• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/kernel/sys.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/mm_inline.h>
11 #include <linux/utsname.h>
12 #include <linux/mman.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/kmod.h>
18 #include <linux/perf_event.h>
19 #include <linux/resource.h>
20 #include <linux/kernel.h>
21 #include <linux/workqueue.h>
22 #include <linux/capability.h>
23 #include <linux/device.h>
24 #include <linux/key.h>
25 #include <linux/times.h>
26 #include <linux/posix-timers.h>
27 #include <linux/security.h>
28 #include <linux/dcookies.h>
29 #include <linux/suspend.h>
30 #include <linux/tty.h>
31 #include <linux/signal.h>
32 #include <linux/cn_proc.h>
33 #include <linux/getcpu.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/seccomp.h>
36 #include <linux/cpu.h>
37 #include <linux/personality.h>
38 #include <linux/ptrace.h>
39 #include <linux/fs_struct.h>
40 #include <linux/file.h>
41 #include <linux/mount.h>
42 #include <linux/gfp.h>
43 #include <linux/syscore_ops.h>
44 #include <linux/version.h>
45 #include <linux/ctype.h>
46 
47 #include <linux/compat.h>
48 #include <linux/syscalls.h>
49 #include <linux/kprobes.h>
50 #include <linux/user_namespace.h>
51 #include <linux/time_namespace.h>
52 #include <linux/binfmts.h>
53 
54 #include <linux/sched.h>
55 #include <linux/sched/autogroup.h>
56 #include <linux/sched/loadavg.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/mm.h>
59 #include <linux/sched/coredump.h>
60 #include <linux/sched/task.h>
61 #include <linux/sched/cputime.h>
62 #include <linux/rcupdate.h>
63 #include <linux/uidgid.h>
64 #include <linux/cred.h>
65 
66 #include <linux/nospec.h>
67 
68 #include <linux/kmsg_dump.h>
69 /* Move somewhere else to avoid recompiling? */
70 #include <generated/utsrelease.h>
71 
72 #include <linux/uaccess.h>
73 #include <asm/io.h>
74 #include <asm/unistd.h>
75 
76 #include "uid16.h"
77 
78 #ifndef SET_UNALIGN_CTL
79 # define SET_UNALIGN_CTL(a, b)	(-EINVAL)
80 #endif
81 #ifndef GET_UNALIGN_CTL
82 # define GET_UNALIGN_CTL(a, b)	(-EINVAL)
83 #endif
84 #ifndef SET_FPEMU_CTL
85 # define SET_FPEMU_CTL(a, b)	(-EINVAL)
86 #endif
87 #ifndef GET_FPEMU_CTL
88 # define GET_FPEMU_CTL(a, b)	(-EINVAL)
89 #endif
90 #ifndef SET_FPEXC_CTL
91 # define SET_FPEXC_CTL(a, b)	(-EINVAL)
92 #endif
93 #ifndef GET_FPEXC_CTL
94 # define GET_FPEXC_CTL(a, b)	(-EINVAL)
95 #endif
96 #ifndef GET_ENDIAN
97 # define GET_ENDIAN(a, b)	(-EINVAL)
98 #endif
99 #ifndef SET_ENDIAN
100 # define SET_ENDIAN(a, b)	(-EINVAL)
101 #endif
102 #ifndef GET_TSC_CTL
103 # define GET_TSC_CTL(a)		(-EINVAL)
104 #endif
105 #ifndef SET_TSC_CTL
106 # define SET_TSC_CTL(a)		(-EINVAL)
107 #endif
108 #ifndef GET_FP_MODE
109 # define GET_FP_MODE(a)		(-EINVAL)
110 #endif
111 #ifndef SET_FP_MODE
112 # define SET_FP_MODE(a,b)	(-EINVAL)
113 #endif
114 #ifndef SVE_SET_VL
115 # define SVE_SET_VL(a)		(-EINVAL)
116 #endif
117 #ifndef SVE_GET_VL
118 # define SVE_GET_VL()		(-EINVAL)
119 #endif
120 #ifndef PAC_RESET_KEYS
121 # define PAC_RESET_KEYS(a, b)	(-EINVAL)
122 #endif
123 #ifndef SET_TAGGED_ADDR_CTRL
124 # define SET_TAGGED_ADDR_CTRL(a)	(-EINVAL)
125 #endif
126 #ifndef GET_TAGGED_ADDR_CTRL
127 # define GET_TAGGED_ADDR_CTRL()		(-EINVAL)
128 #endif
129 
130 /*
131  * this is where the system-wide overflow UID and GID are defined, for
132  * architectures that now have 32-bit UID/GID but didn't in the past
133  */
134 
135 int overflowuid = DEFAULT_OVERFLOWUID;
136 int overflowgid = DEFAULT_OVERFLOWGID;
137 
138 EXPORT_SYMBOL(overflowuid);
139 EXPORT_SYMBOL(overflowgid);
140 
141 /*
142  * the same as above, but for filesystems which can only store a 16-bit
143  * UID and GID. as such, this is needed on all architectures
144  */
145 
146 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
147 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
148 
149 EXPORT_SYMBOL(fs_overflowuid);
150 EXPORT_SYMBOL(fs_overflowgid);
151 
152 /*
153  * Returns true if current's euid is same as p's uid or euid,
154  * or has CAP_SYS_NICE to p's user_ns.
155  *
156  * Called with rcu_read_lock, creds are safe
157  */
set_one_prio_perm(struct task_struct * p)158 static bool set_one_prio_perm(struct task_struct *p)
159 {
160 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
161 
162 	if (uid_eq(pcred->uid,  cred->euid) ||
163 	    uid_eq(pcred->euid, cred->euid))
164 		return true;
165 	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
166 		return true;
167 	return false;
168 }
169 
170 /*
171  * set the priority of a task
172  * - the caller must hold the RCU read lock
173  */
set_one_prio(struct task_struct * p,int niceval,int error)174 static int set_one_prio(struct task_struct *p, int niceval, int error)
175 {
176 	int no_nice;
177 
178 	if (!set_one_prio_perm(p)) {
179 		error = -EPERM;
180 		goto out;
181 	}
182 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
183 		error = -EACCES;
184 		goto out;
185 	}
186 	no_nice = security_task_setnice(p, niceval);
187 	if (no_nice) {
188 		error = no_nice;
189 		goto out;
190 	}
191 	if (error == -ESRCH)
192 		error = 0;
193 	set_user_nice(p, niceval);
194 out:
195 	return error;
196 }
197 
SYSCALL_DEFINE3(setpriority,int,which,int,who,int,niceval)198 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
199 {
200 	struct task_struct *g, *p;
201 	struct user_struct *user;
202 	const struct cred *cred = current_cred();
203 	int error = -EINVAL;
204 	struct pid *pgrp;
205 	kuid_t uid;
206 
207 	if (which > PRIO_USER || which < PRIO_PROCESS)
208 		goto out;
209 
210 	/* normalize: avoid signed division (rounding problems) */
211 	error = -ESRCH;
212 	if (niceval < MIN_NICE)
213 		niceval = MIN_NICE;
214 	if (niceval > MAX_NICE)
215 		niceval = MAX_NICE;
216 
217 	rcu_read_lock();
218 	read_lock(&tasklist_lock);
219 	switch (which) {
220 	case PRIO_PROCESS:
221 		if (who)
222 			p = find_task_by_vpid(who);
223 		else
224 			p = current;
225 		if (p)
226 			error = set_one_prio(p, niceval, error);
227 		break;
228 	case PRIO_PGRP:
229 		if (who)
230 			pgrp = find_vpid(who);
231 		else
232 			pgrp = task_pgrp(current);
233 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
234 			error = set_one_prio(p, niceval, error);
235 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
236 		break;
237 	case PRIO_USER:
238 		uid = make_kuid(cred->user_ns, who);
239 		user = cred->user;
240 		if (!who)
241 			uid = cred->uid;
242 		else if (!uid_eq(uid, cred->uid)) {
243 			user = find_user(uid);
244 			if (!user)
245 				goto out_unlock;	/* No processes for this user */
246 		}
247 		do_each_thread(g, p) {
248 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
249 				error = set_one_prio(p, niceval, error);
250 		} while_each_thread(g, p);
251 		if (!uid_eq(uid, cred->uid))
252 			free_uid(user);		/* For find_user() */
253 		break;
254 	}
255 out_unlock:
256 	read_unlock(&tasklist_lock);
257 	rcu_read_unlock();
258 out:
259 	return error;
260 }
261 
262 /*
263  * Ugh. To avoid negative return values, "getpriority()" will
264  * not return the normal nice-value, but a negated value that
265  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
266  * to stay compatible.
267  */
SYSCALL_DEFINE2(getpriority,int,which,int,who)268 SYSCALL_DEFINE2(getpriority, int, which, int, who)
269 {
270 	struct task_struct *g, *p;
271 	struct user_struct *user;
272 	const struct cred *cred = current_cred();
273 	long niceval, retval = -ESRCH;
274 	struct pid *pgrp;
275 	kuid_t uid;
276 
277 	if (which > PRIO_USER || which < PRIO_PROCESS)
278 		return -EINVAL;
279 
280 	rcu_read_lock();
281 	read_lock(&tasklist_lock);
282 	switch (which) {
283 	case PRIO_PROCESS:
284 		if (who)
285 			p = find_task_by_vpid(who);
286 		else
287 			p = current;
288 		if (p) {
289 			niceval = nice_to_rlimit(task_nice(p));
290 			if (niceval > retval)
291 				retval = niceval;
292 		}
293 		break;
294 	case PRIO_PGRP:
295 		if (who)
296 			pgrp = find_vpid(who);
297 		else
298 			pgrp = task_pgrp(current);
299 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
300 			niceval = nice_to_rlimit(task_nice(p));
301 			if (niceval > retval)
302 				retval = niceval;
303 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
304 		break;
305 	case PRIO_USER:
306 		uid = make_kuid(cred->user_ns, who);
307 		user = cred->user;
308 		if (!who)
309 			uid = cred->uid;
310 		else if (!uid_eq(uid, cred->uid)) {
311 			user = find_user(uid);
312 			if (!user)
313 				goto out_unlock;	/* No processes for this user */
314 		}
315 		do_each_thread(g, p) {
316 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
317 				niceval = nice_to_rlimit(task_nice(p));
318 				if (niceval > retval)
319 					retval = niceval;
320 			}
321 		} while_each_thread(g, p);
322 		if (!uid_eq(uid, cred->uid))
323 			free_uid(user);		/* for find_user() */
324 		break;
325 	}
326 out_unlock:
327 	read_unlock(&tasklist_lock);
328 	rcu_read_unlock();
329 
330 	return retval;
331 }
332 
333 /*
334  * Unprivileged users may change the real gid to the effective gid
335  * or vice versa.  (BSD-style)
336  *
337  * If you set the real gid at all, or set the effective gid to a value not
338  * equal to the real gid, then the saved gid is set to the new effective gid.
339  *
340  * This makes it possible for a setgid program to completely drop its
341  * privileges, which is often a useful assertion to make when you are doing
342  * a security audit over a program.
343  *
344  * The general idea is that a program which uses just setregid() will be
345  * 100% compatible with BSD.  A program which uses just setgid() will be
346  * 100% compatible with POSIX with saved IDs.
347  *
348  * SMP: There are not races, the GIDs are checked only by filesystem
349  *      operations (as far as semantic preservation is concerned).
