts.IOCCapabilities &
4549 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4550 pr_cont("%sDiag Trace Buffer", i ? "," : "");
4551 i++;
4552 }
4553
4554 if (ioc->facts.IOCCapabilities &
4555 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4556 pr_cont("%sDiag Extended Buffer", i ? "," : "");
4557 i++;
4558 }
4559
4560 if (ioc->facts.IOCCapabilities &
4561 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4562 pr_cont("%sTask Set Full", i ? "," : "");
4563 i++;
4564 }
4565
4566 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4567 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4568 pr_cont("%sNCQ", i ? "," : "");
4569 i++;
4570 }
4571
4572 pr_cont(")\n");
4573 }
4574
4575 /**
4576 * mpt3sas_base_update_missing_delay - change the missing delay timers
4577 * @ioc: per adapter object
4578 * @device_missing_delay: amount of time till device is reported missing
4579 * @io_missing_delay: interval IO is returned when there is a missing device
4580 *
4581 * Passed on the command line, this function will modify the device missing
4582 * delay, as well as the io missing delay. This should be called at driver
4583 * load time.
4584 */
4585 void
mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER * ioc,u16 device_missing_delay,u8 io_missing_delay)4586 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4587 u16 device_missing_delay, u8 io_missing_delay)
4588 {
4589 u16 dmd, dmd_new, dmd_orignal;
4590 u8 io_missing_delay_original;
4591 u16 sz;
4592 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4593 Mpi2ConfigReply_t mpi_reply;
4594 u8 num_phys = 0;
4595 u16 ioc_status;
4596
4597 mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4598 if (!num_phys)
4599 return;
4600
4601 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4602 sizeof(Mpi2SasIOUnit1PhyData_t));
4603 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4604 if (!sas_iounit_pg1) {
4605 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4606 __FILE__, __LINE__, __func__);
4607 goto out;
4608 }
4609 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4610 sas_iounit_pg1, sz))) {
4611 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4612 __FILE__, __LINE__, __func__);
4613 goto out;
4614 }
4615 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4616 MPI2_IOCSTATUS_MASK;
4617 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4618 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4619 __FILE__, __LINE__, __func__);
4620 goto out;
4621 }
4622
4623 /* device missing delay */
4624 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4625 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4626 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4627 else
4628 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4629 dmd_orignal = dmd;
4630 if (device_missing_delay > 0x7F) {
4631 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4632 device_missing_delay;
4633 dmd = dmd / 16;
4634 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4635 } else
4636 dmd = device_missing_delay;
4637 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4638
4639 /* io missing delay */
4640 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4641 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4642
4643 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4644 sz)) {
4645 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4646 dmd_new = (dmd &
4647 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4648 else
4649 dmd_new =
4650 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4651 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4652 dmd_orignal, dmd_new);
4653 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4654 io_missing_delay_original,
4655 io_missing_delay);
4656 ioc->device_missing_delay = dmd_new;
4657 ioc->io_missing_delay = io_missing_delay;
4658 }
4659
4660 out:
4661 kfree(sas_iounit_pg1);
4662 }
4663
4664 /**
4665 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4666 * according to performance mode.
4667 * @ioc : per adapter object
4668 *
4669 * Return nothing.
4670 */
4671 static void
_base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER * ioc)4672 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4673 {
4674 Mpi2IOCPage1_t ioc_pg1;
4675 Mpi2ConfigReply_t mpi_reply;
4676
4677 mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4678 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4679
4680 switch (perf_mode) {
4681 case MPT_PERF_MODE_DEFAULT:
4682 case MPT_PERF_MODE_BALANCED:
4683 if (ioc->high_iops_queues) {
4684 ioc_info(ioc,
4685 "Enable interrupt coalescing only for first\t"
4686 "%d reply queues\n",
4687 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4688 /*
4689 * If 31st bit is zero then interrupt coalescing is
4690 * enabled for all reply descriptor post queues.
4691 * If 31st bit is set to one then user can
4692 * enable/disable interrupt coalescing on per reply
4693 * descriptor post queue group(8) basis. So to enable
4694 * interrupt coalescing only on first reply descriptor
4695 * post queue group 31st bit and zero th bit is enabled.
4696 */
4697 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4698 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4699 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4700 ioc_info(ioc, "performance mode: balanced\n");
4701 return;
4702 }
4703 fallthrough;
4704 case MPT_PERF_MODE_LATENCY:
4705 /*
4706 * Enable interrupt coalescing on all reply queues
4707 * with timeout value 0xA
4708 */
4709 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
4710 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4711 ioc_pg1.ProductSpecific = 0;
4712 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4713 ioc_info(ioc, "performance mode: latency\n");
4714 break;
4715 case MPT_PERF_MODE_IOPS:
4716 /*
4717 * Enable interrupt coalescing on all reply queues.
4718 */
4719 ioc_info(ioc,
4720 "performance mode: iops with coalescing timeout: 0x%x\n",
4721 le32_to_cpu(ioc_pg1.CoalescingTimeout));
4722 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4723 ioc_pg1.ProductSpecific = 0;
4724 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4725 break;
4726 }
4727 }
4728
4729 /**
4730 * _base_static_config_pages - static start of day config pages
4731 * @ioc: per adapter object
4732 */
4733 static void
_base_static_config_pages(struct MPT3SAS_ADAPTER * ioc)4734 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
4735 {
4736 Mpi2ConfigReply_t mpi_reply;
4737 u32 iounit_pg1_flags;
4738
4739 ioc->nvme_abort_timeout = 30;
4740 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
4741 if (ioc->ir_firmware)
4742 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
4743 &ioc->manu_pg10);
4744
4745 /*
4746 * Ensure correct T10 PI operation if vendor left EEDPTagMode
4747 * flag unset in NVDATA.
4748 */
4749 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
4750 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
4751 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
4752 ioc->name);
4753 ioc->manu_pg11.EEDPTagMode &= ~0x3;
4754 ioc->manu_pg11.EEDPTagMode |= 0x1;
4755 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
4756 &ioc->manu_pg11);
4757 }
4758 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
4759 ioc->tm_custom_handling = 1;
4760 else {
4761 ioc->tm_custom_handling = 0;
4762 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
4763 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
4764 else if (ioc->manu_pg11.NVMeAbortTO >
4765 NVME_TASK_ABORT_MAX_TIMEOUT)
4766 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
4767 else
4768 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
4769 }
4770
4771 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
4772 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
4773 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
4774 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
4775 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4776 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
4777 _base_display_ioc_capabilities(ioc);
4778
4779 /*
4780 * Enable task_set_full handling in iounit_pg1 when the
4781 * facts capabilities indicate that its supported.
4782 */
4783 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4784 if ((ioc->facts.IOCCapabilities &
4785 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
4786 iounit_pg1_flags &=
4787 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4788 else
4789 iounit_pg1_flags |=
4790 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4791 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
4792 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4793
4794 if (ioc->iounit_pg8.NumSensors)
4795 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
4796 if (ioc->is_aero_ioc)
4797 _base_update_ioc_page1_inlinewith_perf_mode(ioc);
4798 }
4799
4800 /**
4801 * mpt3sas_free_enclosure_list - release memory
4802 * @ioc: per adapter object
4803 *
4804 * Free memory allocated during encloure add.
4805 */
4806 void
mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER * ioc)4807 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
4808 {
4809 struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
4810
4811 /* Free enclosure list */
4812 list_for_each_entry_safe(enclosure_dev,
4813 enclosure_dev_next, &ioc->enclosure_list, list) {
4814 list_del(&enclosure_dev->list);
4815 kfree(enclosure_dev);
4816 }
4817 }
4818
4819 /**
4820 * _base_release_memory_pools - release memory
4821 * @ioc: per adapter object
4822 *
4823 * Free memory allocated from _base_allocate_memory_pools.
4824 */
4825 static void
_base_release_memory_pools(struct MPT3SAS_ADAPTER * ioc)4826 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4827 {
4828 int i = 0;
4829 int j = 0;
4830 int dma_alloc_count = 0;
4831 struct chain_tracker *ct;
4832 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
4833
4834 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4835
4836 if (ioc->request) {
4837 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
4838 ioc->request, ioc->request_dma);
4839 dexitprintk(ioc,
4840 ioc_info(ioc, "request_pool(0x%p): free\n",
4841 ioc->request));
4842 ioc->request = NULL;
4843 }
4844
4845 if (ioc->sense) {
4846 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4847 dma_pool_destroy(ioc->sense_dma_pool);
4848 dexitprintk(ioc,
4849 ioc_info(ioc, "sense_pool(0x%p): free\n",
4850 ioc->sense));
4851 ioc->sense = NULL;
4852 }
4853
4854 if (ioc->reply) {
4855 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
4856 dma_pool_destroy(ioc->reply_dma_pool);
4857 dexitprintk(ioc,
4858 ioc_info(ioc, "reply_pool(0x%p): free\n",
4859 ioc->reply));
4860 ioc->reply = NULL;
4861 }
4862
4863 if (ioc->reply_free) {
4864 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
4865 ioc->reply_free_dma);
4866 dma_pool_destroy(ioc->reply_free_dma_pool);
4867 dexitprintk(ioc,
4868 ioc_info(ioc, "reply_free_pool(0x%p): free\n",
4869 ioc->reply_free));
4870 ioc->reply_free = NULL;
4871 }
4872
4873 if (ioc->reply_post) {
4874 dma_alloc_count = DIV_ROUND_UP(count,
4875 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
4876 for (i = 0; i < count; i++) {
4877 if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
4878 && dma_alloc_count) {
4879 if (ioc->reply_post[i].reply_post_free) {
4880 dma_pool_free(
4881 ioc->reply_post_free_dma_pool,
4882 ioc->reply_post[i].reply_post_free,
4883 ioc->reply_post[i].reply_post_free_dma);
4884 dexitprintk(ioc, ioc_info(ioc,
4885 "reply_post_free_pool(0x%p): free\n",
4886 ioc->reply_post[i].reply_post_free));
4887 ioc->reply_post[i].reply_post_free =
4888 NULL;
4889 }
4890 --dma_alloc_count;
4891 }
4892 }
4893 dma_pool_destroy(ioc->reply_post_free_dma_pool);
4894 if (ioc->reply_post_free_array &&
4895 ioc->rdpq_array_enable) {
4896 dma_pool_free(ioc->reply_post_free_array_dma_pool,
4897 ioc->reply_post_free_array,
4898 ioc->reply_post_free_array_dma);
4899 ioc->reply_post_free_array = NULL;
4900 }
4901 dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
4902 kfree(ioc->reply_post);
4903 }
4904
4905 if (ioc->pcie_sgl_dma_pool) {
4906 for (i = 0; i < ioc->scsiio_depth; i++) {
4907 dma_pool_free(ioc->pcie_sgl_dma_pool,
4908 ioc->pcie_sg_lookup[i].pcie_sgl,
4909 ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4910 ioc->pcie_sg_lookup[i].pcie_sgl = NULL;
4911 }
4912 dma_pool_destroy(ioc->pcie_sgl_dma_pool);
4913 }
4914 kfree(ioc->pcie_sg_lookup);
4915 ioc->pcie_sg_lookup = NULL;
4916
4917 if (ioc->config_page) {
4918 dexitprintk(ioc,
4919 ioc_info(ioc, "config_page(0x%p): free\n",
4920 ioc->config_page));
4921 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
4922 ioc->config_page, ioc->config_page_dma);
4923 }
4924
4925 kfree(ioc->hpr_lookup);
4926 ioc->hpr_lookup = NULL;
4927 kfree(ioc->internal_lookup);
4928 ioc->internal_lookup = NULL;
4929 if (ioc->chain_lookup) {
4930 for (i = 0; i < ioc->scsiio_depth; i++) {
4931 for (j = ioc->chains_per_prp_buffer;
4932 j < ioc->chains_needed_per_io; j++) {
4933 ct = &ioc->chain_lookup[i].chains_per_smid[j];
4934 if (ct && ct->chain_buffer)
4935 dma_pool_free(ioc->chain_dma_pool,
4936 ct->chain_buffer,
4937 ct->chain_buffer_dma);
4938 }
4939 kfree(ioc->chain_lookup[i].chains_per_smid);
4940 }
4941 dma_pool_destroy(ioc->chain_dma_pool);
4942 kfree(ioc->chain_lookup);
4943 ioc->chain_lookup = NULL;
4944 }
4945 }
4946
4947 /**
4948 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
4949 * having same upper 32bits in their base memory address.
4950 * @reply_pool_start_address: Base address of a reply queue set
4951 * @pool_sz: Size of single Reply Descriptor Post Queues pool size
4952 *
4953 * Return: 1 if reply queues in a set have a same upper 32bits in their base
4954 * memory address, else 0.
4955 */
4956
4957 static int
mpt3sas_check_same_4gb_region(long reply_pool_start_address,u32 pool_sz)4958 mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz)
4959 {
4960 long reply_pool_end_address;
4961
4962 reply_pool_end_address = reply_pool_start_address + pool_sz;
4963
4964 if (upper_32_bits(reply_pool_start_address) ==
4965 upper_32_bits(reply_pool_end_address))
4966 return 1;
4967 else
4968 return 0;
4969 }
4970
4971 /**
4972 * _base_reduce_hba_queue_depth- Retry with reduced queue depth
4973 * @ioc: Adapter object
4974 *
4975 * Return: 0 for success, non-zero for failure.
