• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/Target/TargetSchedule.cpp - Sched Machine Model ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a wrapper around MCSchedModel that allows the interface
10 // to benefit from information currently only available in TargetInstrInfo.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TargetSchedule.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/MachineInstr.h"
17 #include "llvm/CodeGen/MachineOperand.h"
18 #include "llvm/CodeGen/TargetInstrInfo.h"
19 #include "llvm/CodeGen/TargetRegisterInfo.h"
20 #include "llvm/CodeGen/TargetSubtargetInfo.h"
21 #include "llvm/MC/MCInstrDesc.h"
22 #include "llvm/MC/MCInstrItineraries.h"
23 #include "llvm/MC/MCSchedule.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <algorithm>
28 #include <cassert>
29 #include <cstdint>
30 
31 using namespace llvm;
32 
33 static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true),
34   cl::desc("Use TargetSchedModel for latency lookup"));
35 
36 static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true),
37   cl::desc("Use InstrItineraryData for latency lookup"));
38 
hasInstrSchedModel() const39 bool TargetSchedModel::hasInstrSchedModel() const {
40   return EnableSchedModel && SchedModel.hasInstrSchedModel();
41 }
42 
hasInstrItineraries() const43 bool TargetSchedModel::hasInstrItineraries() const {
44   return EnableSchedItins && !InstrItins.isEmpty();
45 }
46 
gcd(unsigned Dividend,unsigned Divisor)47 static unsigned gcd(unsigned Dividend, unsigned Divisor) {
48   // Dividend and Divisor will be naturally swapped as needed.
49   while (Divisor) {
50     unsigned Rem = Dividend % Divisor;
51     Dividend = Divisor;
52     Divisor = Rem;
53   };
54   return Dividend;
55 }
56 
lcm(unsigned A,unsigned B)57 static unsigned lcm(unsigned A, unsigned B) {
58   unsigned LCM = (uint64_t(A) * B) / gcd(A, B);
59   assert((LCM >= A && LCM >= B) && "LCM overflow");
60   return LCM;
61 }
62 
init(const TargetSubtargetInfo * TSInfo)63 void TargetSchedModel::init(const TargetSubtargetInfo *TSInfo) {
64   STI = TSInfo;
65   SchedModel = TSInfo->getSchedModel();
66   TII = TSInfo->getInstrInfo();
67   STI->initInstrItins(InstrItins);
68 
69   unsigned NumRes = SchedModel.getNumProcResourceKinds();
70   ResourceFactors.resize(NumRes);
71   ResourceLCM = SchedModel.IssueWidth;
72   for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
73     unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
74     if (NumUnits > 0)
75       ResourceLCM = lcm(ResourceLCM, NumUnits);
76   }
77   MicroOpFactor = ResourceLCM / SchedModel.IssueWidth;
78   for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
79     unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
80     ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0;
81   }
82 }
83 
84 /// Returns true only if instruction is specified as single issue.
mustBeginGroup(const MachineInstr * MI,const MCSchedClassDesc * SC) const85 bool TargetSchedModel::mustBeginGroup(const MachineInstr *MI,
86                                      const MCSchedClassDesc *SC) const {
87   if (hasInstrSchedModel()) {
88     if (!SC)
89       SC = resolveSchedClass(MI);
90     if (SC->isValid())
91       return SC->BeginGroup;
92   }
93   return false;
94 }
95 
mustEndGroup(const MachineInstr * MI,const MCSchedClassDesc * SC) const96 bool TargetSchedModel::mustEndGroup(const MachineInstr *MI,
97                                      const MCSchedClassDesc *SC) const {
98   if (hasInstrSchedModel()) {
99     if (!SC)
100       SC = resolveSchedClass(MI);
101     if (SC->isValid())
102       return SC->EndGroup;
103   }
104   return false;
105 }
106 
getNumMicroOps(const MachineInstr * MI,const MCSchedClassDesc * SC) const107 unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI,
108                                           const MCSchedClassDesc *SC) const {
109   if (hasInstrItineraries()) {
110     int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass());
111     return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, *MI);
112   }
113   if (hasInstrSchedModel()) {
114     if (!SC)
115       SC = resolveSchedClass(MI);
116     if (SC->isValid())
117       return SC->NumMicroOps;
118   }
119   return MI->isTransient() ? 0 : 1;
120 }
121 
122 // The machine model may explicitly specify an invalid latency, which
123 // effectively means infinite latency. Since users of the TargetSchedule API
124 // don't know how to handle this, we convert it to a very large latency that is
125 // easy to distinguish when debugging the DAG but won't induce overflow.
capLatency(int Cycles)126 static unsigned capLatency(int Cycles) {
127   return Cycles >= 0 ? Cycles : 1000;
128 }
129 
130 /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require
131 /// evaluation of predicates that depend on instruction operands or flags.
132 const MCSchedClassDesc *TargetSchedModel::
resolveSchedClass(const MachineInstr * MI) const133 resolveSchedClass(const MachineInstr *MI) const {
134   // Get the definition's scheduling class descriptor from this machine model.