350  */
351 #ifdef CONFIG_MULTIUSER
__sys_setregid(gid_t rgid,gid_t egid)352 long __sys_setregid(gid_t rgid, gid_t egid)
353 {
354 	struct user_namespace *ns = current_user_ns();
355 	const struct cred *old;
356 	struct cred *new;
357 	int retval;
358 	kgid_t krgid, kegid;
359 
360 	krgid = make_kgid(ns, rgid);
361 	kegid = make_kgid(ns, egid);
362 
363 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
364 		return -EINVAL;
365 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
366 		return -EINVAL;
367 
368 	new = prepare_creds();
369 	if (!new)
370 		return -ENOMEM;
371 	old = current_cred();
372 
373 	retval = -EPERM;
374 	if (rgid != (gid_t) -1) {
375 		if (gid_eq(old->gid, krgid) ||
376 		    gid_eq(old->egid, krgid) ||
377 		    ns_capable_setid(old->user_ns, CAP_SETGID))
378 			new->gid = krgid;
379 		else
380 			goto error;
381 	}
382 	if (egid != (gid_t) -1) {
383 		if (gid_eq(old->gid, kegid) ||
384 		    gid_eq(old->egid, kegid) ||
385 		    gid_eq(old->sgid, kegid) ||
386 		    ns_capable_setid(old->user_ns, CAP_SETGID))
387 			new->egid = kegid;
388 		else
389 			goto error;
390 	}
391 
392 	if (rgid != (gid_t) -1 ||
393 	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
394 		new->sgid = new->egid;
395 	new->fsgid = new->egid;
396 
397 	retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
398 	if (retval < 0)
399 		goto error;
400 
401 	return commit_creds(new);
402 
403 error:
404 	abort_creds(new);
405 	return retval;
406 }
407 
SYSCALL_DEFINE2(setregid,gid_t,rgid,gid_t,egid)408 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
409 {
410 	return __sys_setregid(rgid, egid);
411 }
412 
413 /*
414  * setgid() is implemented like SysV w/ SAVED_IDS
415  *
416  * SMP: Same implicit races as above.
417  */
__sys_setgid(gid_t gid)418 long __sys_setgid(gid_t gid)
419 {
420 	struct user_namespace *ns = current_user_ns();
421 	const struct cred *old;
422 	struct cred *new;
423 	int retval;
424 	kgid_t kgid;
425 
426 	kgid = make_kgid(ns, gid);
427 	if (!gid_valid(kgid))
428 		return -EINVAL;
429 
430 	new = prepare_creds();
431 	if (!new)
432 		return -ENOMEM;
433 	old = current_cred();
434 
435 	retval = -EPERM;
436 	if (ns_capable_setid(old->user_ns, CAP_SETGID))
437 		new->gid = new->egid = new->sgid = new->fsgid = kgid;
438 	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
439 		new->egid = new->fsgid = kgid;
440 	else
441 		goto error;
442 
443 	retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
444 	if (retval < 0)
445 		goto error;
446 
447 	return commit_creds(new);
448 
449 error:
450 	abort_creds(new);
451 	return retval;
452 }
453 
SYSCALL_DEFINE1(setgid,gid_t,gid)454 SYSCALL_DEFINE1(setgid, gid_t, gid)
455 {
456 	return __sys_setgid(gid);
457 }
458 
459 /*
460  * change the user struct in a credentials set to match the new UID
461  */
set_user(struct cred * new)462 static int set_user(struct cred *new)
463 {
464 	struct user_struct *new_user;
465 
466 	new_user = alloc_uid(new->uid);
467 	if (!new_user)
468 		return -EAGAIN;
469 
470 	/*
471 	 * We don't fail in case of NPROC limit excess here because too many
472 	 * poorly written programs don't check set*uid() return code, assuming
473 	 * it never fails if called by root.  We may still enforce NPROC limit
474 	 * for programs doing set*uid()+execve() by harmlessly deferring the
475 	 * failure to the execve() stage.
476 	 */
477 	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
478 			new_user != INIT_USER)
479 		current->flags |= PF_NPROC_EXCEEDED;
480 	else
481 		current->flags &= ~PF_NPROC_EXCEEDED;
482 
483 	free_uid(new->user);
484 	new->user = new_user;
485 	return 0;
486 }
487 
488 /*
489  * Unprivileged users may change the real uid to the effective uid
490  * or vice versa.  (BSD-style)
491  *
492  * If you set the real uid at all, or set the effective uid to a value not
493  * equal to the real uid, then the saved uid is set to the new effective uid.
494  *
495  * This makes it possible for a setuid program to completely drop its
496  * privileges, which is often a useful assertion to make when you are doing
497  * a security audit over a program.
498  *
499  * The general idea is that a program which uses just setreuid() will be
500  * 100% compatible with BSD.  A program which uses just setuid() will be
501  * 100% compatible with POSIX with saved IDs.
502  */
__sys_setreuid(uid_t ruid,uid_t euid)503 long __sys_setreuid(uid_t ruid, uid_t euid)
504 {
505 	struct user_namespace *ns = current_user_ns();
506 	const struct cred *old;
507 	struct cred *new;
508 	int retval;
509 	kuid_t kruid, keuid;
510 
511 	kruid = make_kuid(ns, ruid);
512 	keuid = make_kuid(ns, euid);
513 
514 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
515 		return -EINVAL;
516 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
517 		return -EINVAL;
518 
519 	new = prepare_creds();
520 	if (!new)
521 		return -ENOMEM;
522 	old = current_cred();
523 
524 	retval = -EPERM;
525 	if (ruid != (uid_t) -1) {
526 		new->uid = kruid;
527 		if (!uid_eq(old->uid, kruid) &&
528 		    !uid_eq(old->euid, kruid) &&
529 		    !ns_capable_setid(old->user_ns, CAP_SETUID))
530 			goto error;
531 	}
532 
533 	if (euid != (uid_t) -1) {
534 		new->euid = keuid;
535 		if (!uid_eq(old->uid, keuid) &&
536 		    !uid_eq(old->euid, keuid) &&
537 		    !uid_eq(old->suid, keuid) &&
538 		    !ns_capable_setid(old->user_ns, CAP_SETUID))
539 			goto error;
540 	}
541 
542 	if (!uid_eq(new->uid, old->uid)) {
543 		retval = set_user(new);
544 		if (retval < 0)
545 			goto error;
546 	}
547 	if (ruid != (uid_t) -1 ||
548 	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
549 		new->suid = new->euid;
550 	new->fsuid = new->euid;
551 
552 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
553 	if (retval < 0)
554 		goto error;
555 
556 	return commit_creds(new);
557 
558 error:
559 	abort_creds(new);
560 	return retval;
561 }
562 
SYSCALL_DEFINE2(setreuid,uid_t,ruid,uid_t,euid)563 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
564 {
565 	return __sys_setreuid(ruid, euid);
566 }
567 
568 /*
569  * setuid() is implemented like SysV with SAVED_IDS
570  *
571  * Note that SAVED_ID's is deficient in that a setuid root program
572  * like sendmail, for example, cannot set its uid to be a normal
573  * user and then switch back, because if you're root, setuid() sets
574  * the saved uid too.  If you don't like this, blame the bright people
575  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
576  * will allow a root program to temporarily drop privileges and be able to
577  * regain them by swapping the real and effective uid.
578  */
__sys_setuid(uid_t uid)579 long __sys_setuid(uid_t uid)
580 {
581 	struct user_namespace *ns = current_user_ns();
582 	const struct cred *old;
583 	struct cred *new;
584 	int retval;
585 	kuid_t kuid;
586 
587 	kuid = make_kuid(ns, uid);
588 	if (!uid_valid(kuid))
589 		return -EINVAL;
590 
591 	new = prepare_creds();
592 	if (!new)
593 		return -ENOMEM;
594 	old = current_cred();
595 
596 	retval = -EPERM;
597 	if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
598 		new->suid = new->uid = kuid;
599 		if (!uid_eq(kuid, old->uid)) {
600 			retval = set_user(new);
601 			if (retval < 0)
602 				goto error;
603 		}
604 	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
605 		goto error;
606 	}
607 
608 	new->fsuid = new->euid = kuid;
609 
610 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
611 	if (retval < 0)
612 		goto error;
613 
614 	return commit_creds(new);
615 
616 error:
617 	abort_creds(new);
618 	return retval;
619 }
620 
SYSCALL_DEFINE1(setuid,uid_t,uid)621 SYSCALL_DEFINE1(setuid, uid_t, uid)
622 {
623 	return __sys_setuid(uid);
624 }
625 
626 
627 /*
628  * This function implements a generic ability to update ruid, euid,
629  * and suid.  This allows you to implement the 4.4 compatible seteuid().
630  */
__sys_setresuid(uid_t ruid,uid_t euid,uid_t suid)631 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
632 {
633 	struct user_namespace *ns = current_user_ns();
634 	const struct cred *old;
635 	struct cred *new;
636 	int retval;
637 	kuid_t kruid, keuid, ksuid;
638 	bool ruid_new, euid_new, suid_new;
639 
640 	kruid = make_kuid(ns, ruid);
641 	keuid = make_kuid(ns, euid);
642 	ksuid = make_kuid(ns, suid);
643 
644 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
645 		return -EINVAL;
646 
647 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
648 		return -EINVAL;
649 
650 	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
651 		return -EINVAL;
652 
653 	old = current_cred();
654 
655 	/* check for no-op */
656 	if ((ruid == (uid_t) -1 || uid_eq(kruid, old->uid)) &&
657 	    (euid == (uid_t) -1 || (uid_eq(keuid, old->euid) &&
658 				    uid_eq(keuid, old->fsuid))) &&
659 	    (suid == (uid_t) -1 || uid_eq(ksuid, old->suid)))
660 		return 0;
661 
662 	ruid_new = ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
663 		   !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid);
664 	euid_new = euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
665 		   !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid);
666 	suid_new = suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
667 		   !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid);
668 	if ((ruid_new || euid_new || suid_new) &&
669 	    !ns_capable_setid(old->user_ns, CAP_SETUID))
670 		return -EPERM;
671 
672 	new = prepare_creds();
673 	if (!new)
674 		return -ENOMEM;
675 
676 	if (ruid != (uid_t) -1) {
677 		new->uid = kruid;
678 		if (!uid_eq(kruid, old->uid)) {
679 			retval = set_user(new);
680 			if (retval < 0)
681 				goto error;
682 		}
683 	}
684 	if (euid != (uid_t) -1)
685 		new->euid = keuid;
686 	if (suid != (uid_t) -1)
687 		new->suid = ksuid;
688 	new->fsuid = new->euid;
689 
690 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
691 	if (retval < 0)
692 		goto error;
693 
694 	return commit_creds(new);
695 
696 error:
697 	abort_creds(new);
698 	return retval;
699 }
700 
SYSCALL_DEFINE3(setresuid,uid_t,ruid,uid_t,euid,uid_t,suid)701 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
702 {
703 	return __sys_setresuid(ruid, euid, suid);
704 }
705 
SYSCALL_DEFINE3(getresuid,uid_t __user *,ruidp,uid_t __user *,euidp,uid_t __user *,suidp)706 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
707 {
708 	const struct cred *cred = current_cred();
709 	int retval;
710 	uid_t ruid, euid, suid;
711 
712 	ruid = from_kuid_munged(cred->user_ns, cred->uid);
713 	euid = from_kuid_munged(cred->user_ns, cred->euid);
714 	suid = from_kuid_munged(cred->user_ns, cred->suid);
715 
716 	retval = put_user(ruid, ruidp);
717 	if (!retval) {
718 		retval = put_user(euid, euidp);
719 		if (!retval)
720 			return put_user(suid, suidp);
721 	}
722 	return retval;
723 }
724 
725 /*
726  * Same as above, but for rgid, egid, sgid.
