1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition) \
35 do { \
36 if (unlikely(condition)) { \
37 WARN_ON(1); \
38 set_sbi_flag(sbi, SBI_NEED_FSCK); \
39 } \
40 } while (0)
41 #endif
42
43 enum {
44 FAULT_KMALLOC,
45 FAULT_KVMALLOC,
46 FAULT_PAGE_ALLOC,
47 FAULT_PAGE_GET,
48 FAULT_ALLOC_BIO,
49 FAULT_ALLOC_NID,
50 FAULT_ORPHAN,
51 FAULT_BLOCK,
52 FAULT_DIR_DEPTH,
53 FAULT_EVICT_INODE,
54 FAULT_TRUNCATE,
55 FAULT_READ_IO,
56 FAULT_CHECKPOINT,
57 FAULT_DISCARD,
58 FAULT_WRITE_IO,
59 FAULT_MAX,
60 };
61
62 #ifdef CONFIG_F2FS_FAULT_INJECTION
63 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1)
64
65 struct f2fs_fault_info {
66 atomic_t inject_ops;
67 unsigned int inject_rate;
68 unsigned int inject_type;
69 };
70
71 extern const char *f2fs_fault_name[FAULT_MAX];
72 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
73 #endif
74
75 /*
76 * For mount options
77 */
78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
79 #define F2FS_MOUNT_DISCARD 0x00000004
80 #define F2FS_MOUNT_NOHEAP 0x00000008
81 #define F2FS_MOUNT_XATTR_USER 0x00000010
82 #define F2FS_MOUNT_POSIX_ACL 0x00000020
83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
84 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
85 #define F2FS_MOUNT_INLINE_DATA 0x00000100
86 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
87 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
88 #define F2FS_MOUNT_NOBARRIER 0x00000800
89 #define F2FS_MOUNT_FASTBOOT 0x00001000
90 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
91 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
92 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
93 #define F2FS_MOUNT_USRQUOTA 0x00080000
94 #define F2FS_MOUNT_GRPQUOTA 0x00100000
95 #define F2FS_MOUNT_PRJQUOTA 0x00200000
96 #define F2FS_MOUNT_QUOTA 0x00400000
97 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
98 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000
99 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000
100 #define F2FS_MOUNT_NORECOVERY 0x04000000
101 #define F2FS_MOUNT_ATGC 0x08000000
102 #define F2FS_MOUNT_GC_MERGE 0x20000000
103
104 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
105 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
106 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
107 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
108
109 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
110 typecheck(unsigned long long, b) && \
111 ((long long)((a) - (b)) > 0))
112
113 typedef u32 block_t; /*
114 * should not change u32, since it is the on-disk block
115 * address format, __le32.
116 */
117 typedef u32 nid_t;
118
119 #define COMPRESS_EXT_NUM 16
120
121 struct f2fs_mount_info {
122 unsigned int opt;
123 int write_io_size_bits; /* Write IO size bits */
124 block_t root_reserved_blocks; /* root reserved blocks */
125 kuid_t s_resuid; /* reserved blocks for uid */
126 kgid_t s_resgid; /* reserved blocks for gid */
127 int active_logs; /* # of active logs */
128 int inline_xattr_size; /* inline xattr size */
129 #ifdef CONFIG_F2FS_FAULT_INJECTION
130 struct f2fs_fault_info fault_info; /* For fault injection */
131 #endif
132 #ifdef CONFIG_QUOTA
133 /* Names of quota files with journalled quota */
134 char *s_qf_names[MAXQUOTAS];
135 int s_jquota_fmt; /* Format of quota to use */
136 #endif
137 /* For which write hints are passed down to block layer */
138 int whint_mode;
139 int alloc_mode; /* segment allocation policy */
140 int fsync_mode; /* fsync policy */
141 int fs_mode; /* fs mode: LFS or ADAPTIVE */
142 int bggc_mode; /* bggc mode: off, on or sync */
143 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
144 block_t unusable_cap_perc; /* percentage for cap */
145 block_t unusable_cap; /* Amount of space allowed to be
146 * unusable when disabling checkpoint
147 */
148
149 /* For compression */
150 unsigned char compress_algorithm; /* algorithm type */
151 unsigned compress_log_size; /* cluster log size */
152 unsigned char compress_ext_cnt; /* extension count */
153 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
154 };
155
156 #define F2FS_FEATURE_ENCRYPT 0x0001
157 #define F2FS_FEATURE_BLKZONED 0x0002
158 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
159 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
160 #define F2FS_FEATURE_PRJQUOTA 0x0010
161 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
162 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
163 #define F2FS_FEATURE_QUOTA_INO 0x0080
164 #define F2FS_FEATURE_INODE_CRTIME 0x0100
165 #define F2FS_FEATURE_LOST_FOUND 0x0200
166 #define F2FS_FEATURE_VERITY 0x0400
167 #define F2FS_FEATURE_SB_CHKSUM 0x0800
168 #define F2FS_FEATURE_CASEFOLD 0x1000
169 #define F2FS_FEATURE_COMPRESSION 0x2000
170
171 #define __F2FS_HAS_FEATURE(raw_super, mask) \
172 ((raw_super->feature & cpu_to_le32(mask)) != 0)
173 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
174 #define F2FS_SET_FEATURE(sbi, mask) \
175 (sbi->raw_super->feature |= cpu_to_le32(mask))
176 #define F2FS_CLEAR_FEATURE(sbi, mask) \
177 (sbi->raw_super->feature &= ~cpu_to_le32(mask))
178
179 /*
180 * Default values for user and/or group using reserved blocks
181 */
182 #define F2FS_DEF_RESUID 0
183 #define F2FS_DEF_RESGID 0
184
185 /*
186 * For checkpoint manager
187 */
188 enum {
189 NAT_BITMAP,
190 SIT_BITMAP
191 };
192
193 #define CP_UMOUNT 0x00000001
194 #define CP_FASTBOOT 0x00000002
195 #define CP_SYNC 0x00000004
196 #define CP_RECOVERY 0x00000008
197 #define CP_DISCARD 0x00000010
198 #define CP_TRIMMED 0x00000020
199 #define CP_PAUSE 0x00000040
200 #define CP_RESIZE 0x00000080
201
202 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
203 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
204 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
205 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
206 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
207 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
208 #define DEF_CP_INTERVAL 60 /* 60 secs */
209 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
210 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
211 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
212 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
213
214 struct cp_control {
215 int reason;
216 __u64 trim_start;
217 __u64 trim_end;
218 __u64 trim_minlen;
219 };
220
221 /*
222 * indicate meta/data type
223 */
224 enum {
225 META_CP,
226 META_NAT,
227 META_SIT,
228 META_SSA,
229 META_MAX,
230 META_POR,
231 DATA_GENERIC, /* check range only */
232 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
233 DATA_GENERIC_ENHANCE_READ, /*
234 * strong check on range and segment
235 * bitmap but no warning due to race
236 * condition of read on truncated area
237 * by extent_cache
238 */
239 DATA_GENERIC_ENHANCE_UPDATE, /*
240 * strong check on range and segment
241 * bitmap for update case
242 */
243 META_GENERIC,
244 };
245
246 /* for the list of ino */
247 enum {
248 ORPHAN_INO, /* for orphan ino list */
249 APPEND_INO, /* for append ino list */
250 UPDATE_INO, /* for update ino list */
251 TRANS_DIR_INO, /* for trasactions dir ino list */
252 FLUSH_INO, /* for multiple device flushing */
253 MAX_INO_ENTRY, /* max. list */
254 };
255
256 struct ino_entry {
257 struct list_head list; /* list head */
258 nid_t ino; /* inode number */
259 unsigned int dirty_device; /* dirty device bitmap */
260 };
261
262 /* for the list of inodes to be GCed */
263 struct inode_entry {
264 struct list_head list; /* list head */
265 struct inode *inode; /* vfs inode pointer */
266 };
267
268 struct fsync_node_entry {
269 struct list_head list; /* list head */
270 struct page *page; /* warm node page pointer */
271 unsigned int seq_id; /* sequence id */
272 };
273
274 /* for the bitmap indicate blocks to be discarded */
275 struct discard_entry {
276 struct list_head list; /* list head */
277 block_t start_blkaddr; /* start blockaddr of current segment */
278 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
279 };
280
281 /* default discard granularity of inner discard thread, unit: block count */
282 #define DEFAULT_DISCARD_GRANULARITY 16
283 #define DISCARD_GRAN_BL 16
284 #define DISCARD_GRAN_BG 512
285 #define DISCARD_GRAN_FORCE 1
286
287 /* max discard pend list number */
288 #define MAX_PLIST_NUM 512
289 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
290 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
291 #define FS_FREE_SPACE_PERCENT 20
292 #define DEVICE_FREE_SPACE_PERCENT 10
293 #define HUNDRED_PERCENT 100
294
295 enum {
296 D_PREP, /* initial */
297 D_PARTIAL, /* partially submitted */
298 D_SUBMIT, /* all submitted */
299 D_DONE, /* finished */
300 };
301
302 struct discard_info {
303 block_t lstart; /* logical start address */
304 block_t len; /* length */
305 block_t start; /* actual start address in dev */
306 };
307
308 struct discard_cmd {
309 struct rb_node rb_node; /* rb node located in rb-tree */
310 union {
311 struct {
312 block_t lstart; /* logical start address */
313 block_t len; /* length */
314 block_t start; /* actual start address in dev */
315 };
316 struct discard_info di; /* discard info */
317
318 };
319 struct list_head list; /* command list */
320 struct completion wait; /* compleation */
321 struct block_device *bdev; /* bdev */
322 unsigned short ref; /* reference count */
323 unsigned char state; /* state */
324 unsigned char queued; /* queued discard */
325 int error; /* bio error */
326 spinlock_t lock; /* for state/bio_ref updating */
327 unsigned short bio_ref; /* bio reference count */
328 };
329
330 enum {
331 DPOLICY_BG,
332 DPOLICY_BALANCE,
333 DPOLICY_FORCE,
334 DPOLICY_FSTRIM,
335 DPOLICY_UMOUNT,
336 MAX_DPOLICY,
337 };
338
339 enum {
340 SUB_POLICY_BIG,
341 SUB_POLICY_MID,
342 SUB_POLICY_SMALL,
343 NR_SUB_POLICY,
344 };
345
346 struct discard_sub_policy {
347 unsigned int max_requests;
348 int interval;
349 };
350
351 struct discard_policy {
352 int type; /* type of discard */
353 unsigned int min_interval; /* used for candidates exist */
354 unsigned int mid_interval; /* used for device busy */
355 unsigned int max_interval; /* used for candidates not exist */
356 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
357 bool io_aware; /* issue discard in idle time */
358 bool sync; /* submit discard with REQ_SYNC flag */
359 bool ordered; /* issue discard by lba order */
360 bool timeout; /* discard timeout for put_super */
361 unsigned int granularity; /* discard granularity */
362 struct discard_sub_policy sub_policy[NR_SUB_POLICY];
363 };
364
365 struct discard_cmd_control {
366 struct task_struct *f2fs_issue_discard; /* discard thread */
367 struct list_head entry_list; /* 4KB discard entry list */
368 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
369 struct list_head wait_list; /* store on-flushing entries */
370 struct list_head fstrim_list; /* in-flight discard from fstrim */
371 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
372 unsigned int discard_wake; /* to wake up discard thread */
373 struct mutex cmd_lock;
374 unsigned int nr_discards; /* # of discards in the list */
375 unsigned int max_discards; /* max. discards to be issued */
376 unsigned int discard_granularity; /* discard granularity */
377 unsigned int undiscard_blks; /* # of undiscard blocks */
378 unsigned int next_pos; /* next discard position */
379 atomic_t issued_discard; /* # of issued discard */
380 atomic_t queued_discard; /* # of queued discard */
381 atomic_t discard_cmd_cnt; /* # of cached cmd count */
382 struct rb_root_cached root; /* root of discard rb-tree */
383 bool rbtree_check; /* config for consistence check */
384 int discard_type; /* discard type */
385 };
386
387 /* for the list of fsync inodes, used only during recovery */
388 struct fsync_inode_entry {
389 struct list_head list; /* list head */
390 struct inode *inode; /* vfs inode pointer */
391 block_t blkaddr; /* block address locating the last fsync */
392 block_t last_dentry; /* block address locating the last dentry */
393 };
394
395 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
396 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
397
398 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
399 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
400 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
401 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
402
403 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
404 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
405
update_nats_in_cursum(struct f2fs_journal * journal,int i)406 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
407 {
408 int before = nats_in_cursum(journal);
409
410 journal->n_nats = cpu_to_le16(before + i);
411 return before;
412 }
413
update_sits_in_cursum(struct f2fs_journal * journal,int i)414 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
415 {
416 int before = sits_in_cursum(journal);
417
418 journal->n_sits = cpu_to_le16(before + i);
419 return before;
420 }
421
__has_cursum_space(struct f2fs_journal * journal,int size,int type)422 static inline bool __has_cursum_space(struct f2fs_journal *journal,
423 int size, int type)
424 {
425 if (type == NAT_JOURNAL)
426 return size <= MAX_NAT_JENTRIES(journal);
427 return size <= MAX_SIT_JENTRIES(journal);
428 }
429
430 /* for inline stuff */
431 #define DEF_INLINE_RESERVED_SIZE 1
432 static inline int get_extra_isize(struct inode *inode);
433 static inline int get_inline_xattr_addrs(struct inode *inode);
434 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
435 (CUR_ADDRS_PER_INODE(inode) - \
436 get_inline_xattr_addrs(inode) - \
437 DEF_INLINE_RESERVED_SIZE))
438
439 /* for inline dir */
440 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
441 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
442 BITS_PER_BYTE + 1))
443 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
444 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
445 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
446 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
447 NR_INLINE_DENTRY(inode) + \
448 INLINE_DENTRY_BITMAP_SIZE(inode)))
449
450 /*
451 * For INODE and NODE manager
452 */
453 /* for directory operations */
454
455 struct f2fs_filename {
456 /*
457 * The filename the user specified. This is NULL for some
458 * filesystem-internal operations, e.g. converting an inline directory
459 * to a non-inline one, or roll-forward recovering an encrypted dentry.
460 */
461 const struct qstr *usr_fname;
462
463 /*
464 * The on-disk filename. For encrypted directories, this is encrypted.
465 * This may be NULL for lookups in an encrypted dir without the key.
466 */
467 struct fscrypt_str disk_name;
468
469 /* The dirhash of this filename */
470 f2fs_hash_t hash;
471
472 #ifdef CONFIG_FS_ENCRYPTION
473 /*
474 * For lookups in encrypted directories: either the buffer backing
475 * disk_name, or a buffer that holds the decoded no-key name.
476 */
477 struct fscrypt_str crypto_buf;
478 #endif
479 #ifdef CONFIG_UNICODE
480 /*
481 * For casefolded directories: the casefolded name, but it's left NULL
482 * if the original name is not valid Unicode or if the filesystem is
483 * doing an internal operation where usr_fname is also NULL. In these
484 * cases we fall back to treating the name as an opaque byte sequence.
485 */
486 struct fscrypt_str cf_name;
487 #endif
488 };
489
490 struct f2fs_dentry_ptr {
491 struct inode *inode;
492 void *bitmap;
493 struct f2fs_dir_entry *dentry;
494 __u8 (*filename)[F2FS_SLOT_LEN];
495 int max;
496 int nr_bitmap;
497 };
498
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)499 static inline void make_dentry_ptr_block(struct inode *inode,
500 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
501 {
502 d->inode = inode;
503 d->max = NR_DENTRY_IN_BLOCK;
504 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
505 d->bitmap = t->dentry_bitmap;
506 d->dentry = t->dentry;
507 d->filename = t->filename;
508 }
509
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)510 static inline void make_dentry_ptr_inline(struct inode *inode,
511 struct f2fs_dentry_ptr *d, void *t)
512 {
513 int entry_cnt = NR_INLINE_DENTRY(inode);
514 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
515 int reserved_size = INLINE_RESERVED_SIZE(inode);
516
517 d->inode = inode;
518 d->max = entry_cnt;
519 d->nr_bitmap = bitmap_size;
520 d->bitmap = t;
521 d->dentry = t + bitmap_size + reserved_size;
522 d->filename = t + bitmap_size + reserved_size +
523 SIZE_OF_DIR_ENTRY * entry_cnt;
524 }
525
526 /*
527 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
528 * as its node offset to distinguish from index node blocks.
529 * But some bits are used to mark the node block.
530 */
531 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
532 >> OFFSET_BIT_SHIFT)
533 enum {
534 ALLOC_NODE, /* allocate a new node page if needed */
535 LOOKUP_NODE, /* look up a node without readahead */
536 LOOKUP_NODE_RA, /*
537 * look up a node with readahead called
538 * by get_data_block.
