• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24 
25 #define	DM_MSG_PREFIX	"thin"
26 
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34 
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36 
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 		"A percentage of time allocated for copy on write");
39 
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46 
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51 
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109 
110 /*----------------------------------------------------------------*/
111 
112 /*
113  * Key building.
114  */
115 enum lock_space {
116 	VIRTUAL,
117 	PHYSICAL
118 };
119 
build_key(struct dm_thin_device * td,enum lock_space ls,dm_block_t b,dm_block_t e,struct dm_cell_key * key)120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123 	key->virtual = (ls == VIRTUAL);
124 	key->dev = dm_thin_dev_id(td);
125 	key->block_begin = b;
126 	key->block_end = e;
127 }
128 
build_data_key(struct dm_thin_device * td,dm_block_t b,struct dm_cell_key * key)129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 			   struct dm_cell_key *key)
131 {
132 	build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134 
build_virtual_key(struct dm_thin_device * td,dm_block_t b,struct dm_cell_key * key)135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 			      struct dm_cell_key *key)
137 {
138 	build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140 
141 /*----------------------------------------------------------------*/
142 
143 #define THROTTLE_THRESHOLD (1 * HZ)
144 
145 struct throttle {
146 	struct rw_semaphore lock;
147 	unsigned long threshold;
148 	bool throttle_applied;
149 };
150 
throttle_init(struct throttle * t)151 static void throttle_init(struct throttle *t)
152 {
153 	init_rwsem(&t->lock);
154 	t->throttle_applied = false;
155 }
156 
throttle_work_start(struct throttle * t)157 static void throttle_work_start(struct throttle *t)
158 {
159 	t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161 
throttle_work_update(struct throttle * t)162 static void throttle_work_update(struct throttle *t)
163 {
164 	if (!t->throttle_applied && jiffies > t->threshold) {
165 		down_write(&t->lock);
166 		t->throttle_applied = true;
167 	}
168 }
169 
throttle_work_complete(struct throttle * t)170 static void throttle_work_complete(struct throttle *t)
171 {
172 	if (t->throttle_applied) {
173 		t->throttle_applied = false;
174 		up_write(&t->lock);
175 	}
176 }
177 
throttle_lock(struct throttle * t)178 static void throttle_lock(struct throttle *t)
179 {
180 	down_read(&t->lock);
181 }
182 
throttle_unlock(struct throttle * t)183 static void throttle_unlock(struct throttle *t)
184 {
185 	up_read(&t->lock);
186 }
187 
188 /*----------------------------------------------------------------*/
189 
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196 
197 /*
198  * The pool runs in various modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201 	PM_WRITE,		/* metadata may be changed */
202 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
203 
204 	/*
205 	 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
206 	 */
207 	PM_OUT_OF_METADATA_SPACE,
208 	PM_READ_ONLY,		/* metadata may not be changed */
209 
210 	PM_FAIL,		/* all I/O fails */
211 };
212 
213 struct pool_features {
214 	enum pool_mode mode;
215 
216 	bool zero_new_blocks:1;
217 	bool discard_enabled:1;
218 	bool discard_passdown:1;
219 	bool error_if_no_space:1;
220 };
221 
222 struct thin_c;
223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
226 
227 #define CELL_SORT_ARRAY_SIZE 8192
228 
229 struct pool {
230 	struct list_head list;
231 	struct dm_target *ti;	/* Only set if a pool target is bound */
232 
233 	struct mapped_device *pool_md;
234 	struct block_device *data_dev;
235 	struct block_device *md_dev;
236 	struct dm_pool_metadata *pmd;
237 
238 	dm_block_t low_water_blocks;
239 	uint32_t sectors_per_block;
240 	int sectors_per_block_shift;
241 
242 	struct pool_features pf;
243 	bool low_water_triggered:1;	/* A dm event has been sent */
244 	bool suspended:1;
245 	bool out_of_data_space:1;
246 
247 	struct dm_bio_prison *prison;
248 	struct dm_kcopyd_client *copier;
249 
250 	struct work_struct worker;
251 	struct workqueue_struct *wq;
252 	struct throttle throttle;
253 	struct delayed_work waker;
254 	struct delayed_work no_space_timeout;
255 
256 	unsigned long last_commit_jiffies;
257 	unsigned ref_count;
258 
259 	spinlock_t lock;
260 	struct bio_list deferred_flush_bios;
261 	struct bio_list deferred_flush_completions;
262 	struct list_head prepared_mappings;
263 	struct list_head prepared_discards;
264 	struct list_head prepared_discards_pt2;
265 	struct list_head active_thins;
266 
267 	struct dm_deferred_set *shared_read_ds;
268 	struct dm_deferred_set *all_io_ds;
269 
270 	struct dm_thin_new_mapping *next_mapping;
271 
272 	process_bio_fn process_bio;
273 	process_bio_fn process_discard;
274 
275 	process_cell_fn process_cell;
276 	process_cell_fn process_discard_cell;
277 
278 	process_mapping_fn process_prepared_mapping;
279 	process_mapping_fn process_prepared_discard;
280 	process_mapping_fn process_prepared_discard_pt2;
281 
282 	struct dm_bio_prison_cell **cell_sort_array;
283 
284 	mempool_t mapping_pool;
285 
286 	struct bio flush_bio;
287 };
288 
289 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
290 
get_pool_mode(struct pool * pool)291 static enum pool_mode get_pool_mode(struct pool *pool)
292 {
293 	return pool->pf.mode;
294 }
295 
notify_of_pool_mode_change(struct pool * pool)296 static void notify_of_pool_mode_change(struct pool *pool)
297 {
298 	const char *descs[] = {
299 		"write",
300 		"out-of-data-space",
301 		"read-only",
302 		"read-only",
303 		"fail"
304 	};
305 	const char *extra_desc = NULL;
306 	enum pool_mode mode = get_pool_mode(pool);
307 
308 	if (mode == PM_OUT_OF_DATA_SPACE) {
309 		if (!pool->pf.error_if_no_space)
310 			extra_desc = " (queue IO)";
311 		else
312 			extra_desc = " (error IO)";
313 	}
314 
315 	dm_table_event(pool->ti->table);
316 	DMINFO("%s: switching pool to %s%s mode",
317 	       dm_device_name(pool->pool_md),
318 	       descs[(int)mode], extra_desc ? : "");
319 }
320 
321 /*
322  * Target context for a pool.
323  */
324 struct pool_c {
325 	struct dm_target *ti;
326 	struct pool *pool;
327 	struct dm_dev *data_dev;
328 	struct dm_dev *metadata_dev;
329 
330 	dm_block_t low_water_blocks;
331 	struct pool_features requested_pf; /* Features requested during table load */
332 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
333 };
334 
335 /*
336  * Target context for a thin.
337  */
338 struct thin_c {
339 	struct list_head list;
340 	struct dm_dev *pool_dev;
341 	struct dm_dev *origin_dev;
342 	sector_t origin_size;
343 	dm_thin_id dev_id;
344 
345 	struct pool *pool;
346 	struct dm_thin_device *td;
347 	struct mapped_device *thin_md;
348 
349 	bool requeue_mode:1;
350 	spinlock_t lock;
351 	struct list_head deferred_cells;
352 	struct bio_list deferred_bio_list;
353 	struct bio_list retry_on_resume_list;
354 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
355 
356 	/*
357 	 * Ensures the thin is not destroyed until the worker has finished
358 	 * iterating the active_thins list.
359 	 */
360 	refcount_t refcount;
361 	struct completion can_destroy;
362 };
363 
364 /*----------------------------------------------------------------*/
365 
block_size_is_power_of_two(struct pool * pool)366 static bool block_size_is_power_of_two(struct pool *pool)
367 {
368 	return pool->sectors_per_block_shift >= 0;
369 }
370 
block_to_sectors(struct pool * pool,dm_block_t b)371 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
372 {
373 	return block_size_is_power_of_two(pool) ?
374 		(b << pool->sectors_per_block_shift) :
375 		(b * pool->sectors_per_block);
376 }
377 
378 /*----------------------------------------------------------------*/
379 
380 struct discard_op {
381 	struct thin_c *tc;
382 	struct blk_plug plug;
383 	struct bio *parent_bio;
384 	struct bio *bio;
385 };
386 
begin_discard(struct discard_op * op,struct thin_c * tc,struct bio * parent)387 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
388 {
389 	BUG_ON(!parent);
390 
391 	op->tc = tc;
392 	blk_start_plug(&op->plug);
393 	op->parent_bio = parent;
394 	op->bio = NULL;
395 }
396 
issue_discard(struct discard_op * op,dm_block_t data_b,dm_block_t data_e)397 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
398 {
399 	struct thin_c *tc = op->tc;
400 	sector_t s = block_to_sectors(tc->pool, data_b);
401 	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
402 
403 	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
404 				      GFP_NOWAIT, 0, &op->bio);
405 }
406 
end_discard(struct discard_op * op,int r)407 static void end_discard(struct discard_op *op, int r)
408 {
409 	if (op->bio) {
410 		/*
411 		 * Even if one of the calls to issue_discard failed, we
412 		 * need to wait for the chain to complete.
413 		 */
414 		bio_chain(op->bio, op->parent_bio);
415 		bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
416 		submit_bio(op->bio);
417 	}
418 
419 	blk_finish_plug(&op->plug);
420 
421 	/*
422 	 * Even if r is set, there could be sub discards in flight that we
423 	 * need to wait for.
424 	 */
425 	if (r && !op->parent_bio->bi_status)
426 		op->parent_bio->bi_status = errno_to_blk_status(r);
427 	bio_endio(op->parent_bio);
428 }
429 
430 /*----------------------------------------------------------------*/
431 
432 /*
433  * wake_worker() is used when new work is queued and when pool_resume is
434  * ready to continue deferred IO processing.
435  */
wake_worker(struct pool * pool)436 static void wake_worker(struct pool *pool)
437 {
438 	queue_work(pool->wq, &pool->worker);
439 }
440 
441 /*----------------------------------------------------------------*/
442 
bio_detain(struct pool * pool,struct dm_cell_key * key,struct bio * bio,struct dm_bio_prison_cell ** cell_result)443 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
444 		      struct dm_bio_prison_cell **cell_result)
445 {
446 	int r;
447 	struct dm_bio_prison_cell *cell_prealloc;
448 
449 	/*
450 	 * Allocate a cell from the prison's mempool.
451 	 * This might block but it can't fail.
452 	 */
453 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
454 
455 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
456 	if (r)
457 		/*
458 		 * We reused an old cell; we can get rid of
459 		 * the new one.
460 		 */
461 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
462 
463 	return r;
464 }
465 
cell_release(struct pool * pool,struct dm_bio_prison_cell * cell,struct bio_list * bios)466 static void cell_release(struct pool *pool,
467 			 struct dm_bio_prison_cell *cell,
468 			 struct bio_list *bios)
469 {
470 	dm_cell_release(pool->prison, cell, bios);
471 	dm_bio_prison_free_cell(pool->prison, cell);
472 }
473 
cell_visit_release(struct pool * pool,void (* fn)(void *,struct dm_bio_prison_cell *),void * context,struct dm_bio_prison_cell * cell)474 static void cell_visit_release(struct pool *pool,
475 			       void (*fn)(void *, struct dm_bio_prison_cell *),
476 			       void *context,
477 			       struct dm_bio_prison_cell *cell)
478 {
479 	dm_cell_visit_release(pool->prison, fn, context, cell);
480 	dm_bio_prison_free_cell(pool->prison, cell);
481 }
482 
cell_release_no_holder(struct pool * pool,struct dm_bio_prison_cell * cell,struct bio_list * bios)483 static void cell_release_no_holder(struct pool *pool,
484 				   struct dm_bio_prison_cell *cell,
485 				   struct bio_list *bios)
486 {
487 	dm_cell_release_no_holder(pool->prison, cell, bios);
488 	dm_bio_prison_free_cell(pool->prison, cell);
489 }
490 
cell_error_with_code(struct pool * pool,struct dm_bio_prison_cell * cell,blk_status_t error_code)491 static void cell_error_with_code(struct pool *pool,
492 		struct dm_bio_prison_cell *cell, blk_status_t error_code)
493 {
494 	dm_cell_error(pool->prison, cell, error_code);
495 	dm_bio_prison_free_cell(pool->prison, cell);
496 }
497 
get_pool_io_error_code(struct pool * pool)498 static blk_status_t get_pool_io_error_code(struct pool *pool)
499 {
500 	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
501 }
502 
cell_error(struct pool * pool,struct dm_bio_prison_cell * cell)503 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
504 {
505 	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
506 }
507 
cell_success(struct pool * pool,struct dm_bio_prison_cell * cell)508 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
509 {
510 	cell_error_with_code(pool, cell, 0);
511 }
512 
cell_requeue(struct pool * pool,struct dm_bio_prison_cell * cell)513 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
514 {
515 	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
516 }
517 
518 /*----------------------------------------------------------------*/
519 
520 /*
521  * A global list of pools that uses a struct mapped_device as a key.
522  */
523 static struct dm_thin_pool_table {
524 	struct mutex mutex;
525 	struct list_head pools;
526 } dm_thin_pool_table;
527 
pool_table_init(void)528 static void pool_table_init(void)
529 {
530 	mutex_init(&dm_thin_pool_table.mutex);
531 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
532 }
533 
pool_table_exit(void)534 static void pool_table_exit(void)
535 {
536 	mutex_destroy(&dm_thin_pool_table.mutex);
537 }
538 
__pool_table_insert(struct pool * pool)539 static void __pool_table_insert(struct pool *pool)
540 {
541 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
542 	list_add(&pool->list, &dm_thin_pool_table.pools);
543 }
544 
__pool_table_remove(struct pool * pool)545 static void __pool_table_remove(struct pool *pool)
546 {
547 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
548 	list_del(&pool->list);
549 }
550 
__pool_table_lookup(struct mapped_device * md)551 static struct pool *__pool_table_lookup(struct mapped_device *md)
552 {
553 	struct pool *pool = NULL, *tmp;
554 
555 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
556 
557 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
558 		if (tmp->pool_md == md) {
559 			pool = tmp;
560 			break;
561 		}
562 	}
563 
564 	return pool;
565 }
566 
__pool_table_lookup_metadata_dev(struct block_device * md_dev)567 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
568 {
569 	struct pool *pool = NULL, *tmp;
570 
571 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
572 
573 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
574 		if (tmp->md_dev == md_dev) {
575 			pool = tmp;
576 			break;
577 		}
578 	}
579 
580 	return pool;
581 }
582 
583 /*----------------------------------------------------------------*/
584 
585 struct dm_thin_endio_hook {
586 	struct thin_c *tc;
587 	struct dm_deferred_entry *shared_read_entry;
588 	struct dm_deferred_entry *all_io_entry;
589 	struct dm_thin_new_mapping *overwrite_mapping;
590 	struct rb_node rb_node;
591 	struct dm_bio_prison_cell *cell;
592 };
593 
__merge_bio_list(struct bio_list * bios,struct bio_list * master)594 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
595 {
596 	bio_list_merge(bios, master);
597 	bio_list_init(master);
598 }
599 
error_bio_list(struct bio_list * bios,blk_status_t error)600 static void error_bio_list(struct bio_list *bios, blk_status_t error)
601 {
602 	struct bio *bio;
603 
604 	while ((bio = bio_list_pop(bios))) {
605 		bio->bi_status = error;
606 		bio_endio(bio);
607 	}
608 }
609 
error_thin_bio_list(struct thin_c * tc,struct bio_list * master,blk_status_t error)610 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
611 		blk_status_t error)
612 {
613 	struct bio_list bios;
614 
615 	bio_list_init(&bios);
616 
617 	spin_lock_irq(&tc->lock);
618 	__merge_bio_list(&bios, master);
619 	spin_unlock_irq(&tc->lock);
620 
621 	error_bio_list(&bios, error);
622 }
623 
requeue_deferred_cells(struct thin_c * tc)624 static void requeue_deferred_cells(struct thin_c *tc)
625 {
626 	struct pool *pool = tc->pool;
627 	struct list_head cells;
628 	struct dm_bio_prison_cell *cell, *tmp;
629 
630 	INIT_LIST_HEAD(&cells);
631 
632 	spin_lock_irq(&tc->lock);
633 	list_splice_init(&tc->deferred_cells, &cells);
634 	spin_unlock_irq(&tc->lock);
635 
636 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
637 		cell_requeue(pool, cell);
638 }
639 
requeue_io(struct thin_c * tc)640 static void requeue_io(struct thin_c *tc)
641 {
642 	struct bio_list bios;
643 
644 	bio_list_init(&bios);
645 
646 	spin_lock_irq(&tc->lock);
647 	__merge_bio_list(&bios, &tc->deferred_bio_list);
648 	__merge_bio_list(&bios, &tc->retry_on_resume_list);
649 	spin_unlock_irq(&tc->lock);
650 
651 	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
652 	requeue_deferred_cells(tc);
653 }
654 
error_retry_list_with_code(struct pool * pool,blk_status_t error)655 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
656 {
657 	struct thin_c *tc;
658 
659 	rcu_read_lock();
660 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
661 		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
662 	rcu_read_unlock();
663 }
664 
error_retry_list(struct pool * pool)665 static void error_retry_list(struct pool *pool)
666 {
667 	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
668 }
669 
670 /*
671  * This section of code contains the logic for processing a thin device's IO.
672  * Much of the code depends on pool object resources (lists, workqueues, etc)
673  * but most is exclusively called from the thin target rather than the thin-pool
674  * target.
675  */
676 
get_bio_block(struct thin_c * tc,struct bio * bio)677 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
678 {
679 	struct pool *pool = tc->pool;
680 	sector_t block_nr = bio->bi_iter.bi_sector;
681 
682 	if (block_size_is_power_of_two(pool))
683 		block_nr >>= pool->sectors_per_block_shift;
684 	else
685 		(void) sector_div(block_nr, pool->sectors_per_block);
686 
687 	return block_nr;
688 }
689 
690 /*
691  * Returns the _complete_ blocks that this bio covers.