727  */
__sys_setresgid(gid_t rgid,gid_t egid,gid_t sgid)728 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
729 {
730 	struct user_namespace *ns = current_user_ns();
731 	const struct cred *old;
732 	struct cred *new;
733 	int retval;
734 	kgid_t krgid, kegid, ksgid;
735 	bool rgid_new, egid_new, sgid_new;
736 
737 	krgid = make_kgid(ns, rgid);
738 	kegid = make_kgid(ns, egid);
739 	ksgid = make_kgid(ns, sgid);
740 
741 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
742 		return -EINVAL;
743 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
744 		return -EINVAL;
745 	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
746 		return -EINVAL;
747 
748 	old = current_cred();
749 
750 	/* check for no-op */
751 	if ((rgid == (gid_t) -1 || gid_eq(krgid, old->gid)) &&
752 	    (egid == (gid_t) -1 || (gid_eq(kegid, old->egid) &&
753 				    gid_eq(kegid, old->fsgid))) &&
754 	    (sgid == (gid_t) -1 || gid_eq(ksgid, old->sgid)))
755 		return 0;
756 
757 	rgid_new = rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
758 		   !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid);
759 	egid_new = egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
760 		   !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid);
761 	sgid_new = sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
762 		   !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid);
763 	if ((rgid_new || egid_new || sgid_new) &&
764 	    !ns_capable_setid(old->user_ns, CAP_SETGID))
765 		return -EPERM;
766 
767 	new = prepare_creds();
768 	if (!new)
769 		return -ENOMEM;
770 
771 	if (rgid != (gid_t) -1)
772 		new->gid = krgid;
773 	if (egid != (gid_t) -1)
774 		new->egid = kegid;
775 	if (sgid != (gid_t) -1)
776 		new->sgid = ksgid;
777 	new->fsgid = new->egid;
778 
779 	retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
780 	if (retval < 0)
781 		goto error;
782 
783 	return commit_creds(new);
784 
785 error:
786 	abort_creds(new);
787 	return retval;
788 }
789 
SYSCALL_DEFINE3(setresgid,gid_t,rgid,gid_t,egid,gid_t,sgid)790 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
791 {
792 	return __sys_setresgid(rgid, egid, sgid);
793 }
794 
SYSCALL_DEFINE3(getresgid,gid_t __user *,rgidp,gid_t __user *,egidp,gid_t __user *,sgidp)795 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
796 {
797 	const struct cred *cred = current_cred();
798 	int retval;
799 	gid_t rgid, egid, sgid;
800 
801 	rgid = from_kgid_munged(cred->user_ns, cred->gid);
802 	egid = from_kgid_munged(cred->user_ns, cred->egid);
803 	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
804 
805 	retval = put_user(rgid, rgidp);
806 	if (!retval) {
807 		retval = put_user(egid, egidp);
808 		if (!retval)
809 			retval = put_user(sgid, sgidp);
810 	}
811 
812 	return retval;
813 }
814 
815 
816 /*
817  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
818  * is used for "access()" and for the NFS daemon (letting nfsd stay at
819  * whatever uid it wants to). It normally shadows "euid", except when
820  * explicitly set by setfsuid() or for access..
821  */
__sys_setfsuid(uid_t uid)822 long __sys_setfsuid(uid_t uid)
823 {
824 	const struct cred *old;
825 	struct cred *new;
826 	uid_t old_fsuid;
827 	kuid_t kuid;
828 
829 	old = current_cred();
830 	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
831 
832 	kuid = make_kuid(old->user_ns, uid);
833 	if (!uid_valid(kuid))
834 		return old_fsuid;
835 
836 	new = prepare_creds();
837 	if (!new)
838 		return old_fsuid;
839 
840 	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
841 	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
842 	    ns_capable_setid(old->user_ns, CAP_SETUID)) {
843 		if (!uid_eq(kuid, old->fsuid)) {
844 			new->fsuid = kuid;
845 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
846 				goto change_okay;
847 		}
848 	}
849 
850 	abort_creds(new);
851 	return old_fsuid;
852 
853 change_okay:
854 	commit_creds(new);
855 	return old_fsuid;
856 }
857 
SYSCALL_DEFINE1(setfsuid,uid_t,uid)858 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
859 {
860 	return __sys_setfsuid(uid);
861 }
862 
863 /*
864  * Samma på svenska..
865  */
__sys_setfsgid(gid_t gid)866 long __sys_setfsgid(gid_t gid)
867 {
868 	const struct cred *old;
869 	struct cred *new;
870 	gid_t old_fsgid;
871 	kgid_t kgid;
872 
873 	old = current_cred();
874 	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
875 
876 	kgid = make_kgid(old->user_ns, gid);
877 	if (!gid_valid(kgid))
878 		return old_fsgid;
879 
880 	new = prepare_creds();
881 	if (!new)
882 		return old_fsgid;
883 
884 	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
885 	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
886 	    ns_capable_setid(old->user_ns, CAP_SETGID)) {
887 		if (!gid_eq(kgid, old->fsgid)) {
888 			new->fsgid = kgid;
889 			if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
890 				goto change_okay;
891 		}
892 	}
893 
894 	abort_creds(new);
895 	return old_fsgid;
896 
897 change_okay:
898 	commit_creds(new);
899 	return old_fsgid;
900 }
901 
SYSCALL_DEFINE1(setfsgid,gid_t,gid)902 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
903 {
904 	return __sys_setfsgid(gid);
905 }
906 #endif /* CONFIG_MULTIUSER */
907 
908 /**
909  * sys_getpid - return the thread group id of the current process
910  *
911  * Note, despite the name, this returns the tgid not the pid.  The tgid and
912  * the pid are identical unless CLONE_THREAD was specified on clone() in
913  * which case the tgid is the same in all threads of the same group.
914  *
915  * This is SMP safe as current->tgid does not change.
916  */
SYSCALL_DEFINE0(getpid)917 SYSCALL_DEFINE0(getpid)
918 {
919 	return task_tgid_vnr(current);
920 }
921 
922 /* Thread ID - the internal kernel "pid" */
SYSCALL_DEFINE0(gettid)923 SYSCALL_DEFINE0(gettid)
924 {
925 	return task_pid_vnr(current);
926 }
927 
928 /*
929  * Accessing ->real_parent is not SMP-safe, it could
930  * change from under us. However, we can use a stale
931  * value of ->real_parent under rcu_read_lock(), see
932  * release_task()->call_rcu(delayed_put_task_struct).
933  */
SYSCALL_DEFINE0(getppid)934 SYSCALL_DEFINE0(getppid)
935 {
936 	int pid;
937 
938 	rcu_read_lock();
939 	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
940 	rcu_read_unlock();
941 
942 	return pid;
943 }
944 
SYSCALL_DEFINE0(getuid)945 SYSCALL_DEFINE0(getuid)
946 {
947 	/* Only we change this so SMP safe */
948 	return from_kuid_munged(current_user_ns(), current_uid());
949 }
950 
SYSCALL_DEFINE0(geteuid)951 SYSCALL_DEFINE0(geteuid)
952 {
953 	/* Only we change this so SMP safe */
954 	return from_kuid_munged(current_user_ns(), current_euid());
955 }
956 
SYSCALL_DEFINE0(getgid)957 SYSCALL_DEFINE0(getgid)
958 {
959 	/* Only we change this so SMP safe */
960 	return from_kgid_munged(current_user_ns(), current_gid());
961 }
962 
SYSCALL_DEFINE0(getegid)963 SYSCALL_DEFINE0(getegid)
964 {
965 	/* Only we change this so SMP safe */
966 	return from_kgid_munged(current_user_ns(), current_egid());
967 }
968 
do_sys_times(struct tms * tms)969 static void do_sys_times(struct tms *tms)
970 {
971 	u64 tgutime, tgstime, cutime, cstime;
972 
973 	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
974 	cutime = current->signal->cutime;
975 	cstime = current->signal->cstime;
976 	tms->tms_utime = nsec_to_clock_t(tgutime);
977 	tms->tms_stime = nsec_to_clock_t(tgstime);
978 	tms->tms_cutime = nsec_to_clock_t(cutime);
979 	tms->tms_cstime = nsec_to_clock_t(cstime);
980 }
981 
SYSCALL_DEFINE1(times,struct tms __user *,tbuf)982 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
983 {
984 	if (tbuf) {
985 		struct tms tmp;
986 
987 		do_sys_times(&tmp);
988 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
989 			return -EFAULT;
990 	}
991 	force_successful_syscall_return();
992 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
993 }
994 
995 #ifdef CONFIG_COMPAT
clock_t_to_compat_clock_t(clock_t x)996 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
997 {
998 	return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
999 }
1000 
COMPAT_SYSCALL_DEFINE1(times,struct compat_tms __user *,tbuf)1001 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1002 {
1003 	if (tbuf) {
1004 		struct tms tms;
1005 		struct compat_tms tmp;
1006 
1007 		do_sys_times(&tms);
1008 		/* Convert our struct tms to the compat version. */
1009 		tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1010 		tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1011 		tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1012 		tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1013 		if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1014 			return -EFAULT;
1015 	}
1016 	force_successful_syscall_return();
1017 	return compat_jiffies_to_clock_t(jiffies);
1018 }
1019 #endif
1020 
1021 /*
1022  * This needs some heavy checking ...
1023  * I just haven't the stomach for it. I also don't fully
1024  * understand sessions/pgrp etc. Let somebody who does explain it.
1025  *
1026  * OK, I think I have the protection semantics right.... this is really
1027  * only important on a multi-user system anyway, to make sure one user
1028  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1029  *
1030  * !PF_FORKNOEXEC check to conform completely to POSIX.
1031  */
SYSCALL_DEFINE2(setpgid,pid_t,pid,pid_t,pgid)1032 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1033 {
1034 	struct task_struct *p;
1035 	struct task_struct *group_leader = current->group_leader;
1036 	struct pid *pgrp;
1037 	int err;
1038 
1039 	if (!pid)
1040 		pid = task_pid_vnr(group_leader);
1041 	if (!pgid)
1042 		pgid = pid;
1043 	if (pgid < 0)
1044 		return -EINVAL;
1045 	rcu_read_lock();
1046 
1047 	/* From this point forward we keep holding onto the tasklist lock
1048 	 * so that our parent does not change from under us. -DaveM
1049 	 */
1050 	write_lock_irq(&tasklist_lock);
1051 
1052 	err = -ESRCH;
1053 	p = find_task_by_vpid(pid);
1054 	if (!p)
1055 		goto out;
1056 
1057 	err = -EINVAL;
1058 	if (!thread_group_leader(p))
1059 		goto out;
1060 
1061 	if (same_thread_group(p->real_parent, group_leader)) {
1062 		err = -EPERM;
1063 		if (task_session(p) != task_session(group_leader))
1064 			goto out;
1065 		err = -EACCES;
1066 		if (!(p->flags & PF_FORKNOEXEC))
1067 			goto out;
1068 	} else {
1069 		err = -ESRCH;
1070 		if (p != group_leader)
1071 			goto out;
1072 	}
1073 
1074 	err = -EPERM;
1075 	if (p->signal->leader)
1076 		goto out;
1077 
1078 	pgrp = task_pid(p);
1079 	if (pgid != pid) {
1080 		struct task_struct *g;
1081 
1082 		pgrp = find_vpid(pgid);
1083 		g = pid_task(pgrp, PIDTYPE_PGID);
1084 		if (!g || task_session(g) != task_session(group_leader))
1085 			goto out;
1086 	}
1087 
1088 	err = security_task_setpgid(p, pgid);
1089 	if (err)
1090 		goto out;
1091 
1092 	if (task_pgrp(p) != pgrp)
1093 		change_pid(p, PIDTYPE_PGID, pgrp);
1094 
1095 	err = 0;
1096 out:
1097 	/* All paths lead to here, thus we are safe. -DaveM */
1098 	write_unlock_irq(&tasklist_lock);
1099 	rcu_read_unlock();
1100 	return err;
1101 }
1102 
do_getpgid(pid_t pid)1103 static int do_getpgid(pid_t pid)
1104 {
1105 	struct task_struct *p;
1106 	struct pid *grp;
1107 	int retval;
1108 
1109 	rcu_read_lock();
1110 	if (!pid)
1111 		grp = task_pgrp(current);
1112 	else {
1113 		retval = -ESRCH;
1114 		p = find_task_by_vpid(pid);
1115 		if (!p)
1116 			goto out;
1117 		grp = task_pgrp(p);
1118 		if (!grp)
1119 			goto out;
1120 
1121 		retval = security_task_getpgid(p);
1122 		if (retval)
1123 			goto out;
1124 	}
1125 	retval = pid_vnr(grp);
1126 out:
1127 	rcu_read_unlock();
1128 	return retval;
1129 }
1130 
SYSCALL_DEFINE1(getpgid,pid_t,pid)1131 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1132 {
1133 	return do_getpgid(pid);
1134 }
1135 
1136 #ifdef __ARCH_WANT_SYS_GETPGRP
1137 
SYSCALL_DEFINE0(getpgrp)1138 SYSCALL_DEFINE0(getpgrp)
1139 {
1140 	return do_getpgid(0);
1141 }
1142 
1143 #endif
1144 
SYSCALL_DEFINE1(getsid,pid_t,pid)1145 SYSCALL_DEFINE1(getsid, pid_t, pid)
1146 {
1147 	struct task_struct *p;
1148 	struct pid *sid;
1149 	int retval;
1150 
1151 	rcu_read_lock();
1152 	if (!pid)
1153 		sid = task_session(current);
1154 	else {
1155 		retval = -ESRCH;
1156 		p = find_task_by_vpid(pid);
1157 		if (!p)
1158 			goto out;
1159 		sid = task_session(p);
1160 		if (!sid)
1161 			goto out;
1162 
1163 		retval = security_task_getsid(p);
1164 		if (retval)
1165 			goto out;
1166 	}
1167 	retval = pid_vnr(sid);
1168 out:
1169 	rcu_read_unlock();
1170 	return retval;
1171 }
1172 
set_special_pids(struct pid * pid)1173 static void set_special_pids(struct pid *pid)
1174 {
1175 	struct task_struct *curr = current->group_leader;
1176 
1177 	if (task_session(curr) != pid)
1178 		change_pid(curr, PIDTYPE_SID, pid);
1179 
1180 	if (task_pgrp(curr) != pid)
1181 		change_pid(curr, PIDTYPE_PGID, pid);
1182 }
1183 
ksys_setsid(void)1184 int ksys_setsid(void)
1185 {
1186 	struct task_struct *group_leader = current->group_leader;
1187 	struct pid *sid = task_pid(group_leader);
1188 	pid_t session = pid_vnr(sid);
1189 	int err = -EPERM;
1190 
1191 	write_lock_irq(&tasklist_lock);
1192 	/* Fail if I am already a session leader */
1193 	if (group_leader->signal->leader)
1194 		goto out;
1195 
1196 	/* Fail if a process group id already exists that equals the
1197 	 * proposed session id.