539 */
540 };
541
542 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */
543
544 /* congestion wait timeout value, default: 20ms */
545 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
546
547 /* maximum retry quota flush count */
548 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
549
550 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
551
552 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
553
554 /* for in-memory extent cache entry */
555 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
556
557 /* number of extent info in extent cache we try to shrink */
558 #define EXTENT_CACHE_SHRINK_NUMBER 128
559
560 struct rb_entry {
561 struct rb_node rb_node; /* rb node located in rb-tree */
562 union {
563 struct {
564 unsigned int ofs; /* start offset of the entry */
565 unsigned int len; /* length of the entry */
566 };
567 unsigned long long key; /* 64-bits key */
568 } __packed;
569 };
570
571 struct extent_info {
572 unsigned int fofs; /* start offset in a file */
573 unsigned int len; /* length of the extent */
574 u32 blk; /* start block address of the extent */
575 };
576
577 struct extent_node {
578 struct rb_node rb_node; /* rb node located in rb-tree */
579 struct extent_info ei; /* extent info */
580 struct list_head list; /* node in global extent list of sbi */
581 struct extent_tree *et; /* extent tree pointer */
582 };
583
584 struct extent_tree {
585 nid_t ino; /* inode number */
586 struct rb_root_cached root; /* root of extent info rb-tree */
587 struct extent_node *cached_en; /* recently accessed extent node */
588 struct extent_info largest; /* largested extent info */
589 struct list_head list; /* to be used by sbi->zombie_list */
590 rwlock_t lock; /* protect extent info rb-tree */
591 atomic_t node_cnt; /* # of extent node in rb-tree*/
592 bool largest_updated; /* largest extent updated */
593 };
594
595 /*
596 * This structure is taken from ext4_map_blocks.
597 *
598 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
599 */
600 #define F2FS_MAP_NEW (1 << BH_New)
601 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
602 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
603 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
604 F2FS_MAP_UNWRITTEN)
605
606 struct f2fs_map_blocks {
607 block_t m_pblk;
608 block_t m_lblk;
609 unsigned int m_len;
610 unsigned int m_flags;
611 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
612 pgoff_t *m_next_extent; /* point to next possible extent */
613 int m_seg_type;
614 bool m_may_create; /* indicate it is from write path */
615 };
616
617 /* for flag in get_data_block */
618 enum {
619 F2FS_GET_BLOCK_DEFAULT,
620 F2FS_GET_BLOCK_FIEMAP,
621 F2FS_GET_BLOCK_BMAP,
622 F2FS_GET_BLOCK_DIO,
623 F2FS_GET_BLOCK_PRE_DIO,
624 F2FS_GET_BLOCK_PRE_AIO,
625 F2FS_GET_BLOCK_PRECACHE,
626 };
627
628 /*
629 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
630 */
631 #define FADVISE_COLD_BIT 0x01
632 #define FADVISE_LOST_PINO_BIT 0x02
633 #define FADVISE_ENCRYPT_BIT 0x04
634 #define FADVISE_ENC_NAME_BIT 0x08
635 #define FADVISE_KEEP_SIZE_BIT 0x10
636 #define FADVISE_HOT_BIT 0x20
637 #define FADVISE_VERITY_BIT 0x40
638
639 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
640
641 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
642 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
643 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
644 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
645 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
646 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
647 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
648 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
649 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
650 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
651 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
652 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
653 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
654 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
655 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
656 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
657 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
658 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
659
660 #define DEF_DIR_LEVEL 0
661
662 enum {
663 GC_FAILURE_PIN,
664 GC_FAILURE_ATOMIC,
665 MAX_GC_FAILURE
666 };
667
668 /* used for f2fs_inode_info->flags */
669 enum {
670 FI_NEW_INODE, /* indicate newly allocated inode */
671 FI_DIRTY_INODE, /* indicate inode is dirty or not */
672 FI_AUTO_RECOVER, /* indicate inode is recoverable */
673 FI_DIRTY_DIR, /* indicate directory has dirty pages */
674 FI_INC_LINK, /* need to increment i_nlink */
675 FI_ACL_MODE, /* indicate acl mode */
676 FI_NO_ALLOC, /* should not allocate any blocks */
677 FI_FREE_NID, /* free allocated nide */
678 FI_NO_EXTENT, /* not to use the extent cache */
679 FI_INLINE_XATTR, /* used for inline xattr */
680 FI_INLINE_DATA, /* used for inline data*/
681 FI_INLINE_DENTRY, /* used for inline dentry */
682 FI_APPEND_WRITE, /* inode has appended data */
683 FI_UPDATE_WRITE, /* inode has in-place-update data */
684 FI_NEED_IPU, /* used for ipu per file */
685 FI_ATOMIC_FILE, /* indicate atomic file */
686 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
687 FI_VOLATILE_FILE, /* indicate volatile file */
688 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
689 FI_DROP_CACHE, /* drop dirty page cache */
690 FI_DATA_EXIST, /* indicate data exists */
691 FI_INLINE_DOTS, /* indicate inline dot dentries */
692 FI_DO_DEFRAG, /* indicate defragment is running */
693 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
694 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
695 FI_HOT_DATA, /* indicate file is hot */
696 FI_EXTRA_ATTR, /* indicate file has extra attribute */
697 FI_PROJ_INHERIT, /* indicate file inherits projectid */
698 FI_PIN_FILE, /* indicate file should not be gced */
699 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
700 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
701 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
702 FI_MMAP_FILE, /* indicate file was mmapped */
703 FI_MAX, /* max flag, never be used */
704 };
705
706 struct f2fs_inode_info {
707 struct inode vfs_inode; /* serve a vfs inode */
708 unsigned long i_flags; /* keep an inode flags for ioctl */
709 unsigned char i_advise; /* use to give file attribute hints */
710 unsigned char i_dir_level; /* use for dentry level for large dir */
711 unsigned int i_current_depth; /* only for directory depth */
712 /* for gc failure statistic */
713 unsigned int i_gc_failures[MAX_GC_FAILURE];
714 unsigned int i_pino; /* parent inode number */
715 umode_t i_acl_mode; /* keep file acl mode temporarily */
716
717 /* Use below internally in f2fs*/
718 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
719 struct rw_semaphore i_sem; /* protect fi info */
720 atomic_t dirty_pages; /* # of dirty pages */
721 f2fs_hash_t chash; /* hash value of given file name */
722 unsigned int clevel; /* maximum level of given file name */
723 struct task_struct *task; /* lookup and create consistency */
724 struct task_struct *cp_task; /* separate cp/wb IO stats*/
725 struct task_struct *wb_task; /* indicate inode is in context of writeback */
726 nid_t i_xattr_nid; /* node id that contains xattrs */
727 loff_t last_disk_size; /* lastly written file size */
728 spinlock_t i_size_lock; /* protect last_disk_size */
729
730 #ifdef CONFIG_QUOTA
731 struct dquot *i_dquot[MAXQUOTAS];
732
733 /* quota space reservation, managed internally by quota code */
734 qsize_t i_reserved_quota;
735 #endif
736 struct list_head dirty_list; /* dirty list for dirs and files */
737 struct list_head gdirty_list; /* linked in global dirty list */
738 struct list_head inmem_ilist; /* list for inmem inodes */
739 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
740 struct task_struct *inmem_task; /* store inmemory task */
741 struct mutex inmem_lock; /* lock for inmemory pages */
742 pgoff_t ra_offset; /* ongoing readahead offset */
743 struct extent_tree *extent_tree; /* cached extent_tree entry */
744
745 /* avoid racing between foreground op and gc */
746 struct rw_semaphore i_gc_rwsem[2];
747 struct rw_semaphore i_mmap_sem;
748 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
749
750 int i_extra_isize; /* size of extra space located in i_addr */
751 kprojid_t i_projid; /* id for project quota */
752 int i_inline_xattr_size; /* inline xattr size */
753 struct timespec64 i_crtime; /* inode creation time */
754 struct timespec64 i_disk_time[4];/* inode disk times */
755
756 /* for file compress */
757 atomic_t i_compr_blocks; /* # of compressed blocks */
758 unsigned char i_compress_algorithm; /* algorithm type */
759 unsigned char i_log_cluster_size; /* log of cluster size */
760 unsigned int i_cluster_size; /* cluster size */
761 };
762
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)763 static inline void get_extent_info(struct extent_info *ext,
764 struct f2fs_extent *i_ext)
765 {
766 ext->fofs = le32_to_cpu(i_ext->fofs);
767 ext->blk = le32_to_cpu(i_ext->blk);
768 ext->len = le32_to_cpu(i_ext->len);
769 }
770
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)771 static inline void set_raw_extent(struct extent_info *ext,
772 struct f2fs_extent *i_ext)
773 {
774 i_ext->fofs = cpu_to_le32(ext->fofs);
775 i_ext->blk = cpu_to_le32(ext->blk);
776 i_ext->len = cpu_to_le32(ext->len);
777 }
778
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)779 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
780 u32 blk, unsigned int len)
781 {
782 ei->fofs = fofs;
783 ei->blk = blk;
784 ei->len = len;
785 }
786
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)787 static inline bool __is_discard_mergeable(struct discard_info *back,
788 struct discard_info *front, unsigned int max_len)
789 {
790 return (back->lstart + back->len == front->lstart) &&
791 (back->len + front->len <= max_len);
792 }
793
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)794 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
795 struct discard_info *back, unsigned int max_len)
796 {
797 return __is_discard_mergeable(back, cur, max_len);
798 }
799
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)800 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
801 struct discard_info *front, unsigned int max_len)
802 {
803 return __is_discard_mergeable(cur, front, max_len);
804 }
805
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)806 static inline bool __is_extent_mergeable(struct extent_info *back,
807 struct extent_info *front)
808 {
809 return (back->fofs + back->len == front->fofs &&
810 back->blk + back->len == front->blk);
811 }
812
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)813 static inline bool __is_back_mergeable(struct extent_info *cur,
814 struct extent_info *back)
815 {
816 return __is_extent_mergeable(back, cur);
817 }
818
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)819 static inline bool __is_front_mergeable(struct extent_info *cur,
820 struct extent_info *front)
821 {
822 return __is_extent_mergeable(cur, front);
823 }
824
825 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct extent_tree * et,struct extent_node * en)826 static inline void __try_update_largest_extent(struct extent_tree *et,
827 struct extent_node *en)
828 {
829 if (en->ei.len > et->largest.len) {
830 et->largest = en->ei;
831 et->largest_updated = true;
832 }
833 }
834
835 /*
836 * For free nid management
837 */
838 enum nid_state {
839 FREE_NID, /* newly added to free nid list */
840 PREALLOC_NID, /* it is preallocated */
841 MAX_NID_STATE,
842 };
843
844 enum nat_state {
845 TOTAL_NAT,
846 DIRTY_NAT,
847 RECLAIMABLE_NAT,
848 MAX_NAT_STATE,
849 };
850
851 struct f2fs_nm_info {
852 block_t nat_blkaddr; /* base disk address of NAT */
853 nid_t max_nid; /* maximum possible node ids */
854 nid_t available_nids; /* # of available node ids */
855 nid_t next_scan_nid; /* the next nid to be scanned */
856 unsigned int ram_thresh; /* control the memory footprint */
857 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
858 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
859
860 /* NAT cache management */
861 struct radix_tree_root nat_root;/* root of the nat entry cache */
862 struct radix_tree_root nat_set_root;/* root of the nat set cache */
863 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
864 struct list_head nat_entries; /* cached nat entry list (clean) */
865 spinlock_t nat_list_lock; /* protect clean nat entry list */
866 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
867 unsigned int nat_blocks; /* # of nat blocks */
868
869 /* free node ids management */
870 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
871 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
872 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
873 spinlock_t nid_list_lock; /* protect nid lists ops */
874 struct mutex build_lock; /* lock for build free nids */
875 unsigned char **free_nid_bitmap;
876 unsigned char *nat_block_bitmap;
877 unsigned short *free_nid_count; /* free nid count of NAT block */
878
879 /* for checkpoint */
880 char *nat_bitmap; /* NAT bitmap pointer */
881
882 unsigned int nat_bits_blocks; /* # of nat bits blocks */
883 unsigned char *nat_bits; /* NAT bits blocks */
884 unsigned char *full_nat_bits; /* full NAT pages */
885 unsigned char *empty_nat_bits; /* empty NAT pages */
886 #ifdef CONFIG_F2FS_CHECK_FS
887 char *nat_bitmap_mir; /* NAT bitmap mirror */
888 #endif
889 int bitmap_size; /* bitmap size */
890 };
891
892 /*
893 * this structure is used as one of function parameters.
894 * all the information are dedicated to a given direct node block determined
895 * by the data offset in a file.
896 */
897 struct dnode_of_data {
898 struct inode *inode; /* vfs inode pointer */
899 struct page *inode_page; /* its inode page, NULL is possible */
900 struct page *node_page; /* cached direct node page */
901 nid_t nid; /* node id of the direct node block */
902 unsigned int ofs_in_node; /* data offset in the node page */
903 bool inode_page_locked; /* inode page is locked or not */
904 bool node_changed; /* is node block changed */
905 char cur_level; /* level of hole node page */
906 char max_level; /* level of current page located */
907 block_t data_blkaddr; /* block address of the node block */
908 };
909
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)910 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
911 struct page *ipage, struct page *npage, nid_t nid)
912 {
913 memset(dn, 0, sizeof(*dn));
914 dn->inode = inode;
915 dn->inode_page = ipage;
916 dn->node_page = npage;
917 dn->nid = nid;
918 }
919
920 /*
921 * For SIT manager
922 *
923 * By default, there are 6 active log areas across the whole main area.
924 * When considering hot and cold data separation to reduce cleaning overhead,
925 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
926 * respectively.
927 * In the current design, you should not change the numbers intentionally.
928 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
929 * logs individually according to the underlying devices. (default: 6)
930 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
931 * data and 8 for node logs.
932 */
933 #define NR_CURSEG_DATA_TYPE (3)
934 #define NR_CURSEG_NODE_TYPE (3)
935 #define NR_CURSEG_INMEM_TYPE (2)
936 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
937 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
938
939 enum {
940 CURSEG_HOT_DATA = 0, /* directory entry blocks */
941 CURSEG_WARM_DATA, /* data blocks */
942 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
943 CURSEG_HOT_NODE, /* direct node blocks of directory files */
944 CURSEG_WARM_NODE, /* direct node blocks of normal files */
945 CURSEG_COLD_NODE, /* indirect node blocks */
946 NR_PERSISTENT_LOG, /* number of persistent log */
947 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
948 /* pinned file that needs consecutive block address */
949 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
950 NO_CHECK_TYPE, /* number of persistent & inmem log */
951 };
952
953 struct flush_cmd {
954 struct completion wait;
955 struct llist_node llnode;
956 nid_t ino;
957 int ret;
958 };
959
960 struct flush_cmd_control {
961 struct task_struct *f2fs_issue_flush; /* flush thread */
962 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
963 atomic_t issued_flush; /* # of issued flushes */
964 atomic_t queued_flush; /* # of queued flushes */
965 struct llist_head issue_list; /* list for command issue */
966 struct llist_node *dispatch_list; /* list for command dispatch */
967 };
968
969 struct f2fs_sm_info {
970 struct sit_info *sit_info; /* whole segment information */
971 struct free_segmap_info *free_info; /* free segment information */
972 struct dirty_seglist_info *dirty_info; /* dirty segment information */
973 struct curseg_info *curseg_array; /* active segment information */
974
975 struct rw_semaphore curseg_lock; /* for preventing curseg change */
976
977 block_t seg0_blkaddr; /* block address of 0'th segment */
978 block_t main_blkaddr; /* start block address of main area */
979 block_t ssa_blkaddr; /* start block address of SSA area */
980
981 unsigned int segment_count; /* total # of segments */
982 unsigned int main_segments; /* # of segments in main area */
983 unsigned int reserved_segments; /* # of reserved segments */
984 unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
985 unsigned int ovp_segments; /* # of overprovision segments */
986
987 /* a threshold to reclaim prefree segments */
988 unsigned int rec_prefree_segments;
989
990 /* for batched trimming */
991 unsigned int trim_sections; /* # of sections to trim */
992
993 struct list_head sit_entry_set; /* sit entry set list */
994
995 unsigned int ipu_policy; /* in-place-update policy */
996 unsigned int min_ipu_util; /* in-place-update threshold */
997 unsigned int min_fsync_blocks; /* threshold for fsync */
998 unsigned int min_seq_blocks; /* threshold for sequential blocks */
999 unsigned int min_hot_blocks; /* threshold for hot block allocation */
1000 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
1001
1002 /* for flush command control */
1003 struct flush_cmd_control *fcc_info;
1004
1005 /* for discard command control */
1006 struct discard_cmd_control *dcc_info;
1007 };
1008
1009 /*
1010 * For superblock
1011 */
1012 /*
1013 * COUNT_TYPE for monitoring
1014 *
1015 * f2fs monitors the number of several block types such as on-writeback,
1016 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1017 */
1018 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1019 enum count_type {
1020 F2FS_DIRTY_DENTS,
1021 F2FS_DIRTY_DATA,
1022 F2FS_DIRTY_QDATA,
1023 F2FS_DIRTY_NODES,
1024 F2FS_DIRTY_META,
1025 F2FS_INMEM_PAGES,
1026 F2FS_DIRTY_IMETA,
1027 F2FS_WB_CP_DATA,
1028 F2FS_WB_DATA,
1029 F2FS_RD_DATA,
1030 F2FS_RD_NODE,
1031 F2FS_RD_META,
1032 F2FS_DIO_WRITE,
1033 F2FS_DIO_READ,
1034 NR_COUNT_TYPE,
1035 };
1036
1037 /*
1038 * The below are the page types of bios used in submit_bio().
