1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Universal power supply monitor class
4 *
5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru>
6 * Copyright © 2004 Szabolcs Gyurko
7 * Copyright © 2003 Ian Molton <spyro@f2s.com>
8 *
9 * Modified: 2004, Oct Szabolcs Gyurko
10 */
11
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/device.h>
18 #include <linux/notifier.h>
19 #include <linux/err.h>
20 #include <linux/of.h>
21 #include <linux/power_supply.h>
22 #include <linux/property.h>
23 #include <linux/thermal.h>
24 #include "power_supply.h"
25
26 /* exported for the APM Power driver, APM emulation */
27 struct class *power_supply_class;
28 EXPORT_SYMBOL_GPL(power_supply_class);
29
30 ATOMIC_NOTIFIER_HEAD(power_supply_notifier);
31 EXPORT_SYMBOL_GPL(power_supply_notifier);
32
33 static struct device_type power_supply_dev_type;
34
35 #define POWER_SUPPLY_DEFERRED_REGISTER_TIME msecs_to_jiffies(10)
36
__power_supply_is_supplied_by(struct power_supply * supplier,struct power_supply * supply)37 static bool __power_supply_is_supplied_by(struct power_supply *supplier,
38 struct power_supply *supply)
39 {
40 int i;
41
42 if (!supply->supplied_from && !supplier->supplied_to)
43 return false;
44
45 /* Support both supplied_to and supplied_from modes */
46 if (supply->supplied_from) {
47 if (!supplier->desc->name)
48 return false;
49 for (i = 0; i < supply->num_supplies; i++)
50 if (!strcmp(supplier->desc->name, supply->supplied_from[i]))
51 return true;
52 } else {
53 if (!supply->desc->name)
54 return false;
55 for (i = 0; i < supplier->num_supplicants; i++)
56 if (!strcmp(supplier->supplied_to[i], supply->desc->name))
57 return true;
58 }
59
60 return false;
61 }
62
__power_supply_changed_work(struct device * dev,void * data)63 static int __power_supply_changed_work(struct device *dev, void *data)
64 {
65 struct power_supply *psy = data;
66 struct power_supply *pst = dev_get_drvdata(dev);
67
68 if (__power_supply_is_supplied_by(psy, pst)) {
69 if (pst->desc->external_power_changed)
70 pst->desc->external_power_changed(pst);
71 }
72
73 return 0;
74 }
75
power_supply_changed_work(struct work_struct * work)76 static void power_supply_changed_work(struct work_struct *work)
77 {
78 unsigned long flags;
79 struct power_supply *psy = container_of(work, struct power_supply,
80 changed_work);
81
82 dev_dbg(&psy->dev, "%s\n", __func__);
83
84 spin_lock_irqsave(&psy->changed_lock, flags);
85 /*
86 * Check 'changed' here to avoid issues due to race between
87 * power_supply_changed() and this routine. In worst case
88 * power_supply_changed() can be called again just before we take above
89 * lock. During the first call of this routine we will mark 'changed' as
90 * false and it will stay false for the next call as well.
91 */
92 if (likely(psy->changed)) {
93 psy->changed = false;
94 spin_unlock_irqrestore(&psy->changed_lock, flags);
95 class_for_each_device(power_supply_class, NULL, psy,
96 __power_supply_changed_work);
97 power_supply_update_leds(psy);
98 atomic_notifier_call_chain(&power_supply_notifier,
99 PSY_EVENT_PROP_CHANGED, psy);
100 kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE);
101 spin_lock_irqsave(&psy->changed_lock, flags);
102 }
103
104 /*
105 * Hold the wakeup_source until all events are processed.
106 * power_supply_changed() might have called again and have set 'changed'
107 * to true.
108 */
109 if (likely(!psy->changed))
110 pm_relax(&psy->dev);
111 spin_unlock_irqrestore(&psy->changed_lock, flags);
112 }
113
power_supply_changed(struct power_supply * psy)114 void power_supply_changed(struct power_supply *psy)
115 {
116 unsigned long flags;
117
118 dev_dbg(&psy->dev, "%s\n", __func__);
119
120 spin_lock_irqsave(&psy->changed_lock, flags);
121 psy->changed = true;
122 pm_stay_awake(&psy->dev);
123 spin_unlock_irqrestore(&psy->changed_lock, flags);
124 schedule_work(&psy->changed_work);
125 }
126 EXPORT_SYMBOL_GPL(power_supply_changed);
127
128 /*
129 * Notify that power supply was registered after parent finished the probing.
130 *
131 * Often power supply is registered from driver's probe function. However
132 * calling power_supply_changed() directly from power_supply_register()
133 * would lead to execution of get_property() function provided by the driver
134 * too early - before the probe ends.
135 *
136 * Avoid that by waiting on parent's mutex.
137 */
power_supply_deferred_register_work(struct work_struct * work)138 static void power_supply_deferred_register_work(struct work_struct *work)
139 {
140 struct power_supply *psy = container_of(work, struct power_supply,
141 deferred_register_work.work);
142
143 if (psy->dev.parent) {
144 while (!mutex_trylock(&psy->dev.parent->mutex)) {
145 if (psy->removing)
146 return;
147 msleep(10);
148 }
149 }
150
151 power_supply_changed(psy);
152
153 if (psy->dev.parent)
154 mutex_unlock(&psy->dev.parent->mutex);
155 }
156
157 #ifdef CONFIG_OF
__power_supply_populate_supplied_from(struct device * dev,void * data)158 static int __power_supply_populate_supplied_from(struct device *dev,
159 void *data)
160 {
161 struct power_supply *psy = data;
162 struct power_supply *epsy = dev_get_drvdata(dev);
163 struct device_node *np;
164 int i = 0;
165
166 do {
167 np = of_parse_phandle(psy->of_node, "power-supplies", i++);
168 if (!np)
169 break;
170
171 if (np == epsy->of_node) {
172 dev_info(&psy->dev, "%s: Found supply : %s\n",
173 psy->desc->name, epsy->desc->name);
174 psy->supplied_from[i-1] = (char *)epsy->desc->name;
175 psy->num_supplies++;
176 of_node_put(np);
177 break;
178 }
179 of_node_put(np);
180 } while (np);
181
182 return 0;
183 }
184
power_supply_populate_supplied_from(struct power_supply * psy)185 static int power_supply_populate_supplied_from(struct power_supply *psy)
186 {
187 int error;
188
189 error = class_for_each_device(power_supply_class, NULL, psy,
190 __power_supply_populate_supplied_from);
191
192 dev_dbg(&psy->dev, "%s %d\n", __func__, error);
193
194 return error;
195 }
196
__power_supply_find_supply_from_node(struct device * dev,void * data)197 static int __power_supply_find_supply_from_node(struct device *dev,
198 void *data)
199 {
200 struct device_node *np = data;
201 struct power_supply *epsy = dev_get_drvdata(dev);
202
203 /* returning non-zero breaks out of class_for_each_device loop */
204 if (epsy->of_node == np)
205 return 1;
206
207 return 0;
208 }
209
power_supply_find_supply_from_node(struct device_node * supply_node)210 static int power_supply_find_supply_from_node(struct device_node *supply_node)
211 {
212 int error;
213
214 /*
215 * class_for_each_device() either returns its own errors or values
216 * returned by __power_supply_find_supply_from_node().