1198 	 */
1199 	if (pid_task(sid, PIDTYPE_PGID))
1200 		goto out;
1201 
1202 	group_leader->signal->leader = 1;
1203 	set_special_pids(sid);
1204 
1205 	proc_clear_tty(group_leader);
1206 
1207 	err = session;
1208 out:
1209 	write_unlock_irq(&tasklist_lock);
1210 	if (err > 0) {
1211 		proc_sid_connector(group_leader);
1212 		sched_autogroup_create_attach(group_leader);
1213 	}
1214 	return err;
1215 }
1216 
SYSCALL_DEFINE0(setsid)1217 SYSCALL_DEFINE0(setsid)
1218 {
1219 	return ksys_setsid();
1220 }
1221 
1222 DECLARE_RWSEM(uts_sem);
1223 
1224 #ifdef COMPAT_UTS_MACHINE
1225 #define override_architecture(name) \
1226 	(personality(current->personality) == PER_LINUX32 && \
1227 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1228 		      sizeof(COMPAT_UTS_MACHINE)))
1229 #else
1230 #define override_architecture(name)	0
1231 #endif
1232 
1233 /*
1234  * Work around broken programs that cannot handle "Linux 3.0".
1235  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1236  * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1237  * 2.6.60.
1238  */
override_release(char __user * release,size_t len)1239 static int override_release(char __user *release, size_t len)
1240 {
1241 	int ret = 0;
1242 
1243 	if (current->personality & UNAME26) {
1244 		const char *rest = UTS_RELEASE;
1245 		char buf[65] = { 0 };
1246 		int ndots = 0;
1247 		unsigned v;
1248 		size_t copy;
1249 
1250 		while (*rest) {
1251 			if (*rest == '.' && ++ndots >= 3)
1252 				break;
1253 			if (!isdigit(*rest) && *rest != '.')
1254 				break;
1255 			rest++;
1256 		}
1257 		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1258 		copy = clamp_t(size_t, len, 1, sizeof(buf));
1259 		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1260 		ret = copy_to_user(release, buf, copy + 1);
1261 	}
1262 	return ret;
1263 }
1264 
SYSCALL_DEFINE1(newuname,struct new_utsname __user *,name)1265 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1266 {
1267 	struct new_utsname tmp;
1268 
1269 	down_read(&uts_sem);
1270 	memcpy(&tmp, utsname(), sizeof(tmp));
1271 	up_read(&uts_sem);
1272 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1273 		return -EFAULT;
1274 
1275 	if (override_release(name->release, sizeof(name->release)))
1276 		return -EFAULT;
1277 	if (override_architecture(name))
1278 		return -EFAULT;
1279 	return 0;
1280 }
1281 
1282 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1283 /*
1284  * Old cruft
1285  */
SYSCALL_DEFINE1(uname,struct old_utsname __user *,name)1286 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1287 {
1288 	struct old_utsname tmp;
1289 
1290 	if (!name)
1291 		return -EFAULT;
1292 
1293 	down_read(&uts_sem);
1294 	memcpy(&tmp, utsname(), sizeof(tmp));
1295 	up_read(&uts_sem);
1296 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1297 		return -EFAULT;
1298 
1299 	if (override_release(name->release, sizeof(name->release)))
1300 		return -EFAULT;
1301 	if (override_architecture(name))
1302 		return -EFAULT;
1303 	return 0;
1304 }
1305 
SYSCALL_DEFINE1(olduname,struct oldold_utsname __user *,name)1306 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1307 {
1308 	struct oldold_utsname tmp;
1309 
1310 	if (!name)
1311 		return -EFAULT;
1312 
1313 	memset(&tmp, 0, sizeof(tmp));
1314 
1315 	down_read(&uts_sem);
1316 	memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1317 	memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1318 	memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1319 	memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1320 	memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1321 	up_read(&uts_sem);
1322 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1323 		return -EFAULT;
1324 
1325 	if (override_architecture(name))
1326 		return -EFAULT;
1327 	if (override_release(name->release, sizeof(name->release)))
1328 		return -EFAULT;
1329 	return 0;
1330 }
1331 #endif
1332 
SYSCALL_DEFINE2(sethostname,char __user *,name,int,len)1333 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1334 {
1335 	int errno;
1336 	char tmp[__NEW_UTS_LEN];
1337 
1338 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1339 		return -EPERM;
1340 
1341 	if (len < 0 || len > __NEW_UTS_LEN)
1342 		return -EINVAL;
1343 	errno = -EFAULT;
1344 	if (!copy_from_user(tmp, name, len)) {
1345 		struct new_utsname *u;
1346 
1347 		down_write(&uts_sem);
1348 		u = utsname();
1349 		memcpy(u->nodename, tmp, len);
1350 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1351 		errno = 0;
1352 		uts_proc_notify(UTS_PROC_HOSTNAME);
1353 		up_write(&uts_sem);
1354 	}
1355 	return errno;
1356 }
1357 
1358 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1359 
SYSCALL_DEFINE2(gethostname,char __user *,name,int,len)1360 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1361 {
1362 	int i;
1363 	struct new_utsname *u;
1364 	char tmp[__NEW_UTS_LEN + 1];
1365 
1366 	if (len < 0)
1367 		return -EINVAL;
1368 	down_read(&uts_sem);
1369 	u = utsname();
1370 	i = 1 + strlen(u->nodename);
1371 	if (i > len)
1372 		i = len;
1373 	memcpy(tmp, u->nodename, i);
1374 	up_read(&uts_sem);
1375 	if (copy_to_user(name, tmp, i))
1376 		return -EFAULT;
1377 	return 0;
1378 }
1379 
1380 #endif
1381 
1382 /*
1383  * Only setdomainname; getdomainname can be implemented by calling
1384  * uname()
1385  */
SYSCALL_DEFINE2(setdomainname,char __user *,name,int,len)1386 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1387 {
1388 	int errno;
1389 	char tmp[__NEW_UTS_LEN];
1390 
1391 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1392 		return -EPERM;
1393 	if (len < 0 || len > __NEW_UTS_LEN)
1394 		return -EINVAL;
1395 
1396 	errno = -EFAULT;
1397 	if (!copy_from_user(tmp, name, len)) {
1398 		struct new_utsname *u;
1399 
1400 		down_write(&uts_sem);
1401 		u = utsname();
1402 		memcpy(u->domainname, tmp, len);
1403 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1404 		errno = 0;
1405 		uts_proc_notify(UTS_PROC_DOMAINNAME);
1406 		up_write(&uts_sem);
1407 	}
1408 	return errno;
1409 }
1410 
SYSCALL_DEFINE2(getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1411 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1412 {
1413 	struct rlimit value;
1414 	int ret;
1415 
1416 	ret = do_prlimit(current, resource, NULL, &value);
1417 	if (!ret)
1418 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1419 
1420 	return ret;
1421 }
1422 
1423 #ifdef CONFIG_COMPAT
1424 
COMPAT_SYSCALL_DEFINE2(setrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1425 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1426 		       struct compat_rlimit __user *, rlim)
1427 {
1428 	struct rlimit r;
1429 	struct compat_rlimit r32;
1430 
1431 	if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1432 		return -EFAULT;
1433 
1434 	if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1435 		r.rlim_cur = RLIM_INFINITY;
1436 	else
1437 		r.rlim_cur = r32.rlim_cur;
1438 	if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1439 		r.rlim_max = RLIM_INFINITY;
1440 	else
1441 		r.rlim_max = r32.rlim_max;
1442 	return do_prlimit(current, resource, &r, NULL);
1443 }
1444 
COMPAT_SYSCALL_DEFINE2(getrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1445 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1446 		       struct compat_rlimit __user *, rlim)
1447 {
1448 	struct rlimit r;
1449 	int ret;
1450 
1451 	ret = do_prlimit(current, resource, NULL, &r);
1452 	if (!ret) {
1453 		struct compat_rlimit r32;
1454 		if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1455 			r32.rlim_cur = COMPAT_RLIM_INFINITY;
1456 		else
1457 			r32.rlim_cur = r.rlim_cur;
1458 		if (r.rlim_max > COMPAT_RLIM_INFINITY)
1459 			r32.rlim_max = COMPAT_RLIM_INFINITY;
1460 		else
1461 			r32.rlim_max = r.rlim_max;
1462 
1463 		if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1464 			return -EFAULT;
1465 	}
1466 	return ret;
1467 }
1468 
1469 #endif
1470 
1471 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1472 
1473 /*
1474  *	Back compatibility for getrlimit. Needed for some apps.