1039 * The available types are:
1040 * DATA User data pages. It operates as async mode.
1041 * NODE Node pages. It operates as async mode.
1042 * META FS metadata pages such as SIT, NAT, CP.
1043 * NR_PAGE_TYPE The number of page types.
1044 * META_FLUSH Make sure the previous pages are written
1045 * with waiting the bio's completion
1046 * ... Only can be used with META.
1047 */
1048 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1049 enum page_type {
1050 DATA = 0,
1051 NODE = 1, /* should not change this */
1052 META,
1053 NR_PAGE_TYPE,
1054 META_FLUSH,
1055 INMEM, /* the below types are used by tracepoints only. */
1056 INMEM_DROP,
1057 INMEM_INVALIDATE,
1058 INMEM_REVOKE,
1059 IPU,
1060 OPU,
1061 };
1062
1063 enum temp_type {
1064 HOT = 0, /* must be zero for meta bio */
1065 WARM,
1066 COLD,
1067 NR_TEMP_TYPE,
1068 };
1069
1070 enum need_lock_type {
1071 LOCK_REQ = 0,
1072 LOCK_DONE,
1073 LOCK_RETRY,
1074 };
1075
1076 enum cp_reason_type {
1077 CP_NO_NEEDED,
1078 CP_NON_REGULAR,
1079 CP_COMPRESSED,
1080 CP_HARDLINK,
1081 CP_SB_NEED_CP,
1082 CP_WRONG_PINO,
1083 CP_NO_SPC_ROLL,
1084 CP_NODE_NEED_CP,
1085 CP_FASTBOOT_MODE,
1086 CP_SPEC_LOG_NUM,
1087 CP_RECOVER_DIR,
1088 };
1089
1090 enum iostat_type {
1091 /* WRITE IO */
1092 APP_DIRECT_IO, /* app direct write IOs */
1093 APP_BUFFERED_IO, /* app buffered write IOs */
1094 APP_WRITE_IO, /* app write IOs */
1095 APP_MAPPED_IO, /* app mapped IOs */
1096 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1097 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1098 FS_META_IO, /* meta IOs from kworker/reclaimer */
1099 FS_GC_DATA_IO, /* data IOs from forground gc */
1100 FS_GC_NODE_IO, /* node IOs from forground gc */
1101 FS_CP_DATA_IO, /* data IOs from checkpoint */
1102 FS_CP_NODE_IO, /* node IOs from checkpoint */
1103 FS_CP_META_IO, /* meta IOs from checkpoint */
1104
1105 /* READ IO */
1106 APP_DIRECT_READ_IO, /* app direct read IOs */
1107 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1108 APP_READ_IO, /* app read IOs */
1109 APP_MAPPED_READ_IO, /* app mapped read IOs */
1110 FS_DATA_READ_IO, /* data read IOs */
1111 FS_GDATA_READ_IO, /* data read IOs from background gc */
1112 FS_CDATA_READ_IO, /* compressed data read IOs */
1113 FS_NODE_READ_IO, /* node read IOs */
1114 FS_META_READ_IO, /* meta read IOs */
1115
1116 /* other */
1117 FS_DISCARD, /* discard */
1118 NR_IO_TYPE,
1119 };
1120
1121 struct f2fs_io_info {
1122 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1123 nid_t ino; /* inode number */
1124 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1125 enum temp_type temp; /* contains HOT/WARM/COLD */
1126 int op; /* contains REQ_OP_ */
1127 int op_flags; /* req_flag_bits */
1128 block_t new_blkaddr; /* new block address to be written */
1129 block_t old_blkaddr; /* old block address before Cow */
1130 struct page *page; /* page to be written */
1131 struct page *encrypted_page; /* encrypted page */
1132 struct page *compressed_page; /* compressed page */
1133 struct list_head list; /* serialize IOs */
1134 bool submitted; /* indicate IO submission */
1135 int need_lock; /* indicate we need to lock cp_rwsem */
1136 bool in_list; /* indicate fio is in io_list */
1137 bool is_por; /* indicate IO is from recovery or not */
1138 bool retry; /* need to reallocate block address */
1139 int compr_blocks; /* # of compressed block addresses */
1140 bool encrypted; /* indicate file is encrypted */
1141 enum iostat_type io_type; /* io type */
1142 struct writeback_control *io_wbc; /* writeback control */
1143 struct bio **bio; /* bio for ipu */
1144 sector_t *last_block; /* last block number in bio */
1145 unsigned char version; /* version of the node */
1146 };
1147
1148 struct bio_entry {
1149 struct bio *bio;
1150 struct list_head list;
1151 };
1152
1153 #define is_read_io(rw) ((rw) == READ)
1154 struct f2fs_bio_info {
1155 struct f2fs_sb_info *sbi; /* f2fs superblock */
1156 struct bio *bio; /* bios to merge */
1157 sector_t last_block_in_bio; /* last block number */
1158 struct f2fs_io_info fio; /* store buffered io info. */
1159 struct rw_semaphore io_rwsem; /* blocking op for bio */
1160 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1161 struct list_head io_list; /* track fios */
1162 struct list_head bio_list; /* bio entry list head */
1163 struct rw_semaphore bio_list_lock; /* lock to protect bio entry list */
1164 };
1165
1166 #define FDEV(i) (sbi->devs[i])
1167 #define RDEV(i) (raw_super->devs[i])
1168 struct f2fs_dev_info {
1169 struct block_device *bdev;
1170 char path[MAX_PATH_LEN];
1171 unsigned int total_segments;
1172 block_t start_blk;
1173 block_t end_blk;
1174 #ifdef CONFIG_BLK_DEV_ZONED
1175 unsigned int nr_blkz; /* Total number of zones */
1176 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1177 #endif
1178 };
1179
1180 enum inode_type {
1181 DIR_INODE, /* for dirty dir inode */
1182 FILE_INODE, /* for dirty regular/symlink inode */
1183 DIRTY_META, /* for all dirtied inode metadata */
1184 ATOMIC_FILE, /* for all atomic files */
1185 NR_INODE_TYPE,
1186 };
1187
1188 /* for inner inode cache management */
1189 struct inode_management {
1190 struct radix_tree_root ino_root; /* ino entry array */
1191 spinlock_t ino_lock; /* for ino entry lock */
1192 struct list_head ino_list; /* inode list head */
1193 unsigned long ino_num; /* number of entries */
1194 };
1195
1196 /* for GC_AT */
1197 struct atgc_management {
1198 bool atgc_enabled; /* ATGC is enabled or not */
1199 struct rb_root_cached root; /* root of victim rb-tree */
1200 struct list_head victim_list; /* linked with all victim entries */
1201 unsigned int victim_count; /* victim count in rb-tree */
1202 unsigned int candidate_ratio; /* candidate ratio */
1203 unsigned int max_candidate_count; /* max candidate count */
1204 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1205 unsigned long long age_threshold; /* age threshold */
1206 };
1207
1208 /* For s_flag in struct f2fs_sb_info */
1209 enum {
1210 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1211 SBI_IS_CLOSE, /* specify unmounting */
1212 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1213 SBI_POR_DOING, /* recovery is doing or not */
1214 SBI_NEED_SB_WRITE, /* need to recover superblock */
1215 SBI_NEED_CP, /* need to checkpoint */
1216 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1217 SBI_IS_RECOVERED, /* recovered orphan/data */
1218 SBI_CP_DISABLED, /* CP was disabled last mount */
1219 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1220 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1221 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1222 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1223 SBI_IS_RESIZEFS, /* resizefs is in process */
1224 };
1225
1226 enum {
1227 CP_TIME,
1228 REQ_TIME,
1229 DISCARD_TIME,
1230 GC_TIME,
1231 DISABLE_TIME,
1232 UMOUNT_DISCARD_TIMEOUT,
1233 MAX_TIME,
1234 };
1235
1236 enum {
1237 GC_NORMAL,
1238 GC_IDLE_CB,
1239 GC_IDLE_GREEDY,
1240 GC_IDLE_AT,
1241 GC_URGENT_HIGH,
1242 GC_URGENT_LOW,
1243 };
1244
1245 enum {
1246 BGGC_MODE_ON, /* background gc is on */
1247 BGGC_MODE_OFF, /* background gc is off */
1248 BGGC_MODE_SYNC, /*
1249 * background gc is on, migrating blocks
1250 * like foreground gc
1251 */
1252 };
1253
1254 enum {
1255 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1256 FS_MODE_LFS, /* use lfs allocation only */
1257 };
1258
1259 enum {
1260 WHINT_MODE_OFF, /* not pass down write hints */
1261 WHINT_MODE_USER, /* try to pass down hints given by users */
1262 WHINT_MODE_FS, /* pass down hints with F2FS policy */
1263 };
1264
1265 enum {
1266 ALLOC_MODE_DEFAULT, /* stay default */
1267 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1268 };
1269
1270 enum fsync_mode {
1271 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1272 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1273 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1274 };
1275
1276 /*
1277 * this value is set in page as a private data which indicate that
1278 * the page is atomically written, and it is in inmem_pages list.
1279 */
1280 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
1281 #define DUMMY_WRITTEN_PAGE ((unsigned long)-2)
1282
1283 #define IS_ATOMIC_WRITTEN_PAGE(page) \
1284 (page_private(page) == ATOMIC_WRITTEN_PAGE)
1285 #define IS_DUMMY_WRITTEN_PAGE(page) \
1286 (page_private(page) == DUMMY_WRITTEN_PAGE)
1287
1288 #ifdef CONFIG_F2FS_IO_TRACE
1289 #define IS_IO_TRACED_PAGE(page) \
1290 (page_private(page) > 0 && \
1291 page_private(page) < (unsigned long)PID_MAX_LIMIT)
1292 #else
1293 #define IS_IO_TRACED_PAGE(page) (0)
1294 #endif
1295
1296 /* For compression */
1297 enum compress_algorithm_type {
1298 COMPRESS_LZO,
1299 COMPRESS_LZ4,
1300 COMPRESS_ZSTD,
1301 COMPRESS_LZORLE,
1302 COMPRESS_MAX,
1303 };
1304
1305 #define COMPRESS_DATA_RESERVED_SIZE 5
1306 struct compress_data {
1307 __le32 clen; /* compressed data size */
1308 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1309 u8 cdata[]; /* compressed data */
1310 };
1311
1312 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1313
1314 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1315
1316 /* compress context */
1317 struct compress_ctx {
1318 struct inode *inode; /* inode the context belong to */
1319 pgoff_t cluster_idx; /* cluster index number */
1320 unsigned int cluster_size; /* page count in cluster */
1321 unsigned int log_cluster_size; /* log of cluster size */
1322 struct page **rpages; /* pages store raw data in cluster */
1323 unsigned int nr_rpages; /* total page number in rpages */
1324 struct page **cpages; /* pages store compressed data in cluster */
1325 unsigned int nr_cpages; /* total page number in cpages */
1326 void *rbuf; /* virtual mapped address on rpages */
1327 struct compress_data *cbuf; /* virtual mapped address on cpages */
1328 size_t rlen; /* valid data length in rbuf */
1329 size_t clen; /* valid data length in cbuf */
1330 void *private; /* payload buffer for specified compression algorithm */
1331 void *private2; /* extra payload buffer */
1332 };
1333
1334 /* compress context for write IO path */
1335 struct compress_io_ctx {
1336 u32 magic; /* magic number to indicate page is compressed */
1337 struct inode *inode; /* inode the context belong to */
1338 struct page **rpages; /* pages store raw data in cluster */
1339 unsigned int nr_rpages; /* total page number in rpages */
1340 atomic_t pending_pages; /* in-flight compressed page count */
1341 };
1342
1343 /* decompress io context for read IO path */
1344 struct decompress_io_ctx {
1345 u32 magic; /* magic number to indicate page is compressed */
1346 struct inode *inode; /* inode the context belong to */
1347 pgoff_t cluster_idx; /* cluster index number */
1348 unsigned int cluster_size; /* page count in cluster */
1349 unsigned int log_cluster_size; /* log of cluster size */
1350 struct page **rpages; /* pages store raw data in cluster */
1351 unsigned int nr_rpages; /* total page number in rpages */
1352 struct page **cpages; /* pages store compressed data in cluster */
1353 unsigned int nr_cpages; /* total page number in cpages */
1354 struct page **tpages; /* temp pages to pad holes in cluster */
1355 void *rbuf; /* virtual mapped address on rpages */
1356 struct compress_data *cbuf; /* virtual mapped address on cpages */
1357 size_t rlen; /* valid data length in rbuf */
1358 size_t clen; /* valid data length in cbuf */
1359 atomic_t pending_pages; /* in-flight compressed page count */
1360 atomic_t verity_pages; /* in-flight page count for verity */
1361 bool failed; /* indicate IO error during decompression */
1362 void *private; /* payload buffer for specified decompression algorithm */
1363 void *private2; /* extra payload buffer */
1364 };
1365
1366 #define NULL_CLUSTER ((unsigned int)(~0))
1367 #define MIN_COMPRESS_LOG_SIZE 2
1368 #define MAX_COMPRESS_LOG_SIZE 8
1369 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1370
1371 #ifdef CONFIG_F2FS_GRADING_SSR
1372 struct f2fs_hot_cold_params {
1373 unsigned int enable;
1374 unsigned int hot_data_lower_limit;
1375 unsigned int hot_data_waterline;
1376 unsigned int warm_data_lower_limit;
1377 unsigned int warm_data_waterline;
1378 unsigned int hot_node_lower_limit;
1379 unsigned int hot_node_waterline;
1380 unsigned int warm_node_lower_limit;
1381 unsigned int warm_node_waterline;
1382 };
1383 #endif
1384
1385 struct f2fs_sb_info {
1386 struct super_block *sb; /* pointer to VFS super block */
1387 struct proc_dir_entry *s_proc; /* proc entry */
1388 struct f2fs_super_block *raw_super; /* raw super block pointer */
1389 struct rw_semaphore sb_lock; /* lock for raw super block */
1390 int valid_super_block; /* valid super block no */
1391 unsigned long s_flag; /* flags for sbi */
1392 struct mutex writepages; /* mutex for writepages() */
1393
1394 #ifdef CONFIG_BLK_DEV_ZONED
1395 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1396 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1397 #endif
1398
1399 /* for node-related operations */
1400 struct f2fs_nm_info *nm_info; /* node manager */
1401 struct inode *node_inode; /* cache node blocks */
1402
1403 /* for segment-related operations */
1404 struct f2fs_sm_info *sm_info; /* segment manager */
1405
1406 /* for bio operations */
1407 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1408 /* keep migration IO order for LFS mode */
1409 struct rw_semaphore io_order_lock;
1410 mempool_t *write_io_dummy; /* Dummy pages */
1411
1412 /* for checkpoint */
1413 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1414 int cur_cp_pack; /* remain current cp pack */
1415 spinlock_t cp_lock; /* for flag in ckpt */
1416 struct inode *meta_inode; /* cache meta blocks */
1417 struct mutex cp_mutex; /* checkpoint procedure lock */
1418 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1419 struct rw_semaphore node_write; /* locking node writes */
1420 struct rw_semaphore node_change; /* locking node change */
1421 wait_queue_head_t cp_wait;
1422 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1423 long interval_time[MAX_TIME]; /* to store thresholds */
1424
1425 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1426
1427 spinlock_t fsync_node_lock; /* for node entry lock */
1428 struct list_head fsync_node_list; /* node list head */
1429 unsigned int fsync_seg_id; /* sequence id */
1430 unsigned int fsync_node_num; /* number of node entries */
1431
1432 /* for orphan inode, use 0'th array */
1433 unsigned int max_orphans; /* max orphan inodes */
1434
1435 /* for inode management */
1436 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1437 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1438 struct mutex flush_lock; /* for flush exclusion */
1439
1440 /* for extent tree cache */
1441 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1442 struct mutex extent_tree_lock; /* locking extent radix tree */
1443 struct list_head extent_list; /* lru list for shrinker */
1444 spinlock_t extent_lock; /* locking extent lru list */
1445 atomic_t total_ext_tree; /* extent tree count */
1446 struct list_head zombie_list; /* extent zombie tree list */
1447 atomic_t total_zombie_tree; /* extent zombie tree count */
1448 atomic_t total_ext_node; /* extent info count */
1449
1450 /* basic filesystem units */
1451 unsigned int log_sectors_per_block; /* log2 sectors per block */
1452 unsigned int log_blocksize; /* log2 block size */
1453 unsigned int blocksize; /* block size */
1454 unsigned int root_ino_num; /* root inode number*/
1455 unsigned int node_ino_num; /* node inode number*/
1456 unsigned int meta_ino_num; /* meta inode number*/
1457 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1458 unsigned int blocks_per_seg; /* blocks per segment */
1459 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */
1460 unsigned int segs_per_sec; /* segments per section */
1461 unsigned int secs_per_zone; /* sections per zone */
1462 unsigned int total_sections; /* total section count */
1463 unsigned int total_node_count; /* total node block count */
1464 unsigned int total_valid_node_count; /* valid node block count */
1465 loff_t max_file_blocks; /* max block index of file */
1466 int dir_level; /* directory level */
1467 int readdir_ra; /* readahead inode in readdir */
1468
1469 block_t user_block_count; /* # of user blocks */
1470 block_t total_valid_block_count; /* # of valid blocks */
1471 block_t discard_blks; /* discard command candidats */
1472 block_t last_valid_block_count; /* for recovery */
1473 block_t reserved_blocks; /* configurable reserved blocks */
1474 block_t current_reserved_blocks; /* current reserved blocks */
1475
1476 /* Additional tracking for no checkpoint mode */
1477 block_t unusable_block_count; /* # of blocks saved by last cp */
1478
1479 unsigned int nquota_files; /* # of quota sysfile */
1480 struct rw_semaphore quota_sem; /* blocking cp for flags */
1481
1482 /* # of pages, see count_type */
1483 atomic_t nr_pages[NR_COUNT_TYPE];
1484 /* # of allocated blocks */
1485 struct percpu_counter alloc_valid_block_count;
1486
1487 /* writeback control */
1488 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1489
1490 /* valid inode count */
1491 struct percpu_counter total_valid_inode_count;
1492
1493 struct f2fs_mount_info mount_opt; /* mount options */
1494
1495 /* for cleaning operations */
1496 struct rw_semaphore gc_lock; /*
1497 * semaphore for GC, avoid
1498 * race between GC and GC or CP
1499 */
1500 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1501 struct atgc_management am; /* atgc management */
1502 unsigned int cur_victim_sec; /* current victim section num */
1503 unsigned int gc_mode; /* current GC state */
1504 unsigned int next_victim_seg[2]; /* next segment in victim section */
1505
1506 /* for skip statistic */
1507 unsigned int atomic_files; /* # of opened atomic file */
1508 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */
1509 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1510
1511 /* threshold for gc trials on pinned files */
1512 u64 gc_pin_file_threshold;
1513 struct rw_semaphore pin_sem;
1514
1515 /* maximum # of trials to find a victim segment for SSR and GC */
1516 unsigned int max_victim_search;
1517 /* migration granularity of garbage collection, unit: segment */
1518 unsigned int migration_granularity;
1519
1520 /*
1521 * for stat information.