217 *
218 * __power_supply_find_supply_from_node() will return 0 (no match)
219 * or 1 (match).
220 *
221 * We return 0 if class_for_each_device() returned 1, -EPROBE_DEFER if
222 * it returned 0, or error as returned by it.
223 */
224 error = class_for_each_device(power_supply_class, NULL, supply_node,
225 __power_supply_find_supply_from_node);
226
227 return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER;
228 }
229
power_supply_check_supplies(struct power_supply * psy)230 static int power_supply_check_supplies(struct power_supply *psy)
231 {
232 struct device_node *np;
233 int cnt = 0;
234
235 /* If there is already a list honor it */
236 if (psy->supplied_from && psy->num_supplies > 0)
237 return 0;
238
239 /* No device node found, nothing to do */
240 if (!psy->of_node)
241 return 0;
242
243 do {
244 int ret;
245
246 np = of_parse_phandle(psy->of_node, "power-supplies", cnt++);
247 if (!np)
248 break;
249
250 ret = power_supply_find_supply_from_node(np);
251 of_node_put(np);
252
253 if (ret) {
254 dev_dbg(&psy->dev, "Failed to find supply!\n");
255 return ret;
256 }
257 } while (np);
258
259 /* Missing valid "power-supplies" entries */
260 if (cnt == 1)
261 return 0;
262
263 /* All supplies found, allocate char ** array for filling */
264 psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(psy->supplied_from),
265 GFP_KERNEL);
266 if (!psy->supplied_from)
267 return -ENOMEM;
268
269 *psy->supplied_from = devm_kcalloc(&psy->dev,
270 cnt - 1, sizeof(char *),
271 GFP_KERNEL);
272 if (!*psy->supplied_from)
273 return -ENOMEM;
274
275 return power_supply_populate_supplied_from(psy);
276 }
277 #else
power_supply_check_supplies(struct power_supply * psy)278 static int power_supply_check_supplies(struct power_supply *psy)
279 {
280 int nval, ret;
281
282 if (!psy->dev.parent)
283 return 0;
284
285 nval = device_property_read_string_array(psy->dev.parent,
286 "supplied-from", NULL, 0);
287 if (nval <= 0)
288 return 0;
289
290 psy->supplied_from = devm_kmalloc_array(&psy->dev, nval,
291 sizeof(char *), GFP_KERNEL);
292 if (!psy->supplied_from)
293 return -ENOMEM;
294
295 ret = device_property_read_string_array(psy->dev.parent,
296 "supplied-from", (const char **)psy->supplied_from, nval);
297 if (ret < 0)
298 return ret;
299
300 psy->num_supplies = nval;
301
302 return 0;
303 }
304 #endif
305
306 struct psy_am_i_supplied_data {
307 struct power_supply *psy;
308 unsigned int count;
309 };
310
__power_supply_am_i_supplied(struct device * dev,void * _data)311 static int __power_supply_am_i_supplied(struct device *dev, void *_data)
312 {
313 union power_supply_propval ret = {0,};
314 struct power_supply *epsy = dev_get_drvdata(dev);
315 struct psy_am_i_supplied_data *data = _data;
316
317 if (__power_supply_is_supplied_by(epsy, data->psy)) {
318 data->count++;
319 if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE,
320 &ret))
321 return ret.intval;
322 }
323
324 return 0;
325 }
326
power_supply_am_i_supplied(struct power_supply * psy)327 int power_supply_am_i_supplied(struct power_supply *psy)
328 {
329 struct psy_am_i_supplied_data data = { psy, 0 };
330 int error;
331
332 error = class_for_each_device(power_supply_class, NULL, &data,
333 __power_supply_am_i_supplied);
334
335 dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error);
336
337 if (data.count == 0)
338 return -ENODEV;
339
340 return error;
341 }
342 EXPORT_SYMBOL_GPL(power_supply_am_i_supplied);
343
__power_supply_is_system_supplied(struct device * dev,void * data)344 static int __power_supply_is_system_supplied(struct device *dev, void *data)
345 {
346 union power_supply_propval ret = {0,};
347 struct power_supply *psy = dev_get_drvdata(dev);
348 unsigned int *count = data;
349
350 (*count)++;
351 if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY)
352 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE,
353 &ret))
354 return ret.intval;
355
356 return 0;
357 }
358
power_supply_is_system_supplied(void)359 int power_supply_is_system_supplied(void)
360 {
361 int error;
362 unsigned int count = 0;
363
364 error = class_for_each_device(power_supply_class, NULL, &count,
365 __power_supply_is_system_supplied);
366
367 /*
368 * If no power class device was found at all, most probably we are
369 * running on a desktop system, so assume we are on mains power.
