1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX "thin"
26
27 /*
28 * Tunable constants
29 */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 "A percentage of time allocated for copy on write");
39
40 /*
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
43 */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48 * Device id is restricted to 24 bits.
49 */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
55 *
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
61 * same data blocks.
62 *
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
65 *
66 * Let's say we write to a shared block in what was the origin. The
67 * steps are:
68 *
69 * i) plug io further to this physical block. (see bio_prison code).
70 *
71 * ii) quiesce any read io to that shared data block. Obviously
72 * including all devices that share this block. (see dm_deferred_set code)
73 *
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
76 *
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping). This act of inserting breaks some
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
84 *
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
87 *
88 * Steps (ii) and (iii) occur in parallel.
89 *
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
93 *
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
97 *
98 * - The snap mapping still points to the old block. As it would after
99 * the commit.
100 *
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
108 */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113 * Key building.
114 */
115 enum lock_space {
116 VIRTUAL,
117 PHYSICAL
118 };
119
build_key(struct dm_thin_device * td,enum lock_space ls,dm_block_t b,dm_block_t e,struct dm_cell_key * key)120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123 key->virtual = (ls == VIRTUAL);
124 key->dev = dm_thin_dev_id(td);
125 key->block_begin = b;
126 key->block_end = e;
127 }
128
build_data_key(struct dm_thin_device * td,dm_block_t b,struct dm_cell_key * key)129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 struct dm_cell_key *key)
131 {
132 build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
build_virtual_key(struct dm_thin_device * td,dm_block_t b,struct dm_cell_key * key)135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 struct dm_cell_key *key)
137 {
138 build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146 struct rw_semaphore lock;
147 unsigned long threshold;
148 bool throttle_applied;
149 };
150
throttle_init(struct throttle * t)151 static void throttle_init(struct throttle *t)
152 {
153 init_rwsem(&t->lock);
154 t->throttle_applied = false;
155 }
156
throttle_work_start(struct throttle * t)157 static void throttle_work_start(struct throttle *t)
158 {
159 t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
throttle_work_update(struct throttle * t)162 static void throttle_work_update(struct throttle *t)
163 {
164 if (!t->throttle_applied && jiffies > t->threshold) {
165 down_write(&t->lock);
166 t->throttle_applied = true;
167 }
168 }
169
throttle_work_complete(struct throttle * t)170 static void throttle_work_complete(struct throttle *t)
171 {
172 if (t->throttle_applied) {
173 t->throttle_applied = false;
174 up_write(&t->lock);
175 }
176 }
177
throttle_lock(struct throttle * t)178 static void throttle_lock(struct throttle *t)
179 {
180 down_read(&t->lock);
181 }
182
throttle_unlock(struct throttle * t)183 static void throttle_unlock(struct throttle *t)
184 {
185 up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191 * A pool device ties together a metadata device and a data device. It
192 * also provides the interface for creating and destroying internal
193 * devices.
194 */
195 struct dm_thin_new_mapping;
196
197 /*
198 * The pool runs in various modes. Ordered in degraded order for comparisons.
199 */
200 enum pool_mode {
201 PM_WRITE, /* metadata may be changed */
202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
203
204 /*
205 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
206 */
207 PM_OUT_OF_METADATA_SPACE,
208 PM_READ_ONLY, /* metadata may not be changed */
209
210 PM_FAIL, /* all I/O fails */
211 };
212
213 struct pool_features {
214 enum pool_mode mode;
215
216 bool zero_new_blocks:1;
217 bool discard_enabled:1;
218 bool discard_passdown:1;
219 bool error_if_no_space:1;
220 };
221
222 struct thin_c;
223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
226
227 #define CELL_SORT_ARRAY_SIZE 8192
228
229 struct pool {
230 struct list_head list;
231 struct dm_target *ti; /* Only set if a pool target is bound */
232
233 struct mapped_device *pool_md;
234 struct block_device *data_dev;
235 struct block_device *md_dev;
236 struct dm_pool_metadata *pmd;
237
238 dm_block_t low_water_blocks;
239 uint32_t sectors_per_block;
240 int sectors_per_block_shift;
241
242 struct pool_features pf;
243 bool low_water_triggered:1; /* A dm event has been sent */
244 bool suspended:1;
245 bool out_of_data_space:1;
246
247 struct dm_bio_prison *prison;
248 struct dm_kcopyd_client *copier;
249
250 struct work_struct worker;
251 struct workqueue_struct *wq;
252 struct throttle throttle;
253 struct delayed_work waker;
254 struct delayed_work no_space_timeout;
255
256 unsigned long last_commit_jiffies;
257 unsigned ref_count;
258
259 spinlock_t lock;
260 struct bio_list deferred_flush_bios;
261 struct bio_list deferred_flush_completions;
262 struct list_head prepared_mappings;
263 struct list_head prepared_discards;
264 struct list_head prepared_discards_pt2;
265 struct list_head active_thins;
266
267 struct dm_deferred_set *shared_read_ds;
268 struct dm_deferred_set *all_io_ds;
269
270 struct dm_thin_new_mapping *next_mapping;
271
272 process_bio_fn process_bio;
273 process_bio_fn process_discard;
274
275 process_cell_fn process_cell;
276 process_cell_fn process_discard_cell;
277
278 process_mapping_fn process_prepared_mapping;
279 process_mapping_fn process_prepared_discard;
280 process_mapping_fn process_prepared_discard_pt2;
281
282 struct dm_bio_prison_cell **cell_sort_array;
283
284 mempool_t mapping_pool;
285
286 struct bio flush_bio;
287 };
288
289 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
290
get_pool_mode(struct pool * pool)291 static enum pool_mode get_pool_mode(struct pool *pool)
292 {
293 return pool->pf.mode;
294 }
295
notify_of_pool_mode_change(struct pool * pool)296 static void notify_of_pool_mode_change(struct pool *pool)
297 {
298 const char *descs[] = {
299 "write",
300 "out-of-data-space",
301 "read-only",
302 "read-only",
303 "fail"
304 };
305 const char *extra_desc = NULL;
306 enum pool_mode mode = get_pool_mode(pool);
307
308 if (mode == PM_OUT_OF_DATA_SPACE) {
309 if (!pool->pf.error_if_no_space)
310 extra_desc = " (queue IO)";
311 else
312 extra_desc = " (error IO)";
313 }
314
315 dm_table_event(pool->ti->table);
316 DMINFO("%s: switching pool to %s%s mode",
317 dm_device_name(pool->pool_md),
318 descs[(int)mode], extra_desc ? : "");
319 }
320
321 /*
322 * Target context for a pool.
323 */
324 struct pool_c {
325 struct dm_target *ti;
326 struct pool *pool;
327 struct dm_dev *data_dev;
328 struct dm_dev *metadata_dev;
329
330 dm_block_t low_water_blocks;
331 struct pool_features requested_pf; /* Features requested during table load */
332 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
333 };
334
335 /*
336 * Target context for a thin.
337 */
338 struct thin_c {
339 struct list_head list;
340 struct dm_dev *pool_dev;
341 struct dm_dev *origin_dev;
342 sector_t origin_size;
343 dm_thin_id dev_id;
344
345 struct pool *pool;
346 struct dm_thin_device *td;
347 struct mapped_device *thin_md;
348
349 bool requeue_mode:1;
350 spinlock_t lock;
351 struct list_head deferred_cells;
352 struct bio_list deferred_bio_list;
353 struct bio_list retry_on_resume_list;
354 struct rb_root sort_bio_list; /* sorted list of deferred bios */
355
356 /*
357 * Ensures the thin is not destroyed until the worker has finished
358 * iterating the active_thins list.
359 */
360 refcount_t refcount;
361 struct completion can_destroy;
362 };
363
364 /*----------------------------------------------------------------*/
365
block_size_is_power_of_two(struct pool * pool)366 static bool block_size_is_power_of_two(struct pool *pool)
367 {
368 return pool->sectors_per_block_shift >= 0;
369 }
370
block_to_sectors(struct pool * pool,dm_block_t b)371 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
372 {
373 return block_size_is_power_of_two(pool) ?
374 (b << pool->sectors_per_block_shift) :
375 (b * pool->sectors_per_block);
376 }
377
378 /*----------------------------------------------------------------*/
379
380 struct discard_op {
381 struct thin_c *tc;
382 struct blk_plug plug;
383 struct bio *parent_bio;
384 struct bio *bio;
385 };
386
begin_discard(struct discard_op * op,struct thin_c * tc,struct bio * parent)387 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
388 {
389 BUG_ON(!parent);
390
391 op->tc = tc;
392 blk_start_plug(&op->plug);
393 op->parent_bio = parent;
394 op->bio = NULL;
395 }
396
issue_discard(struct discard_op * op,dm_block_t data_b,dm_block_t data_e)397 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
398 {
399 struct thin_c *tc = op->tc;
400 sector_t s = block_to_sectors(tc->pool, data_b);
401 sector_t len = block_to_sectors(tc->pool, data_e - data_b);
402
403 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
404 GFP_NOWAIT, 0, &op->bio);
405 }
406
end_discard(struct discard_op * op,int r)407 static void end_discard(struct discard_op *op, int r)
408 {
409 if (op->bio) {
410 /*
411 * Even if one of the calls to issue_discard failed, we
412 * need to wait for the chain to complete.
413 */
414 bio_chain(op->bio, op->parent_bio);
415 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
416 submit_bio(op->bio);
417 }
418
419 blk_finish_plug(&op->plug);
420
421 /*
422 * Even if r is set, there could be sub discards in flight that we
423 * need to wait for.
424 */
425 if (r && !op->parent_bio->bi_status)
426 op->parent_bio->bi_status = errno_to_blk_status(r);
427 bio_endio(op->parent_bio);
428 }
429
430 /*----------------------------------------------------------------*/
431
432 /*
433 * wake_worker() is used when new work is queued and when pool_resume is
434 * ready to continue deferred IO processing.
435 */
wake_worker(struct pool * pool)436 static void wake_worker(struct pool *pool)
437 {
438 queue_work(pool->wq, &pool->worker);
439 }
440
441 /*----------------------------------------------------------------*/
442
bio_detain(struct pool * pool,struct dm_cell_key * key,struct bio * bio,struct dm_bio_prison_cell ** cell_result)443 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
444 struct dm_bio_prison_cell **cell_result)
445 {
446 int r;
447 struct dm_bio_prison_cell *cell_prealloc;
448
449 /*
450 * Allocate a cell from the prison's mempool.
451 * This might block but it can't fail.
452 */
453 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
454
455 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
456 if (r)
457 /*
458 * We reused an old cell; we can get rid of
459 * the new one.
460 */
461 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
462
463 return r;
464 }
465
cell_release(struct pool * pool,struct dm_bio_prison_cell * cell,struct bio_list * bios)466 static void cell_release(struct pool *pool,
467 struct dm_bio_prison_cell *cell,
468 struct bio_list *bios)
469 {
470 dm_cell_release(pool->prison, cell, bios);
471 dm_bio_prison_free_cell(pool->prison, cell);
472 }
473
cell_visit_release(struct pool * pool,void (* fn)(void *,struct dm_bio_prison_cell *),void * context,struct dm_bio_prison_cell * cell)474 static void cell_visit_release(struct pool *pool,
475 void (*fn)(void *, struct dm_bio_prison_cell *),
476 void *context,
477 struct dm_bio_prison_cell *cell)
478 {
479 dm_cell_visit_release(pool->prison, fn, context, cell);
480 dm_bio_prison_free_cell(pool->prison, cell);
481 }
482
cell_release_no_holder(struct pool * pool,struct dm_bio_prison_cell * cell,struct bio_list * bios)483 static void cell_release_no_holder(struct pool *pool,
484 struct dm_bio_prison_cell *cell,
485 struct bio_list *bios)
486 {
487 dm_cell_release_no_holder(pool->prison, cell, bios);
488 dm_bio_prison_free_cell(pool->prison, cell);
489 }
490
cell_error_with_code(struct pool * pool,struct dm_bio_prison_cell * cell,blk_status_t error_code)491 static void cell_error_with_code(struct pool *pool,
492 struct dm_bio_prison_cell *cell, blk_status_t error_code)
493 {
494 dm_cell_error(pool->prison, cell, error_code);
495 dm_bio_prison_free_cell(pool->prison, cell);
496 }
497
get_pool_io_error_code(struct pool * pool)498 static blk_status_t get_pool_io_error_code(struct pool *pool)
499 {
500 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
501 }
502
cell_error(struct pool * pool,struct dm_bio_prison_cell * cell)503 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
504 {
505 cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
506 }
507
cell_success(struct pool * pool,struct dm_bio_prison_cell * cell)508 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
509 {
510 cell_error_with_code(pool, cell, 0);
511 }
512
cell_requeue(struct pool * pool,struct dm_bio_prison_cell * cell)513 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
514 {
515 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
516 }
517
518 /*----------------------------------------------------------------*/
519
520 /*
521 * A global list of pools that uses a struct mapped_device as a key.
522 */
523 static struct dm_thin_pool_table {
524 struct mutex mutex;
525 struct list_head pools;
526 } dm_thin_pool_table;
527
pool_table_init(void)528 static void pool_table_init(void)
529 {
530 mutex_init(&dm_thin_pool_table.mutex);
531 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
532 }
533
pool_table_exit(void)534 static void pool_table_exit(void)
535 {
536 mutex_destroy(&dm_thin_pool_table.mutex);
537 }
538
__pool_table_insert(struct pool * pool)539 static void __pool_table_insert(struct pool *pool)
540 {
541 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
542 list_add(&pool->list, &dm_thin_pool_table.pools);
543 }
544
__pool_table_remove(struct pool * pool)545 static void __pool_table_remove(struct pool *pool)
546 {
547 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
548 list_del(&pool->list);
549 }
550
__pool_table_lookup(struct mapped_device * md)551 static struct pool *__pool_table_lookup(struct mapped_device *md)
552 {
553 struct pool *pool = NULL, *tmp;
554
555 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
556
557 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
558 if (tmp->pool_md == md) {
559 pool = tmp;
560 break;
561 }
562 }
563
564 return pool;
565 }
566
__pool_table_lookup_metadata_dev(struct block_device * md_dev)567 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
568 {
569 struct pool *pool = NULL, *tmp;
570
571 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
572
573 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
574 if (tmp->md_dev == md_dev) {
575 pool = tmp;
576 break;
577 }
578 }
579
580 return pool;
581 }
582
583 /*----------------------------------------------------------------*/
584
585 struct dm_thin_endio_hook {
586 struct thin_c *tc;
587 struct dm_deferred_entry *shared_read_entry;
588 struct dm_deferred_entry *all_io_entry;
589 struct dm_thin_new_mapping *overwrite_mapping;
590 struct rb_node rb_node;
591 struct dm_bio_prison_cell *cell;
592 };
593
__merge_bio_list(struct bio_list * bios,struct bio_list * master)594 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
595 {
596 bio_list_merge(bios, master);
597 bio_list_init(master);
598 }
599
error_bio_list(struct bio_list * bios,blk_status_t error)600 static void error_bio_list(struct bio_list *bios, blk_status_t error)
601 {
602 struct bio *bio;
603
604 while ((bio = bio_list_pop(bios))) {
605 bio->bi_status = error;
606 bio_endio(bio);
607 }
608 }
609
error_thin_bio_list(struct thin_c * tc,struct bio_list * master,blk_status_t error)610 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
611 blk_status_t error)
612 {
613 struct bio_list bios;
614
615 bio_list_init(&bios);
616
617 spin_lock_irq(&tc->lock);
618 __merge_bio_list(&bios, master);
619 spin_unlock_irq(&tc->lock);
620
621 error_bio_list(&bios, error);
622 }
623
requeue_deferred_cells(struct thin_c * tc)624 static void requeue_deferred_cells(struct thin_c *tc)
625 {
626 struct pool *pool = tc->pool;
627 struct list_head cells;
628 struct dm_bio_prison_cell *cell, *tmp;
629
630 INIT_LIST_HEAD(&cells);
631
632 spin_lock_irq(&tc->lock);
633 list_splice_init(&tc->deferred_cells, &cells);
634 spin_unlock_irq(&tc->lock);
635
636 list_for_each_entry_safe(cell, tmp, &cells, user_list)
637 cell_requeue(pool, cell);
638 }
639
requeue_io(struct thin_c * tc)640 static void requeue_io(struct thin_c *tc)
641 {
642 struct bio_list bios;
643
644 bio_list_init(&bios);
645
646 spin_lock_irq(&tc->lock);
647 __merge_bio_list(&bios, &tc->deferred_bio_list);
648 __merge_bio_list(&bios, &tc->retry_on_resume_list);
649 spin_unlock_irq(&tc->lock);
650
651 error_bio_list(&bios, BLK_STS_DM_REQUEUE);
652 requeue_deferred_cells(tc);
653 }
654
error_retry_list_with_code(struct pool * pool,blk_status_t error)655 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
656 {
657 struct thin_c *tc;
658
659 rcu_read_lock();
660 list_for_each_entry_rcu(tc, &pool->active_thins, list)
661 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
662 rcu_read_unlock();
663 }
664
error_retry_list(struct pool * pool)665 static void error_retry_list(struct pool *pool)
666 {
667 error_retry_list_with_code(pool, get_pool_io_error_code(pool));
668 }
669
670 /*
671 * This section of code contains the logic for processing a thin device's IO.