135   unsigned SchedClass = MI->getDesc().getSchedClass();
136   const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass);
137   if (!SCDesc->isValid())
138     return SCDesc;
139 
140 #ifndef NDEBUG
141   unsigned NIter = 0;
142 #endif
143   while (SCDesc->isVariant()) {
144     assert(++NIter < 6 && "Variants are nested deeper than the magic number");
145 
146     SchedClass = STI->resolveSchedClass(SchedClass, MI, this);
147     SCDesc = SchedModel.getSchedClassDesc(SchedClass);
148   }
149   return SCDesc;
150 }
151 
152 /// Find the def index of this operand. This index maps to the machine model and
153 /// is independent of use operands. Def operands may be reordered with uses or
154 /// merged with uses without affecting the def index (e.g. before/after
155 /// regalloc). However, an instruction's def operands must never be reordered
156 /// with respect to each other.
findDefIdx(const MachineInstr * MI,unsigned DefOperIdx)157 static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) {
158   unsigned DefIdx = 0;
159   for (unsigned i = 0; i != DefOperIdx; ++i) {
160     const MachineOperand &MO = MI->getOperand(i);
161     if (MO.isReg() && MO.isDef())
162       ++DefIdx;
163   }
164   return DefIdx;
165 }
166 
167 /// Find the use index of this operand. This is independent of the instruction's
168 /// def operands.
169 ///
170 /// Note that uses are not determined by the operand's isUse property, which
171 /// is simply the inverse of isDef. Here we consider any readsReg operand to be
172 /// a "use". The machine model allows an operand to be both a Def and Use.
findUseIdx(const MachineInstr * MI,unsigned UseOperIdx)173 static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) {
174   unsigned UseIdx = 0;
175   for (unsigned i = 0; i != UseOperIdx; ++i) {
176     const MachineOperand &MO = MI->getOperand(i);
177     if (MO.isReg() && MO.readsReg() && !MO.isDef())
178       ++UseIdx;
179   }
180   return UseIdx;
181 }
182 
183 // Top-level API for clients that know the operand indices.
computeOperandLatency(const MachineInstr * DefMI,unsigned DefOperIdx,const MachineInstr * UseMI,unsigned UseOperIdx) const184 unsigned TargetSchedModel::computeOperandLatency(
185   const MachineInstr *DefMI, unsigned DefOperIdx,
186   const MachineInstr *UseMI, unsigned UseOperIdx) const {
187 
188   if (!hasInstrSchedModel() && !hasInstrItineraries())
189     return TII->defaultDefLatency(SchedModel, *DefMI);
190 
191   if (hasInstrItineraries()) {
192     int OperLatency = 0;
193     if (UseMI) {
194       OperLatency = TII->getOperandLatency(&InstrItins, *DefMI, DefOperIdx,
195                                            *UseMI, UseOperIdx);
196     }
197     else {
198       unsigned DefClass = DefMI->getDesc().getSchedClass();
199       OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx);
200     }
201     if (OperLatency >= 0)
202       return OperLatency;
203 
204     // No operand latency was found.
205     unsigned InstrLatency = TII->getInstrLatency(&InstrItins, *DefMI);
206 
207     // Expected latency is the max of the stage latency and itinerary props.
208     // Rather than directly querying InstrItins stage latency, we call a TII
209     // hook to allow subtargets to specialize latency. This hook is only
210     // applicable to the InstrItins model. InstrSchedModel should model all
211     // special cases without TII hooks.
212     InstrLatency =
213         std::max(InstrLatency, TII->defaultDefLatency(SchedModel, *DefMI));
214     return InstrLatency;
215   }
216   // hasInstrSchedModel()
217   const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
218   unsigned DefIdx = findDefIdx(DefMI, DefOperIdx);
219   if (DefIdx < SCDesc->NumWriteLatencyEntries) {
220     // Lookup the definition's write latency in SubtargetInfo.
221     const MCWriteLatencyEntry *WLEntry =
222       STI->getWriteLatencyEntry(SCDesc, DefIdx);
223     unsigned WriteID = WLEntry->WriteResourceID;
224     unsigned Latency = capLatency(WLEntry->Cycles);
225     if (!UseMI)
226       return Latency;
227 
228     // Lookup the use's latency adjustment in SubtargetInfo.
229     const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI);
230     if (UseDesc->NumReadAdvanceEntries == 0)
231       return Latency;
232     unsigned UseIdx = findUseIdx(UseMI, UseOperIdx);
233     int Advance = STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID);
234     if (Advance > 0 && (unsigned)Advance > Latency) // unsigned wrap
235       return 0;
236     return Latency - Advance;
237   }
238   // If DefIdx does not exist in the model (e.g. implicit defs), then return
239   // unit latency (defaultDefLatency may be too conservative).
240 #ifndef NDEBUG
241   if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit()
242       && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef()
243       && SchedModel.isComplete()) {
244     errs() << "DefIdx " << DefIdx << " exceeds machine model writes for "
245            << *DefMI << " (Try with MCSchedModel.CompleteModel set to false)";
246     llvm_unreachable("incomplete machine model");
247   }
248 #endif
249   // FIXME: Automatically giving all implicit defs defaultDefLatency is
250   // undesirable. We should only do it for defs that are known to the MC
251   // desc like flags. Truly implicit defs should get 1 cycle latency.
