1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "nir.h"
25 #include "nir_builder.h"
26 #include "util/u_math.h"
27
28 /**
29 * \file nir_opt_intrinsics.c
30 */
31
32 static nir_intrinsic_instr *
lower_subgroups_64bit_split_intrinsic(nir_builder * b,nir_intrinsic_instr * intrin,unsigned int component)33 lower_subgroups_64bit_split_intrinsic(nir_builder *b, nir_intrinsic_instr *intrin,
34 unsigned int component)
35 {
36 nir_ssa_def *comp;
37 if (component == 0)
38 comp = nir_unpack_64_2x32_split_x(b, intrin->src[0].ssa);
39 else
40 comp = nir_unpack_64_2x32_split_y(b, intrin->src[0].ssa);
41
42 nir_intrinsic_instr *intr = nir_intrinsic_instr_create(b->shader, intrin->intrinsic);
43 nir_ssa_dest_init(&intr->instr, &intr->dest, 1, 32, NULL);
44 intr->const_index[0] = intrin->const_index[0];
45 intr->const_index[1] = intrin->const_index[1];
46 intr->src[0] = nir_src_for_ssa(comp);
47 if (nir_intrinsic_infos[intrin->intrinsic].num_srcs == 2)
48 nir_src_copy(&intr->src[1], &intrin->src[1]);
49
50 intr->num_components = 1;
51 nir_builder_instr_insert(b, &intr->instr);
52 return intr;
53 }
54
55 static nir_ssa_def *
lower_subgroup_op_to_32bit(nir_builder * b,nir_intrinsic_instr * intrin)56 lower_subgroup_op_to_32bit(nir_builder *b, nir_intrinsic_instr *intrin)
57 {
58 assert(intrin->src[0].ssa->bit_size == 64);
59 nir_intrinsic_instr *intr_x = lower_subgroups_64bit_split_intrinsic(b, intrin, 0);
60 nir_intrinsic_instr *intr_y = lower_subgroups_64bit_split_intrinsic(b, intrin, 1);
61 return nir_pack_64_2x32_split(b, &intr_x->dest.ssa, &intr_y->dest.ssa);
62 }
63
64 static nir_ssa_def *
ballot_type_to_uint(nir_builder * b,nir_ssa_def * value,const nir_lower_subgroups_options * options)65 ballot_type_to_uint(nir_builder *b, nir_ssa_def *value,
66 const nir_lower_subgroups_options *options)
67 {
68 /* Only the new-style SPIR-V subgroup instructions take a ballot result as
69 * an argument, so we only use this on uvec4 types.
70 */
71 assert(value->num_components == 4 && value->bit_size == 32);
72
73 return nir_extract_bits(b, &value, 1, 0, options->ballot_components,
74 options->ballot_bit_size);
75 }
76
77 static nir_ssa_def *
uint_to_ballot_type(nir_builder * b,nir_ssa_def * value,unsigned num_components,unsigned bit_size)78 uint_to_ballot_type(nir_builder *b, nir_ssa_def *value,
79 unsigned num_components, unsigned bit_size)
80 {
81 assert(util_is_power_of_two_nonzero(num_components));
82 assert(util_is_power_of_two_nonzero(value->num_components));
83
84 unsigned total_bits = bit_size * num_components;
85
86 /* If the source doesn't have enough bits, zero-pad */
87 if (total_bits > value->bit_size * value->num_components)
88 value = nir_pad_vector_imm_int(b, value, 0, total_bits / value->bit_size);
89
90 value = nir_bitcast_vector(b, value, bit_size);
91
92 /* If the source has too many components, truncate. This can happen if,
93 * for instance, we're implementing GL_ARB_shader_ballot or
94 * VK_EXT_shader_subgroup_ballot which have 64-bit ballot values on an
95 * architecture with a native 128-bit uvec4 ballot. This comes up in Zink
96 * for OpenGL on Vulkan. It's the job of the driver calling this lowering
97 * pass to ensure that it's restricted subgroup sizes sufficiently that we
98 * have enough ballot bits.