672 * Much of the code depends on pool object resources (lists, workqueues, etc)
673 * but most is exclusively called from the thin target rather than the thin-pool
674 * target.
675 */
676
get_bio_block(struct thin_c * tc,struct bio * bio)677 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
678 {
679 struct pool *pool = tc->pool;
680 sector_t block_nr = bio->bi_iter.bi_sector;
681
682 if (block_size_is_power_of_two(pool))
683 block_nr >>= pool->sectors_per_block_shift;
684 else
685 (void) sector_div(block_nr, pool->sectors_per_block);
686
687 return block_nr;
688 }
689
690 /*
691 * Returns the _complete_ blocks that this bio covers.
692 */
get_bio_block_range(struct thin_c * tc,struct bio * bio,dm_block_t * begin,dm_block_t * end)693 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
694 dm_block_t *begin, dm_block_t *end)
695 {
696 struct pool *pool = tc->pool;
697 sector_t b = bio->bi_iter.bi_sector;
698 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
699
700 b += pool->sectors_per_block - 1ull; /* so we round up */
701
702 if (block_size_is_power_of_two(pool)) {
703 b >>= pool->sectors_per_block_shift;
704 e >>= pool->sectors_per_block_shift;
705 } else {
706 (void) sector_div(b, pool->sectors_per_block);
707 (void) sector_div(e, pool->sectors_per_block);
708 }
709
710 if (e < b)
711 /* Can happen if the bio is within a single block. */
712 e = b;
713
714 *begin = b;
715 *end = e;
716 }
717
remap(struct thin_c * tc,struct bio * bio,dm_block_t block)718 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
719 {
720 struct pool *pool = tc->pool;
721 sector_t bi_sector = bio->bi_iter.bi_sector;
722
723 bio_set_dev(bio, tc->pool_dev->bdev);
724 if (block_size_is_power_of_two(pool))
725 bio->bi_iter.bi_sector =
726 (block << pool->sectors_per_block_shift) |
727 (bi_sector & (pool->sectors_per_block - 1));
728 else
729 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
730 sector_div(bi_sector, pool->sectors_per_block);
731 }
732
remap_to_origin(struct thin_c * tc,struct bio * bio)733 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
734 {
735 bio_set_dev(bio, tc->origin_dev->bdev);
736 }
737
bio_triggers_commit(struct thin_c * tc,struct bio * bio)738 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
739 {
740 return op_is_flush(bio->bi_opf) &&
741 dm_thin_changed_this_transaction(tc->td);
742 }
743
inc_all_io_entry(struct pool * pool,struct bio * bio)744 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
745 {
746 struct dm_thin_endio_hook *h;
747
748 if (bio_op(bio) == REQ_OP_DISCARD)
749 return;
750
751 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
752 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
753 }
754
issue(struct thin_c * tc,struct bio * bio)755 static void issue(struct thin_c *tc, struct bio *bio)
756 {
757 struct pool *pool = tc->pool;
758
759 if (!bio_triggers_commit(tc, bio)) {
760 submit_bio_noacct(bio);
761 return;
762 }
763
764 /*
765 * Complete bio with an error if earlier I/O caused changes to
766 * the metadata that can't be committed e.g, due to I/O errors
767 * on the metadata device.
768 */
769 if (dm_thin_aborted_changes(tc->td)) {
770 bio_io_error(bio);
771 return;
772 }
773
774 /*
775 * Batch together any bios that trigger commits and then issue a
776 * single commit for them in process_deferred_bios().
777 */
778 spin_lock_irq(&pool->lock);
779 bio_list_add(&pool->deferred_flush_bios, bio);
780 spin_unlock_irq(&pool->lock);
781 }
782
remap_to_origin_and_issue(struct thin_c * tc,struct bio * bio)783 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
784 {
785 remap_to_origin(tc, bio);
786 issue(tc, bio);
787 }
788
remap_and_issue(struct thin_c * tc,struct bio * bio,dm_block_t block)789 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
790 dm_block_t block)
791 {
792 remap(tc, bio, block);
793 issue(tc, bio);
794 }
795
796 /*----------------------------------------------------------------*/
797
798 /*
799 * Bio endio functions.
800 */
801 struct dm_thin_new_mapping {
802 struct list_head list;
803
804 bool pass_discard:1;
805 bool maybe_shared:1;
806
807 /*
808 * Track quiescing, copying and zeroing preparation actions. When this
809 * counter hits zero the block is prepared and can be inserted into the
810 * btree.
811 */
812 atomic_t prepare_actions;
813
814 blk_status_t status;
815 struct thin_c *tc;
816 dm_block_t virt_begin, virt_end;
817 dm_block_t data_block;
818 struct dm_bio_prison_cell *cell;
819
820 /*
821 * If the bio covers the whole area of a block then we can avoid
822 * zeroing or copying. Instead this bio is hooked. The bio will
823 * still be in the cell, so care has to be taken to avoid issuing
824 * the bio twice.
825 */
826 struct bio *bio;
827 bio_end_io_t *saved_bi_end_io;
828 };
829
__complete_mapping_preparation(struct dm_thin_new_mapping * m)830 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
831 {
832 struct pool *pool = m->tc->pool;
833
834 if (atomic_dec_and_test(&m->prepare_actions)) {
835 list_add_tail(&m->list, &pool->prepared_mappings);
836 wake_worker(pool);
837 }
838 }
839
complete_mapping_preparation(struct dm_thin_new_mapping * m)840 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
841 {
842 unsigned long flags;
843 struct pool *pool = m->tc->pool;
844
845 spin_lock_irqsave(&pool->lock, flags);
846 __complete_mapping_preparation(m);
847 spin_unlock_irqrestore(&pool->lock, flags);
848 }
849
copy_complete(int read_err,unsigned long write_err,void * context)850 static void copy_complete(int read_err, unsigned long write_err, void *context)
851 {
852 struct dm_thin_new_mapping *m = context;
853
854 m->status = read_err || write_err ? BLK_STS_IOERR : 0;
855 complete_mapping_preparation(m);
856 }
857
overwrite_endio(struct bio * bio)858 static void overwrite_endio(struct bio *bio)
859 {
860 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
861 struct dm_thin_new_mapping *m = h->overwrite_mapping;
862
863 bio->bi_end_io = m->saved_bi_end_io;
864
865 m->status = bio->bi_status;
866 complete_mapping_preparation(m);
867 }
868
869 /*----------------------------------------------------------------*/
870
871 /*
872 * Workqueue.
873 */
874
875 /*
876 * Prepared mapping jobs.
877 */
878
879 /*
880 * This sends the bios in the cell, except the original holder, back
881 * to the deferred_bios list.
882 */
cell_defer_no_holder(struct thin_c * tc,struct dm_bio_prison_cell * cell)883 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
884 {
885 struct pool *pool = tc->pool;
886 unsigned long flags;
887 int has_work;
888
889 spin_lock_irqsave(&tc->lock, flags);
890 cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
891 has_work = !bio_list_empty(&tc->deferred_bio_list);
892 spin_unlock_irqrestore(&tc->lock, flags);
893
894 if (has_work)
895 wake_worker(pool);
896 }
897
898 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
899
900 struct remap_info {
901 struct thin_c *tc;
902 struct bio_list defer_bios;
903 struct bio_list issue_bios;
904 };
905
__inc_remap_and_issue_cell(void * context,struct dm_bio_prison_cell * cell)906 static void __inc_remap_and_issue_cell(void *context,
907 struct dm_bio_prison_cell *cell)
908 {
909 struct remap_info *info = context;
910 struct bio *bio;
911
912 while ((bio = bio_list_pop(&cell->bios))) {
913 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
914 bio_list_add(&info->defer_bios, bio);
915 else {
916 inc_all_io_entry(info->tc->pool, bio);
917
918 /*
919 * We can't issue the bios with the bio prison lock
920 * held, so we add them to a list to issue on
921 * return from this function.
922 */
923 bio_list_add(&info->issue_bios, bio);
924 }
925 }
926 }
927
inc_remap_and_issue_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell,dm_block_t block)928 static void inc_remap_and_issue_cell(struct thin_c *tc,
929 struct dm_bio_prison_cell *cell,
930 dm_block_t block)
931 {
932 struct bio *bio;
933 struct remap_info info;
934
935 info.tc = tc;
936 bio_list_init(&info.defer_bios);
937 bio_list_init(&info.issue_bios);
938
939 /*
940 * We have to be careful to inc any bios we're about to issue
941 * before the cell is released, and avoid a race with new bios
942 * being added to the cell.
943 */
944 cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
945 &info, cell);
946
947 while ((bio = bio_list_pop(&info.defer_bios)))
948 thin_defer_bio(tc, bio);
949
950 while ((bio = bio_list_pop(&info.issue_bios)))
951 remap_and_issue(info.tc, bio, block);
952 }
953
process_prepared_mapping_fail(struct dm_thin_new_mapping * m)954 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
955 {
956 cell_error(m->tc->pool, m->cell);
957 list_del(&m->list);
958 mempool_free(m, &m->tc->pool->mapping_pool);
959 }
960
complete_overwrite_bio(struct thin_c * tc,struct bio * bio)961 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
962 {
963 struct pool *pool = tc->pool;
964
965 /*
966 * If the bio has the REQ_FUA flag set we must commit the metadata
967 * before signaling its completion.
968 */
969 if (!bio_triggers_commit(tc, bio)) {
970 bio_endio(bio);
971 return;
972 }
973
974 /*
975 * Complete bio with an error if earlier I/O caused changes to the
976 * metadata that can't be committed, e.g, due to I/O errors on the
977 * metadata device.
978 */
979 if (dm_thin_aborted_changes(tc->td)) {
980 bio_io_error(bio);
981 return;
982 }
983
984 /*
985 * Batch together any bios that trigger commits and then issue a
986 * single commit for them in process_deferred_bios().
987 */
988 spin_lock_irq(&pool->lock);
989 bio_list_add(&pool->deferred_flush_completions, bio);
990 spin_unlock_irq(&pool->lock);
991 }
992
process_prepared_mapping(struct dm_thin_new_mapping * m)993 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
994 {
995 struct thin_c *tc = m->tc;
996 struct pool *pool = tc->pool;
997 struct bio *bio = m->bio;
998 int r;
999
1000 if (m->status) {
1001 cell_error(pool, m->cell);
1002 goto out;
1003 }
1004
1005 /*
1006 * Commit the prepared block into the mapping btree.
1007 * Any I/O for this block arriving after this point will get
1008 * remapped to it directly.
1009 */
1010 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1011 if (r) {
1012 metadata_operation_failed(pool, "dm_thin_insert_block", r);
1013 cell_error(pool, m->cell);
1014 goto out;
1015 }
1016
1017 /*
1018 * Release any bios held while the block was being provisioned.
1019 * If we are processing a write bio that completely covers the block,
1020 * we already processed it so can ignore it now when processing
1021 * the bios in the cell.
1022 */
1023 if (bio) {
1024 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1025 complete_overwrite_bio(tc, bio);
1026 } else {
1027 inc_all_io_entry(tc->pool, m->cell->holder);
1028 remap_and_issue(tc, m->cell->holder, m->data_block);
1029 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1030 }
1031
1032 out:
1033 list_del(&m->list);
1034 mempool_free(m, &pool->mapping_pool);
1035 }
1036
1037 /*----------------------------------------------------------------*/
1038
free_discard_mapping(struct dm_thin_new_mapping * m)1039 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1040 {
1041 struct thin_c *tc = m->tc;
1042 if (m->cell)
1043 cell_defer_no_holder(tc, m->cell);
1044 mempool_free(m, &tc->pool->mapping_pool);
1045 }
1046
process_prepared_discard_fail(struct dm_thin_new_mapping * m)1047 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1048 {
1049 bio_io_error(m->bio);
1050 free_discard_mapping(m);
1051 }
1052
process_prepared_discard_success(struct dm_thin_new_mapping * m)1053 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1054 {
1055 bio_endio(m->bio);
1056 free_discard_mapping(m);
1057 }
1058
process_prepared_discard_no_passdown(struct dm_thin_new_mapping * m)1059 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1060 {
1061 int r;
1062 struct thin_c *tc = m->tc;
1063
1064 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1065 if (r) {
1066 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1067 bio_io_error(m->bio);
1068 } else
1069 bio_endio(m->bio);
1070
1071 cell_defer_no_holder(tc, m->cell);
1072 mempool_free(m, &tc->pool->mapping_pool);
1073 }
1074
1075 /*----------------------------------------------------------------*/
1076
passdown_double_checking_shared_status(struct dm_thin_new_mapping * m,struct bio * discard_parent)1077 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1078 struct bio *discard_parent)
1079 {
1080 /*
1081 * We've already unmapped this range of blocks, but before we
1082 * passdown we have to check that these blocks are now unused.
1083 */
1084 int r = 0;
1085 bool shared = true;
1086 struct thin_c *tc = m->tc;
1087 struct pool *pool = tc->pool;
1088 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1089 struct discard_op op;
1090
1091 begin_discard(&op, tc, discard_parent);
1092 while (b != end) {
1093 /* find start of unmapped run */
1094 for (; b < end; b++) {
1095 r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1096 if (r)
1097 goto out;
1098
1099 if (!shared)
1100 break;
1101 }
1102
1103 if (b == end)
1104 break;
1105
1106 /* find end of run */
1107 for (e = b + 1; e != end; e++) {
1108 r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1109 if (r)
1110 goto out;
1111
1112 if (shared)
1113 break;
1114 }
1115
1116 r = issue_discard(&op, b, e);
1117 if (r)
1118 goto out;
1119
1120 b = e;
1121 }
1122 out:
1123 end_discard(&op, r);
1124 }
1125
queue_passdown_pt2(struct dm_thin_new_mapping * m)1126 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1127 {
1128 unsigned long flags;
1129 struct pool *pool = m->tc->pool;
1130
1131 spin_lock_irqsave(&pool->lock, flags);
1132 list_add_tail(&m->list, &pool->prepared_discards_pt2);
1133 spin_unlock_irqrestore(&pool->lock, flags);
1134 wake_worker(pool);
1135 }
1136
passdown_endio(struct bio * bio)1137 static void passdown_endio(struct bio *bio)
1138 {
1139 /*
1140 * It doesn't matter if the passdown discard failed, we still want
1141 * to unmap (we ignore err).
1142 */
1143 queue_passdown_pt2(bio->bi_private);
1144 bio_put(bio);
1145 }
1146
process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping * m)1147 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1148 {
1149 int r;
1150 struct thin_c *tc = m->tc;
1151 struct pool *pool = tc->pool;
1152 struct bio *discard_parent;
1153 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1154
1155 /*
1156 * Only this thread allocates blocks, so we can be sure that the
1157 * newly unmapped blocks will not be allocated before the end of
1158 * the function.
1159 */
1160 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1161 if (r) {
1162 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1163 bio_io_error(m->bio);
1164 cell_defer_no_holder(tc, m->cell);
1165 mempool_free(m, &pool->mapping_pool);
1166 return;
1167 }
1168
1169 /*
1170 * Increment the unmapped blocks. This prevents a race between the
1171 * passdown io and reallocation of freed blocks.
1172 */
1173 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1174 if (r) {
1175 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1176 bio_io_error(m->bio);
1177 cell_defer_no_holder(tc, m->cell);
1178 mempool_free(m, &pool->mapping_pool);
1179 return;
1180 }
1181
1182 discard_parent = bio_alloc(GFP_NOIO, 1);
1183 if (!discard_parent) {
1184 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1185 dm_device_name(tc->pool->pool_md));
1186 queue_passdown_pt2(m);
1187
1188 } else {
1189 discard_parent->bi_end_io = passdown_endio;
1190 discard_parent->bi_private = m;
1191
1192 if (m->maybe_shared)
1193 passdown_double_checking_shared_status(m, discard_parent);
1194 else {
1195 struct discard_op op;
1196
1197 begin_discard(&op, tc, discard_parent);
1198 r = issue_discard(&op, m->data_block, data_end);
1199 end_discard(&op, r);
1200 }
1201 }
1202 }
1203
process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping * m)1204 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1205 {
1206 int r;
1207 struct thin_c *tc = m->tc;
1208 struct pool *pool = tc->pool;
1209
1210 /*
1211 * The passdown has completed, so now we can decrement all those
1212 * unmapped blocks.
1213 */
1214 r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1215 m->data_block + (m->virt_end - m->virt_begin));
1216 if (r) {
1217 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1218 bio_io_error(m->bio);
1219 } else
1220 bio_endio(m->bio);
1221
1222 cell_defer_no_holder(tc, m->cell);
1223 mempool_free(m, &pool->mapping_pool);
1224 }
1225
process_prepared(struct pool * pool,struct list_head * head,process_mapping_fn * fn)1226 static void process_prepared(struct pool *pool, struct list_head *head,
1227 process_mapping_fn *fn)
1228 {
1229 struct list_head maps;
1230 struct dm_thin_new_mapping *m, *tmp;
1231
1232 INIT_LIST_HEAD(&maps);
1233 spin_lock_irq(&pool->lock);
1234 list_splice_init(head, &maps);
1235 spin_unlock_irq(&pool->lock);
1236
1237 list_for_each_entry_safe(m, tmp, &maps, list)
1238 (*fn)(m);
1239 }
1240
1241 /*
1242 * Deferred bio jobs.
