1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSA class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/Analysis/MemorySSA.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseMapInfo.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/iterator.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Config/llvm-config.h"
30 #include "llvm/IR/AssemblyAnnotationWriter.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/PassManager.h"
40 #include "llvm/IR/Use.h"
41 #include "llvm/InitializePasses.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/AtomicOrdering.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/FormattedStream.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <cstdlib>
54 #include <iterator>
55 #include <memory>
56 #include <utility>
57
58 using namespace llvm;
59
60 #define DEBUG_TYPE "memoryssa"
61
62 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
63 true)
64 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
65 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
66 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
67 true)
68
69 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
70 "Memory SSA Printer", false, false)
71 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
72 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
73 "Memory SSA Printer", false, false)
74
75 static cl::opt<unsigned> MaxCheckLimit(
76 "memssa-check-limit", cl::Hidden, cl::init(100),
77 cl::desc("The maximum number of stores/phis MemorySSA"
78 "will consider trying to walk past (default = 100)"));
79
80 // Always verify MemorySSA if expensive checking is enabled.
81 #ifdef EXPENSIVE_CHECKS
82 bool llvm::VerifyMemorySSA = true;
83 #else
84 bool llvm::VerifyMemorySSA = false;
85 #endif
86 /// Enables memory ssa as a dependency for loop passes in legacy pass manager.
87 cl::opt<bool> llvm::EnableMSSALoopDependency(
88 "enable-mssa-loop-dependency", cl::Hidden, cl::init(true),
89 cl::desc("Enable MemorySSA dependency for loop pass manager"));
90
91 static cl::opt<bool, true>
92 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
93 cl::Hidden, cl::desc("Enable verification of MemorySSA."));
94
95 namespace llvm {
96
97 /// An assembly annotator class to print Memory SSA information in
98 /// comments.
99 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
100 friend class MemorySSA;
101
102 const MemorySSA *MSSA;
103
104 public:
MemorySSAAnnotatedWriter(const MemorySSA * M)105 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
106
emitBasicBlockStartAnnot(const BasicBlock * BB,formatted_raw_ostream & OS)107 void emitBasicBlockStartAnnot(const BasicBlock *BB,
108 formatted_raw_ostream &OS) override {
109 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
110 OS << "; " << *MA << "\n";
111 }
112
emitInstructionAnnot(const Instruction * I,formatted_raw_ostream & OS)113 void emitInstructionAnnot(const Instruction *I,
114 formatted_raw_ostream &OS) override {
115 if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
116 OS << "; " << *MA << "\n";
117 }
118 };
119
120 } // end namespace llvm
121
122 namespace {
123
124 /// Our current alias analysis API differentiates heavily between calls and
125 /// non-calls, and functions called on one usually assert on the other.
126 /// This class encapsulates the distinction to simplify other code that wants
127 /// "Memory affecting instructions and related data" to use as a key.
128 /// For example, this class is used as a densemap key in the use optimizer.
129 class MemoryLocOrCall {
130 public:
131 bool IsCall = false;
132
MemoryLocOrCall(MemoryUseOrDef * MUD)133 MemoryLocOrCall(MemoryUseOrDef *MUD)
134 : MemoryLocOrCall(MUD->getMemoryInst()) {}
MemoryLocOrCall(const MemoryUseOrDef * MUD)135 MemoryLocOrCall(const MemoryUseOrDef *MUD)
136 : MemoryLocOrCall(MUD->getMemoryInst()) {}
137
MemoryLocOrCall(Instruction * Inst)138 MemoryLocOrCall(Instruction *Inst) {
139 if (auto *C = dyn_cast<CallBase>(Inst)) {
140 IsCall = true;
141 Call = C;
142 } else {
143 IsCall = false;
144 // There is no such thing as a memorylocation for a fence inst, and it is
145 // unique in that regard.