692  */
get_bio_block_range(struct thin_c * tc,struct bio * bio,dm_block_t * begin,dm_block_t * end)693 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
694 				dm_block_t *begin, dm_block_t *end)
695 {
696 	struct pool *pool = tc->pool;
697 	sector_t b = bio->bi_iter.bi_sector;
698 	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
699 
700 	b += pool->sectors_per_block - 1ull; /* so we round up */
701 
702 	if (block_size_is_power_of_two(pool)) {
703 		b >>= pool->sectors_per_block_shift;
704 		e >>= pool->sectors_per_block_shift;
705 	} else {
706 		(void) sector_div(b, pool->sectors_per_block);
707 		(void) sector_div(e, pool->sectors_per_block);
708 	}
709 
710 	if (e < b)
711 		/* Can happen if the bio is within a single block. */
712 		e = b;
713 
714 	*begin = b;
715 	*end = e;
716 }
717 
remap(struct thin_c * tc,struct bio * bio,dm_block_t block)718 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
719 {
720 	struct pool *pool = tc->pool;
721 	sector_t bi_sector = bio->bi_iter.bi_sector;
722 
723 	bio_set_dev(bio, tc->pool_dev->bdev);
724 	if (block_size_is_power_of_two(pool))
725 		bio->bi_iter.bi_sector =
726 			(block << pool->sectors_per_block_shift) |
727 			(bi_sector & (pool->sectors_per_block - 1));
728 	else
729 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
730 				 sector_div(bi_sector, pool->sectors_per_block);
731 }
732 
remap_to_origin(struct thin_c * tc,struct bio * bio)733 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
734 {
735 	bio_set_dev(bio, tc->origin_dev->bdev);
736 }
737 
bio_triggers_commit(struct thin_c * tc,struct bio * bio)738 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
739 {
740 	return op_is_flush(bio->bi_opf) &&
741 		dm_thin_changed_this_transaction(tc->td);
742 }
743 
inc_all_io_entry(struct pool * pool,struct bio * bio)744 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
745 {
746 	struct dm_thin_endio_hook *h;
747 
748 	if (bio_op(bio) == REQ_OP_DISCARD)
749 		return;
750 
751 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
752 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
753 }
754 
issue(struct thin_c * tc,struct bio * bio)755 static void issue(struct thin_c *tc, struct bio *bio)
756 {
757 	struct pool *pool = tc->pool;
758 
759 	if (!bio_triggers_commit(tc, bio)) {
760 		submit_bio_noacct(bio);
761 		return;
762 	}
763 
764 	/*
765 	 * Complete bio with an error if earlier I/O caused changes to
766 	 * the metadata that can't be committed e.g, due to I/O errors
767 	 * on the metadata device.
768 	 */
769 	if (dm_thin_aborted_changes(tc->td)) {
770 		bio_io_error(bio);
771 		return;
772 	}
773 
774 	/*
775 	 * Batch together any bios that trigger commits and then issue a
776 	 * single commit for them in process_deferred_bios().
777 	 */
778 	spin_lock_irq(&pool->lock);
779 	bio_list_add(&pool->deferred_flush_bios, bio);
780 	spin_unlock_irq(&pool->lock);
781 }
782 
remap_to_origin_and_issue(struct thin_c * tc,struct bio * bio)783 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
784 {
785 	remap_to_origin(tc, bio);
786 	issue(tc, bio);
787 }
788 
remap_and_issue(struct thin_c * tc,struct bio * bio,dm_block_t block)789 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
790 			    dm_block_t block)
791 {
792 	remap(tc, bio, block);
793 	issue(tc, bio);
794 }
795 
796 /*----------------------------------------------------------------*/
797 
798 /*
799  * Bio endio functions.
800  */
801 struct dm_thin_new_mapping {
802 	struct list_head list;
803 
804 	bool pass_discard:1;
805 	bool maybe_shared:1;
806 
807 	/*
808 	 * Track quiescing, copying and zeroing preparation actions.  When this
809 	 * counter hits zero the block is prepared and can be inserted into the
810 	 * btree.
811 	 */
812 	atomic_t prepare_actions;
813 
814 	blk_status_t status;
815 	struct thin_c *tc;
816 	dm_block_t virt_begin, virt_end;
817 	dm_block_t data_block;
818 	struct dm_bio_prison_cell *cell;
819 
820 	/*
821 	 * If the bio covers the whole area of a block then we can avoid
822 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
823 	 * still be in the cell, so care has to be taken to avoid issuing
824 	 * the bio twice.
825 	 */
826 	struct bio *bio;
827 	bio_end_io_t *saved_bi_end_io;
828 };
829 
__complete_mapping_preparation(struct dm_thin_new_mapping * m)830 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
831 {
832 	struct pool *pool = m->tc->pool;
833 
834 	if (atomic_dec_and_test(&m->prepare_actions)) {
835 		list_add_tail(&m->list, &pool->prepared_mappings);
836 		wake_worker(pool);
837 	}
838 }
839 
complete_mapping_preparation(struct dm_thin_new_mapping * m)840 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
841 {
842 	unsigned long flags;
843 	struct pool *pool = m->tc->pool;
844 
845 	spin_lock_irqsave(&pool->lock, flags);
846 	__complete_mapping_preparation(m);
847 	spin_unlock_irqrestore(&pool->lock, flags);
848 }
849 
copy_complete(int read_err,unsigned long write_err,void * context)850 static void copy_complete(int read_err, unsigned long write_err, void *context)
851 {
852 	struct dm_thin_new_mapping *m = context;
853 
854 	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
855 	complete_mapping_preparation(m);
856 }
857 
overwrite_endio(struct bio * bio)858 static void overwrite_endio(struct bio *bio)
859 {
860 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
861 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
862 
863 	bio->bi_end_io = m->saved_bi_end_io;
864 
865 	m->status = bio->bi_status;
866 	complete_mapping_preparation(m);
867 }
868 
869 /*----------------------------------------------------------------*/
870 
871 /*
872  * Workqueue.
873  */
874 
875 /*
876  * Prepared mapping jobs.
877  */
878 
879 /*
880  * This sends the bios in the cell, except the original holder, back
881  * to the deferred_bios list.
882  */
cell_defer_no_holder(struct thin_c * tc,struct dm_bio_prison_cell * cell)883 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
884 {
885 	struct pool *pool = tc->pool;
886 	unsigned long flags;
887 	int has_work;
888 
889 	spin_lock_irqsave(&tc->lock, flags);
890 	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
891 	has_work = !bio_list_empty(&tc->deferred_bio_list);
892 	spin_unlock_irqrestore(&tc->lock, flags);
893 
894 	if (has_work)
895 		wake_worker(pool);
896 }
897 
898 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
899 
900 struct remap_info {
901 	struct thin_c *tc;
902 	struct bio_list defer_bios;
903 	struct bio_list issue_bios;
904 };
905 
__inc_remap_and_issue_cell(void * context,struct dm_bio_prison_cell * cell)906 static void __inc_remap_and_issue_cell(void *context,
907 				       struct dm_bio_prison_cell *cell)
908 {
909 	struct remap_info *info = context;
910 	struct bio *bio;
911 
912 	while ((bio = bio_list_pop(&cell->bios))) {
913 		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
914 			bio_list_add(&info->defer_bios, bio);
915 		else {
916 			inc_all_io_entry(info->tc->pool, bio);
917 
918 			/*
919 			 * We can't issue the bios with the bio prison lock
920 			 * held, so we add them to a list to issue on
921 			 * return from this function.
922 			 */
923 			bio_list_add(&info->issue_bios, bio);
924 		}
925 	}
926 }
927 
inc_remap_and_issue_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell,dm_block_t block)928 static void inc_remap_and_issue_cell(struct thin_c *tc,
929 				     struct dm_bio_prison_cell *cell,
930 				     dm_block_t block)
931 {
932 	struct bio *bio;
933 	struct remap_info info;
934 
935 	info.tc = tc;
936 	bio_list_init(&info.defer_bios);
937 	bio_list_init(&info.issue_bios);
938 
939 	/*
940 	 * We have to be careful to inc any bios we're about to issue
941 	 * before the cell is released, and avoid a race with new bios
942 	 * being added to the cell.
943 	 */
944 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
945 			   &info, cell);
946 
947 	while ((bio = bio_list_pop(&info.defer_bios)))
948 		thin_defer_bio(tc, bio);
949 
950 	while ((bio = bio_list_pop(&info.issue_bios)))
951 		remap_and_issue(info.tc, bio, block);
952 }
953 
process_prepared_mapping_fail(struct dm_thin_new_mapping * m)954 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
955 {
956 	cell_error(m->tc->pool, m->cell);
957 	list_del(&m->list);
958 	mempool_free(m, &m->tc->pool->mapping_pool);
959 }
960 
complete_overwrite_bio(struct thin_c * tc,struct bio * bio)961 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
962 {
963 	struct pool *pool = tc->pool;
964 
965 	/*
966 	 * If the bio has the REQ_FUA flag set we must commit the metadata
967 	 * before signaling its completion.
968 	 */
969 	if (!bio_triggers_commit(tc, bio)) {
970 		bio_endio(bio);
971 		return;
972 	}
973 
974 	/*
975 	 * Complete bio with an error if earlier I/O caused changes to the
976 	 * metadata that can't be committed, e.g, due to I/O errors on the
977 	 * metadata device.
978 	 */
979 	if (dm_thin_aborted_changes(tc->td)) {
980 		bio_io_error(bio);
981 		return;
982 	}
983 
984 	/*
985 	 * Batch together any bios that trigger commits and then issue a
986 	 * single commit for them in process_deferred_bios().
987 	 */
988 	spin_lock_irq(&pool->lock);
989 	bio_list_add(&pool->deferred_flush_completions, bio);
990 	spin_unlock_irq(&pool->lock);
991 }
992 
process_prepared_mapping(struct dm_thin_new_mapping * m)993 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
994 {
995 	struct thin_c *tc = m->tc;
996 	struct pool *pool = tc->pool;
997 	struct bio *bio = m->bio;
998 	int r;
999 
1000 	if (m->status) {
1001 		cell_error(pool, m->cell);
1002 		goto out;
1003 	}
1004 
1005 	/*
1006 	 * Commit the prepared block into the mapping btree.
1007 	 * Any I/O for this block arriving after this point will get
1008 	 * remapped to it directly.
1009 	 */
1010 	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1011 	if (r) {
1012 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
1013 		cell_error(pool, m->cell);
1014 		goto out;
1015 	}
1016 
1017 	/*
1018 	 * Release any bios held while the block was being provisioned.
1019 	 * If we are processing a write bio that completely covers the block,
1020 	 * we already processed it so can ignore it now when processing
1021 	 * the bios in the cell.
1022 	 */
1023 	if (bio) {
1024 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1025 		complete_overwrite_bio(tc, bio);
1026 	} else {
1027 		inc_all_io_entry(tc->pool, m->cell->holder);
1028 		remap_and_issue(tc, m->cell->holder, m->data_block);
1029 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1030 	}
1031 
1032 out:
1033 	list_del(&m->list);
1034 	mempool_free(m, &pool->mapping_pool);
1035 }
1036 
1037 /*----------------------------------------------------------------*/
1038 
free_discard_mapping(struct dm_thin_new_mapping * m)1039 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1040 {
1041 	struct thin_c *tc = m->tc;
1042 	if (m->cell)
1043 		cell_defer_no_holder(tc, m->cell);
1044 	mempool_free(m, &tc->pool->mapping_pool);
1045 }
1046 
process_prepared_discard_fail(struct dm_thin_new_mapping * m)1047 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1048 {
1049 	bio_io_error(m->bio);
1050 	free_discard_mapping(m);
1051 }
1052 
process_prepared_discard_success(struct dm_thin_new_mapping * m)1053 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1054 {
1055 	bio_endio(m->bio);
1056 	free_discard_mapping(m);
1057 }
1058 
process_prepared_discard_no_passdown(struct dm_thin_new_mapping * m)1059 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1060 {
1061 	int r;
1062 	struct thin_c *tc = m->tc;
1063 
1064 	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1065 	if (r) {
1066 		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1067 		bio_io_error(m->bio);
1068 	} else
1069 		bio_endio(m->bio);
1070 
1071 	cell_defer_no_holder(tc, m->cell);
1072 	mempool_free(m, &tc->pool->mapping_pool);
1073 }
1074 
1075 /*----------------------------------------------------------------*/
1076 
passdown_double_checking_shared_status(struct dm_thin_new_mapping * m,struct bio * discard_parent)1077 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1078 						   struct bio *discard_parent)
1079 {
1080 	/*
1081 	 * We've already unmapped this range of blocks, but before we
1082 	 * passdown we have to check that these blocks are now unused.
1083 	 */
1084 	int r = 0;
1085 	bool shared = true;
1086 	struct thin_c *tc = m->tc;
1087 	struct pool *pool = tc->pool;
1088 	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1089 	struct discard_op op;
1090 
1091 	begin_discard(&op, tc, discard_parent);
1092 	while (b != end) {
1093 		/* find start of unmapped run */
1094 		for (; b < end; b++) {
1095 			r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1096 			if (r)
1097 				goto out;
1098 
1099 			if (!shared)
1100 				break;
1101 		}
1102 
1103 		if (b == end)
1104 			break;
1105 
1106 		/* find end of run */
1107 		for (e = b + 1; e != end; e++) {
1108 			r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1109 			if (r)
1110 				goto out;
1111 
1112 			if (shared)
1113 				break;
1114 		}
1115 
1116 		r = issue_discard(&op, b, e);
1117 		if (r)
1118 			goto out;
1119 
1120 		b = e;
1121 	}
1122 out:
1123 	end_discard(&op, r);
1124 }
1125 
queue_passdown_pt2(struct dm_thin_new_mapping * m)1126 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1127 {
1128 	unsigned long flags;
1129 	struct pool *pool = m->tc->pool;
1130 
1131 	spin_lock_irqsave(&pool->lock, flags);
1132 	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1133 	spin_unlock_irqrestore(&pool->lock, flags);
1134 	wake_worker(pool);
1135 }
1136 
passdown_endio(struct bio * bio)1137 static void passdown_endio(struct bio *bio)
1138 {
1139 	/*
1140 	 * It doesn't matter if the passdown discard failed, we still want
1141 	 * to unmap (we ignore err).
1142 	 */
1143 	queue_passdown_pt2(bio->bi_private);
1144 	bio_put(bio);
1145 }
1146 
process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping * m)1147 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1148 {
1149 	int r;
1150 	struct thin_c *tc = m->tc;
1151 	struct pool *pool = tc->pool;
1152 	struct bio *discard_parent;
1153 	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1154 
1155 	/*
1156 	 * Only this thread allocates blocks, so we can be sure that the
1157 	 * newly unmapped blocks will not be allocated before the end of
1158 	 * the function.
1159 	 */
1160 	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1161 	if (r) {
1162 		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1163 		bio_io_error(m->bio);
1164 		cell_defer_no_holder(tc, m->cell);
1165 		mempool_free(m, &pool->mapping_pool);
1166 		return;
1167 	}
1168 
1169 	/*
1170 	 * Increment the unmapped blocks.  This prevents a race between the
1171 	 * passdown io and reallocation of freed blocks.
1172 	 */
1173 	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1174 	if (r) {
1175 		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1176 		bio_io_error(m->bio);
1177 		cell_defer_no_holder(tc, m->cell);
1178 		mempool_free(m, &pool->mapping_pool);
1179 		return;
1180 	}
1181 
1182 	discard_parent = bio_alloc(GFP_NOIO, 1);
1183 	if (!discard_parent) {
1184 		DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1185 		       dm_device_name(tc->pool->pool_md));
1186 		queue_passdown_pt2(m);
1187 
1188 	} else {
1189 		discard_parent->bi_end_io = passdown_endio;
1190 		discard_parent->bi_private = m;
1191 
1192 		if (m->maybe_shared)
1193 			passdown_double_checking_shared_status(m, discard_parent);
1194 		else {
1195 			struct discard_op op;
1196 
1197 			begin_discard(&op, tc, discard_parent);
1198 			r = issue_discard(&op, m->data_block, data_end);
1199 			end_discard(&op, r);
1200 		}
1201 	}
1202 }
1203 
process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping * m)1204 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1205 {
1206 	int r;
1207 	struct thin_c *tc = m->tc;
1208 	struct pool *pool = tc->pool;
1209 
1210 	/*
1211 	 * The passdown has completed, so now we can decrement all those
1212 	 * unmapped blocks.
1213 	 */
1214 	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1215 				   m->data_block + (m->virt_end - m->virt_begin));
1216 	if (r) {
1217 		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1218 		bio_io_error(m->bio);
1219 	} else
1220 		bio_endio(m->bio);
1221 
1222 	cell_defer_no_holder(tc, m->cell);
1223 	mempool_free(m, &pool->mapping_pool);
1224 }
1225 
process_prepared(struct pool * pool,struct list_head * head,process_mapping_fn * fn)1226 static void process_prepared(struct pool *pool, struct list_head *head,
1227 			     process_mapping_fn *fn)
1228 {
1229 	struct list_head maps;
1230 	struct dm_thin_new_mapping *m, *tmp;
1231 
1232 	INIT_LIST_HEAD(&maps);
1233 	spin_lock_irq(&pool->lock);
1234 	list_splice_init(head, &maps);
1235 	spin_unlock_irq(&pool->lock);
1236 
1237 	list_for_each_entry_safe(m, tmp, &maps, list)
1238 		(*fn)(m);
1239 }
1240 
1241 /*
1242  * Deferred bio jobs.