1522 * one is for the LFS mode, and the other is for the SSR mode.
1523 */
1524 #ifdef CONFIG_F2FS_STAT_FS
1525 struct f2fs_stat_info *stat_info; /* FS status information */
1526 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1527 unsigned int segment_count[2]; /* # of allocated segments */
1528 unsigned int block_count[2]; /* # of allocated blocks */
1529 atomic_t inplace_count; /* # of inplace update */
1530 atomic64_t total_hit_ext; /* # of lookup extent cache */
1531 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1532 atomic64_t read_hit_largest; /* # of hit largest extent node */
1533 atomic64_t read_hit_cached; /* # of hit cached extent node */
1534 atomic_t inline_xattr; /* # of inline_xattr inodes */
1535 atomic_t inline_inode; /* # of inline_data inodes */
1536 atomic_t inline_dir; /* # of inline_dentry inodes */
1537 atomic_t compr_inode; /* # of compressed inodes */
1538 atomic64_t compr_blocks; /* # of compressed blocks */
1539 atomic_t vw_cnt; /* # of volatile writes */
1540 atomic_t max_aw_cnt; /* max # of atomic writes */
1541 atomic_t max_vw_cnt; /* max # of volatile writes */
1542 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1543 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1544 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1545 #endif
1546 spinlock_t stat_lock; /* lock for stat operations */
1547
1548 /* For app/fs IO statistics */
1549 spinlock_t iostat_lock;
1550 unsigned long long rw_iostat[NR_IO_TYPE];
1551 unsigned long long prev_rw_iostat[NR_IO_TYPE];
1552 bool iostat_enable;
1553 unsigned long iostat_next_period;
1554 unsigned int iostat_period_ms;
1555
1556 /* to attach REQ_META|REQ_FUA flags */
1557 unsigned int data_io_flag;
1558 unsigned int node_io_flag;
1559
1560 /* For sysfs suppport */
1561 struct kobject s_kobj;
1562 struct completion s_kobj_unregister;
1563
1564 /* For shrinker support */
1565 struct list_head s_list;
1566 int s_ndevs; /* number of devices */
1567 struct f2fs_dev_info *devs; /* for device list */
1568 unsigned int dirty_device; /* for checkpoint data flush */
1569 spinlock_t dev_lock; /* protect dirty_device */
1570 struct mutex umount_mutex;
1571 unsigned int shrinker_run_no;
1572
1573 /* For write statistics */
1574 u64 sectors_written_start;
1575 u64 kbytes_written;
1576
1577 /* Reference to checksum algorithm driver via cryptoapi */
1578 struct crypto_shash *s_chksum_driver;
1579
1580 /* Precomputed FS UUID checksum for seeding other checksums */
1581 __u32 s_chksum_seed;
1582
1583 struct workqueue_struct *post_read_wq; /* post read workqueue */
1584
1585 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1586 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1587
1588 #ifdef CONFIG_F2FS_FS_COMPRESSION
1589 struct kmem_cache *page_array_slab; /* page array entry */
1590 unsigned int page_array_slab_size; /* default page array slab size */
1591 #endif
1592
1593 #ifdef CONFIG_F2FS_GRADING_SSR
1594 struct f2fs_hot_cold_params hot_cold_params;
1595 #endif
1596 };
1597
1598 struct f2fs_private_dio {
1599 struct inode *inode;
1600 void *orig_private;
1601 bio_end_io_t *orig_end_io;
1602 bool write;
1603 };
1604
1605 #ifdef CONFIG_F2FS_FAULT_INJECTION
1606 #define f2fs_show_injection_info(sbi, type) \
1607 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", \
1608 KERN_INFO, sbi->sb->s_id, \
1609 f2fs_fault_name[type], \
1610 __func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1611 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1612 {
1613 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1614
1615 if (!ffi->inject_rate)
1616 return false;
1617
1618 if (!IS_FAULT_SET(ffi, type))
1619 return false;
1620
1621 atomic_inc(&ffi->inject_ops);
1622 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1623 atomic_set(&ffi->inject_ops, 0);
1624 return true;
1625 }
1626 return false;
1627 }
1628 #else
1629 #define f2fs_show_injection_info(sbi, type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1630 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1631 {
1632 return false;
1633 }
1634 #endif
1635
1636 /*
1637 * Test if the mounted volume is a multi-device volume.
1638 * - For a single regular disk volume, sbi->s_ndevs is 0.
1639 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1640 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1641 */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1642 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1643 {
1644 return sbi->s_ndevs > 1;
1645 }
1646
1647 /* For write statistics. Suppose sector size is 512 bytes,
1648 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1649 */
1650 #define BD_PART_WRITTEN(s) \
1651 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) - \
1652 (s)->sectors_written_start) >> 1)
1653
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1654 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1655 {
1656 unsigned long now = jiffies;
1657
1658 sbi->last_time[type] = now;
1659
1660 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1661 if (type == REQ_TIME) {
1662 sbi->last_time[DISCARD_TIME] = now;
1663 sbi->last_time[GC_TIME] = now;
1664 }
1665 }
1666
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1667 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1668 {
1669 unsigned long interval = sbi->interval_time[type] * HZ;
1670
1671 return time_after(jiffies, sbi->last_time[type] + interval);
1672 }
1673
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1674 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1675 int type)
1676 {
1677 unsigned long interval = sbi->interval_time[type] * HZ;
1678 unsigned int wait_ms = 0;
1679 long delta;
1680
1681 delta = (sbi->last_time[type] + interval) - jiffies;
1682 if (delta > 0)
1683 wait_ms = jiffies_to_msecs(delta);
1684
1685 return wait_ms;
1686 }
1687
1688 /*
1689 * Inline functions
1690 */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1691 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1692 const void *address, unsigned int length)
1693 {
1694 struct {
1695 struct shash_desc shash;
1696 char ctx[4];
1697 } desc;
1698 int err;
1699
1700 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1701
1702 desc.shash.tfm = sbi->s_chksum_driver;
1703 *(u32 *)desc.ctx = crc;
1704
1705 err = crypto_shash_update(&desc.shash, address, length);
1706 BUG_ON(err);
1707
1708 return *(u32 *)desc.ctx;
1709 }
1710
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1711 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1712 unsigned int length)
1713 {
1714 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1715 }
1716
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1717 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1718 void *buf, size_t buf_size)
1719 {
1720 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1721 }
1722
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1723 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1724 const void *address, unsigned int length)
1725 {
1726 return __f2fs_crc32(sbi, crc, address, length);
1727 }
1728
F2FS_I(struct inode * inode)1729 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1730 {
1731 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1732 }
1733
F2FS_SB(struct super_block * sb)1734 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1735 {
1736 return sb->s_fs_info;
1737 }
1738
F2FS_I_SB(struct inode * inode)1739 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1740 {
1741 return F2FS_SB(inode->i_sb);
1742 }
1743
F2FS_M_SB(struct address_space * mapping)1744 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1745 {
1746 return F2FS_I_SB(mapping->host);
1747 }
1748
F2FS_P_SB(struct page * page)1749 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1750 {
1751 return F2FS_M_SB(page_file_mapping(page));
1752 }
1753
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1754 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1755 {
1756 return (struct f2fs_super_block *)(sbi->raw_super);
1757 }
1758
F2FS_CKPT(struct f2fs_sb_info * sbi)1759 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1760 {
1761 return (struct f2fs_checkpoint *)(sbi->ckpt);
1762 }
1763
F2FS_NODE(struct page * page)1764 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1765 {
1766 return (struct f2fs_node *)page_address(page);
1767 }
1768
F2FS_INODE(struct page * page)1769 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1770 {
1771 return &((struct f2fs_node *)page_address(page))->i;
1772 }
1773
NM_I(struct f2fs_sb_info * sbi)1774 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1775 {
1776 return (struct f2fs_nm_info *)(sbi->nm_info);
1777 }
1778
SM_I(struct f2fs_sb_info * sbi)1779 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1780 {
1781 return (struct f2fs_sm_info *)(sbi->sm_info);
1782 }
1783
SIT_I(struct f2fs_sb_info * sbi)1784 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1785 {
1786 return (struct sit_info *)(SM_I(sbi)->sit_info);
1787 }
1788
FREE_I(struct f2fs_sb_info * sbi)1789 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1790 {
1791 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1792 }
1793
DIRTY_I(struct f2fs_sb_info * sbi)1794 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1795 {
1796 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1797 }
1798
META_MAPPING(struct f2fs_sb_info * sbi)1799 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1800 {
1801 return sbi->meta_inode->i_mapping;
1802 }
1803
NODE_MAPPING(struct f2fs_sb_info * sbi)1804 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1805 {
1806 return sbi->node_inode->i_mapping;
1807 }
1808
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)1809 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1810 {
1811 return test_bit(type, &sbi->s_flag);
1812 }
1813
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1814 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1815 {
1816 set_bit(type, &sbi->s_flag);
1817 }
1818
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1819 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1820 {
1821 clear_bit(type, &sbi->s_flag);
1822 }
1823
cur_cp_version(struct f2fs_checkpoint * cp)1824 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1825 {
1826 return le64_to_cpu(cp->checkpoint_ver);
1827 }
1828
f2fs_qf_ino(struct super_block * sb,int type)1829 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1830 {
1831 if (type < F2FS_MAX_QUOTAS)
1832 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1833 return 0;
1834 }
1835
cur_cp_crc(struct f2fs_checkpoint * cp)1836 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1837 {
1838 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1839 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1840 }
1841
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1842 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1843 {
1844 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1845
1846 return ckpt_flags & f;
1847 }
1848
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1849 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1850 {
1851 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1852 }
1853
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1854 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1855 {
1856 unsigned int ckpt_flags;
1857
1858 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1859 ckpt_flags |= f;
1860 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1861 }
1862
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1863 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1864 {
1865 unsigned long flags;
1866
1867 spin_lock_irqsave(&sbi->cp_lock, flags);
1868 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1869 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1870 }
1871
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1872 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1873 {
1874 unsigned int ckpt_flags;
1875
1876 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1877 ckpt_flags &= (~f);
1878 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1879 }
1880
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1881 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1882 {
1883 unsigned long flags;
1884
1885 spin_lock_irqsave(&sbi->cp_lock, flags);
1886 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1887 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1888 }
1889
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)1890 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1891 {
1892 unsigned long flags;
1893 unsigned char *nat_bits;
1894
1895 /*
1896 * In order to re-enable nat_bits we need to call fsck.f2fs by
1897 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1898 * so let's rely on regular fsck or unclean shutdown.