1475  */
SYSCALL_DEFINE2(old_getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1476 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1477 		struct rlimit __user *, rlim)
1478 {
1479 	struct rlimit x;
1480 	if (resource >= RLIM_NLIMITS)
1481 		return -EINVAL;
1482 
1483 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1484 	task_lock(current->group_leader);
1485 	x = current->signal->rlim[resource];
1486 	task_unlock(current->group_leader);
1487 	if (x.rlim_cur > 0x7FFFFFFF)
1488 		x.rlim_cur = 0x7FFFFFFF;
1489 	if (x.rlim_max > 0x7FFFFFFF)
1490 		x.rlim_max = 0x7FFFFFFF;
1491 	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1492 }
1493 
1494 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(old_getrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1495 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1496 		       struct compat_rlimit __user *, rlim)
1497 {
1498 	struct rlimit r;
1499 
1500 	if (resource >= RLIM_NLIMITS)
1501 		return -EINVAL;
1502 
1503 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1504 	task_lock(current->group_leader);
1505 	r = current->signal->rlim[resource];
1506 	task_unlock(current->group_leader);
1507 	if (r.rlim_cur > 0x7FFFFFFF)
1508 		r.rlim_cur = 0x7FFFFFFF;
1509 	if (r.rlim_max > 0x7FFFFFFF)
1510 		r.rlim_max = 0x7FFFFFFF;
1511 
1512 	if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1513 	    put_user(r.rlim_max, &rlim->rlim_max))
1514 		return -EFAULT;
1515 	return 0;
1516 }
1517 #endif
1518 
1519 #endif
1520 
rlim64_is_infinity(__u64 rlim64)1521 static inline bool rlim64_is_infinity(__u64 rlim64)
1522 {
1523 #if BITS_PER_LONG < 64
1524 	return rlim64 >= ULONG_MAX;
1525 #else
1526 	return rlim64 == RLIM64_INFINITY;
1527 #endif
1528 }
1529 
rlim_to_rlim64(const struct rlimit * rlim,struct rlimit64 * rlim64)1530 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1531 {
1532 	if (rlim->rlim_cur == RLIM_INFINITY)
1533 		rlim64->rlim_cur = RLIM64_INFINITY;
1534 	else
1535 		rlim64->rlim_cur = rlim->rlim_cur;
1536 	if (rlim->rlim_max == RLIM_INFINITY)
1537 		rlim64->rlim_max = RLIM64_INFINITY;
1538 	else
1539 		rlim64->rlim_max = rlim->rlim_max;
1540 }
1541 
rlim64_to_rlim(const struct rlimit64 * rlim64,struct rlimit * rlim)1542 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1543 {
1544 	if (rlim64_is_infinity(rlim64->rlim_cur))
1545 		rlim->rlim_cur = RLIM_INFINITY;
1546 	else
1547 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1548 	if (rlim64_is_infinity(rlim64->rlim_max))
1549 		rlim->rlim_max = RLIM_INFINITY;
1550 	else
1551 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1552 }
1553 
1554 /* make sure you are allowed to change @tsk limits before calling this */
do_prlimit(struct task_struct * tsk,unsigned int resource,struct rlimit * new_rlim,struct rlimit * old_rlim)1555 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1556 		struct rlimit *new_rlim, struct rlimit *old_rlim)
1557 {
1558 	struct rlimit *rlim;
1559 	int retval = 0;
1560 
1561 	if (resource >= RLIM_NLIMITS)
1562 		return -EINVAL;
1563 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1564 
1565 	if (new_rlim) {
1566 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1567 			return -EINVAL;
1568 		if (resource == RLIMIT_NOFILE &&
1569 				new_rlim->rlim_max > sysctl_nr_open)
1570 			return -EPERM;
1571 	}
1572 
1573 	/* protect tsk->signal and tsk->sighand from disappearing */
1574 	read_lock(&tasklist_lock);
1575 	if (!tsk->sighand) {
1576 		retval = -ESRCH;
1577 		goto out;
1578 	}
1579 
1580 	rlim = tsk->signal->rlim + resource;
1581 	task_lock(tsk->group_leader);
1582 	if (new_rlim) {
1583 		/* Keep the capable check against init_user_ns until
1584 		   cgroups can contain all limits */
1585 		if (new_rlim->rlim_max > rlim->rlim_max &&
1586 				!capable(CAP_SYS_RESOURCE))
1587 			retval = -EPERM;
1588 		if (!retval)
1589 			retval = security_task_setrlimit(tsk, resource, new_rlim);
1590 	}
1591 	if (!retval) {
1592 		if (old_rlim)
1593 			*old_rlim = *rlim;
1594 		if (new_rlim)
1595 			*rlim = *new_rlim;
1596 	}
1597 	task_unlock(tsk->group_leader);
1598 
1599 	/*
1600 	 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1601 	 * infite. In case of RLIM_INFINITY the posix CPU timer code
1602 	 * ignores the rlimit.
1603 	 */
1604 	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1605 	     new_rlim->rlim_cur != RLIM_INFINITY &&
1606 	     IS_ENABLED(CONFIG_POSIX_TIMERS))
1607 		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1608 out:
1609 	read_unlock(&tasklist_lock);
1610 	return retval;
1611 }
1612 
1613 /* rcu lock must be held */
check_prlimit_permission(struct task_struct * task,unsigned int flags)1614 static int check_prlimit_permission(struct task_struct *task,
1615 				    unsigned int flags)
1616 {
1617 	const struct cred *cred = current_cred(), *tcred;
1618 	bool id_match;
1619 
1620 	if (current == task)
1621 		return 0;
1622 
1623 	tcred = __task_cred(task);
1624 	id_match = (uid_eq(cred->uid, tcred->euid) &&
1625 		    uid_eq(cred->uid, tcred->suid) &&
1626 		    uid_eq(cred->uid, tcred->uid)  &&
1627 		    gid_eq(cred->gid, tcred->egid) &&
1628 		    gid_eq(cred->gid, tcred->sgid) &&
1629 		    gid_eq(cred->gid, tcred->gid));
1630 	if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1631 		return -EPERM;
1632 
1633 	return security_task_prlimit(cred, tcred, flags);
1634 }
1635 
SYSCALL_DEFINE4(prlimit64,pid_t,pid,unsigned int,resource,const struct rlimit64 __user *,new_rlim,struct rlimit64 __user *,old_rlim)1636 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1637 		const struct rlimit64 __user *, new_rlim,
1638 		struct rlimit64 __user *, old_rlim)
1639 {
1640 	struct rlimit64 old64, new64;
1641 	struct rlimit old, new;
1642 	struct task_struct *tsk;
1643 	unsigned int checkflags = 0;
1644 	int ret;
1645 
1646 	if (old_rlim)
1647 		checkflags |= LSM_PRLIMIT_READ;
1648 
1649 	if (new_rlim) {
1650 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1651 			return -EFAULT;
1652 		rlim64_to_rlim(&new64, &new);
1653 		checkflags |= LSM_PRLIMIT_WRITE;
1654 	}
1655 
1656 	rcu_read_lock();
1657 	tsk = pid ? find_task_by_vpid(pid) : current;
1658 	if (!tsk) {
1659 		rcu_read_unlock();
1660 		return -ESRCH;
1661 	}
1662 	ret = check_prlimit_permission(tsk, checkflags);
1663 	if (ret) {
1664 		rcu_read_unlock();
1665 		return ret;
1666 	}
1667 	get_task_struct(tsk);
1668 	rcu_read_unlock();
1669 
1670 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1671 			old_rlim ? &old : NULL);
1672 
1673 	if (!ret && old_rlim) {
1674 		rlim_to_rlim64(&old, &old64);
1675 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1676 			ret = -EFAULT;
1677 	}
1678 
1679 	put_task_struct(tsk);
1680 	return ret;
1681 }
1682 
SYSCALL_DEFINE2(setrlimit,unsigned int,resource,struct rlimit __user *,rlim)1683 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1684 {
1685 	struct rlimit new_rlim;
1686 
1687 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1688 		return -EFAULT;
1689 	return do_prlimit(current, resource, &new_rlim, NULL);
1690 }
1691 
1692 /*
1693  * It would make sense to put struct rusage in the task_struct,
1694  * except that would make the task_struct be *really big*.  After
1695  * task_struct gets moved into malloc'ed memory, it would
1696  * make sense to do this.  It will make moving the rest of the information
1697  * a lot simpler!  (Which we're not doing right now because we're not
1698  * measuring them yet).
1699  *
1700  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1701  * races with threads incrementing their own counters.  But since word
1702  * reads are atomic, we either get new values or old values and we don't
1703  * care which for the sums.  We always take the siglock to protect reading
1704  * the c* fields from p->signal from races with exit.c updating those
1705  * fields when reaping, so a sample either gets all the additions of a
1706  * given child after it's reaped, or none so this sample is before reaping.
1707  *
1708  * Locking:
1709  * We need to take the siglock for CHILDEREN, SELF and BOTH
1710  * for  the cases current multithreaded, non-current single threaded
1711  * non-current multithreaded.  Thread traversal is now safe with
1712  * the siglock held.
1713  * Strictly speaking, we donot need to take the siglock if we are current and
1714  * single threaded,  as no one else can take our signal_struct away, no one
1715  * else can  reap the  children to update signal->c* counters, and no one else
1716  * can race with the signal-> fields. If we do not take any lock, the
1717  * signal-> fields could be read out of order while another thread was just
1718  * exiting. So we should  place a read memory barrier when we avoid the lock.
1719  * On the writer side,  write memory barrier is implied in  __exit_signal
1720  * as __exit_signal releases  the siglock spinlock after updating the signal->
1721  * fields. But we don't do this yet to keep things simple.
1722  *
1723  */
1724 
accumulate_thread_rusage(struct task_struct * t,struct rusage * r)1725 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1726 {
1727 	r->ru_nvcsw += t->nvcsw;
1728 	r->ru_nivcsw += t->nivcsw;
1729 	r->ru_minflt += t->min_flt;
1730 	r->ru_majflt += t->maj_flt;
1731 	r->ru_inblock += task_io_get_inblock(t);
1732 	r->ru_oublock += task_io_get_oublock(t);
1733 }
1734 
getrusage(struct task_struct * p,int who,struct rusage * r)1735 void getrusage(struct task_struct *p, int who, struct rusage *r)
1736 {
1737 	struct task_struct *t;
1738 	unsigned long flags;
1739 	u64 tgutime, tgstime, utime, stime;
1740 	unsigned long maxrss = 0;
1741 
1742 	memset((char *)r, 0, sizeof (*r));
1743 	utime = stime = 0;
1744 
1745 	if (who == RUSAGE_THREAD) {
1746 		task_cputime_adjusted(current, &utime, &stime);
1747 		accumulate_thread_rusage(p, r);
1748 		maxrss = p->signal->maxrss;
1749 		goto out;
1750 	}
1751 
1752 	if (!lock_task_sighand(p, &flags))
1753 		return;
1754 
1755 	switch (who) {
1756 	case RUSAGE_BOTH:
1757 	case RUSAGE_CHILDREN:
1758 		utime = p->signal->cutime;
1759 		stime = p->signal->cstime;
1760 		r->ru_nvcsw = p->signal->cnvcsw;
1761 		r->ru_nivcsw = p->signal->cnivcsw;
1762 		r->ru_minflt = p->signal->cmin_flt;
1763 		r->ru_majflt = p->signal->cmaj_flt;
1764 		r->ru_inblock = p->signal->cinblock;
1765 		r->ru_oublock = p->signal->coublock;
1766 		maxrss = p->signal->cmaxrss;
1767 
1768 		if (who == RUSAGE_CHILDREN)
1769 			break;
1770 		fallthrough;
1771 
1772 	case RUSAGE_SELF:
1773 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1774 		utime += tgutime;
1775 		stime += tgstime;
1776 		r->ru_nvcsw += p->signal->nvcsw;
1777 		r->ru_nivcsw += p->signal->nivcsw;
1778 		r->ru_minflt += p->signal->min_flt;
1779 		r->ru_majflt += p->signal->maj_flt;
1780 		r->ru_inblock += p->signal->inblock;
1781 		r->ru_oublock += p->signal->oublock;
1782 		if (maxrss < p->signal->maxrss)
1783 			maxrss = p->signal->maxrss;
1784 		t = p;
1785 		do {
1786 			accumulate_thread_rusage(t, r);
1787 		} while_each_thread(p, t);
1788 		break;
1789 
1790 	default:
1791 		BUG();
1792 	}
1793 	unlock_task_sighand(p, &flags);
1794 
1795 out:
1796 	r->ru_utime = ns_to_kernel_old_timeval(utime);
1797 	r->ru_stime = ns_to_kernel_old_timeval(stime);
1798 
1799 	if (who != RUSAGE_CHILDREN) {
1800 		struct mm_struct *mm = get_task_mm(p);
1801 
1802 		if (mm) {
1803 			setmax_mm_hiwater_rss(&maxrss, mm);
1804 			mmput(mm);
1805 		}
1806 	}
1807 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1808 }
1809 
SYSCALL_DEFINE2(getrusage,int,who,struct rusage __user *,ru)1810 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1811 {
1812 	struct rusage r;
1813 
1814 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1815 	    who != RUSAGE_THREAD)
1816 		return -EINVAL;
1817 
1818 	getrusage(current, who, &r);
1819 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1820 }
1821 
1822 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(getrusage,int,who,struct compat_rusage __user *,ru)1823 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1824 {
1825 	struct rusage r;
1826 
1827 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1828 	    who != RUSAGE_THREAD)
1829 		return -EINVAL;
1830 
1831 	getrusage(current, who, &r);
1832 	return put_compat_rusage(&r, ru);
1833 }
1834 #endif
1835 
SYSCALL_DEFINE1(umask,int,mask)1836 SYSCALL_DEFINE1(umask, int, mask)
1837 {
1838 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1839 	return mask;
1840 }
1841 
prctl_set_mm_exe_file(struct mm_struct * mm,unsigned int fd)1842 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1843 {
1844 	struct fd exe;
1845 	struct file *old_exe, *exe_file;
1846 	struct inode *inode;
1847 	int err;
1848 
1849 	exe = fdget(fd);
1850 	if (!exe.file)
1851 		return -EBADF;
1852 
1853 	inode = file_inode(exe.file);
1854 
1855 	/*
1856 	 * Because the original mm->exe_file points to executable file, make
1857 	 * sure that this one is executable as well, to avoid breaking an
1858 	 * overall picture.