370 */
371 if (count == 0)
372 return 1;
373
374 return error;
375 }
376 EXPORT_SYMBOL_GPL(power_supply_is_system_supplied);
377
378 struct psy_get_supplier_prop_data {
379 struct power_supply *psy;
380 enum power_supply_property psp;
381 union power_supply_propval *val;
382 };
383
__power_supply_get_supplier_property(struct device * dev,void * _data)384 static int __power_supply_get_supplier_property(struct device *dev, void *_data)
385 {
386 struct power_supply *epsy = dev_get_drvdata(dev);
387 struct psy_get_supplier_prop_data *data = _data;
388
389 if (__power_supply_is_supplied_by(epsy, data->psy))
390 if (!epsy->desc->get_property(epsy, data->psp, data->val))
391 return 1; /* Success */
392
393 return 0; /* Continue iterating */
394 }
395
power_supply_get_property_from_supplier(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)396 int power_supply_get_property_from_supplier(struct power_supply *psy,
397 enum power_supply_property psp,
398 union power_supply_propval *val)
399 {
400 struct psy_get_supplier_prop_data data = {
401 .psy = psy,
402 .psp = psp,
403 .val = val,
404 };
405 int ret;
406
407 /*
408 * This function is not intended for use with a supply with multiple
409 * suppliers, we simply pick the first supply to report the psp.
410 */
411 ret = class_for_each_device(power_supply_class, NULL, &data,
412 __power_supply_get_supplier_property);
413 if (ret < 0)
414 return ret;
415 if (ret == 0)
416 return -ENODEV;
417
418 return 0;
419 }
420 EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier);
421
power_supply_set_battery_charged(struct power_supply * psy)422 int power_supply_set_battery_charged(struct power_supply *psy)
423 {
424 if (atomic_read(&psy->use_cnt) >= 0 &&
425 psy->desc->type == POWER_SUPPLY_TYPE_BATTERY &&
426 psy->desc->set_charged) {
427 psy->desc->set_charged(psy);
428 return 0;
429 }
430
431 return -EINVAL;
432 }
433 EXPORT_SYMBOL_GPL(power_supply_set_battery_charged);
434
power_supply_match_device_by_name(struct device * dev,const void * data)435 static int power_supply_match_device_by_name(struct device *dev, const void *data)
436 {
437 const char *name = data;
438 struct power_supply *psy = dev_get_drvdata(dev);
439
440 return strcmp(psy->desc->name, name) == 0;
441 }
442
443 /**
444 * power_supply_get_by_name() - Search for a power supply and returns its ref
445 * @name: Power supply name to fetch
446 *
447 * If power supply was found, it increases reference count for the
448 * internal power supply's device. The user should power_supply_put()
449 * after usage.
450 *
451 * Return: On success returns a reference to a power supply with
452 * matching name equals to @name, a NULL otherwise.
453 */
power_supply_get_by_name(const char * name)454 struct power_supply *power_supply_get_by_name(const char *name)
455 {
456 struct power_supply *psy = NULL;
457 struct device *dev = class_find_device(power_supply_class, NULL, name,
458 power_supply_match_device_by_name);
459
460 if (dev) {
461 psy = dev_get_drvdata(dev);
462 atomic_inc(&psy->use_cnt);
463 }
464
465 return psy;
466 }
467 EXPORT_SYMBOL_GPL(power_supply_get_by_name);
468
469 /**
470 * power_supply_put() - Drop reference obtained with power_supply_get_by_name
471 * @psy: Reference to put
472 *
473 * The reference to power supply should be put before unregistering
474 * the power supply.
475 */
power_supply_put(struct power_supply * psy)476 void power_supply_put(struct power_supply *psy)
477 {
478 might_sleep();
479
480 atomic_dec(&psy->use_cnt);
481 put_device(&psy->dev);
482 }
483 EXPORT_SYMBOL_GPL(power_supply_put);
484
485 #ifdef CONFIG_OF
power_supply_match_device_node(struct device * dev,const void * data)486 static int power_supply_match_device_node(struct device *dev, const void *data)
487 {
488 return dev->parent && dev->parent->of_node == data;
489 }
490
491 /**
492 * power_supply_get_by_phandle() - Search for a power supply and returns its ref
493 * @np: Pointer to device node holding phandle property
494 * @property: Name of property holding a power supply name
495 *
496 * If power supply was found, it increases reference count for the
497 * internal power supply's device. The user should power_supply_put()
498 * after usage.
499 *
500 * Return: On success returns a reference to a power supply with
501 * matching name equals to value under @property, NULL or ERR_PTR otherwise.
502 */
power_supply_get_by_phandle(struct device_node * np,const char * property)503 struct power_supply *power_supply_get_by_phandle(struct device_node *np,
504 const char *property)
505 {
506 struct device_node *power_supply_np;
507 struct power_supply *psy = NULL;
508 struct device *dev;
509
510 power_supply_np = of_parse_phandle(np, property, 0);
511 if (!power_supply_np)
512 return ERR_PTR(-ENODEV);
513
514 dev = class_find_device(power_supply_class, NULL, power_supply_np,
515 power_supply_match_device_node);
516
517 of_node_put(power_supply_np);
518
519 if (dev) {
520 psy = dev_get_drvdata(dev);
521 atomic_inc(&psy->use_cnt);
522 }
523
524 return psy;
525 }
526 EXPORT_SYMBOL_GPL(power_supply_get_by_phandle);
527
devm_power_supply_put(struct device * dev,void * res)528 static void devm_power_supply_put(struct device *dev, void *res)
529 {
530 struct power_supply **psy = res;
531
532 power_supply_put(*psy);
533 }
534
535 /**
536 * devm_power_supply_get_by_phandle() - Resource managed version of
537 * power_supply_get_by_phandle()
538 * @dev: Pointer to device holding phandle property
539 * @property: Name of property holding a power supply phandle
540 *
541 * Return: On success returns a reference to a power supply with
542 * matching name equals to value under @property, NULL or ERR_PTR otherwise.