4976 **/
4977 static inline int
_base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER * ioc)4978 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc)
4979 {
4980 int reduce_sz = 64;
4981
4982 if ((ioc->hba_queue_depth - reduce_sz) >
4983 (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
4984 ioc->hba_queue_depth -= reduce_sz;
4985 return 0;
4986 } else
4987 return -ENOMEM;
4988 }
4989
4990 /**
4991 * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory
4992 * for pcie sgl pools.
4993 * @ioc: Adapter object
4994 * @sz: DMA Pool size
4995 * @ct: Chain tracker
4996 * Return: 0 for success, non-zero for failure.
4997 */
4998
4999 static int
_base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER * ioc,u32 sz)5000 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5001 {
5002 int i = 0, j = 0;
5003 struct chain_tracker *ct;
5004
5005 ioc->pcie_sgl_dma_pool =
5006 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz,
5007 ioc->page_size, 0);
5008 if (!ioc->pcie_sgl_dma_pool) {
5009 ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5010 return -ENOMEM;
5011 }
5012
5013 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5014 ioc->chains_per_prp_buffer =
5015 min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io);
5016 for (i = 0; i < ioc->scsiio_depth; i++) {
5017 ioc->pcie_sg_lookup[i].pcie_sgl =
5018 dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5019 &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5020 if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5021 ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5022 return -EAGAIN;
5023 }
5024
5025 if (!mpt3sas_check_same_4gb_region(
5026 (long)ioc->pcie_sg_lookup[i].pcie_sgl, sz)) {
5027 ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n",
5028 ioc->pcie_sg_lookup[i].pcie_sgl,
5029 (unsigned long long)
5030 ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5031 ioc->use_32bit_dma = true;
5032 return -EAGAIN;
5033 }
5034
5035 for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5036 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5037 ct->chain_buffer =
5038 ioc->pcie_sg_lookup[i].pcie_sgl +
5039 (j * ioc->chain_segment_sz);
5040 ct->chain_buffer_dma =
5041 ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5042 (j * ioc->chain_segment_sz);
5043 }
5044 }
5045 dinitprintk(ioc, ioc_info(ioc,
5046 "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5047 ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
5048 dinitprintk(ioc, ioc_info(ioc,
5049 "Number of chains can fit in a PRP page(%d)\n",
5050 ioc->chains_per_prp_buffer));
5051 return 0;
5052 }
5053
5054 /**
5055 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
5056 * for reply queues.
5057 * @ioc: per adapter object
5058 * @sz: DMA Pool size
5059 * Return: 0 for success, non-zero for failure.
5060 */
5061 static int
base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER * ioc,int sz)5062 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
5063 {
5064 int i = 0;
5065 u32 dma_alloc_count = 0;
5066 int reply_post_free_sz = ioc->reply_post_queue_depth *
5067 sizeof(Mpi2DefaultReplyDescriptor_t);
5068 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5069
5070 ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
5071 GFP_KERNEL);
5072 if (!ioc->reply_post)
5073 return -ENOMEM;
5074 /*
5075 * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
5076 * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
5077 * be within 4GB boundary i.e reply queues in a set must have same
5078 * upper 32-bits in their memory address. so here driver is allocating
5079 * the DMA'able memory for reply queues according.
5080 * Driver uses limitation of
5081 * VENTURA_SERIES to manage INVADER_SERIES as well.
5082 */
5083 dma_alloc_count = DIV_ROUND_UP(count,
5084 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5085 ioc->reply_post_free_dma_pool =
5086 dma_pool_create("reply_post_free pool",
5087 &ioc->pdev->dev, sz, 16, 0);
5088 if (!ioc->reply_post_free_dma_pool)
5089 return -ENOMEM;
5090 for (i = 0; i < count; i++) {
5091 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
5092 ioc->reply_post[i].reply_post_free =
5093 dma_pool_zalloc(ioc->reply_post_free_dma_pool,
5094 GFP_KERNEL,
5095 &ioc->reply_post[i].reply_post_free_dma);
5096 if (!ioc->reply_post[i].reply_post_free)
5097 return -ENOMEM;
5098 /*
5099 * Each set of RDPQ pool must satisfy 4gb boundary
5100 * restriction.
5101 * 1) Check if allocated resources for RDPQ pool are in
5102 * the same 4GB range.
5103 * 2) If #1 is true, continue with 64 bit DMA.
5104 * 3) If #1 is false, return 1. which means free all the
5105 * resources and set DMA mask to 32 and allocate.
5106 */
5107 if (!mpt3sas_check_same_4gb_region(
5108 (long)ioc->reply_post[i].reply_post_free, sz)) {
5109 dinitprintk(ioc,
5110 ioc_err(ioc, "bad Replypost free pool(0x%p)"
5111 "reply_post_free_dma = (0x%llx)\n",
5112 ioc->reply_post[i].reply_post_free,
5113 (unsigned long long)
5114 ioc->reply_post[i].reply_post_free_dma));
5115 return -EAGAIN;
5116 }
5117 dma_alloc_count--;
5118
5119 } else {
5120 ioc->reply_post[i].reply_post_free =
5121 (Mpi2ReplyDescriptorsUnion_t *)
5122 ((long)ioc->reply_post[i-1].reply_post_free
5123 + reply_post_free_sz);
5124 ioc->reply_post[i].reply_post_free_dma =
5125 (dma_addr_t)
5126 (ioc->reply_post[i-1].reply_post_free_dma +
5127 reply_post_free_sz);
5128 }
5129 }
5130 return 0;
5131 }
5132
5133 /**
5134 * _base_allocate_memory_pools - allocate start of day memory pools
5135 * @ioc: per adapter object
5136 *
5137 * Return: 0 success, anything else error.
5138 */
5139 static int
_base_allocate_memory_pools(struct MPT3SAS_ADAPTER * ioc)5140 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5141 {
5142 struct mpt3sas_facts *facts;
5143 u16 max_sge_elements;
5144 u16 chains_needed_per_io;
5145 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
5146 u32 retry_sz;
5147 u32 rdpq_sz = 0;
5148 u16 max_request_credit, nvme_blocks_needed;
5149 unsigned short sg_tablesize;
5150 u16 sge_size;
5151 int i, j;
5152 int ret = 0, rc = 0;
5153 struct chain_tracker *ct;
5154
5155 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5156
5157
5158 retry_sz = 0;
5159 facts = &ioc->facts;
5160
5161 /* command line tunables for max sgl entries */
5162 if (max_sgl_entries != -1)
5163 sg_tablesize = max_sgl_entries;
5164 else {
5165 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
5166 sg_tablesize = MPT2SAS_SG_DEPTH;
5167 else
5168 sg_tablesize = MPT3SAS_SG_DEPTH;
5169 }
5170
5171 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
5172 if (reset_devices)
5173 sg_tablesize = min_t(unsigned short, sg_tablesize,
5174 MPT_KDUMP_MIN_PHYS_SEGMENTS);
5175
5176 if (ioc->is_mcpu_endpoint)
5177 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5178 else {
5179 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
5180 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5181 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
5182 sg_tablesize = min_t(unsigned short, sg_tablesize,
5183 SG_MAX_SEGMENTS);
5184 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
5185 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
5186 }
5187 ioc->shost->sg_tablesize = sg_tablesize;
5188 }
5189
5190 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
5191 (facts->RequestCredit / 4));
5192 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
5193 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
5194 INTERNAL_SCSIIO_CMDS_COUNT)) {
5195 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
5196 facts->RequestCredit);
5197 return -ENOMEM;
5198 }
5199 ioc->internal_depth = 10;
5200 }
5201
5202 ioc->hi_priority_depth = ioc->internal_depth - (5);
5203 /* command line tunables for max controller queue depth */
5204 if (max_queue_depth != -1 && max_queue_depth != 0) {
5205 max_request_credit = min_t(u16, max_queue_depth +
5206 ioc->internal_depth, facts->RequestCredit);
5207 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
5208 max_request_credit = MAX_HBA_QUEUE_DEPTH;
5209 } else if (reset_devices)
5210 max_request_credit = min_t(u16, facts->RequestCredit,
5211 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
5212 else
5213 max_request_credit = min_t(u16, facts->RequestCredit,
5214 MAX_HBA_QUEUE_DEPTH);
5215
5216 /* Firmware maintains additional facts->HighPriorityCredit number of
5217 * credits for HiPriprity Request messages, so hba queue depth will be
5218 * sum of max_request_credit and high priority queue depth.
5219 */
5220 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
5221
5222 /* request frame size */
5223 ioc->request_sz = facts->IOCRequestFrameSize * 4;
5224
5225 /* reply frame size */
5226 ioc->reply_sz = facts->ReplyFrameSize * 4;
5227
5228 /* chain segment size */
5229 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
5230 if (facts->IOCMaxChainSegmentSize)
5231 ioc->chain_segment_sz =
5232 facts->IOCMaxChainSegmentSize *
5233 MAX_CHAIN_ELEMT_SZ;
5234 else
5235 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
5236 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
5237 MAX_CHAIN_ELEMT_SZ;
5238 } else
5239 ioc->chain_segment_sz = ioc->request_sz;
5240
5241 /* calculate the max scatter element size */
5242 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
5243
5244 retry_allocation:
5245 total_sz = 0;
5246 /* calculate number of sg elements left over in the 1st frame */
5247 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
5248 sizeof(Mpi2SGEIOUnion_t)) + sge_size);
5249 ioc->max_sges_in_main_message = max_sge_elements/sge_size;
5250
5251 /* now do the same for a chain buffer */
5252 max_sge_elements = ioc->chain_segment_sz - sge_size;
5253 ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
5254
5255 /*
5256 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
5257 */
5258 chains_needed_per_io = ((ioc->shost->sg_tablesize -
5259 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
5260 + 1;
5261 if (chains_needed_per_io > facts->MaxChainDepth) {
5262 chains_needed_per_io = facts->MaxChainDepth;
5263 ioc->shost->sg_tablesize = min_t(u16,
5264 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
5265 * chains_needed_per_io), ioc->shost->sg_tablesize);
5266 }
5267 ioc->chains_needed_per_io = chains_needed_per_io;
5268
5269 /* reply free queue sizing - taking into account for 64 FW events */
5270 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5271
5272 /* mCPU manage single counters for simplicity */
5273 if (ioc->is_mcpu_endpoint)
5274 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
5275 else {
5276 /* calculate reply descriptor post queue depth */
5277 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
5278 ioc->reply_free_queue_depth + 1;
5279 /* align the reply post queue on the next 16 count boundary */
5280 if (ioc->reply_post_queue_depth % 16)
5281 ioc->reply_post_queue_depth += 16 -
5282 (ioc->reply_post_queue_depth % 16);
5283 }
5284
5285 if (ioc->reply_post_queue_depth >
5286 facts->MaxReplyDescriptorPostQueueDepth) {
5287 ioc->reply_post_queue_depth =
5288 facts->MaxReplyDescriptorPostQueueDepth -
5289 (facts->MaxReplyDescriptorPostQueueDepth % 16);
5290 ioc->hba_queue_depth =
5291 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
5292 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5293 }
5294
5295 ioc_info(ioc,
5296 "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
5297 "sge_per_io(%d), chains_per_io(%d)\n",
5298 ioc->max_sges_in_main_message,
5299 ioc->max_sges_in_chain_message,
5300 ioc->shost->sg_tablesize,
5301 ioc->chains_needed_per_io);
5302
5303 /* reply post queue, 16 byte align */
5304 reply_post_free_sz = ioc->reply_post_queue_depth *
5305 sizeof(Mpi2DefaultReplyDescriptor_t);
5306 rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
5307 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
5308 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
5309 ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
5310 if (ret == -EAGAIN) {
5311 /*
5312 * Free allocated bad RDPQ memory pools.