1899 */
1900
1901 if (lock)
1902 spin_lock_irqsave(&sbi->cp_lock, flags);
1903 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1904 nat_bits = NM_I(sbi)->nat_bits;
1905 NM_I(sbi)->nat_bits = NULL;
1906 if (lock)
1907 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1908
1909 kvfree(nat_bits);
1910 }
1911
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)1912 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1913 struct cp_control *cpc)
1914 {
1915 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1916
1917 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1918 }
1919
f2fs_lock_op(struct f2fs_sb_info * sbi)1920 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1921 {
1922 down_read(&sbi->cp_rwsem);
1923 }
1924
f2fs_trylock_op(struct f2fs_sb_info * sbi)1925 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1926 {
1927 return down_read_trylock(&sbi->cp_rwsem);
1928 }
1929
f2fs_unlock_op(struct f2fs_sb_info * sbi)1930 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1931 {
1932 up_read(&sbi->cp_rwsem);
1933 }
1934
f2fs_lock_all(struct f2fs_sb_info * sbi)1935 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1936 {
1937 down_write(&sbi->cp_rwsem);
1938 }
1939
f2fs_unlock_all(struct f2fs_sb_info * sbi)1940 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1941 {
1942 up_write(&sbi->cp_rwsem);
1943 }
1944
__get_cp_reason(struct f2fs_sb_info * sbi)1945 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1946 {
1947 int reason = CP_SYNC;
1948
1949 if (test_opt(sbi, FASTBOOT))
1950 reason = CP_FASTBOOT;
1951 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1952 reason = CP_UMOUNT;
1953 return reason;
1954 }
1955
__remain_node_summaries(int reason)1956 static inline bool __remain_node_summaries(int reason)
1957 {
1958 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1959 }
1960
__exist_node_summaries(struct f2fs_sb_info * sbi)1961 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1962 {
1963 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1964 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1965 }
1966
1967 /*
1968 * Check whether the inode has blocks or not
1969 */
F2FS_HAS_BLOCKS(struct inode * inode)1970 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1971 {
1972 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1973
1974 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1975 }
1976
f2fs_has_xattr_block(unsigned int ofs)1977 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1978 {
1979 return ofs == XATTR_NODE_OFFSET;
1980 }
1981
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)1982 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1983 struct inode *inode, bool cap)
1984 {
1985 if (!inode)
1986 return true;
1987 if (!test_opt(sbi, RESERVE_ROOT))
1988 return false;
1989 if (IS_NOQUOTA(inode))
1990 return true;
1991 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1992 return true;
1993 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1994 in_group_p(F2FS_OPTION(sbi).s_resgid))
1995 return true;
1996 if (cap && capable(CAP_SYS_RESOURCE))
1997 return true;
1998 return false;
1999 }
2000
2001 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)2002 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2003 struct inode *inode, blkcnt_t *count)
2004 {
2005 blkcnt_t diff = 0, release = 0;
2006 block_t avail_user_block_count;
2007 int ret;
2008
2009 ret = dquot_reserve_block(inode, *count);
2010 if (ret)
2011 return ret;
2012
2013 if (time_to_inject(sbi, FAULT_BLOCK)) {
2014 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2015 release = *count;
2016 goto release_quota;
2017 }
2018
2019 /*
2020 * let's increase this in prior to actual block count change in order
2021 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2022 */
2023 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2024
2025 spin_lock(&sbi->stat_lock);
2026 sbi->total_valid_block_count += (block_t)(*count);
2027 avail_user_block_count = sbi->user_block_count -
2028 sbi->current_reserved_blocks;
2029
2030 if (!__allow_reserved_blocks(sbi, inode, true))
2031 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2032
2033 if (F2FS_IO_ALIGNED(sbi))
2034 avail_user_block_count -= sbi->blocks_per_seg *
2035 SM_I(sbi)->additional_reserved_segments;
2036
2037 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2038 if (avail_user_block_count > sbi->unusable_block_count)
2039 avail_user_block_count -= sbi->unusable_block_count;
2040 else
2041 avail_user_block_count = 0;
2042 }
2043 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2044 diff = sbi->total_valid_block_count - avail_user_block_count;
2045 if (diff > *count)
2046 diff = *count;
2047 *count -= diff;
2048 release = diff;
2049 sbi->total_valid_block_count -= diff;
2050 if (!*count) {
2051 spin_unlock(&sbi->stat_lock);
2052 goto enospc;
2053 }
2054 }
2055 spin_unlock(&sbi->stat_lock);
2056
2057 if (unlikely(release)) {
2058 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2059 dquot_release_reservation_block(inode, release);
2060 }
2061 f2fs_i_blocks_write(inode, *count, true, true);
2062 return 0;
2063
2064 enospc:
2065 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2066 release_quota:
2067 dquot_release_reservation_block(inode, release);
2068 return -ENOSPC;
2069 }
2070
2071 __printf(2, 3)
2072 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2073
2074 #define f2fs_err(sbi, fmt, ...) \
2075 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2076 #define f2fs_warn(sbi, fmt, ...) \
2077 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2078 #define f2fs_notice(sbi, fmt, ...) \
2079 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2080 #define f2fs_info(sbi, fmt, ...) \
2081 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2082 #define f2fs_debug(sbi, fmt, ...) \
2083 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2084
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2085 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2086 struct inode *inode,
2087 block_t count)
2088 {
2089 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2090
2091 spin_lock(&sbi->stat_lock);
2092 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2093 sbi->total_valid_block_count -= (block_t)count;
2094 if (sbi->reserved_blocks &&
2095 sbi->current_reserved_blocks < sbi->reserved_blocks)
2096 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2097 sbi->current_reserved_blocks + count);
2098 spin_unlock(&sbi->stat_lock);
2099 if (unlikely(inode->i_blocks < sectors)) {
2100 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2101 inode->i_ino,
2102 (unsigned long long)inode->i_blocks,
2103 (unsigned long long)sectors);
2104 set_sbi_flag(sbi, SBI_NEED_FSCK);
2105 return;
2106 }
2107 f2fs_i_blocks_write(inode, count, false, true);
2108 }
2109
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2110 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2111 {
2112 atomic_inc(&sbi->nr_pages[count_type]);
2113
2114 if (count_type == F2FS_DIRTY_DENTS ||
2115 count_type == F2FS_DIRTY_NODES ||
2116 count_type == F2FS_DIRTY_META ||
2117 count_type == F2FS_DIRTY_QDATA ||
2118 count_type == F2FS_DIRTY_IMETA)
2119 set_sbi_flag(sbi, SBI_IS_DIRTY);
2120 }
2121
inode_inc_dirty_pages(struct inode * inode)2122 static inline void inode_inc_dirty_pages(struct inode *inode)
2123 {
2124 atomic_inc(&F2FS_I(inode)->dirty_pages);
2125 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2126 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2127 if (IS_NOQUOTA(inode))
2128 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2129 }
2130
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2131 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2132 {
2133 atomic_dec(&sbi->nr_pages[count_type]);
2134 }
2135
inode_dec_dirty_pages(struct inode * inode)2136 static inline void inode_dec_dirty_pages(struct inode *inode)
2137 {
2138 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2139 !S_ISLNK(inode->i_mode))
2140 return;
2141
2142 atomic_dec(&F2FS_I(inode)->dirty_pages);
2143 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2144 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2145 if (IS_NOQUOTA(inode))
2146 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2147 }
2148
get_pages(struct f2fs_sb_info * sbi,int count_type)2149 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2150 {
2151 return atomic_read(&sbi->nr_pages[count_type]);
2152 }
2153
get_dirty_pages(struct inode * inode)2154 static inline int get_dirty_pages(struct inode *inode)
2155 {
2156 return atomic_read(&F2FS_I(inode)->dirty_pages);
2157 }
2158
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2159 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2160 {
2161 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2162 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2163 sbi->log_blocks_per_seg;
2164
2165 return segs / sbi->segs_per_sec;
2166 }
2167
valid_user_blocks(struct f2fs_sb_info * sbi)2168 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2169 {
2170 return sbi->total_valid_block_count;
2171 }
2172
discard_blocks(struct f2fs_sb_info * sbi)2173 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2174 {
2175 return sbi->discard_blks;
2176 }
2177
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2178 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2179 {
2180 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2181
2182 /* return NAT or SIT bitmap */
2183 if (flag == NAT_BITMAP)
2184 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2185 else if (flag == SIT_BITMAP)
2186 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2187
2188 return 0;
2189 }
2190
__cp_payload(struct f2fs_sb_info * sbi)2191 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2192 {
2193 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2194 }
2195
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2196 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2197 {
2198 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2199 int offset;
2200
2201 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2202 offset = (flag == SIT_BITMAP) ?
2203 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2204 /*
2205 * if large_nat_bitmap feature is enabled, leave checksum
2206 * protection for all nat/sit bitmaps.
2207 */
2208 return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2209 }
2210
2211 if (__cp_payload(sbi) > 0) {
2212 if (flag == NAT_BITMAP)
2213 return &ckpt->sit_nat_version_bitmap;
2214 else
2215 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2216 } else {
2217 offset = (flag == NAT_BITMAP) ?
2218 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2219 return &ckpt->sit_nat_version_bitmap + offset;
2220 }
2221 }
2222
__start_cp_addr(struct f2fs_sb_info * sbi)2223 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2224 {
2225 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2226
2227 if (sbi->cur_cp_pack == 2)
2228 start_addr += sbi->blocks_per_seg;
2229 return start_addr;
2230 }
2231
__start_cp_next_addr(struct f2fs_sb_info * sbi)2232 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2233 {
2234 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2235
2236 if (sbi->cur_cp_pack == 1)
2237 start_addr += sbi->blocks_per_seg;
2238 return start_addr;
2239 }
2240
__set_cp_next_pack(struct f2fs_sb_info * sbi)2241 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2242 {
2243 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2244 }
2245
__start_sum_addr(struct f2fs_sb_info * sbi)2246 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2247 {
2248 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2249 }
2250
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2251 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2252 struct inode *inode, bool is_inode)
2253 {
2254 block_t valid_block_count;
2255 unsigned int valid_node_count, user_block_count;
2256 int err;
2257
2258 if (is_inode) {
2259 if (inode) {
2260 err = dquot_alloc_inode(inode);
2261 if (err)
2262 return err;
2263 }
2264 } else {
2265 err = dquot_reserve_block(inode, 1);
2266 if (err)
2267 return err;
2268 }
2269
2270 if (time_to_inject(sbi, FAULT_BLOCK)) {
2271 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2272 goto enospc;
2273 }
2274
2275 spin_lock(&sbi->stat_lock);
2276
2277 valid_block_count = sbi->total_valid_block_count +
2278 sbi->current_reserved_blocks + 1;
2279
2280 if (!__allow_reserved_blocks(sbi, inode, false))
2281 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2282
2283 if (F2FS_IO_ALIGNED(sbi))
2284 valid_block_count += sbi->blocks_per_seg *
2285 SM_I(sbi)->additional_reserved_segments;
2286
2287 user_block_count = sbi->user_block_count;
2288 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2289 user_block_count -= sbi->unusable_block_count;
2290
2291 if (unlikely(valid_block_count > user_block_count)) {
2292 spin_unlock(&sbi->stat_lock);
2293 goto enospc;
2294 }
2295
2296 valid_node_count = sbi->total_valid_node_count + 1;
2297 if (unlikely(valid_node_count > sbi->total_node_count)) {
2298 spin_unlock(&sbi->stat_lock);
2299 goto enospc;
2300 }
2301
2302 sbi->total_valid_node_count++;
2303 sbi->total_valid_block_count++;
2304 spin_unlock(&sbi->stat_lock);
2305
2306 if (inode) {
2307 if (is_inode)
2308 f2fs_mark_inode_dirty_sync(inode, true);
2309 else
2310 f2fs_i_blocks_write(inode, 1, true, true);
2311 }
2312
2313 percpu_counter_inc(&sbi->alloc_valid_block_count);
2314 return 0;
2315
2316 enospc:
2317 if (is_inode) {
2318 if (inode)
2319 dquot_free_inode(inode);
2320 } else {
2321 dquot_release_reservation_block(inode, 1);
2322 }
2323 return -ENOSPC;
2324 }
2325
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2326 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2327 struct inode *inode, bool is_inode)
2328 {
2329 spin_lock(&sbi->stat_lock);
2330
2331 if (unlikely(!sbi->total_valid_block_count ||
2332 !sbi->total_valid_node_count)) {
2333 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2334 sbi->total_valid_block_count,
2335 sbi->total_valid_node_count);
2336 set_sbi_flag(sbi, SBI_NEED_FSCK);
2337 } else {
2338 sbi->total_valid_block_count--;
2339 sbi->total_valid_node_count--;
2340 }
2341
2342 if (sbi->reserved_blocks &&
2343 sbi->current_reserved_blocks < sbi->reserved_blocks)
2344 sbi->current_reserved_blocks++;
2345
2346 spin_unlock(&sbi->stat_lock);
2347
2348 if (is_inode) {
2349 dquot_free_inode(inode);
2350 } else {
2351 if (unlikely(inode->i_blocks == 0)) {
2352 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2353 inode->i_ino,
2354 (unsigned long long)inode->i_blocks);
2355 set_sbi_flag(sbi, SBI_NEED_FSCK);
2356 return;
2357 }
2358 f2fs_i_blocks_write(inode, 1, false, true);
2359 }
2360 }
2361
valid_node_count(struct f2fs_sb_info * sbi)2362 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2363 {
2364 return sbi->total_valid_node_count;
2365 }
2366
inc_valid_inode_count(struct f2fs_sb_info * sbi)2367 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2368 {
2369 percpu_counter_inc(&sbi->total_valid_inode_count);
2370 }
2371
dec_valid_inode_count(struct f2fs_sb_info * sbi)2372 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2373 {
2374 percpu_counter_dec(&sbi->total_valid_inode_count);
2375 }
2376
valid_inode_count(struct f2fs_sb_info * sbi)2377 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2378 {
2379 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2380 }
2381
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2382 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2383 pgoff_t index, bool for_write)
2384 {
2385 struct page *page;
2386
2387 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2388 if (!for_write)
2389 page = find_get_page_flags(mapping, index,
2390 FGP_LOCK | FGP_ACCESSED);
2391 else
2392 page = find_lock_page(mapping, index);
2393 if (page)
2394 return page;
2395
2396 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2397 f2fs_show_injection_info(F2FS_M_SB(mapping),
2398 FAULT_PAGE_ALLOC);
2399 return NULL;
2400 }
2401 }
2402
2403 if (!for_write)
2404 return grab_cache_page(mapping, index);
2405 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2406 }
2407
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2408 static inline struct page *f2fs_pagecache_get_page(
2409 struct address_space *mapping, pgoff_t index,
2410 int fgp_flags, gfp_t gfp_mask)
2411 {
2412 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2413 f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2414 return NULL;
2415 }
2416
2417 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2418 }
2419
f2fs_copy_page(struct page * src,struct page * dst)2420 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2421 {
2422 char *src_kaddr = kmap(src);
2423 char *dst_kaddr = kmap(dst);
2424
2425 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2426 kunmap(dst);
2427 kunmap(src);
2428 }
2429
f2fs_put_page(struct page * page,int unlock)2430 static inline void f2fs_put_page(struct page *page, int unlock)
2431 {
2432 if (!page)
2433 return;
2434
2435 if (unlock) {
2436 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2437 unlock_page(page);
2438 }
2439 put_page(page);
2440 }
2441
f2fs_put_dnode(struct dnode_of_data * dn)2442 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2443 {
2444 if (dn->node_page)
2445 f2fs_put_page(dn->node_page, 1);
2446 if (dn->inode_page && dn->node_page != dn->inode_page)
2447 f2fs_put_page(dn->inode_page, 0);
2448 dn->node_page = NULL;
2449 dn->inode_page = NULL;
2450 }
2451
f2fs_kmem_cache_create(const char * name,size_t size)2452 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2453 size_t size)
2454 {
2455 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2456 }
2457
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)2458 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2459 gfp_t flags)
2460 {
2461 void *entry;
2462
2463 entry = kmem_cache_alloc(cachep, flags);
2464 if (!entry)
2465 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2466 return entry;
2467 }
2468
is_inflight_io(struct f2fs_sb_info * sbi,int type)2469 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2470 {