543 */
devm_power_supply_get_by_phandle(struct device * dev,const char * property)544 struct power_supply *devm_power_supply_get_by_phandle(struct device *dev,
545 const char *property)
546 {
547 struct power_supply **ptr, *psy;
548
549 if (!dev->of_node)
550 return ERR_PTR(-ENODEV);
551
552 ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL);
553 if (!ptr)
554 return ERR_PTR(-ENOMEM);
555
556 psy = power_supply_get_by_phandle(dev->of_node, property);
557 if (IS_ERR_OR_NULL(psy)) {
558 devres_free(ptr);
559 } else {
560 *ptr = psy;
561 devres_add(dev, ptr);
562 }
563 return psy;
564 }
565 EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle);
566 #endif /* CONFIG_OF */
567
power_supply_get_battery_info(struct power_supply * psy,struct power_supply_battery_info * info)568 int power_supply_get_battery_info(struct power_supply *psy,
569 struct power_supply_battery_info *info)
570 {
571 struct power_supply_resistance_temp_table *resist_table;
572 struct device_node *battery_np;
573 const char *value;
574 int err, len, index;
575 const __be32 *list;
576
577 info->energy_full_design_uwh = -EINVAL;
578 info->charge_full_design_uah = -EINVAL;
579 info->voltage_min_design_uv = -EINVAL;
580 info->voltage_max_design_uv = -EINVAL;
581 info->precharge_current_ua = -EINVAL;
582 info->charge_term_current_ua = -EINVAL;
583 info->constant_charge_current_max_ua = -EINVAL;
584 info->constant_charge_voltage_max_uv = -EINVAL;
585 info->temp_ambient_alert_min = INT_MIN;
586 info->temp_ambient_alert_max = INT_MAX;
587 info->temp_alert_min = INT_MIN;
588 info->temp_alert_max = INT_MAX;
589 info->temp_min = INT_MIN;
590 info->temp_max = INT_MAX;
591 info->factory_internal_resistance_uohm = -EINVAL;
592 info->resist_table = NULL;
593
594 for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) {
595 info->ocv_table[index] = NULL;
596 info->ocv_temp[index] = -EINVAL;
597 info->ocv_table_size[index] = -EINVAL;
598 }
599
600 if (!psy->of_node) {
601 dev_warn(&psy->dev, "%s currently only supports devicetree\n",
602 __func__);
603 return -ENXIO;
604 }
605
606 battery_np = of_parse_phandle(psy->of_node, "monitored-battery", 0);
607 if (!battery_np)
608 return -ENODEV;
609
610 err = of_property_read_string(battery_np, "compatible", &value);
611 if (err)
612 goto out_put_node;
613
614 if (strcmp("simple-battery", value)) {
615 err = -ENODEV;
616 goto out_put_node;
617 }
618
619 /* The property and field names below must correspond to elements
620 * in enum power_supply_property. For reasoning, see
621 * Documentation/power/power_supply_class.rst.
622 */
623
624 of_property_read_u32(battery_np, "energy-full-design-microwatt-hours",
625 &info->energy_full_design_uwh);
626 of_property_read_u32(battery_np, "charge-full-design-microamp-hours",
627 &info->charge_full_design_uah);
628 of_property_read_u32(battery_np, "voltage-min-design-microvolt",
629 &info->voltage_min_design_uv);
630 of_property_read_u32(battery_np, "voltage-max-design-microvolt",
631 &info->voltage_max_design_uv);
632 of_property_read_u32(battery_np, "trickle-charge-current-microamp",
633 &info->tricklecharge_current_ua);
634 of_property_read_u32(battery_np, "precharge-current-microamp",
635 &info->precharge_current_ua);
636 of_property_read_u32(battery_np, "precharge-upper-limit-microvolt",
637 &info->precharge_voltage_max_uv);
638 of_property_read_u32(battery_np, "charge-term-current-microamp",
639 &info->charge_term_current_ua);
640 of_property_read_u32(battery_np, "re-charge-voltage-microvolt",
641 &info->charge_restart_voltage_uv);
642 of_property_read_u32(battery_np, "over-voltage-threshold-microvolt",
643 &info->overvoltage_limit_uv);
644 of_property_read_u32(battery_np, "constant-charge-current-max-microamp",
645 &info->constant_charge_current_max_ua);
646 of_property_read_u32(battery_np, "constant-charge-voltage-max-microvolt",
647 &info->constant_charge_voltage_max_uv);
648 of_property_read_u32(battery_np, "factory-internal-resistance-micro-ohms",
649 &info->factory_internal_resistance_uohm);
650
651 of_property_read_u32_index(battery_np, "ambient-celsius",
652 0, &info->temp_ambient_alert_min);
653 of_property_read_u32_index(battery_np, "ambient-celsius",
654 1, &info->temp_ambient_alert_max);
655 of_property_read_u32_index(battery_np, "alert-celsius",
656 0, &info->temp_alert_min);
657 of_property_read_u32_index(battery_np, "alert-celsius",
658 1, &info->temp_alert_max);
659 of_property_read_u32_index(battery_np, "operating-range-celsius",
660 0, &info->temp_min);
661 of_property_read_u32_index(battery_np, "operating-range-celsius",
662 1, &info->temp_max);
663
664 len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius");
665 if (len < 0 && len != -EINVAL) {
666 err = len;
667 goto out_put_node;
668 } else if (len > POWER_SUPPLY_OCV_TEMP_MAX) {
669 dev_err(&psy->dev, "Too many temperature values\n");
670 err = -EINVAL;
671 goto out_put_node;
672 } else if (len > 0) {
673 of_property_read_u32_array(battery_np, "ocv-capacity-celsius",
674 info->ocv_temp, len);
675 }
676
677 for (index = 0; index < len; index++) {
678 struct power_supply_battery_ocv_table *table;
679 char *propname;
680 int i, tab_len, size;
681
682 propname = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d", index);
683 if (!propname) {
684 power_supply_put_battery_info(psy, info);
685 err = -ENOMEM;
686 goto out_put_node;
687 }
688 list = of_get_property(battery_np, propname, &size);
689 if (!list || !size) {
690 dev_err(&psy->dev, "failed to get %s\n", propname);
691 kfree(propname);
692 power_supply_put_battery_info(psy, info);
693 err = -EINVAL;
694 goto out_put_node;
695 }
696
697 kfree(propname);
698 tab_len = size / (2 * sizeof(__be32));
699 info->ocv_table_size[index] = tab_len;
700
701 table = info->ocv_table[index] =
702 devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL);
703 if (!info->ocv_table[index]) {
704 power_supply_put_battery_info(psy, info);
705 err = -ENOMEM;
706 goto out_put_node;
707 }
708
709 for (i = 0; i < tab_len; i++) {
710 table[i].ocv = be32_to_cpu(*list);
711 list++;
712 table[i].capacity = be32_to_cpu(*list);
713 list++;
714 }
715 }
716
717 list = of_get_property(battery_np, "resistance-temp-table", &len);
718 if (!list || !len)
719 goto out_put_node;
720
721 info->resist_table_size = len / (2 * sizeof(__be32));
722 resist_table = info->resist_table = devm_kcalloc(&psy->dev,
723 info->resist_table_size,
724 sizeof(*resist_table),
725 GFP_KERNEL);
726 if (!info->resist_table) {
727 power_supply_put_battery_info(psy, info);
728 err = -ENOMEM;
729 goto out_put_node;
730 }
731
732 for (index = 0; index < info->resist_table_size; index++) {
733 resist_table[index].temp = be32_to_cpu(*list++);
734 resist_table[index].resistance = be32_to_cpu(*list++);
735 }
736
737 out_put_node:
738 of_node_put(battery_np);
739 return err;
740 }
741 EXPORT_SYMBOL_GPL(power_supply_get_battery_info);
742
power_supply_put_battery_info(struct power_supply * psy,struct power_supply_battery_info * info)743 void power_supply_put_battery_info(struct power_supply *psy,
744 struct power_supply_battery_info *info)
745 {
746 int i;
747
748 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
749 if (info->ocv_table[i])
750 devm_kfree(&psy->dev, info->ocv_table[i]);
751 }
752
753 if (info->resist_table)
754 devm_kfree(&psy->dev, info->resist_table);
755 }
756 EXPORT_SYMBOL_GPL(power_supply_put_battery_info);
757
758 /**
759 * power_supply_temp2resist_simple() - find the battery internal resistance
760 * percent
761 * @table: Pointer to battery resistance temperature table
762 * @table_len: The table length
763 * @temp: Current temperature
764 *
765 * This helper function is used to look up battery internal resistance percent
766 * according to current temperature value from the resistance temperature table,
767 * and the table must be ordered descending. Then the actual battery internal
768 * resistance = the ideal battery internal resistance * percent / 100.