5313 * Change dma coherent mask to 32 bit and reallocate RDPQ
5314 */
5315 _base_release_memory_pools(ioc);
5316 ioc->use_32bit_dma = true;
5317 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
5318 ioc_err(ioc,
5319 "32 DMA mask failed %s\n", pci_name(ioc->pdev));
5320 return -ENODEV;
5321 }
5322 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
5323 return -ENOMEM;
5324 } else if (ret == -ENOMEM)
5325 return -ENOMEM;
5326 total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
5327 DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
5328 ioc->scsiio_depth = ioc->hba_queue_depth -
5329 ioc->hi_priority_depth - ioc->internal_depth;
5330
5331 /* set the scsi host can_queue depth
5332 * with some internal commands that could be outstanding
5333 */
5334 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
5335 dinitprintk(ioc,
5336 ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
5337 ioc->shost->can_queue));
5338
5339 /* contiguous pool for request and chains, 16 byte align, one extra "
5340 * "frame for smid=0
5341 */
5342 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
5343 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
5344
5345 /* hi-priority queue */
5346 sz += (ioc->hi_priority_depth * ioc->request_sz);
5347
5348 /* internal queue */
5349 sz += (ioc->internal_depth * ioc->request_sz);
5350
5351 ioc->request_dma_sz = sz;
5352 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
5353 &ioc->request_dma, GFP_KERNEL);
5354 if (!ioc->request) {
5355 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
5356 ioc->hba_queue_depth, ioc->chains_needed_per_io,
5357 ioc->request_sz, sz / 1024);
5358 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
5359 goto out;
5360 retry_sz = 64;
5361 ioc->hba_queue_depth -= retry_sz;
5362 _base_release_memory_pools(ioc);
5363 goto retry_allocation;
5364 }
5365
5366 if (retry_sz)
5367 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
5368 ioc->hba_queue_depth, ioc->chains_needed_per_io,
5369 ioc->request_sz, sz / 1024);
5370
5371 /* hi-priority queue */
5372 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
5373 ioc->request_sz);
5374 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
5375 ioc->request_sz);
5376
5377 /* internal queue */
5378 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
5379 ioc->request_sz);
5380 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
5381 ioc->request_sz);
5382
5383 ioc_info(ioc,
5384 "request pool(0x%p) - dma(0x%llx): "
5385 "depth(%d), frame_size(%d), pool_size(%d kB)\n",
5386 ioc->request, (unsigned long long) ioc->request_dma,
5387 ioc->hba_queue_depth, ioc->request_sz,
5388 (ioc->hba_queue_depth * ioc->request_sz) / 1024);
5389
5390 total_sz += sz;
5391
5392 dinitprintk(ioc,
5393 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
5394 ioc->request, ioc->scsiio_depth));
5395
5396 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
5397 sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
5398 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
5399 if (!ioc->chain_lookup) {
5400 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
5401 goto out;
5402 }
5403
5404 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
5405 for (i = 0; i < ioc->scsiio_depth; i++) {
5406 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
5407 if (!ioc->chain_lookup[i].chains_per_smid) {
5408 ioc_err(ioc, "chain_lookup: kzalloc failed\n");
5409 goto out;
5410 }
5411 }
5412
5413 /* initialize hi-priority queue smid's */
5414 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
5415 sizeof(struct request_tracker), GFP_KERNEL);
5416 if (!ioc->hpr_lookup) {
5417 ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
5418 goto out;
5419 }
5420 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
5421 dinitprintk(ioc,
5422 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
5423 ioc->hi_priority,
5424 ioc->hi_priority_depth, ioc->hi_priority_smid));
5425
5426 /* initialize internal queue smid's */
5427 ioc->internal_lookup = kcalloc(ioc->internal_depth,
5428 sizeof(struct request_tracker), GFP_KERNEL);
5429 if (!ioc->internal_lookup) {
5430 ioc_err(ioc, "internal_lookup: kcalloc failed\n");
5431 goto out;
5432 }
5433 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
5434 dinitprintk(ioc,
5435 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
5436 ioc->internal,
5437 ioc->internal_depth, ioc->internal_smid));
5438 /*
5439 * The number of NVMe page sized blocks needed is:
5440 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
5441 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
5442 * that is placed in the main message frame. 8 is the size of each PRP
5443 * entry or PRP list pointer entry. 8 is subtracted from page_size
5444 * because of the PRP list pointer entry at the end of a page, so this
5445 * is not counted as a PRP entry. The 1 added page is a round up.
5446 *
5447 * To avoid allocation failures due to the amount of memory that could
5448 * be required for NVMe PRP's, only each set of NVMe blocks will be
5449 * contiguous, so a new set is allocated for each possible I/O.
5450 */
5451
5452 ioc->chains_per_prp_buffer = 0;
5453 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
5454 nvme_blocks_needed =
5455 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
5456 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
5457 nvme_blocks_needed++;
5458
5459 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
5460 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
5461 if (!ioc->pcie_sg_lookup) {
5462 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
5463 goto out;
5464 }
5465 sz = nvme_blocks_needed * ioc->page_size;
5466 rc = _base_allocate_pcie_sgl_pool(ioc, sz);
5467 if (rc == -ENOMEM)
5468 return -ENOMEM;
5469 else if (rc == -EAGAIN)
5470 goto try_32bit_dma;
5471 total_sz += sz * ioc->scsiio_depth;
5472 }
5473
5474 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5475 ioc->chain_segment_sz, 16, 0);
5476 if (!ioc->chain_dma_pool) {
5477 ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n");
5478 goto out;
5479 }
5480 for (i = 0; i < ioc->scsiio_depth; i++) {
5481 for (j = ioc->chains_per_prp_buffer;
5482 j < ioc->chains_needed_per_io; j++) {
5483 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5484 ct->chain_buffer = dma_pool_alloc(
5485 ioc->chain_dma_pool, GFP_KERNEL,
5486 &ct->chain_buffer_dma);
5487 if (!ct->chain_buffer) {
5488 ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n");
5489 goto out;
5490 }
5491 }
5492 total_sz += ioc->chain_segment_sz;
5493 }
5494
5495 dinitprintk(ioc,
5496 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
5497 ioc->chain_depth, ioc->chain_segment_sz,
5498 (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
5499
5500 /* sense buffers, 4 byte align */
5501 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
5502 ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5503 4, 0);
5504 if (!ioc->sense_dma_pool) {
5505 ioc_err(ioc, "sense pool: dma_pool_create failed\n");
5506 goto out;
5507 }
5508 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5509 &ioc->sense_dma);
5510 if (!ioc->sense) {
5511 ioc_err(ioc, "sense pool: dma_pool_alloc failed\n");
5512 goto out;
5513 }
5514 /* sense buffer requires to be in same 4 gb region.
5515 * Below function will check the same.
5516 * In case of failure, new pci pool will be created with updated
5517 * alignment. Older allocation and pool will be destroyed.
5518 * Alignment will be used such a way that next allocation if
5519 * success, will always meet same 4gb region requirement.
5520 * Actual requirement is not alignment, but we need start and end of
5521 * DMA address must have same upper 32 bit address.
5522 */
5523 if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) {
5524 //Release Sense pool & Reallocate
5525 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5526 dma_pool_destroy(ioc->sense_dma_pool);
5527 ioc->sense = NULL;
5528
5529 ioc->sense_dma_pool =
5530 dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5531 roundup_pow_of_two(sz), 0);
5532 if (!ioc->sense_dma_pool) {
5533 ioc_err(ioc, "sense pool: pci_pool_create failed\n");
5534 goto out;
5535 }
5536 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5537 &ioc->sense_dma);
5538 if (!ioc->sense) {
5539 ioc_err(ioc, "sense pool: pci_pool_alloc failed\n");
5540 goto out;
5541 }
5542 }
5543 ioc_info(ioc,
5544 "sense pool(0x%p)- dma(0x%llx): depth(%d),"
5545 "element_size(%d), pool_size(%d kB)\n",
5546 ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth,
5547 SCSI_SENSE_BUFFERSIZE, sz / 1024);
5548
5549 total_sz += sz;
5550
5551 /* reply pool, 4 byte align */
5552 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
5553 ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
5554 4, 0);
5555 if (!ioc->reply_dma_pool) {
5556 ioc_err(ioc, "reply pool: dma_pool_create failed\n");
5557 goto out;
5558 }
5559 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5560 &ioc->reply_dma);
5561 if (!ioc->reply) {
5562 ioc_err(ioc, "reply pool: dma_pool_alloc failed\n");
5563 goto out;
5564 }
5565 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5566 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5567 dinitprintk(ioc,
5568 ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5569 ioc->reply, ioc->reply_free_queue_depth,
5570 ioc->reply_sz, sz / 1024));
5571 dinitprintk(ioc,
5572 ioc_info(ioc, "reply_dma(0x%llx)\n",
5573 (unsigned long long)ioc->reply_dma));
5574 total_sz += sz;
5575
5576 /* reply free queue, 16 byte align */
5577 sz = ioc->reply_free_queue_depth * 4;
5578 ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
5579 &ioc->pdev->dev, sz, 16, 0);
5580 if (!ioc->reply_free_dma_pool) {
5581 ioc_err(ioc, "reply_free pool: dma_pool_create failed\n");
5582 goto out;
5583 }
5584 ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL,
5585 &ioc->reply_free_dma);
5586 if (!ioc->reply_free) {
5587 ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n");
5588 goto out;
5589 }
5590 dinitprintk(ioc,
5591 ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5592 ioc->reply_free, ioc->reply_free_queue_depth,
5593 4, sz / 1024));
5594 dinitprintk(ioc,
5595 ioc_info(ioc, "reply_free_dma (0x%llx)\n",
5596 (unsigned long long)ioc->reply_free_dma));
5597 total_sz += sz;
5598
5599 if (ioc->rdpq_array_enable) {
5600 reply_post_free_array_sz = ioc->reply_queue_count *
5601 sizeof(Mpi2IOCInitRDPQArrayEntry);
5602 ioc->reply_post_free_array_dma_pool =
5603 dma_pool_create("reply_post_free_array pool",
5604 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
5605 if (!ioc->reply_post_free_array_dma_pool) {
5606 dinitprintk(ioc,
5607 ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n"));
5608 goto out;
5609 }
5610 ioc->reply_post_free_array =
5611 dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
5612 GFP_KERNEL, &ioc->reply_post_free_array_dma);
5613 if (!ioc->reply_post_free_array) {
5614 dinitprintk(ioc,
5615 ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n"));
5616 goto out;
5617 }
5618 }
5619 ioc->config_page_sz = 512;
5620 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
5621 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
5622 if (!ioc->config_page) {
5623 ioc_err(ioc, "config page: dma_pool_alloc failed\n");
5624 goto out;
5625 }
5626
5627 ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
5628 ioc->config_page, (unsigned long long)ioc->config_page_dma,
5629 ioc->config_page_sz);
5630 total_sz += ioc->config_page_sz;
5631
5632 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
5633 total_sz / 1024);
5634 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
5635 ioc->shost->can_queue, facts->RequestCredit);
5636 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
5637 ioc->shost->sg_tablesize);
5638 return 0;
5639
5640 try_32bit_dma:
5641 _base_release_memory_pools(ioc);
5642 if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) {
5643 /* Change dma coherent mask to 32 bit and reallocate */
5644 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
5645 pr_err("Setting 32 bit coherent DMA mask Failed %s\n",
5646 pci_name(ioc->pdev));
5647 return -ENODEV;
5648 }
5649 } else if (_base_reduce_hba_queue_depth(ioc) != 0)
5650 return -ENOMEM;
5651 goto retry_allocation;
5652
5653 out:
5654 return -ENOMEM;
5655 }
5656
5657 /**
5658 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
5659 * @ioc: Pointer to MPT_ADAPTER structure
5660 * @cooked: Request raw or cooked IOC state
5661 *
5662 * Return: all IOC Doorbell register bits if cooked==0, else just the
5663 * Doorbell bits in MPI_IOC_STATE_MASK.
5664 */
5665 u32
mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER * ioc,int cooked)5666 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
5667 {
5668 u32 s, sc;
5669
5670 s = ioc->base_readl(&ioc->chip->Doorbell);
5671 sc = s & MPI2_IOC_STATE_MASK;
5672 return cooked ? sc : s;
5673 }
5674
5675 /**
5676 * _base_wait_on_iocstate - waiting on a particular ioc state
5677 * @ioc: ?
5678 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
5679 * @timeout: timeout in second
5680 *
5681 * Return: 0 for success, non-zero for failure.
5682 */
5683 static int
_base_wait_on_iocstate(struct MPT3SAS_ADAPTER * ioc,u32 ioc_state,int timeout)5684 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
5685 {
5686 u32 count, cntdn;
5687 u32 current_state;
5688
5689 count = 0;
5690 cntdn = 1000 * timeout;
5691 do {
5692 current_state = mpt3sas_base_get_iocstate(ioc, 1);
5693 if (current_state == ioc_state)
5694 return 0;
5695 if (count && current_state == MPI2_IOC_STATE_FAULT)
5696 break;
5697 if (count && current_state == MPI2_IOC_STATE_COREDUMP)
5698 break;
5699
5700 usleep_range(1000, 1500);
5701 count++;
5702 } while (--cntdn);
5703
5704 return current_state;
5705 }
5706
5707 /**
5708 * _base_dump_reg_set - This function will print hexdump of register set.
5709 * @ioc: per adapter object
5710 *
5711 * Returns nothing.
5712 */
5713 static inline void
_base_dump_reg_set(struct MPT3SAS_ADAPTER * ioc)5714 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
5715 {
5716 unsigned int i, sz = 256;
5717 u32 __iomem *reg = (u32 __iomem *)ioc->chip;
5718
5719 ioc_info(ioc, "System Register set:\n");
5720 for (i = 0; i < (sz / sizeof(u32)); i++)
5721 pr_info("%08x: %08x\n", (i * 4), readl(®[i]));
5722 }
5723
5724 /**
5725 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
5726 * a write to the doorbell)
5727 * @ioc: per adapter object
5728 * @timeout: timeout in seconds
5729 *
5730 * Return: 0 for success, non-zero for failure.