1243  */
io_overlaps_block(struct pool * pool,struct bio * bio)1244 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1245 {
1246 	return bio->bi_iter.bi_size ==
1247 		(pool->sectors_per_block << SECTOR_SHIFT);
1248 }
1249 
io_overwrites_block(struct pool * pool,struct bio * bio)1250 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1251 {
1252 	return (bio_data_dir(bio) == WRITE) &&
1253 		io_overlaps_block(pool, bio);
1254 }
1255 
save_and_set_endio(struct bio * bio,bio_end_io_t ** save,bio_end_io_t * fn)1256 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1257 			       bio_end_io_t *fn)
1258 {
1259 	*save = bio->bi_end_io;
1260 	bio->bi_end_io = fn;
1261 }
1262 
ensure_next_mapping(struct pool * pool)1263 static int ensure_next_mapping(struct pool *pool)
1264 {
1265 	if (pool->next_mapping)
1266 		return 0;
1267 
1268 	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1269 
1270 	return pool->next_mapping ? 0 : -ENOMEM;
1271 }
1272 
get_next_mapping(struct pool * pool)1273 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1274 {
1275 	struct dm_thin_new_mapping *m = pool->next_mapping;
1276 
1277 	BUG_ON(!pool->next_mapping);
1278 
1279 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1280 	INIT_LIST_HEAD(&m->list);
1281 	m->bio = NULL;
1282 
1283 	pool->next_mapping = NULL;
1284 
1285 	return m;
1286 }
1287 
ll_zero(struct thin_c * tc,struct dm_thin_new_mapping * m,sector_t begin,sector_t end)1288 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1289 		    sector_t begin, sector_t end)
1290 {
1291 	struct dm_io_region to;
1292 
1293 	to.bdev = tc->pool_dev->bdev;
1294 	to.sector = begin;
1295 	to.count = end - begin;
1296 
1297 	dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1298 }
1299 
remap_and_issue_overwrite(struct thin_c * tc,struct bio * bio,dm_block_t data_begin,struct dm_thin_new_mapping * m)1300 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1301 				      dm_block_t data_begin,
1302 				      struct dm_thin_new_mapping *m)
1303 {
1304 	struct pool *pool = tc->pool;
1305 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1306 
1307 	h->overwrite_mapping = m;
1308 	m->bio = bio;
1309 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1310 	inc_all_io_entry(pool, bio);
1311 	remap_and_issue(tc, bio, data_begin);
1312 }
1313 
1314 /*
1315  * A partial copy also needs to zero the uncopied region.
1316  */
schedule_copy(struct thin_c * tc,dm_block_t virt_block,struct dm_dev * origin,dm_block_t data_origin,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio,sector_t len)1317 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1318 			  struct dm_dev *origin, dm_block_t data_origin,
1319 			  dm_block_t data_dest,
1320 			  struct dm_bio_prison_cell *cell, struct bio *bio,
1321 			  sector_t len)
1322 {
1323 	struct pool *pool = tc->pool;
1324 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1325 
1326 	m->tc = tc;
1327 	m->virt_begin = virt_block;
1328 	m->virt_end = virt_block + 1u;
1329 	m->data_block = data_dest;
1330 	m->cell = cell;
1331 
1332 	/*
1333 	 * quiesce action + copy action + an extra reference held for the
1334 	 * duration of this function (we may need to inc later for a
1335 	 * partial zero).
1336 	 */
1337 	atomic_set(&m->prepare_actions, 3);
1338 
1339 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1340 		complete_mapping_preparation(m); /* already quiesced */
1341 
1342 	/*
1343 	 * IO to pool_dev remaps to the pool target's data_dev.
1344 	 *
1345 	 * If the whole block of data is being overwritten, we can issue the
1346 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1347 	 */
1348 	if (io_overwrites_block(pool, bio))
1349 		remap_and_issue_overwrite(tc, bio, data_dest, m);
1350 	else {
1351 		struct dm_io_region from, to;
1352 
1353 		from.bdev = origin->bdev;
1354 		from.sector = data_origin * pool->sectors_per_block;
1355 		from.count = len;
1356 
1357 		to.bdev = tc->pool_dev->bdev;
1358 		to.sector = data_dest * pool->sectors_per_block;
1359 		to.count = len;
1360 
1361 		dm_kcopyd_copy(pool->copier, &from, 1, &to,
1362 			       0, copy_complete, m);
1363 
1364 		/*
1365 		 * Do we need to zero a tail region?
1366 		 */
1367 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1368 			atomic_inc(&m->prepare_actions);
1369 			ll_zero(tc, m,
1370 				data_dest * pool->sectors_per_block + len,
1371 				(data_dest + 1) * pool->sectors_per_block);
1372 		}
1373 	}
1374 
1375 	complete_mapping_preparation(m); /* drop our ref */
1376 }
1377 
schedule_internal_copy(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_origin,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio)1378 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1379 				   dm_block_t data_origin, dm_block_t data_dest,
1380 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1381 {
1382 	schedule_copy(tc, virt_block, tc->pool_dev,
1383 		      data_origin, data_dest, cell, bio,
1384 		      tc->pool->sectors_per_block);
1385 }
1386 
schedule_zero(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_block,struct dm_bio_prison_cell * cell,struct bio * bio)1387 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1388 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1389 			  struct bio *bio)
1390 {
1391 	struct pool *pool = tc->pool;
1392 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1393 
1394 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1395 	m->tc = tc;
1396 	m->virt_begin = virt_block;
1397 	m->virt_end = virt_block + 1u;
1398 	m->data_block = data_block;
1399 	m->cell = cell;
1400 
1401 	/*
1402 	 * If the whole block of data is being overwritten or we are not
1403 	 * zeroing pre-existing data, we can issue the bio immediately.
1404 	 * Otherwise we use kcopyd to zero the data first.
1405 	 */
1406 	if (pool->pf.zero_new_blocks) {
1407 		if (io_overwrites_block(pool, bio))
1408 			remap_and_issue_overwrite(tc, bio, data_block, m);
1409 		else
1410 			ll_zero(tc, m, data_block * pool->sectors_per_block,
1411 				(data_block + 1) * pool->sectors_per_block);
1412 	} else
1413 		process_prepared_mapping(m);
1414 }
1415 
schedule_external_copy(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio)1416 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1417 				   dm_block_t data_dest,
1418 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1419 {
1420 	struct pool *pool = tc->pool;
1421 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1422 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1423 
1424 	if (virt_block_end <= tc->origin_size)
1425 		schedule_copy(tc, virt_block, tc->origin_dev,
1426 			      virt_block, data_dest, cell, bio,
1427 			      pool->sectors_per_block);
1428 
1429 	else if (virt_block_begin < tc->origin_size)
1430 		schedule_copy(tc, virt_block, tc->origin_dev,
1431 			      virt_block, data_dest, cell, bio,
1432 			      tc->origin_size - virt_block_begin);
1433 
1434 	else
1435 		schedule_zero(tc, virt_block, data_dest, cell, bio);
1436 }
1437 
1438 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1439 
1440 static void requeue_bios(struct pool *pool);
1441 
is_read_only_pool_mode(enum pool_mode mode)1442 static bool is_read_only_pool_mode(enum pool_mode mode)
1443 {
1444 	return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1445 }
1446 
is_read_only(struct pool * pool)1447 static bool is_read_only(struct pool *pool)
1448 {
1449 	return is_read_only_pool_mode(get_pool_mode(pool));
1450 }
1451 
check_for_metadata_space(struct pool * pool)1452 static void check_for_metadata_space(struct pool *pool)
1453 {
1454 	int r;
1455 	const char *ooms_reason = NULL;
1456 	dm_block_t nr_free;
1457 
1458 	r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1459 	if (r)
1460 		ooms_reason = "Could not get free metadata blocks";
1461 	else if (!nr_free)
1462 		ooms_reason = "No free metadata blocks";
1463 
1464 	if (ooms_reason && !is_read_only(pool)) {
1465 		DMERR("%s", ooms_reason);
1466 		set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1467 	}
1468 }
1469 
check_for_data_space(struct pool * pool)1470 static void check_for_data_space(struct pool *pool)
1471 {
1472 	int r;
1473 	dm_block_t nr_free;
1474 
1475 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1476 		return;
1477 
1478 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1479 	if (r)
1480 		return;
1481 
1482 	if (nr_free) {
1483 		set_pool_mode(pool, PM_WRITE);
1484 		requeue_bios(pool);
1485 	}
1486 }
1487 
1488 /*
1489  * A non-zero return indicates read_only or fail_io mode.
1490  * Many callers don't care about the return value.
1491  */
commit(struct pool * pool)1492 static int commit(struct pool *pool)
1493 {
1494 	int r;
1495 
1496 	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1497 		return -EINVAL;
1498 
1499 	r = dm_pool_commit_metadata(pool->pmd);
1500 	if (r)
1501 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1502 	else {
1503 		check_for_metadata_space(pool);
1504 		check_for_data_space(pool);
1505 	}
1506 
1507 	return r;
1508 }
1509 
check_low_water_mark(struct pool * pool,dm_block_t free_blocks)1510 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1511 {
1512 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1513 		DMWARN("%s: reached low water mark for data device: sending event.",
1514 		       dm_device_name(pool->pool_md));
1515 		spin_lock_irq(&pool->lock);
1516 		pool->low_water_triggered = true;
1517 		spin_unlock_irq(&pool->lock);
1518 		dm_table_event(pool->ti->table);
1519 	}
1520 }
1521 
alloc_data_block(struct thin_c * tc,dm_block_t * result)1522 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1523 {
1524 	int r;
1525 	dm_block_t free_blocks;
1526 	struct pool *pool = tc->pool;
1527 
1528 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1529 		return -EINVAL;
1530 
1531 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1532 	if (r) {
1533 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1534 		return r;
1535 	}
1536 
1537 	check_low_water_mark(pool, free_blocks);
1538 
1539 	if (!free_blocks) {
1540 		/*
1541 		 * Try to commit to see if that will free up some
1542 		 * more space.
1543 		 */
1544 		r = commit(pool);
1545 		if (r)
1546 			return r;
1547 
1548 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1549 		if (r) {
1550 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1551 			return r;
1552 		}
1553 
1554 		if (!free_blocks) {
1555 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1556 			return -ENOSPC;
1557 		}
1558 	}
1559 
1560 	r = dm_pool_alloc_data_block(pool->pmd, result);
1561 	if (r) {
1562 		if (r == -ENOSPC)
1563 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1564 		else
1565 			metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1566 		return r;
1567 	}
1568 
1569 	r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1570 	if (r) {
1571 		metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1572 		return r;
1573 	}
1574 
1575 	if (!free_blocks) {
1576 		/* Let's commit before we use up the metadata reserve. */
1577 		r = commit(pool);
1578 		if (r)
1579 			return r;
1580 	}
1581 
1582 	return 0;
1583 }
1584 
1585 /*
1586  * If we have run out of space, queue bios until the device is
1587  * resumed, presumably after having been reloaded with more space.
1588  */
retry_on_resume(struct bio * bio)1589 static void retry_on_resume(struct bio *bio)
1590 {
1591 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1592 	struct thin_c *tc = h->tc;
1593 
1594 	spin_lock_irq(&tc->lock);
1595 	bio_list_add(&tc->retry_on_resume_list, bio);
1596 	spin_unlock_irq(&tc->lock);
1597 }
1598 
should_error_unserviceable_bio(struct pool * pool)1599 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1600 {
1601 	enum pool_mode m = get_pool_mode(pool);
1602 
1603 	switch (m) {
1604 	case PM_WRITE:
1605 		/* Shouldn't get here */
1606 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1607 		return BLK_STS_IOERR;
1608 
1609 	case PM_OUT_OF_DATA_SPACE:
1610 		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1611 
1612 	case PM_OUT_OF_METADATA_SPACE:
1613 	case PM_READ_ONLY:
1614 	case PM_FAIL:
1615 		return BLK_STS_IOERR;
1616 	default:
1617 		/* Shouldn't get here */
1618 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1619 		return BLK_STS_IOERR;
1620 	}
1621 }
1622 
handle_unserviceable_bio(struct pool * pool,struct bio * bio)1623 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1624 {
1625 	blk_status_t error = should_error_unserviceable_bio(pool);
1626 
1627 	if (error) {
1628 		bio->bi_status = error;
1629 		bio_endio(bio);
1630 	} else
1631 		retry_on_resume(bio);
1632 }
1633 
retry_bios_on_resume(struct pool * pool,struct dm_bio_prison_cell * cell)1634 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1635 {
1636 	struct bio *bio;
1637 	struct bio_list bios;
1638 	blk_status_t error;
1639 
1640 	error = should_error_unserviceable_bio(pool);
1641 	if (error) {
1642 		cell_error_with_code(pool, cell, error);
1643 		return;
1644 	}
1645 
1646 	bio_list_init(&bios);
1647 	cell_release(pool, cell, &bios);
1648 
1649 	while ((bio = bio_list_pop(&bios)))
1650 		retry_on_resume(bio);
1651 }
1652 
process_discard_cell_no_passdown(struct thin_c * tc,struct dm_bio_prison_cell * virt_cell)1653 static void process_discard_cell_no_passdown(struct thin_c *tc,
1654 					     struct dm_bio_prison_cell *virt_cell)
1655 {
1656 	struct pool *pool = tc->pool;
1657 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1658 
1659 	/*
1660 	 * We don't need to lock the data blocks, since there's no
1661 	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1662 	 */
1663 	m->tc = tc;
1664 	m->virt_begin = virt_cell->key.block_begin;
1665 	m->virt_end = virt_cell->key.block_end;
1666 	m->cell = virt_cell;
1667 	m->bio = virt_cell->holder;
1668 
1669 	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1670 		pool->process_prepared_discard(m);
1671 }
1672 
break_up_discard_bio(struct thin_c * tc,dm_block_t begin,dm_block_t end,struct bio * bio)1673 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1674 				 struct bio *bio)
1675 {
1676 	struct pool *pool = tc->pool;
1677 
1678 	int r;
1679 	bool maybe_shared;
1680 	struct dm_cell_key data_key;
1681 	struct dm_bio_prison_cell *data_cell;
1682 	struct dm_thin_new_mapping *m;
1683 	dm_block_t virt_begin, virt_end, data_begin;
1684 
1685 	while (begin != end) {
1686 		r = ensure_next_mapping(pool);
1687 		if (r)
1688 			/* we did our best */
1689 			return;
1690 
1691 		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1692 					      &data_begin, &maybe_shared);
1693 		if (r)
1694 			/*
1695 			 * Silently fail, letting any mappings we've
1696 			 * created complete.
1697 			 */
1698 			break;
1699 
1700 		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1701 		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1702 			/* contention, we'll give up with this range */
1703 			begin = virt_end;
1704 			continue;
1705 		}
1706 
1707 		/*
1708 		 * IO may still be going to the destination block.  We must
1709 		 * quiesce before we can do the removal.
1710 		 */
1711 		m = get_next_mapping(pool);
1712 		m->tc = tc;
1713 		m->maybe_shared = maybe_shared;
1714 		m->virt_begin = virt_begin;
1715 		m->virt_end = virt_end;
1716 		m->data_block = data_begin;
1717 		m->cell = data_cell;
1718 		m->bio = bio;
1719 
1720 		/*
1721 		 * The parent bio must not complete before sub discard bios are
1722 		 * chained to it (see end_discard's bio_chain)!
1723 		 *
1724 		 * This per-mapping bi_remaining increment is paired with
1725 		 * the implicit decrement that occurs via bio_endio() in
1726 		 * end_discard().
1727 		 */
1728 		bio_inc_remaining(bio);
1729 		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1730 			pool->process_prepared_discard(m);
1731 
1732 		begin = virt_end;
1733 	}
1734 }
1735 
process_discard_cell_passdown(struct thin_c * tc,struct dm_bio_prison_cell * virt_cell)1736 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1737 {
1738 	struct bio *bio = virt_cell->holder;
1739 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1740 
1741 	/*
1742 	 * The virt_cell will only get freed once the origin bio completes.
1743 	 * This means it will remain locked while all the individual
1744 	 * passdown bios are in flight.
1745 	 */
1746 	h->cell = virt_cell;
1747 	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1748 
1749 	/*
1750 	 * We complete the bio now, knowing that the bi_remaining field
1751 	 * will prevent completion until the sub range discards have
1752 	 * completed.
1753 	 */
1754 	bio_endio(bio);
1755 }
1756 
process_discard_bio(struct thin_c * tc,struct bio * bio)1757 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1758 {
1759 	dm_block_t begin, end;
1760 	struct dm_cell_key virt_key;
1761 	struct dm_bio_prison_cell *virt_cell;
1762 
1763 	get_bio_block_range(tc, bio, &begin, &end);
1764 	if (begin == end) {
1765 		/*
1766 		 * The discard covers less than a block.
1767 		 */
1768 		bio_endio(bio);
1769 		return;
1770 	}
1771 
1772 	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1773 	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1774 		/*
1775 		 * Potential starvation issue: We're relying on the
1776 		 * fs/application being well behaved, and not trying to
1777 		 * send IO to a region at the same time as discarding it.
1778 		 * If they do this persistently then it's possible this
1779 		 * cell will never be granted.