2471 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2472 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2473 get_pages(sbi, F2FS_WB_CP_DATA) ||
2474 get_pages(sbi, F2FS_DIO_READ) ||
2475 get_pages(sbi, F2FS_DIO_WRITE))
2476 return true;
2477
2478 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2479 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2480 return true;
2481
2482 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2483 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2484 return true;
2485 return false;
2486 }
2487
is_idle(struct f2fs_sb_info * sbi,int type)2488 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2489 {
2490 if (sbi->gc_mode == GC_URGENT_HIGH)
2491 return true;
2492
2493 if (is_inflight_io(sbi, type))
2494 return false;
2495
2496 if (sbi->gc_mode == GC_URGENT_LOW &&
2497 (type == DISCARD_TIME || type == GC_TIME))
2498 return true;
2499
2500 return f2fs_time_over(sbi, type);
2501 }
2502
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2503 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2504 unsigned long index, void *item)
2505 {
2506 while (radix_tree_insert(root, index, item))
2507 cond_resched();
2508 }
2509
2510 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2511
IS_INODE(struct page * page)2512 static inline bool IS_INODE(struct page *page)
2513 {
2514 struct f2fs_node *p = F2FS_NODE(page);
2515
2516 return RAW_IS_INODE(p);
2517 }
2518
offset_in_addr(struct f2fs_inode * i)2519 static inline int offset_in_addr(struct f2fs_inode *i)
2520 {
2521 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2522 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2523 }
2524
blkaddr_in_node(struct f2fs_node * node)2525 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2526 {
2527 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2528 }
2529
2530 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2531 static inline block_t data_blkaddr(struct inode *inode,
2532 struct page *node_page, unsigned int offset)
2533 {
2534 struct f2fs_node *raw_node;
2535 __le32 *addr_array;
2536 int base = 0;
2537 bool is_inode = IS_INODE(node_page);
2538
2539 raw_node = F2FS_NODE(node_page);
2540
2541 if (is_inode) {
2542 if (!inode)
2543 /* from GC path only */
2544 base = offset_in_addr(&raw_node->i);
2545 else if (f2fs_has_extra_attr(inode))
2546 base = get_extra_isize(inode);
2547 }
2548
2549 addr_array = blkaddr_in_node(raw_node);
2550 return le32_to_cpu(addr_array[base + offset]);
2551 }
2552
f2fs_data_blkaddr(struct dnode_of_data * dn)2553 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2554 {
2555 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2556 }
2557
f2fs_test_bit(unsigned int nr,char * addr)2558 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2559 {
2560 int mask;
2561
2562 addr += (nr >> 3);
2563 mask = 1 << (7 - (nr & 0x07));
2564 return mask & *addr;
2565 }
2566
f2fs_set_bit(unsigned int nr,char * addr)2567 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2568 {
2569 int mask;
2570
2571 addr += (nr >> 3);
2572 mask = 1 << (7 - (nr & 0x07));
2573 *addr |= mask;
2574 }
2575
f2fs_clear_bit(unsigned int nr,char * addr)2576 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2577 {
2578 int mask;
2579
2580 addr += (nr >> 3);
2581 mask = 1 << (7 - (nr & 0x07));
2582 *addr &= ~mask;
2583 }
2584
f2fs_test_and_set_bit(unsigned int nr,char * addr)2585 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2586 {
2587 int mask;
2588 int ret;
2589
2590 addr += (nr >> 3);
2591 mask = 1 << (7 - (nr & 0x07));
2592 ret = mask & *addr;
2593 *addr |= mask;
2594 return ret;
2595 }
2596
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2597 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2598 {
2599 int mask;
2600 int ret;
2601
2602 addr += (nr >> 3);
2603 mask = 1 << (7 - (nr & 0x07));
2604 ret = mask & *addr;
2605 *addr &= ~mask;
2606 return ret;
2607 }
2608
f2fs_change_bit(unsigned int nr,char * addr)2609 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2610 {
2611 int mask;
2612
2613 addr += (nr >> 3);
2614 mask = 1 << (7 - (nr & 0x07));
2615 *addr ^= mask;
2616 }
2617
2618 /*
2619 * On-disk inode flags (f2fs_inode::i_flags)
2620 */
2621 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
2622 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2623 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2624 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2625 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2626 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2627 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
2628 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2629 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
2630 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
2631 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
2632
2633 /* Flags that should be inherited by new inodes from their parent. */
2634 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2635 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2636 F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2637
2638 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2639 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2640 F2FS_CASEFOLD_FL))
2641
2642 /* Flags that are appropriate for non-directories/regular files. */
2643 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2644
f2fs_mask_flags(umode_t mode,__u32 flags)2645 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2646 {
2647 if (S_ISDIR(mode))
2648 return flags;
2649 else if (S_ISREG(mode))
2650 return flags & F2FS_REG_FLMASK;
2651 else
2652 return flags & F2FS_OTHER_FLMASK;
2653 }
2654
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2655 static inline void __mark_inode_dirty_flag(struct inode *inode,
2656 int flag, bool set)
2657 {
2658 switch (flag) {
2659 case FI_INLINE_XATTR:
2660 case FI_INLINE_DATA:
2661 case FI_INLINE_DENTRY:
2662 case FI_NEW_INODE:
2663 if (set)
2664 return;
2665 fallthrough;
2666 case FI_DATA_EXIST:
2667 case FI_INLINE_DOTS:
2668 case FI_PIN_FILE:
2669 f2fs_mark_inode_dirty_sync(inode, true);
2670 }
2671 }
2672
set_inode_flag(struct inode * inode,int flag)2673 static inline void set_inode_flag(struct inode *inode, int flag)
2674 {
2675 set_bit(flag, F2FS_I(inode)->flags);
2676 __mark_inode_dirty_flag(inode, flag, true);
2677 }
2678
is_inode_flag_set(struct inode * inode,int flag)2679 static inline int is_inode_flag_set(struct inode *inode, int flag)
2680 {
2681 return test_bit(flag, F2FS_I(inode)->flags);
2682 }
2683
clear_inode_flag(struct inode * inode,int flag)2684 static inline void clear_inode_flag(struct inode *inode, int flag)
2685 {
2686 clear_bit(flag, F2FS_I(inode)->flags);
2687 __mark_inode_dirty_flag(inode, flag, false);
2688 }
2689
f2fs_verity_in_progress(struct inode * inode)2690 static inline bool f2fs_verity_in_progress(struct inode *inode)
2691 {
2692 return IS_ENABLED(CONFIG_FS_VERITY) &&
2693 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2694 }
2695
set_acl_inode(struct inode * inode,umode_t mode)2696 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2697 {
2698 F2FS_I(inode)->i_acl_mode = mode;
2699 set_inode_flag(inode, FI_ACL_MODE);
2700 f2fs_mark_inode_dirty_sync(inode, false);
2701 }
2702
f2fs_i_links_write(struct inode * inode,bool inc)2703 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2704 {
2705 if (inc)
2706 inc_nlink(inode);
2707 else
2708 drop_nlink(inode);
2709 f2fs_mark_inode_dirty_sync(inode, true);
2710 }
2711
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)2712 static inline void f2fs_i_blocks_write(struct inode *inode,
2713 block_t diff, bool add, bool claim)
2714 {
2715 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2716 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2717
2718 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2719 if (add) {
2720 if (claim)
2721 dquot_claim_block(inode, diff);
2722 else
2723 dquot_alloc_block_nofail(inode, diff);
2724 } else {
2725 dquot_free_block(inode, diff);
2726 }
2727
2728 f2fs_mark_inode_dirty_sync(inode, true);
2729 if (clean || recover)
2730 set_inode_flag(inode, FI_AUTO_RECOVER);
2731 }
2732
f2fs_i_size_write(struct inode * inode,loff_t i_size)2733 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2734 {
2735 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2736 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2737
2738 if (i_size_read(inode) == i_size)
2739 return;
2740
2741 i_size_write(inode, i_size);
2742 f2fs_mark_inode_dirty_sync(inode, true);
2743 if (clean || recover)
2744 set_inode_flag(inode, FI_AUTO_RECOVER);
2745 }
2746
f2fs_i_depth_write(struct inode * inode,unsigned int depth)2747 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2748 {
2749 F2FS_I(inode)->i_current_depth = depth;
2750 f2fs_mark_inode_dirty_sync(inode, true);
2751 }
2752
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)2753 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2754 unsigned int count)
2755 {
2756 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2757 f2fs_mark_inode_dirty_sync(inode, true);
2758 }
2759
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)2760 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2761 {
2762 F2FS_I(inode)->i_xattr_nid = xnid;
2763 f2fs_mark_inode_dirty_sync(inode, true);
2764 }
2765
f2fs_i_pino_write(struct inode * inode,nid_t pino)2766 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2767 {
2768 F2FS_I(inode)->i_pino = pino;
2769 f2fs_mark_inode_dirty_sync(inode, true);
2770 }
2771
get_inline_info(struct inode * inode,struct f2fs_inode * ri)2772 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2773 {
2774 struct f2fs_inode_info *fi = F2FS_I(inode);
2775
2776 if (ri->i_inline & F2FS_INLINE_XATTR)
2777 set_bit(FI_INLINE_XATTR, fi->flags);
2778 if (ri->i_inline & F2FS_INLINE_DATA)
2779 set_bit(FI_INLINE_DATA, fi->flags);
2780 if (ri->i_inline & F2FS_INLINE_DENTRY)
2781 set_bit(FI_INLINE_DENTRY, fi->flags);
2782 if (ri->i_inline & F2FS_DATA_EXIST)
2783 set_bit(FI_DATA_EXIST, fi->flags);
2784 if (ri->i_inline & F2FS_INLINE_DOTS)
2785 set_bit(FI_INLINE_DOTS, fi->flags);
2786 if (ri->i_inline & F2FS_EXTRA_ATTR)
2787 set_bit(FI_EXTRA_ATTR, fi->flags);
2788 if (ri->i_inline & F2FS_PIN_FILE)
2789 set_bit(FI_PIN_FILE, fi->flags);
2790 }
2791
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)2792 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2793 {
2794 ri->i_inline = 0;
2795
2796 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2797 ri->i_inline |= F2FS_INLINE_XATTR;
2798 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2799 ri->i_inline |= F2FS_INLINE_DATA;
2800 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2801 ri->i_inline |= F2FS_INLINE_DENTRY;
2802 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2803 ri->i_inline |= F2FS_DATA_EXIST;
2804 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2805 ri->i_inline |= F2FS_INLINE_DOTS;
2806 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2807 ri->i_inline |= F2FS_EXTRA_ATTR;
2808 if (is_inode_flag_set(inode, FI_PIN_FILE))
2809 ri->i_inline |= F2FS_PIN_FILE;
2810 }
2811
f2fs_has_extra_attr(struct inode * inode)2812 static inline int f2fs_has_extra_attr(struct inode *inode)
2813 {
2814 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2815 }
2816
f2fs_has_inline_xattr(struct inode * inode)2817 static inline int f2fs_has_inline_xattr(struct inode *inode)
2818 {
2819 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2820 }
2821
f2fs_compressed_file(struct inode * inode)2822 static inline int f2fs_compressed_file(struct inode *inode)
2823 {
2824 return S_ISREG(inode->i_mode) &&
2825 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2826 }
2827
addrs_per_inode(struct inode * inode)2828 static inline unsigned int addrs_per_inode(struct inode *inode)
2829 {
2830 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2831 get_inline_xattr_addrs(inode);
2832
2833 if (!f2fs_compressed_file(inode))
2834 return addrs;
2835 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2836 }
2837
addrs_per_block(struct inode * inode)2838 static inline unsigned int addrs_per_block(struct inode *inode)
2839 {
2840 if (!f2fs_compressed_file(inode))
2841 return DEF_ADDRS_PER_BLOCK;
2842 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2843 }
2844
inline_xattr_addr(struct inode * inode,struct page * page)2845 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2846 {
2847 struct f2fs_inode *ri = F2FS_INODE(page);
2848
2849 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2850 get_inline_xattr_addrs(inode)]);
2851 }
2852
inline_xattr_size(struct inode * inode)2853 static inline int inline_xattr_size(struct inode *inode)
2854 {
2855 if (f2fs_has_inline_xattr(inode))
2856 return get_inline_xattr_addrs(inode) * sizeof(__le32);
2857 return 0;
2858 }
2859
f2fs_has_inline_data(struct inode * inode)2860 static inline int f2fs_has_inline_data(struct inode *inode)
2861 {
2862 return is_inode_flag_set(inode, FI_INLINE_DATA);
2863 }
2864
f2fs_exist_data(struct inode * inode)2865 static inline int f2fs_exist_data(struct inode *inode)
2866 {
2867 return is_inode_flag_set(inode, FI_DATA_EXIST);
2868 }
2869
f2fs_has_inline_dots(struct inode * inode)2870 static inline int f2fs_has_inline_dots(struct inode *inode)
2871 {
2872 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2873 }
2874
f2fs_is_mmap_file(struct inode * inode)2875 static inline int f2fs_is_mmap_file(struct inode *inode)
2876 {
2877 return is_inode_flag_set(inode, FI_MMAP_FILE);
2878 }
2879
f2fs_is_pinned_file(struct inode * inode)2880 static inline bool f2fs_is_pinned_file(struct inode *inode)
2881 {
2882 return is_inode_flag_set(inode, FI_PIN_FILE);
2883 }
2884
f2fs_is_atomic_file(struct inode * inode)2885 static inline bool f2fs_is_atomic_file(struct inode *inode)
2886 {
2887 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2888 }
2889
f2fs_is_commit_atomic_write(struct inode * inode)2890 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2891 {
2892 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2893 }
2894
f2fs_is_volatile_file(struct inode * inode)2895 static inline bool f2fs_is_volatile_file(struct inode *inode)
2896 {
2897 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2898 }
2899
f2fs_is_first_block_written(struct inode * inode)2900 static inline bool f2fs_is_first_block_written(struct inode *inode)
2901 {
2902 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2903 }
2904
f2fs_is_drop_cache(struct inode * inode)2905 static inline bool f2fs_is_drop_cache(struct inode *inode)
2906 {
2907 return is_inode_flag_set(inode, FI_DROP_CACHE);
2908 }
2909
inline_data_addr(struct inode * inode,struct page * page)2910 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2911 {
2912 struct f2fs_inode *ri = F2FS_INODE(page);
2913 int extra_size = get_extra_isize(inode);
2914
2915 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2916 }
2917
f2fs_has_inline_dentry(struct inode * inode)2918 static inline int f2fs_has_inline_dentry(struct inode *inode)
2919 {
2920 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2921 }
2922
is_file(struct inode * inode,int type)2923 static inline int is_file(struct inode *inode, int type)
2924 {
2925 return F2FS_I(inode)->i_advise & type;
2926 }
2927
set_file(struct inode * inode,int type)2928 static inline void set_file(struct inode *inode, int type)
2929 {
2930 F2FS_I(inode)->i_advise |= type;
2931 f2fs_mark_inode_dirty_sync(inode, true);
2932 }
2933
clear_file(struct inode * inode,int type)2934 static inline void clear_file(struct inode *inode, int type)
2935 {
2936 F2FS_I(inode)->i_advise &= ~type;
2937 f2fs_mark_inode_dirty_sync(inode, true);
2938 }
2939
f2fs_is_time_consistent(struct inode * inode)2940 static inline bool f2fs_is_time_consistent(struct inode *inode)
2941 {
2942 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2943 return false;
2944 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2945 return false;
2946 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2947 return false;
2948 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2949 &F2FS_I(inode)->i_crtime))
2950 return false;
2951 return true;
2952 }
2953
f2fs_skip_inode_update(struct inode * inode,int dsync)2954 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2955 {
2956 bool ret;
2957
2958 if (dsync) {
2959 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2960
2961 spin_lock(&sbi->inode_lock[DIRTY_META]);
2962 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2963 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2964 return ret;
2965 }
2966 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2967 file_keep_isize(inode) ||
2968 i_size_read(inode) & ~PAGE_MASK)
2969 return false;
2970
2971 if (!f2fs_is_time_consistent(inode))
2972 return false;
2973
2974 spin_lock(&F2FS_I(inode)->i_size_lock);
2975 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2976 spin_unlock(&F2FS_I(inode)->i_size_lock);
2977
2978 return ret;
2979 }
2980
f2fs_readonly(struct super_block * sb)2981 static inline bool f2fs_readonly(struct super_block *sb)
2982 {
2983 return sb_rdonly(sb);
2984 }
2985
f2fs_cp_error(struct f2fs_sb_info * sbi)2986 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2987 {
2988 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2989 }
2990
is_dot_dotdot(const u8 * name,size_t len)2991 static inline bool is_dot_dotdot(const u8 *name, size_t len)
2992 {
2993 if (len == 1 && name[0] == '.')
2994 return true;
2995
2996 if (len == 2 && name[0] == '.' && name[1] == '.')
2997 return true;
2998
2999 return false;
3000 }
3001
f2fs_may_extent_tree(struct inode * inode)3002 static inline bool f2fs_may_extent_tree(struct inode *inode)
3003 {
3004 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3005
3006 if (!test_opt(sbi, EXTENT_CACHE) ||
3007 is_inode_flag_set(inode, FI_NO_EXTENT) ||
3008 is_inode_flag_set(inode, FI_COMPRESSED_FILE))
3009 return false;
3010
3011 /*
3012 * for recovered files during mount do not create extents
3013 * if shrinker is not registered.