5731 *
5732 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
5733 */
5734
5735 static int
_base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER * ioc,int timeout)5736 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5737 {
5738 u32 cntdn, count;
5739 u32 int_status;
5740
5741 count = 0;
5742 cntdn = 1000 * timeout;
5743 do {
5744 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5745 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5746 dhsprintk(ioc,
5747 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5748 __func__, count, timeout));
5749 return 0;
5750 }
5751
5752 usleep_range(1000, 1500);
5753 count++;
5754 } while (--cntdn);
5755
5756 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5757 __func__, count, int_status);
5758 return -EFAULT;
5759 }
5760
5761 static int
_base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER * ioc,int timeout)5762 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5763 {
5764 u32 cntdn, count;
5765 u32 int_status;
5766
5767 count = 0;
5768 cntdn = 2000 * timeout;
5769 do {
5770 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5771 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5772 dhsprintk(ioc,
5773 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5774 __func__, count, timeout));
5775 return 0;
5776 }
5777
5778 udelay(500);
5779 count++;
5780 } while (--cntdn);
5781
5782 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5783 __func__, count, int_status);
5784 return -EFAULT;
5785
5786 }
5787
5788 /**
5789 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
5790 * @ioc: per adapter object
5791 * @timeout: timeout in second
5792 *
5793 * Return: 0 for success, non-zero for failure.
5794 *
5795 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
5796 * doorbell.
5797 */
5798 static int
_base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER * ioc,int timeout)5799 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
5800 {
5801 u32 cntdn, count;
5802 u32 int_status;
5803 u32 doorbell;
5804
5805 count = 0;
5806 cntdn = 1000 * timeout;
5807 do {
5808 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5809 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
5810 dhsprintk(ioc,
5811 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5812 __func__, count, timeout));
5813 return 0;
5814 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5815 doorbell = ioc->base_readl(&ioc->chip->Doorbell);
5816 if ((doorbell & MPI2_IOC_STATE_MASK) ==
5817 MPI2_IOC_STATE_FAULT) {
5818 mpt3sas_print_fault_code(ioc, doorbell);
5819 return -EFAULT;
5820 }
5821 if ((doorbell & MPI2_IOC_STATE_MASK) ==
5822 MPI2_IOC_STATE_COREDUMP) {
5823 mpt3sas_print_coredump_info(ioc, doorbell);
5824 return -EFAULT;
5825 }
5826 } else if (int_status == 0xFFFFFFFF)
5827 goto out;
5828
5829 usleep_range(1000, 1500);
5830 count++;
5831 } while (--cntdn);
5832
5833 out:
5834 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5835 __func__, count, int_status);
5836 return -EFAULT;
5837 }
5838
5839 /**
5840 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
5841 * @ioc: per adapter object
5842 * @timeout: timeout in second
5843 *
5844 * Return: 0 for success, non-zero for failure.
5845 */
5846 static int
_base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER * ioc,int timeout)5847 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
5848 {
5849 u32 cntdn, count;
5850 u32 doorbell_reg;
5851
5852 count = 0;
5853 cntdn = 1000 * timeout;
5854 do {
5855 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
5856 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
5857 dhsprintk(ioc,
5858 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5859 __func__, count, timeout));
5860 return 0;
5861 }
5862
5863 usleep_range(1000, 1500);
5864 count++;
5865 } while (--cntdn);
5866
5867 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
5868 __func__, count, doorbell_reg);
5869 return -EFAULT;
5870 }
5871
5872 /**
5873 * _base_send_ioc_reset - send doorbell reset
5874 * @ioc: per adapter object
5875 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
5876 * @timeout: timeout in second
5877 *
5878 * Return: 0 for success, non-zero for failure.
5879 */
5880 static int
_base_send_ioc_reset(struct MPT3SAS_ADAPTER * ioc,u8 reset_type,int timeout)5881 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
5882 {
5883 u32 ioc_state;
5884 int r = 0;
5885 unsigned long flags;
5886
5887 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
5888 ioc_err(ioc, "%s: unknown reset_type\n", __func__);
5889 return -EFAULT;
5890 }
5891
5892 if (!(ioc->facts.IOCCapabilities &
5893 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
5894 return -EFAULT;
5895
5896 ioc_info(ioc, "sending message unit reset !!\n");
5897
5898 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
5899 &ioc->chip->Doorbell);
5900 if ((_base_wait_for_doorbell_ack(ioc, 15))) {
5901 r = -EFAULT;
5902 goto out;
5903 }
5904
5905 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5906 if (ioc_state) {
5907 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
5908 __func__, ioc_state);
5909 r = -EFAULT;
5910 goto out;
5911 }
5912 out:
5913 if (r != 0) {
5914 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5915 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5916 /*
5917 * Wait for IOC state CoreDump to clear only during
5918 * HBA initialization & release time.
5919 */
5920 if ((ioc_state & MPI2_IOC_STATE_MASK) ==
5921 MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
5922 ioc->fault_reset_work_q == NULL)) {
5923 spin_unlock_irqrestore(
5924 &ioc->ioc_reset_in_progress_lock, flags);
5925 mpt3sas_print_coredump_info(ioc, ioc_state);
5926 mpt3sas_base_wait_for_coredump_completion(ioc,
5927 __func__);
5928 spin_lock_irqsave(
5929 &ioc->ioc_reset_in_progress_lock, flags);
5930 }
5931 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5932 }
5933 ioc_info(ioc, "message unit reset: %s\n",
5934 r == 0 ? "SUCCESS" : "FAILED");
5935 return r;
5936 }
5937
5938 /**
5939 * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
5940 * @ioc: per adapter object
5941 * @timeout: timeout in seconds
5942 *
5943 * Return: Waits up to timeout seconds for the IOC to
5944 * become operational. Returns 0 if IOC is present
5945 * and operational; otherwise returns -EFAULT.
5946 */
5947
5948 int
mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER * ioc,int timeout)5949 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
5950 {
5951 int wait_state_count = 0;
5952 u32 ioc_state;
5953
5954 do {
5955 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5956 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
5957 break;
5958 ssleep(1);
5959 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
5960 __func__, ++wait_state_count);
5961 } while (--timeout);
5962 if (!timeout) {
5963 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
5964 return -EFAULT;
5965 }
5966 if (wait_state_count)
5967 ioc_info(ioc, "ioc is operational\n");
5968 return 0;
5969 }
5970
5971 /**
5972 * _base_handshake_req_reply_wait - send request thru doorbell interface
5973 * @ioc: per adapter object
5974 * @request_bytes: request length
5975 * @request: pointer having request payload
5976 * @reply_bytes: reply length
5977 * @reply: pointer to reply payload
5978 * @timeout: timeout in second
5979 *
5980 * Return: 0 for success, non-zero for failure.
5981 */
5982 static int
_base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER * ioc,int request_bytes,u32 * request,int reply_bytes,u16 * reply,int timeout)5983 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
5984 u32 *request, int reply_bytes, u16 *reply, int timeout)
5985 {
5986 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
5987 int i;
5988 u8 failed;
5989 __le32 *mfp;
5990
5991 /* make sure doorbell is not in use */
5992 if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
5993 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
5994 return -EFAULT;
5995 }
5996
5997 /* clear pending doorbell interrupts from previous state changes */
5998 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
5999 MPI2_HIS_IOC2SYS_DB_STATUS)
6000 writel(0, &ioc->chip->HostInterruptStatus);
6001
6002 /* send message to ioc */
6003 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
6004 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
6005 &ioc->chip->Doorbell);
6006
6007 if ((_base_spin_on_doorbell_int(ioc, 5))) {
6008 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6009 __LINE__);
6010 return -EFAULT;
6011 }
6012 writel(0, &ioc->chip->HostInterruptStatus);
6013
6014 if ((_base_wait_for_doorbell_ack(ioc, 5))) {
6015 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
6016 __LINE__);
6017 return -EFAULT;
6018 }
6019
6020 /* send message 32-bits at a time */
6021 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
6022 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
6023 if ((_base_wait_for_doorbell_ack(ioc, 5)))
6024 failed = 1;
6025 }
6026
6027 if (failed) {
6028 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
6029 __LINE__);
6030 return -EFAULT;
6031 }
6032
6033 /* now wait for the reply */
6034 if ((_base_wait_for_doorbell_int(ioc, timeout))) {
6035 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6036 __LINE__);
6037 return -EFAULT;
6038 }
6039
6040 /* read the first two 16-bits, it gives the total length of the reply */
6041 reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
6042 & MPI2_DOORBELL_DATA_MASK);
6043 writel(0, &ioc->chip->HostInterruptStatus);
6044 if ((_base_wait_for_doorbell_int(ioc, 5))) {
6045 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6046 __LINE__);
6047 return -EFAULT;
6048 }
6049 reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
6050 & MPI2_DOORBELL_DATA_MASK);
6051 writel(0, &ioc->chip->HostInterruptStatus);
6052
6053 for (i = 2; i < default_reply->MsgLength * 2; i++) {
6054 if ((_base_wait_for_doorbell_int(ioc, 5))) {
6055 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6056 __LINE__);
6057 return -EFAULT;
6058 }
6059 if (i >= reply_bytes/2) /* overflow case */
6060 ioc->base_readl(&ioc->chip->Doorbell);
6061 else
6062 reply[i] = le16_to_cpu(
6063 ioc->base_readl(&ioc->chip->Doorbell)
6064 & MPI2_DOORBELL_DATA_MASK);
6065 writel(0, &ioc->chip->HostInterruptStatus);
6066 }
6067
6068 _base_wait_for_doorbell_int(ioc, 5);
6069 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
6070 dhsprintk(ioc,
6071 ioc_info(ioc, "doorbell is in use (line=%d)\n",
6072 __LINE__));
6073 }
6074 writel(0, &ioc->chip->HostInterruptStatus);
6075
6076 if (ioc->logging_level & MPT_DEBUG_INIT) {
6077 mfp = (__le32 *)reply;
6078 pr_info("\toffset:data\n");
6079 for (i = 0; i < reply_bytes/4; i++)
6080 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6081 le32_to_cpu(mfp[i]));
6082 }
6083 return 0;
6084 }
6085
6086 /**
6087 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
6088 * @ioc: per adapter object
6089 * @mpi_reply: the reply payload from FW
6090 * @mpi_request: the request payload sent to FW
6091 *
6092 * The SAS IO Unit Control Request message allows the host to perform low-level
6093 * operations, such as resets on the PHYs of the IO Unit, also allows the host
6094 * to obtain the IOC assigned device handles for a device if it has other
6095 * identifying information about the device, in addition allows the host to
6096 * remove IOC resources associated with the device.
6097 *
6098 * Return: 0 for success, non-zero for failure.
6099 */
6100 int
mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER * ioc,Mpi2SasIoUnitControlReply_t * mpi_reply,Mpi2SasIoUnitControlRequest_t * mpi_request)6101 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
6102 Mpi2SasIoUnitControlReply_t *mpi_reply,
6103 Mpi2SasIoUnitControlRequest_t *mpi_request)
6104 {
6105 u16 smid;
6106 u8 issue_reset = 0;
6107 int rc;
6108 void *request;
6109
6110 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6111
6112 mutex_lock(&ioc->base_cmds.mutex);
6113
6114 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6115 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6116 rc = -EAGAIN;
6117 goto out;
6118 }
6119
6120 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6121 if (rc)
6122 goto out;
6123
6124 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6125 if (!smid) {
6126 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6127 rc = -EAGAIN;
6128 goto out;
6129 }
6130
6131 rc = 0;
6132 ioc->base_cmds.status = MPT3_CMD_PENDING;
6133 request = mpt3sas_base_get_msg_frame(ioc, smid);
6134 ioc->base_cmds.smid = smid;
6135 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
6136 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
6137 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
6138 ioc->ioc_link_reset_in_progress = 1;
6139 init_completion(&ioc->base_cmds.done);
6140 ioc->put_smid_default(ioc, smid);
6141 wait_for_completion_timeout(&ioc->base_cmds.done,
6142 msecs_to_jiffies(10000));
6143 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
6144 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
6145 ioc->ioc_link_reset_in_progress)
6146 ioc->ioc_link_reset_in_progress = 0;
6147 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6148 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
6149 mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
6150 issue_reset);
6151 goto issue_host_reset;
6152 }
6153 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6154 memcpy(mpi_reply, ioc->base_cmds.reply,
6155 sizeof(Mpi2SasIoUnitControlReply_t));
6156 else
6157 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
6158 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6159 goto out;
6160
6161 issue_host_reset:
6162 if (issue_reset)
6163 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6164 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6165 rc = -EFAULT;
6166 out:
6167 mutex_unlock(&ioc->base_cmds.mutex);
6168 return rc;
6169 }
6170
6171 /**
6172 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
6173 * @ioc: per adapter object
6174 * @mpi_reply: the reply payload from FW
6175 * @mpi_request: the request payload sent to FW
6176 *
6177 * The SCSI Enclosure Processor request message causes the IOC to
6178 * communicate with SES devices to control LED status signals.
6179 *
6180 * Return: 0 for success, non-zero for failure.