1780 		 */
1781 		return;
1782 
1783 	tc->pool->process_discard_cell(tc, virt_cell);
1784 }
1785 
break_sharing(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_cell_key * key,struct dm_thin_lookup_result * lookup_result,struct dm_bio_prison_cell * cell)1786 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1787 			  struct dm_cell_key *key,
1788 			  struct dm_thin_lookup_result *lookup_result,
1789 			  struct dm_bio_prison_cell *cell)
1790 {
1791 	int r;
1792 	dm_block_t data_block;
1793 	struct pool *pool = tc->pool;
1794 
1795 	r = alloc_data_block(tc, &data_block);
1796 	switch (r) {
1797 	case 0:
1798 		schedule_internal_copy(tc, block, lookup_result->block,
1799 				       data_block, cell, bio);
1800 		break;
1801 
1802 	case -ENOSPC:
1803 		retry_bios_on_resume(pool, cell);
1804 		break;
1805 
1806 	default:
1807 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1808 			    __func__, r);
1809 		cell_error(pool, cell);
1810 		break;
1811 	}
1812 }
1813 
__remap_and_issue_shared_cell(void * context,struct dm_bio_prison_cell * cell)1814 static void __remap_and_issue_shared_cell(void *context,
1815 					  struct dm_bio_prison_cell *cell)
1816 {
1817 	struct remap_info *info = context;
1818 	struct bio *bio;
1819 
1820 	while ((bio = bio_list_pop(&cell->bios))) {
1821 		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1822 		    bio_op(bio) == REQ_OP_DISCARD)
1823 			bio_list_add(&info->defer_bios, bio);
1824 		else {
1825 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1826 
1827 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1828 			inc_all_io_entry(info->tc->pool, bio);
1829 			bio_list_add(&info->issue_bios, bio);
1830 		}
1831 	}
1832 }
1833 
remap_and_issue_shared_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell,dm_block_t block)1834 static void remap_and_issue_shared_cell(struct thin_c *tc,
1835 					struct dm_bio_prison_cell *cell,
1836 					dm_block_t block)
1837 {
1838 	struct bio *bio;
1839 	struct remap_info info;
1840 
1841 	info.tc = tc;
1842 	bio_list_init(&info.defer_bios);
1843 	bio_list_init(&info.issue_bios);
1844 
1845 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1846 			   &info, cell);
1847 
1848 	while ((bio = bio_list_pop(&info.defer_bios)))
1849 		thin_defer_bio(tc, bio);
1850 
1851 	while ((bio = bio_list_pop(&info.issue_bios)))
1852 		remap_and_issue(tc, bio, block);
1853 }
1854 
process_shared_bio(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_thin_lookup_result * lookup_result,struct dm_bio_prison_cell * virt_cell)1855 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1856 			       dm_block_t block,
1857 			       struct dm_thin_lookup_result *lookup_result,
1858 			       struct dm_bio_prison_cell *virt_cell)
1859 {
1860 	struct dm_bio_prison_cell *data_cell;
1861 	struct pool *pool = tc->pool;
1862 	struct dm_cell_key key;
1863 
1864 	/*
1865 	 * If cell is already occupied, then sharing is already in the process
1866 	 * of being broken so we have nothing further to do here.
1867 	 */
1868 	build_data_key(tc->td, lookup_result->block, &key);
1869 	if (bio_detain(pool, &key, bio, &data_cell)) {
1870 		cell_defer_no_holder(tc, virt_cell);
1871 		return;
1872 	}
1873 
1874 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1875 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1876 		cell_defer_no_holder(tc, virt_cell);
1877 	} else {
1878 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1879 
1880 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1881 		inc_all_io_entry(pool, bio);
1882 		remap_and_issue(tc, bio, lookup_result->block);
1883 
1884 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1885 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1886 	}
1887 }
1888 
provision_block(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_bio_prison_cell * cell)1889 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1890 			    struct dm_bio_prison_cell *cell)
1891 {
1892 	int r;
1893 	dm_block_t data_block;
1894 	struct pool *pool = tc->pool;
1895 
1896 	/*
1897 	 * Remap empty bios (flushes) immediately, without provisioning.
1898 	 */
1899 	if (!bio->bi_iter.bi_size) {
1900 		inc_all_io_entry(pool, bio);
1901 		cell_defer_no_holder(tc, cell);
1902 
1903 		remap_and_issue(tc, bio, 0);
1904 		return;
1905 	}
1906 
1907 	/*
1908 	 * Fill read bios with zeroes and complete them immediately.
1909 	 */
1910 	if (bio_data_dir(bio) == READ) {
1911 		zero_fill_bio(bio);
1912 		cell_defer_no_holder(tc, cell);
1913 		bio_endio(bio);
1914 		return;
1915 	}
1916 
1917 	r = alloc_data_block(tc, &data_block);
1918 	switch (r) {
1919 	case 0:
1920 		if (tc->origin_dev)
1921 			schedule_external_copy(tc, block, data_block, cell, bio);
1922 		else
1923 			schedule_zero(tc, block, data_block, cell, bio);
1924 		break;
1925 
1926 	case -ENOSPC:
1927 		retry_bios_on_resume(pool, cell);
1928 		break;
1929 
1930 	default:
1931 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1932 			    __func__, r);
1933 		cell_error(pool, cell);
1934 		break;
1935 	}
1936 }
1937 
process_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell)1938 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1939 {
1940 	int r;
1941 	struct pool *pool = tc->pool;
1942 	struct bio *bio = cell->holder;
1943 	dm_block_t block = get_bio_block(tc, bio);
1944 	struct dm_thin_lookup_result lookup_result;
1945 
1946 	if (tc->requeue_mode) {
1947 		cell_requeue(pool, cell);
1948 		return;
1949 	}
1950 
1951 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1952 	switch (r) {
1953 	case 0:
1954 		if (lookup_result.shared)
1955 			process_shared_bio(tc, bio, block, &lookup_result, cell);
1956 		else {
1957 			inc_all_io_entry(pool, bio);
1958 			remap_and_issue(tc, bio, lookup_result.block);
1959 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1960 		}
1961 		break;
1962 
1963 	case -ENODATA:
1964 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1965 			inc_all_io_entry(pool, bio);
1966 			cell_defer_no_holder(tc, cell);
1967 
1968 			if (bio_end_sector(bio) <= tc->origin_size)
1969 				remap_to_origin_and_issue(tc, bio);
1970 
1971 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1972 				zero_fill_bio(bio);
1973 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1974 				remap_to_origin_and_issue(tc, bio);
1975 
1976 			} else {
1977 				zero_fill_bio(bio);
1978 				bio_endio(bio);
1979 			}
1980 		} else
1981 			provision_block(tc, bio, block, cell);
1982 		break;
1983 
1984 	default:
1985 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1986 			    __func__, r);
1987 		cell_defer_no_holder(tc, cell);
1988 		bio_io_error(bio);
1989 		break;
1990 	}
1991 }
1992 
process_bio(struct thin_c * tc,struct bio * bio)1993 static void process_bio(struct thin_c *tc, struct bio *bio)
1994 {
1995 	struct pool *pool = tc->pool;
1996 	dm_block_t block = get_bio_block(tc, bio);
1997 	struct dm_bio_prison_cell *cell;
1998 	struct dm_cell_key key;
1999 
2000 	/*
2001 	 * If cell is already occupied, then the block is already
2002 	 * being provisioned so we have nothing further to do here.
2003 	 */
2004 	build_virtual_key(tc->td, block, &key);
2005 	if (bio_detain(pool, &key, bio, &cell))
2006 		return;
2007 
2008 	process_cell(tc, cell);
2009 }
2010 
__process_bio_read_only(struct thin_c * tc,struct bio * bio,struct dm_bio_prison_cell * cell)2011 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2012 				    struct dm_bio_prison_cell *cell)
2013 {
2014 	int r;
2015 	int rw = bio_data_dir(bio);
2016 	dm_block_t block = get_bio_block(tc, bio);
2017 	struct dm_thin_lookup_result lookup_result;
2018 
2019 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2020 	switch (r) {
2021 	case 0:
2022 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2023 			handle_unserviceable_bio(tc->pool, bio);
2024 			if (cell)
2025 				cell_defer_no_holder(tc, cell);
2026 		} else {
2027 			inc_all_io_entry(tc->pool, bio);
2028 			remap_and_issue(tc, bio, lookup_result.block);
2029 			if (cell)
2030 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2031 		}
2032 		break;
2033 
2034 	case -ENODATA:
2035 		if (cell)
2036 			cell_defer_no_holder(tc, cell);
2037 		if (rw != READ) {
2038 			handle_unserviceable_bio(tc->pool, bio);
2039 			break;
2040 		}
2041 
2042 		if (tc->origin_dev) {
2043 			inc_all_io_entry(tc->pool, bio);
2044 			remap_to_origin_and_issue(tc, bio);
2045 			break;
2046 		}
2047 
2048 		zero_fill_bio(bio);
2049 		bio_endio(bio);
2050 		break;
2051 
2052 	default:
2053 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2054 			    __func__, r);
2055 		if (cell)
2056 			cell_defer_no_holder(tc, cell);
2057 		bio_io_error(bio);
2058 		break;
2059 	}
2060 }
2061 
process_bio_read_only(struct thin_c * tc,struct bio * bio)2062 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2063 {
2064 	__process_bio_read_only(tc, bio, NULL);
2065 }
2066 
process_cell_read_only(struct thin_c * tc,struct dm_bio_prison_cell * cell)2067 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2068 {
2069 	__process_bio_read_only(tc, cell->holder, cell);
2070 }
2071 
process_bio_success(struct thin_c * tc,struct bio * bio)2072 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2073 {
2074 	bio_endio(bio);
2075 }
2076 
process_bio_fail(struct thin_c * tc,struct bio * bio)2077 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2078 {
2079 	bio_io_error(bio);
2080 }
2081 
process_cell_success(struct thin_c * tc,struct dm_bio_prison_cell * cell)2082 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2083 {
2084 	cell_success(tc->pool, cell);
2085 }
2086 
process_cell_fail(struct thin_c * tc,struct dm_bio_prison_cell * cell)2087 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2088 {
2089 	cell_error(tc->pool, cell);
2090 }
2091 
2092 /*
2093  * FIXME: should we also commit due to size of transaction, measured in
2094  * metadata blocks?
2095  */
need_commit_due_to_time(struct pool * pool)2096 static int need_commit_due_to_time(struct pool *pool)
2097 {
2098 	return !time_in_range(jiffies, pool->last_commit_jiffies,
2099 			      pool->last_commit_jiffies + COMMIT_PERIOD);
2100 }
2101 
2102 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2103 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2104 
__thin_bio_rb_add(struct thin_c * tc,struct bio * bio)2105 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2106 {
2107 	struct rb_node **rbp, *parent;
2108 	struct dm_thin_endio_hook *pbd;
2109 	sector_t bi_sector = bio->bi_iter.bi_sector;
2110 
2111 	rbp = &tc->sort_bio_list.rb_node;
2112 	parent = NULL;
2113 	while (*rbp) {
2114 		parent = *rbp;
2115 		pbd = thin_pbd(parent);
2116 
2117 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2118 			rbp = &(*rbp)->rb_left;
2119 		else
2120 			rbp = &(*rbp)->rb_right;
2121 	}
2122 
2123 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2124 	rb_link_node(&pbd->rb_node, parent, rbp);
2125 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2126 }
2127 
__extract_sorted_bios(struct thin_c * tc)2128 static void __extract_sorted_bios(struct thin_c *tc)
2129 {
2130 	struct rb_node *node;
2131 	struct dm_thin_endio_hook *pbd;
2132 	struct bio *bio;
2133 
2134 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2135 		pbd = thin_pbd(node);
2136 		bio = thin_bio(pbd);
2137 
2138 		bio_list_add(&tc->deferred_bio_list, bio);
2139 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2140 	}
2141 
2142 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2143 }
2144 
__sort_thin_deferred_bios(struct thin_c * tc)2145 static void __sort_thin_deferred_bios(struct thin_c *tc)
2146 {
2147 	struct bio *bio;
2148 	struct bio_list bios;
2149 
2150 	bio_list_init(&bios);
2151 	bio_list_merge(&bios, &tc->deferred_bio_list);
2152 	bio_list_init(&tc->deferred_bio_list);
2153 
2154 	/* Sort deferred_bio_list using rb-tree */
2155 	while ((bio = bio_list_pop(&bios)))
2156 		__thin_bio_rb_add(tc, bio);
2157 
2158 	/*
2159 	 * Transfer the sorted bios in sort_bio_list back to
2160 	 * deferred_bio_list to allow lockless submission of
2161 	 * all bios.
2162 	 */
2163 	__extract_sorted_bios(tc);
2164 }
2165 
process_thin_deferred_bios(struct thin_c * tc)2166 static void process_thin_deferred_bios(struct thin_c *tc)
2167 {
2168 	struct pool *pool = tc->pool;
2169 	struct bio *bio;
2170 	struct bio_list bios;
2171 	struct blk_plug plug;
2172 	unsigned count = 0;
2173 
2174 	if (tc->requeue_mode) {
2175 		error_thin_bio_list(tc, &tc->deferred_bio_list,
2176 				BLK_STS_DM_REQUEUE);
2177 		return;
2178 	}
2179 
2180 	bio_list_init(&bios);
2181 
2182 	spin_lock_irq(&tc->lock);
2183 
2184 	if (bio_list_empty(&tc->deferred_bio_list)) {
2185 		spin_unlock_irq(&tc->lock);
2186 		return;
2187 	}
2188 
2189 	__sort_thin_deferred_bios(tc);
2190 
2191 	bio_list_merge(&bios, &tc->deferred_bio_list);
2192 	bio_list_init(&tc->deferred_bio_list);
2193 
2194 	spin_unlock_irq(&tc->lock);
2195 
2196 	blk_start_plug(&plug);
2197 	while ((bio = bio_list_pop(&bios))) {
2198 		/*
2199 		 * If we've got no free new_mapping structs, and processing
2200 		 * this bio might require one, we pause until there are some
2201 		 * prepared mappings to process.
2202 		 */
2203 		if (ensure_next_mapping(pool)) {
2204 			spin_lock_irq(&tc->lock);
2205 			bio_list_add(&tc->deferred_bio_list, bio);
2206 			bio_list_merge(&tc->deferred_bio_list, &bios);
2207 			spin_unlock_irq(&tc->lock);
2208 			break;
2209 		}
2210 
2211 		if (bio_op(bio) == REQ_OP_DISCARD)
2212 			pool->process_discard(tc, bio);
2213 		else
2214 			pool->process_bio(tc, bio);
2215 
2216 		if ((count++ & 127) == 0) {
2217 			throttle_work_update(&pool->throttle);
2218 			dm_pool_issue_prefetches(pool->pmd);
2219 		}
2220 		cond_resched();
2221 	}
2222 	blk_finish_plug(&plug);
2223 }
2224 
cmp_cells(const void * lhs,const void * rhs)2225 static int cmp_cells(const void *lhs, const void *rhs)
2226 {
2227 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2228 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2229 
2230 	BUG_ON(!lhs_cell->holder);
2231 	BUG_ON(!rhs_cell->holder);
2232 
2233 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2234 		return -1;
2235 
2236 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2237 		return 1;
2238 
2239 	return 0;
2240 }
2241 
sort_cells(struct pool * pool,struct list_head * cells)2242 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2243 {
2244 	unsigned count = 0;
2245 	struct dm_bio_prison_cell *cell, *tmp;
2246 
2247 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2248 		if (count >= CELL_SORT_ARRAY_SIZE)
2249 			break;
2250 
2251 		pool->cell_sort_array[count++] = cell;
2252 		list_del(&cell->user_list);
2253 	}
2254 
2255 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2256 
2257 	return count;
2258 }
2259 
process_thin_deferred_cells(struct thin_c * tc)2260 static void process_thin_deferred_cells(struct thin_c *tc)
2261 {
2262 	struct pool *pool = tc->pool;
2263 	struct list_head cells;
2264 	struct dm_bio_prison_cell *cell;
2265 	unsigned i, j, count;
2266 
2267 	INIT_LIST_HEAD(&cells);
2268 
2269 	spin_lock_irq(&tc->lock);
2270 	list_splice_init(&tc->deferred_cells, &cells);
2271 	spin_unlock_irq(&tc->lock);
2272 
2273 	if (list_empty(&cells))
2274 		return;
2275 
2276 	do {
2277 		count = sort_cells(tc->pool, &cells);
2278 
2279 		for (i = 0; i < count; i++) {
2280 			cell = pool->cell_sort_array[i];
2281 			BUG_ON(!cell->holder);
2282 
2283 			/*
2284 			 * If we've got no free new_mapping structs, and processing
2285 			 * this bio might require one, we pause until there are some
2286 			 * prepared mappings to process.
2287 			 */
2288 			if (ensure_next_mapping(pool)) {
2289 				for (j = i; j < count; j++)
2290 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2291 
2292 				spin_lock_irq(&tc->lock);
2293 				list_splice(&cells, &tc->deferred_cells);
2294 				spin_unlock_irq(&tc->lock);
2295 				return;
2296 			}
2297 
2298 			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2299 				pool->process_discard_cell(tc, cell);
2300 			else
2301 				pool->process_cell(tc, cell);
2302 		}
2303 		cond_resched();
2304 	} while (!list_empty(&cells));
2305 }
2306 
2307 static void thin_get(struct thin_c *tc);
2308 static void thin_put(struct thin_c *tc);
2309 
2310 /*
2311  * We can't hold rcu_read_lock() around code that can block.  So we
2312  * find a thin with the rcu lock held; bump a refcount; then drop
2313  * the lock.
2314  */
get_first_thin(struct pool * pool)2315 static struct thin_c *get_first_thin(struct pool *pool)
2316 {
2317 	struct thin_c *tc = NULL;
2318 
2319 	rcu_read_lock();
2320 	if (!list_empty(&pool->active_thins)) {
2321 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2322 		thin_get(tc);
2323 	}
2324 	rcu_read_unlock();
2325 
2326 	return tc;
2327 }
2328 
get_next_thin(struct pool * pool,struct thin_c * tc)2329 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2330 {
2331 	struct thin_c *old_tc = tc;
2332 
2333 	rcu_read_lock();
2334 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2335 		thin_get(tc);
2336 		thin_put(old_tc);
2337 		rcu_read_unlock();
2338 		return tc;
2339 	}
2340 	thin_put(old_tc);
2341 	rcu_read_unlock();
2342 
2343 	return NULL;
2344 }
2345 
process_deferred_bios(struct pool * pool)2346 static void process_deferred_bios(struct pool *pool)
2347 {
2348 	struct bio *bio;
2349 	struct bio_list bios, bio_completions;
2350 	struct thin_c *tc;
2351 
2352 	tc = get_first_thin(pool);
2353 	while (tc) {
2354 		process_thin_deferred_cells(tc);
2355 		process_thin_deferred_bios(tc);
2356 		tc = get_next_thin(pool, tc);
2357 	}
2358 
2359 	/*
2360 	 * If there are any deferred flush bios, we must commit the metadata
2361 	 * before issuing them or signaling their completion.