1243 */
io_overlaps_block(struct pool * pool,struct bio * bio)1244 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1245 {
1246 return bio->bi_iter.bi_size ==
1247 (pool->sectors_per_block << SECTOR_SHIFT);
1248 }
1249
io_overwrites_block(struct pool * pool,struct bio * bio)1250 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1251 {
1252 return (bio_data_dir(bio) == WRITE) &&
1253 io_overlaps_block(pool, bio);
1254 }
1255
save_and_set_endio(struct bio * bio,bio_end_io_t ** save,bio_end_io_t * fn)1256 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1257 bio_end_io_t *fn)
1258 {
1259 *save = bio->bi_end_io;
1260 bio->bi_end_io = fn;
1261 }
1262
ensure_next_mapping(struct pool * pool)1263 static int ensure_next_mapping(struct pool *pool)
1264 {
1265 if (pool->next_mapping)
1266 return 0;
1267
1268 pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1269
1270 return pool->next_mapping ? 0 : -ENOMEM;
1271 }
1272
get_next_mapping(struct pool * pool)1273 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1274 {
1275 struct dm_thin_new_mapping *m = pool->next_mapping;
1276
1277 BUG_ON(!pool->next_mapping);
1278
1279 memset(m, 0, sizeof(struct dm_thin_new_mapping));
1280 INIT_LIST_HEAD(&m->list);
1281 m->bio = NULL;
1282
1283 pool->next_mapping = NULL;
1284
1285 return m;
1286 }
1287
ll_zero(struct thin_c * tc,struct dm_thin_new_mapping * m,sector_t begin,sector_t end)1288 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1289 sector_t begin, sector_t end)
1290 {
1291 struct dm_io_region to;
1292
1293 to.bdev = tc->pool_dev->bdev;
1294 to.sector = begin;
1295 to.count = end - begin;
1296
1297 dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1298 }
1299
remap_and_issue_overwrite(struct thin_c * tc,struct bio * bio,dm_block_t data_begin,struct dm_thin_new_mapping * m)1300 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1301 dm_block_t data_begin,
1302 struct dm_thin_new_mapping *m)
1303 {
1304 struct pool *pool = tc->pool;
1305 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1306
1307 h->overwrite_mapping = m;
1308 m->bio = bio;
1309 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1310 inc_all_io_entry(pool, bio);
1311 remap_and_issue(tc, bio, data_begin);
1312 }
1313
1314 /*
1315 * A partial copy also needs to zero the uncopied region.
1316 */
schedule_copy(struct thin_c * tc,dm_block_t virt_block,struct dm_dev * origin,dm_block_t data_origin,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio,sector_t len)1317 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1318 struct dm_dev *origin, dm_block_t data_origin,
1319 dm_block_t data_dest,
1320 struct dm_bio_prison_cell *cell, struct bio *bio,
1321 sector_t len)
1322 {
1323 struct pool *pool = tc->pool;
1324 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1325
1326 m->tc = tc;
1327 m->virt_begin = virt_block;
1328 m->virt_end = virt_block + 1u;
1329 m->data_block = data_dest;
1330 m->cell = cell;
1331
1332 /*
1333 * quiesce action + copy action + an extra reference held for the
1334 * duration of this function (we may need to inc later for a
1335 * partial zero).
1336 */
1337 atomic_set(&m->prepare_actions, 3);
1338
1339 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1340 complete_mapping_preparation(m); /* already quiesced */
1341
1342 /*
1343 * IO to pool_dev remaps to the pool target's data_dev.
1344 *
1345 * If the whole block of data is being overwritten, we can issue the
1346 * bio immediately. Otherwise we use kcopyd to clone the data first.
1347 */
1348 if (io_overwrites_block(pool, bio))
1349 remap_and_issue_overwrite(tc, bio, data_dest, m);
1350 else {
1351 struct dm_io_region from, to;
1352
1353 from.bdev = origin->bdev;
1354 from.sector = data_origin * pool->sectors_per_block;
1355 from.count = len;
1356
1357 to.bdev = tc->pool_dev->bdev;
1358 to.sector = data_dest * pool->sectors_per_block;
1359 to.count = len;
1360
1361 dm_kcopyd_copy(pool->copier, &from, 1, &to,
1362 0, copy_complete, m);
1363
1364 /*
1365 * Do we need to zero a tail region?
1366 */
1367 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1368 atomic_inc(&m->prepare_actions);
1369 ll_zero(tc, m,
1370 data_dest * pool->sectors_per_block + len,
1371 (data_dest + 1) * pool->sectors_per_block);
1372 }
1373 }
1374
1375 complete_mapping_preparation(m); /* drop our ref */
1376 }
1377
schedule_internal_copy(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_origin,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio)1378 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1379 dm_block_t data_origin, dm_block_t data_dest,
1380 struct dm_bio_prison_cell *cell, struct bio *bio)
1381 {
1382 schedule_copy(tc, virt_block, tc->pool_dev,
1383 data_origin, data_dest, cell, bio,
1384 tc->pool->sectors_per_block);
1385 }
1386
schedule_zero(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_block,struct dm_bio_prison_cell * cell,struct bio * bio)1387 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1388 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1389 struct bio *bio)
1390 {
1391 struct pool *pool = tc->pool;
1392 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1393
1394 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1395 m->tc = tc;
1396 m->virt_begin = virt_block;
1397 m->virt_end = virt_block + 1u;
1398 m->data_block = data_block;
1399 m->cell = cell;
1400
1401 /*
1402 * If the whole block of data is being overwritten or we are not
1403 * zeroing pre-existing data, we can issue the bio immediately.
1404 * Otherwise we use kcopyd to zero the data first.
1405 */
1406 if (pool->pf.zero_new_blocks) {
1407 if (io_overwrites_block(pool, bio))
1408 remap_and_issue_overwrite(tc, bio, data_block, m);
1409 else
1410 ll_zero(tc, m, data_block * pool->sectors_per_block,
1411 (data_block + 1) * pool->sectors_per_block);
1412 } else
1413 process_prepared_mapping(m);
1414 }
1415
schedule_external_copy(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio)1416 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1417 dm_block_t data_dest,
1418 struct dm_bio_prison_cell *cell, struct bio *bio)
1419 {
1420 struct pool *pool = tc->pool;
1421 sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1422 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1423
1424 if (virt_block_end <= tc->origin_size)
1425 schedule_copy(tc, virt_block, tc->origin_dev,
1426 virt_block, data_dest, cell, bio,
1427 pool->sectors_per_block);
1428
1429 else if (virt_block_begin < tc->origin_size)
1430 schedule_copy(tc, virt_block, tc->origin_dev,
1431 virt_block, data_dest, cell, bio,
1432 tc->origin_size - virt_block_begin);
1433
1434 else
1435 schedule_zero(tc, virt_block, data_dest, cell, bio);
1436 }
1437
1438 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1439
1440 static void requeue_bios(struct pool *pool);
1441
is_read_only_pool_mode(enum pool_mode mode)1442 static bool is_read_only_pool_mode(enum pool_mode mode)
1443 {
1444 return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1445 }
1446
is_read_only(struct pool * pool)1447 static bool is_read_only(struct pool *pool)
1448 {
1449 return is_read_only_pool_mode(get_pool_mode(pool));
1450 }
1451
check_for_metadata_space(struct pool * pool)1452 static void check_for_metadata_space(struct pool *pool)
1453 {
1454 int r;
1455 const char *ooms_reason = NULL;
1456 dm_block_t nr_free;
1457
1458 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1459 if (r)
1460 ooms_reason = "Could not get free metadata blocks";
1461 else if (!nr_free)
1462 ooms_reason = "No free metadata blocks";
1463
1464 if (ooms_reason && !is_read_only(pool)) {
1465 DMERR("%s", ooms_reason);
1466 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1467 }
1468 }
1469
check_for_data_space(struct pool * pool)1470 static void check_for_data_space(struct pool *pool)
1471 {
1472 int r;
1473 dm_block_t nr_free;
1474
1475 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1476 return;
1477
1478 r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1479 if (r)
1480 return;
1481
1482 if (nr_free) {
1483 set_pool_mode(pool, PM_WRITE);
1484 requeue_bios(pool);
1485 }
1486 }
1487
1488 /*
1489 * A non-zero return indicates read_only or fail_io mode.
1490 * Many callers don't care about the return value.
1491 */
commit(struct pool * pool)1492 static int commit(struct pool *pool)
1493 {
1494 int r;
1495
1496 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1497 return -EINVAL;
1498
1499 r = dm_pool_commit_metadata(pool->pmd);
1500 if (r)
1501 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1502 else {
1503 check_for_metadata_space(pool);
1504 check_for_data_space(pool);
1505 }
1506
1507 return r;
1508 }
1509
check_low_water_mark(struct pool * pool,dm_block_t free_blocks)1510 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1511 {
1512 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1513 DMWARN("%s: reached low water mark for data device: sending event.",
1514 dm_device_name(pool->pool_md));
1515 spin_lock_irq(&pool->lock);
1516 pool->low_water_triggered = true;
1517 spin_unlock_irq(&pool->lock);
1518 dm_table_event(pool->ti->table);
1519 }
1520 }
1521
alloc_data_block(struct thin_c * tc,dm_block_t * result)1522 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1523 {
1524 int r;
1525 dm_block_t free_blocks;
1526 struct pool *pool = tc->pool;
1527
1528 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1529 return -EINVAL;
1530
1531 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1532 if (r) {
1533 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1534 return r;
1535 }
1536
1537 check_low_water_mark(pool, free_blocks);
1538
1539 if (!free_blocks) {
1540 /*
1541 * Try to commit to see if that will free up some
1542 * more space.
1543 */
1544 r = commit(pool);
1545 if (r)
1546 return r;
1547
1548 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1549 if (r) {
1550 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1551 return r;
1552 }
1553
1554 if (!free_blocks) {
1555 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1556 return -ENOSPC;
1557 }
1558 }
1559
1560 r = dm_pool_alloc_data_block(pool->pmd, result);
1561 if (r) {
1562 if (r == -ENOSPC)
1563 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1564 else
1565 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1566 return r;
1567 }
1568
1569 r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1570 if (r) {
1571 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1572 return r;
1573 }
1574
1575 if (!free_blocks) {
1576 /* Let's commit before we use up the metadata reserve. */
1577 r = commit(pool);
1578 if (r)
1579 return r;
1580 }
1581
1582 return 0;
1583 }
1584
1585 /*
1586 * If we have run out of space, queue bios until the device is
1587 * resumed, presumably after having been reloaded with more space.
1588 */
retry_on_resume(struct bio * bio)1589 static void retry_on_resume(struct bio *bio)
1590 {
1591 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1592 struct thin_c *tc = h->tc;
1593
1594 spin_lock_irq(&tc->lock);
1595 bio_list_add(&tc->retry_on_resume_list, bio);
1596 spin_unlock_irq(&tc->lock);
1597 }
1598
should_error_unserviceable_bio(struct pool * pool)1599 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1600 {
1601 enum pool_mode m = get_pool_mode(pool);
1602
1603 switch (m) {
1604 case PM_WRITE:
1605 /* Shouldn't get here */
1606 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1607 return BLK_STS_IOERR;
1608
1609 case PM_OUT_OF_DATA_SPACE:
1610 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1611
1612 case PM_OUT_OF_METADATA_SPACE:
1613 case PM_READ_ONLY:
1614 case PM_FAIL:
1615 return BLK_STS_IOERR;
1616 default:
1617 /* Shouldn't get here */
1618 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1619 return BLK_STS_IOERR;
1620 }
1621 }
1622
handle_unserviceable_bio(struct pool * pool,struct bio * bio)1623 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1624 {
1625 blk_status_t error = should_error_unserviceable_bio(pool);
1626
1627 if (error) {
1628 bio->bi_status = error;
1629 bio_endio(bio);
1630 } else
1631 retry_on_resume(bio);
1632 }
1633
retry_bios_on_resume(struct pool * pool,struct dm_bio_prison_cell * cell)1634 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1635 {
1636 struct bio *bio;
1637 struct bio_list bios;
1638 blk_status_t error;
1639
1640 error = should_error_unserviceable_bio(pool);
1641 if (error) {
1642 cell_error_with_code(pool, cell, error);
1643 return;
1644 }
1645
1646 bio_list_init(&bios);
1647 cell_release(pool, cell, &bios);
1648
1649 while ((bio = bio_list_pop(&bios)))
1650 retry_on_resume(bio);
1651 }
1652
process_discard_cell_no_passdown(struct thin_c * tc,struct dm_bio_prison_cell * virt_cell)1653 static void process_discard_cell_no_passdown(struct thin_c *tc,
1654 struct dm_bio_prison_cell *virt_cell)
1655 {
1656 struct pool *pool = tc->pool;
1657 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1658
1659 /*
1660 * We don't need to lock the data blocks, since there's no
1661 * passdown. We only lock data blocks for allocation and breaking sharing.
1662 */
1663 m->tc = tc;
1664 m->virt_begin = virt_cell->key.block_begin;
1665 m->virt_end = virt_cell->key.block_end;
1666 m->cell = virt_cell;
1667 m->bio = virt_cell->holder;
1668
1669 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1670 pool->process_prepared_discard(m);
1671 }
1672
break_up_discard_bio(struct thin_c * tc,dm_block_t begin,dm_block_t end,struct bio * bio)1673 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1674 struct bio *bio)
1675 {
1676 struct pool *pool = tc->pool;
1677
1678 int r;
1679 bool maybe_shared;
1680 struct dm_cell_key data_key;
1681 struct dm_bio_prison_cell *data_cell;
1682 struct dm_thin_new_mapping *m;
1683 dm_block_t virt_begin, virt_end, data_begin;
1684
1685 while (begin != end) {
1686 r = ensure_next_mapping(pool);
1687 if (r)
1688 /* we did our best */
1689 return;
1690
1691 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1692 &data_begin, &maybe_shared);
1693 if (r)
1694 /*
1695 * Silently fail, letting any mappings we've
1696 * created complete.
1697 */
1698 break;
1699
1700 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1701 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1702 /* contention, we'll give up with this range */
1703 begin = virt_end;
1704 continue;
1705 }
1706
1707 /*
1708 * IO may still be going to the destination block. We must
1709 * quiesce before we can do the removal.
1710 */
1711 m = get_next_mapping(pool);
1712 m->tc = tc;
1713 m->maybe_shared = maybe_shared;
1714 m->virt_begin = virt_begin;
1715 m->virt_end = virt_end;
1716 m->data_block = data_begin;
1717 m->cell = data_cell;
1718 m->bio = bio;
1719
1720 /*
1721 * The parent bio must not complete before sub discard bios are
1722 * chained to it (see end_discard's bio_chain)!
1723 *
1724 * This per-mapping bi_remaining increment is paired with
1725 * the implicit decrement that occurs via bio_endio() in
1726 * end_discard().
1727 */
1728 bio_inc_remaining(bio);
1729 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1730 pool->process_prepared_discard(m);
1731
1732 begin = virt_end;
1733 }
1734 }
1735
process_discard_cell_passdown(struct thin_c * tc,struct dm_bio_prison_cell * virt_cell)1736 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1737 {
1738 struct bio *bio = virt_cell->holder;
1739 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1740
1741 /*
1742 * The virt_cell will only get freed once the origin bio completes.
1743 * This means it will remain locked while all the individual
1744 * passdown bios are in flight.
1745 */
1746 h->cell = virt_cell;
1747 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1748
1749 /*
1750 * We complete the bio now, knowing that the bi_remaining field
1751 * will prevent completion until the sub range discards have
1752 * completed.
1753 */
1754 bio_endio(bio);
1755 }
1756
process_discard_bio(struct thin_c * tc,struct bio * bio)1757 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1758 {
1759 dm_block_t begin, end;
1760 struct dm_cell_key virt_key;
1761 struct dm_bio_prison_cell *virt_cell;
1762
1763 get_bio_block_range(tc, bio, &begin, &end);
1764 if (begin == end) {
1765 /*
1766 * The discard covers less than a block.
1767 */
1768 bio_endio(bio);
1769 return;
1770 }
1771
1772 build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1773 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1774 /*
1775 * Potential starvation issue: We're relying on the
1776 * fs/application being well behaved, and not trying to
1777 * send IO to a region at the same time as discarding it.
1778 * If they do this persistently then it's possible this
1779 * cell will never be granted.