769 *
770 * Return: the battery internal resistance percent
771 */
power_supply_temp2resist_simple(struct power_supply_resistance_temp_table * table,int table_len,int temp)772 int power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table,
773 int table_len, int temp)
774 {
775 int i, resist;
776
777 for (i = 0; i < table_len; i++)
778 if (temp > table[i].temp)
779 break;
780
781 if (i > 0 && i < table_len) {
782 int tmp;
783
784 tmp = (table[i - 1].resistance - table[i].resistance) *
785 (temp - table[i].temp);
786 tmp /= table[i - 1].temp - table[i].temp;
787 resist = tmp + table[i].resistance;
788 } else if (i == 0) {
789 resist = table[0].resistance;
790 } else {
791 resist = table[table_len - 1].resistance;
792 }
793
794 return resist;
795 }
796 EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple);
797
798 /**
799 * power_supply_ocv2cap_simple() - find the battery capacity
800 * @table: Pointer to battery OCV lookup table
801 * @table_len: OCV table length
802 * @ocv: Current OCV value
803 *
804 * This helper function is used to look up battery capacity according to
805 * current OCV value from one OCV table, and the OCV table must be ordered
806 * descending.
807 *
808 * Return: the battery capacity.
809 */
power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table * table,int table_len,int ocv)810 int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table,
811 int table_len, int ocv)
812 {
813 int i, cap, tmp;
814
815 for (i = 0; i < table_len; i++)
816 if (ocv > table[i].ocv)
817 break;
818
819 if (i > 0 && i < table_len) {
820 tmp = (table[i - 1].capacity - table[i].capacity) *
821 (ocv - table[i].ocv);
822 tmp /= table[i - 1].ocv - table[i].ocv;
823 cap = tmp + table[i].capacity;
824 } else if (i == 0) {
825 cap = table[0].capacity;
826 } else {
827 cap = table[table_len - 1].capacity;
828 }
829
830 return cap;
831 }
832 EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple);
833
834 struct power_supply_battery_ocv_table *
power_supply_find_ocv2cap_table(struct power_supply_battery_info * info,int temp,int * table_len)835 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
836 int temp, int *table_len)
837 {
838 int best_temp_diff = INT_MAX, temp_diff;
839 u8 i, best_index = 0;
840
841 if (!info->ocv_table[0])
842 return NULL;
843
844 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
845 /* Out of capacity tables */
846 if (!info->ocv_table[i])
847 break;
848
849 temp_diff = abs(info->ocv_temp[i] - temp);
850
851 if (temp_diff < best_temp_diff) {
852 best_temp_diff = temp_diff;
853 best_index = i;
854 }
855 }
856
857 *table_len = info->ocv_table_size[best_index];
858 return info->ocv_table[best_index];
859 }
860 EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table);
861
power_supply_batinfo_ocv2cap(struct power_supply_battery_info * info,int ocv,int temp)862 int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
863 int ocv, int temp)
864 {
865 struct power_supply_battery_ocv_table *table;
866 int table_len;
867
868 table = power_supply_find_ocv2cap_table(info, temp, &table_len);
869 if (!table)
870 return -EINVAL;
871
872 return power_supply_ocv2cap_simple(table, table_len, ocv);
873 }
874 EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap);
875
power_supply_get_property(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)876 int power_supply_get_property(struct power_supply *psy,
877 enum power_supply_property psp,
878 union power_supply_propval *val)
879 {
880 if (atomic_read(&psy->use_cnt) <= 0) {
881 if (!psy->initialized)
882 return -EAGAIN;
883 return -ENODEV;
884 }
885
886 return psy->desc->get_property(psy, psp, val);
887 }
888 EXPORT_SYMBOL_GPL(power_supply_get_property);
889
power_supply_set_property(struct power_supply * psy,enum power_supply_property psp,const union power_supply_propval * val)890 int power_supply_set_property(struct power_supply *psy,
891 enum power_supply_property psp,
892 const union power_supply_propval *val)
893 {
894 if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->set_property)
895 return -ENODEV;
896
897 return psy->desc->set_property(psy, psp, val);
898 }
899 EXPORT_SYMBOL_GPL(power_supply_set_property);
900
power_supply_property_is_writeable(struct power_supply * psy,enum power_supply_property psp)901 int power_supply_property_is_writeable(struct power_supply *psy,
902 enum power_supply_property psp)
903 {
904 if (atomic_read(&psy->use_cnt) <= 0 ||
905 !psy->desc->property_is_writeable)
906 return -ENODEV;
907
908 return psy->desc->property_is_writeable(psy, psp);
909 }
910 EXPORT_SYMBOL_GPL(power_supply_property_is_writeable);
911
power_supply_external_power_changed(struct power_supply * psy)912 void power_supply_external_power_changed(struct power_supply *psy)
913 {
914 if (atomic_read(&psy->use_cnt) <= 0 ||
915 !psy->desc->external_power_changed)
916 return;
917
918 psy->desc->external_power_changed(psy);
919 }
920 EXPORT_SYMBOL_GPL(power_supply_external_power_changed);
921
power_supply_powers(struct power_supply * psy,struct device * dev)922 int power_supply_powers(struct power_supply *psy, struct device *dev)
923 {
924 return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers");
925 }
926 EXPORT_SYMBOL_GPL(power_supply_powers);