2362 	 */
2363 	bio_list_init(&bios);
2364 	bio_list_init(&bio_completions);
2365 
2366 	spin_lock_irq(&pool->lock);
2367 	bio_list_merge(&bios, &pool->deferred_flush_bios);
2368 	bio_list_init(&pool->deferred_flush_bios);
2369 
2370 	bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2371 	bio_list_init(&pool->deferred_flush_completions);
2372 	spin_unlock_irq(&pool->lock);
2373 
2374 	if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2375 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2376 		return;
2377 
2378 	if (commit(pool)) {
2379 		bio_list_merge(&bios, &bio_completions);
2380 
2381 		while ((bio = bio_list_pop(&bios)))
2382 			bio_io_error(bio);
2383 		return;
2384 	}
2385 	pool->last_commit_jiffies = jiffies;
2386 
2387 	while ((bio = bio_list_pop(&bio_completions)))
2388 		bio_endio(bio);
2389 
2390 	while ((bio = bio_list_pop(&bios))) {
2391 		/*
2392 		 * The data device was flushed as part of metadata commit,
2393 		 * so complete redundant flushes immediately.
2394 		 */
2395 		if (bio->bi_opf & REQ_PREFLUSH)
2396 			bio_endio(bio);
2397 		else
2398 			submit_bio_noacct(bio);
2399 	}
2400 }
2401 
do_worker(struct work_struct * ws)2402 static void do_worker(struct work_struct *ws)
2403 {
2404 	struct pool *pool = container_of(ws, struct pool, worker);
2405 
2406 	throttle_work_start(&pool->throttle);
2407 	dm_pool_issue_prefetches(pool->pmd);
2408 	throttle_work_update(&pool->throttle);
2409 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2410 	throttle_work_update(&pool->throttle);
2411 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2412 	throttle_work_update(&pool->throttle);
2413 	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2414 	throttle_work_update(&pool->throttle);
2415 	process_deferred_bios(pool);
2416 	throttle_work_complete(&pool->throttle);
2417 }
2418 
2419 /*
2420  * We want to commit periodically so that not too much
2421  * unwritten data builds up.
2422  */
do_waker(struct work_struct * ws)2423 static void do_waker(struct work_struct *ws)
2424 {
2425 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2426 	wake_worker(pool);
2427 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2428 }
2429 
2430 /*
2431  * We're holding onto IO to allow userland time to react.  After the
2432  * timeout either the pool will have been resized (and thus back in
2433  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2434  */
do_no_space_timeout(struct work_struct * ws)2435 static void do_no_space_timeout(struct work_struct *ws)
2436 {
2437 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2438 					 no_space_timeout);
2439 
2440 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2441 		pool->pf.error_if_no_space = true;
2442 		notify_of_pool_mode_change(pool);
2443 		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2444 	}
2445 }
2446 
2447 /*----------------------------------------------------------------*/
2448 
2449 struct pool_work {
2450 	struct work_struct worker;
2451 	struct completion complete;
2452 };
2453 
to_pool_work(struct work_struct * ws)2454 static struct pool_work *to_pool_work(struct work_struct *ws)
2455 {
2456 	return container_of(ws, struct pool_work, worker);
2457 }
2458 
pool_work_complete(struct pool_work * pw)2459 static void pool_work_complete(struct pool_work *pw)
2460 {
2461 	complete(&pw->complete);
2462 }
2463 
pool_work_wait(struct pool_work * pw,struct pool * pool,void (* fn)(struct work_struct *))2464 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2465 			   void (*fn)(struct work_struct *))
2466 {
2467 	INIT_WORK_ONSTACK(&pw->worker, fn);
2468 	init_completion(&pw->complete);
2469 	queue_work(pool->wq, &pw->worker);
2470 	wait_for_completion(&pw->complete);
2471 }
2472 
2473 /*----------------------------------------------------------------*/
2474 
2475 struct noflush_work {
2476 	struct pool_work pw;
2477 	struct thin_c *tc;
2478 };
2479 
to_noflush(struct work_struct * ws)2480 static struct noflush_work *to_noflush(struct work_struct *ws)
2481 {
2482 	return container_of(to_pool_work(ws), struct noflush_work, pw);
2483 }
2484 
do_noflush_start(struct work_struct * ws)2485 static void do_noflush_start(struct work_struct *ws)
2486 {
2487 	struct noflush_work *w = to_noflush(ws);
2488 	w->tc->requeue_mode = true;
2489 	requeue_io(w->tc);
2490 	pool_work_complete(&w->pw);
2491 }
2492 
do_noflush_stop(struct work_struct * ws)2493 static void do_noflush_stop(struct work_struct *ws)
2494 {
2495 	struct noflush_work *w = to_noflush(ws);
2496 	w->tc->requeue_mode = false;
2497 	pool_work_complete(&w->pw);
2498 }
2499 
noflush_work(struct thin_c * tc,void (* fn)(struct work_struct *))2500 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2501 {
2502 	struct noflush_work w;
2503 
2504 	w.tc = tc;
2505 	pool_work_wait(&w.pw, tc->pool, fn);
2506 }
2507 
2508 /*----------------------------------------------------------------*/
2509 
passdown_enabled(struct pool_c * pt)2510 static bool passdown_enabled(struct pool_c *pt)
2511 {
2512 	return pt->adjusted_pf.discard_passdown;
2513 }
2514 
set_discard_callbacks(struct pool * pool)2515 static void set_discard_callbacks(struct pool *pool)
2516 {
2517 	struct pool_c *pt = pool->ti->private;
2518 
2519 	if (passdown_enabled(pt)) {
2520 		pool->process_discard_cell = process_discard_cell_passdown;
2521 		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2522 		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2523 	} else {
2524 		pool->process_discard_cell = process_discard_cell_no_passdown;
2525 		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2526 	}
2527 }
2528 
set_pool_mode(struct pool * pool,enum pool_mode new_mode)2529 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2530 {
2531 	struct pool_c *pt = pool->ti->private;
2532 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2533 	enum pool_mode old_mode = get_pool_mode(pool);
2534 	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2535 
2536 	/*
2537 	 * Never allow the pool to transition to PM_WRITE mode if user
2538 	 * intervention is required to verify metadata and data consistency.
2539 	 */
2540 	if (new_mode == PM_WRITE && needs_check) {
2541 		DMERR("%s: unable to switch pool to write mode until repaired.",
2542 		      dm_device_name(pool->pool_md));
2543 		if (old_mode != new_mode)
2544 			new_mode = old_mode;
2545 		else
2546 			new_mode = PM_READ_ONLY;
2547 	}
2548 	/*
2549 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2550 	 * not going to recover without a thin_repair.	So we never let the
2551 	 * pool move out of the old mode.
2552 	 */
2553 	if (old_mode == PM_FAIL)
2554 		new_mode = old_mode;
2555 
2556 	switch (new_mode) {
2557 	case PM_FAIL:
2558 		dm_pool_metadata_read_only(pool->pmd);
2559 		pool->process_bio = process_bio_fail;
2560 		pool->process_discard = process_bio_fail;
2561 		pool->process_cell = process_cell_fail;
2562 		pool->process_discard_cell = process_cell_fail;
2563 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2564 		pool->process_prepared_discard = process_prepared_discard_fail;
2565 
2566 		error_retry_list(pool);
2567 		break;
2568 
2569 	case PM_OUT_OF_METADATA_SPACE:
2570 	case PM_READ_ONLY:
2571 		dm_pool_metadata_read_only(pool->pmd);
2572 		pool->process_bio = process_bio_read_only;
2573 		pool->process_discard = process_bio_success;
2574 		pool->process_cell = process_cell_read_only;
2575 		pool->process_discard_cell = process_cell_success;
2576 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2577 		pool->process_prepared_discard = process_prepared_discard_success;
2578 
2579 		error_retry_list(pool);
2580 		break;
2581 
2582 	case PM_OUT_OF_DATA_SPACE:
2583 		/*
2584 		 * Ideally we'd never hit this state; the low water mark
2585 		 * would trigger userland to extend the pool before we
2586 		 * completely run out of data space.  However, many small
2587 		 * IOs to unprovisioned space can consume data space at an
2588 		 * alarming rate.  Adjust your low water mark if you're
2589 		 * frequently seeing this mode.
2590 		 */
2591 		pool->out_of_data_space = true;
2592 		pool->process_bio = process_bio_read_only;
2593 		pool->process_discard = process_discard_bio;
2594 		pool->process_cell = process_cell_read_only;
2595 		pool->process_prepared_mapping = process_prepared_mapping;
2596 		set_discard_callbacks(pool);
2597 
2598 		if (!pool->pf.error_if_no_space && no_space_timeout)
2599 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2600 		break;
2601 
2602 	case PM_WRITE:
2603 		if (old_mode == PM_OUT_OF_DATA_SPACE)
2604 			cancel_delayed_work_sync(&pool->no_space_timeout);
2605 		pool->out_of_data_space = false;
2606 		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2607 		dm_pool_metadata_read_write(pool->pmd);
2608 		pool->process_bio = process_bio;
2609 		pool->process_discard = process_discard_bio;
2610 		pool->process_cell = process_cell;
2611 		pool->process_prepared_mapping = process_prepared_mapping;
2612 		set_discard_callbacks(pool);
2613 		break;
2614 	}
2615 
2616 	pool->pf.mode = new_mode;
2617 	/*
2618 	 * The pool mode may have changed, sync it so bind_control_target()
2619 	 * doesn't cause an unexpected mode transition on resume.
2620 	 */
2621 	pt->adjusted_pf.mode = new_mode;
2622 
2623 	if (old_mode != new_mode)
2624 		notify_of_pool_mode_change(pool);
2625 }
2626 
abort_transaction(struct pool * pool)2627 static void abort_transaction(struct pool *pool)
2628 {
2629 	const char *dev_name = dm_device_name(pool->pool_md);
2630 
2631 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2632 	if (dm_pool_abort_metadata(pool->pmd)) {
2633 		DMERR("%s: failed to abort metadata transaction", dev_name);
2634 		set_pool_mode(pool, PM_FAIL);
2635 	}
2636 
2637 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2638 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2639 		set_pool_mode(pool, PM_FAIL);
2640 	}
2641 }
2642 
metadata_operation_failed(struct pool * pool,const char * op,int r)2643 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2644 {
2645 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2646 		    dm_device_name(pool->pool_md), op, r);
2647 
2648 	abort_transaction(pool);
2649 	set_pool_mode(pool, PM_READ_ONLY);
2650 }
2651 
2652 /*----------------------------------------------------------------*/
2653 
2654 /*
2655  * Mapping functions.
2656  */
2657 
2658 /*
2659  * Called only while mapping a thin bio to hand it over to the workqueue.
2660  */
thin_defer_bio(struct thin_c * tc,struct bio * bio)2661 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2662 {
2663 	struct pool *pool = tc->pool;
2664 
2665 	spin_lock_irq(&tc->lock);
2666 	bio_list_add(&tc->deferred_bio_list, bio);
2667 	spin_unlock_irq(&tc->lock);
2668 
2669 	wake_worker(pool);
2670 }
2671 
thin_defer_bio_with_throttle(struct thin_c * tc,struct bio * bio)2672 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2673 {
2674 	struct pool *pool = tc->pool;
2675 
2676 	throttle_lock(&pool->throttle);
2677 	thin_defer_bio(tc, bio);
2678 	throttle_unlock(&pool->throttle);
2679 }
2680 
thin_defer_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell)2681 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2682 {
2683 	struct pool *pool = tc->pool;
2684 
2685 	throttle_lock(&pool->throttle);
2686 	spin_lock_irq(&tc->lock);
2687 	list_add_tail(&cell->user_list, &tc->deferred_cells);
2688 	spin_unlock_irq(&tc->lock);
2689 	throttle_unlock(&pool->throttle);
2690 
2691 	wake_worker(pool);
2692 }
2693 
thin_hook_bio(struct thin_c * tc,struct bio * bio)2694 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2695 {
2696 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2697 
2698 	h->tc = tc;
2699 	h->shared_read_entry = NULL;
2700 	h->all_io_entry = NULL;
2701 	h->overwrite_mapping = NULL;
2702 	h->cell = NULL;
2703 }
2704 
2705 /*
2706  * Non-blocking function called from the thin target's map function.
2707  */
thin_bio_map(struct dm_target * ti,struct bio * bio)2708 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2709 {
2710 	int r;
2711 	struct thin_c *tc = ti->private;
2712 	dm_block_t block = get_bio_block(tc, bio);
2713 	struct dm_thin_device *td = tc->td;
2714 	struct dm_thin_lookup_result result;
2715 	struct dm_bio_prison_cell *virt_cell, *data_cell;
2716 	struct dm_cell_key key;
2717 
2718 	thin_hook_bio(tc, bio);
2719 
2720 	if (tc->requeue_mode) {
2721 		bio->bi_status = BLK_STS_DM_REQUEUE;
2722 		bio_endio(bio);
2723 		return DM_MAPIO_SUBMITTED;
2724 	}
2725 
2726 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2727 		bio_io_error(bio);
2728 		return DM_MAPIO_SUBMITTED;
2729 	}
2730 
2731 	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2732 		thin_defer_bio_with_throttle(tc, bio);
2733 		return DM_MAPIO_SUBMITTED;
2734 	}
2735 
2736 	/*
2737 	 * We must hold the virtual cell before doing the lookup, otherwise
2738 	 * there's a race with discard.
2739 	 */
2740 	build_virtual_key(tc->td, block, &key);
2741 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2742 		return DM_MAPIO_SUBMITTED;
2743 
2744 	r = dm_thin_find_block(td, block, 0, &result);
2745 
2746 	/*
2747 	 * Note that we defer readahead too.
2748 	 */
2749 	switch (r) {
2750 	case 0:
2751 		if (unlikely(result.shared)) {
2752 			/*
2753 			 * We have a race condition here between the
2754 			 * result.shared value returned by the lookup and
2755 			 * snapshot creation, which may cause new
2756 			 * sharing.
2757 			 *
2758 			 * To avoid this always quiesce the origin before
2759 			 * taking the snap.  You want to do this anyway to
2760 			 * ensure a consistent application view
2761 			 * (i.e. lockfs).
2762 			 *
2763 			 * More distant ancestors are irrelevant. The
2764 			 * shared flag will be set in their case.
2765 			 */
2766 			thin_defer_cell(tc, virt_cell);
2767 			return DM_MAPIO_SUBMITTED;
2768 		}
2769 
2770 		build_data_key(tc->td, result.block, &key);
2771 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2772 			cell_defer_no_holder(tc, virt_cell);
2773 			return DM_MAPIO_SUBMITTED;
2774 		}
2775 
2776 		inc_all_io_entry(tc->pool, bio);
2777 		cell_defer_no_holder(tc, data_cell);
2778 		cell_defer_no_holder(tc, virt_cell);
2779 
2780 		remap(tc, bio, result.block);
2781 		return DM_MAPIO_REMAPPED;
2782 
2783 	case -ENODATA:
2784 	case -EWOULDBLOCK:
2785 		thin_defer_cell(tc, virt_cell);
2786 		return DM_MAPIO_SUBMITTED;
2787 
2788 	default:
2789 		/*
2790 		 * Must always call bio_io_error on failure.
2791 		 * dm_thin_find_block can fail with -EINVAL if the
2792 		 * pool is switched to fail-io mode.
2793 		 */
2794 		bio_io_error(bio);
2795 		cell_defer_no_holder(tc, virt_cell);
2796 		return DM_MAPIO_SUBMITTED;
2797 	}
2798 }
2799 
requeue_bios(struct pool * pool)2800 static void requeue_bios(struct pool *pool)
2801 {
2802 	struct thin_c *tc;
2803 
2804 	rcu_read_lock();
2805 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2806 		spin_lock_irq(&tc->lock);
2807 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2808 		bio_list_init(&tc->retry_on_resume_list);
2809 		spin_unlock_irq(&tc->lock);
2810 	}
2811 	rcu_read_unlock();
2812 }
2813 
2814 /*----------------------------------------------------------------
2815  * Binding of control targets to a pool object
2816  *--------------------------------------------------------------*/
data_dev_supports_discard(struct pool_c * pt)2817 static bool data_dev_supports_discard(struct pool_c *pt)
2818 {
2819 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2820 
2821 	return q && blk_queue_discard(q);
2822 }
2823 
is_factor(sector_t block_size,uint32_t n)2824 static bool is_factor(sector_t block_size, uint32_t n)
2825 {
2826 	return !sector_div(block_size, n);
2827 }
2828 
2829 /*
2830  * If discard_passdown was enabled verify that the data device
2831  * supports discards.  Disable discard_passdown if not.
2832  */
disable_passdown_if_not_supported(struct pool_c * pt)2833 static void disable_passdown_if_not_supported(struct pool_c *pt)
2834 {
2835 	struct pool *pool = pt->pool;
2836 	struct block_device *data_bdev = pt->data_dev->bdev;
2837 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2838 	const char *reason = NULL;
2839 	char buf[BDEVNAME_SIZE];
2840 
2841 	if (!pt->adjusted_pf.discard_passdown)
2842 		return;
2843 
2844 	if (!data_dev_supports_discard(pt))
2845 		reason = "discard unsupported";
2846 
2847 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2848 		reason = "max discard sectors smaller than a block";
2849 
2850 	if (reason) {
2851 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2852 		pt->adjusted_pf.discard_passdown = false;
2853 	}
2854 }
2855 
bind_control_target(struct pool * pool,struct dm_target * ti)2856 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2857 {
2858 	struct pool_c *pt = ti->private;
2859 
2860 	/*
2861 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2862 	 */
2863 	enum pool_mode old_mode = get_pool_mode(pool);
2864 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2865 
2866 	/*
2867 	 * Don't change the pool's mode until set_pool_mode() below.
2868 	 * Otherwise the pool's process_* function pointers may
2869 	 * not match the desired pool mode.