99 */
100 if (value->num_components > num_components)
101 value = nir_trim_vector(b, value, num_components);
102
103 return value;
104 }
105
106 static nir_ssa_def *
lower_subgroup_op_to_scalar(nir_builder * b,nir_intrinsic_instr * intrin,bool lower_to_32bit)107 lower_subgroup_op_to_scalar(nir_builder *b, nir_intrinsic_instr *intrin,
108 bool lower_to_32bit)
109 {
110 /* This is safe to call on scalar things but it would be silly */
111 assert(intrin->dest.ssa.num_components > 1);
112
113 nir_ssa_def *value = nir_ssa_for_src(b, intrin->src[0],
114 intrin->num_components);
115 nir_ssa_def *reads[NIR_MAX_VEC_COMPONENTS];
116
117 for (unsigned i = 0; i < intrin->num_components; i++) {
118 nir_intrinsic_instr *chan_intrin =
119 nir_intrinsic_instr_create(b->shader, intrin->intrinsic);
120 nir_ssa_dest_init(&chan_intrin->instr, &chan_intrin->dest,
121 1, intrin->dest.ssa.bit_size, NULL);
122 chan_intrin->num_components = 1;
123
124 /* value */
125 chan_intrin->src[0] = nir_src_for_ssa(nir_channel(b, value, i));
126 /* invocation */
127 if (nir_intrinsic_infos[intrin->intrinsic].num_srcs > 1) {
128 assert(nir_intrinsic_infos[intrin->intrinsic].num_srcs == 2);
129 nir_src_copy(&chan_intrin->src[1], &intrin->src[1]);
130 }
131
132 chan_intrin->const_index[0] = intrin->const_index[0];
133 chan_intrin->const_index[1] = intrin->const_index[1];
134
135 if (lower_to_32bit && chan_intrin->src[0].ssa->bit_size == 64) {
136 reads[i] = lower_subgroup_op_to_32bit(b, chan_intrin);
137 } else {
138 nir_builder_instr_insert(b, &chan_intrin->instr);
139 reads[i] = &chan_intrin->dest.ssa;
140 }
141 }
142
143 return nir_vec(b, reads, intrin->num_components);
144 }
145
146 static nir_ssa_def *
lower_vote_eq_to_scalar(nir_builder * b,nir_intrinsic_instr * intrin)147 lower_vote_eq_to_scalar(nir_builder *b, nir_intrinsic_instr *intrin)
148 {
149 assert(intrin->src[0].is_ssa);
150 nir_ssa_def *value = intrin->src[0].ssa;
151
152 nir_ssa_def *result = NULL;
153 for (unsigned i = 0; i < intrin->num_components; i++) {
154 nir_intrinsic_instr *chan_intrin =
155 nir_intrinsic_instr_create(b->shader, intrin->intrinsic);
156 nir_ssa_dest_init(&chan_intrin->instr, &chan_intrin->dest,
157 1, intrin->dest.ssa.bit_size, NULL);
158 chan_intrin->num_components = 1;
159 chan_intrin->src[0] = nir_src_for_ssa(nir_channel(b, value, i));
160 nir_builder_instr_insert(b, &chan_intrin->instr);
161
162 if (result) {
163 result = nir_iand(b, result, &chan_intrin->dest.ssa);
164 } else {
165 result = &chan_intrin->dest.ssa;
166 }
167 }
168
169 return result;
170 }
171
172 static nir_ssa_def *
lower_vote_eq(nir_builder * b,nir_intrinsic_instr * intrin)173 lower_vote_eq(nir_builder *b, nir_intrinsic_instr *intrin)
174 {
175 assert(intrin->src[0].is_ssa);
176 nir_ssa_def *value = intrin->src[0].ssa;
177
178 /* We have to implicitly lower to scalar */
179 nir_ssa_def *all_eq = NULL;
180 for (unsigned i = 0; i < intrin->num_components; i++) {
181 nir_ssa_def *rfi = nir_read_first_invocation(b, nir_channel(b, value, i));
182
183 nir_ssa_def *is_eq;
184 if (intrin->intrinsic == nir_intrinsic_vote_feq) {
185 is_eq = nir_feq(b, rfi, nir_channel(b, value, i));
186 } else {
187 is_eq = nir_ieq(b, rfi, nir_channel(b, value, i));
188 }
189
190 if (all_eq == NULL) {
191 all_eq = is_eq;
192 } else {
193 all_eq = nir_iand(b, all_eq, is_eq);
194 }
195 }
196
197 return nir_vote_all(b, 1, all_eq);
198 }
199
200 static nir_ssa_def *
lower_shuffle_to_swizzle(nir_builder * b,nir_intrinsic_instr * intrin,const nir_lower_subgroups_options * options)201 lower_shuffle_to_swizzle(nir_builder *b, nir_intrinsic_instr *intrin,
202 const nir_lower_subgroups_options *options)
203 {
204 unsigned mask = nir_src_as_uint(intrin->src[1]);
205
206 if (mask >= 32)
207 return NULL;
208
209 nir_intrinsic_instr *swizzle = nir_intrinsic_instr_create(
210 b->shader, nir_intrinsic_masked_swizzle_amd);