1780 */
1781 return;
1782
1783 tc->pool->process_discard_cell(tc, virt_cell);
1784 }
1785
break_sharing(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_cell_key * key,struct dm_thin_lookup_result * lookup_result,struct dm_bio_prison_cell * cell)1786 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1787 struct dm_cell_key *key,
1788 struct dm_thin_lookup_result *lookup_result,
1789 struct dm_bio_prison_cell *cell)
1790 {
1791 int r;
1792 dm_block_t data_block;
1793 struct pool *pool = tc->pool;
1794
1795 r = alloc_data_block(tc, &data_block);
1796 switch (r) {
1797 case 0:
1798 schedule_internal_copy(tc, block, lookup_result->block,
1799 data_block, cell, bio);
1800 break;
1801
1802 case -ENOSPC:
1803 retry_bios_on_resume(pool, cell);
1804 break;
1805
1806 default:
1807 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1808 __func__, r);
1809 cell_error(pool, cell);
1810 break;
1811 }
1812 }
1813
__remap_and_issue_shared_cell(void * context,struct dm_bio_prison_cell * cell)1814 static void __remap_and_issue_shared_cell(void *context,
1815 struct dm_bio_prison_cell *cell)
1816 {
1817 struct remap_info *info = context;
1818 struct bio *bio;
1819
1820 while ((bio = bio_list_pop(&cell->bios))) {
1821 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1822 bio_op(bio) == REQ_OP_DISCARD)
1823 bio_list_add(&info->defer_bios, bio);
1824 else {
1825 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1826
1827 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1828 inc_all_io_entry(info->tc->pool, bio);
1829 bio_list_add(&info->issue_bios, bio);
1830 }
1831 }
1832 }
1833
remap_and_issue_shared_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell,dm_block_t block)1834 static void remap_and_issue_shared_cell(struct thin_c *tc,
1835 struct dm_bio_prison_cell *cell,
1836 dm_block_t block)
1837 {
1838 struct bio *bio;
1839 struct remap_info info;
1840
1841 info.tc = tc;
1842 bio_list_init(&info.defer_bios);
1843 bio_list_init(&info.issue_bios);
1844
1845 cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1846 &info, cell);
1847
1848 while ((bio = bio_list_pop(&info.defer_bios)))
1849 thin_defer_bio(tc, bio);
1850
1851 while ((bio = bio_list_pop(&info.issue_bios)))
1852 remap_and_issue(tc, bio, block);
1853 }
1854
process_shared_bio(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_thin_lookup_result * lookup_result,struct dm_bio_prison_cell * virt_cell)1855 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1856 dm_block_t block,
1857 struct dm_thin_lookup_result *lookup_result,
1858 struct dm_bio_prison_cell *virt_cell)
1859 {
1860 struct dm_bio_prison_cell *data_cell;
1861 struct pool *pool = tc->pool;
1862 struct dm_cell_key key;
1863
1864 /*
1865 * If cell is already occupied, then sharing is already in the process
1866 * of being broken so we have nothing further to do here.
1867 */
1868 build_data_key(tc->td, lookup_result->block, &key);
1869 if (bio_detain(pool, &key, bio, &data_cell)) {
1870 cell_defer_no_holder(tc, virt_cell);
1871 return;
1872 }
1873
1874 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1875 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1876 cell_defer_no_holder(tc, virt_cell);
1877 } else {
1878 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1879
1880 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1881 inc_all_io_entry(pool, bio);
1882 remap_and_issue(tc, bio, lookup_result->block);
1883
1884 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1885 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1886 }
1887 }
1888
provision_block(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_bio_prison_cell * cell)1889 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1890 struct dm_bio_prison_cell *cell)
1891 {
1892 int r;
1893 dm_block_t data_block;
1894 struct pool *pool = tc->pool;
1895
1896 /*
1897 * Remap empty bios (flushes) immediately, without provisioning.
1898 */
1899 if (!bio->bi_iter.bi_size) {
1900 inc_all_io_entry(pool, bio);
1901 cell_defer_no_holder(tc, cell);
1902
1903 remap_and_issue(tc, bio, 0);
1904 return;
1905 }
1906
1907 /*
1908 * Fill read bios with zeroes and complete them immediately.
1909 */
1910 if (bio_data_dir(bio) == READ) {
1911 zero_fill_bio(bio);
1912 cell_defer_no_holder(tc, cell);
1913 bio_endio(bio);
1914 return;
1915 }
1916
1917 r = alloc_data_block(tc, &data_block);
1918 switch (r) {
1919 case 0:
1920 if (tc->origin_dev)
1921 schedule_external_copy(tc, block, data_block, cell, bio);
1922 else
1923 schedule_zero(tc, block, data_block, cell, bio);
1924 break;
1925
1926 case -ENOSPC:
1927 retry_bios_on_resume(pool, cell);
1928 break;
1929
1930 default:
1931 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1932 __func__, r);
1933 cell_error(pool, cell);
1934 break;
1935 }
1936 }
1937
process_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell)1938 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1939 {
1940 int r;
1941 struct pool *pool = tc->pool;
1942 struct bio *bio = cell->holder;
1943 dm_block_t block = get_bio_block(tc, bio);
1944 struct dm_thin_lookup_result lookup_result;
1945
1946 if (tc->requeue_mode) {
1947 cell_requeue(pool, cell);
1948 return;
1949 }
1950
1951 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1952 switch (r) {
1953 case 0:
1954 if (lookup_result.shared)
1955 process_shared_bio(tc, bio, block, &lookup_result, cell);
1956 else {
1957 inc_all_io_entry(pool, bio);
1958 remap_and_issue(tc, bio, lookup_result.block);
1959 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1960 }
1961 break;
1962
1963 case -ENODATA:
1964 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1965 inc_all_io_entry(pool, bio);
1966 cell_defer_no_holder(tc, cell);
1967
1968 if (bio_end_sector(bio) <= tc->origin_size)
1969 remap_to_origin_and_issue(tc, bio);
1970
1971 else if (bio->bi_iter.bi_sector < tc->origin_size) {
1972 zero_fill_bio(bio);
1973 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1974 remap_to_origin_and_issue(tc, bio);
1975
1976 } else {
1977 zero_fill_bio(bio);
1978 bio_endio(bio);
1979 }
1980 } else
1981 provision_block(tc, bio, block, cell);
1982 break;
1983
1984 default:
1985 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1986 __func__, r);
1987 cell_defer_no_holder(tc, cell);
1988 bio_io_error(bio);
1989 break;
1990 }
1991 }
1992
process_bio(struct thin_c * tc,struct bio * bio)1993 static void process_bio(struct thin_c *tc, struct bio *bio)
1994 {
1995 struct pool *pool = tc->pool;
1996 dm_block_t block = get_bio_block(tc, bio);
1997 struct dm_bio_prison_cell *cell;
1998 struct dm_cell_key key;
1999
2000 /*
2001 * If cell is already occupied, then the block is already
2002 * being provisioned so we have nothing further to do here.
2003 */
2004 build_virtual_key(tc->td, block, &key);
2005 if (bio_detain(pool, &key, bio, &cell))
2006 return;
2007
2008 process_cell(tc, cell);
2009 }
2010
__process_bio_read_only(struct thin_c * tc,struct bio * bio,struct dm_bio_prison_cell * cell)2011 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2012 struct dm_bio_prison_cell *cell)
2013 {
2014 int r;
2015 int rw = bio_data_dir(bio);
2016 dm_block_t block = get_bio_block(tc, bio);
2017 struct dm_thin_lookup_result lookup_result;
2018
2019 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2020 switch (r) {
2021 case 0:
2022 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2023 handle_unserviceable_bio(tc->pool, bio);
2024 if (cell)
2025 cell_defer_no_holder(tc, cell);
2026 } else {
2027 inc_all_io_entry(tc->pool, bio);
2028 remap_and_issue(tc, bio, lookup_result.block);
2029 if (cell)
2030 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2031 }
2032 break;
2033
2034 case -ENODATA:
2035 if (cell)
2036 cell_defer_no_holder(tc, cell);
2037 if (rw != READ) {
2038 handle_unserviceable_bio(tc->pool, bio);
2039 break;
2040 }
2041
2042 if (tc->origin_dev) {
2043 inc_all_io_entry(tc->pool, bio);
2044 remap_to_origin_and_issue(tc, bio);
2045 break;
2046 }
2047
2048 zero_fill_bio(bio);
2049 bio_endio(bio);
2050 break;
2051
2052 default:
2053 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2054 __func__, r);
2055 if (cell)
2056 cell_defer_no_holder(tc, cell);
2057 bio_io_error(bio);
2058 break;
2059 }
2060 }
2061
process_bio_read_only(struct thin_c * tc,struct bio * bio)2062 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2063 {
2064 __process_bio_read_only(tc, bio, NULL);
2065 }
2066
process_cell_read_only(struct thin_c * tc,struct dm_bio_prison_cell * cell)2067 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2068 {
2069 __process_bio_read_only(tc, cell->holder, cell);
2070 }
2071
process_bio_success(struct thin_c * tc,struct bio * bio)2072 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2073 {
2074 bio_endio(bio);
2075 }
2076
process_bio_fail(struct thin_c * tc,struct bio * bio)2077 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2078 {
2079 bio_io_error(bio);
2080 }
2081
process_cell_success(struct thin_c * tc,struct dm_bio_prison_cell * cell)2082 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2083 {
2084 cell_success(tc->pool, cell);
2085 }
2086
process_cell_fail(struct thin_c * tc,struct dm_bio_prison_cell * cell)2087 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2088 {
2089 cell_error(tc->pool, cell);
2090 }
2091
2092 /*
2093 * FIXME: should we also commit due to size of transaction, measured in
2094 * metadata blocks?
2095 */
need_commit_due_to_time(struct pool * pool)2096 static int need_commit_due_to_time(struct pool *pool)
2097 {
2098 return !time_in_range(jiffies, pool->last_commit_jiffies,
2099 pool->last_commit_jiffies + COMMIT_PERIOD);
2100 }
2101
2102 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2103 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2104
__thin_bio_rb_add(struct thin_c * tc,struct bio * bio)2105 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2106 {
2107 struct rb_node **rbp, *parent;
2108 struct dm_thin_endio_hook *pbd;
2109 sector_t bi_sector = bio->bi_iter.bi_sector;
2110
2111 rbp = &tc->sort_bio_list.rb_node;
2112 parent = NULL;
2113 while (*rbp) {
2114 parent = *rbp;
2115 pbd = thin_pbd(parent);
2116
2117 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2118 rbp = &(*rbp)->rb_left;
2119 else
2120 rbp = &(*rbp)->rb_right;
2121 }
2122
2123 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2124 rb_link_node(&pbd->rb_node, parent, rbp);
2125 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2126 }
2127
__extract_sorted_bios(struct thin_c * tc)2128 static void __extract_sorted_bios(struct thin_c *tc)
2129 {
2130 struct rb_node *node;
2131 struct dm_thin_endio_hook *pbd;
2132 struct bio *bio;
2133
2134 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2135 pbd = thin_pbd(node);
2136 bio = thin_bio(pbd);
2137
2138 bio_list_add(&tc->deferred_bio_list, bio);
2139 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2140 }
2141
2142 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2143 }
2144
__sort_thin_deferred_bios(struct thin_c * tc)2145 static void __sort_thin_deferred_bios(struct thin_c *tc)
2146 {
2147 struct bio *bio;
2148 struct bio_list bios;
2149
2150 bio_list_init(&bios);
2151 bio_list_merge(&bios, &tc->deferred_bio_list);
2152 bio_list_init(&tc->deferred_bio_list);
2153
2154 /* Sort deferred_bio_list using rb-tree */
2155 while ((bio = bio_list_pop(&bios)))
2156 __thin_bio_rb_add(tc, bio);
2157
2158 /*
2159 * Transfer the sorted bios in sort_bio_list back to
2160 * deferred_bio_list to allow lockless submission of
2161 * all bios.
2162 */
2163 __extract_sorted_bios(tc);
2164 }
2165
process_thin_deferred_bios(struct thin_c * tc)2166 static void process_thin_deferred_bios(struct thin_c *tc)
2167 {
2168 struct pool *pool = tc->pool;
2169 struct bio *bio;
2170 struct bio_list bios;
2171 struct blk_plug plug;
2172 unsigned count = 0;
2173
2174 if (tc->requeue_mode) {
2175 error_thin_bio_list(tc, &tc->deferred_bio_list,
2176 BLK_STS_DM_REQUEUE);
2177 return;
2178 }
2179
2180 bio_list_init(&bios);
2181
2182 spin_lock_irq(&tc->lock);
2183
2184 if (bio_list_empty(&tc->deferred_bio_list)) {
2185 spin_unlock_irq(&tc->lock);
2186 return;
2187 }
2188
2189 __sort_thin_deferred_bios(tc);
2190
2191 bio_list_merge(&bios, &tc->deferred_bio_list);
2192 bio_list_init(&tc->deferred_bio_list);
2193
2194 spin_unlock_irq(&tc->lock);
2195
2196 blk_start_plug(&plug);
2197 while ((bio = bio_list_pop(&bios))) {
2198 /*
2199 * If we've got no free new_mapping structs, and processing
2200 * this bio might require one, we pause until there are some
2201 * prepared mappings to process.
2202 */
2203 if (ensure_next_mapping(pool)) {
2204 spin_lock_irq(&tc->lock);
2205 bio_list_add(&tc->deferred_bio_list, bio);
2206 bio_list_merge(&tc->deferred_bio_list, &bios);
2207 spin_unlock_irq(&tc->lock);
2208 break;
2209 }
2210
2211 if (bio_op(bio) == REQ_OP_DISCARD)
2212 pool->process_discard(tc, bio);
2213 else
2214 pool->process_bio(tc, bio);
2215
2216 if ((count++ & 127) == 0) {
2217 throttle_work_update(&pool->throttle);
2218 dm_pool_issue_prefetches(pool->pmd);
2219 }
2220 cond_resched();
2221 }
2222 blk_finish_plug(&plug);
2223 }
2224
cmp_cells(const void * lhs,const void * rhs)2225 static int cmp_cells(const void *lhs, const void *rhs)
2226 {
2227 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2228 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2229
2230 BUG_ON(!lhs_cell->holder);
2231 BUG_ON(!rhs_cell->holder);
2232
2233 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2234 return -1;
2235
2236 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2237 return 1;
2238
2239 return 0;
2240 }
2241
sort_cells(struct pool * pool,struct list_head * cells)2242 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2243 {
2244 unsigned count = 0;
2245 struct dm_bio_prison_cell *cell, *tmp;
2246
2247 list_for_each_entry_safe(cell, tmp, cells, user_list) {
2248 if (count >= CELL_SORT_ARRAY_SIZE)
2249 break;
2250
2251 pool->cell_sort_array[count++] = cell;
2252 list_del(&cell->user_list);
2253 }
2254
2255 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2256
2257 return count;
2258 }
2259
process_thin_deferred_cells(struct thin_c * tc)2260 static void process_thin_deferred_cells(struct thin_c *tc)
2261 {
2262 struct pool *pool = tc->pool;
2263 struct list_head cells;
2264 struct dm_bio_prison_cell *cell;
2265 unsigned i, j, count;
2266
2267 INIT_LIST_HEAD(&cells);
2268
2269 spin_lock_irq(&tc->lock);
2270 list_splice_init(&tc->deferred_cells, &cells);
2271 spin_unlock_irq(&tc->lock);
2272
2273 if (list_empty(&cells))
2274 return;
2275
2276 do {
2277 count = sort_cells(tc->pool, &cells);
2278
2279 for (i = 0; i < count; i++) {
2280 cell = pool->cell_sort_array[i];
2281 BUG_ON(!cell->holder);
2282
2283 /*
2284 * If we've got no free new_mapping structs, and processing
2285 * this bio might require one, we pause until there are some
2286 * prepared mappings to process.
2287 */
2288 if (ensure_next_mapping(pool)) {
2289 for (j = i; j < count; j++)
2290 list_add(&pool->cell_sort_array[j]->user_list, &cells);
2291
2292 spin_lock_irq(&tc->lock);
2293 list_splice(&cells, &tc->deferred_cells);
2294 spin_unlock_irq(&tc->lock);
2295 return;
2296 }
2297
2298 if (bio_op(cell->holder) == REQ_OP_DISCARD)
2299 pool->process_discard_cell(tc, cell);
2300 else
2301 pool->process_cell(tc, cell);
2302 }
2303 cond_resched();
2304 } while (!list_empty(&cells));
2305 }
2306
2307 static void thin_get(struct thin_c *tc);
2308 static void thin_put(struct thin_c *tc);
2309
2310 /*
2311 * We can't hold rcu_read_lock() around code that can block. So we
2312 * find a thin with the rcu lock held; bump a refcount; then drop
2313 * the lock.
2314 */
get_first_thin(struct pool * pool)2315 static struct thin_c *get_first_thin(struct pool *pool)
2316 {
2317 struct thin_c *tc = NULL;
2318
2319 rcu_read_lock();
2320 if (!list_empty(&pool->active_thins)) {
2321 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2322 thin_get(tc);
2323 }
2324 rcu_read_unlock();
2325
2326 return tc;
2327 }
2328
get_next_thin(struct pool * pool,struct thin_c * tc)2329 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2330 {
2331 struct thin_c *old_tc = tc;
2332
2333 rcu_read_lock();
2334 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2335 thin_get(tc);
2336 thin_put(old_tc);
2337 rcu_read_unlock();
2338 return tc;
2339 }
2340 thin_put(old_tc);
2341 rcu_read_unlock();
2342
2343 return NULL;
2344 }
2345
process_deferred_bios(struct pool * pool)2346 static void process_deferred_bios(struct pool *pool)
2347 {
2348 struct bio *bio;
2349 struct bio_list bios, bio_completions;
2350 struct thin_c *tc;
2351
2352 tc = get_first_thin(pool);
2353 while (tc) {
2354 process_thin_deferred_cells(tc);
2355 process_thin_deferred_bios(tc);
2356 tc = get_next_thin(pool, tc);
2357 }
2358
2359 /*
2360 * If there are any deferred flush bios, we must commit the metadata
2361 * before issuing them or signaling their completion.