1859 	 */
1860 	err = -EACCES;
1861 	if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1862 		goto exit;
1863 
1864 	err = inode_permission(inode, MAY_EXEC);
1865 	if (err)
1866 		goto exit;
1867 
1868 	/*
1869 	 * Forbid mm->exe_file change if old file still mapped.
1870 	 */
1871 	exe_file = get_mm_exe_file(mm);
1872 	err = -EBUSY;
1873 	if (exe_file) {
1874 		struct vm_area_struct *vma;
1875 
1876 		mmap_read_lock(mm);
1877 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
1878 			if (!vma->vm_file)
1879 				continue;
1880 			if (path_equal(&vma->vm_file->f_path,
1881 				       &exe_file->f_path))
1882 				goto exit_err;
1883 		}
1884 
1885 		mmap_read_unlock(mm);
1886 		fput(exe_file);
1887 	}
1888 
1889 	err = 0;
1890 	/* set the new file, lockless */
1891 	get_file(exe.file);
1892 	old_exe = xchg(&mm->exe_file, exe.file);
1893 	if (old_exe)
1894 		fput(old_exe);
1895 exit:
1896 	fdput(exe);
1897 	return err;
1898 exit_err:
1899 	mmap_read_unlock(mm);
1900 	fput(exe_file);
1901 	goto exit;
1902 }
1903 
1904 /*
1905  * Check arithmetic relations of passed addresses.
1906  *
1907  * WARNING: we don't require any capability here so be very careful
1908  * in what is allowed for modification from userspace.
1909  */
validate_prctl_map_addr(struct prctl_mm_map * prctl_map)1910 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1911 {
1912 	unsigned long mmap_max_addr = TASK_SIZE;
1913 	int error = -EINVAL, i;
1914 
1915 	static const unsigned char offsets[] = {
1916 		offsetof(struct prctl_mm_map, start_code),
1917 		offsetof(struct prctl_mm_map, end_code),
1918 		offsetof(struct prctl_mm_map, start_data),
1919 		offsetof(struct prctl_mm_map, end_data),
1920 		offsetof(struct prctl_mm_map, start_brk),
1921 		offsetof(struct prctl_mm_map, brk),
1922 		offsetof(struct prctl_mm_map, start_stack),
1923 		offsetof(struct prctl_mm_map, arg_start),
1924 		offsetof(struct prctl_mm_map, arg_end),
1925 		offsetof(struct prctl_mm_map, env_start),
1926 		offsetof(struct prctl_mm_map, env_end),
1927 	};
1928 
1929 	/*
1930 	 * Make sure the members are not somewhere outside
1931 	 * of allowed address space.
1932 	 */
1933 	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1934 		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1935 
1936 		if ((unsigned long)val >= mmap_max_addr ||
1937 		    (unsigned long)val < mmap_min_addr)
1938 			goto out;
1939 	}
1940 
1941 	/*
1942 	 * Make sure the pairs are ordered.
1943 	 */
1944 #define __prctl_check_order(__m1, __op, __m2)				\
1945 	((unsigned long)prctl_map->__m1 __op				\
1946 	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1947 	error  = __prctl_check_order(start_code, <, end_code);
1948 	error |= __prctl_check_order(start_data,<=, end_data);
1949 	error |= __prctl_check_order(start_brk, <=, brk);
1950 	error |= __prctl_check_order(arg_start, <=, arg_end);
1951 	error |= __prctl_check_order(env_start, <=, env_end);
1952 	if (error)
1953 		goto out;
1954 #undef __prctl_check_order
1955 
1956 	error = -EINVAL;
1957 
1958 	/*
1959 	 * Neither we should allow to override limits if they set.
1960 	 */
1961 	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1962 			      prctl_map->start_brk, prctl_map->end_data,
1963 			      prctl_map->start_data))
1964 			goto out;
1965 
1966 	error = 0;
1967 out:
1968 	return error;
1969 }
1970 
1971 #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_set_mm_map(int opt,const void __user * addr,unsigned long data_size)1972 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1973 {
1974 	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1975 	unsigned long user_auxv[AT_VECTOR_SIZE];
1976 	struct mm_struct *mm = current->mm;
1977 	int error;
1978 
1979 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1980 	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1981 
1982 	if (opt == PR_SET_MM_MAP_SIZE)
1983 		return put_user((unsigned int)sizeof(prctl_map),
1984 				(unsigned int __user *)addr);
1985 
1986 	if (data_size != sizeof(prctl_map))
1987 		return -EINVAL;
1988 
1989 	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1990 		return -EFAULT;
1991 
1992 	error = validate_prctl_map_addr(&prctl_map);
1993 	if (error)
1994 		return error;
1995 
1996 	if (prctl_map.auxv_size) {
1997 		/*
1998 		 * Someone is trying to cheat the auxv vector.
1999 		 */
2000 		if (!prctl_map.auxv ||
2001 				prctl_map.auxv_size > sizeof(mm->saved_auxv))
2002 			return -EINVAL;
2003 
2004 		memset(user_auxv, 0, sizeof(user_auxv));
2005 		if (copy_from_user(user_auxv,
2006 				   (const void __user *)prctl_map.auxv,
2007 				   prctl_map.auxv_size))
2008 			return -EFAULT;
2009 
2010 		/* Last entry must be AT_NULL as specification requires */
2011 		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2012 		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2013 	}
2014 
2015 	if (prctl_map.exe_fd != (u32)-1) {
2016 		/*
2017 		 * Check if the current user is checkpoint/restore capable.
2018 		 * At the time of this writing, it checks for CAP_SYS_ADMIN
2019 		 * or CAP_CHECKPOINT_RESTORE.
2020 		 * Note that a user with access to ptrace can masquerade an
2021 		 * arbitrary program as any executable, even setuid ones.
2022 		 * This may have implications in the tomoyo subsystem.
2023 		 */
2024 		if (!checkpoint_restore_ns_capable(current_user_ns()))
2025 			return -EPERM;
2026 
2027 		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2028 		if (error)
2029 			return error;
2030 	}
2031 
2032 	/*
2033 	 * arg_lock protects concurent updates but we still need mmap_lock for
2034 	 * read to exclude races with sys_brk.
2035 	 */
2036 	mmap_read_lock(mm);
2037 
2038 	/*
2039 	 * We don't validate if these members are pointing to
2040 	 * real present VMAs because application may have correspond
2041 	 * VMAs already unmapped and kernel uses these members for statistics
2042 	 * output in procfs mostly, except
2043 	 *
2044 	 *  - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2045 	 *    for VMAs when updating these memvers so anything wrong written
2046 	 *    here cause kernel to swear at userspace program but won't lead
2047 	 *    to any problem in kernel itself
2048 	 */
2049 
2050 	spin_lock(&mm->arg_lock);
2051 	mm->start_code	= prctl_map.start_code;
2052 	mm->end_code	= prctl_map.end_code;
2053 	mm->start_data	= prctl_map.start_data;
2054 	mm->end_data	= prctl_map.end_data;
2055 	mm->start_brk	= prctl_map.start_brk;
2056 	mm->brk		= prctl_map.brk;
2057 	mm->start_stack	= prctl_map.start_stack;
2058 	mm->arg_start	= prctl_map.arg_start;
2059 	mm->arg_end	= prctl_map.arg_end;
2060 	mm->env_start	= prctl_map.env_start;
2061 	mm->env_end	= prctl_map.env_end;
2062 	spin_unlock(&mm->arg_lock);
2063 
2064 	/*
2065 	 * Note this update of @saved_auxv is lockless thus
2066 	 * if someone reads this member in procfs while we're
2067 	 * updating -- it may get partly updated results. It's
2068 	 * known and acceptable trade off: we leave it as is to
2069 	 * not introduce additional locks here making the kernel
2070 	 * more complex.
2071 	 */
2072 	if (prctl_map.auxv_size)
2073 		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2074 
2075 	mmap_read_unlock(mm);
2076 	return 0;
2077 }
2078 #endif /* CONFIG_CHECKPOINT_RESTORE */
2079 
prctl_set_auxv(struct mm_struct * mm,unsigned long addr,unsigned long len)2080 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2081 			  unsigned long len)
2082 {
2083 	/*
2084 	 * This doesn't move the auxiliary vector itself since it's pinned to
2085 	 * mm_struct, but it permits filling the vector with new values.  It's
2086 	 * up to the caller to provide sane values here, otherwise userspace
2087 	 * tools which use this vector might be unhappy.
2088 	 */
2089 	unsigned long user_auxv[AT_VECTOR_SIZE];
2090 
2091 	if (len > sizeof(user_auxv))
2092 		return -EINVAL;
2093 
2094 	if (copy_from_user(user_auxv, (const void __user *)addr, len))
2095 		return -EFAULT;
2096 
2097 	/* Make sure the last entry is always AT_NULL */
2098 	user_auxv[AT_VECTOR_SIZE - 2] = 0;
2099 	user_auxv[AT_VECTOR_SIZE - 1] = 0;
2100 
2101 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2102 
2103 	task_lock(current);
2104 	memcpy(mm->saved_auxv, user_auxv, len);
2105 	task_unlock(current);
2106 
2107 	return 0;
2108 }
2109 
prctl_set_mm(int opt,unsigned long addr,unsigned long arg4,unsigned long arg5)2110 static int prctl_set_mm(int opt, unsigned long addr,
2111 			unsigned long arg4, unsigned long arg5)
2112 {
2113 	struct mm_struct *mm = current->mm;
2114 	struct prctl_mm_map prctl_map = {
2115 		.auxv = NULL,
2116 		.auxv_size = 0,
2117 		.exe_fd = -1,
2118 	};
2119 	struct vm_area_struct *vma;
2120 	int error;
2121 
2122 	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2123 			      opt != PR_SET_MM_MAP &&
2124 			      opt != PR_SET_MM_MAP_SIZE)))
2125 		return -EINVAL;
2126 
2127 #ifdef CONFIG_CHECKPOINT_RESTORE
2128 	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2129 		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2130 #endif
2131 
2132 	if (!capable(CAP_SYS_RESOURCE))
2133 		return -EPERM;
2134 
2135 	if (opt == PR_SET_MM_EXE_FILE)
2136 		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2137 
2138 	if (opt == PR_SET_MM_AUXV)
2139 		return prctl_set_auxv(mm, addr, arg4);
2140 
2141 	if (addr >= TASK_SIZE || addr < mmap_min_addr)
2142 		return -EINVAL;
2143 
2144 	error = -EINVAL;
2145 
2146 	/*
2147 	 * arg_lock protects concurent updates of arg boundaries, we need
2148 	 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2149 	 * validation.