927
power_supply_dev_release(struct device * dev)928 static void power_supply_dev_release(struct device *dev)
929 {
930 struct power_supply *psy = to_power_supply(dev);
931 dev_dbg(dev, "%s\n", __func__);
932 kfree(psy);
933 }
934
power_supply_reg_notifier(struct notifier_block * nb)935 int power_supply_reg_notifier(struct notifier_block *nb)
936 {
937 return atomic_notifier_chain_register(&power_supply_notifier, nb);
938 }
939 EXPORT_SYMBOL_GPL(power_supply_reg_notifier);
940
power_supply_unreg_notifier(struct notifier_block * nb)941 void power_supply_unreg_notifier(struct notifier_block *nb)
942 {
943 atomic_notifier_chain_unregister(&power_supply_notifier, nb);
944 }
945 EXPORT_SYMBOL_GPL(power_supply_unreg_notifier);
946
947 #ifdef CONFIG_THERMAL
power_supply_read_temp(struct thermal_zone_device * tzd,int * temp)948 static int power_supply_read_temp(struct thermal_zone_device *tzd,
949 int *temp)
950 {
951 struct power_supply *psy;
952 union power_supply_propval val;
953 int ret;
954
955 WARN_ON(tzd == NULL);
956 psy = tzd->devdata;
957 ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val);
958 if (ret)
959 return ret;
960
961 /* Convert tenths of degree Celsius to milli degree Celsius. */
962 *temp = val.intval * 100;
963
964 return ret;
965 }
966
967 static struct thermal_zone_device_ops psy_tzd_ops = {
968 .get_temp = power_supply_read_temp,
969 };
970
psy_register_thermal(struct power_supply * psy)971 static int psy_register_thermal(struct power_supply *psy)
972 {
973 int i, ret;
974
975 if (psy->desc->no_thermal)
976 return 0;
977
978 /* Register battery zone device psy reports temperature */
979 for (i = 0; i < psy->desc->num_properties; i++) {
980 if (psy->desc->properties[i] == POWER_SUPPLY_PROP_TEMP) {
981 psy->tzd = thermal_zone_device_register(psy->desc->name,
982 0, 0, psy, &psy_tzd_ops, NULL, 0, 0);
983 if (IS_ERR(psy->tzd))
984 return PTR_ERR(psy->tzd);
985 ret = thermal_zone_device_enable(psy->tzd);
986 if (ret)
987 thermal_zone_device_unregister(psy->tzd);
988 return ret;
989 }
990 }
991 return 0;
992 }
993
psy_unregister_thermal(struct power_supply * psy)994 static void psy_unregister_thermal(struct power_supply *psy)
995 {
996 if (IS_ERR_OR_NULL(psy->tzd))
997 return;
998 thermal_zone_device_unregister(psy->tzd);
999 }
1000
1001 /* thermal cooling device callbacks */
ps_get_max_charge_cntl_limit(struct thermal_cooling_device * tcd,unsigned long * state)1002 static int ps_get_max_charge_cntl_limit(struct thermal_cooling_device *tcd,
1003 unsigned long *state)
1004 {
1005 struct power_supply *psy;
1006 union power_supply_propval val;
1007 int ret;
1008
1009 psy = tcd->devdata;
1010 ret = power_supply_get_property(psy,
1011 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX, &val);
1012 if (ret)
1013 return ret;
1014
1015 *state = val.intval;
1016
1017 return ret;
1018 }
1019
ps_get_cur_charge_cntl_limit(struct thermal_cooling_device * tcd,unsigned long * state)1020 static int ps_get_cur_charge_cntl_limit(struct thermal_cooling_device *tcd,
1021 unsigned long *state)
1022 {
1023 struct power_supply *psy;
1024 union power_supply_propval val;
1025 int ret;
1026
1027 psy = tcd->devdata;
1028 ret = power_supply_get_property(psy,
1029 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, &val);
1030 if (ret)
1031 return ret;
1032
1033 *state = val.intval;
1034
1035 return ret;
1036 }
1037
ps_set_cur_charge_cntl_limit(struct thermal_cooling_device * tcd,unsigned long state)1038 static int ps_set_cur_charge_cntl_limit(struct thermal_cooling_device *tcd,
1039 unsigned long state)
1040 {
1041 struct power_supply *psy;
1042 union power_supply_propval val;
1043 int ret;
1044
1045 psy = tcd->devdata;
1046 val.intval = state;
1047 ret = psy->desc->set_property(psy,
1048 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, &val);
1049
1050 return ret;
1051 }
1052
1053 static const struct thermal_cooling_device_ops psy_tcd_ops = {
1054 .get_max_state = ps_get_max_charge_cntl_limit,
1055 .get_cur_state = ps_get_cur_charge_cntl_limit,
1056 .set_cur_state = ps_set_cur_charge_cntl_limit,
1057 };
1058
psy_register_cooler(struct power_supply * psy)1059 static int psy_register_cooler(struct power_supply *psy)
1060 {
1061 int i;
1062
1063 /* Register for cooling device if psy can control charging */
1064 for (i = 0; i < psy->desc->num_properties; i++) {
1065 if (psy->desc->properties[i] ==
1066 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT) {
1067 psy->tcd = thermal_cooling_device_register(
1068 (char *)psy->desc->name,
1069 psy, &psy_tcd_ops);
1070 return PTR_ERR_OR_ZERO(psy->tcd);
1071 }
1072 }
1073 return 0;
1074 }
1075
psy_unregister_cooler(struct power_supply * psy)1076 static void psy_unregister_cooler(struct power_supply *psy)
1077 {
1078 if (IS_ERR_OR_NULL(psy->tcd))
1079 return;
1080 thermal_cooling_device_unregister(psy->tcd);
1081 }
1082 #else
psy_register_thermal(struct power_supply * psy)1083 static int psy_register_thermal(struct power_supply *psy)
1084 {
1085 return 0;
1086 }
1087
psy_unregister_thermal(struct power_supply * psy)1088 static void psy_unregister_thermal(struct power_supply *psy)
1089 {
1090 }
1091
psy_register_cooler(struct power_supply * psy)1092 static int psy_register_cooler(struct power_supply *psy)