6181 */
6182 int
mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER * ioc,Mpi2SepReply_t * mpi_reply,Mpi2SepRequest_t * mpi_request)6183 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
6184 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
6185 {
6186 u16 smid;
6187 u8 issue_reset = 0;
6188 int rc;
6189 void *request;
6190
6191 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6192
6193 mutex_lock(&ioc->base_cmds.mutex);
6194
6195 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6196 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6197 rc = -EAGAIN;
6198 goto out;
6199 }
6200
6201 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6202 if (rc)
6203 goto out;
6204
6205 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6206 if (!smid) {
6207 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6208 rc = -EAGAIN;
6209 goto out;
6210 }
6211
6212 rc = 0;
6213 ioc->base_cmds.status = MPT3_CMD_PENDING;
6214 request = mpt3sas_base_get_msg_frame(ioc, smid);
6215 ioc->base_cmds.smid = smid;
6216 memset(request, 0, ioc->request_sz);
6217 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
6218 init_completion(&ioc->base_cmds.done);
6219 ioc->put_smid_default(ioc, smid);
6220 wait_for_completion_timeout(&ioc->base_cmds.done,
6221 msecs_to_jiffies(10000));
6222 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6223 mpt3sas_check_cmd_timeout(ioc,
6224 ioc->base_cmds.status, mpi_request,
6225 sizeof(Mpi2SepRequest_t)/4, issue_reset);
6226 goto issue_host_reset;
6227 }
6228 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6229 memcpy(mpi_reply, ioc->base_cmds.reply,
6230 sizeof(Mpi2SepReply_t));
6231 else
6232 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
6233 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6234 goto out;
6235
6236 issue_host_reset:
6237 if (issue_reset)
6238 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6239 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6240 rc = -EFAULT;
6241 out:
6242 mutex_unlock(&ioc->base_cmds.mutex);
6243 return rc;
6244 }
6245
6246 /**
6247 * _base_get_port_facts - obtain port facts reply and save in ioc
6248 * @ioc: per adapter object
6249 * @port: ?
6250 *
6251 * Return: 0 for success, non-zero for failure.
6252 */
6253 static int
_base_get_port_facts(struct MPT3SAS_ADAPTER * ioc,int port)6254 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
6255 {
6256 Mpi2PortFactsRequest_t mpi_request;
6257 Mpi2PortFactsReply_t mpi_reply;
6258 struct mpt3sas_port_facts *pfacts;
6259 int mpi_reply_sz, mpi_request_sz, r;
6260
6261 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6262
6263 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
6264 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
6265 memset(&mpi_request, 0, mpi_request_sz);
6266 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
6267 mpi_request.PortNumber = port;
6268 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6269 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6270
6271 if (r != 0) {
6272 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6273 return r;
6274 }
6275
6276 pfacts = &ioc->pfacts[port];
6277 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
6278 pfacts->PortNumber = mpi_reply.PortNumber;
6279 pfacts->VP_ID = mpi_reply.VP_ID;
6280 pfacts->VF_ID = mpi_reply.VF_ID;
6281 pfacts->MaxPostedCmdBuffers =
6282 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
6283
6284 return 0;
6285 }
6286
6287 /**
6288 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
6289 * @ioc: per adapter object
6290 * @timeout:
6291 *
6292 * Return: 0 for success, non-zero for failure.
6293 */
6294 static int
_base_wait_for_iocstate(struct MPT3SAS_ADAPTER * ioc,int timeout)6295 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
6296 {
6297 u32 ioc_state;
6298 int rc;
6299
6300 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6301
6302 if (ioc->pci_error_recovery) {
6303 dfailprintk(ioc,
6304 ioc_info(ioc, "%s: host in pci error recovery\n",
6305 __func__));
6306 return -EFAULT;
6307 }
6308
6309 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6310 dhsprintk(ioc,
6311 ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6312 __func__, ioc_state));
6313
6314 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
6315 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6316 return 0;
6317
6318 if (ioc_state & MPI2_DOORBELL_USED) {
6319 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
6320 goto issue_diag_reset;
6321 }
6322
6323 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6324 mpt3sas_print_fault_code(ioc, ioc_state &
6325 MPI2_DOORBELL_DATA_MASK);
6326 goto issue_diag_reset;
6327 } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6328 MPI2_IOC_STATE_COREDUMP) {
6329 ioc_info(ioc,
6330 "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
6331 __func__, ioc_state);
6332 return -EFAULT;
6333 }
6334
6335 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6336 if (ioc_state) {
6337 dfailprintk(ioc,
6338 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6339 __func__, ioc_state));
6340 return -EFAULT;
6341 }
6342
6343 issue_diag_reset:
6344 rc = _base_diag_reset(ioc);
6345 return rc;
6346 }
6347
6348 /**
6349 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
6350 * @ioc: per adapter object
6351 *
6352 * Return: 0 for success, non-zero for failure.
6353 */
6354 static int
_base_get_ioc_facts(struct MPT3SAS_ADAPTER * ioc)6355 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
6356 {
6357 Mpi2IOCFactsRequest_t mpi_request;
6358 Mpi2IOCFactsReply_t mpi_reply;
6359 struct mpt3sas_facts *facts;
6360 int mpi_reply_sz, mpi_request_sz, r;
6361
6362 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6363
6364 r = _base_wait_for_iocstate(ioc, 10);
6365 if (r) {
6366 dfailprintk(ioc,
6367 ioc_info(ioc, "%s: failed getting to correct state\n",
6368 __func__));
6369 return r;
6370 }
6371 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
6372 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
6373 memset(&mpi_request, 0, mpi_request_sz);
6374 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
6375 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6376 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6377
6378 if (r != 0) {
6379 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6380 return r;
6381 }
6382
6383 facts = &ioc->facts;
6384 memset(facts, 0, sizeof(struct mpt3sas_facts));
6385 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
6386 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
6387 facts->VP_ID = mpi_reply.VP_ID;
6388 facts->VF_ID = mpi_reply.VF_ID;
6389 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
6390 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
6391 facts->WhoInit = mpi_reply.WhoInit;
6392 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
6393 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
6394 if (ioc->msix_enable && (facts->MaxMSIxVectors <=
6395 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
6396 ioc->combined_reply_queue = 0;
6397 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
6398 facts->MaxReplyDescriptorPostQueueDepth =
6399 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
6400 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
6401 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
6402 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
6403 ioc->ir_firmware = 1;
6404 if ((facts->IOCCapabilities &
6405 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
6406 ioc->rdpq_array_capable = 1;
6407 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
6408 && ioc->is_aero_ioc)
6409 ioc->atomic_desc_capable = 1;
6410 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
6411 facts->IOCRequestFrameSize =
6412 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
6413 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6414 facts->IOCMaxChainSegmentSize =
6415 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
6416 }
6417 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
6418 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
6419 ioc->shost->max_id = -1;
6420 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
6421 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
6422 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
6423 facts->HighPriorityCredit =
6424 le16_to_cpu(mpi_reply.HighPriorityCredit);
6425 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
6426 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
6427 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
6428
6429 /*
6430 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
6431 */
6432 ioc->page_size = 1 << facts->CurrentHostPageSize;
6433 if (ioc->page_size == 1) {
6434 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
6435 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
6436 }
6437 dinitprintk(ioc,
6438 ioc_info(ioc, "CurrentHostPageSize(%d)\n",
6439 facts->CurrentHostPageSize));
6440
6441 dinitprintk(ioc,
6442 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
6443 facts->RequestCredit, facts->MaxChainDepth));
6444 dinitprintk(ioc,
6445 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
6446 facts->IOCRequestFrameSize * 4,
6447 facts->ReplyFrameSize * 4));
6448 return 0;
6449 }
6450
6451 /**
6452 * _base_send_ioc_init - send ioc_init to firmware
6453 * @ioc: per adapter object
6454 *
6455 * Return: 0 for success, non-zero for failure.
6456 */
6457 static int
_base_send_ioc_init(struct MPT3SAS_ADAPTER * ioc)6458 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
6459 {
6460 Mpi2IOCInitRequest_t mpi_request;
6461 Mpi2IOCInitReply_t mpi_reply;
6462 int i, r = 0;
6463 ktime_t current_time;
6464 u16 ioc_status;
6465 u32 reply_post_free_array_sz = 0;
6466
6467 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6468
6469 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
6470 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
6471 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
6472 mpi_request.VF_ID = 0; /* TODO */
6473 mpi_request.VP_ID = 0;
6474 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
6475 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
6476 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
6477
6478 if (_base_is_controller_msix_enabled(ioc))
6479 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
6480 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
6481 mpi_request.ReplyDescriptorPostQueueDepth =
6482 cpu_to_le16(ioc->reply_post_queue_depth);
6483 mpi_request.ReplyFreeQueueDepth =
6484 cpu_to_le16(ioc->reply_free_queue_depth);
6485
6486 mpi_request.SenseBufferAddressHigh =
6487 cpu_to_le32((u64)ioc->sense_dma >> 32);
6488 mpi_request.SystemReplyAddressHigh =
6489 cpu_to_le32((u64)ioc->reply_dma >> 32);
6490 mpi_request.SystemRequestFrameBaseAddress =
6491 cpu_to_le64((u64)ioc->request_dma);
6492 mpi_request.ReplyFreeQueueAddress =
6493 cpu_to_le64((u64)ioc->reply_free_dma);
6494
6495 if (ioc->rdpq_array_enable) {
6496 reply_post_free_array_sz = ioc->reply_queue_count *
6497 sizeof(Mpi2IOCInitRDPQArrayEntry);
6498 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
6499 for (i = 0; i < ioc->reply_queue_count; i++)
6500 ioc->reply_post_free_array[i].RDPQBaseAddress =
6501 cpu_to_le64(
6502 (u64)ioc->reply_post[i].reply_post_free_dma);
6503 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
6504 mpi_request.ReplyDescriptorPostQueueAddress =
6505 cpu_to_le64((u64)ioc->reply_post_free_array_dma);
6506 } else {
6507 mpi_request.ReplyDescriptorPostQueueAddress =
6508 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
6509 }
6510
6511 /*
6512 * Set the flag to enable CoreDump state feature in IOC firmware.
6513 */
6514 mpi_request.ConfigurationFlags |=
6515 cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
6516
6517 /* This time stamp specifies number of milliseconds
6518 * since epoch ~ midnight January 1, 1970.
6519 */
6520 current_time = ktime_get_real();
6521 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
6522
6523 if (ioc->logging_level & MPT_DEBUG_INIT) {
6524 __le32 *mfp;
6525 int i;
6526
6527 mfp = (__le32 *)&mpi_request;
6528 ioc_info(ioc, "\toffset:data\n");
6529 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
6530 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6531 le32_to_cpu(mfp[i]));
6532 }
6533
6534 r = _base_handshake_req_reply_wait(ioc,
6535 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
6536 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
6537
6538 if (r != 0) {
6539 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6540 return r;
6541 }
6542
6543 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
6544 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
6545 mpi_reply.IOCLogInfo) {
6546 ioc_err(ioc, "%s: failed\n", __func__);
6547 r = -EIO;
6548 }
6549
6550 return r;
6551 }
6552
6553 /**
6554 * mpt3sas_port_enable_done - command completion routine for port enable
6555 * @ioc: per adapter object
6556 * @smid: system request message index
6557 * @msix_index: MSIX table index supplied by the OS
6558 * @reply: reply message frame(lower 32bit addr)
6559 *
6560 * Return: 1 meaning mf should be freed from _base_interrupt
6561 * 0 means the mf is freed from this function.
6562 */
6563 u8
mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)6564 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
6565 u32 reply)
6566 {
6567 MPI2DefaultReply_t *mpi_reply;
6568 u16 ioc_status;
6569
6570 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
6571 return 1;
6572
6573 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
6574 if (!mpi_reply)
6575 return 1;
6576
6577 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
6578 return 1;
6579
6580 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
6581 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
6582 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
6583 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
6584 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6585 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
6586 ioc->port_enable_failed = 1;
6587
6588 if (ioc->is_driver_loading) {
6589 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
6590 mpt3sas_port_enable_complete(ioc);
6591 return 1;
6592 } else {
6593 ioc->start_scan_failed = ioc_status;
6594 ioc->start_scan = 0;
6595 return 1;
6596 }
6597 }
6598 complete(&ioc->port_enable_cmds.done);
6599 return 1;
6600 }
6601
6602 /**
6603 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
6604 * @ioc: per adapter object
6605 *
6606 * Return: 0 for success, non-zero for failure.