2150 	 */
2151 	mmap_read_lock(mm);
2152 	vma = find_vma(mm, addr);
2153 
2154 	spin_lock(&mm->arg_lock);
2155 	prctl_map.start_code	= mm->start_code;
2156 	prctl_map.end_code	= mm->end_code;
2157 	prctl_map.start_data	= mm->start_data;
2158 	prctl_map.end_data	= mm->end_data;
2159 	prctl_map.start_brk	= mm->start_brk;
2160 	prctl_map.brk		= mm->brk;
2161 	prctl_map.start_stack	= mm->start_stack;
2162 	prctl_map.arg_start	= mm->arg_start;
2163 	prctl_map.arg_end	= mm->arg_end;
2164 	prctl_map.env_start	= mm->env_start;
2165 	prctl_map.env_end	= mm->env_end;
2166 
2167 	switch (opt) {
2168 	case PR_SET_MM_START_CODE:
2169 		prctl_map.start_code = addr;
2170 		break;
2171 	case PR_SET_MM_END_CODE:
2172 		prctl_map.end_code = addr;
2173 		break;
2174 	case PR_SET_MM_START_DATA:
2175 		prctl_map.start_data = addr;
2176 		break;
2177 	case PR_SET_MM_END_DATA:
2178 		prctl_map.end_data = addr;
2179 		break;
2180 	case PR_SET_MM_START_STACK:
2181 		prctl_map.start_stack = addr;
2182 		break;
2183 	case PR_SET_MM_START_BRK:
2184 		prctl_map.start_brk = addr;
2185 		break;
2186 	case PR_SET_MM_BRK:
2187 		prctl_map.brk = addr;
2188 		break;
2189 	case PR_SET_MM_ARG_START:
2190 		prctl_map.arg_start = addr;
2191 		break;
2192 	case PR_SET_MM_ARG_END:
2193 		prctl_map.arg_end = addr;
2194 		break;
2195 	case PR_SET_MM_ENV_START:
2196 		prctl_map.env_start = addr;
2197 		break;
2198 	case PR_SET_MM_ENV_END:
2199 		prctl_map.env_end = addr;
2200 		break;
2201 	default:
2202 		goto out;
2203 	}
2204 
2205 	error = validate_prctl_map_addr(&prctl_map);
2206 	if (error)
2207 		goto out;
2208 
2209 	switch (opt) {
2210 	/*
2211 	 * If command line arguments and environment
2212 	 * are placed somewhere else on stack, we can
2213 	 * set them up here, ARG_START/END to setup
2214 	 * command line argumets and ENV_START/END
2215 	 * for environment.
2216 	 */
2217 	case PR_SET_MM_START_STACK:
2218 	case PR_SET_MM_ARG_START:
2219 	case PR_SET_MM_ARG_END:
2220 	case PR_SET_MM_ENV_START:
2221 	case PR_SET_MM_ENV_END:
2222 		if (!vma) {
2223 			error = -EFAULT;
2224 			goto out;
2225 		}
2226 	}
2227 
2228 	mm->start_code	= prctl_map.start_code;
2229 	mm->end_code	= prctl_map.end_code;
2230 	mm->start_data	= prctl_map.start_data;
2231 	mm->end_data	= prctl_map.end_data;
2232 	mm->start_brk	= prctl_map.start_brk;
2233 	mm->brk		= prctl_map.brk;
2234 	mm->start_stack	= prctl_map.start_stack;
2235 	mm->arg_start	= prctl_map.arg_start;
2236 	mm->arg_end	= prctl_map.arg_end;
2237 	mm->env_start	= prctl_map.env_start;
2238 	mm->env_end	= prctl_map.env_end;
2239 
2240 	error = 0;
2241 out:
2242 	spin_unlock(&mm->arg_lock);
2243 	mmap_read_unlock(mm);
2244 	return error;
2245 }
2246 
2247 #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_get_tid_address(struct task_struct * me,int __user * __user * tid_addr)2248 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2249 {
2250 	return put_user(me->clear_child_tid, tid_addr);
2251 }
2252 #else
prctl_get_tid_address(struct task_struct * me,int __user * __user * tid_addr)2253 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2254 {
2255 	return -EINVAL;
2256 }
2257 #endif
2258 
propagate_has_child_subreaper(struct task_struct * p,void * data)2259 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2260 {
2261 	/*
2262 	 * If task has has_child_subreaper - all its decendants
2263 	 * already have these flag too and new decendants will
2264 	 * inherit it on fork, skip them.
2265 	 *
2266 	 * If we've found child_reaper - skip descendants in
2267 	 * it's subtree as they will never get out pidns.
2268 	 */
2269 	if (p->signal->has_child_subreaper ||
2270 	    is_child_reaper(task_pid(p)))
2271 		return 0;
2272 
2273 	p->signal->has_child_subreaper = 1;
2274 	return 1;
2275 }
2276 
arch_prctl_spec_ctrl_get(struct task_struct * t,unsigned long which)2277 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2278 {
2279 	return -EINVAL;
2280 }
2281 
arch_prctl_spec_ctrl_set(struct task_struct * t,unsigned long which,unsigned long ctrl)2282 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2283 				    unsigned long ctrl)
2284 {
2285 	return -EINVAL;
2286 }
2287 
2288 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2289 
2290 #ifdef CONFIG_ANON_VMA_NAME
2291 
2292 #define ANON_VMA_NAME_MAX_LEN		80
2293 #define ANON_VMA_NAME_INVALID_CHARS	"\\`$[]"
2294 
is_valid_name_char(char ch)2295 static inline bool is_valid_name_char(char ch)
2296 {
2297 	/* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2298 	return ch > 0x1f && ch < 0x7f &&
2299 		!strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2300 }
2301 
prctl_set_vma(unsigned long opt,unsigned long addr,unsigned long size,unsigned long arg)2302 static int prctl_set_vma(unsigned long opt, unsigned long addr,
2303 			 unsigned long size, unsigned long arg)
2304 {
2305 	struct mm_struct *mm = current->mm;
2306 	const char __user *uname;
2307 	struct anon_vma_name *anon_name = NULL;
2308 	int error;
2309 
2310 	switch (opt) {
2311 	case PR_SET_VMA_ANON_NAME:
2312 		uname = (const char __user *)arg;
2313 		if (uname) {
2314 			char *name, *pch;
2315 
2316 			name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2317 			if (IS_ERR(name))
2318 				return PTR_ERR(name);
2319 
2320 			for (pch = name; *pch != '\0'; pch++) {
2321 				if (!is_valid_name_char(*pch)) {
2322 					kfree(name);
2323 					return -EINVAL;
2324 				}
2325 			}
2326 			/* anon_vma has its own copy */
2327 			anon_name = anon_vma_name_alloc(name);
2328 			kfree(name);
2329 			if (!anon_name)
2330 				return -ENOMEM;
2331 
2332 		}
2333 
2334 		mmap_write_lock(mm);
2335 		error = madvise_set_anon_name(mm, addr, size, anon_name);
2336 		mmap_write_unlock(mm);
2337 		anon_vma_name_put(anon_name);
2338 		break;
2339 	default:
2340 		error = -EINVAL;
2341 	}
2342 
2343 	return error;
2344 }
2345 
2346 #else /* CONFIG_ANON_VMA_NAME */
prctl_set_vma(unsigned long opt,unsigned long start,unsigned long size,unsigned long arg)2347 static int prctl_set_vma(unsigned long opt, unsigned long start,
2348 			 unsigned long size, unsigned long arg)
2349 {
2350 	return -EINVAL;
2351 }
2352 #endif /* CONFIG_ANON_VMA_NAME */
2353 
SYSCALL_DEFINE5(prctl,int,option,unsigned long,arg2,unsigned long,arg3,unsigned long,arg4,unsigned long,arg5)2354 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2355 		unsigned long, arg4, unsigned long, arg5)
2356 {
2357 	struct task_struct *me = current;
2358 	unsigned char comm[sizeof(me->comm)];
2359 	long error;
2360 
2361 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2362 	if (error != -ENOSYS)
2363 		return error;
2364 
2365 	error = 0;
2366 	switch (option) {
2367 	case PR_SET_PDEATHSIG:
2368 		if (!valid_signal(arg2)) {
2369 			error = -EINVAL;
2370 			break;
2371 		}
2372 		me->pdeath_signal = arg2;
2373 		break;
2374 	case PR_GET_PDEATHSIG:
2375 		error = put_user(me->pdeath_signal, (int __user *)arg2);
2376 		break;
2377 	case PR_GET_DUMPABLE:
2378 		error = get_dumpable(me->mm);
2379 		break;
2380 	case PR_SET_DUMPABLE:
2381 		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2382 			error = -EINVAL;
2383 			break;
2384 		}
2385 		set_dumpable(me->mm, arg2);
2386 		break;
2387 
2388 	case PR_SET_UNALIGN:
2389 		error = SET_UNALIGN_CTL(me, arg2);
2390 		break;
2391 	case PR_GET_UNALIGN:
2392 		error = GET_UNALIGN_CTL(me, arg2);
2393 		break;
2394 	case PR_SET_FPEMU:
2395 		error = SET_FPEMU_CTL(me, arg2);
2396 		break;
2397 	case PR_GET_FPEMU:
2398 		error = GET_FPEMU_CTL(me, arg2);
2399 		break;
2400 	case PR_SET_FPEXC:
2401 		error = SET_FPEXC_CTL(me, arg2);
2402 		break;
2403 	case PR_GET_FPEXC:
2404 		error = GET_FPEXC_CTL(me, arg2);
2405 		break;
2406 	case PR_GET_TIMING:
2407 		error = PR_TIMING_STATISTICAL;
2408 		break;
2409 	case PR_SET_TIMING:
2410 		if (arg2 != PR_TIMING_STATISTICAL)
2411 			error = -EINVAL;
2412 		break;
2413 	case PR_SET_NAME:
2414 		comm[sizeof(me->comm) - 1] = 0;
2415 		if (strncpy_from_user(comm, (char __user *)arg2,
2416 				      sizeof(me->comm) - 1) < 0)
2417 			return -EFAULT;
2418 		set_task_comm(me, comm);
2419 		proc_comm_connector(me);
2420 		break;
2421 	case PR_GET_NAME:
2422 		get_task_comm(comm, me);
2423 		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2424 			return -EFAULT;
2425 		break;
2426 	case PR_GET_ENDIAN:
2427 		error = GET_ENDIAN(me, arg2);
2428 		break;
2429 	case PR_SET_ENDIAN:
2430 		error = SET_ENDIAN(me, arg2);
2431 		break;
2432 	case PR_GET_SECCOMP:
2433 		error = prctl_get_seccomp();
2434 		break;
2435 	case PR_SET_SECCOMP:
2436 		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2437 		break;
2438 	case PR_GET_TSC:
2439 		error = GET_TSC_CTL(arg2);
2440 		break;
2441 	case PR_SET_TSC:
2442 		error = SET_TSC_CTL(arg2);
2443 		break;
2444 	case PR_TASK_PERF_EVENTS_DISABLE:
2445 		error = perf_event_task_disable();
2446 		break;
2447 	case PR_TASK_PERF_EVENTS_ENABLE:
2448 		error = perf_event_task_enable();
2449 		break;
2450 	case PR_GET_TIMERSLACK:
2451 		if (current->timer_slack_ns > ULONG_MAX)
2452 			error = ULONG_MAX;
2453 		else
2454 			error = current->timer_slack_ns;
2455 		break;
2456 	case PR_SET_TIMERSLACK:
2457 		if (arg2 <= 0)
2458 			current->timer_slack_ns =
2459 					current->default_timer_slack_ns;
2460 		else
2461 			current->timer_slack_ns = arg2;
2462 		break;
2463 	case PR_MCE_KILL:
2464 		if (arg4 | arg5)
2465 			return -EINVAL;
2466 		switch (arg2) {
2467 		case PR_MCE_KILL_CLEAR:
2468 			if (arg3 != 0)
2469 				return -EINVAL;
2470 			current->flags &= ~PF_MCE_PROCESS;
2471 			break;
2472 		case PR_MCE_KILL_SET:
2473 			current->flags |= PF_MCE_PROCESS;
2474 			if (arg3 == PR_MCE_KILL_EARLY)
2475 				current->flags |= PF_MCE_EARLY;
2476 			else if (arg3 == PR_MCE_KILL_LATE)
2477 				current->flags &= ~PF_MCE_EARLY;
2478 			else if (arg3 == PR_MCE_KILL_DEFAULT)
2479 				current->flags &=
2480 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2481 			else
2482 				return -EINVAL;
2483 			break;
2484 		default:
2485 			return -EINVAL;
2486 		}
2487 		break;
2488 	case PR_MCE_KILL_GET:
2489 		if (arg2 | arg3 | arg4 | arg5)
2490 			return -EINVAL;
2491 		if (current->flags & PF_MCE_PROCESS)
2492 			error = (current->flags & PF_MCE_EARLY) ?