211 swizzle->num_components = intrin->num_components;
212 nir_src_copy(&swizzle->src[0], &intrin->src[0]);
213 nir_intrinsic_set_swizzle_mask(swizzle, (mask << 10) | 0x1f);
214 nir_ssa_dest_init(&swizzle->instr, &swizzle->dest,
215 intrin->dest.ssa.num_components,
216 intrin->dest.ssa.bit_size, NULL);
217
218 if (options->lower_to_scalar && swizzle->num_components > 1) {
219 return lower_subgroup_op_to_scalar(b, swizzle, options->lower_shuffle_to_32bit);
220 } else if (options->lower_shuffle_to_32bit && swizzle->src[0].ssa->bit_size == 64) {
221 return lower_subgroup_op_to_32bit(b, swizzle);
222 } else {
223 nir_builder_instr_insert(b, &swizzle->instr);
224 return &swizzle->dest.ssa;
225 }
226 }
227
228 /* Lowers "specialized" shuffles to a generic nir_intrinsic_shuffle. */
229
230 static nir_ssa_def *
lower_to_shuffle(nir_builder * b,nir_intrinsic_instr * intrin,const nir_lower_subgroups_options * options)231 lower_to_shuffle(nir_builder *b, nir_intrinsic_instr *intrin,
232 const nir_lower_subgroups_options *options)
233 {
234 if (intrin->intrinsic == nir_intrinsic_shuffle_xor &&
235 options->lower_shuffle_to_swizzle_amd &&
236 nir_src_is_const(intrin->src[1])) {
237 nir_ssa_def *result =
238 lower_shuffle_to_swizzle(b, intrin, options);
239 if (result)
240 return result;
241 }
242
243 nir_ssa_def *index = nir_load_subgroup_invocation(b);
244 bool is_shuffle = false;
245 switch (intrin->intrinsic) {
246 case nir_intrinsic_shuffle_xor:
247 assert(intrin->src[1].is_ssa);
248 index = nir_ixor(b, index, intrin->src[1].ssa);
249 is_shuffle = true;
250 break;
251 case nir_intrinsic_shuffle_up:
252 assert(intrin->src[1].is_ssa);
253 index = nir_isub(b, index, intrin->src[1].ssa);
254 is_shuffle = true;
255 break;
256 case nir_intrinsic_shuffle_down:
257 assert(intrin->src[1].is_ssa);
258 index = nir_iadd(b, index, intrin->src[1].ssa);
259 is_shuffle = true;
260 break;
261 case nir_intrinsic_quad_broadcast:
262 assert(intrin->src[1].is_ssa);
263 index = nir_ior(b, nir_iand(b, index, nir_imm_int(b, ~0x3)),
264 intrin->src[1].ssa);
265 break;
266 case nir_intrinsic_quad_swap_horizontal:
267 /* For Quad operations, subgroups are divided into quads where
268 * (invocation % 4) is the index to a square arranged as follows:
269 *
270 * +---+---+
271 * | 0 | 1 |
272 * +---+---+
273 * | 2 | 3 |
274 * +---+---+
275 */
276 index = nir_ixor(b, index, nir_imm_int(b, 0x1));
277 break;
278 case nir_intrinsic_quad_swap_vertical:
279 index = nir_ixor(b, index, nir_imm_int(b, 0x2));
280 break;
281 case nir_intrinsic_quad_swap_diagonal:
282 index = nir_ixor(b, index, nir_imm_int(b, 0x3));
283 break;
284 default:
285 unreachable("Invalid intrinsic");
286 }
287
288 nir_intrinsic_instr *shuffle =
289 nir_intrinsic_instr_create(b->shader, nir_intrinsic_shuffle);
290 shuffle->num_components = intrin->num_components;
291 nir_src_copy(&shuffle->src[0], &intrin->src[0]);
292 shuffle->src[1] = nir_src_for_ssa(index);
293 nir_ssa_dest_init(&shuffle->instr, &shuffle->dest,
294 intrin->dest.ssa.num_components,
295 intrin->dest.ssa.bit_size, NULL);
296
297 bool lower_to_32bit = options->lower_shuffle_to_32bit && is_shuffle;
298 if (options->lower_to_scalar && shuffle->num_components > 1) {
299 return lower_subgroup_op_to_scalar(b, shuffle, lower_to_32bit);
300 } else if (lower_to_32bit && shuffle->src[0].ssa->bit_size == 64) {
301 return lower_subgroup_op_to_32bit(b, shuffle);
302 } else {
303 nir_builder_instr_insert(b, &shuffle->instr);
304 return &shuffle->dest.ssa;
305 }
306 }
307
308 static const struct glsl_type *
glsl_type_for_ssa(nir_ssa_def * def)309 glsl_type_for_ssa(nir_ssa_def *def)
310 {
311 const struct glsl_type *comp_type = def->bit_size == 1 ? glsl_bool_type() :
312 glsl_uintN_t_type(def->bit_size);
313 return glsl_replace_vector_type(comp_type, def->num_components);
314 }
315
316 /* Lower nir_intrinsic_shuffle to a waterfall loop + nir_read_invocation.