6607 */
6608 static int
_base_send_port_enable(struct MPT3SAS_ADAPTER * ioc)6609 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
6610 {
6611 Mpi2PortEnableRequest_t *mpi_request;
6612 Mpi2PortEnableReply_t *mpi_reply;
6613 int r = 0;
6614 u16 smid;
6615 u16 ioc_status;
6616
6617 ioc_info(ioc, "sending port enable !!\n");
6618
6619 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6620 ioc_err(ioc, "%s: internal command already in use\n", __func__);
6621 return -EAGAIN;
6622 }
6623
6624 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6625 if (!smid) {
6626 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6627 return -EAGAIN;
6628 }
6629
6630 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6631 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6632 ioc->port_enable_cmds.smid = smid;
6633 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6634 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6635
6636 init_completion(&ioc->port_enable_cmds.done);
6637 ioc->put_smid_default(ioc, smid);
6638 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
6639 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
6640 ioc_err(ioc, "%s: timeout\n", __func__);
6641 _debug_dump_mf(mpi_request,
6642 sizeof(Mpi2PortEnableRequest_t)/4);
6643 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
6644 r = -EFAULT;
6645 else
6646 r = -ETIME;
6647 goto out;
6648 }
6649
6650 mpi_reply = ioc->port_enable_cmds.reply;
6651 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6652 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
6653 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
6654 __func__, ioc_status);
6655 r = -EFAULT;
6656 goto out;
6657 }
6658
6659 out:
6660 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
6661 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
6662 return r;
6663 }
6664
6665 /**
6666 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
6667 * @ioc: per adapter object
6668 *
6669 * Return: 0 for success, non-zero for failure.
6670 */
6671 int
mpt3sas_port_enable(struct MPT3SAS_ADAPTER * ioc)6672 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
6673 {
6674 Mpi2PortEnableRequest_t *mpi_request;
6675 u16 smid;
6676
6677 ioc_info(ioc, "sending port enable !!\n");
6678
6679 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6680 ioc_err(ioc, "%s: internal command already in use\n", __func__);
6681 return -EAGAIN;
6682 }
6683
6684 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6685 if (!smid) {
6686 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6687 return -EAGAIN;
6688 }
6689
6690 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6691 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6692 ioc->port_enable_cmds.smid = smid;
6693 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6694 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6695
6696 ioc->put_smid_default(ioc, smid);
6697 return 0;
6698 }
6699
6700 /**
6701 * _base_determine_wait_on_discovery - desposition
6702 * @ioc: per adapter object
6703 *
6704 * Decide whether to wait on discovery to complete. Used to either
6705 * locate boot device, or report volumes ahead of physical devices.
6706 *
6707 * Return: 1 for wait, 0 for don't wait.
6708 */
6709 static int
_base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER * ioc)6710 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
6711 {
6712 /* We wait for discovery to complete if IR firmware is loaded.
6713 * The sas topology events arrive before PD events, so we need time to
6714 * turn on the bit in ioc->pd_handles to indicate PD
6715 * Also, it maybe required to report Volumes ahead of physical
6716 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
6717 */
6718 if (ioc->ir_firmware)
6719 return 1;
6720
6721 /* if no Bios, then we don't need to wait */
6722 if (!ioc->bios_pg3.BiosVersion)
6723 return 0;
6724
6725 /* Bios is present, then we drop down here.
6726 *
6727 * If there any entries in the Bios Page 2, then we wait
6728 * for discovery to complete.
6729 */
6730
6731 /* Current Boot Device */
6732 if ((ioc->bios_pg2.CurrentBootDeviceForm &
6733 MPI2_BIOSPAGE2_FORM_MASK) ==
6734 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6735 /* Request Boot Device */
6736 (ioc->bios_pg2.ReqBootDeviceForm &
6737 MPI2_BIOSPAGE2_FORM_MASK) ==
6738 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6739 /* Alternate Request Boot Device */
6740 (ioc->bios_pg2.ReqAltBootDeviceForm &
6741 MPI2_BIOSPAGE2_FORM_MASK) ==
6742 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
6743 return 0;
6744
6745 return 1;
6746 }
6747
6748 /**
6749 * _base_unmask_events - turn on notification for this event
6750 * @ioc: per adapter object
6751 * @event: firmware event
6752 *
6753 * The mask is stored in ioc->event_masks.
6754 */
6755 static void
_base_unmask_events(struct MPT3SAS_ADAPTER * ioc,u16 event)6756 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
6757 {
6758 u32 desired_event;
6759
6760 if (event >= 128)
6761 return;
6762
6763 desired_event = (1 << (event % 32));
6764
6765 if (event < 32)
6766 ioc->event_masks[0] &= ~desired_event;
6767 else if (event < 64)
6768 ioc->event_masks[1] &= ~desired_event;
6769 else if (event < 96)
6770 ioc->event_masks[2] &= ~desired_event;
6771 else if (event < 128)
6772 ioc->event_masks[3] &= ~desired_event;
6773 }
6774
6775 /**
6776 * _base_event_notification - send event notification
6777 * @ioc: per adapter object
6778 *
6779 * Return: 0 for success, non-zero for failure.
6780 */
6781 static int
_base_event_notification(struct MPT3SAS_ADAPTER * ioc)6782 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
6783 {
6784 Mpi2EventNotificationRequest_t *mpi_request;
6785 u16 smid;
6786 int r = 0;
6787 int i;
6788
6789 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6790
6791 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6792 ioc_err(ioc, "%s: internal command already in use\n", __func__);
6793 return -EAGAIN;
6794 }
6795
6796 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6797 if (!smid) {
6798 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6799 return -EAGAIN;
6800 }
6801 ioc->base_cmds.status = MPT3_CMD_PENDING;
6802 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6803 ioc->base_cmds.smid = smid;
6804 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
6805 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
6806 mpi_request->VF_ID = 0; /* TODO */
6807 mpi_request->VP_ID = 0;
6808 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6809 mpi_request->EventMasks[i] =
6810 cpu_to_le32(ioc->event_masks[i]);
6811 init_completion(&ioc->base_cmds.done);
6812 ioc->put_smid_default(ioc, smid);
6813 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
6814 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6815 ioc_err(ioc, "%s: timeout\n", __func__);
6816 _debug_dump_mf(mpi_request,
6817 sizeof(Mpi2EventNotificationRequest_t)/4);
6818 if (ioc->base_cmds.status & MPT3_CMD_RESET)
6819 r = -EFAULT;
6820 else
6821 r = -ETIME;
6822 } else
6823 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
6824 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6825 return r;
6826 }
6827
6828 /**
6829 * mpt3sas_base_validate_event_type - validating event types
6830 * @ioc: per adapter object
6831 * @event_type: firmware event
6832 *
6833 * This will turn on firmware event notification when application
6834 * ask for that event. We don't mask events that are already enabled.
6835 */
6836 void
mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER * ioc,u32 * event_type)6837 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
6838 {
6839 int i, j;
6840 u32 event_mask, desired_event;
6841 u8 send_update_to_fw;
6842
6843 for (i = 0, send_update_to_fw = 0; i <
6844 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
6845 event_mask = ~event_type[i];
6846 desired_event = 1;
6847 for (j = 0; j < 32; j++) {
6848 if (!(event_mask & desired_event) &&
6849 (ioc->event_masks[i] & desired_event)) {
6850 ioc->event_masks[i] &= ~desired_event;
6851 send_update_to_fw = 1;
6852 }
6853 desired_event = (desired_event << 1);
6854 }
6855 }
6856
6857 if (!send_update_to_fw)
6858 return;
6859
6860 mutex_lock(&ioc->base_cmds.mutex);
6861 _base_event_notification(ioc);
6862 mutex_unlock(&ioc->base_cmds.mutex);
6863 }
6864
6865 /**
6866 * _base_diag_reset - the "big hammer" start of day reset
6867 * @ioc: per adapter object
6868 *
6869 * Return: 0 for success, non-zero for failure.
6870 */
6871 static int
_base_diag_reset(struct MPT3SAS_ADAPTER * ioc)6872 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
6873 {
6874 u32 host_diagnostic;
6875 u32 ioc_state;
6876 u32 count;
6877 u32 hcb_size;
6878
6879 ioc_info(ioc, "sending diag reset !!\n");
6880
6881 pci_cfg_access_lock(ioc->pdev);
6882
6883 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
6884
6885 count = 0;
6886 do {
6887 /* Write magic sequence to WriteSequence register
6888 * Loop until in diagnostic mode
6889 */
6890 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
6891 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6892 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
6893 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
6894 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
6895 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
6896 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
6897 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
6898
6899 /* wait 100 msec */
6900 msleep(100);
6901
6902 if (count++ > 20) {
6903 ioc_info(ioc,
6904 "Stop writing magic sequence after 20 retries\n");
6905 _base_dump_reg_set(ioc);
6906 goto out;
6907 }
6908
6909 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6910 drsprintk(ioc,
6911 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
6912 count, host_diagnostic));
6913
6914 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
6915
6916 hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
6917
6918 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
6919 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
6920 &ioc->chip->HostDiagnostic);
6921
6922 /*This delay allows the chip PCIe hardware time to finish reset tasks*/
6923 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
6924
6925 /* Approximately 300 second max wait */
6926 for (count = 0; count < (300000000 /
6927 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
6928
6929 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6930
6931 if (host_diagnostic == 0xFFFFFFFF) {
6932 ioc_info(ioc,
6933 "Invalid host diagnostic register value\n");
6934 _base_dump_reg_set(ioc);
6935 goto out;
6936 }
6937 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
6938 break;
6939
6940 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
6941 }
6942
6943 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
6944
6945 drsprintk(ioc,
6946 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
6947 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
6948 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
6949 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
6950
6951 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
6952 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
6953 &ioc->chip->HCBSize);
6954 }
6955
6956 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
6957 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
6958 &ioc->chip->HostDiagnostic);
6959
6960 drsprintk(ioc,
6961 ioc_info(ioc, "disable writes to the diagnostic register\n"));
6962 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6963
6964 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
6965 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
6966 if (ioc_state) {
6967 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6968 __func__, ioc_state);
6969 _base_dump_reg_set(ioc);
6970 goto out;
6971 }
6972
6973 pci_cfg_access_unlock(ioc->pdev);
6974 ioc_info(ioc, "diag reset: SUCCESS\n");
6975 return 0;
6976
6977 out:
6978 pci_cfg_access_unlock(ioc->pdev);
6979 ioc_err(ioc, "diag reset: FAILED\n");
6980 return -EFAULT;
6981 }
6982
6983 /**
6984 * _base_make_ioc_ready - put controller in READY state
6985 * @ioc: per adapter object
6986 * @type: FORCE_BIG_HAMMER or SOFT_RESET
6987 *
6988 * Return: 0 for success, non-zero for failure.
6989 */
6990 static int
_base_make_ioc_ready(struct MPT3SAS_ADAPTER * ioc,enum reset_type type)6991 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
6992 {
6993 u32 ioc_state;
6994 int rc;
6995 int count;
6996
6997 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6998
6999 if (ioc->pci_error_recovery)
7000 return 0;
7001
7002 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7003 dhsprintk(ioc,
7004 ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7005 __func__, ioc_state));
7006
7007 /* if in RESET state, it should move to READY state shortly */
7008 count = 0;
7009 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
7010 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
7011 MPI2_IOC_STATE_READY) {
7012 if (count++ == 10) {
7013 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7014 __func__, ioc_state);
7015 return -EFAULT;
7016 }
7017 ssleep(1);
7018 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7019 }
7020 }
7021
7022 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
7023 return 0;
7024
7025 if (ioc_state & MPI2_DOORBELL_USED) {
7026 ioc_info(ioc, "unexpected doorbell active!\n");
7027 goto issue_diag_reset;
7028 }
7029
7030 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7031 mpt3sas_print_fault_code(ioc, ioc_state &
7032 MPI2_DOORBELL_DATA_MASK);
7033 goto issue_diag_reset;
7034 }
7035
7036 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
7037 /*
7038 * if host reset is invoked while watch dog thread is waiting
7039 * for IOC state to be changed to Fault state then driver has
7040 * to wait here for CoreDump state to clear otherwise reset
7041 * will be issued to the FW and FW move the IOC state to
7042 * reset state without copying the FW logs to coredump region.
7043 */
7044 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
7045 mpt3sas_print_coredump_info(ioc, ioc_state &
7046 MPI2_DOORBELL_DATA_MASK);
7047 mpt3sas_base_wait_for_coredump_completion(ioc,
7048 __func__);
7049 }
7050 goto issue_diag_reset;
7051 }
7052
7053 if (type == FORCE_BIG_HAMMER)
7054 goto issue_diag_reset;
7055
7056 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7057 if (!(_base_send_ioc_reset(ioc,
7058 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
7059 return 0;
7060 }
7061
7062 issue_diag_reset:
7063 rc = _base_diag_reset(ioc);
7064 return rc;
7065 }
7066
7067 /**
7068 * _base_make_ioc_operational - put controller in OPERATIONAL state
7069 * @ioc: per adapter object
7070 *
7071 * Return: 0 for success, non-zero for failure.