2870 	 */
2871 	pt->adjusted_pf.mode = old_mode;
2872 
2873 	pool->ti = ti;
2874 	pool->pf = pt->adjusted_pf;
2875 	pool->low_water_blocks = pt->low_water_blocks;
2876 
2877 	set_pool_mode(pool, new_mode);
2878 
2879 	return 0;
2880 }
2881 
unbind_control_target(struct pool * pool,struct dm_target * ti)2882 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2883 {
2884 	if (pool->ti == ti)
2885 		pool->ti = NULL;
2886 }
2887 
2888 /*----------------------------------------------------------------
2889  * Pool creation
2890  *--------------------------------------------------------------*/
2891 /* Initialize pool features. */
pool_features_init(struct pool_features * pf)2892 static void pool_features_init(struct pool_features *pf)
2893 {
2894 	pf->mode = PM_WRITE;
2895 	pf->zero_new_blocks = true;
2896 	pf->discard_enabled = true;
2897 	pf->discard_passdown = true;
2898 	pf->error_if_no_space = false;
2899 }
2900 
__pool_destroy(struct pool * pool)2901 static void __pool_destroy(struct pool *pool)
2902 {
2903 	__pool_table_remove(pool);
2904 
2905 	vfree(pool->cell_sort_array);
2906 	if (dm_pool_metadata_close(pool->pmd) < 0)
2907 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2908 
2909 	dm_bio_prison_destroy(pool->prison);
2910 	dm_kcopyd_client_destroy(pool->copier);
2911 
2912 	cancel_delayed_work_sync(&pool->waker);
2913 	cancel_delayed_work_sync(&pool->no_space_timeout);
2914 	if (pool->wq)
2915 		destroy_workqueue(pool->wq);
2916 
2917 	if (pool->next_mapping)
2918 		mempool_free(pool->next_mapping, &pool->mapping_pool);
2919 	mempool_exit(&pool->mapping_pool);
2920 	bio_uninit(&pool->flush_bio);
2921 	dm_deferred_set_destroy(pool->shared_read_ds);
2922 	dm_deferred_set_destroy(pool->all_io_ds);
2923 	kfree(pool);
2924 }
2925 
2926 static struct kmem_cache *_new_mapping_cache;
2927 
pool_create(struct mapped_device * pool_md,struct block_device * metadata_dev,struct block_device * data_dev,unsigned long block_size,int read_only,char ** error)2928 static struct pool *pool_create(struct mapped_device *pool_md,
2929 				struct block_device *metadata_dev,
2930 				struct block_device *data_dev,
2931 				unsigned long block_size,
2932 				int read_only, char **error)
2933 {
2934 	int r;
2935 	void *err_p;
2936 	struct pool *pool;
2937 	struct dm_pool_metadata *pmd;
2938 	bool format_device = read_only ? false : true;
2939 
2940 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2941 	if (IS_ERR(pmd)) {
2942 		*error = "Error creating metadata object";
2943 		return (struct pool *)pmd;
2944 	}
2945 
2946 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2947 	if (!pool) {
2948 		*error = "Error allocating memory for pool";
2949 		err_p = ERR_PTR(-ENOMEM);
2950 		goto bad_pool;
2951 	}
2952 
2953 	pool->pmd = pmd;
2954 	pool->sectors_per_block = block_size;
2955 	if (block_size & (block_size - 1))
2956 		pool->sectors_per_block_shift = -1;
2957 	else
2958 		pool->sectors_per_block_shift = __ffs(block_size);
2959 	pool->low_water_blocks = 0;
2960 	pool_features_init(&pool->pf);
2961 	pool->prison = dm_bio_prison_create();
2962 	if (!pool->prison) {
2963 		*error = "Error creating pool's bio prison";
2964 		err_p = ERR_PTR(-ENOMEM);
2965 		goto bad_prison;
2966 	}
2967 
2968 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2969 	if (IS_ERR(pool->copier)) {
2970 		r = PTR_ERR(pool->copier);
2971 		*error = "Error creating pool's kcopyd client";
2972 		err_p = ERR_PTR(r);
2973 		goto bad_kcopyd_client;
2974 	}
2975 
2976 	/*
2977 	 * Create singlethreaded workqueue that will service all devices
2978 	 * that use this metadata.
2979 	 */
2980 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2981 	if (!pool->wq) {
2982 		*error = "Error creating pool's workqueue";
2983 		err_p = ERR_PTR(-ENOMEM);
2984 		goto bad_wq;
2985 	}
2986 
2987 	throttle_init(&pool->throttle);
2988 	INIT_WORK(&pool->worker, do_worker);
2989 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2990 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2991 	spin_lock_init(&pool->lock);
2992 	bio_list_init(&pool->deferred_flush_bios);
2993 	bio_list_init(&pool->deferred_flush_completions);
2994 	INIT_LIST_HEAD(&pool->prepared_mappings);
2995 	INIT_LIST_HEAD(&pool->prepared_discards);
2996 	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2997 	INIT_LIST_HEAD(&pool->active_thins);
2998 	pool->low_water_triggered = false;
2999 	pool->suspended = true;
3000 	pool->out_of_data_space = false;
3001 	bio_init(&pool->flush_bio, NULL, 0);
3002 
3003 	pool->shared_read_ds = dm_deferred_set_create();
3004 	if (!pool->shared_read_ds) {
3005 		*error = "Error creating pool's shared read deferred set";
3006 		err_p = ERR_PTR(-ENOMEM);
3007 		goto bad_shared_read_ds;
3008 	}
3009 
3010 	pool->all_io_ds = dm_deferred_set_create();
3011 	if (!pool->all_io_ds) {
3012 		*error = "Error creating pool's all io deferred set";
3013 		err_p = ERR_PTR(-ENOMEM);
3014 		goto bad_all_io_ds;
3015 	}
3016 
3017 	pool->next_mapping = NULL;
3018 	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3019 				   _new_mapping_cache);
3020 	if (r) {
3021 		*error = "Error creating pool's mapping mempool";
3022 		err_p = ERR_PTR(r);
3023 		goto bad_mapping_pool;
3024 	}
3025 
3026 	pool->cell_sort_array =
3027 		vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3028 				   sizeof(*pool->cell_sort_array)));
3029 	if (!pool->cell_sort_array) {
3030 		*error = "Error allocating cell sort array";
3031 		err_p = ERR_PTR(-ENOMEM);
3032 		goto bad_sort_array;
3033 	}
3034 
3035 	pool->ref_count = 1;
3036 	pool->last_commit_jiffies = jiffies;
3037 	pool->pool_md = pool_md;
3038 	pool->md_dev = metadata_dev;
3039 	pool->data_dev = data_dev;
3040 	__pool_table_insert(pool);
3041 
3042 	return pool;
3043 
3044 bad_sort_array:
3045 	mempool_exit(&pool->mapping_pool);
3046 bad_mapping_pool:
3047 	dm_deferred_set_destroy(pool->all_io_ds);
3048 bad_all_io_ds:
3049 	dm_deferred_set_destroy(pool->shared_read_ds);
3050 bad_shared_read_ds:
3051 	destroy_workqueue(pool->wq);
3052 bad_wq:
3053 	dm_kcopyd_client_destroy(pool->copier);
3054 bad_kcopyd_client:
3055 	dm_bio_prison_destroy(pool->prison);
3056 bad_prison:
3057 	kfree(pool);
3058 bad_pool:
3059 	if (dm_pool_metadata_close(pmd))
3060 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3061 
3062 	return err_p;
3063 }
3064 
__pool_inc(struct pool * pool)3065 static void __pool_inc(struct pool *pool)
3066 {
3067 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3068 	pool->ref_count++;
3069 }
3070 
__pool_dec(struct pool * pool)3071 static void __pool_dec(struct pool *pool)
3072 {
3073 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3074 	BUG_ON(!pool->ref_count);
3075 	if (!--pool->ref_count)
3076 		__pool_destroy(pool);
3077 }
3078 
__pool_find(struct mapped_device * pool_md,struct block_device * metadata_dev,struct block_device * data_dev,unsigned long block_size,int read_only,char ** error,int * created)3079 static struct pool *__pool_find(struct mapped_device *pool_md,
3080 				struct block_device *metadata_dev,
3081 				struct block_device *data_dev,
3082 				unsigned long block_size, int read_only,
3083 				char **error, int *created)
3084 {
3085 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3086 
3087 	if (pool) {
3088 		if (pool->pool_md != pool_md) {
3089 			*error = "metadata device already in use by a pool";
3090 			return ERR_PTR(-EBUSY);
3091 		}
3092 		if (pool->data_dev != data_dev) {
3093 			*error = "data device already in use by a pool";
3094 			return ERR_PTR(-EBUSY);
3095 		}
3096 		__pool_inc(pool);
3097 
3098 	} else {
3099 		pool = __pool_table_lookup(pool_md);
3100 		if (pool) {
3101 			if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3102 				*error = "different pool cannot replace a pool";
3103 				return ERR_PTR(-EINVAL);
3104 			}
3105 			__pool_inc(pool);
3106 
3107 		} else {
3108 			pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3109 			*created = 1;
3110 		}
3111 	}
3112 
3113 	return pool;
3114 }
3115 
3116 /*----------------------------------------------------------------
3117  * Pool target methods
3118  *--------------------------------------------------------------*/
pool_dtr(struct dm_target * ti)3119 static void pool_dtr(struct dm_target *ti)
3120 {
3121 	struct pool_c *pt = ti->private;
3122 
3123 	mutex_lock(&dm_thin_pool_table.mutex);
3124 
3125 	unbind_control_target(pt->pool, ti);
3126 	__pool_dec(pt->pool);
3127 	dm_put_device(ti, pt->metadata_dev);
3128 	dm_put_device(ti, pt->data_dev);
3129 	kfree(pt);
3130 
3131 	mutex_unlock(&dm_thin_pool_table.mutex);
3132 }
3133 
parse_pool_features(struct dm_arg_set * as,struct pool_features * pf,struct dm_target * ti)3134 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3135 			       struct dm_target *ti)
3136 {
3137 	int r;
3138 	unsigned argc;
3139 	const char *arg_name;
3140 
3141 	static const struct dm_arg _args[] = {
3142 		{0, 4, "Invalid number of pool feature arguments"},
3143 	};
3144 
3145 	/*
3146 	 * No feature arguments supplied.
3147 	 */
3148 	if (!as->argc)
3149 		return 0;
3150 
3151 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3152 	if (r)
3153 		return -EINVAL;
3154 
3155 	while (argc && !r) {
3156 		arg_name = dm_shift_arg(as);
3157 		argc--;
3158 
3159 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3160 			pf->zero_new_blocks = false;
3161 
3162 		else if (!strcasecmp(arg_name, "ignore_discard"))
3163 			pf->discard_enabled = false;
3164 
3165 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3166 			pf->discard_passdown = false;
3167 
3168 		else if (!strcasecmp(arg_name, "read_only"))
3169 			pf->mode = PM_READ_ONLY;
3170 
3171 		else if (!strcasecmp(arg_name, "error_if_no_space"))
3172 			pf->error_if_no_space = true;
3173 
3174 		else {
3175 			ti->error = "Unrecognised pool feature requested";
3176 			r = -EINVAL;
3177 			break;
3178 		}
3179 	}
3180 
3181 	return r;
3182 }
3183 
metadata_low_callback(void * context)3184 static void metadata_low_callback(void *context)
3185 {
3186 	struct pool *pool = context;
3187 
3188 	DMWARN("%s: reached low water mark for metadata device: sending event.",
3189 	       dm_device_name(pool->pool_md));
3190 
3191 	dm_table_event(pool->ti->table);
3192 }
3193 
3194 /*
3195  * We need to flush the data device **before** committing the metadata.
3196  *
3197  * This ensures that the data blocks of any newly inserted mappings are
3198  * properly written to non-volatile storage and won't be lost in case of a
3199  * crash.
3200  *
3201  * Failure to do so can result in data corruption in the case of internal or
3202  * external snapshots and in the case of newly provisioned blocks, when block
3203  * zeroing is enabled.
3204  */
metadata_pre_commit_callback(void * context)3205 static int metadata_pre_commit_callback(void *context)
3206 {
3207 	struct pool *pool = context;
3208 	struct bio *flush_bio = &pool->flush_bio;
3209 
3210 	bio_reset(flush_bio);
3211 	bio_set_dev(flush_bio, pool->data_dev);
3212 	flush_bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
3213 
3214 	return submit_bio_wait(flush_bio);
3215 }
3216 
get_dev_size(struct block_device * bdev)3217 static sector_t get_dev_size(struct block_device *bdev)
3218 {
3219 	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3220 }
3221 
warn_if_metadata_device_too_big(struct block_device * bdev)3222 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3223 {
3224 	sector_t metadata_dev_size = get_dev_size(bdev);
3225 	char buffer[BDEVNAME_SIZE];
3226 
3227 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3228 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3229 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3230 }
3231 
get_metadata_dev_size(struct block_device * bdev)3232 static sector_t get_metadata_dev_size(struct block_device *bdev)
3233 {
3234 	sector_t metadata_dev_size = get_dev_size(bdev);
3235 
3236 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3237 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3238 
3239 	return metadata_dev_size;
3240 }
3241 
get_metadata_dev_size_in_blocks(struct block_device * bdev)3242 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3243 {
3244 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3245 
3246 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3247 
3248 	return metadata_dev_size;
3249 }
3250 
3251 /*
3252  * When a metadata threshold is crossed a dm event is triggered, and
3253  * userland should respond by growing the metadata device.  We could let
3254  * userland set the threshold, like we do with the data threshold, but I'm
3255  * not sure they know enough to do this well.
3256  */
calc_metadata_threshold(struct pool_c * pt)3257 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3258 {
3259 	/*
3260 	 * 4M is ample for all ops with the possible exception of thin
3261 	 * device deletion which is harmless if it fails (just retry the
3262 	 * delete after you've grown the device).
3263 	 */
3264 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3265 	return min((dm_block_t)1024ULL /* 4M */, quarter);
3266 }
3267 
3268 /*
3269  * thin-pool <metadata dev> <data dev>
3270  *	     <data block size (sectors)>
3271  *	     <low water mark (blocks)>
3272  *	     [<#feature args> [<arg>]*]
3273  *
3274  * Optional feature arguments are:
3275  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3276  *	     ignore_discard: disable discard
3277  *	     no_discard_passdown: don't pass discards down to the data device
3278  *	     read_only: Don't allow any changes to be made to the pool metadata.
3279  *	     error_if_no_space: error IOs, instead of queueing, if no space.
3280  */
pool_ctr(struct dm_target * ti,unsigned argc,char ** argv)3281 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3282 {
3283 	int r, pool_created = 0;
3284 	struct pool_c *pt;
3285 	struct pool *pool;
3286 	struct pool_features pf;
3287 	struct dm_arg_set as;
3288 	struct dm_dev *data_dev;
3289 	unsigned long block_size;
3290 	dm_block_t low_water_blocks;
3291 	struct dm_dev *metadata_dev;
3292 	fmode_t metadata_mode;
3293 
3294 	/*
3295 	 * FIXME Remove validation from scope of lock.
3296 	 */
3297 	mutex_lock(&dm_thin_pool_table.mutex);
3298 
3299 	if (argc < 4) {
3300 		ti->error = "Invalid argument count";
3301 		r = -EINVAL;
3302 		goto out_unlock;
3303 	}
3304 
3305 	as.argc = argc;
3306 	as.argv = argv;
3307 
3308 	/* make sure metadata and data are different devices */
3309 	if (!strcmp(argv[0], argv[1])) {
3310 		ti->error = "Error setting metadata or data device";
3311 		r = -EINVAL;
3312 		goto out_unlock;
3313 	}
3314 
3315 	/*
3316 	 * Set default pool features.
3317 	 */
3318 	pool_features_init(&pf);
3319 
3320 	dm_consume_args(&as, 4);
3321 	r = parse_pool_features(&as, &pf, ti);
3322 	if (r)
3323 		goto out_unlock;
3324 
3325 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3326 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3327 	if (r) {
3328 		ti->error = "Error opening metadata block device";
3329 		goto out_unlock;
3330 	}
3331 	warn_if_metadata_device_too_big(metadata_dev->bdev);
3332 
3333 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3334 	if (r) {
3335 		ti->error = "Error getting data device";
3336 		goto out_metadata;
3337 	}
3338 
3339 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3340 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3341 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3342 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3343 		ti->error = "Invalid block size";
3344 		r = -EINVAL;
3345 		goto out;
3346 	}
3347 
3348 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3349 		ti->error = "Invalid low water mark";
3350 		r = -EINVAL;
3351 		goto out;
3352 	}
3353 
3354 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3355 	if (!pt) {
3356 		r = -ENOMEM;
3357 		goto out;
3358 	}
3359 
3360 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3361 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3362 	if (IS_ERR(pool)) {
3363 		r = PTR_ERR(pool);
3364 		goto out_free_pt;
3365 	}
3366 
3367 	/*
3368 	 * 'pool_created' reflects whether this is the first table load.
3369 	 * Top level discard support is not allowed to be changed after
3370 	 * initial load.  This would require a pool reload to trigger thin
3371 	 * device changes.
3372 	 */
3373 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3374 		ti->error = "Discard support cannot be disabled once enabled";
3375 		r = -EINVAL;
3376 		goto out_flags_changed;
3377 	}
3378 
3379 	pt->pool = pool;
3380 	pt->ti = ti;
3381 	pt->metadata_dev = metadata_dev;
3382 	pt->data_dev = data_dev;
3383 	pt->low_water_blocks = low_water_blocks;
3384 	pt->adjusted_pf = pt->requested_pf = pf;
3385 	ti->num_flush_bios = 1;
3386 	ti->limit_swap_bios = true;
3387 
3388 	/*
3389 	 * Only need to enable discards if the pool should pass
3390 	 * them down to the data device.  The thin device's discard
3391 	 * processing will cause mappings to be removed from the btree.
3392 	 */
3393 	if (pf.discard_enabled && pf.discard_passdown) {
3394 		ti->num_discard_bios = 1;
3395 
3396 		/*
3397 		 * Setting 'discards_supported' circumvents the normal
3398 		 * stacking of discard limits (this keeps the pool and
3399 		 * thin devices' discard limits consistent).