2362 */
2363 bio_list_init(&bios);
2364 bio_list_init(&bio_completions);
2365
2366 spin_lock_irq(&pool->lock);
2367 bio_list_merge(&bios, &pool->deferred_flush_bios);
2368 bio_list_init(&pool->deferred_flush_bios);
2369
2370 bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2371 bio_list_init(&pool->deferred_flush_completions);
2372 spin_unlock_irq(&pool->lock);
2373
2374 if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2375 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2376 return;
2377
2378 if (commit(pool)) {
2379 bio_list_merge(&bios, &bio_completions);
2380
2381 while ((bio = bio_list_pop(&bios)))
2382 bio_io_error(bio);
2383 return;
2384 }
2385 pool->last_commit_jiffies = jiffies;
2386
2387 while ((bio = bio_list_pop(&bio_completions)))
2388 bio_endio(bio);
2389
2390 while ((bio = bio_list_pop(&bios))) {
2391 /*
2392 * The data device was flushed as part of metadata commit,
2393 * so complete redundant flushes immediately.
2394 */
2395 if (bio->bi_opf & REQ_PREFLUSH)
2396 bio_endio(bio);
2397 else
2398 submit_bio_noacct(bio);
2399 }
2400 }
2401
do_worker(struct work_struct * ws)2402 static void do_worker(struct work_struct *ws)
2403 {
2404 struct pool *pool = container_of(ws, struct pool, worker);
2405
2406 throttle_work_start(&pool->throttle);
2407 dm_pool_issue_prefetches(pool->pmd);
2408 throttle_work_update(&pool->throttle);
2409 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2410 throttle_work_update(&pool->throttle);
2411 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2412 throttle_work_update(&pool->throttle);
2413 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2414 throttle_work_update(&pool->throttle);
2415 process_deferred_bios(pool);
2416 throttle_work_complete(&pool->throttle);
2417 }
2418
2419 /*
2420 * We want to commit periodically so that not too much
2421 * unwritten data builds up.
2422 */
do_waker(struct work_struct * ws)2423 static void do_waker(struct work_struct *ws)
2424 {
2425 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2426 wake_worker(pool);
2427 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2428 }
2429
2430 /*
2431 * We're holding onto IO to allow userland time to react. After the
2432 * timeout either the pool will have been resized (and thus back in
2433 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2434 */
do_no_space_timeout(struct work_struct * ws)2435 static void do_no_space_timeout(struct work_struct *ws)
2436 {
2437 struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2438 no_space_timeout);
2439
2440 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2441 pool->pf.error_if_no_space = true;
2442 notify_of_pool_mode_change(pool);
2443 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2444 }
2445 }
2446
2447 /*----------------------------------------------------------------*/
2448
2449 struct pool_work {
2450 struct work_struct worker;
2451 struct completion complete;
2452 };
2453
to_pool_work(struct work_struct * ws)2454 static struct pool_work *to_pool_work(struct work_struct *ws)
2455 {
2456 return container_of(ws, struct pool_work, worker);
2457 }
2458
pool_work_complete(struct pool_work * pw)2459 static void pool_work_complete(struct pool_work *pw)
2460 {
2461 complete(&pw->complete);
2462 }
2463
pool_work_wait(struct pool_work * pw,struct pool * pool,void (* fn)(struct work_struct *))2464 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2465 void (*fn)(struct work_struct *))
2466 {
2467 INIT_WORK_ONSTACK(&pw->worker, fn);
2468 init_completion(&pw->complete);
2469 queue_work(pool->wq, &pw->worker);
2470 wait_for_completion(&pw->complete);
2471 }
2472
2473 /*----------------------------------------------------------------*/
2474
2475 struct noflush_work {
2476 struct pool_work pw;
2477 struct thin_c *tc;
2478 };
2479
to_noflush(struct work_struct * ws)2480 static struct noflush_work *to_noflush(struct work_struct *ws)
2481 {
2482 return container_of(to_pool_work(ws), struct noflush_work, pw);
2483 }
2484
do_noflush_start(struct work_struct * ws)2485 static void do_noflush_start(struct work_struct *ws)
2486 {
2487 struct noflush_work *w = to_noflush(ws);
2488 w->tc->requeue_mode = true;
2489 requeue_io(w->tc);
2490 pool_work_complete(&w->pw);
2491 }
2492
do_noflush_stop(struct work_struct * ws)2493 static void do_noflush_stop(struct work_struct *ws)
2494 {
2495 struct noflush_work *w = to_noflush(ws);
2496 w->tc->requeue_mode = false;
2497 pool_work_complete(&w->pw);
2498 }
2499
noflush_work(struct thin_c * tc,void (* fn)(struct work_struct *))2500 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2501 {
2502 struct noflush_work w;
2503
2504 w.tc = tc;
2505 pool_work_wait(&w.pw, tc->pool, fn);
2506 }
2507
2508 /*----------------------------------------------------------------*/
2509
passdown_enabled(struct pool_c * pt)2510 static bool passdown_enabled(struct pool_c *pt)
2511 {
2512 return pt->adjusted_pf.discard_passdown;
2513 }
2514
set_discard_callbacks(struct pool * pool)2515 static void set_discard_callbacks(struct pool *pool)
2516 {
2517 struct pool_c *pt = pool->ti->private;
2518
2519 if (passdown_enabled(pt)) {
2520 pool->process_discard_cell = process_discard_cell_passdown;
2521 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2522 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2523 } else {
2524 pool->process_discard_cell = process_discard_cell_no_passdown;
2525 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2526 }
2527 }
2528
set_pool_mode(struct pool * pool,enum pool_mode new_mode)2529 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2530 {
2531 struct pool_c *pt = pool->ti->private;
2532 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2533 enum pool_mode old_mode = get_pool_mode(pool);
2534 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2535
2536 /*
2537 * Never allow the pool to transition to PM_WRITE mode if user
2538 * intervention is required to verify metadata and data consistency.
2539 */
2540 if (new_mode == PM_WRITE && needs_check) {
2541 DMERR("%s: unable to switch pool to write mode until repaired.",
2542 dm_device_name(pool->pool_md));
2543 if (old_mode != new_mode)
2544 new_mode = old_mode;
2545 else
2546 new_mode = PM_READ_ONLY;
2547 }
2548 /*
2549 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2550 * not going to recover without a thin_repair. So we never let the
2551 * pool move out of the old mode.
2552 */
2553 if (old_mode == PM_FAIL)
2554 new_mode = old_mode;
2555
2556 switch (new_mode) {
2557 case PM_FAIL:
2558 dm_pool_metadata_read_only(pool->pmd);
2559 pool->process_bio = process_bio_fail;
2560 pool->process_discard = process_bio_fail;
2561 pool->process_cell = process_cell_fail;
2562 pool->process_discard_cell = process_cell_fail;
2563 pool->process_prepared_mapping = process_prepared_mapping_fail;
2564 pool->process_prepared_discard = process_prepared_discard_fail;
2565
2566 error_retry_list(pool);
2567 break;
2568
2569 case PM_OUT_OF_METADATA_SPACE:
2570 case PM_READ_ONLY:
2571 dm_pool_metadata_read_only(pool->pmd);
2572 pool->process_bio = process_bio_read_only;
2573 pool->process_discard = process_bio_success;
2574 pool->process_cell = process_cell_read_only;
2575 pool->process_discard_cell = process_cell_success;
2576 pool->process_prepared_mapping = process_prepared_mapping_fail;
2577 pool->process_prepared_discard = process_prepared_discard_success;
2578
2579 error_retry_list(pool);
2580 break;
2581
2582 case PM_OUT_OF_DATA_SPACE:
2583 /*
2584 * Ideally we'd never hit this state; the low water mark
2585 * would trigger userland to extend the pool before we
2586 * completely run out of data space. However, many small
2587 * IOs to unprovisioned space can consume data space at an
2588 * alarming rate. Adjust your low water mark if you're
2589 * frequently seeing this mode.
2590 */
2591 pool->out_of_data_space = true;
2592 pool->process_bio = process_bio_read_only;
2593 pool->process_discard = process_discard_bio;
2594 pool->process_cell = process_cell_read_only;
2595 pool->process_prepared_mapping = process_prepared_mapping;
2596 set_discard_callbacks(pool);
2597
2598 if (!pool->pf.error_if_no_space && no_space_timeout)
2599 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2600 break;
2601
2602 case PM_WRITE:
2603 if (old_mode == PM_OUT_OF_DATA_SPACE)
2604 cancel_delayed_work_sync(&pool->no_space_timeout);
2605 pool->out_of_data_space = false;
2606 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2607 dm_pool_metadata_read_write(pool->pmd);
2608 pool->process_bio = process_bio;
2609 pool->process_discard = process_discard_bio;
2610 pool->process_cell = process_cell;
2611 pool->process_prepared_mapping = process_prepared_mapping;
2612 set_discard_callbacks(pool);
2613 break;
2614 }
2615
2616 pool->pf.mode = new_mode;
2617 /*
2618 * The pool mode may have changed, sync it so bind_control_target()
2619 * doesn't cause an unexpected mode transition on resume.
2620 */
2621 pt->adjusted_pf.mode = new_mode;
2622
2623 if (old_mode != new_mode)
2624 notify_of_pool_mode_change(pool);
2625 }
2626
abort_transaction(struct pool * pool)2627 static void abort_transaction(struct pool *pool)
2628 {
2629 const char *dev_name = dm_device_name(pool->pool_md);
2630
2631 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2632 if (dm_pool_abort_metadata(pool->pmd)) {
2633 DMERR("%s: failed to abort metadata transaction", dev_name);
2634 set_pool_mode(pool, PM_FAIL);
2635 }
2636
2637 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2638 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2639 set_pool_mode(pool, PM_FAIL);
2640 }
2641 }
2642
metadata_operation_failed(struct pool * pool,const char * op,int r)2643 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2644 {
2645 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2646 dm_device_name(pool->pool_md), op, r);
2647
2648 abort_transaction(pool);
2649 set_pool_mode(pool, PM_READ_ONLY);
2650 }
2651
2652 /*----------------------------------------------------------------*/
2653
2654 /*
2655 * Mapping functions.
2656 */
2657
2658 /*
2659 * Called only while mapping a thin bio to hand it over to the workqueue.
2660 */
thin_defer_bio(struct thin_c * tc,struct bio * bio)2661 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2662 {
2663 struct pool *pool = tc->pool;
2664
2665 spin_lock_irq(&tc->lock);
2666 bio_list_add(&tc->deferred_bio_list, bio);
2667 spin_unlock_irq(&tc->lock);
2668
2669 wake_worker(pool);
2670 }
2671
thin_defer_bio_with_throttle(struct thin_c * tc,struct bio * bio)2672 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2673 {
2674 struct pool *pool = tc->pool;
2675
2676 throttle_lock(&pool->throttle);
2677 thin_defer_bio(tc, bio);
2678 throttle_unlock(&pool->throttle);
2679 }
2680
thin_defer_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell)2681 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2682 {
2683 struct pool *pool = tc->pool;
2684
2685 throttle_lock(&pool->throttle);
2686 spin_lock_irq(&tc->lock);
2687 list_add_tail(&cell->user_list, &tc->deferred_cells);
2688 spin_unlock_irq(&tc->lock);
2689 throttle_unlock(&pool->throttle);
2690
2691 wake_worker(pool);
2692 }
2693
thin_hook_bio(struct thin_c * tc,struct bio * bio)2694 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2695 {
2696 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2697
2698 h->tc = tc;
2699 h->shared_read_entry = NULL;
2700 h->all_io_entry = NULL;
2701 h->overwrite_mapping = NULL;
2702 h->cell = NULL;
2703 }
2704
2705 /*
2706 * Non-blocking function called from the thin target's map function.
2707 */
thin_bio_map(struct dm_target * ti,struct bio * bio)2708 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2709 {
2710 int r;
2711 struct thin_c *tc = ti->private;
2712 dm_block_t block = get_bio_block(tc, bio);
2713 struct dm_thin_device *td = tc->td;
2714 struct dm_thin_lookup_result result;
2715 struct dm_bio_prison_cell *virt_cell, *data_cell;
2716 struct dm_cell_key key;
2717
2718 thin_hook_bio(tc, bio);
2719
2720 if (tc->requeue_mode) {
2721 bio->bi_status = BLK_STS_DM_REQUEUE;
2722 bio_endio(bio);
2723 return DM_MAPIO_SUBMITTED;
2724 }
2725
2726 if (get_pool_mode(tc->pool) == PM_FAIL) {
2727 bio_io_error(bio);
2728 return DM_MAPIO_SUBMITTED;
2729 }
2730
2731 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2732 thin_defer_bio_with_throttle(tc, bio);
2733 return DM_MAPIO_SUBMITTED;
2734 }
2735
2736 /*
2737 * We must hold the virtual cell before doing the lookup, otherwise
2738 * there's a race with discard.
2739 */
2740 build_virtual_key(tc->td, block, &key);
2741 if (bio_detain(tc->pool, &key, bio, &virt_cell))
2742 return DM_MAPIO_SUBMITTED;
2743
2744 r = dm_thin_find_block(td, block, 0, &result);
2745
2746 /*
2747 * Note that we defer readahead too.
2748 */
2749 switch (r) {
2750 case 0:
2751 if (unlikely(result.shared)) {
2752 /*
2753 * We have a race condition here between the
2754 * result.shared value returned by the lookup and
2755 * snapshot creation, which may cause new
2756 * sharing.
2757 *
2758 * To avoid this always quiesce the origin before
2759 * taking the snap. You want to do this anyway to
2760 * ensure a consistent application view
2761 * (i.e. lockfs).
2762 *
2763 * More distant ancestors are irrelevant. The
2764 * shared flag will be set in their case.
2765 */
2766 thin_defer_cell(tc, virt_cell);
2767 return DM_MAPIO_SUBMITTED;
2768 }
2769
2770 build_data_key(tc->td, result.block, &key);
2771 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2772 cell_defer_no_holder(tc, virt_cell);
2773 return DM_MAPIO_SUBMITTED;
2774 }
2775
2776 inc_all_io_entry(tc->pool, bio);
2777 cell_defer_no_holder(tc, data_cell);
2778 cell_defer_no_holder(tc, virt_cell);
2779
2780 remap(tc, bio, result.block);
2781 return DM_MAPIO_REMAPPED;
2782
2783 case -ENODATA:
2784 case -EWOULDBLOCK:
2785 thin_defer_cell(tc, virt_cell);
2786 return DM_MAPIO_SUBMITTED;
2787
2788 default:
2789 /*
2790 * Must always call bio_io_error on failure.
2791 * dm_thin_find_block can fail with -EINVAL if the
2792 * pool is switched to fail-io mode.
2793 */
2794 bio_io_error(bio);
2795 cell_defer_no_holder(tc, virt_cell);
2796 return DM_MAPIO_SUBMITTED;
2797 }
2798 }
2799
requeue_bios(struct pool * pool)2800 static void requeue_bios(struct pool *pool)
2801 {
2802 struct thin_c *tc;
2803
2804 rcu_read_lock();
2805 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2806 spin_lock_irq(&tc->lock);
2807 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2808 bio_list_init(&tc->retry_on_resume_list);
2809 spin_unlock_irq(&tc->lock);
2810 }
2811 rcu_read_unlock();
2812 }
2813
2814 /*----------------------------------------------------------------
2815 * Binding of control targets to a pool object
2816 *--------------------------------------------------------------*/
data_dev_supports_discard(struct pool_c * pt)2817 static bool data_dev_supports_discard(struct pool_c *pt)
2818 {
2819 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2820
2821 return q && blk_queue_discard(q);
2822 }
2823
is_factor(sector_t block_size,uint32_t n)2824 static bool is_factor(sector_t block_size, uint32_t n)
2825 {
2826 return !sector_div(block_size, n);
2827 }
2828
2829 /*
2830 * If discard_passdown was enabled verify that the data device
2831 * supports discards. Disable discard_passdown if not.
2832 */
disable_passdown_if_not_supported(struct pool_c * pt)2833 static void disable_passdown_if_not_supported(struct pool_c *pt)
2834 {
2835 struct pool *pool = pt->pool;
2836 struct block_device *data_bdev = pt->data_dev->bdev;
2837 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2838 const char *reason = NULL;
2839 char buf[BDEVNAME_SIZE];
2840
2841 if (!pt->adjusted_pf.discard_passdown)
2842 return;
2843
2844 if (!data_dev_supports_discard(pt))
2845 reason = "discard unsupported";
2846
2847 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2848 reason = "max discard sectors smaller than a block";
2849
2850 if (reason) {
2851 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2852 pt->adjusted_pf.discard_passdown = false;
2853 }
2854 }
2855
bind_control_target(struct pool * pool,struct dm_target * ti)2856 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2857 {
2858 struct pool_c *pt = ti->private;
2859
2860 /*
2861 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2862 */
2863 enum pool_mode old_mode = get_pool_mode(pool);
2864 enum pool_mode new_mode = pt->adjusted_pf.mode;
2865
2866 /*
2867 * Don't change the pool's mode until set_pool_mode() below.
2868 * Otherwise the pool's process_* function pointers may
2869 * not match the desired pool mode.