252   return DefMI->isTransient() ? 0 : TII->defaultDefLatency(SchedModel, *DefMI);
253 }
254 
255 unsigned
computeInstrLatency(const MCSchedClassDesc & SCDesc) const256 TargetSchedModel::computeInstrLatency(const MCSchedClassDesc &SCDesc) const {
257   return capLatency(MCSchedModel::computeInstrLatency(*STI, SCDesc));
258 }
259 
computeInstrLatency(unsigned Opcode) const260 unsigned TargetSchedModel::computeInstrLatency(unsigned Opcode) const {
261   assert(hasInstrSchedModel() && "Only call this function with a SchedModel");
262   unsigned SCIdx = TII->get(Opcode).getSchedClass();
263   return capLatency(SchedModel.computeInstrLatency(*STI, SCIdx));
264 }
265 
computeInstrLatency(const MCInst & Inst) const266 unsigned TargetSchedModel::computeInstrLatency(const MCInst &Inst) const {
267   if (hasInstrSchedModel())
268     return capLatency(SchedModel.computeInstrLatency(*STI, *TII, Inst));
269   return computeInstrLatency(Inst.getOpcode());
270 }
271 
272 unsigned
computeInstrLatency(const MachineInstr * MI,bool UseDefaultDefLatency) const273 TargetSchedModel::computeInstrLatency(const MachineInstr *MI,
274                                       bool UseDefaultDefLatency) const {
275   // For the itinerary model, fall back to the old subtarget hook.
276   // Allow subtargets to compute Bundle latencies outside the machine model.
277   if (hasInstrItineraries() || MI->isBundle() ||
278       (!hasInstrSchedModel() && !UseDefaultDefLatency))
279     return TII->getInstrLatency(&InstrItins, *MI);
280 
281   if (hasInstrSchedModel()) {
282     const MCSchedClassDesc *SCDesc = resolveSchedClass(MI);
283     if (SCDesc->isValid())
284       return computeInstrLatency(*SCDesc);
285   }
286   return TII->defaultDefLatency(SchedModel, *MI);
287 }
288 
289 unsigned TargetSchedModel::
computeOutputLatency(const MachineInstr * DefMI,unsigned DefOperIdx,const MachineInstr * DepMI) const290 computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
291                      const MachineInstr *DepMI) const {
292   if (!SchedModel.isOutOfOrder())
293     return 1;
294 
295   // Out-of-order processor can dispatch WAW dependencies in the same cycle.
296 
297   // Treat predication as a data dependency for out-of-order cpus. In-order
298   // cpus do not need to treat predicated writes specially.
299   //
300   // TODO: The following hack exists because predication passes do not
301   // correctly append imp-use operands, and readsReg() strangely returns false
302   // for predicated defs.
303   Register Reg = DefMI->getOperand(DefOperIdx).getReg();
304   const MachineFunction &MF = *DefMI->getMF();
305   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
306   if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(*DepMI))
307     return computeInstrLatency(DefMI);
308 
309   // If we have a per operand scheduling model, check if this def is writing
310   // an unbuffered resource. If so, it treated like an in-order cpu.
311   if (hasInstrSchedModel()) {
312     const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
313     if (SCDesc->isValid()) {
314       for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc),
315              *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) {
316         if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->BufferSize)
317           return 1;
318       }
319     }
320   }
321   return 0;
322 }
323 
324 double
computeReciprocalThroughput(const MachineInstr * MI) const325 TargetSchedModel::computeReciprocalThroughput(const MachineInstr *MI) const {
326   if (hasInstrItineraries()) {
327     unsigned SchedClass = MI->getDesc().getSchedClass();
328     return MCSchedModel::getReciprocalThroughput(SchedClass,
329                                                  *getInstrItineraries());
330   }
331 
332   if (hasInstrSchedModel())
333     return MCSchedModel::getReciprocalThroughput(*STI, *resolveSchedClass(MI));
334 
335   return 0.0;
336 }
337 
338 double
computeReciprocalThroughput(unsigned Opcode) const339 TargetSchedModel::computeReciprocalThroughput(unsigned Opcode) const {
340   unsigned SchedClass = TII->get(Opcode).getSchedClass();
341   if (hasInstrItineraries())
342     return MCSchedModel::getReciprocalThroughput(SchedClass,
343                                                  *getInstrItineraries());
344   if (hasInstrSchedModel()) {
345     const MCSchedClassDesc &SCDesc = *SchedModel.getSchedClassDesc(SchedClass);
346     if (SCDesc.isValid() && !SCDesc.isVariant())
347       return MCSchedModel::getReciprocalThroughput(*STI, SCDesc);
348   }
349 
350   return 0.0;
351 }
352 
353 double
computeReciprocalThroughput(const MCInst & MI) const354 TargetSchedModel::computeReciprocalThroughput(const MCInst &MI) const {
355   if (hasInstrSchedModel())
356     return SchedModel.getReciprocalThroughput(*STI, *TII, MI);
357   return computeReciprocalThroughput(MI.getOpcode());
358 }
359 
360