1093 {
1094 return 0;
1095 }
1096
psy_unregister_cooler(struct power_supply * psy)1097 static void psy_unregister_cooler(struct power_supply *psy)
1098 {
1099 }
1100 #endif
1101
1102 static struct power_supply *__must_check
__power_supply_register(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg,bool ws)1103 __power_supply_register(struct device *parent,
1104 const struct power_supply_desc *desc,
1105 const struct power_supply_config *cfg,
1106 bool ws)
1107 {
1108 struct device *dev;
1109 struct power_supply *psy;
1110 int i, rc;
1111
1112 if (!parent)
1113 pr_warn("%s: Expected proper parent device for '%s'\n",
1114 __func__, desc->name);
1115
1116 if (!desc || !desc->name || !desc->properties || !desc->num_properties)
1117 return ERR_PTR(-EINVAL);
1118
1119 for (i = 0; i < desc->num_properties; ++i) {
1120 if ((desc->properties[i] == POWER_SUPPLY_PROP_USB_TYPE) &&
1121 (!desc->usb_types || !desc->num_usb_types))
1122 return ERR_PTR(-EINVAL);
1123 }
1124
1125 psy = kzalloc(sizeof(*psy), GFP_KERNEL);
1126 if (!psy)
1127 return ERR_PTR(-ENOMEM);
1128
1129 dev = &psy->dev;
1130
1131 device_initialize(dev);
1132
1133 dev->class = power_supply_class;
1134 dev->type = &power_supply_dev_type;
1135 dev->parent = parent;
1136 dev->release = power_supply_dev_release;
1137 dev_set_drvdata(dev, psy);
1138 psy->desc = desc;
1139 if (cfg) {
1140 dev->groups = cfg->attr_grp;
1141 psy->drv_data = cfg->drv_data;
1142 psy->of_node =
1143 cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node;
1144 psy->supplied_to = cfg->supplied_to;
1145 psy->num_supplicants = cfg->num_supplicants;
1146 }
1147
1148 rc = dev_set_name(dev, "%s", desc->name);
1149 if (rc)
1150 goto dev_set_name_failed;
1151
1152 INIT_WORK(&psy->changed_work, power_supply_changed_work);
1153 INIT_DELAYED_WORK(&psy->deferred_register_work,
1154 power_supply_deferred_register_work);
1155
1156 rc = power_supply_check_supplies(psy);
1157 if (rc) {
1158 dev_info(dev, "Not all required supplies found, defer probe\n");
1159 goto check_supplies_failed;
1160 }
1161
1162 spin_lock_init(&psy->changed_lock);
1163 rc = device_add(dev);
1164 if (rc)
1165 goto device_add_failed;
1166
1167 rc = device_init_wakeup(dev, ws);
1168 if (rc)
1169 goto wakeup_init_failed;
1170
1171 rc = psy_register_thermal(psy);
1172 if (rc)
1173 goto register_thermal_failed;
1174
1175 rc = psy_register_cooler(psy);
1176 if (rc)
1177 goto register_cooler_failed;
1178
1179 rc = power_supply_create_triggers(psy);
1180 if (rc)
1181 goto create_triggers_failed;
1182
1183 rc = power_supply_add_hwmon_sysfs(psy);
1184 if (rc)
1185 goto add_hwmon_sysfs_failed;
1186
1187 /*
1188 * Update use_cnt after any uevents (most notably from device_add()).
1189 * We are here still during driver's probe but
1190 * the power_supply_uevent() calls back driver's get_property
1191 * method so:
1192 * 1. Driver did not assigned the returned struct power_supply,
1193 * 2. Driver could not finish initialization (anything in its probe
1194 * after calling power_supply_register()).
1195 */
1196 atomic_inc(&psy->use_cnt);
1197 psy->initialized = true;
1198
1199 queue_delayed_work(system_power_efficient_wq,
1200 &psy->deferred_register_work,
1201 POWER_SUPPLY_DEFERRED_REGISTER_TIME);
1202
1203 return psy;
1204
1205 add_hwmon_sysfs_failed:
1206 power_supply_remove_triggers(psy);
1207 create_triggers_failed:
1208 psy_unregister_cooler(psy);
1209 register_cooler_failed:
1210 psy_unregister_thermal(psy);
1211 register_thermal_failed:
1212 wakeup_init_failed:
1213 device_del(dev);
1214 device_add_failed:
1215 check_supplies_failed:
1216 dev_set_name_failed:
1217 put_device(dev);
1218 return ERR_PTR(rc);
1219 }
1220
1221 /**
1222 * power_supply_register() - Register new power supply
1223 * @parent: Device to be a parent of power supply's device, usually
1224 * the device which probe function calls this
1225 * @desc: Description of power supply, must be valid through whole
1226 * lifetime of this power supply
1227 * @cfg: Run-time specific configuration accessed during registering,
1228 * may be NULL
1229 *
1230 * Return: A pointer to newly allocated power_supply on success
1231 * or ERR_PTR otherwise.
1232 * Use power_supply_unregister() on returned power_supply pointer to release
1233 * resources.
1234 */
power_supply_register(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1235 struct power_supply *__must_check power_supply_register(struct device *parent,
1236 const struct power_supply_desc *desc,
1237 const struct power_supply_config *cfg)
1238 {
1239 return __power_supply_register(parent, desc, cfg, true);
1240 }
1241 EXPORT_SYMBOL_GPL(power_supply_register);
1242
1243 /**
1244 * power_supply_register_no_ws() - Register new non-waking-source power supply
1245 * @parent: Device to be a parent of power supply's device, usually
1246 * the device which probe function calls this
1247 * @desc: Description of power supply, must be valid through whole
1248 * lifetime of this power supply
1249 * @cfg: Run-time specific configuration accessed during registering,
1250 * may be NULL
1251 *
1252 * Return: A pointer to newly allocated power_supply on success
1253 * or ERR_PTR otherwise.