317 */
318 static nir_ssa_def *
lower_shuffle(nir_builder * b,nir_intrinsic_instr * intrin)319 lower_shuffle(nir_builder *b, nir_intrinsic_instr *intrin)
320 {
321 assert(intrin->src[0].is_ssa);
322 assert(intrin->src[1].is_ssa);
323 nir_ssa_def *val = intrin->src[0].ssa;
324 nir_ssa_def *id = intrin->src[1].ssa;
325
326 /* The loop is something like:
327 *
328 * while (true) {
329 * first_id = readFirstInvocation(gl_SubgroupInvocationID);
330 * first_val = readFirstInvocation(val);
331 * first_result = readInvocation(val, readFirstInvocation(id));
332 * if (id == first_id)
333 * result = first_val;
334 * if (elect()) {
335 * if (id > gl_SubgroupInvocationID) {
336 * result = first_result;
337 * }
338 * break;
339 * }
340 * }
341 *
342 * The idea is to guarantee, on each iteration of the loop, that anything
343 * reading from first_id gets the correct value, so that we can then kill
344 * it off by breaking out of the loop. Before doing that we also have to
345 * ensure that first_id invocation gets the correct value. It only won't be
346 * assigned the correct value already if the invocation it's reading from
347 * isn't already killed off, that is, if it's later than its own ID.
348 * Invocations where id <= gl_SubgroupInvocationID will be assigned their
349 * result in the first if, and invocations where id >
350 * gl_SubgroupInvocationID will be assigned their result in the second if.
351 *
352 * We do this more complicated loop rather than looping over all id's
353 * explicitly because at this point we don't know the "actual" subgroup
354 * size and at the moment there's no way to get at it, which means we may
355 * loop over always-inactive invocations.
356 */
357
358 nir_ssa_def *subgroup_id = nir_load_subgroup_invocation(b);
359
360 nir_variable *result =
361 nir_local_variable_create(b->impl, glsl_type_for_ssa(val), "result");
362
363 nir_loop *loop = nir_push_loop(b); {
364 nir_ssa_def *first_id = nir_read_first_invocation(b, subgroup_id);
365 nir_ssa_def *first_val = nir_read_first_invocation(b, val);
366 nir_ssa_def *first_result =
367 nir_read_invocation(b, val, nir_read_first_invocation(b, id));
368
369 nir_if *nif = nir_push_if(b, nir_ieq(b, id, first_id)); {
370 nir_store_var(b, result, first_val, BITFIELD_MASK(val->num_components));
371 } nir_pop_if(b, nif);
372
373 nir_if *nif2 = nir_push_if(b, nir_elect(b, 1)); {
374 nir_if *nif3 = nir_push_if(b, nir_ult(b, subgroup_id, id)); {
375 nir_store_var(b, result, first_result, BITFIELD_MASK(val->num_components));
376 } nir_pop_if(b, nif3);
377
378 nir_jump(b, nir_jump_break);
379 } nir_pop_if(b, nif2);
380 } nir_pop_loop(b, loop);
381
382 return nir_load_var(b, result);
383 }
384
385 static bool
lower_subgroups_filter(const nir_instr * instr,const void * _options)386 lower_subgroups_filter(const nir_instr *instr, const void *_options)
387 {
388 return instr->type == nir_instr_type_intrinsic;
389 }
390
391 /* Return a ballot-mask-sized value which represents "val" sign-extended and
392 * then shifted left by "shift". Only particular values for "val" are
393 * supported, see below.
394 */
395 static nir_ssa_def *
build_ballot_imm_ishl(nir_builder * b,int64_t val,nir_ssa_def * shift,const nir_lower_subgroups_options * options)396 build_ballot_imm_ishl(nir_builder *b, int64_t val, nir_ssa_def *shift,
397 const nir_lower_subgroups_options *options)
398 {
399 /* This only works if all the high bits are the same as bit 1. */
400 assert((val >> 2) == (val & 0x2 ? -1 : 0));
401
402 /* First compute the result assuming one ballot component. */
403 nir_ssa_def *result =
404 nir_ishl(b, nir_imm_intN_t(b, val, options->ballot_bit_size), shift);
405
406 if (options->ballot_components == 1)
407 return result;
408
409 /* Fix up the result when there is > 1 component. The idea is that nir_ishl
410 * masks out the high bits of the shift value already, so in case there's
411 * more than one component the component which 1 would be shifted into
412 * already has the right value and all we have to do is fixup the other
413 * components. Components below it should always be 0, and components above
414 * it must be either 0 or ~0 because of the assert above. For example, if