2870 */
2871 pt->adjusted_pf.mode = old_mode;
2872
2873 pool->ti = ti;
2874 pool->pf = pt->adjusted_pf;
2875 pool->low_water_blocks = pt->low_water_blocks;
2876
2877 set_pool_mode(pool, new_mode);
2878
2879 return 0;
2880 }
2881
unbind_control_target(struct pool * pool,struct dm_target * ti)2882 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2883 {
2884 if (pool->ti == ti)
2885 pool->ti = NULL;
2886 }
2887
2888 /*----------------------------------------------------------------
2889 * Pool creation
2890 *--------------------------------------------------------------*/
2891 /* Initialize pool features. */
pool_features_init(struct pool_features * pf)2892 static void pool_features_init(struct pool_features *pf)
2893 {
2894 pf->mode = PM_WRITE;
2895 pf->zero_new_blocks = true;
2896 pf->discard_enabled = true;
2897 pf->discard_passdown = true;
2898 pf->error_if_no_space = false;
2899 }
2900
__pool_destroy(struct pool * pool)2901 static void __pool_destroy(struct pool *pool)
2902 {
2903 __pool_table_remove(pool);
2904
2905 vfree(pool->cell_sort_array);
2906 if (dm_pool_metadata_close(pool->pmd) < 0)
2907 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2908
2909 dm_bio_prison_destroy(pool->prison);
2910 dm_kcopyd_client_destroy(pool->copier);
2911
2912 cancel_delayed_work_sync(&pool->waker);
2913 cancel_delayed_work_sync(&pool->no_space_timeout);
2914 if (pool->wq)
2915 destroy_workqueue(pool->wq);
2916
2917 if (pool->next_mapping)
2918 mempool_free(pool->next_mapping, &pool->mapping_pool);
2919 mempool_exit(&pool->mapping_pool);
2920 bio_uninit(&pool->flush_bio);
2921 dm_deferred_set_destroy(pool->shared_read_ds);
2922 dm_deferred_set_destroy(pool->all_io_ds);
2923 kfree(pool);
2924 }
2925
2926 static struct kmem_cache *_new_mapping_cache;
2927
pool_create(struct mapped_device * pool_md,struct block_device * metadata_dev,struct block_device * data_dev,unsigned long block_size,int read_only,char ** error)2928 static struct pool *pool_create(struct mapped_device *pool_md,
2929 struct block_device *metadata_dev,
2930 struct block_device *data_dev,
2931 unsigned long block_size,
2932 int read_only, char **error)
2933 {
2934 int r;
2935 void *err_p;
2936 struct pool *pool;
2937 struct dm_pool_metadata *pmd;
2938 bool format_device = read_only ? false : true;
2939
2940 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2941 if (IS_ERR(pmd)) {
2942 *error = "Error creating metadata object";
2943 return (struct pool *)pmd;
2944 }
2945
2946 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2947 if (!pool) {
2948 *error = "Error allocating memory for pool";
2949 err_p = ERR_PTR(-ENOMEM);
2950 goto bad_pool;
2951 }
2952
2953 pool->pmd = pmd;
2954 pool->sectors_per_block = block_size;
2955 if (block_size & (block_size - 1))
2956 pool->sectors_per_block_shift = -1;
2957 else
2958 pool->sectors_per_block_shift = __ffs(block_size);
2959 pool->low_water_blocks = 0;
2960 pool_features_init(&pool->pf);
2961 pool->prison = dm_bio_prison_create();
2962 if (!pool->prison) {
2963 *error = "Error creating pool's bio prison";
2964 err_p = ERR_PTR(-ENOMEM);
2965 goto bad_prison;
2966 }
2967
2968 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2969 if (IS_ERR(pool->copier)) {
2970 r = PTR_ERR(pool->copier);
2971 *error = "Error creating pool's kcopyd client";
2972 err_p = ERR_PTR(r);
2973 goto bad_kcopyd_client;
2974 }
2975
2976 /*
2977 * Create singlethreaded workqueue that will service all devices
2978 * that use this metadata.
2979 */
2980 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2981 if (!pool->wq) {
2982 *error = "Error creating pool's workqueue";
2983 err_p = ERR_PTR(-ENOMEM);
2984 goto bad_wq;
2985 }
2986
2987 throttle_init(&pool->throttle);
2988 INIT_WORK(&pool->worker, do_worker);
2989 INIT_DELAYED_WORK(&pool->waker, do_waker);
2990 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2991 spin_lock_init(&pool->lock);
2992 bio_list_init(&pool->deferred_flush_bios);
2993 bio_list_init(&pool->deferred_flush_completions);
2994 INIT_LIST_HEAD(&pool->prepared_mappings);
2995 INIT_LIST_HEAD(&pool->prepared_discards);
2996 INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2997 INIT_LIST_HEAD(&pool->active_thins);
2998 pool->low_water_triggered = false;
2999 pool->suspended = true;
3000 pool->out_of_data_space = false;
3001 bio_init(&pool->flush_bio, NULL, 0);
3002
3003 pool->shared_read_ds = dm_deferred_set_create();
3004 if (!pool->shared_read_ds) {
3005 *error = "Error creating pool's shared read deferred set";
3006 err_p = ERR_PTR(-ENOMEM);
3007 goto bad_shared_read_ds;
3008 }
3009
3010 pool->all_io_ds = dm_deferred_set_create();
3011 if (!pool->all_io_ds) {
3012 *error = "Error creating pool's all io deferred set";
3013 err_p = ERR_PTR(-ENOMEM);
3014 goto bad_all_io_ds;
3015 }
3016
3017 pool->next_mapping = NULL;
3018 r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3019 _new_mapping_cache);
3020 if (r) {
3021 *error = "Error creating pool's mapping mempool";
3022 err_p = ERR_PTR(r);
3023 goto bad_mapping_pool;
3024 }
3025
3026 pool->cell_sort_array =
3027 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3028 sizeof(*pool->cell_sort_array)));
3029 if (!pool->cell_sort_array) {
3030 *error = "Error allocating cell sort array";
3031 err_p = ERR_PTR(-ENOMEM);
3032 goto bad_sort_array;
3033 }
3034
3035 pool->ref_count = 1;
3036 pool->last_commit_jiffies = jiffies;
3037 pool->pool_md = pool_md;
3038 pool->md_dev = metadata_dev;
3039 pool->data_dev = data_dev;
3040 __pool_table_insert(pool);
3041
3042 return pool;
3043
3044 bad_sort_array:
3045 mempool_exit(&pool->mapping_pool);
3046 bad_mapping_pool:
3047 dm_deferred_set_destroy(pool->all_io_ds);
3048 bad_all_io_ds:
3049 dm_deferred_set_destroy(pool->shared_read_ds);
3050 bad_shared_read_ds:
3051 destroy_workqueue(pool->wq);
3052 bad_wq:
3053 dm_kcopyd_client_destroy(pool->copier);
3054 bad_kcopyd_client:
3055 dm_bio_prison_destroy(pool->prison);
3056 bad_prison:
3057 kfree(pool);
3058 bad_pool:
3059 if (dm_pool_metadata_close(pmd))
3060 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3061
3062 return err_p;
3063 }
3064
__pool_inc(struct pool * pool)3065 static void __pool_inc(struct pool *pool)
3066 {
3067 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3068 pool->ref_count++;
3069 }
3070
__pool_dec(struct pool * pool)3071 static void __pool_dec(struct pool *pool)
3072 {
3073 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3074 BUG_ON(!pool->ref_count);
3075 if (!--pool->ref_count)
3076 __pool_destroy(pool);
3077 }
3078
__pool_find(struct mapped_device * pool_md,struct block_device * metadata_dev,struct block_device * data_dev,unsigned long block_size,int read_only,char ** error,int * created)3079 static struct pool *__pool_find(struct mapped_device *pool_md,
3080 struct block_device *metadata_dev,
3081 struct block_device *data_dev,
3082 unsigned long block_size, int read_only,
3083 char **error, int *created)
3084 {
3085 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3086
3087 if (pool) {
3088 if (pool->pool_md != pool_md) {
3089 *error = "metadata device already in use by a pool";
3090 return ERR_PTR(-EBUSY);
3091 }
3092 if (pool->data_dev != data_dev) {
3093 *error = "data device already in use by a pool";
3094 return ERR_PTR(-EBUSY);
3095 }
3096 __pool_inc(pool);
3097
3098 } else {
3099 pool = __pool_table_lookup(pool_md);
3100 if (pool) {
3101 if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3102 *error = "different pool cannot replace a pool";
3103 return ERR_PTR(-EINVAL);
3104 }
3105 __pool_inc(pool);
3106
3107 } else {
3108 pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3109 *created = 1;
3110 }
3111 }
3112
3113 return pool;
3114 }
3115
3116 /*----------------------------------------------------------------
3117 * Pool target methods
3118 *--------------------------------------------------------------*/
pool_dtr(struct dm_target * ti)3119 static void pool_dtr(struct dm_target *ti)
3120 {
3121 struct pool_c *pt = ti->private;
3122
3123 mutex_lock(&dm_thin_pool_table.mutex);
3124
3125 unbind_control_target(pt->pool, ti);
3126 __pool_dec(pt->pool);
3127 dm_put_device(ti, pt->metadata_dev);
3128 dm_put_device(ti, pt->data_dev);
3129 kfree(pt);
3130
3131 mutex_unlock(&dm_thin_pool_table.mutex);
3132 }
3133
parse_pool_features(struct dm_arg_set * as,struct pool_features * pf,struct dm_target * ti)3134 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3135 struct dm_target *ti)
3136 {
3137 int r;
3138 unsigned argc;
3139 const char *arg_name;
3140
3141 static const struct dm_arg _args[] = {
3142 {0, 4, "Invalid number of pool feature arguments"},
3143 };
3144
3145 /*
3146 * No feature arguments supplied.
3147 */
3148 if (!as->argc)
3149 return 0;
3150
3151 r = dm_read_arg_group(_args, as, &argc, &ti->error);
3152 if (r)
3153 return -EINVAL;
3154
3155 while (argc && !r) {
3156 arg_name = dm_shift_arg(as);
3157 argc--;
3158
3159 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3160 pf->zero_new_blocks = false;
3161
3162 else if (!strcasecmp(arg_name, "ignore_discard"))
3163 pf->discard_enabled = false;
3164
3165 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3166 pf->discard_passdown = false;
3167
3168 else if (!strcasecmp(arg_name, "read_only"))
3169 pf->mode = PM_READ_ONLY;
3170
3171 else if (!strcasecmp(arg_name, "error_if_no_space"))
3172 pf->error_if_no_space = true;
3173
3174 else {
3175 ti->error = "Unrecognised pool feature requested";
3176 r = -EINVAL;
3177 break;
3178 }
3179 }
3180
3181 return r;
3182 }
3183
metadata_low_callback(void * context)3184 static void metadata_low_callback(void *context)
3185 {
3186 struct pool *pool = context;
3187
3188 DMWARN("%s: reached low water mark for metadata device: sending event.",
3189 dm_device_name(pool->pool_md));
3190
3191 dm_table_event(pool->ti->table);
3192 }
3193
3194 /*
3195 * We need to flush the data device **before** committing the metadata.
3196 *
3197 * This ensures that the data blocks of any newly inserted mappings are
3198 * properly written to non-volatile storage and won't be lost in case of a
3199 * crash.
3200 *
3201 * Failure to do so can result in data corruption in the case of internal or
3202 * external snapshots and in the case of newly provisioned blocks, when block
3203 * zeroing is enabled.
3204 */
metadata_pre_commit_callback(void * context)3205 static int metadata_pre_commit_callback(void *context)
3206 {
3207 struct pool *pool = context;
3208 struct bio *flush_bio = &pool->flush_bio;
3209
3210 bio_reset(flush_bio);
3211 bio_set_dev(flush_bio, pool->data_dev);
3212 flush_bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
3213
3214 return submit_bio_wait(flush_bio);
3215 }
3216
get_dev_size(struct block_device * bdev)3217 static sector_t get_dev_size(struct block_device *bdev)
3218 {
3219 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3220 }
3221
warn_if_metadata_device_too_big(struct block_device * bdev)3222 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3223 {
3224 sector_t metadata_dev_size = get_dev_size(bdev);
3225 char buffer[BDEVNAME_SIZE];
3226
3227 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3228 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3229 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3230 }
3231
get_metadata_dev_size(struct block_device * bdev)3232 static sector_t get_metadata_dev_size(struct block_device *bdev)
3233 {
3234 sector_t metadata_dev_size = get_dev_size(bdev);
3235
3236 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3237 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3238
3239 return metadata_dev_size;
3240 }
3241
get_metadata_dev_size_in_blocks(struct block_device * bdev)3242 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3243 {
3244 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3245
3246 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3247
3248 return metadata_dev_size;
3249 }
3250
3251 /*
3252 * When a metadata threshold is crossed a dm event is triggered, and
3253 * userland should respond by growing the metadata device. We could let
3254 * userland set the threshold, like we do with the data threshold, but I'm
3255 * not sure they know enough to do this well.
3256 */
calc_metadata_threshold(struct pool_c * pt)3257 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3258 {
3259 /*
3260 * 4M is ample for all ops with the possible exception of thin
3261 * device deletion which is harmless if it fails (just retry the
3262 * delete after you've grown the device).
3263 */
3264 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3265 return min((dm_block_t)1024ULL /* 4M */, quarter);
3266 }
3267
3268 /*
3269 * thin-pool <metadata dev> <data dev>
3270 * <data block size (sectors)>
3271 * <low water mark (blocks)>
3272 * [<#feature args> [<arg>]*]
3273 *
3274 * Optional feature arguments are:
3275 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3276 * ignore_discard: disable discard
3277 * no_discard_passdown: don't pass discards down to the data device
3278 * read_only: Don't allow any changes to be made to the pool metadata.
3279 * error_if_no_space: error IOs, instead of queueing, if no space.
3280 */
pool_ctr(struct dm_target * ti,unsigned argc,char ** argv)3281 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3282 {
3283 int r, pool_created = 0;
3284 struct pool_c *pt;
3285 struct pool *pool;
3286 struct pool_features pf;
3287 struct dm_arg_set as;
3288 struct dm_dev *data_dev;
3289 unsigned long block_size;
3290 dm_block_t low_water_blocks;
3291 struct dm_dev *metadata_dev;
3292 fmode_t metadata_mode;
3293
3294 /*
3295 * FIXME Remove validation from scope of lock.
3296 */
3297 mutex_lock(&dm_thin_pool_table.mutex);
3298
3299 if (argc < 4) {
3300 ti->error = "Invalid argument count";
3301 r = -EINVAL;
3302 goto out_unlock;
3303 }
3304
3305 as.argc = argc;
3306 as.argv = argv;
3307
3308 /* make sure metadata and data are different devices */
3309 if (!strcmp(argv[0], argv[1])) {
3310 ti->error = "Error setting metadata or data device";
3311 r = -EINVAL;
3312 goto out_unlock;
3313 }
3314
3315 /*
3316 * Set default pool features.
3317 */
3318 pool_features_init(&pf);
3319
3320 dm_consume_args(&as, 4);
3321 r = parse_pool_features(&as, &pf, ti);
3322 if (r)
3323 goto out_unlock;
3324
3325 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3326 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3327 if (r) {
3328 ti->error = "Error opening metadata block device";
3329 goto out_unlock;
3330 }
3331 warn_if_metadata_device_too_big(metadata_dev->bdev);
3332
3333 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3334 if (r) {
3335 ti->error = "Error getting data device";
3336 goto out_metadata;
3337 }
3338
3339 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3340 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3341 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3342 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3343 ti->error = "Invalid block size";
3344 r = -EINVAL;
3345 goto out;
3346 }
3347
3348 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3349 ti->error = "Invalid low water mark";
3350 r = -EINVAL;
3351 goto out;
3352 }
3353
3354 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3355 if (!pt) {
3356 r = -ENOMEM;
3357 goto out;
3358 }
3359
3360 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3361 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3362 if (IS_ERR(pool)) {
3363 r = PTR_ERR(pool);
3364 goto out_free_pt;
3365 }
3366
3367 /*
3368 * 'pool_created' reflects whether this is the first table load.
3369 * Top level discard support is not allowed to be changed after
3370 * initial load. This would require a pool reload to trigger thin
3371 * device changes.
3372 */
3373 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3374 ti->error = "Discard support cannot be disabled once enabled";
3375 r = -EINVAL;
3376 goto out_flags_changed;
3377 }
3378
3379 pt->pool = pool;
3380 pt->ti = ti;
3381 pt->metadata_dev = metadata_dev;
3382 pt->data_dev = data_dev;
3383 pt->low_water_blocks = low_water_blocks;
3384 pt->adjusted_pf = pt->requested_pf = pf;
3385 ti->num_flush_bios = 1;
3386 ti->limit_swap_bios = true;
3387
3388 /*
3389 * Only need to enable discards if the pool should pass
3390 * them down to the data device. The thin device's discard
3391 * processing will cause mappings to be removed from the btree.
3392 */
3393 if (pf.discard_enabled && pf.discard_passdown) {
3394 ti->num_discard_bios = 1;
3395
3396 /*
3397 * Setting 'discards_supported' circumvents the normal
3398 * stacking of discard limits (this keeps the pool and
3399 * thin devices' discard limits consistent).