3400 		 */
3401 		ti->discards_supported = true;
3402 	}
3403 	ti->private = pt;
3404 
3405 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3406 						calc_metadata_threshold(pt),
3407 						metadata_low_callback,
3408 						pool);
3409 	if (r) {
3410 		ti->error = "Error registering metadata threshold";
3411 		goto out_flags_changed;
3412 	}
3413 
3414 	dm_pool_register_pre_commit_callback(pool->pmd,
3415 					     metadata_pre_commit_callback, pool);
3416 
3417 	mutex_unlock(&dm_thin_pool_table.mutex);
3418 
3419 	return 0;
3420 
3421 out_flags_changed:
3422 	__pool_dec(pool);
3423 out_free_pt:
3424 	kfree(pt);
3425 out:
3426 	dm_put_device(ti, data_dev);
3427 out_metadata:
3428 	dm_put_device(ti, metadata_dev);
3429 out_unlock:
3430 	mutex_unlock(&dm_thin_pool_table.mutex);
3431 
3432 	return r;
3433 }
3434 
pool_map(struct dm_target * ti,struct bio * bio)3435 static int pool_map(struct dm_target *ti, struct bio *bio)
3436 {
3437 	int r;
3438 	struct pool_c *pt = ti->private;
3439 	struct pool *pool = pt->pool;
3440 
3441 	/*
3442 	 * As this is a singleton target, ti->begin is always zero.
3443 	 */
3444 	spin_lock_irq(&pool->lock);
3445 	bio_set_dev(bio, pt->data_dev->bdev);
3446 	r = DM_MAPIO_REMAPPED;
3447 	spin_unlock_irq(&pool->lock);
3448 
3449 	return r;
3450 }
3451 
maybe_resize_data_dev(struct dm_target * ti,bool * need_commit)3452 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3453 {
3454 	int r;
3455 	struct pool_c *pt = ti->private;
3456 	struct pool *pool = pt->pool;
3457 	sector_t data_size = ti->len;
3458 	dm_block_t sb_data_size;
3459 
3460 	*need_commit = false;
3461 
3462 	(void) sector_div(data_size, pool->sectors_per_block);
3463 
3464 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3465 	if (r) {
3466 		DMERR("%s: failed to retrieve data device size",
3467 		      dm_device_name(pool->pool_md));
3468 		return r;
3469 	}
3470 
3471 	if (data_size < sb_data_size) {
3472 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3473 		      dm_device_name(pool->pool_md),
3474 		      (unsigned long long)data_size, sb_data_size);
3475 		return -EINVAL;
3476 
3477 	} else if (data_size > sb_data_size) {
3478 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3479 			DMERR("%s: unable to grow the data device until repaired.",
3480 			      dm_device_name(pool->pool_md));
3481 			return 0;
3482 		}
3483 
3484 		if (sb_data_size)
3485 			DMINFO("%s: growing the data device from %llu to %llu blocks",
3486 			       dm_device_name(pool->pool_md),
3487 			       sb_data_size, (unsigned long long)data_size);
3488 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3489 		if (r) {
3490 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3491 			return r;
3492 		}
3493 
3494 		*need_commit = true;
3495 	}
3496 
3497 	return 0;
3498 }
3499 
maybe_resize_metadata_dev(struct dm_target * ti,bool * need_commit)3500 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3501 {
3502 	int r;
3503 	struct pool_c *pt = ti->private;
3504 	struct pool *pool = pt->pool;
3505 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3506 
3507 	*need_commit = false;
3508 
3509 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3510 
3511 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3512 	if (r) {
3513 		DMERR("%s: failed to retrieve metadata device size",
3514 		      dm_device_name(pool->pool_md));
3515 		return r;
3516 	}
3517 
3518 	if (metadata_dev_size < sb_metadata_dev_size) {
3519 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3520 		      dm_device_name(pool->pool_md),
3521 		      metadata_dev_size, sb_metadata_dev_size);
3522 		return -EINVAL;
3523 
3524 	} else if (metadata_dev_size > sb_metadata_dev_size) {
3525 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3526 			DMERR("%s: unable to grow the metadata device until repaired.",
3527 			      dm_device_name(pool->pool_md));
3528 			return 0;
3529 		}
3530 
3531 		warn_if_metadata_device_too_big(pool->md_dev);
3532 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3533 		       dm_device_name(pool->pool_md),
3534 		       sb_metadata_dev_size, metadata_dev_size);
3535 
3536 		if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3537 			set_pool_mode(pool, PM_WRITE);
3538 
3539 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3540 		if (r) {
3541 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3542 			return r;
3543 		}
3544 
3545 		*need_commit = true;
3546 	}
3547 
3548 	return 0;
3549 }
3550 
3551 /*
3552  * Retrieves the number of blocks of the data device from
3553  * the superblock and compares it to the actual device size,
3554  * thus resizing the data device in case it has grown.
3555  *
3556  * This both copes with opening preallocated data devices in the ctr
3557  * being followed by a resume
3558  * -and-
3559  * calling the resume method individually after userspace has
3560  * grown the data device in reaction to a table event.
3561  */
pool_preresume(struct dm_target * ti)3562 static int pool_preresume(struct dm_target *ti)
3563 {
3564 	int r;
3565 	bool need_commit1, need_commit2;
3566 	struct pool_c *pt = ti->private;
3567 	struct pool *pool = pt->pool;
3568 
3569 	/*
3570 	 * Take control of the pool object.
3571 	 */
3572 	r = bind_control_target(pool, ti);
3573 	if (r)
3574 		goto out;
3575 
3576 	r = maybe_resize_data_dev(ti, &need_commit1);
3577 	if (r)
3578 		goto out;
3579 
3580 	r = maybe_resize_metadata_dev(ti, &need_commit2);
3581 	if (r)
3582 		goto out;
3583 
3584 	if (need_commit1 || need_commit2)
3585 		(void) commit(pool);
3586 out:
3587 	/*
3588 	 * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3589 	 * bio is in deferred list. Therefore need to return 0
3590 	 * to allow pool_resume() to flush IO.
3591 	 */
3592 	if (r && get_pool_mode(pool) == PM_FAIL)
3593 		r = 0;
3594 
3595 	return r;
3596 }
3597 
pool_suspend_active_thins(struct pool * pool)3598 static void pool_suspend_active_thins(struct pool *pool)
3599 {
3600 	struct thin_c *tc;
3601 
3602 	/* Suspend all active thin devices */
3603 	tc = get_first_thin(pool);
3604 	while (tc) {
3605 		dm_internal_suspend_noflush(tc->thin_md);
3606 		tc = get_next_thin(pool, tc);
3607 	}
3608 }
3609 
pool_resume_active_thins(struct pool * pool)3610 static void pool_resume_active_thins(struct pool *pool)
3611 {
3612 	struct thin_c *tc;
3613 
3614 	/* Resume all active thin devices */
3615 	tc = get_first_thin(pool);
3616 	while (tc) {
3617 		dm_internal_resume(tc->thin_md);
3618 		tc = get_next_thin(pool, tc);
3619 	}
3620 }
3621 
pool_resume(struct dm_target * ti)3622 static void pool_resume(struct dm_target *ti)
3623 {
3624 	struct pool_c *pt = ti->private;
3625 	struct pool *pool = pt->pool;
3626 
3627 	/*
3628 	 * Must requeue active_thins' bios and then resume
3629 	 * active_thins _before_ clearing 'suspend' flag.
3630 	 */
3631 	requeue_bios(pool);
3632 	pool_resume_active_thins(pool);
3633 
3634 	spin_lock_irq(&pool->lock);
3635 	pool->low_water_triggered = false;
3636 	pool->suspended = false;
3637 	spin_unlock_irq(&pool->lock);
3638 
3639 	do_waker(&pool->waker.work);
3640 }
3641 
pool_presuspend(struct dm_target * ti)3642 static void pool_presuspend(struct dm_target *ti)
3643 {
3644 	struct pool_c *pt = ti->private;
3645 	struct pool *pool = pt->pool;
3646 
3647 	spin_lock_irq(&pool->lock);
3648 	pool->suspended = true;
3649 	spin_unlock_irq(&pool->lock);
3650 
3651 	pool_suspend_active_thins(pool);
3652 }
3653 
pool_presuspend_undo(struct dm_target * ti)3654 static void pool_presuspend_undo(struct dm_target *ti)
3655 {
3656 	struct pool_c *pt = ti->private;
3657 	struct pool *pool = pt->pool;
3658 
3659 	pool_resume_active_thins(pool);
3660 
3661 	spin_lock_irq(&pool->lock);
3662 	pool->suspended = false;
3663 	spin_unlock_irq(&pool->lock);
3664 }
3665 
pool_postsuspend(struct dm_target * ti)3666 static void pool_postsuspend(struct dm_target *ti)
3667 {
3668 	struct pool_c *pt = ti->private;
3669 	struct pool *pool = pt->pool;
3670 
3671 	cancel_delayed_work_sync(&pool->waker);
3672 	cancel_delayed_work_sync(&pool->no_space_timeout);
3673 	flush_workqueue(pool->wq);
3674 	(void) commit(pool);
3675 }
3676 
check_arg_count(unsigned argc,unsigned args_required)3677 static int check_arg_count(unsigned argc, unsigned args_required)
3678 {
3679 	if (argc != args_required) {
3680 		DMWARN("Message received with %u arguments instead of %u.",
3681 		       argc, args_required);
3682 		return -EINVAL;
3683 	}
3684 
3685 	return 0;
3686 }
3687 
read_dev_id(char * arg,dm_thin_id * dev_id,int warning)3688 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3689 {
3690 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3691 	    *dev_id <= MAX_DEV_ID)
3692 		return 0;
3693 
3694 	if (warning)
3695 		DMWARN("Message received with invalid device id: %s", arg);
3696 
3697 	return -EINVAL;
3698 }
3699 
process_create_thin_mesg(unsigned argc,char ** argv,struct pool * pool)3700 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3701 {
3702 	dm_thin_id dev_id;
3703 	int r;
3704 
3705 	r = check_arg_count(argc, 2);
3706 	if (r)
3707 		return r;
3708 
3709 	r = read_dev_id(argv[1], &dev_id, 1);
3710 	if (r)
3711 		return r;
3712 
3713 	r = dm_pool_create_thin(pool->pmd, dev_id);
3714 	if (r) {
3715 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3716 		       argv[1]);
3717 		return r;
3718 	}
3719 
3720 	return 0;
3721 }
3722 
process_create_snap_mesg(unsigned argc,char ** argv,struct pool * pool)3723 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3724 {
3725 	dm_thin_id dev_id;
3726 	dm_thin_id origin_dev_id;
3727 	int r;
3728 
3729 	r = check_arg_count(argc, 3);
3730 	if (r)
3731 		return r;
3732 
3733 	r = read_dev_id(argv[1], &dev_id, 1);
3734 	if (r)
3735 		return r;
3736 
3737 	r = read_dev_id(argv[2], &origin_dev_id, 1);
3738 	if (r)
3739 		return r;
3740 
3741 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3742 	if (r) {
3743 		DMWARN("Creation of new snapshot %s of device %s failed.",
3744 		       argv[1], argv[2]);
3745 		return r;
3746 	}
3747 
3748 	return 0;
3749 }
3750 
process_delete_mesg(unsigned argc,char ** argv,struct pool * pool)3751 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3752 {
3753 	dm_thin_id dev_id;
3754 	int r;
3755 
3756 	r = check_arg_count(argc, 2);
3757 	if (r)
3758 		return r;
3759 
3760 	r = read_dev_id(argv[1], &dev_id, 1);
3761 	if (r)
3762 		return r;
3763 
3764 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3765 	if (r)
3766 		DMWARN("Deletion of thin device %s failed.", argv[1]);
3767 
3768 	return r;
3769 }
3770 
process_set_transaction_id_mesg(unsigned argc,char ** argv,struct pool * pool)3771 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3772 {
3773 	dm_thin_id old_id, new_id;
3774 	int r;
3775 
3776 	r = check_arg_count(argc, 3);
3777 	if (r)
3778 		return r;
3779 
3780 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3781 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3782 		return -EINVAL;
3783 	}
3784 
3785 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3786 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3787 		return -EINVAL;
3788 	}
3789 
3790 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3791 	if (r) {
3792 		DMWARN("Failed to change transaction id from %s to %s.",
3793 		       argv[1], argv[2]);
3794 		return r;
3795 	}
3796 
3797 	return 0;
3798 }
3799 
process_reserve_metadata_snap_mesg(unsigned argc,char ** argv,struct pool * pool)3800 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3801 {
3802 	int r;
3803 
3804 	r = check_arg_count(argc, 1);
3805 	if (r)
3806 		return r;
3807 
3808 	(void) commit(pool);
3809 
3810 	r = dm_pool_reserve_metadata_snap(pool->pmd);
3811 	if (r)
3812 		DMWARN("reserve_metadata_snap message failed.");
3813 
3814 	return r;
3815 }
3816 
process_release_metadata_snap_mesg(unsigned argc,char ** argv,struct pool * pool)3817 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3818 {
3819 	int r;
3820 
3821 	r = check_arg_count(argc, 1);
3822 	if (r)
3823 		return r;
3824 
3825 	r = dm_pool_release_metadata_snap(pool->pmd);
3826 	if (r)
3827 		DMWARN("release_metadata_snap message failed.");
3828 
3829 	return r;
3830 }
3831 
3832 /*
3833  * Messages supported:
3834  *   create_thin	<dev_id>
3835  *   create_snap	<dev_id> <origin_id>
3836  *   delete		<dev_id>
3837  *   set_transaction_id <current_trans_id> <new_trans_id>
3838  *   reserve_metadata_snap
3839  *   release_metadata_snap
3840  */
pool_message(struct dm_target * ti,unsigned argc,char ** argv,char * result,unsigned maxlen)3841 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3842 			char *result, unsigned maxlen)
3843 {
3844 	int r = -EINVAL;
3845 	struct pool_c *pt = ti->private;
3846 	struct pool *pool = pt->pool;
3847 
3848 	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3849 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3850 		      dm_device_name(pool->pool_md));
3851 		return -EOPNOTSUPP;
3852 	}
3853 
3854 	if (!strcasecmp(argv[0], "create_thin"))
3855 		r = process_create_thin_mesg(argc, argv, pool);
3856 
3857 	else if (!strcasecmp(argv[0], "create_snap"))
3858 		r = process_create_snap_mesg(argc, argv, pool);
3859 
3860 	else if (!strcasecmp(argv[0], "delete"))
3861 		r = process_delete_mesg(argc, argv, pool);
3862 
3863 	else if (!strcasecmp(argv[0], "set_transaction_id"))
3864 		r = process_set_transaction_id_mesg(argc, argv, pool);
3865 
3866 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3867 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3868 
3869 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3870 		r = process_release_metadata_snap_mesg(argc, argv, pool);
3871 
3872 	else
3873 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3874 
3875 	if (!r)
3876 		(void) commit(pool);
3877 
3878 	return r;
3879 }
3880 
emit_flags(struct pool_features * pf,char * result,unsigned sz,unsigned maxlen)3881 static void emit_flags(struct pool_features *pf, char *result,
3882 		       unsigned sz, unsigned maxlen)
3883 {
3884 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3885 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3886 		pf->error_if_no_space;
3887 	DMEMIT("%u ", count);
3888 
3889 	if (!pf->zero_new_blocks)
3890 		DMEMIT("skip_block_zeroing ");
3891 
3892 	if (!pf->discard_enabled)
3893 		DMEMIT("ignore_discard ");
3894 
3895 	if (!pf->discard_passdown)
3896 		DMEMIT("no_discard_passdown ");
3897 
3898 	if (pf->mode == PM_READ_ONLY)
3899 		DMEMIT("read_only ");
3900 
3901 	if (pf->error_if_no_space)
3902 		DMEMIT("error_if_no_space ");
3903 }
3904 
3905 /*
3906  * Status line is:
3907  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3908  *    <used data sectors>/<total data sectors> <held metadata root>
3909  *    <pool mode> <discard config> <no space config> <needs_check>
3910  */
pool_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)3911 static void pool_status(struct dm_target *ti, status_type_t type,
3912 			unsigned status_flags, char *result, unsigned maxlen)
3913 {
3914 	int r;
3915 	unsigned sz = 0;
3916 	uint64_t transaction_id;
3917 	dm_block_t nr_free_blocks_data;
3918 	dm_block_t nr_free_blocks_metadata;
3919 	dm_block_t nr_blocks_data;
3920 	dm_block_t nr_blocks_metadata;
3921 	dm_block_t held_root;
3922 	enum pool_mode mode;
3923 	char buf[BDEVNAME_SIZE];
3924 	char buf2[BDEVNAME_SIZE];
3925 	struct pool_c *pt = ti->private;
3926 	struct pool *pool = pt->pool;
3927 
3928 	switch (type) {
3929 	case STATUSTYPE_INFO:
3930 		if (get_pool_mode(pool) == PM_FAIL) {
3931 			DMEMIT("Fail");
3932 			break;
3933 		}
3934 
3935 		/* Commit to ensure statistics aren't out-of-date */
3936 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3937 			(void) commit(pool);
3938 
3939 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3940 		if (r) {
3941 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3942 			      dm_device_name(pool->pool_md), r);
3943 			goto err;
3944 		}
3945 
3946 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3947 		if (r) {
3948 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3949 			      dm_device_name(pool->pool_md), r);
3950 			goto err;
3951 		}
3952 
3953 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3954 		if (r) {
3955 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3956 			      dm_device_name(pool->pool_md), r);
3957 			goto err;
3958 		}
3959 
3960 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3961 		if (r) {
3962 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3963 			      dm_device_name(pool->pool_md), r);
3964 			goto err;
3965 		}
3966 
3967 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3968 		if (r) {
3969 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3970 			      dm_device_name(pool->pool_md), r);
3971 			goto err;
3972 		}
3973 
3974 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3975 		if (r) {
3976 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3977 			      dm_device_name(pool->pool_md), r);
3978 			goto err;
3979 		}
3980 
3981 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3982 		       (unsigned long long)transaction_id,
3983 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3984 		       (unsigned long long)nr_blocks_metadata,
3985 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3986 		       (unsigned long long)nr_blocks_data);
3987 
3988 		if (held_root)
3989 			DMEMIT("%llu ", held_root);
3990 		else
3991 			DMEMIT("- ");
3992 
3993 		mode = get_pool_mode(pool);
3994 		if (mode == PM_OUT_OF_DATA_SPACE)
3995 			DMEMIT("out_of_data_space ");
3996 		else if (is_read_only_pool_mode(mode))
3997 			DMEMIT("ro ");
3998 		else
3999 			DMEMIT("rw ");
4000 
4001 		if (!pool->pf.discard_enabled)
4002 			DMEMIT("ignore_discard ");
4003 		else if (pool->pf.discard_passdown)
4004 			DMEMIT("discard_passdown ");
4005 		else
4006 			DMEMIT("no_discard_passdown ");
4007 
4008 		if (pool->pf.error_if_no_space)
4009 			DMEMIT("error_if_no_space ");
4010 		else
4011 			DMEMIT("queue_if_no_space ");
4012 
4013 		if (dm_pool_metadata_needs_check(pool->pmd))
4014 			DMEMIT("needs_check ");
4015 		else
4016 			DMEMIT("- ");
4017 
4018 		DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4019 
4020 		break;
4021 
4022 	case STATUSTYPE_TABLE:
4023 		DMEMIT("%s %s %lu %llu ",
4024 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4025 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4026 		       (unsigned long)pool->sectors_per_block,
4027 		       (unsigned long long)pt->low_water_blocks);
4028 		emit_flags(&pt->requested_pf, result, sz, maxlen);
4029 		break;
4030 	}
4031 	return;
4032 
4033 err:
4034 	DMEMIT("Error");
4035 }
4036 
pool_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)4037 static int pool_iterate_devices(struct dm_target *ti,
4038 				iterate_devices_callout_fn fn, void *data)
4039 {
4040 	struct pool_c *pt = ti->private;
4041 
4042 	return fn(ti, pt->data_dev, 0, ti->len, data);
4043 }
4044 
pool_io_hints(struct dm_target * ti,struct queue_limits * limits)4045 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4046 {
4047 	struct pool_c *pt = ti->private;
4048 	struct pool *pool = pt->pool;
4049 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4050 
4051 	/*
4052 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
4053 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4054 	 * This is especially beneficial when the pool's data device is a RAID
4055 	 * device that has a full stripe width that matches pool->sectors_per_block
4056 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
4057 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
4058 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
4059 	 */
4060 	if (limits->max_sectors < pool->sectors_per_block) {
4061 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4062 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4063 				limits->max_sectors--;
4064 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4065 		}
4066 	}
4067 
4068 	/*
4069 	 * If the system-determined stacked limits are compatible with the
4070 	 * pool's blocksize (io_opt is a factor) do not override them.