415 * the target ballot size is 2 x uint32, and we're shifting 1 by 33, then
416 * we'll feed 33 into ishl, which will mask it off to get 1, so we'll
417 * compute a single-component result of 2, which is correct for the second
418 * component, but the first component needs to be 0, which we get by
419 * comparing the high bits of the shift with 0 and selecting the original
420 * answer or 0 for the first component (and something similar with the
421 * second component). This idea is generalized here for any component count
422 */
423 nir_const_value min_shift[4] = { 0 };
424 for (unsigned i = 0; i < options->ballot_components; i++)
425 min_shift[i].i32 = i * options->ballot_bit_size;
426 nir_ssa_def *min_shift_val = nir_build_imm(b, options->ballot_components, 32, min_shift);
427
428 nir_const_value max_shift[4] = { 0 };
429 for (unsigned i = 0; i < options->ballot_components; i++)
430 max_shift[i].i32 = (i + 1) * options->ballot_bit_size;
431 nir_ssa_def *max_shift_val = nir_build_imm(b, options->ballot_components, 32, max_shift);
432
433 return nir_bcsel(b, nir_ult(b, shift, max_shift_val),
434 nir_bcsel(b, nir_ult(b, shift, min_shift_val),
435 nir_imm_intN_t(b, val >> 63, result->bit_size),
436 result),
437 nir_imm_intN_t(b, 0, result->bit_size));
438 }
439
440 static nir_ssa_def *
build_subgroup_eq_mask(nir_builder * b,const nir_lower_subgroups_options * options)441 build_subgroup_eq_mask(nir_builder *b,
442 const nir_lower_subgroups_options *options)
443 {
444 nir_ssa_def *subgroup_idx = nir_load_subgroup_invocation(b);
445
446 return build_ballot_imm_ishl(b, 1, subgroup_idx, options);
447 }
448
449 static nir_ssa_def *
build_subgroup_ge_mask(nir_builder * b,const nir_lower_subgroups_options * options)450 build_subgroup_ge_mask(nir_builder *b,
451 const nir_lower_subgroups_options *options)
452 {
453 nir_ssa_def *subgroup_idx = nir_load_subgroup_invocation(b);
454
455 return build_ballot_imm_ishl(b, ~0ull, subgroup_idx, options);
456 }
457
458 static nir_ssa_def *
build_subgroup_gt_mask(nir_builder * b,const nir_lower_subgroups_options * options)459 build_subgroup_gt_mask(nir_builder *b,
460 const nir_lower_subgroups_options *options)
461 {
462 nir_ssa_def *subgroup_idx = nir_load_subgroup_invocation(b);
463
464 return build_ballot_imm_ishl(b, ~1ull, subgroup_idx, options);
465 }
466
467 /* Return a mask which is 1 for threads up to the run-time subgroup size, i.e.
468 * 1 for the entire subgroup. SPIR-V requires us to return 0 for indices at or
469 * above the subgroup size for the masks, but gt_mask and ge_mask make them 1
470 * so we have to "and" with this mask.
471 */
472 static nir_ssa_def *
build_subgroup_mask(nir_builder * b,const nir_lower_subgroups_options * options)473 build_subgroup_mask(nir_builder *b,
474 const nir_lower_subgroups_options *options)
475 {
476 nir_ssa_def *subgroup_size = nir_load_subgroup_size(b);
477
478 /* First compute the result assuming one ballot component. */
479 nir_ssa_def *result =
480 nir_ushr(b, nir_imm_intN_t(b, ~0ull, options->ballot_bit_size),
481 nir_isub_imm(b, options->ballot_bit_size,
482 subgroup_size));
483
484 /* Since the subgroup size and ballot bitsize are both powers of two, there
485 * are two possible cases to consider:
486 *
487 * (1) The subgroup size is less than the ballot bitsize. We need to return
488 * "result" in the first component and 0 in every other component.
489 * (2) The subgroup size is a multiple of the ballot bitsize. We need to
490 * return ~0 if the subgroup size divided by the ballot bitsize is less
491 * than or equal to the index in the vector and 0 otherwise. For example,
492 * with a target ballot type of 4 x uint32 and subgroup_size = 64 we'd need
493 * to return { ~0, ~0, 0, 0 }.
494 *
495 * In case (2) it turns out that "result" will be ~0, because
496 * "ballot_bit_size - subgroup_size" is also a multiple of
497 * "ballot_bit_size" and since nir_ushr masks the shift value it will
498 * shifted by 0. This means that the first component can just be "result"
499 * in all cases. The other components will also get the correct value in
500 * case (1) if we just use the rule in case (2), so we'll get the correct
501 * result if we just follow (2) and then replace the first component with
502 * "result".