3400 */
3401 ti->discards_supported = true;
3402 }
3403 ti->private = pt;
3404
3405 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3406 calc_metadata_threshold(pt),
3407 metadata_low_callback,
3408 pool);
3409 if (r) {
3410 ti->error = "Error registering metadata threshold";
3411 goto out_flags_changed;
3412 }
3413
3414 dm_pool_register_pre_commit_callback(pool->pmd,
3415 metadata_pre_commit_callback, pool);
3416
3417 mutex_unlock(&dm_thin_pool_table.mutex);
3418
3419 return 0;
3420
3421 out_flags_changed:
3422 __pool_dec(pool);
3423 out_free_pt:
3424 kfree(pt);
3425 out:
3426 dm_put_device(ti, data_dev);
3427 out_metadata:
3428 dm_put_device(ti, metadata_dev);
3429 out_unlock:
3430 mutex_unlock(&dm_thin_pool_table.mutex);
3431
3432 return r;
3433 }
3434
pool_map(struct dm_target * ti,struct bio * bio)3435 static int pool_map(struct dm_target *ti, struct bio *bio)
3436 {
3437 int r;
3438 struct pool_c *pt = ti->private;
3439 struct pool *pool = pt->pool;
3440
3441 /*
3442 * As this is a singleton target, ti->begin is always zero.
3443 */
3444 spin_lock_irq(&pool->lock);
3445 bio_set_dev(bio, pt->data_dev->bdev);
3446 r = DM_MAPIO_REMAPPED;
3447 spin_unlock_irq(&pool->lock);
3448
3449 return r;
3450 }
3451
maybe_resize_data_dev(struct dm_target * ti,bool * need_commit)3452 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3453 {
3454 int r;
3455 struct pool_c *pt = ti->private;
3456 struct pool *pool = pt->pool;
3457 sector_t data_size = ti->len;
3458 dm_block_t sb_data_size;
3459
3460 *need_commit = false;
3461
3462 (void) sector_div(data_size, pool->sectors_per_block);
3463
3464 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3465 if (r) {
3466 DMERR("%s: failed to retrieve data device size",
3467 dm_device_name(pool->pool_md));
3468 return r;
3469 }
3470
3471 if (data_size < sb_data_size) {
3472 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3473 dm_device_name(pool->pool_md),
3474 (unsigned long long)data_size, sb_data_size);
3475 return -EINVAL;
3476
3477 } else if (data_size > sb_data_size) {
3478 if (dm_pool_metadata_needs_check(pool->pmd)) {
3479 DMERR("%s: unable to grow the data device until repaired.",
3480 dm_device_name(pool->pool_md));
3481 return 0;
3482 }
3483
3484 if (sb_data_size)
3485 DMINFO("%s: growing the data device from %llu to %llu blocks",
3486 dm_device_name(pool->pool_md),
3487 sb_data_size, (unsigned long long)data_size);
3488 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3489 if (r) {
3490 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3491 return r;
3492 }
3493
3494 *need_commit = true;
3495 }
3496
3497 return 0;
3498 }
3499
maybe_resize_metadata_dev(struct dm_target * ti,bool * need_commit)3500 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3501 {
3502 int r;
3503 struct pool_c *pt = ti->private;
3504 struct pool *pool = pt->pool;
3505 dm_block_t metadata_dev_size, sb_metadata_dev_size;
3506
3507 *need_commit = false;
3508
3509 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3510
3511 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3512 if (r) {
3513 DMERR("%s: failed to retrieve metadata device size",
3514 dm_device_name(pool->pool_md));
3515 return r;
3516 }
3517
3518 if (metadata_dev_size < sb_metadata_dev_size) {
3519 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3520 dm_device_name(pool->pool_md),
3521 metadata_dev_size, sb_metadata_dev_size);
3522 return -EINVAL;
3523
3524 } else if (metadata_dev_size > sb_metadata_dev_size) {
3525 if (dm_pool_metadata_needs_check(pool->pmd)) {
3526 DMERR("%s: unable to grow the metadata device until repaired.",
3527 dm_device_name(pool->pool_md));
3528 return 0;
3529 }
3530
3531 warn_if_metadata_device_too_big(pool->md_dev);
3532 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3533 dm_device_name(pool->pool_md),
3534 sb_metadata_dev_size, metadata_dev_size);
3535
3536 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3537 set_pool_mode(pool, PM_WRITE);
3538
3539 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3540 if (r) {
3541 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3542 return r;
3543 }
3544
3545 *need_commit = true;
3546 }
3547
3548 return 0;
3549 }
3550
3551 /*
3552 * Retrieves the number of blocks of the data device from
3553 * the superblock and compares it to the actual device size,
3554 * thus resizing the data device in case it has grown.
3555 *
3556 * This both copes with opening preallocated data devices in the ctr
3557 * being followed by a resume
3558 * -and-
3559 * calling the resume method individually after userspace has
3560 * grown the data device in reaction to a table event.
3561 */
pool_preresume(struct dm_target * ti)3562 static int pool_preresume(struct dm_target *ti)
3563 {
3564 int r;
3565 bool need_commit1, need_commit2;
3566 struct pool_c *pt = ti->private;
3567 struct pool *pool = pt->pool;
3568
3569 /*
3570 * Take control of the pool object.
3571 */
3572 r = bind_control_target(pool, ti);
3573 if (r)
3574 goto out;
3575
3576 r = maybe_resize_data_dev(ti, &need_commit1);
3577 if (r)
3578 goto out;
3579
3580 r = maybe_resize_metadata_dev(ti, &need_commit2);
3581 if (r)
3582 goto out;
3583
3584 if (need_commit1 || need_commit2)
3585 (void) commit(pool);
3586 out:
3587 /*
3588 * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3589 * bio is in deferred list. Therefore need to return 0
3590 * to allow pool_resume() to flush IO.
3591 */
3592 if (r && get_pool_mode(pool) == PM_FAIL)
3593 r = 0;
3594
3595 return r;
3596 }
3597
pool_suspend_active_thins(struct pool * pool)3598 static void pool_suspend_active_thins(struct pool *pool)
3599 {
3600 struct thin_c *tc;
3601
3602 /* Suspend all active thin devices */
3603 tc = get_first_thin(pool);
3604 while (tc) {
3605 dm_internal_suspend_noflush(tc->thin_md);
3606 tc = get_next_thin(pool, tc);
3607 }
3608 }
3609
pool_resume_active_thins(struct pool * pool)3610 static void pool_resume_active_thins(struct pool *pool)
3611 {
3612 struct thin_c *tc;
3613
3614 /* Resume all active thin devices */
3615 tc = get_first_thin(pool);
3616 while (tc) {
3617 dm_internal_resume(tc->thin_md);
3618 tc = get_next_thin(pool, tc);
3619 }
3620 }
3621
pool_resume(struct dm_target * ti)3622 static void pool_resume(struct dm_target *ti)
3623 {
3624 struct pool_c *pt = ti->private;
3625 struct pool *pool = pt->pool;
3626
3627 /*
3628 * Must requeue active_thins' bios and then resume
3629 * active_thins _before_ clearing 'suspend' flag.
3630 */
3631 requeue_bios(pool);
3632 pool_resume_active_thins(pool);
3633
3634 spin_lock_irq(&pool->lock);
3635 pool->low_water_triggered = false;
3636 pool->suspended = false;
3637 spin_unlock_irq(&pool->lock);
3638
3639 do_waker(&pool->waker.work);
3640 }
3641
pool_presuspend(struct dm_target * ti)3642 static void pool_presuspend(struct dm_target *ti)
3643 {
3644 struct pool_c *pt = ti->private;
3645 struct pool *pool = pt->pool;
3646
3647 spin_lock_irq(&pool->lock);
3648 pool->suspended = true;
3649 spin_unlock_irq(&pool->lock);
3650
3651 pool_suspend_active_thins(pool);
3652 }
3653
pool_presuspend_undo(struct dm_target * ti)3654 static void pool_presuspend_undo(struct dm_target *ti)
3655 {
3656 struct pool_c *pt = ti->private;
3657 struct pool *pool = pt->pool;
3658
3659 pool_resume_active_thins(pool);
3660
3661 spin_lock_irq(&pool->lock);
3662 pool->suspended = false;
3663 spin_unlock_irq(&pool->lock);
3664 }
3665
pool_postsuspend(struct dm_target * ti)3666 static void pool_postsuspend(struct dm_target *ti)
3667 {
3668 struct pool_c *pt = ti->private;
3669 struct pool *pool = pt->pool;
3670
3671 cancel_delayed_work_sync(&pool->waker);
3672 cancel_delayed_work_sync(&pool->no_space_timeout);
3673 flush_workqueue(pool->wq);
3674 (void) commit(pool);
3675 }
3676
check_arg_count(unsigned argc,unsigned args_required)3677 static int check_arg_count(unsigned argc, unsigned args_required)
3678 {
3679 if (argc != args_required) {
3680 DMWARN("Message received with %u arguments instead of %u.",
3681 argc, args_required);
3682 return -EINVAL;
3683 }
3684
3685 return 0;
3686 }
3687
read_dev_id(char * arg,dm_thin_id * dev_id,int warning)3688 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3689 {
3690 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3691 *dev_id <= MAX_DEV_ID)
3692 return 0;
3693
3694 if (warning)
3695 DMWARN("Message received with invalid device id: %s", arg);
3696
3697 return -EINVAL;
3698 }
3699
process_create_thin_mesg(unsigned argc,char ** argv,struct pool * pool)3700 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3701 {
3702 dm_thin_id dev_id;
3703 int r;
3704
3705 r = check_arg_count(argc, 2);
3706 if (r)
3707 return r;
3708
3709 r = read_dev_id(argv[1], &dev_id, 1);
3710 if (r)
3711 return r;
3712
3713 r = dm_pool_create_thin(pool->pmd, dev_id);
3714 if (r) {
3715 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3716 argv[1]);
3717 return r;
3718 }
3719
3720 return 0;
3721 }
3722
process_create_snap_mesg(unsigned argc,char ** argv,struct pool * pool)3723 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3724 {
3725 dm_thin_id dev_id;
3726 dm_thin_id origin_dev_id;
3727 int r;
3728
3729 r = check_arg_count(argc, 3);
3730 if (r)
3731 return r;
3732
3733 r = read_dev_id(argv[1], &dev_id, 1);
3734 if (r)
3735 return r;
3736
3737 r = read_dev_id(argv[2], &origin_dev_id, 1);
3738 if (r)
3739 return r;
3740
3741 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3742 if (r) {
3743 DMWARN("Creation of new snapshot %s of device %s failed.",
3744 argv[1], argv[2]);
3745 return r;
3746 }
3747
3748 return 0;
3749 }
3750
process_delete_mesg(unsigned argc,char ** argv,struct pool * pool)3751 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3752 {
3753 dm_thin_id dev_id;
3754 int r;
3755
3756 r = check_arg_count(argc, 2);
3757 if (r)
3758 return r;
3759
3760 r = read_dev_id(argv[1], &dev_id, 1);
3761 if (r)
3762 return r;
3763
3764 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3765 if (r)
3766 DMWARN("Deletion of thin device %s failed.", argv[1]);
3767
3768 return r;
3769 }
3770
process_set_transaction_id_mesg(unsigned argc,char ** argv,struct pool * pool)3771 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3772 {
3773 dm_thin_id old_id, new_id;
3774 int r;
3775
3776 r = check_arg_count(argc, 3);
3777 if (r)
3778 return r;
3779
3780 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3781 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3782 return -EINVAL;
3783 }
3784
3785 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3786 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3787 return -EINVAL;
3788 }
3789
3790 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3791 if (r) {
3792 DMWARN("Failed to change transaction id from %s to %s.",
3793 argv[1], argv[2]);
3794 return r;
3795 }
3796
3797 return 0;
3798 }
3799
process_reserve_metadata_snap_mesg(unsigned argc,char ** argv,struct pool * pool)3800 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3801 {
3802 int r;
3803
3804 r = check_arg_count(argc, 1);
3805 if (r)
3806 return r;
3807
3808 (void) commit(pool);
3809
3810 r = dm_pool_reserve_metadata_snap(pool->pmd);
3811 if (r)
3812 DMWARN("reserve_metadata_snap message failed.");
3813
3814 return r;
3815 }
3816
process_release_metadata_snap_mesg(unsigned argc,char ** argv,struct pool * pool)3817 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3818 {
3819 int r;
3820
3821 r = check_arg_count(argc, 1);
3822 if (r)
3823 return r;
3824
3825 r = dm_pool_release_metadata_snap(pool->pmd);
3826 if (r)
3827 DMWARN("release_metadata_snap message failed.");
3828
3829 return r;
3830 }
3831
3832 /*
3833 * Messages supported:
3834 * create_thin <dev_id>
3835 * create_snap <dev_id> <origin_id>
3836 * delete <dev_id>
3837 * set_transaction_id <current_trans_id> <new_trans_id>
3838 * reserve_metadata_snap
3839 * release_metadata_snap
3840 */
pool_message(struct dm_target * ti,unsigned argc,char ** argv,char * result,unsigned maxlen)3841 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3842 char *result, unsigned maxlen)
3843 {
3844 int r = -EINVAL;
3845 struct pool_c *pt = ti->private;
3846 struct pool *pool = pt->pool;
3847
3848 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3849 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3850 dm_device_name(pool->pool_md));
3851 return -EOPNOTSUPP;
3852 }
3853
3854 if (!strcasecmp(argv[0], "create_thin"))
3855 r = process_create_thin_mesg(argc, argv, pool);
3856
3857 else if (!strcasecmp(argv[0], "create_snap"))
3858 r = process_create_snap_mesg(argc, argv, pool);
3859
3860 else if (!strcasecmp(argv[0], "delete"))
3861 r = process_delete_mesg(argc, argv, pool);
3862
3863 else if (!strcasecmp(argv[0], "set_transaction_id"))
3864 r = process_set_transaction_id_mesg(argc, argv, pool);
3865
3866 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3867 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3868
3869 else if (!strcasecmp(argv[0], "release_metadata_snap"))
3870 r = process_release_metadata_snap_mesg(argc, argv, pool);
3871
3872 else
3873 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3874
3875 if (!r)
3876 (void) commit(pool);
3877
3878 return r;
3879 }
3880
emit_flags(struct pool_features * pf,char * result,unsigned sz,unsigned maxlen)3881 static void emit_flags(struct pool_features *pf, char *result,
3882 unsigned sz, unsigned maxlen)
3883 {
3884 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3885 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3886 pf->error_if_no_space;
3887 DMEMIT("%u ", count);
3888
3889 if (!pf->zero_new_blocks)
3890 DMEMIT("skip_block_zeroing ");
3891
3892 if (!pf->discard_enabled)
3893 DMEMIT("ignore_discard ");
3894
3895 if (!pf->discard_passdown)
3896 DMEMIT("no_discard_passdown ");
3897
3898 if (pf->mode == PM_READ_ONLY)
3899 DMEMIT("read_only ");
3900
3901 if (pf->error_if_no_space)
3902 DMEMIT("error_if_no_space ");
3903 }
3904
3905 /*
3906 * Status line is:
3907 * <transaction id> <used metadata sectors>/<total metadata sectors>
3908 * <used data sectors>/<total data sectors> <held metadata root>
3909 * <pool mode> <discard config> <no space config> <needs_check>
3910 */
pool_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)3911 static void pool_status(struct dm_target *ti, status_type_t type,
3912 unsigned status_flags, char *result, unsigned maxlen)
3913 {
3914 int r;
3915 unsigned sz = 0;
3916 uint64_t transaction_id;
3917 dm_block_t nr_free_blocks_data;
3918 dm_block_t nr_free_blocks_metadata;
3919 dm_block_t nr_blocks_data;
3920 dm_block_t nr_blocks_metadata;
3921 dm_block_t held_root;
3922 enum pool_mode mode;
3923 char buf[BDEVNAME_SIZE];
3924 char buf2[BDEVNAME_SIZE];
3925 struct pool_c *pt = ti->private;
3926 struct pool *pool = pt->pool;
3927
3928 switch (type) {
3929 case STATUSTYPE_INFO:
3930 if (get_pool_mode(pool) == PM_FAIL) {
3931 DMEMIT("Fail");
3932 break;
3933 }
3934
3935 /* Commit to ensure statistics aren't out-of-date */
3936 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3937 (void) commit(pool);
3938
3939 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3940 if (r) {
3941 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3942 dm_device_name(pool->pool_md), r);
3943 goto err;
3944 }
3945
3946 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3947 if (r) {
3948 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3949 dm_device_name(pool->pool_md), r);
3950 goto err;
3951 }
3952
3953 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3954 if (r) {
3955 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3956 dm_device_name(pool->pool_md), r);
3957 goto err;
3958 }
3959
3960 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3961 if (r) {
3962 DMERR("%s: dm_pool_get_free_block_count returned %d",
3963 dm_device_name(pool->pool_md), r);
3964 goto err;
3965 }
3966
3967 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3968 if (r) {
3969 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3970 dm_device_name(pool->pool_md), r);
3971 goto err;
3972 }
3973
3974 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3975 if (r) {
3976 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3977 dm_device_name(pool->pool_md), r);
3978 goto err;
3979 }
3980
3981 DMEMIT("%llu %llu/%llu %llu/%llu ",
3982 (unsigned long long)transaction_id,
3983 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3984 (unsigned long long)nr_blocks_metadata,
3985 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3986 (unsigned long long)nr_blocks_data);
3987
3988 if (held_root)
3989 DMEMIT("%llu ", held_root);
3990 else
3991 DMEMIT("- ");
3992
3993 mode = get_pool_mode(pool);
3994 if (mode == PM_OUT_OF_DATA_SPACE)
3995 DMEMIT("out_of_data_space ");
3996 else if (is_read_only_pool_mode(mode))
3997 DMEMIT("ro ");
3998 else
3999 DMEMIT("rw ");
4000
4001 if (!pool->pf.discard_enabled)
4002 DMEMIT("ignore_discard ");
4003 else if (pool->pf.discard_passdown)
4004 DMEMIT("discard_passdown ");
4005 else
4006 DMEMIT("no_discard_passdown ");
4007
4008 if (pool->pf.error_if_no_space)
4009 DMEMIT("error_if_no_space ");
4010 else
4011 DMEMIT("queue_if_no_space ");
4012
4013 if (dm_pool_metadata_needs_check(pool->pmd))
4014 DMEMIT("needs_check ");
4015 else
4016 DMEMIT("- ");
4017
4018 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4019
4020 break;
4021
4022 case STATUSTYPE_TABLE:
4023 DMEMIT("%s %s %lu %llu ",
4024 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4025 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4026 (unsigned long)pool->sectors_per_block,
4027 (unsigned long long)pt->low_water_blocks);
4028 emit_flags(&pt->requested_pf, result, sz, maxlen);
4029 break;
4030 }
4031 return;
4032
4033 err:
4034 DMEMIT("Error");
4035 }
4036
pool_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)4037 static int pool_iterate_devices(struct dm_target *ti,
4038 iterate_devices_callout_fn fn, void *data)
4039 {
4040 struct pool_c *pt = ti->private;
4041
4042 return fn(ti, pt->data_dev, 0, ti->len, data);
4043 }
4044
pool_io_hints(struct dm_target * ti,struct queue_limits * limits)4045 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4046 {
4047 struct pool_c *pt = ti->private;
4048 struct pool *pool = pt->pool;
4049 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4050
4051 /*
4052 * If max_sectors is smaller than pool->sectors_per_block adjust it
4053 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4054 * This is especially beneficial when the pool's data device is a RAID
4055 * device that has a full stripe width that matches pool->sectors_per_block
4056 * -- because even though partial RAID stripe-sized IOs will be issued to a
4057 * single RAID stripe; when aggregated they will end on a full RAID stripe
4058 * boundary.. which avoids additional partial RAID stripe writes cascading
4059 */
4060 if (limits->max_sectors < pool->sectors_per_block) {
4061 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4062 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4063 limits->max_sectors--;
4064 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4065 }
4066 }
4067
4068 /*
4069 * If the system-determined stacked limits are compatible with the
4070 * pool's blocksize (io_opt is a factor) do not override them.