3014 */
3015 if (list_empty(&sbi->s_list))
3016 return false;
3017
3018 return S_ISREG(inode->i_mode);
3019 }
3020
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3021 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3022 size_t size, gfp_t flags)
3023 {
3024 if (time_to_inject(sbi, FAULT_KMALLOC)) {
3025 f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3026 return NULL;
3027 }
3028
3029 return kmalloc(size, flags);
3030 }
3031
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3032 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3033 size_t size, gfp_t flags)
3034 {
3035 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3036 }
3037
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3038 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3039 size_t size, gfp_t flags)
3040 {
3041 if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3042 f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3043 return NULL;
3044 }
3045
3046 return kvmalloc(size, flags);
3047 }
3048
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3049 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3050 size_t size, gfp_t flags)
3051 {
3052 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3053 }
3054
get_extra_isize(struct inode * inode)3055 static inline int get_extra_isize(struct inode *inode)
3056 {
3057 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3058 }
3059
get_inline_xattr_addrs(struct inode * inode)3060 static inline int get_inline_xattr_addrs(struct inode *inode)
3061 {
3062 return F2FS_I(inode)->i_inline_xattr_size;
3063 }
3064
3065 #define f2fs_get_inode_mode(i) \
3066 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3067 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3068
3069 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3070 (offsetof(struct f2fs_inode, i_extra_end) - \
3071 offsetof(struct f2fs_inode, i_extra_isize)) \
3072
3073 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3074 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3075 ((offsetof(typeof(*(f2fs_inode)), field) + \
3076 sizeof((f2fs_inode)->field)) \
3077 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3078
3079 #define DEFAULT_IOSTAT_PERIOD_MS 3000
3080 #define MIN_IOSTAT_PERIOD_MS 100
3081 /* maximum period of iostat tracing is 1 day */
3082 #define MAX_IOSTAT_PERIOD_MS 8640000
3083
f2fs_reset_iostat(struct f2fs_sb_info * sbi)3084 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3085 {
3086 int i;
3087
3088 spin_lock(&sbi->iostat_lock);
3089 for (i = 0; i < NR_IO_TYPE; i++) {
3090 sbi->rw_iostat[i] = 0;
3091 sbi->prev_rw_iostat[i] = 0;
3092 }
3093 spin_unlock(&sbi->iostat_lock);
3094 }
3095
3096 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3097
f2fs_update_iostat(struct f2fs_sb_info * sbi,enum iostat_type type,unsigned long long io_bytes)3098 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3099 enum iostat_type type, unsigned long long io_bytes)
3100 {
3101 if (!sbi->iostat_enable)
3102 return;
3103 spin_lock(&sbi->iostat_lock);
3104 sbi->rw_iostat[type] += io_bytes;
3105
3106 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3107 sbi->rw_iostat[APP_BUFFERED_IO] =
3108 sbi->rw_iostat[APP_WRITE_IO] -
3109 sbi->rw_iostat[APP_DIRECT_IO];
3110
3111 if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3112 sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3113 sbi->rw_iostat[APP_READ_IO] -
3114 sbi->rw_iostat[APP_DIRECT_READ_IO];
3115 spin_unlock(&sbi->iostat_lock);
3116
3117 f2fs_record_iostat(sbi);
3118 }
3119
fs_free_space_threshold(struct f2fs_sb_info * sbi)3120 static inline block_t fs_free_space_threshold(struct f2fs_sb_info *sbi)
3121 {
3122 return (block_t)(SM_I(sbi)->main_segments * sbi->blocks_per_seg *
3123 FS_FREE_SPACE_PERCENT) / HUNDRED_PERCENT;
3124 }
3125
device_free_space_threshold(struct f2fs_sb_info * sbi)3126 static inline block_t device_free_space_threshold(struct f2fs_sb_info *sbi)
3127 {
3128 return (block_t)(SM_I(sbi)->main_segments * sbi->blocks_per_seg *
3129 DEVICE_FREE_SPACE_PERCENT) / HUNDRED_PERCENT;
3130 }
3131
3132 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1)
3133
3134 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3135
3136 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3137 block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3138 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3139 block_t blkaddr, int type)
3140 {
3141 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3142 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3143 blkaddr, type);
3144 f2fs_bug_on(sbi, 1);
3145 }
3146 }
3147
__is_valid_data_blkaddr(block_t blkaddr)3148 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3149 {
3150 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3151 blkaddr == COMPRESS_ADDR)
3152 return false;
3153 return true;
3154 }
3155
f2fs_set_page_private(struct page * page,unsigned long data)3156 static inline void f2fs_set_page_private(struct page *page,
3157 unsigned long data)
3158 {
3159 if (PagePrivate(page))
3160 return;
3161
3162 attach_page_private(page, (void *)data);
3163 }
3164
f2fs_clear_page_private(struct page * page)3165 static inline void f2fs_clear_page_private(struct page *page)
3166 {
3167 detach_page_private(page);
3168 }
3169
3170 /*
3171 * file.c
3172 */
3173 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3174 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3175 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3176 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3177 int f2fs_truncate(struct inode *inode);
3178 int f2fs_getattr(const struct path *path, struct kstat *stat,
3179 u32 request_mask, unsigned int flags);
3180 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3181 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3182 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3183 int f2fs_precache_extents(struct inode *inode);
3184 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3185 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3186 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3187 int f2fs_pin_file_control(struct inode *inode, bool inc);
3188
3189 /*
3190 * inode.c
3191 */
3192 void f2fs_set_inode_flags(struct inode *inode);
3193 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3194 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3195 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3196 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3197 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3198 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3199 void f2fs_update_inode_page(struct inode *inode);
3200 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3201 void f2fs_evict_inode(struct inode *inode);
3202 void f2fs_handle_failed_inode(struct inode *inode);
3203
3204 /*
3205 * namei.c
3206 */
3207 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3208 bool hot, bool set);
3209 struct dentry *f2fs_get_parent(struct dentry *child);
3210
3211 /*
3212 * dir.c
3213 */
3214 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3215 int f2fs_init_casefolded_name(const struct inode *dir,
3216 struct f2fs_filename *fname);
3217 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3218 int lookup, struct f2fs_filename *fname);
3219 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3220 struct f2fs_filename *fname);
3221 void f2fs_free_filename(struct f2fs_filename *fname);
3222 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3223 const struct f2fs_filename *fname, int *max_slots);
3224 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3225 unsigned int start_pos, struct fscrypt_str *fstr);
3226 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3227 struct f2fs_dentry_ptr *d);
3228 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3229 const struct f2fs_filename *fname, struct page *dpage);
3230 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3231 unsigned int current_depth);
3232 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3233 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3234 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3235 const struct f2fs_filename *fname,
3236 struct page **res_page);
3237 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3238 const struct qstr *child, struct page **res_page);
3239 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3240 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3241 struct page **page);
3242 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3243 struct page *page, struct inode *inode);
3244 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3245 const struct f2fs_filename *fname);
3246 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3247 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3248 unsigned int bit_pos);
3249 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3250 struct inode *inode, nid_t ino, umode_t mode);
3251 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3252 struct inode *inode, nid_t ino, umode_t mode);
3253 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3254 struct inode *inode, nid_t ino, umode_t mode);
3255 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3256 struct inode *dir, struct inode *inode);
3257 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3258 bool f2fs_empty_dir(struct inode *dir);
3259
f2fs_add_link(struct dentry * dentry,struct inode * inode)3260 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3261 {
3262 if (fscrypt_is_nokey_name(dentry))
3263 return -ENOKEY;
3264 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3265 inode, inode->i_ino, inode->i_mode);
3266 }
3267
3268 /*
3269 * super.c
3270 */
3271 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3272 void f2fs_inode_synced(struct inode *inode);
3273 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3274 int f2fs_quota_sync(struct super_block *sb, int type);
3275 void f2fs_quota_off_umount(struct super_block *sb);
3276 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3277 int f2fs_sync_fs(struct super_block *sb, int sync);
3278 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3279
3280 /*
3281 * hash.c
3282 */
3283 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3284
3285 /*
3286 * node.c
3287 */
3288 struct dnode_of_data;
3289 struct node_info;
3290
3291 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3292 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3293 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3294 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3295 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3296 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3297 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3298 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3299 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3300 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3301 struct node_info *ni);
3302 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3303 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3304 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3305 int f2fs_truncate_xattr_node(struct inode *inode);
3306 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3307 unsigned int seq_id);
3308 int f2fs_remove_inode_page(struct inode *inode);
3309 struct page *f2fs_new_inode_page(struct inode *inode);
3310 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3311 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3312 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3313 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3314 int f2fs_move_node_page(struct page *node_page, int gc_type);
3315 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3316 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3317 struct writeback_control *wbc, bool atomic,
3318 unsigned int *seq_id);
3319 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3320 struct writeback_control *wbc,
3321 bool do_balance, enum iostat_type io_type);
3322 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3323 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3324 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3325 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3326 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3327 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3328 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3329 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3330 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3331 unsigned int segno, struct f2fs_summary_block *sum);
3332 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3333 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3334 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3335 int __init f2fs_create_node_manager_caches(void);
3336 void f2fs_destroy_node_manager_caches(void);
3337
3338 /*
3339 * segment.c
3340 */
3341 unsigned long find_rev_next_bit(const unsigned long *addr,
3342 unsigned long size, unsigned long offset);
3343 unsigned long find_rev_next_zero_bit(const unsigned long *addr,
3344 unsigned long size, unsigned long offset);
3345 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3346 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3347 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3348 void f2fs_drop_inmem_pages(struct inode *inode);
3349 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3350 int f2fs_commit_inmem_pages(struct inode *inode);
3351 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3352 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3353 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3354 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3355 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3356 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3357 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3358 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3359 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3360 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3361 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3362 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3363 struct cp_control *cpc);
3364 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3365 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3366 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3367 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3368 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3369 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3370 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3371 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3372 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3373 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3374 unsigned int *newseg, bool new_sec, int dir);
3375 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3376 unsigned int start, unsigned int end);
3377 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type);
3378 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3379 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3380 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3381 struct cp_control *cpc);
3382 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3383 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3384 block_t blk_addr);
3385 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3386 enum iostat_type io_type);
3387 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3388 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3389 struct f2fs_io_info *fio);
3390 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3391 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3392 block_t old_blkaddr, block_t new_blkaddr,
3393 bool recover_curseg, bool recover_newaddr,
3394 bool from_gc);
3395 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3396 block_t old_addr, block_t new_addr,
3397 unsigned char version, bool recover_curseg,
3398 bool recover_newaddr);
3399 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3400 block_t old_blkaddr, block_t *new_blkaddr,
3401 struct f2fs_summary *sum, int type,
3402 struct f2fs_io_info *fio, int contig_level);
3403 void f2fs_wait_on_page_writeback(struct page *page,
3404 enum page_type type, bool ordered, bool locked);
3405 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3406 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3407 block_t len);
3408 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3409 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3410 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3411 unsigned int val, int alloc);
3412 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3413 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3414 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3415 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3416 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3417 int __init f2fs_create_segment_manager_caches(void);
3418 void f2fs_destroy_segment_manager_caches(void);
3419 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3420 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3421 enum page_type type, enum temp_type temp);
3422 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3423 unsigned int segno);
3424 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3425 unsigned int segno);
3426
3427 /*
3428 * checkpoint.c
3429 */
3430 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3431 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3432 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3433 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3434 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3435 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3436 block_t blkaddr, int type);
3437 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3438 int type, bool sync);
3439 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3440 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3441 long nr_to_write, enum iostat_type io_type);
3442 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3443 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3444 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3445 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3446 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3447 unsigned int devidx, int type);
3448 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3449 unsigned int devidx, int type);
3450 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3451 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3452 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3453 void f2fs_add_orphan_inode(struct inode *inode);
3454 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3455 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3456 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3457 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3458 void f2fs_remove_dirty_inode(struct inode *inode);
3459 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3460 bool from_cp);
3461 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3462 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3463 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3464 int __init f2fs_create_checkpoint_caches(void);
3465 void f2fs_destroy_checkpoint_caches(void);
3466
3467 /*
3468 * data.c
3469 */
3470 int __init f2fs_init_bioset(void);
3471 void f2fs_destroy_bioset(void);
3472 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio);
3473 int f2fs_init_bio_entry_cache(void);
3474 void f2fs_destroy_bio_entry_cache(void);
3475 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3476 struct bio *bio, enum page_type type);
3477 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3478 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3479 struct inode *inode, struct page *page,
3480 nid_t ino, enum page_type type);
3481 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3482 struct bio **bio, struct page *page);
3483 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3484 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3485 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3486 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3487 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3488 block_t blk_addr, struct bio *bio);
3489 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3490 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3491 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3492 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3493 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3494 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3495 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3496 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3497 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3498 int op_flags, bool for_write);
3499 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3500 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3501 bool for_write);
3502 struct page *f2fs_get_new_data_page(struct inode *inode,
3503 struct page *ipage, pgoff_t index, bool new_i_size);
3504 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3505 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3506 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3507 int create, int flag);
3508 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3509 u64 start, u64 len);
3510 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3511 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3512 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3513 int f2fs_write_single_data_page(struct page *page, int *submitted,
3514 struct bio **bio, sector_t *last_block,
3515 struct writeback_control *wbc,
3516 enum iostat_type io_type,
3517 int compr_blocks, bool allow_balance);
3518 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3519 unsigned int length);
3520 int f2fs_release_page(struct page *page, gfp_t wait);
3521 #ifdef CONFIG_MIGRATION
3522 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3523 struct page *page, enum migrate_mode mode);
3524 #endif
3525 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3526 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3527 int f2fs_init_post_read_processing(void);
3528 void f2fs_destroy_post_read_processing(void);
3529 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3530 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3531
3532 /*
3533 * gc.c
3534 */
3535 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3536 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3537 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3538 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force,
3539 unsigned int segno);
3540 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3541 int f2fs_resize_fs(struct file *filp, __u64 block_count);
3542 int __init f2fs_create_garbage_collection_cache(void);
3543 void f2fs_destroy_garbage_collection_cache(void);
3544
3545 /*
3546 * recovery.c
3547 */
3548 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3549 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3550 int __init f2fs_create_recovery_cache(void);
3551 void f2fs_destroy_recovery_cache(void);
3552
3553 /*
3554 * debug.c
3555 */
3556 #ifdef CONFIG_F2FS_STAT_FS
3557 struct f2fs_stat_info {
3558 struct list_head stat_list;
3559 struct f2fs_sb_info *sbi;
3560 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3561 int main_area_segs, main_area_sections, main_area_zones;
3562 unsigned long long hit_largest, hit_cached, hit_rbtree;
3563 unsigned long long hit_total, total_ext;
3564 int ext_tree, zombie_tree, ext_node;
3565 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3566 int ndirty_data, ndirty_qdata;
3567 int inmem_pages;
3568 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3569 int nats, dirty_nats, sits, dirty_sits;
3570 int free_nids, avail_nids, alloc_nids;
3571 int total_count, utilization;
3572 int bg_gc, nr_wb_cp_data, nr_wb_data;
3573 int nr_rd_data, nr_rd_node, nr_rd_meta;
3574 int nr_dio_read, nr_dio_write;
3575 unsigned int io_skip_bggc, other_skip_bggc;
3576 int nr_flushing, nr_flushed, flush_list_empty;
3577 int nr_discarding, nr_discarded;
3578 int nr_discard_cmd;
3579 unsigned int undiscard_blks;
3580 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3581 int compr_inode;
3582 unsigned long long compr_blocks;