503 */
504 nir_const_value min_idx[4] = { 0 };
505 for (unsigned i = 0; i < options->ballot_components; i++)
506 min_idx[i].i32 = i * options->ballot_bit_size;
507 nir_ssa_def *min_idx_val = nir_build_imm(b, options->ballot_components, 32, min_idx);
508
509 nir_ssa_def *result_extended =
510 nir_pad_vector_imm_int(b, result, ~0ull, options->ballot_components);
511
512 return nir_bcsel(b, nir_ult(b, min_idx_val, subgroup_size),
513 result_extended, nir_imm_intN_t(b, 0, options->ballot_bit_size));
514 }
515
516 static nir_ssa_def *
vec_bit_count(nir_builder * b,nir_ssa_def * value)517 vec_bit_count(nir_builder *b, nir_ssa_def *value)
518 {
519 nir_ssa_def *vec_result = nir_bit_count(b, value);
520 nir_ssa_def *result = nir_channel(b, vec_result, 0);
521 for (unsigned i = 1; i < value->num_components; i++)
522 result = nir_iadd(b, result, nir_channel(b, vec_result, i));
523 return result;
524 }
525
526 static nir_ssa_def *
vec_find_lsb(nir_builder * b,nir_ssa_def * value)527 vec_find_lsb(nir_builder *b, nir_ssa_def *value)
528 {
529 nir_ssa_def *vec_result = nir_find_lsb(b, value);
530 nir_ssa_def *result = nir_imm_int(b, -1);
531 for (int i = value->num_components - 1; i >= 0; i--) {
532 nir_ssa_def *channel = nir_channel(b, vec_result, i);
533 /* result = channel >= 0 ? (i * bitsize + channel) : result */
534 result = nir_bcsel(b, nir_ige(b, channel, nir_imm_int(b, 0)),
535 nir_iadd_imm(b, channel, i * value->bit_size),
536 result);
537 }
538 return result;
539 }
540
541 static nir_ssa_def *
vec_find_msb(nir_builder * b,nir_ssa_def * value)542 vec_find_msb(nir_builder *b, nir_ssa_def *value)
543 {
544 nir_ssa_def *vec_result = nir_ufind_msb(b, value);
545 nir_ssa_def *result = nir_imm_int(b, -1);
546 for (unsigned i = 0; i < value->num_components; i++) {
547 nir_ssa_def *channel = nir_channel(b, vec_result, i);
548 /* result = channel >= 0 ? (i * bitsize + channel) : result */
549 result = nir_bcsel(b, nir_ige(b, channel, nir_imm_int(b, 0)),
550 nir_iadd_imm(b, channel, i * value->bit_size),
551 result);
552 }
553 return result;
554 }
555
556 static nir_ssa_def *
lower_dynamic_quad_broadcast(nir_builder * b,nir_intrinsic_instr * intrin,const nir_lower_subgroups_options * options)557 lower_dynamic_quad_broadcast(nir_builder *b, nir_intrinsic_instr *intrin,
558 const nir_lower_subgroups_options *options)
559 {
560 if (!options->lower_quad_broadcast_dynamic_to_const)
561 return lower_to_shuffle(b, intrin, options);
562
563 nir_ssa_def *dst = NULL;
564
565 for (unsigned i = 0; i < 4; ++i) {
566 nir_intrinsic_instr *qbcst =
567 nir_intrinsic_instr_create(b->shader, nir_intrinsic_quad_broadcast);
568
569 qbcst->num_components = intrin->num_components;
570 qbcst->src[1] = nir_src_for_ssa(nir_imm_int(b, i));
571 nir_src_copy(&qbcst->src[0], &intrin->src[0]);
572 nir_ssa_dest_init(&qbcst->instr, &qbcst->dest,
573 intrin->dest.ssa.num_components,
574 intrin->dest.ssa.bit_size, NULL);
575
576 nir_ssa_def *qbcst_dst = NULL;
577
578 if (options->lower_to_scalar && qbcst->num_components > 1) {
579 qbcst_dst = lower_subgroup_op_to_scalar(b, qbcst, false);
580 } else {
581 nir_builder_instr_insert(b, &qbcst->instr);
582 qbcst_dst = &qbcst->dest.ssa;
583 }
584
585 if (i)
586 dst = nir_bcsel(b, nir_ieq(b, intrin->src[1].ssa,
587 nir_src_for_ssa(nir_imm_int(b, i)).ssa),
588 qbcst_dst, dst);
589 else
590 dst = qbcst_dst;
591 }
592
593 return dst;
594 }
595
596 static nir_ssa_def *
lower_read_invocation_to_cond(nir_builder * b,nir_intrinsic_instr * intrin)597 lower_read_invocation_to_cond(nir_builder *b, nir_intrinsic_instr *intrin)
598 {
599 return nir_read_invocation_cond_ir3(b, intrin->dest.ssa.bit_size,
600 intrin->src[0].ssa,
601 nir_ieq(b, intrin->src[1].ssa,
602 nir_load_subgroup_invocation(b)));
603 }
604
605 static nir_ssa_def *
lower_subgroups_instr(nir_builder * b,nir_instr * instr,void * _options)606 lower_subgroups_instr(nir_builder *b, nir_instr *instr, void *_options)
607 {
608 const nir_lower_subgroups_options *options = _options;
609
610 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
611 switch (intrin->intrinsic) {
612 case nir_intrinsic_vote_any:
613 case nir_intrinsic_vote_all:
614 if (options->lower_vote_trivial)
615 return nir_ssa_for_src(b, intrin->src[0], 1);
616 break;
617
618 case nir_intrinsic_vote_feq:
619 case nir_intrinsic_vote_ieq:
620 if (options->lower_vote_trivial)
621 return nir_imm_true(b);
622
623 if (options->lower_vote_eq)
624 return lower_vote_eq(b, intrin);
625
626 if (options->lower_to_scalar && intrin->num_components > 1)
627 return lower_vote_eq_to_scalar(b, intrin);
628 break;
629
630 case nir_intrinsic_load_subgroup_size:
631 if (options->subgroup_size)
632 return nir_imm_int(b, options->subgroup_size);
633 break;
634
635 case nir_intrinsic_read_invocation:
636 if (options->lower_to_scalar && intrin->num_components > 1)
637 return lower_subgroup_op_to_scalar(b, intrin, false);
638
639 if (options->lower_read_invocation_to_cond)
640 return lower_read_invocation_to_cond(b, intrin);
641
642 break;
643
644 case nir_intrinsic_read_first_invocation:
645 if (options->lower_to_scalar && intrin->num_components > 1)
646 return lower_subgroup_op_to_scalar(b, intrin, false);
647 break;
648
649 case nir_intrinsic_load_subgroup_eq_mask:
650 case nir_intrinsic_load_subgroup_ge_mask:
651 case nir_intrinsic_load_subgroup_gt_mask:
652 case nir_intrinsic_load_subgroup_le_mask:
653 case nir_intrinsic_load_subgroup_lt_mask: {
654 if (!options->lower_subgroup_masks)
655 return NULL;
656
657 nir_ssa_def *val;
658 switch (intrin->intrinsic) {
659 case nir_intrinsic_load_subgroup_eq_mask:
660 val = build_subgroup_eq_mask(b, options);
661 break;
662 case nir_intrinsic_load_subgroup_ge_mask:
663 val = nir_iand(b, build_subgroup_ge_mask(b, options),
664 build_subgroup_mask(b, options));
665 break;
666 case nir_intrinsic_load_subgroup_gt_mask:
667 val = nir_iand(b, build_subgroup_gt_mask(b, options),
668 build_subgroup_mask(b, options));
669 break;
670 case nir_intrinsic_load_subgroup_le_mask:
671 val = nir_inot(b, build_subgroup_gt_mask(b, options));
672 break;
673 case nir_intrinsic_load_subgroup_lt_mask:
674 val = nir_inot(b, build_subgroup_ge_mask(b, options));
675 break;
676 default:
677 unreachable("you seriously can't tell this is unreachable?");
678 }
679
680 return uint_to_ballot_type(b, val,
681 intrin->dest.ssa.num_components,
682 intrin->dest.ssa.bit_size);
683 }
684
685 case nir_intrinsic_ballot: {
686 if (intrin->dest.ssa.num_components == options->ballot_components &&
687 intrin->dest.ssa.bit_size == options->ballot_bit_size)
688 return NULL;
689
690 nir_ssa_def *ballot =
691 nir_ballot(b, options->ballot_components, options->ballot_bit_size,
692 intrin->src[0].ssa);
693
694 return uint_to_ballot_type(b, ballot,
695 intrin->dest.ssa.num_components,
696 intrin->dest.ssa.bit_size);
697 }
698
699 case nir_intrinsic_ballot_bitfield_extract:
700 case nir_intrinsic_ballot_bit_count_reduce:
701 case nir_intrinsic_ballot_find_lsb:
702 case nir_intrinsic_ballot_find_msb: {
703 assert(intrin->src[0].is_ssa);
704 nir_ssa_def *int_val = ballot_type_to_uint(b, intrin->src[0].ssa,
705 options);
706
707 if (intrin->intrinsic != nir_intrinsic_ballot_bitfield_extract &&
708 intrin->intrinsic != nir_intrinsic_ballot_find_lsb) {
709 /* For OpGroupNonUniformBallotFindMSB, the SPIR-V Spec says:
710 *
711 * "Find the most significant bit set to 1 in Value, considering
712 * only the bits in Value required to represent all bits of the
713 * group’s invocations. If none of the considered bits is set to
714 * 1, the result is undefined."
715 *
716 * It has similar text for the other three. This means that, in case
717 * the subgroup size is less than 32, we have to mask off the unused
718 * bits. If the subgroup size is fixed and greater than or equal to
719 * 32, the mask will be 0xffffffff and nir_opt_algebraic will delete
720 * the iand.
721 *
722 * We only have to worry about this for BitCount and FindMSB because
723 * FindLSB counts from the bottom and BitfieldExtract selects
724 * individual bits. In either case, if run outside the range of
725 * valid bits, we hit the undefined results case and we can return
726 * anything we want.
727 */
728 int_val = nir_iand(b, int_val, build_subgroup_mask(b, options));
729 }
730
731 switch (intrin->intrinsic) {
732 case nir_intrinsic_ballot_bitfield_extract: {
733 assert(intrin->src[1].is_ssa);
734 nir_ssa_def *idx = intrin->src[1].ssa;
735 if (int_val->num_components > 1) {
736 /* idx will be truncated by nir_ushr, so we just need to select
737 * the right component using the bits of idx that are truncated in
738 * the shift.