4071 */
4072 if (io_opt_sectors < pool->sectors_per_block ||
4073 !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4074 if (is_factor(pool->sectors_per_block, limits->max_sectors))
4075 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4076 else
4077 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4078 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4079 }
4080
4081 /*
4082 * pt->adjusted_pf is a staging area for the actual features to use.
4083 * They get transferred to the live pool in bind_control_target()
4084 * called from pool_preresume().
4085 */
4086 if (!pt->adjusted_pf.discard_enabled) {
4087 /*
4088 * Must explicitly disallow stacking discard limits otherwise the
4089 * block layer will stack them if pool's data device has support.
4090 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4091 * user to see that, so make sure to set all discard limits to 0.
4092 */
4093 limits->discard_granularity = 0;
4094 return;
4095 }
4096
4097 disable_passdown_if_not_supported(pt);
4098
4099 /*
4100 * The pool uses the same discard limits as the underlying data
4101 * device. DM core has already set this up.
4102 */
4103 }
4104
4105 static struct target_type pool_target = {
4106 .name = "thin-pool",
4107 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4108 DM_TARGET_IMMUTABLE,
4109 .version = {1, 22, 0},
4110 .module = THIS_MODULE,
4111 .ctr = pool_ctr,
4112 .dtr = pool_dtr,
4113 .map = pool_map,
4114 .presuspend = pool_presuspend,
4115 .presuspend_undo = pool_presuspend_undo,
4116 .postsuspend = pool_postsuspend,
4117 .preresume = pool_preresume,
4118 .resume = pool_resume,
4119 .message = pool_message,
4120 .status = pool_status,
4121 .iterate_devices = pool_iterate_devices,
4122 .io_hints = pool_io_hints,
4123 };
4124
4125 /*----------------------------------------------------------------
4126 * Thin target methods
4127 *--------------------------------------------------------------*/
thin_get(struct thin_c * tc)4128 static void thin_get(struct thin_c *tc)
4129 {
4130 refcount_inc(&tc->refcount);
4131 }
4132
thin_put(struct thin_c * tc)4133 static void thin_put(struct thin_c *tc)
4134 {
4135 if (refcount_dec_and_test(&tc->refcount))
4136 complete(&tc->can_destroy);
4137 }
4138
thin_dtr(struct dm_target * ti)4139 static void thin_dtr(struct dm_target *ti)
4140 {
4141 struct thin_c *tc = ti->private;
4142
4143 spin_lock_irq(&tc->pool->lock);
4144 list_del_rcu(&tc->list);
4145 spin_unlock_irq(&tc->pool->lock);
4146 synchronize_rcu();
4147
4148 thin_put(tc);
4149 wait_for_completion(&tc->can_destroy);
4150
4151 mutex_lock(&dm_thin_pool_table.mutex);
4152
4153 __pool_dec(tc->pool);
4154 dm_pool_close_thin_device(tc->td);
4155 dm_put_device(ti, tc->pool_dev);
4156 if (tc->origin_dev)
4157 dm_put_device(ti, tc->origin_dev);
4158 kfree(tc);
4159
4160 mutex_unlock(&dm_thin_pool_table.mutex);
4161 }
4162
4163 /*
4164 * Thin target parameters:
4165 *
4166 * <pool_dev> <dev_id> [origin_dev]
4167 *
4168 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4169 * dev_id: the internal device identifier
4170 * origin_dev: a device external to the pool that should act as the origin
4171 *
4172 * If the pool device has discards disabled, they get disabled for the thin
4173 * device as well.
4174 */
thin_ctr(struct dm_target * ti,unsigned argc,char ** argv)4175 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4176 {
4177 int r;
4178 struct thin_c *tc;
4179 struct dm_dev *pool_dev, *origin_dev;
4180 struct mapped_device *pool_md;
4181
4182 mutex_lock(&dm_thin_pool_table.mutex);
4183
4184 if (argc != 2 && argc != 3) {
4185 ti->error = "Invalid argument count";
4186 r = -EINVAL;
4187 goto out_unlock;
4188 }
4189
4190 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4191 if (!tc) {
4192 ti->error = "Out of memory";
4193 r = -ENOMEM;
4194 goto out_unlock;
4195 }
4196 tc->thin_md = dm_table_get_md(ti->table);
4197 spin_lock_init(&tc->lock);
4198 INIT_LIST_HEAD(&tc->deferred_cells);
4199 bio_list_init(&tc->deferred_bio_list);
4200 bio_list_init(&tc->retry_on_resume_list);
4201 tc->sort_bio_list = RB_ROOT;
4202
4203 if (argc == 3) {
4204 if (!strcmp(argv[0], argv[2])) {
4205 ti->error = "Error setting origin device";
4206 r = -EINVAL;
4207 goto bad_origin_dev;
4208 }
4209
4210 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4211 if (r) {
4212 ti->error = "Error opening origin device";
4213 goto bad_origin_dev;
4214 }
4215 tc->origin_dev = origin_dev;
4216 }
4217
4218 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4219 if (r) {
4220 ti->error = "Error opening pool device";
4221 goto bad_pool_dev;
4222 }
4223 tc->pool_dev = pool_dev;
4224
4225 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4226 ti->error = "Invalid device id";
4227 r = -EINVAL;
4228 goto bad_common;
4229 }
4230
4231 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4232 if (!pool_md) {
4233 ti->error = "Couldn't get pool mapped device";
4234 r = -EINVAL;
4235 goto bad_common;
4236 }
4237
4238 tc->pool = __pool_table_lookup(pool_md);
4239 if (!tc->pool) {
4240 ti->error = "Couldn't find pool object";
4241 r = -EINVAL;
4242 goto bad_pool_lookup;
4243 }
4244 __pool_inc(tc->pool);
4245
4246 if (get_pool_mode(tc->pool) == PM_FAIL) {
4247 ti->error = "Couldn't open thin device, Pool is in fail mode";
4248 r = -EINVAL;
4249 goto bad_pool;
4250 }
4251
4252 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4253 if (r) {
4254 ti->error = "Couldn't open thin internal device";
4255 goto bad_pool;
4256 }
4257
4258 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4259 if (r)
4260 goto bad;
4261
4262 ti->num_flush_bios = 1;
4263 ti->limit_swap_bios = true;
4264 ti->flush_supported = true;
4265 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4266
4267 /* In case the pool supports discards, pass them on. */
4268 if (tc->pool->pf.discard_enabled) {
4269 ti->discards_supported = true;
4270 ti->num_discard_bios = 1;
4271 }
4272
4273 mutex_unlock(&dm_thin_pool_table.mutex);
4274
4275 spin_lock_irq(&tc->pool->lock);
4276 if (tc->pool->suspended) {
4277 spin_unlock_irq(&tc->pool->lock);
4278 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4279 ti->error = "Unable to activate thin device while pool is suspended";
4280 r = -EINVAL;
4281 goto bad;
4282 }
4283 refcount_set(&tc->refcount, 1);
4284 init_completion(&tc->can_destroy);
4285 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4286 spin_unlock_irq(&tc->pool->lock);
4287 /*
4288 * This synchronize_rcu() call is needed here otherwise we risk a
4289 * wake_worker() call finding no bios to process (because the newly
4290 * added tc isn't yet visible). So this reduces latency since we
4291 * aren't then dependent on the periodic commit to wake_worker().
4292 */
4293 synchronize_rcu();
4294
4295 dm_put(pool_md);
4296
4297 return 0;
4298
4299 bad:
4300 dm_pool_close_thin_device(tc->td);
4301 bad_pool:
4302 __pool_dec(tc->pool);
4303 bad_pool_lookup:
4304 dm_put(pool_md);
4305 bad_common:
4306 dm_put_device(ti, tc->pool_dev);
4307 bad_pool_dev:
4308 if (tc->origin_dev)
4309 dm_put_device(ti, tc->origin_dev);
4310 bad_origin_dev:
4311 kfree(tc);
4312 out_unlock:
4313 mutex_unlock(&dm_thin_pool_table.mutex);
4314
4315 return r;
4316 }
4317
thin_map(struct dm_target * ti,struct bio * bio)4318 static int thin_map(struct dm_target *ti, struct bio *bio)
4319 {
4320 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4321
4322 return thin_bio_map(ti, bio);
4323 }
4324
thin_endio(struct dm_target * ti,struct bio * bio,blk_status_t * err)4325 static int thin_endio(struct dm_target *ti, struct bio *bio,
4326 blk_status_t *err)
4327 {
4328 unsigned long flags;
4329 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4330 struct list_head work;
4331 struct dm_thin_new_mapping *m, *tmp;
4332 struct pool *pool = h->tc->pool;
4333
4334 if (h->shared_read_entry) {
4335 INIT_LIST_HEAD(&work);
4336 dm_deferred_entry_dec(h->shared_read_entry, &work);
4337
4338 spin_lock_irqsave(&pool->lock, flags);
4339 list_for_each_entry_safe(m, tmp, &work, list) {
4340 list_del(&m->list);
4341 __complete_mapping_preparation(m);
4342 }
4343 spin_unlock_irqrestore(&pool->lock, flags);
4344 }
4345
4346 if (h->all_io_entry) {
4347 INIT_LIST_HEAD(&work);
4348 dm_deferred_entry_dec(h->all_io_entry, &work);
4349 if (!list_empty(&work)) {
4350 spin_lock_irqsave(&pool->lock, flags);
4351 list_for_each_entry_safe(m, tmp, &work, list)
4352 list_add_tail(&m->list, &pool->prepared_discards);
4353 spin_unlock_irqrestore(&pool->lock, flags);
4354 wake_worker(pool);
4355 }
4356 }
4357
4358 if (h->cell)
4359 cell_defer_no_holder(h->tc, h->cell);
4360
4361 return DM_ENDIO_DONE;
4362 }
4363
thin_presuspend(struct dm_target * ti)4364 static void thin_presuspend(struct dm_target *ti)
4365 {
4366 struct thin_c *tc = ti->private;
4367
4368 if (dm_noflush_suspending(ti))
4369 noflush_work(tc, do_noflush_start);
4370 }
4371
thin_postsuspend(struct dm_target * ti)4372 static void thin_postsuspend(struct dm_target *ti)
4373 {
4374 struct thin_c *tc = ti->private;
4375
4376 /*
4377 * The dm_noflush_suspending flag has been cleared by now, so
4378 * unfortunately we must always run this.
4379 */
4380 noflush_work(tc, do_noflush_stop);
4381 }
4382
thin_preresume(struct dm_target * ti)4383 static int thin_preresume(struct dm_target *ti)
4384 {
4385 struct thin_c *tc = ti->private;
4386
4387 if (tc->origin_dev)
4388 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4389
4390 return 0;
4391 }
4392
4393 /*
4394 * <nr mapped sectors> <highest mapped sector>
4395 */
thin_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)4396 static void thin_status(struct dm_target *ti, status_type_t type,
4397 unsigned status_flags, char *result, unsigned maxlen)
4398 {
4399 int r;
4400 ssize_t sz = 0;
4401 dm_block_t mapped, highest;
4402 char buf[BDEVNAME_SIZE];
4403 struct thin_c *tc = ti->private;
4404
4405 if (get_pool_mode(tc->pool) == PM_FAIL) {
4406 DMEMIT("Fail");
4407 return;
4408 }
4409
4410 if (!tc->td)
4411 DMEMIT("-");
4412 else {
4413 switch (type) {
4414 case STATUSTYPE_INFO:
4415 r = dm_thin_get_mapped_count(tc->td, &mapped);
4416 if (r) {
4417 DMERR("dm_thin_get_mapped_count returned %d", r);
4418 goto err;
4419 }
4420
4421 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4422 if (r < 0) {
4423 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4424 goto err;
4425 }
4426
4427 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4428 if (r)
4429 DMEMIT("%llu", ((highest + 1) *
4430 tc->pool->sectors_per_block) - 1);
4431 else
4432 DMEMIT("-");
4433 break;
4434
4435 case STATUSTYPE_TABLE:
4436 DMEMIT("%s %lu",
4437 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4438 (unsigned long) tc->dev_id);
4439 if (tc->origin_dev)
4440 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4441 break;
4442 }
4443 }
4444
4445 return;
4446
4447 err:
4448 DMEMIT("Error");
4449 }
4450
thin_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)4451 static int thin_iterate_devices(struct dm_target *ti,
4452 iterate_devices_callout_fn fn, void *data)
4453 {
4454 sector_t blocks;
4455 struct thin_c *tc = ti->private;
4456 struct pool *pool = tc->pool;
4457
4458 /*
4459 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4460 * we follow a more convoluted path through to the pool's target.
4461 */
4462 if (!pool->ti)
4463 return 0; /* nothing is bound */
4464
4465 blocks = pool->ti->len;
4466 (void) sector_div(blocks, pool->sectors_per_block);
4467 if (blocks)
4468 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4469
4470 return 0;
4471 }
4472
thin_io_hints(struct dm_target * ti,struct queue_limits * limits)4473 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4474 {
4475 struct thin_c *tc = ti->private;
4476 struct pool *pool = tc->pool;
4477
4478 if (!pool->pf.discard_enabled)
4479 return;
4480
4481 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4482 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4483 }
4484
4485 static struct target_type thin_target = {
4486 .name = "thin",
4487 .version = {1, 22, 0},
4488 .module = THIS_MODULE,
4489 .ctr = thin_ctr,
4490 .dtr = thin_dtr,
4491 .map = thin_map,
4492 .end_io = thin_endio,
4493 .preresume = thin_preresume,
4494 .presuspend = thin_presuspend,
4495 .postsuspend = thin_postsuspend,
4496 .status = thin_status,
4497 .iterate_devices = thin_iterate_devices,
4498 .io_hints = thin_io_hints,
4499 };
4500
4501 /*----------------------------------------------------------------*/
4502
dm_thin_init(void)4503 static int __init dm_thin_init(void)
4504 {
4505 int r = -ENOMEM;
4506
4507 pool_table_init();
4508
4509 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4510 if (!_new_mapping_cache)
4511 return r;
4512
4513 r = dm_register_target(&thin_target);
4514 if (r)
4515 goto bad_new_mapping_cache;
4516
4517 r = dm_register_target(&pool_target);
4518 if (r)
4519 goto bad_thin_target;
4520
4521 return 0;
4522
4523 bad_thin_target:
4524 dm_unregister_target(&thin_target);
4525 bad_new_mapping_cache:
4526 kmem_cache_destroy(_new_mapping_cache);
4527
4528 return r;
4529 }
4530
dm_thin_exit(void)4531 static void dm_thin_exit(void)
4532 {
4533 dm_unregister_target(&thin_target);
4534 dm_unregister_target(&pool_target);
4535
4536 kmem_cache_destroy(_new_mapping_cache);
4537
4538 pool_table_exit();
4539 }
4540
4541 module_init(dm_thin_init);
4542 module_exit(dm_thin_exit);
4543
4544 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4545 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4546
4547 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4548 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4549 MODULE_LICENSE("GPL");
4550