1254 * Use power_supply_unregister() on returned power_supply pointer to release
1255 * resources.
1256 */
1257 struct power_supply *__must_check
power_supply_register_no_ws(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1258 power_supply_register_no_ws(struct device *parent,
1259 const struct power_supply_desc *desc,
1260 const struct power_supply_config *cfg)
1261 {
1262 return __power_supply_register(parent, desc, cfg, false);
1263 }
1264 EXPORT_SYMBOL_GPL(power_supply_register_no_ws);
1265
devm_power_supply_release(struct device * dev,void * res)1266 static void devm_power_supply_release(struct device *dev, void *res)
1267 {
1268 struct power_supply **psy = res;
1269
1270 power_supply_unregister(*psy);
1271 }
1272
1273 /**
1274 * devm_power_supply_register() - Register managed power supply
1275 * @parent: Device to be a parent of power supply's device, usually
1276 * the device which probe function calls this
1277 * @desc: Description of power supply, must be valid through whole
1278 * lifetime of this power supply
1279 * @cfg: Run-time specific configuration accessed during registering,
1280 * may be NULL
1281 *
1282 * Return: A pointer to newly allocated power_supply on success
1283 * or ERR_PTR otherwise.
1284 * The returned power_supply pointer will be automatically unregistered
1285 * on driver detach.
1286 */
1287 struct power_supply *__must_check
devm_power_supply_register(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1288 devm_power_supply_register(struct device *parent,
1289 const struct power_supply_desc *desc,
1290 const struct power_supply_config *cfg)
1291 {
1292 struct power_supply **ptr, *psy;
1293
1294 ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1295
1296 if (!ptr)
1297 return ERR_PTR(-ENOMEM);
1298 psy = __power_supply_register(parent, desc, cfg, true);
1299 if (IS_ERR(psy)) {
1300 devres_free(ptr);
1301 } else {
1302 *ptr = psy;
1303 devres_add(parent, ptr);
1304 }
1305 return psy;
1306 }
1307 EXPORT_SYMBOL_GPL(devm_power_supply_register);
1308
1309 /**
1310 * devm_power_supply_register_no_ws() - Register managed non-waking-source power supply
1311 * @parent: Device to be a parent of power supply's device, usually
1312 * the device which probe function calls this
1313 * @desc: Description of power supply, must be valid through whole
1314 * lifetime of this power supply
1315 * @cfg: Run-time specific configuration accessed during registering,
1316 * may be NULL
1317 *
1318 * Return: A pointer to newly allocated power_supply on success
1319 * or ERR_PTR otherwise.
1320 * The returned power_supply pointer will be automatically unregistered
1321 * on driver detach.
1322 */
1323 struct power_supply *__must_check
devm_power_supply_register_no_ws(struct device * parent,const struct power_supply_desc * desc,const struct power_supply_config * cfg)1324 devm_power_supply_register_no_ws(struct device *parent,
1325 const struct power_supply_desc *desc,
1326 const struct power_supply_config *cfg)
1327 {
1328 struct power_supply **ptr, *psy;
1329
1330 ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1331
1332 if (!ptr)
1333 return ERR_PTR(-ENOMEM);
1334 psy = __power_supply_register(parent, desc, cfg, false);
1335 if (IS_ERR(psy)) {
1336 devres_free(ptr);
1337 } else {
1338 *ptr = psy;
1339 devres_add(parent, ptr);
1340 }
1341 return psy;
1342 }
1343 EXPORT_SYMBOL_GPL(devm_power_supply_register_no_ws);
1344
1345 /**
1346 * power_supply_unregister() - Remove this power supply from system
1347 * @psy: Pointer to power supply to unregister
1348 *
1349 * Remove this power supply from the system. The resources of power supply
1350 * will be freed here or on last power_supply_put() call.
1351 */
power_supply_unregister(struct power_supply * psy)1352 void power_supply_unregister(struct power_supply *psy)
1353 {
1354 WARN_ON(atomic_dec_return(&psy->use_cnt));
1355 psy->removing = true;
1356 cancel_work_sync(&psy->changed_work);
1357 cancel_delayed_work_sync(&psy->deferred_register_work);
1358 sysfs_remove_link(&psy->dev.kobj, "powers");
1359 power_supply_remove_hwmon_sysfs(psy);
1360 power_supply_remove_triggers(psy);
1361 psy_unregister_cooler(psy);
1362 psy_unregister_thermal(psy);
1363 device_init_wakeup(&psy->dev, false);
1364 device_unregister(&psy->dev);
1365 }
1366 EXPORT_SYMBOL_GPL(power_supply_unregister);
1367
power_supply_get_drvdata(struct power_supply * psy)1368 void *power_supply_get_drvdata(struct power_supply *psy)
1369 {
1370 return psy->drv_data;
1371 }
1372 EXPORT_SYMBOL_GPL(power_supply_get_drvdata);
1373
power_supply_class_init(void)1374 static int __init power_supply_class_init(void)
1375 {
1376 power_supply_class = class_create(THIS_MODULE, "power_supply");
1377
1378 if (IS_ERR(power_supply_class))
1379 return PTR_ERR(power_supply_class);
1380
1381 power_supply_class->dev_uevent = power_supply_uevent;
1382 power_supply_init_attrs(&power_supply_dev_type);
1383
1384 return 0;
1385 }
1386
power_supply_class_exit(void)1387 static void __exit power_supply_class_exit(void)
1388 {
1389 class_destroy(power_supply_class);
1390 }
1391
1392 subsys_initcall(power_supply_class_init);
1393 module_exit(power_supply_class_exit);
1394
1395 MODULE_DESCRIPTION("Universal power supply monitor class");
1396 MODULE_AUTHOR("Ian Molton <spyro@f2s.com>, "
1397 "Szabolcs Gyurko, "
1398 "Anton Vorontsov <cbou@mail.ru>");
1399 MODULE_LICENSE("GPL");
1400