2493 				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2494 		else
2495 			error = PR_MCE_KILL_DEFAULT;
2496 		break;
2497 	case PR_SET_MM:
2498 		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2499 		break;
2500 	case PR_GET_TID_ADDRESS:
2501 		error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2502 		break;
2503 	case PR_SET_CHILD_SUBREAPER:
2504 		me->signal->is_child_subreaper = !!arg2;
2505 		if (!arg2)
2506 			break;
2507 
2508 		walk_process_tree(me, propagate_has_child_subreaper, NULL);
2509 		break;
2510 	case PR_GET_CHILD_SUBREAPER:
2511 		error = put_user(me->signal->is_child_subreaper,
2512 				 (int __user *)arg2);
2513 		break;
2514 	case PR_SET_NO_NEW_PRIVS:
2515 		if (arg2 != 1 || arg3 || arg4 || arg5)
2516 			return -EINVAL;
2517 
2518 		task_set_no_new_privs(current);
2519 		break;
2520 	case PR_GET_NO_NEW_PRIVS:
2521 		if (arg2 || arg3 || arg4 || arg5)
2522 			return -EINVAL;
2523 		return task_no_new_privs(current) ? 1 : 0;
2524 	case PR_GET_THP_DISABLE:
2525 		if (arg2 || arg3 || arg4 || arg5)
2526 			return -EINVAL;
2527 		error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2528 		break;
2529 	case PR_SET_THP_DISABLE:
2530 		if (arg3 || arg4 || arg5)
2531 			return -EINVAL;
2532 		if (mmap_write_lock_killable(me->mm))
2533 			return -EINTR;
2534 		if (arg2)
2535 			set_bit(MMF_DISABLE_THP, &me->mm->flags);
2536 		else
2537 			clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2538 		mmap_write_unlock(me->mm);
2539 		break;
2540 	case PR_MPX_ENABLE_MANAGEMENT:
2541 	case PR_MPX_DISABLE_MANAGEMENT:
2542 		/* No longer implemented: */
2543 		return -EINVAL;
2544 	case PR_SET_FP_MODE:
2545 		error = SET_FP_MODE(me, arg2);
2546 		break;
2547 	case PR_GET_FP_MODE:
2548 		error = GET_FP_MODE(me);
2549 		break;
2550 	case PR_SVE_SET_VL:
2551 		error = SVE_SET_VL(arg2);
2552 		break;
2553 	case PR_SVE_GET_VL:
2554 		error = SVE_GET_VL();
2555 		break;
2556 	case PR_GET_SPECULATION_CTRL:
2557 		if (arg3 || arg4 || arg5)
2558 			return -EINVAL;
2559 		error = arch_prctl_spec_ctrl_get(me, arg2);
2560 		break;
2561 	case PR_SET_SPECULATION_CTRL:
2562 		if (arg4 || arg5)
2563 			return -EINVAL;
2564 		error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2565 		break;
2566 	case PR_PAC_RESET_KEYS:
2567 		if (arg3 || arg4 || arg5)
2568 			return -EINVAL;
2569 		error = PAC_RESET_KEYS(me, arg2);
2570 		break;
2571 	case PR_SET_TAGGED_ADDR_CTRL:
2572 		if (arg3 || arg4 || arg5)
2573 			return -EINVAL;
2574 		error = SET_TAGGED_ADDR_CTRL(arg2);
2575 		break;
2576 	case PR_GET_TAGGED_ADDR_CTRL:
2577 		if (arg2 || arg3 || arg4 || arg5)
2578 			return -EINVAL;
2579 		error = GET_TAGGED_ADDR_CTRL();
2580 		break;
2581 	case PR_SET_IO_FLUSHER:
2582 		if (!capable(CAP_SYS_RESOURCE))
2583 			return -EPERM;
2584 
2585 		if (arg3 || arg4 || arg5)
2586 			return -EINVAL;
2587 
2588 		if (arg2 == 1)
2589 			current->flags |= PR_IO_FLUSHER;
2590 		else if (!arg2)
2591 			current->flags &= ~PR_IO_FLUSHER;
2592 		else
2593 			return -EINVAL;
2594 		break;
2595 	case PR_GET_IO_FLUSHER:
2596 		if (!capable(CAP_SYS_RESOURCE))
2597 			return -EPERM;
2598 
2599 		if (arg2 || arg3 || arg4 || arg5)
2600 			return -EINVAL;
2601 
2602 		error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2603 		break;
2604 	case PR_SET_VMA:
2605 		error = prctl_set_vma(arg2, arg3, arg4, arg5);
2606 		break;
2607 	default:
2608 		error = -EINVAL;
2609 		break;
2610 	}
2611 	return error;
2612 }
2613 
SYSCALL_DEFINE3(getcpu,unsigned __user *,cpup,unsigned __user *,nodep,struct getcpu_cache __user *,unused)2614 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2615 		struct getcpu_cache __user *, unused)
2616 {
2617 	int err = 0;
2618 	int cpu = raw_smp_processor_id();
2619 
2620 	if (cpup)
2621 		err |= put_user(cpu, cpup);
2622 	if (nodep)
2623 		err |= put_user(cpu_to_node(cpu), nodep);
2624 	return err ? -EFAULT : 0;
2625 }
2626 
2627 /**
2628  * do_sysinfo - fill in sysinfo struct
2629  * @info: pointer to buffer to fill
2630  */
do_sysinfo(struct sysinfo * info)2631 static int do_sysinfo(struct sysinfo *info)
2632 {
2633 	unsigned long mem_total, sav_total;
2634 	unsigned int mem_unit, bitcount;
2635 	struct timespec64 tp;
2636 
2637 	memset(info, 0, sizeof(struct sysinfo));
2638 
2639 	ktime_get_boottime_ts64(&tp);
2640 	timens_add_boottime(&tp);
2641 	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2642 
2643 	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2644 
2645 	info->procs = nr_threads;
2646 
2647 	si_meminfo(info);
2648 	si_swapinfo(info);
2649 
2650 	/*
2651 	 * If the sum of all the available memory (i.e. ram + swap)
2652 	 * is less than can be stored in a 32 bit unsigned long then
2653 	 * we can be binary compatible with 2.2.x kernels.  If not,
2654 	 * well, in that case 2.2.x was broken anyways...
2655 	 *
2656 	 *  -Erik Andersen <andersee@debian.org>
2657 	 */
2658 
2659 	mem_total = info->totalram + info->totalswap;
2660 	if (mem_total < info->totalram || mem_total < info->totalswap)
2661 		goto out;
2662 	bitcount = 0;
2663 	mem_unit = info->mem_unit;
2664 	while (mem_unit > 1) {
2665 		bitcount++;
2666 		mem_unit >>= 1;
2667 		sav_total = mem_total;
2668 		mem_total <<= 1;
2669 		if (mem_total < sav_total)
2670 			goto out;
2671 	}
2672 
2673 	/*
2674 	 * If mem_total did not overflow, multiply all memory values by
2675 	 * info->mem_unit and set it to 1.  This leaves things compatible
2676 	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2677 	 * kernels...
2678 	 */
2679 
2680 	info->mem_unit = 1;
2681 	info->totalram <<= bitcount;
2682 	info->freeram <<= bitcount;
2683 	info->sharedram <<= bitcount;
2684 	info->bufferram <<= bitcount;
2685 	info->totalswap <<= bitcount;
2686 	info->freeswap <<= bitcount;
2687 	info->totalhigh <<= bitcount;
2688 	info->freehigh <<= bitcount;
2689 
2690 out:
2691 	return 0;
2692 }
2693 
SYSCALL_DEFINE1(sysinfo,struct sysinfo __user *,info)2694 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2695 {
2696 	struct sysinfo val;
2697 
2698 	do_sysinfo(&val);
2699 
2700 	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2701 		return -EFAULT;
2702 
2703 	return 0;
2704 }
2705 
2706 #ifdef CONFIG_COMPAT
2707 struct compat_sysinfo {
2708 	s32 uptime;
2709 	u32 loads[3];
2710 	u32 totalram;
2711 	u32 freeram;
2712 	u32 sharedram;
2713 	u32 bufferram;
2714 	u32 totalswap;
2715 	u32 freeswap;
2716 	u16 procs;
2717 	u16 pad;
2718 	u32 totalhigh;
2719 	u32 freehigh;
2720 	u32 mem_unit;
2721 	char _f[20-2*sizeof(u32)-sizeof(int)];
2722 };
2723 
COMPAT_SYSCALL_DEFINE1(sysinfo,struct compat_sysinfo __user *,info)2724 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2725 {
2726 	struct sysinfo s;
2727 	struct compat_sysinfo s_32;
2728 
2729 	do_sysinfo(&s);
2730 
2731 	/* Check to see if any memory value is too large for 32-bit and scale
2732 	 *  down if needed
2733 	 */
2734 	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2735 		int bitcount = 0;
2736 
2737 		while (s.mem_unit < PAGE_SIZE) {
2738 			s.mem_unit <<= 1;
2739 			bitcount++;
2740 		}
2741 
2742 		s.totalram >>= bitcount;
2743 		s.freeram >>= bitcount;
2744 		s.sharedram >>= bitcount;
2745 		s.bufferram >>= bitcount;
2746 		s.totalswap >>= bitcount;
2747 		s.freeswap >>= bitcount;
2748 		s.totalhigh >>= bitcount;
2749 		s.freehigh >>= bitcount;
2750 	}
2751 
2752 	memset(&s_32, 0, sizeof(s_32));
2753 	s_32.uptime = s.uptime;
2754 	s_32.loads[0] = s.loads[0];
2755 	s_32.loads[1] = s.loads[1];
2756 	s_32.loads[2] = s.loads[2];
2757 	s_32.totalram = s.totalram;
2758 	s_32.freeram = s.freeram;
2759 	s_32.sharedram = s.sharedram;
2760 	s_32.bufferram = s.bufferram;
2761 	s_32.totalswap = s.totalswap;
2762 	s_32.freeswap = s.freeswap;
2763 	s_32.procs = s.procs;
2764 	s_32.totalhigh = s.totalhigh;
2765 	s_32.freehigh = s.freehigh;
2766 	s_32.mem_unit = s.mem_unit;
2767 	if (copy_to_user(info, &s_32, sizeof(s_32)))
2768 		return -EFAULT;
2769 	return 0;
2770 }
2771 #endif /* CONFIG_COMPAT */
2772