7072 */
7073 static int
_base_make_ioc_operational(struct MPT3SAS_ADAPTER * ioc)7074 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
7075 {
7076 int r, i, index, rc;
7077 unsigned long flags;
7078 u32 reply_address;
7079 u16 smid;
7080 struct _tr_list *delayed_tr, *delayed_tr_next;
7081 struct _sc_list *delayed_sc, *delayed_sc_next;
7082 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
7083 u8 hide_flag;
7084 struct adapter_reply_queue *reply_q;
7085 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
7086
7087 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7088
7089 /* clean the delayed target reset list */
7090 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7091 &ioc->delayed_tr_list, list) {
7092 list_del(&delayed_tr->list);
7093 kfree(delayed_tr);
7094 }
7095
7096
7097 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7098 &ioc->delayed_tr_volume_list, list) {
7099 list_del(&delayed_tr->list);
7100 kfree(delayed_tr);
7101 }
7102
7103 list_for_each_entry_safe(delayed_sc, delayed_sc_next,
7104 &ioc->delayed_sc_list, list) {
7105 list_del(&delayed_sc->list);
7106 kfree(delayed_sc);
7107 }
7108
7109 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
7110 &ioc->delayed_event_ack_list, list) {
7111 list_del(&delayed_event_ack->list);
7112 kfree(delayed_event_ack);
7113 }
7114
7115 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
7116
7117 /* hi-priority queue */
7118 INIT_LIST_HEAD(&ioc->hpr_free_list);
7119 smid = ioc->hi_priority_smid;
7120 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
7121 ioc->hpr_lookup[i].cb_idx = 0xFF;
7122 ioc->hpr_lookup[i].smid = smid;
7123 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
7124 &ioc->hpr_free_list);
7125 }
7126
7127 /* internal queue */
7128 INIT_LIST_HEAD(&ioc->internal_free_list);
7129 smid = ioc->internal_smid;
7130 for (i = 0; i < ioc->internal_depth; i++, smid++) {
7131 ioc->internal_lookup[i].cb_idx = 0xFF;
7132 ioc->internal_lookup[i].smid = smid;
7133 list_add_tail(&ioc->internal_lookup[i].tracker_list,
7134 &ioc->internal_free_list);
7135 }
7136
7137 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
7138
7139 /* initialize Reply Free Queue */
7140 for (i = 0, reply_address = (u32)ioc->reply_dma ;
7141 i < ioc->reply_free_queue_depth ; i++, reply_address +=
7142 ioc->reply_sz) {
7143 ioc->reply_free[i] = cpu_to_le32(reply_address);
7144 if (ioc->is_mcpu_endpoint)
7145 _base_clone_reply_to_sys_mem(ioc,
7146 reply_address, i);
7147 }
7148
7149 /* initialize reply queues */
7150 if (ioc->is_driver_loading)
7151 _base_assign_reply_queues(ioc);
7152
7153 /* initialize Reply Post Free Queue */
7154 index = 0;
7155 reply_post_free_contig = ioc->reply_post[0].reply_post_free;
7156 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7157 /*
7158 * If RDPQ is enabled, switch to the next allocation.
7159 * Otherwise advance within the contiguous region.
7160 */
7161 if (ioc->rdpq_array_enable) {
7162 reply_q->reply_post_free =
7163 ioc->reply_post[index++].reply_post_free;
7164 } else {
7165 reply_q->reply_post_free = reply_post_free_contig;
7166 reply_post_free_contig += ioc->reply_post_queue_depth;
7167 }
7168
7169 reply_q->reply_post_host_index = 0;
7170 for (i = 0; i < ioc->reply_post_queue_depth; i++)
7171 reply_q->reply_post_free[i].Words =
7172 cpu_to_le64(ULLONG_MAX);
7173 if (!_base_is_controller_msix_enabled(ioc))
7174 goto skip_init_reply_post_free_queue;
7175 }
7176 skip_init_reply_post_free_queue:
7177
7178 r = _base_send_ioc_init(ioc);
7179 if (r) {
7180 /*
7181 * No need to check IOC state for fault state & issue
7182 * diag reset during host reset. This check is need
7183 * only during driver load time.
7184 */
7185 if (!ioc->is_driver_loading)
7186 return r;
7187
7188 rc = _base_check_for_fault_and_issue_reset(ioc);
7189 if (rc || (_base_send_ioc_init(ioc)))
7190 return r;
7191 }
7192
7193 /* initialize reply free host index */
7194 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
7195 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
7196
7197 /* initialize reply post host index */
7198 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7199 if (ioc->combined_reply_queue)
7200 writel((reply_q->msix_index & 7)<<
7201 MPI2_RPHI_MSIX_INDEX_SHIFT,
7202 ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
7203 else
7204 writel(reply_q->msix_index <<
7205 MPI2_RPHI_MSIX_INDEX_SHIFT,
7206 &ioc->chip->ReplyPostHostIndex);
7207
7208 if (!_base_is_controller_msix_enabled(ioc))
7209 goto skip_init_reply_post_host_index;
7210 }
7211
7212 skip_init_reply_post_host_index:
7213
7214 mpt3sas_base_unmask_interrupts(ioc);
7215
7216 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7217 r = _base_display_fwpkg_version(ioc);
7218 if (r)
7219 return r;
7220 }
7221
7222 _base_static_config_pages(ioc);
7223 r = _base_event_notification(ioc);
7224 if (r)
7225 return r;
7226
7227 if (ioc->is_driver_loading) {
7228
7229 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
7230 == 0x80) {
7231 hide_flag = (u8) (
7232 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
7233 MFG_PAGE10_HIDE_SSDS_MASK);
7234 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
7235 ioc->mfg_pg10_hide_flag = hide_flag;
7236 }
7237
7238 ioc->wait_for_discovery_to_complete =
7239 _base_determine_wait_on_discovery(ioc);
7240
7241 return r; /* scan_start and scan_finished support */
7242 }
7243
7244 r = _base_send_port_enable(ioc);
7245 if (r)
7246 return r;
7247
7248 return r;
7249 }
7250
7251 /**
7252 * mpt3sas_base_free_resources - free resources controller resources
7253 * @ioc: per adapter object
7254 */
7255 void
mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER * ioc)7256 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
7257 {
7258 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7259
7260 /* synchronizing freeing resource with pci_access_mutex lock */
7261 mutex_lock(&ioc->pci_access_mutex);
7262 if (ioc->chip_phys && ioc->chip) {
7263 mpt3sas_base_mask_interrupts(ioc);
7264 ioc->shost_recovery = 1;
7265 _base_make_ioc_ready(ioc, SOFT_RESET);
7266 ioc->shost_recovery = 0;
7267 }
7268
7269 mpt3sas_base_unmap_resources(ioc);
7270 mutex_unlock(&ioc->pci_access_mutex);
7271 return;
7272 }
7273
7274 /**
7275 * mpt3sas_base_attach - attach controller instance
7276 * @ioc: per adapter object
7277 *
7278 * Return: 0 for success, non-zero for failure.
7279 */
7280 int
mpt3sas_base_attach(struct MPT3SAS_ADAPTER * ioc)7281 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
7282 {
7283 int r, i, rc;
7284 int cpu_id, last_cpu_id = 0;
7285
7286 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7287
7288 /* setup cpu_msix_table */
7289 ioc->cpu_count = num_online_cpus();
7290 for_each_online_cpu(cpu_id)
7291 last_cpu_id = cpu_id;
7292 ioc->cpu_msix_table_sz = last_cpu_id + 1;
7293 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
7294 ioc->reply_queue_count = 1;
7295 if (!ioc->cpu_msix_table) {
7296 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
7297 r = -ENOMEM;
7298 goto out_free_resources;
7299 }
7300
7301 if (ioc->is_warpdrive) {
7302 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
7303 sizeof(resource_size_t *), GFP_KERNEL);
7304 if (!ioc->reply_post_host_index) {
7305 ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
7306 r = -ENOMEM;
7307 goto out_free_resources;
7308 }
7309 }
7310
7311 ioc->smp_affinity_enable = smp_affinity_enable;
7312
7313 ioc->rdpq_array_enable_assigned = 0;
7314 ioc->use_32bit_dma = false;
7315 ioc->dma_mask = 64;
7316 if (ioc->is_aero_ioc)
7317 ioc->base_readl = &_base_readl_aero;
7318 else
7319 ioc->base_readl = &_base_readl;
7320 r = mpt3sas_base_map_resources(ioc);
7321 if (r)
7322 goto out_free_resources;
7323
7324 pci_set_drvdata(ioc->pdev, ioc->shost);
7325 r = _base_get_ioc_facts(ioc);
7326 if (r) {
7327 rc = _base_check_for_fault_and_issue_reset(ioc);
7328 if (rc || (_base_get_ioc_facts(ioc)))
7329 goto out_free_resources;
7330 }
7331
7332 switch (ioc->hba_mpi_version_belonged) {
7333 case MPI2_VERSION:
7334 ioc->build_sg_scmd = &_base_build_sg_scmd;
7335 ioc->build_sg = &_base_build_sg;
7336 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
7337 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7338 break;
7339 case MPI25_VERSION:
7340 case MPI26_VERSION:
7341 /*
7342 * In SAS3.0,
7343 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
7344 * Target Status - all require the IEEE formated scatter gather
7345 * elements.
7346 */
7347 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
7348 ioc->build_sg = &_base_build_sg_ieee;
7349 ioc->build_nvme_prp = &_base_build_nvme_prp;
7350 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
7351 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
7352 if (ioc->high_iops_queues)
7353 ioc->get_msix_index_for_smlio =
7354 &_base_get_high_iops_msix_index;
7355 else
7356 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7357 break;
7358 }
7359 if (ioc->atomic_desc_capable) {
7360 ioc->put_smid_default = &_base_put_smid_default_atomic;
7361 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
7362 ioc->put_smid_fast_path =
7363 &_base_put_smid_fast_path_atomic;
7364 ioc->put_smid_hi_priority =
7365 &_base_put_smid_hi_priority_atomic;
7366 } else {
7367 ioc->put_smid_default = &_base_put_smid_default;
7368 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
7369 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
7370 if (ioc->is_mcpu_endpoint)
7371 ioc->put_smid_scsi_io =
7372 &_base_put_smid_mpi_ep_scsi_io;
7373 else
7374 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
7375 }
7376 /*
7377 * These function pointers for other requests that don't
7378 * the require IEEE scatter gather elements.
7379 *
7380 * For example Configuration Pages and SAS IOUNIT Control don't.
7381 */
7382 ioc->build_sg_mpi = &_base_build_sg;
7383 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
7384
7385 r = _base_make_ioc_ready(ioc, SOFT_RESET);
7386 if (r)
7387 goto out_free_resources;
7388
7389 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
7390 sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
7391 if (!ioc->pfacts) {
7392 r = -ENOMEM;
7393 goto out_free_resources;
7394 }
7395
7396 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
7397 r = _base_get_port_facts(ioc, i);
7398 if (r) {
7399 rc = _base_check_for_fault_and_issue_reset(ioc);
7400 if (rc || (_base_get_port_facts(ioc, i)))
7401 goto out_free_resources;
7402 }
7403 }
7404
7405 r = _base_allocate_memory_pools(ioc);
7406 if (r)
7407 goto out_free_resources;
7408
7409 if (irqpoll_weight > 0)
7410 ioc->thresh_hold = irqpoll_weight;
7411 else
7412 ioc->thresh_hold = ioc->hba_queue_depth/4;
7413
7414 _base_init_irqpolls(ioc);
7415 init_waitqueue_head(&ioc->reset_wq);
7416
7417 /* allocate memory pd handle bitmask list */
7418 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7419 if (ioc->facts.MaxDevHandle % 8)
7420 ioc->pd_handles_sz++;
7421 ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
7422 GFP_KERNEL);
7423 if (!ioc->pd_handles) {
7424 r = -ENOMEM;
7425 goto out_free_resources;
7426 }
7427 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
7428 GFP_KERNEL);
7429 if (!ioc->blocking_handles) {
7430 r = -ENOMEM;
7431 goto out_free_resources;
7432 }
7433
7434 /* allocate memory for pending OS device add list */
7435 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
7436 if (ioc->facts.MaxDevHandle % 8)
7437 ioc->pend_os_device_add_sz++;
7438 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
7439 GFP_KERNEL);
7440 if (!ioc->pend_os_device_add) {
7441 r = -ENOMEM;
7442 goto out_free_resources;
7443 }
7444
7445 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
7446 ioc->device_remove_in_progress =
7447 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
7448 if (!ioc->device_remove_in_progress) {
7449 r = -ENOMEM;
7450 goto out_free_resources;
7451 }
7452
7453 ioc->fwfault_debug = mpt3sas_fwfault_debug;
7454
7455 /* base internal command bits */
7456 mutex_init(&ioc->base_cmds.mutex);
7457 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7458 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7459
7460 /* port_enable command bits */
7461 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7462 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7463
7464 /* transport internal command bits */
7465 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7466 ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
7467 mutex_init(&ioc->transport_cmds.mutex);
7468
7469 /* scsih internal command bits */
7470 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7471 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
7472 mutex_init(&ioc->scsih_cmds.mutex);
7473
7474 /* task management internal command bits */
7475 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7476 ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
7477 mutex_init(&ioc->tm_cmds.mutex);
7478
7479 /* config page internal command bits */
7480 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7481 ioc->config_cmds.status = MPT3_CMD_NOT_USED;
7482 mutex_init(&ioc->config_cmds.mutex);
7483
7484 /* ctl module internal command bits */
7485 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7486 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
7487 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
7488 mutex_init(&ioc->ctl_cmds.mutex);
7489
7490 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
7491 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
7492 !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
7493 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
7494 r = -ENOMEM;
7495 goto out_free_resources;
7496 }
7497
7498 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7499 ioc->event_masks[i] = -1;
7500
7501 /* here we enable the events we care about */
7502 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
7503 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
7504 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
7505 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
7506 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
7507 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
7508 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
7509 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
7510 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
7511 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
7512 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
7513 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
7514 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
7515 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
7516 if (ioc->is_gen35_ioc) {
7517 _base_unmask_events(ioc,
7518 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
7519 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
7520 _base_unmask_events(ioc,
7521 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
7522 }
7523 }
7524 r = _base_make_ioc_operational(ioc);
7525 if (r)
7526 goto out_free_resources;
7527
7528 /*
7529 * Copy current copy of IOCFacts in prev_fw_facts
7530 * and it will be used during online firmware upgrade.