4071 	 */
4072 	if (io_opt_sectors < pool->sectors_per_block ||
4073 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4074 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
4075 			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4076 		else
4077 			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4078 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4079 	}
4080 
4081 	/*
4082 	 * pt->adjusted_pf is a staging area for the actual features to use.
4083 	 * They get transferred to the live pool in bind_control_target()
4084 	 * called from pool_preresume().
4085 	 */
4086 	if (!pt->adjusted_pf.discard_enabled) {
4087 		/*
4088 		 * Must explicitly disallow stacking discard limits otherwise the
4089 		 * block layer will stack them if pool's data device has support.
4090 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4091 		 * user to see that, so make sure to set all discard limits to 0.
4092 		 */
4093 		limits->discard_granularity = 0;
4094 		return;
4095 	}
4096 
4097 	disable_passdown_if_not_supported(pt);
4098 
4099 	/*
4100 	 * The pool uses the same discard limits as the underlying data
4101 	 * device.  DM core has already set this up.
4102 	 */
4103 }
4104 
4105 static struct target_type pool_target = {
4106 	.name = "thin-pool",
4107 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4108 		    DM_TARGET_IMMUTABLE,
4109 	.version = {1, 22, 0},
4110 	.module = THIS_MODULE,
4111 	.ctr = pool_ctr,
4112 	.dtr = pool_dtr,
4113 	.map = pool_map,
4114 	.presuspend = pool_presuspend,
4115 	.presuspend_undo = pool_presuspend_undo,
4116 	.postsuspend = pool_postsuspend,
4117 	.preresume = pool_preresume,
4118 	.resume = pool_resume,
4119 	.message = pool_message,
4120 	.status = pool_status,
4121 	.iterate_devices = pool_iterate_devices,
4122 	.io_hints = pool_io_hints,
4123 };
4124 
4125 /*----------------------------------------------------------------
4126  * Thin target methods
4127  *--------------------------------------------------------------*/
thin_get(struct thin_c * tc)4128 static void thin_get(struct thin_c *tc)
4129 {
4130 	refcount_inc(&tc->refcount);
4131 }
4132 
thin_put(struct thin_c * tc)4133 static void thin_put(struct thin_c *tc)
4134 {
4135 	if (refcount_dec_and_test(&tc->refcount))
4136 		complete(&tc->can_destroy);
4137 }
4138 
thin_dtr(struct dm_target * ti)4139 static void thin_dtr(struct dm_target *ti)
4140 {
4141 	struct thin_c *tc = ti->private;
4142 
4143 	spin_lock_irq(&tc->pool->lock);
4144 	list_del_rcu(&tc->list);
4145 	spin_unlock_irq(&tc->pool->lock);
4146 	synchronize_rcu();
4147 
4148 	thin_put(tc);
4149 	wait_for_completion(&tc->can_destroy);
4150 
4151 	mutex_lock(&dm_thin_pool_table.mutex);
4152 
4153 	__pool_dec(tc->pool);
4154 	dm_pool_close_thin_device(tc->td);
4155 	dm_put_device(ti, tc->pool_dev);
4156 	if (tc->origin_dev)
4157 		dm_put_device(ti, tc->origin_dev);
4158 	kfree(tc);
4159 
4160 	mutex_unlock(&dm_thin_pool_table.mutex);
4161 }
4162 
4163 /*
4164  * Thin target parameters:
4165  *
4166  * <pool_dev> <dev_id> [origin_dev]
4167  *
4168  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4169  * dev_id: the internal device identifier
4170  * origin_dev: a device external to the pool that should act as the origin
4171  *
4172  * If the pool device has discards disabled, they get disabled for the thin
4173  * device as well.
4174  */
thin_ctr(struct dm_target * ti,unsigned argc,char ** argv)4175 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4176 {
4177 	int r;
4178 	struct thin_c *tc;
4179 	struct dm_dev *pool_dev, *origin_dev;
4180 	struct mapped_device *pool_md;
4181 
4182 	mutex_lock(&dm_thin_pool_table.mutex);
4183 
4184 	if (argc != 2 && argc != 3) {
4185 		ti->error = "Invalid argument count";
4186 		r = -EINVAL;
4187 		goto out_unlock;
4188 	}
4189 
4190 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4191 	if (!tc) {
4192 		ti->error = "Out of memory";
4193 		r = -ENOMEM;
4194 		goto out_unlock;
4195 	}
4196 	tc->thin_md = dm_table_get_md(ti->table);
4197 	spin_lock_init(&tc->lock);
4198 	INIT_LIST_HEAD(&tc->deferred_cells);
4199 	bio_list_init(&tc->deferred_bio_list);
4200 	bio_list_init(&tc->retry_on_resume_list);
4201 	tc->sort_bio_list = RB_ROOT;
4202 
4203 	if (argc == 3) {
4204 		if (!strcmp(argv[0], argv[2])) {
4205 			ti->error = "Error setting origin device";
4206 			r = -EINVAL;
4207 			goto bad_origin_dev;
4208 		}
4209 
4210 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4211 		if (r) {
4212 			ti->error = "Error opening origin device";
4213 			goto bad_origin_dev;
4214 		}
4215 		tc->origin_dev = origin_dev;
4216 	}
4217 
4218 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4219 	if (r) {
4220 		ti->error = "Error opening pool device";
4221 		goto bad_pool_dev;
4222 	}
4223 	tc->pool_dev = pool_dev;
4224 
4225 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4226 		ti->error = "Invalid device id";
4227 		r = -EINVAL;
4228 		goto bad_common;
4229 	}
4230 
4231 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4232 	if (!pool_md) {
4233 		ti->error = "Couldn't get pool mapped device";
4234 		r = -EINVAL;
4235 		goto bad_common;
4236 	}
4237 
4238 	tc->pool = __pool_table_lookup(pool_md);
4239 	if (!tc->pool) {
4240 		ti->error = "Couldn't find pool object";
4241 		r = -EINVAL;
4242 		goto bad_pool_lookup;
4243 	}
4244 	__pool_inc(tc->pool);
4245 
4246 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4247 		ti->error = "Couldn't open thin device, Pool is in fail mode";
4248 		r = -EINVAL;
4249 		goto bad_pool;
4250 	}
4251 
4252 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4253 	if (r) {
4254 		ti->error = "Couldn't open thin internal device";
4255 		goto bad_pool;
4256 	}
4257 
4258 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4259 	if (r)
4260 		goto bad;
4261 
4262 	ti->num_flush_bios = 1;
4263 	ti->limit_swap_bios = true;
4264 	ti->flush_supported = true;
4265 	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4266 
4267 	/* In case the pool supports discards, pass them on. */
4268 	if (tc->pool->pf.discard_enabled) {
4269 		ti->discards_supported = true;
4270 		ti->num_discard_bios = 1;
4271 	}
4272 
4273 	mutex_unlock(&dm_thin_pool_table.mutex);
4274 
4275 	spin_lock_irq(&tc->pool->lock);
4276 	if (tc->pool->suspended) {
4277 		spin_unlock_irq(&tc->pool->lock);
4278 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4279 		ti->error = "Unable to activate thin device while pool is suspended";
4280 		r = -EINVAL;
4281 		goto bad;
4282 	}
4283 	refcount_set(&tc->refcount, 1);
4284 	init_completion(&tc->can_destroy);
4285 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4286 	spin_unlock_irq(&tc->pool->lock);
4287 	/*
4288 	 * This synchronize_rcu() call is needed here otherwise we risk a
4289 	 * wake_worker() call finding no bios to process (because the newly
4290 	 * added tc isn't yet visible).  So this reduces latency since we
4291 	 * aren't then dependent on the periodic commit to wake_worker().
4292 	 */
4293 	synchronize_rcu();
4294 
4295 	dm_put(pool_md);
4296 
4297 	return 0;
4298 
4299 bad:
4300 	dm_pool_close_thin_device(tc->td);
4301 bad_pool:
4302 	__pool_dec(tc->pool);
4303 bad_pool_lookup:
4304 	dm_put(pool_md);
4305 bad_common:
4306 	dm_put_device(ti, tc->pool_dev);
4307 bad_pool_dev:
4308 	if (tc->origin_dev)
4309 		dm_put_device(ti, tc->origin_dev);
4310 bad_origin_dev:
4311 	kfree(tc);
4312 out_unlock:
4313 	mutex_unlock(&dm_thin_pool_table.mutex);
4314 
4315 	return r;
4316 }
4317 
thin_map(struct dm_target * ti,struct bio * bio)4318 static int thin_map(struct dm_target *ti, struct bio *bio)
4319 {
4320 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4321 
4322 	return thin_bio_map(ti, bio);
4323 }
4324 
thin_endio(struct dm_target * ti,struct bio * bio,blk_status_t * err)4325 static int thin_endio(struct dm_target *ti, struct bio *bio,
4326 		blk_status_t *err)
4327 {
4328 	unsigned long flags;
4329 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4330 	struct list_head work;
4331 	struct dm_thin_new_mapping *m, *tmp;
4332 	struct pool *pool = h->tc->pool;
4333 
4334 	if (h->shared_read_entry) {
4335 		INIT_LIST_HEAD(&work);
4336 		dm_deferred_entry_dec(h->shared_read_entry, &work);
4337 
4338 		spin_lock_irqsave(&pool->lock, flags);
4339 		list_for_each_entry_safe(m, tmp, &work, list) {
4340 			list_del(&m->list);
4341 			__complete_mapping_preparation(m);
4342 		}
4343 		spin_unlock_irqrestore(&pool->lock, flags);
4344 	}
4345 
4346 	if (h->all_io_entry) {
4347 		INIT_LIST_HEAD(&work);
4348 		dm_deferred_entry_dec(h->all_io_entry, &work);
4349 		if (!list_empty(&work)) {
4350 			spin_lock_irqsave(&pool->lock, flags);
4351 			list_for_each_entry_safe(m, tmp, &work, list)
4352 				list_add_tail(&m->list, &pool->prepared_discards);
4353 			spin_unlock_irqrestore(&pool->lock, flags);
4354 			wake_worker(pool);
4355 		}
4356 	}
4357 
4358 	if (h->cell)
4359 		cell_defer_no_holder(h->tc, h->cell);
4360 
4361 	return DM_ENDIO_DONE;
4362 }
4363 
thin_presuspend(struct dm_target * ti)4364 static void thin_presuspend(struct dm_target *ti)
4365 {
4366 	struct thin_c *tc = ti->private;
4367 
4368 	if (dm_noflush_suspending(ti))
4369 		noflush_work(tc, do_noflush_start);
4370 }
4371 
thin_postsuspend(struct dm_target * ti)4372 static void thin_postsuspend(struct dm_target *ti)
4373 {
4374 	struct thin_c *tc = ti->private;
4375 
4376 	/*
4377 	 * The dm_noflush_suspending flag has been cleared by now, so
4378 	 * unfortunately we must always run this.
4379 	 */
4380 	noflush_work(tc, do_noflush_stop);
4381 }
4382 
thin_preresume(struct dm_target * ti)4383 static int thin_preresume(struct dm_target *ti)
4384 {
4385 	struct thin_c *tc = ti->private;
4386 
4387 	if (tc->origin_dev)
4388 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4389 
4390 	return 0;
4391 }
4392 
4393 /*
4394  * <nr mapped sectors> <highest mapped sector>
4395  */
thin_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)4396 static void thin_status(struct dm_target *ti, status_type_t type,
4397 			unsigned status_flags, char *result, unsigned maxlen)
4398 {
4399 	int r;
4400 	ssize_t sz = 0;
4401 	dm_block_t mapped, highest;
4402 	char buf[BDEVNAME_SIZE];
4403 	struct thin_c *tc = ti->private;
4404 
4405 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4406 		DMEMIT("Fail");
4407 		return;
4408 	}
4409 
4410 	if (!tc->td)
4411 		DMEMIT("-");
4412 	else {
4413 		switch (type) {
4414 		case STATUSTYPE_INFO:
4415 			r = dm_thin_get_mapped_count(tc->td, &mapped);
4416 			if (r) {
4417 				DMERR("dm_thin_get_mapped_count returned %d", r);
4418 				goto err;
4419 			}
4420 
4421 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4422 			if (r < 0) {
4423 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4424 				goto err;
4425 			}
4426 
4427 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4428 			if (r)
4429 				DMEMIT("%llu", ((highest + 1) *
4430 						tc->pool->sectors_per_block) - 1);
4431 			else
4432 				DMEMIT("-");
4433 			break;
4434 
4435 		case STATUSTYPE_TABLE:
4436 			DMEMIT("%s %lu",
4437 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4438 			       (unsigned long) tc->dev_id);
4439 			if (tc->origin_dev)
4440 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4441 			break;
4442 		}
4443 	}
4444 
4445 	return;
4446 
4447 err:
4448 	DMEMIT("Error");
4449 }
4450 
thin_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)4451 static int thin_iterate_devices(struct dm_target *ti,
4452 				iterate_devices_callout_fn fn, void *data)
4453 {
4454 	sector_t blocks;
4455 	struct thin_c *tc = ti->private;
4456 	struct pool *pool = tc->pool;
4457 
4458 	/*
4459 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4460 	 * we follow a more convoluted path through to the pool's target.
4461 	 */
4462 	if (!pool->ti)
4463 		return 0;	/* nothing is bound */
4464 
4465 	blocks = pool->ti->len;
4466 	(void) sector_div(blocks, pool->sectors_per_block);
4467 	if (blocks)
4468 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4469 
4470 	return 0;
4471 }
4472 
thin_io_hints(struct dm_target * ti,struct queue_limits * limits)4473 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4474 {
4475 	struct thin_c *tc = ti->private;
4476 	struct pool *pool = tc->pool;
4477 
4478 	if (!pool->pf.discard_enabled)
4479 		return;
4480 
4481 	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4482 	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4483 }
4484 
4485 static struct target_type thin_target = {
4486 	.name = "thin",
4487 	.version = {1, 22, 0},
4488 	.module	= THIS_MODULE,
4489 	.ctr = thin_ctr,
4490 	.dtr = thin_dtr,
4491 	.map = thin_map,
4492 	.end_io = thin_endio,
4493 	.preresume = thin_preresume,
4494 	.presuspend = thin_presuspend,
4495 	.postsuspend = thin_postsuspend,
4496 	.status = thin_status,
4497 	.iterate_devices = thin_iterate_devices,
4498 	.io_hints = thin_io_hints,
4499 };
4500 
4501 /*----------------------------------------------------------------*/
4502 
dm_thin_init(void)4503 static int __init dm_thin_init(void)
4504 {
4505 	int r = -ENOMEM;
4506 
4507 	pool_table_init();
4508 
4509 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4510 	if (!_new_mapping_cache)
4511 		return r;
4512 
4513 	r = dm_register_target(&thin_target);
4514 	if (r)
4515 		goto bad_new_mapping_cache;
4516 
4517 	r = dm_register_target(&pool_target);
4518 	if (r)
4519 		goto bad_thin_target;
4520 
4521 	return 0;
4522 
4523 bad_thin_target:
4524 	dm_unregister_target(&thin_target);
4525 bad_new_mapping_cache:
4526 	kmem_cache_destroy(_new_mapping_cache);
4527 
4528 	return r;
4529 }
4530 
dm_thin_exit(void)4531 static void dm_thin_exit(void)
4532 {
4533 	dm_unregister_target(&thin_target);
4534 	dm_unregister_target(&pool_target);
4535 
4536 	kmem_cache_destroy(_new_mapping_cache);
4537 
4538 	pool_table_exit();
4539 }
4540 
4541 module_init(dm_thin_init);
4542 module_exit(dm_thin_exit);
4543 
4544 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4545 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4546 
4547 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4548 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4549 MODULE_LICENSE("GPL");
4550