739 */
740 int_val =
741 nir_vector_extract(b, int_val,
742 nir_udiv_imm(b, idx, int_val->bit_size));
743 }
744
745 return nir_test_mask(b, nir_ushr(b, int_val, idx), 1);
746 }
747 case nir_intrinsic_ballot_bit_count_reduce:
748 return vec_bit_count(b, int_val);
749 case nir_intrinsic_ballot_find_lsb:
750 return vec_find_lsb(b, int_val);
751 case nir_intrinsic_ballot_find_msb:
752 return vec_find_msb(b, int_val);
753 default:
754 unreachable("you seriously can't tell this is unreachable?");
755 }
756 }
757
758 case nir_intrinsic_ballot_bit_count_exclusive:
759 case nir_intrinsic_ballot_bit_count_inclusive: {
760 nir_ssa_def *mask;
761 if (intrin->intrinsic == nir_intrinsic_ballot_bit_count_inclusive) {
762 mask = nir_inot(b, build_subgroup_gt_mask(b, options));
763 } else {
764 mask = nir_inot(b, build_subgroup_ge_mask(b, options));
765 }
766
767 assert(intrin->src[0].is_ssa);
768 nir_ssa_def *int_val = ballot_type_to_uint(b, intrin->src[0].ssa,
769 options);
770
771 return vec_bit_count(b, nir_iand(b, int_val, mask));
772 }
773
774 case nir_intrinsic_elect: {
775 if (!options->lower_elect)
776 return NULL;
777
778 return nir_ieq(b, nir_load_subgroup_invocation(b), nir_first_invocation(b));
779 }
780
781 case nir_intrinsic_shuffle:
782 if (options->lower_shuffle)
783 return lower_shuffle(b, intrin);
784 else if (options->lower_to_scalar && intrin->num_components > 1)
785 return lower_subgroup_op_to_scalar(b, intrin, options->lower_shuffle_to_32bit);
786 else if (options->lower_shuffle_to_32bit && intrin->src[0].ssa->bit_size == 64)
787 return lower_subgroup_op_to_32bit(b, intrin);
788 break;
789 case nir_intrinsic_shuffle_xor:
790 case nir_intrinsic_shuffle_up:
791 case nir_intrinsic_shuffle_down:
792 if (options->lower_relative_shuffle)
793 return lower_to_shuffle(b, intrin, options);
794 else if (options->lower_to_scalar && intrin->num_components > 1)
795 return lower_subgroup_op_to_scalar(b, intrin, options->lower_shuffle_to_32bit);
796 else if (options->lower_shuffle_to_32bit && intrin->src[0].ssa->bit_size == 64)
797 return lower_subgroup_op_to_32bit(b, intrin);
798 break;
799
800 case nir_intrinsic_quad_broadcast:
801 case nir_intrinsic_quad_swap_horizontal:
802 case nir_intrinsic_quad_swap_vertical:
803 case nir_intrinsic_quad_swap_diagonal:
804 if (options->lower_quad ||
805 (options->lower_quad_broadcast_dynamic &&
806 intrin->intrinsic == nir_intrinsic_quad_broadcast &&
807 !nir_src_is_const(intrin->src[1])))
808 return lower_dynamic_quad_broadcast(b, intrin, options);
809 else if (options->lower_to_scalar && intrin->num_components > 1)
810 return lower_subgroup_op_to_scalar(b, intrin, false);
811 break;
812
813 case nir_intrinsic_reduce: {
814 nir_ssa_def *ret = NULL;
815 /* A cluster size greater than the subgroup size is implemention defined */
816 if (options->subgroup_size &&
817 nir_intrinsic_cluster_size(intrin) >= options->subgroup_size) {
818 nir_intrinsic_set_cluster_size(intrin, 0);
819 ret = NIR_LOWER_INSTR_PROGRESS;
820 }
821 if (options->lower_to_scalar && intrin->num_components > 1)
822 ret = lower_subgroup_op_to_scalar(b, intrin, false);
823 return ret;
824 }
825 case nir_intrinsic_inclusive_scan:
826 case nir_intrinsic_exclusive_scan:
827 if (options->lower_to_scalar && intrin->num_components > 1)
828 return lower_subgroup_op_to_scalar(b, intrin, false);
829 break;
830
831 default:
832 break;
833 }
834
835 return NULL;
836 }
837
838 bool
nir_lower_subgroups(nir_shader * shader,const nir_lower_subgroups_options * options)839 nir_lower_subgroups(nir_shader *shader,
840 const nir_lower_subgroups_options *options)
841 {
842 return nir_shader_lower_instructions(shader,
843 lower_subgroups_filter,
844 lower_subgroups_instr,
845 (void *)options);
846 }
847