7531 */
7532 memcpy(&ioc->prev_fw_facts, &ioc->facts,
7533 sizeof(struct mpt3sas_facts));
7534
7535 ioc->non_operational_loop = 0;
7536 ioc->ioc_coredump_loop = 0;
7537 ioc->got_task_abort_from_ioctl = 0;
7538 return 0;
7539
7540 out_free_resources:
7541
7542 ioc->remove_host = 1;
7543
7544 mpt3sas_base_free_resources(ioc);
7545 _base_release_memory_pools(ioc);
7546 pci_set_drvdata(ioc->pdev, NULL);
7547 kfree(ioc->cpu_msix_table);
7548 if (ioc->is_warpdrive)
7549 kfree(ioc->reply_post_host_index);
7550 kfree(ioc->pd_handles);
7551 kfree(ioc->blocking_handles);
7552 kfree(ioc->device_remove_in_progress);
7553 kfree(ioc->pend_os_device_add);
7554 kfree(ioc->tm_cmds.reply);
7555 kfree(ioc->transport_cmds.reply);
7556 kfree(ioc->scsih_cmds.reply);
7557 kfree(ioc->config_cmds.reply);
7558 kfree(ioc->base_cmds.reply);
7559 kfree(ioc->port_enable_cmds.reply);
7560 kfree(ioc->ctl_cmds.reply);
7561 kfree(ioc->ctl_cmds.sense);
7562 kfree(ioc->pfacts);
7563 ioc->ctl_cmds.reply = NULL;
7564 ioc->base_cmds.reply = NULL;
7565 ioc->tm_cmds.reply = NULL;
7566 ioc->scsih_cmds.reply = NULL;
7567 ioc->transport_cmds.reply = NULL;
7568 ioc->config_cmds.reply = NULL;
7569 ioc->pfacts = NULL;
7570 return r;
7571 }
7572
7573
7574 /**
7575 * mpt3sas_base_detach - remove controller instance
7576 * @ioc: per adapter object
7577 */
7578 void
mpt3sas_base_detach(struct MPT3SAS_ADAPTER * ioc)7579 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
7580 {
7581 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7582
7583 mpt3sas_base_stop_watchdog(ioc);
7584 mpt3sas_base_free_resources(ioc);
7585 _base_release_memory_pools(ioc);
7586 mpt3sas_free_enclosure_list(ioc);
7587 pci_set_drvdata(ioc->pdev, NULL);
7588 kfree(ioc->cpu_msix_table);
7589 if (ioc->is_warpdrive)
7590 kfree(ioc->reply_post_host_index);
7591 kfree(ioc->pd_handles);
7592 kfree(ioc->blocking_handles);
7593 kfree(ioc->device_remove_in_progress);
7594 kfree(ioc->pend_os_device_add);
7595 kfree(ioc->pfacts);
7596 kfree(ioc->ctl_cmds.reply);
7597 kfree(ioc->ctl_cmds.sense);
7598 kfree(ioc->base_cmds.reply);
7599 kfree(ioc->port_enable_cmds.reply);
7600 kfree(ioc->tm_cmds.reply);
7601 kfree(ioc->transport_cmds.reply);
7602 kfree(ioc->scsih_cmds.reply);
7603 kfree(ioc->config_cmds.reply);
7604 }
7605
7606 /**
7607 * _base_pre_reset_handler - pre reset handler
7608 * @ioc: per adapter object
7609 */
_base_pre_reset_handler(struct MPT3SAS_ADAPTER * ioc)7610 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
7611 {
7612 mpt3sas_scsih_pre_reset_handler(ioc);
7613 mpt3sas_ctl_pre_reset_handler(ioc);
7614 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
7615 }
7616
7617 /**
7618 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
7619 * @ioc: per adapter object
7620 */
7621 static void
_base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER * ioc)7622 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
7623 {
7624 dtmprintk(ioc,
7625 ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
7626 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
7627 ioc->transport_cmds.status |= MPT3_CMD_RESET;
7628 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
7629 complete(&ioc->transport_cmds.done);
7630 }
7631 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7632 ioc->base_cmds.status |= MPT3_CMD_RESET;
7633 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
7634 complete(&ioc->base_cmds.done);
7635 }
7636 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7637 ioc->port_enable_failed = 1;
7638 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
7639 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
7640 if (ioc->is_driver_loading) {
7641 ioc->start_scan_failed =
7642 MPI2_IOCSTATUS_INTERNAL_ERROR;
7643 ioc->start_scan = 0;
7644 ioc->port_enable_cmds.status =
7645 MPT3_CMD_NOT_USED;
7646 } else {
7647 complete(&ioc->port_enable_cmds.done);
7648 }
7649 }
7650 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
7651 ioc->config_cmds.status |= MPT3_CMD_RESET;
7652 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
7653 ioc->config_cmds.smid = USHRT_MAX;
7654 complete(&ioc->config_cmds.done);
7655 }
7656 }
7657
7658 /**
7659 * _base_clear_outstanding_commands - clear all outstanding commands
7660 * @ioc: per adapter object
7661 */
_base_clear_outstanding_commands(struct MPT3SAS_ADAPTER * ioc)7662 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
7663 {
7664 mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
7665 mpt3sas_ctl_clear_outstanding_ioctls(ioc);
7666 _base_clear_outstanding_mpt_commands(ioc);
7667 }
7668
7669 /**
7670 * _base_reset_done_handler - reset done handler
7671 * @ioc: per adapter object
7672 */
_base_reset_done_handler(struct MPT3SAS_ADAPTER * ioc)7673 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
7674 {
7675 mpt3sas_scsih_reset_done_handler(ioc);
7676 mpt3sas_ctl_reset_done_handler(ioc);
7677 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
7678 }
7679
7680 /**
7681 * mpt3sas_wait_for_commands_to_complete - reset controller
7682 * @ioc: Pointer to MPT_ADAPTER structure
7683 *
7684 * This function is waiting 10s for all pending commands to complete
7685 * prior to putting controller in reset.
7686 */
7687 void
mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER * ioc)7688 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
7689 {
7690 u32 ioc_state;
7691
7692 ioc->pending_io_count = 0;
7693
7694 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7695 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
7696 return;
7697
7698 /* pending command count */
7699 ioc->pending_io_count = scsi_host_busy(ioc->shost);
7700
7701 if (!ioc->pending_io_count)
7702 return;
7703
7704 /* wait for pending commands to complete */
7705 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
7706 }
7707
7708 /**
7709 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
7710 * attributes during online firmware upgrade and update the corresponding
7711 * IOC variables accordingly.
7712 *
7713 * @ioc: Pointer to MPT_ADAPTER structure
7714 */
7715 static int
_base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER * ioc)7716 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
7717 {
7718 u16 pd_handles_sz;
7719 void *pd_handles = NULL, *blocking_handles = NULL;
7720 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
7721 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
7722
7723 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
7724 pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7725 if (ioc->facts.MaxDevHandle % 8)
7726 pd_handles_sz++;
7727
7728 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
7729 GFP_KERNEL);
7730 if (!pd_handles) {
7731 ioc_info(ioc,
7732 "Unable to allocate the memory for pd_handles of sz: %d\n",
7733 pd_handles_sz);
7734 return -ENOMEM;
7735 }
7736 memset(pd_handles + ioc->pd_handles_sz, 0,
7737 (pd_handles_sz - ioc->pd_handles_sz));
7738 ioc->pd_handles = pd_handles;
7739
7740 blocking_handles = krealloc(ioc->blocking_handles,
7741 pd_handles_sz, GFP_KERNEL);
7742 if (!blocking_handles) {
7743 ioc_info(ioc,
7744 "Unable to allocate the memory for "
7745 "blocking_handles of sz: %d\n",
7746 pd_handles_sz);
7747 return -ENOMEM;
7748 }
7749 memset(blocking_handles + ioc->pd_handles_sz, 0,
7750 (pd_handles_sz - ioc->pd_handles_sz));
7751 ioc->blocking_handles = blocking_handles;
7752 ioc->pd_handles_sz = pd_handles_sz;
7753
7754 pend_os_device_add = krealloc(ioc->pend_os_device_add,
7755 pd_handles_sz, GFP_KERNEL);
7756 if (!pend_os_device_add) {
7757 ioc_info(ioc,
7758 "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
7759 pd_handles_sz);
7760 return -ENOMEM;
7761 }
7762 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
7763 (pd_handles_sz - ioc->pend_os_device_add_sz));
7764 ioc->pend_os_device_add = pend_os_device_add;
7765 ioc->pend_os_device_add_sz = pd_handles_sz;
7766
7767 device_remove_in_progress = krealloc(
7768 ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
7769 if (!device_remove_in_progress) {
7770 ioc_info(ioc,
7771 "Unable to allocate the memory for "
7772 "device_remove_in_progress of sz: %d\n "
7773 , pd_handles_sz);
7774 return -ENOMEM;
7775 }
7776 memset(device_remove_in_progress +
7777 ioc->device_remove_in_progress_sz, 0,
7778 (pd_handles_sz - ioc->device_remove_in_progress_sz));
7779 ioc->device_remove_in_progress = device_remove_in_progress;
7780 ioc->device_remove_in_progress_sz = pd_handles_sz;
7781 }
7782
7783 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
7784 return 0;
7785 }
7786
7787 /**
7788 * mpt3sas_base_hard_reset_handler - reset controller
7789 * @ioc: Pointer to MPT_ADAPTER structure
7790 * @type: FORCE_BIG_HAMMER or SOFT_RESET
7791 *
7792 * Return: 0 for success, non-zero for failure.
7793 */
7794 int
mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER * ioc,enum reset_type type)7795 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
7796 enum reset_type type)
7797 {
7798 int r;
7799 unsigned long flags;
7800 u32 ioc_state;
7801 u8 is_fault = 0, is_trigger = 0;
7802
7803 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
7804
7805 if (ioc->pci_error_recovery) {
7806 ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
7807 r = 0;
7808 goto out_unlocked;
7809 }
7810
7811 if (mpt3sas_fwfault_debug)
7812 mpt3sas_halt_firmware(ioc);
7813
7814 /* wait for an active reset in progress to complete */
7815 mutex_lock(&ioc->reset_in_progress_mutex);
7816
7817 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7818 ioc->shost_recovery = 1;
7819 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7820
7821 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
7822 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
7823 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
7824 MPT3_DIAG_BUFFER_IS_RELEASED))) {
7825 is_trigger = 1;
7826 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7827 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
7828 (ioc_state & MPI2_IOC_STATE_MASK) ==
7829 MPI2_IOC_STATE_COREDUMP)
7830 is_fault = 1;
7831 }
7832 _base_pre_reset_handler(ioc);
7833 mpt3sas_wait_for_commands_to_complete(ioc);
7834 mpt3sas_base_mask_interrupts(ioc);
7835 r = _base_make_ioc_ready(ioc, type);
7836 if (r)
7837 goto out;
7838 _base_clear_outstanding_commands(ioc);
7839
7840 /* If this hard reset is called while port enable is active, then
7841 * there is no reason to call make_ioc_operational
7842 */
7843 if (ioc->is_driver_loading && ioc->port_enable_failed) {
7844 ioc->remove_host = 1;
7845 r = -EFAULT;
7846 goto out;
7847 }
7848 r = _base_get_ioc_facts(ioc);
7849 if (r)
7850 goto out;
7851
7852 r = _base_check_ioc_facts_changes(ioc);
7853 if (r) {
7854 ioc_info(ioc,
7855 "Some of the parameters got changed in this new firmware"
7856 " image and it requires system reboot\n");
7857 goto out;
7858 }
7859 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
7860 panic("%s: Issue occurred with flashing controller firmware."
7861 "Please reboot the system and ensure that the correct"
7862 " firmware version is running\n", ioc->name);
7863
7864 r = _base_make_ioc_operational(ioc);
7865 if (!r)
7866 _base_reset_done_handler(ioc);
7867
7868 out:
7869 ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
7870
7871 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7872 ioc->shost_recovery = 0;
7873 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7874 ioc->ioc_reset_count++;
7875 mutex_unlock(&ioc->reset_in_progress_mutex);
7876
7877 out_unlocked:
7878 if ((r == 0) && is_trigger) {
7879 if (is_fault)
7880 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
7881 else
7882 mpt3sas_trigger_master(ioc,
7883 MASTER_TRIGGER_ADAPTER_RESET);
7884 }
7885 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
7886 return r;
7887 }
7888