3583 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3584 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3585 unsigned int bimodal, avg_vblocks;
3586 int util_free, util_valid, util_invalid;
3587 int rsvd_segs, overp_segs;
3588 int dirty_count, node_pages, meta_pages;
3589 int prefree_count, call_count, cp_count, bg_cp_count;
3590 int tot_segs, node_segs, data_segs, free_segs, free_secs;
3591 int bg_node_segs, bg_data_segs;
3592 int tot_blks, data_blks, node_blks;
3593 int bg_data_blks, bg_node_blks;
3594 unsigned long long skipped_atomic_files[2];
3595 int curseg[NR_CURSEG_TYPE];
3596 int cursec[NR_CURSEG_TYPE];
3597 int curzone[NR_CURSEG_TYPE];
3598 unsigned int dirty_seg[NR_CURSEG_TYPE];
3599 unsigned int full_seg[NR_CURSEG_TYPE];
3600 unsigned int valid_blks[NR_CURSEG_TYPE];
3601
3602 unsigned int meta_count[META_MAX];
3603 unsigned int segment_count[2];
3604 unsigned int block_count[2];
3605 unsigned int inplace_count;
3606 unsigned long long base_mem, cache_mem, page_mem;
3607 };
3608
F2FS_STAT(struct f2fs_sb_info * sbi)3609 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3610 {
3611 return (struct f2fs_stat_info *)sbi->stat_info;
3612 }
3613
3614 #define stat_inc_cp_count(si) ((si)->cp_count++)
3615 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
3616 #define stat_inc_call_count(si) ((si)->call_count++)
3617 #define stat_inc_bggc_count(si) ((si)->bg_gc++)
3618 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
3619 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3620 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3621 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3622 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
3623 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
3624 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3625 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
3626 #define stat_inc_inline_xattr(inode) \
3627 do { \
3628 if (f2fs_has_inline_xattr(inode)) \
3629 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3630 } while (0)
3631 #define stat_dec_inline_xattr(inode) \
3632 do { \
3633 if (f2fs_has_inline_xattr(inode)) \
3634 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3635 } while (0)
3636 #define stat_inc_inline_inode(inode) \
3637 do { \
3638 if (f2fs_has_inline_data(inode)) \
3639 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3640 } while (0)
3641 #define stat_dec_inline_inode(inode) \
3642 do { \
3643 if (f2fs_has_inline_data(inode)) \
3644 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3645 } while (0)
3646 #define stat_inc_inline_dir(inode) \
3647 do { \
3648 if (f2fs_has_inline_dentry(inode)) \
3649 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3650 } while (0)
3651 #define stat_dec_inline_dir(inode) \
3652 do { \
3653 if (f2fs_has_inline_dentry(inode)) \
3654 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3655 } while (0)
3656 #define stat_inc_compr_inode(inode) \
3657 do { \
3658 if (f2fs_compressed_file(inode)) \
3659 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
3660 } while (0)
3661 #define stat_dec_compr_inode(inode) \
3662 do { \
3663 if (f2fs_compressed_file(inode)) \
3664 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
3665 } while (0)
3666 #define stat_add_compr_blocks(inode, blocks) \
3667 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3668 #define stat_sub_compr_blocks(inode, blocks) \
3669 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3670 #define stat_inc_meta_count(sbi, blkaddr) \
3671 do { \
3672 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
3673 atomic_inc(&(sbi)->meta_count[META_CP]); \
3674 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
3675 atomic_inc(&(sbi)->meta_count[META_SIT]); \
3676 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
3677 atomic_inc(&(sbi)->meta_count[META_NAT]); \
3678 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
3679 atomic_inc(&(sbi)->meta_count[META_SSA]); \
3680 } while (0)
3681 #define stat_inc_seg_type(sbi, curseg) \
3682 ((sbi)->segment_count[(curseg)->alloc_type]++)
3683 #define stat_inc_block_count(sbi, curseg) \
3684 ((sbi)->block_count[(curseg)->alloc_type]++)
3685 #define stat_inc_inplace_blocks(sbi) \
3686 (atomic_inc(&(sbi)->inplace_count))
3687 #define stat_update_max_atomic_write(inode) \
3688 do { \
3689 int cur = F2FS_I_SB(inode)->atomic_files; \
3690 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
3691 if (cur > max) \
3692 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3693 } while (0)
3694 #define stat_inc_volatile_write(inode) \
3695 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3696 #define stat_dec_volatile_write(inode) \
3697 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3698 #define stat_update_max_volatile_write(inode) \
3699 do { \
3700 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
3701 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
3702 if (cur > max) \
3703 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
3704 } while (0)
3705 #define stat_inc_seg_count(sbi, type, gc_type) \
3706 do { \
3707 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3708 si->tot_segs++; \
3709 if ((type) == SUM_TYPE_DATA) { \
3710 si->data_segs++; \
3711 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3712 } else { \
3713 si->node_segs++; \
3714 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3715 } \
3716 } while (0)
3717
3718 #define stat_inc_tot_blk_count(si, blks) \
3719 ((si)->tot_blks += (blks))
3720
3721 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
3722 do { \
3723 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3724 stat_inc_tot_blk_count(si, blks); \
3725 si->data_blks += (blks); \
3726 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3727 } while (0)
3728
3729 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
3730 do { \
3731 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3732 stat_inc_tot_blk_count(si, blks); \
3733 si->node_blks += (blks); \
3734 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3735 } while (0)
3736
3737 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3738 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3739 void __init f2fs_create_root_stats(void);
3740 void f2fs_destroy_root_stats(void);
3741 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3742 #else
3743 #define stat_inc_cp_count(si) do { } while (0)
3744 #define stat_inc_bg_cp_count(si) do { } while (0)
3745 #define stat_inc_call_count(si) do { } while (0)
3746 #define stat_inc_bggc_count(si) do { } while (0)
3747 #define stat_io_skip_bggc_count(sbi) do { } while (0)
3748 #define stat_other_skip_bggc_count(sbi) do { } while (0)
3749 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
3750 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
3751 #define stat_inc_total_hit(sbi) do { } while (0)
3752 #define stat_inc_rbtree_node_hit(sbi) do { } while (0)
3753 #define stat_inc_largest_node_hit(sbi) do { } while (0)
3754 #define stat_inc_cached_node_hit(sbi) do { } while (0)
3755 #define stat_inc_inline_xattr(inode) do { } while (0)
3756 #define stat_dec_inline_xattr(inode) do { } while (0)
3757 #define stat_inc_inline_inode(inode) do { } while (0)
3758 #define stat_dec_inline_inode(inode) do { } while (0)
3759 #define stat_inc_inline_dir(inode) do { } while (0)
3760 #define stat_dec_inline_dir(inode) do { } while (0)
3761 #define stat_inc_compr_inode(inode) do { } while (0)
3762 #define stat_dec_compr_inode(inode) do { } while (0)
3763 #define stat_add_compr_blocks(inode, blocks) do { } while (0)
3764 #define stat_sub_compr_blocks(inode, blocks) do { } while (0)
3765 #define stat_inc_atomic_write(inode) do { } while (0)
3766 #define stat_dec_atomic_write(inode) do { } while (0)
3767 #define stat_update_max_atomic_write(inode) do { } while (0)
3768 #define stat_inc_volatile_write(inode) do { } while (0)
3769 #define stat_dec_volatile_write(inode) do { } while (0)
3770 #define stat_update_max_volatile_write(inode) do { } while (0)
3771 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
3772 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
3773 #define stat_inc_block_count(sbi, curseg) do { } while (0)
3774 #define stat_inc_inplace_blocks(sbi) do { } while (0)
3775 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
3776 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
3777 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
3778 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
3779
f2fs_build_stats(struct f2fs_sb_info * sbi)3780 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)3781 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)3782 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)3783 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)3784 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3785 #endif
3786
3787 extern const struct file_operations f2fs_dir_operations;
3788 #ifdef CONFIG_UNICODE
3789 extern const struct dentry_operations f2fs_dentry_ops;
3790 #endif
3791 extern const struct file_operations f2fs_file_operations;
3792 extern const struct inode_operations f2fs_file_inode_operations;
3793 extern const struct address_space_operations f2fs_dblock_aops;
3794 extern const struct address_space_operations f2fs_node_aops;
3795 extern const struct address_space_operations f2fs_meta_aops;
3796 extern const struct inode_operations f2fs_dir_inode_operations;
3797 extern const struct inode_operations f2fs_symlink_inode_operations;
3798 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3799 extern const struct inode_operations f2fs_special_inode_operations;
3800 extern struct kmem_cache *f2fs_inode_entry_slab;
3801
3802 /*
3803 * inline.c
3804 */
3805 bool f2fs_may_inline_data(struct inode *inode);
3806 bool f2fs_sanity_check_inline_data(struct inode *inode);
3807 bool f2fs_may_inline_dentry(struct inode *inode);
3808 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3809 void f2fs_truncate_inline_inode(struct inode *inode,
3810 struct page *ipage, u64 from);
3811 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3812 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3813 int f2fs_convert_inline_inode(struct inode *inode);
3814 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3815 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3816 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3817 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3818 const struct f2fs_filename *fname,
3819 struct page **res_page);
3820 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3821 struct page *ipage);
3822 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3823 struct inode *inode, nid_t ino, umode_t mode);
3824 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3825 struct page *page, struct inode *dir,
3826 struct inode *inode);
3827 bool f2fs_empty_inline_dir(struct inode *dir);
3828 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3829 struct fscrypt_str *fstr);
3830 int f2fs_inline_data_fiemap(struct inode *inode,
3831 struct fiemap_extent_info *fieinfo,
3832 __u64 start, __u64 len);
3833
3834 /*
3835 * shrinker.c
3836 */
3837 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3838 struct shrink_control *sc);
3839 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3840 struct shrink_control *sc);
3841 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3842 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3843
3844 /*
3845 * extent_cache.c
3846 */
3847 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3848 struct rb_entry *cached_re, unsigned int ofs);
3849 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3850 struct rb_root_cached *root,
3851 struct rb_node **parent,
3852 unsigned long long key, bool *left_most);
3853 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3854 struct rb_root_cached *root,
3855 struct rb_node **parent,
3856 unsigned int ofs, bool *leftmost);
3857 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3858 struct rb_entry *cached_re, unsigned int ofs,
3859 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3860 struct rb_node ***insert_p, struct rb_node **insert_parent,
3861 bool force, bool *leftmost);
3862 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3863 struct rb_root_cached *root, bool check_key);
3864 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3865 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3866 void f2fs_drop_extent_tree(struct inode *inode);
3867 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3868 void f2fs_destroy_extent_tree(struct inode *inode);
3869 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3870 struct extent_info *ei);
3871 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3872 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3873 pgoff_t fofs, block_t blkaddr, unsigned int len);
3874 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3875 int __init f2fs_create_extent_cache(void);
3876 void f2fs_destroy_extent_cache(void);
3877
3878 /*
3879 * sysfs.c
3880 */
3881 int __init f2fs_init_sysfs(void);
3882 void f2fs_exit_sysfs(void);
3883 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3884 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3885
3886 /* verity.c */
3887 extern const struct fsverity_operations f2fs_verityops;
3888
3889 /*
3890 * crypto support
3891 */
f2fs_encrypted_file(struct inode * inode)3892 static inline bool f2fs_encrypted_file(struct inode *inode)
3893 {
3894 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3895 }
3896
f2fs_set_encrypted_inode(struct inode * inode)3897 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3898 {
3899 #ifdef CONFIG_FS_ENCRYPTION
3900 file_set_encrypt(inode);
3901 f2fs_set_inode_flags(inode);
3902 #endif
3903 }
3904
3905 /*
3906 * Returns true if the reads of the inode's data need to undergo some
3907 * postprocessing step, like decryption or authenticity verification.
3908 */
f2fs_post_read_required(struct inode * inode)3909 static inline bool f2fs_post_read_required(struct inode *inode)
3910 {
3911 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3912 f2fs_compressed_file(inode);
3913 }
3914
3915 /*
3916 * compress.c
3917 */
3918 #ifdef CONFIG_F2FS_FS_COMPRESSION
3919 bool f2fs_is_compressed_page(struct page *page);
3920 struct page *f2fs_compress_control_page(struct page *page);
3921 int f2fs_prepare_compress_overwrite(struct inode *inode,
3922 struct page **pagep, pgoff_t index, void **fsdata);
3923 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3924 pgoff_t index, unsigned copied);
3925 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
3926 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3927 bool f2fs_is_compress_backend_ready(struct inode *inode);
3928 int f2fs_init_compress_mempool(void);
3929 void f2fs_destroy_compress_mempool(void);
3930 void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity);
3931 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3932 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3933 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3934 int f2fs_write_multi_pages(struct compress_ctx *cc,
3935 int *submitted,
3936 struct writeback_control *wbc,
3937 enum iostat_type io_type);
3938 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3939 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3940 unsigned nr_pages, sector_t *last_block_in_bio,
3941 bool is_readahead, bool for_write);
3942 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3943 void f2fs_free_dic(struct decompress_io_ctx *dic);
3944 void f2fs_decompress_end_io(struct page **rpages,
3945 unsigned int cluster_size, bool err, bool verity);
3946 int f2fs_init_compress_ctx(struct compress_ctx *cc);
3947 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
3948 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3949 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
3950 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
3951 int __init f2fs_init_compress_cache(void);
3952 void f2fs_destroy_compress_cache(void);
3953 #else
f2fs_is_compressed_page(struct page * page)3954 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)3955 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3956 {
3957 if (!f2fs_compressed_file(inode))
3958 return true;
3959 /* not support compression */
3960 return false;
3961 }
f2fs_compress_control_page(struct page * page)3962 static inline struct page *f2fs_compress_control_page(struct page *page)
3963 {
3964 WARN_ON_ONCE(1);
3965 return ERR_PTR(-EINVAL);
3966 }
f2fs_init_compress_mempool(void)3967 static inline int f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)3968 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)3969 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)3970 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)3971 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)3972 static inline void f2fs_destroy_compress_cache(void) { }
3973 #endif
3974
set_compress_context(struct inode * inode)3975 static inline void set_compress_context(struct inode *inode)
3976 {
3977 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3978
3979 F2FS_I(inode)->i_compress_algorithm =
3980 F2FS_OPTION(sbi).compress_algorithm;
3981 F2FS_I(inode)->i_log_cluster_size =
3982 F2FS_OPTION(sbi).compress_log_size;
3983 F2FS_I(inode)->i_cluster_size =
3984 1 << F2FS_I(inode)->i_log_cluster_size;
3985 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
3986 set_inode_flag(inode, FI_COMPRESSED_FILE);
3987 stat_inc_compr_inode(inode);
3988 f2fs_mark_inode_dirty_sync(inode, true);
3989 }
3990
f2fs_disable_compressed_file(struct inode * inode)3991 static inline bool f2fs_disable_compressed_file(struct inode *inode)
3992 {
3993 struct f2fs_inode_info *fi = F2FS_I(inode);
3994
3995 if (!f2fs_compressed_file(inode))
3996 return true;
3997 if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
3998 return false;
3999
4000 fi->i_flags &= ~F2FS_COMPR_FL;
4001 stat_dec_compr_inode(inode);
4002 clear_inode_flag(inode, FI_COMPRESSED_FILE);
4003 f2fs_mark_inode_dirty_sync(inode, true);
4004 return true;
4005 }
4006
4007 #define F2FS_FEATURE_FUNCS(name, flagname) \
4008 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4009 { \
4010 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4011 }
4012
4013 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4014 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4015 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4016 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4017 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4018 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4019 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4020 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4021 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4022 F2FS_FEATURE_FUNCS(verity, VERITY);
4023 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4024 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4025 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4026
4027 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4028 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4029 block_t blkaddr)
4030 {
4031 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4032
4033 return test_bit(zno, FDEV(devi).blkz_seq);
4034 }
4035 #endif
4036
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4037 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4038 {
4039 return f2fs_sb_has_blkzoned(sbi);
4040 }
4041
f2fs_bdev_support_discard(struct block_device * bdev)4042 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4043 {
4044 return blk_queue_discard(bdev_get_queue(bdev)) ||
4045 bdev_is_zoned(bdev);
4046 }
4047
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4048 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4049 {
4050 int i;
4051
4052 if (!f2fs_is_multi_device(sbi))
4053 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4054
4055 for (i = 0; i < sbi->s_ndevs; i++)
4056 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4057 return true;
4058 return false;
4059 }
4060
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4061 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4062 {
4063 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4064 f2fs_hw_should_discard(sbi);
4065 }
4066
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4067 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4068 {
4069 int i;
4070
4071 if (!f2fs_is_multi_device(sbi))
4072 return bdev_read_only(sbi->sb->s_bdev);
4073
4074 for (i = 0; i < sbi->s_ndevs; i++)
4075 if (bdev_read_only(FDEV(i).bdev))
4076 return true;
4077 return false;
4078 }
4079
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4080 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4081 {
4082 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4083 }
4084
f2fs_may_compress(struct inode * inode)4085 static inline bool f2fs_may_compress(struct inode *inode)
4086 {
4087 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4088 f2fs_is_atomic_file(inode) ||
4089 f2fs_is_volatile_file(inode))
4090 return false;
4091 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4092 }
4093
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4094 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4095 u64 blocks, bool add)
4096 {
4097 int diff = F2FS_I(inode)->i_cluster_size - blocks;
4098 struct f2fs_inode_info *fi = F2FS_I(inode);
4099
4100 /* don't update i_compr_blocks if saved blocks were released */
4101 if (!add && !atomic_read(&fi->i_compr_blocks))
4102 return;
4103
4104 if (add) {
4105 atomic_add(diff, &fi->i_compr_blocks);
4106 stat_add_compr_blocks(inode, diff);
4107 } else {
4108 atomic_sub(diff, &fi->i_compr_blocks);
4109 stat_sub_compr_blocks(inode, diff);
4110 }
4111 f2fs_mark_inode_dirty_sync(inode, true);
4112 }
4113
block_unaligned_IO(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4114 static inline int block_unaligned_IO(struct inode *inode,
4115 struct kiocb *iocb, struct iov_iter *iter)
4116 {
4117 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4118 unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4119 loff_t offset = iocb->ki_pos;
4120 unsigned long align = offset | iov_iter_alignment(iter);
4121
4122 return align & blocksize_mask;
4123 }
4124
allow_outplace_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4125 static inline int allow_outplace_dio(struct inode *inode,
4126 struct kiocb *iocb, struct iov_iter *iter)
4127 {
4128 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4129 int rw = iov_iter_rw(iter);
4130
4131 return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4132 !block_unaligned_IO(inode, iocb, iter));
4133 }
4134
f2fs_force_buffered_io(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4135 static inline bool f2fs_force_buffered_io(struct inode *inode,
4136 struct kiocb *iocb, struct iov_iter *iter)
4137 {
4138 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4139 int rw = iov_iter_rw(iter);
4140
4141 if (f2fs_post_read_required(inode))
4142 return true;
4143 if (f2fs_is_multi_device(sbi))
4144 return true;
4145 /*
4146 * for blkzoned device, fallback direct IO to buffered IO, so
4147 * all IOs can be serialized by log-structured write.
4148 */
4149 if (f2fs_sb_has_blkzoned(sbi))
4150 return true;
4151 if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4152 if (block_unaligned_IO(inode, iocb, iter))
4153 return true;
4154 if (F2FS_IO_ALIGNED(sbi))
4155 return true;
4156 }
4157 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4158 !IS_SWAPFILE(inode))
4159 return true;
4160
4161 return false;
4162 }
4163
4164 #ifdef CONFIG_F2FS_FAULT_INJECTION
4165 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4166 unsigned int type);
4167 #else
4168 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0)
4169 #endif
4170
is_journalled_quota(struct f2fs_sb_info * sbi)4171 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4172 {
4173 #ifdef CONFIG_QUOTA
4174 if (f2fs_sb_has_quota_ino(sbi))
4175 return true;
4176 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4177 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4178 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4179 return true;
4180 #endif
4181 return false;
4182 }
4183
4184 #define EFSBADCRC EBADMSG /* Bad CRC detected */
4185 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4186
4187 #endif /* _LINUX_F2FS_H */
4188