146 if (!isa<FenceInst>(Inst))
147 Loc = MemoryLocation::get(Inst);
148 }
149 }
150
MemoryLocOrCall(const MemoryLocation & Loc)151 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
152
getCall() const153 const CallBase *getCall() const {
154 assert(IsCall);
155 return Call;
156 }
157
getLoc() const158 MemoryLocation getLoc() const {
159 assert(!IsCall);
160 return Loc;
161 }
162
operator ==(const MemoryLocOrCall & Other) const163 bool operator==(const MemoryLocOrCall &Other) const {
164 if (IsCall != Other.IsCall)
165 return false;
166
167 if (!IsCall)
168 return Loc == Other.Loc;
169
170 if (Call->getCalledValue() != Other.Call->getCalledValue())
171 return false;
172
173 return Call->arg_size() == Other.Call->arg_size() &&
174 std::equal(Call->arg_begin(), Call->arg_end(),
175 Other.Call->arg_begin());
176 }
177
178 private:
179 union {
180 const CallBase *Call;
181 MemoryLocation Loc;
182 };
183 };
184
185 } // end anonymous namespace
186
187 namespace llvm {
188
189 template <> struct DenseMapInfo<MemoryLocOrCall> {
getEmptyKeyllvm::DenseMapInfo190 static inline MemoryLocOrCall getEmptyKey() {
191 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
192 }
193
getTombstoneKeyllvm::DenseMapInfo194 static inline MemoryLocOrCall getTombstoneKey() {
195 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
196 }
197
getHashValuellvm::DenseMapInfo198 static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
199 if (!MLOC.IsCall)
200 return hash_combine(
201 MLOC.IsCall,
202 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
203
204 hash_code hash =
205 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
206 MLOC.getCall()->getCalledValue()));
207
208 for (const Value *Arg : MLOC.getCall()->args())
209 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
210 return hash;
211 }
212
isEqualllvm::DenseMapInfo213 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
214 return LHS == RHS;
215 }
216 };
217
218 } // end namespace llvm
219
220 /// This does one-way checks to see if Use could theoretically be hoisted above
221 /// MayClobber. This will not check the other way around.
222 ///
223 /// This assumes that, for the purposes of MemorySSA, Use comes directly after
224 /// MayClobber, with no potentially clobbering operations in between them.
225 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
areLoadsReorderable(const LoadInst * Use,const LoadInst * MayClobber)226 static bool areLoadsReorderable(const LoadInst *Use,
227 const LoadInst *MayClobber) {
228 bool VolatileUse = Use->isVolatile();
229 bool VolatileClobber = MayClobber->isVolatile();
230 // Volatile operations may never be reordered with other volatile operations.
231 if (VolatileUse && VolatileClobber)
232 return false;
233 // Otherwise, volatile doesn't matter here. From the language reference:
234 // 'optimizers may change the order of volatile operations relative to
235 // non-volatile operations.'"
236
237 // If a load is seq_cst, it cannot be moved above other loads. If its ordering
238 // is weaker, it can be moved above other loads. We just need to be sure that
239 // MayClobber isn't an acquire load, because loads can't be moved above
240 // acquire loads.
241 //
242 // Note that this explicitly *does* allow the free reordering of monotonic (or
243 // weaker) loads of the same address.
244 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
245 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
246 AtomicOrdering::Acquire);
247 return !(SeqCstUse || MayClobberIsAcquire);
248 }
249
250 namespace {
251
252 struct ClobberAlias {
253 bool IsClobber;
254 Optional<AliasResult> AR;
255 };
256
257 } // end anonymous namespace
258
259 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
260 // ignored if IsClobber = false.
261 template <typename AliasAnalysisType>
262 static ClobberAlias
instructionClobbersQuery(const MemoryDef * MD,const MemoryLocation & UseLoc,const Instruction * UseInst,AliasAnalysisType & AA)263 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc,
264 const Instruction *UseInst, AliasAnalysisType &AA) {
265 Instruction *DefInst = MD->getMemoryInst();
266 assert(DefInst && "Defining instruction not actually an instruction");
267 const auto *UseCall = dyn_cast<CallBase>(UseInst);
268 Optional<AliasResult> AR;
269
270 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
271 // These intrinsics will show up as affecting memory, but they are just
272 // markers, mostly.
273 //
274 // FIXME: We probably don't actually want MemorySSA to model these at all
275 // (including creating MemoryAccesses for them): we just end up inventing
276 // clobbers where they don't really exist at all. Please see D43269 for
277 // context.
278 switch (II->getIntrinsicID()) {
279 case Intrinsic::lifetime_start:
280 if (UseCall)
281 return {false, NoAlias};
282 AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
283 return {AR != NoAlias, AR};
284 case Intrinsic::lifetime_end:
285 case Intrinsic::invariant_start:
286 case Intrinsic::invariant_end:
287 case Intrinsic::assume:
288 return {false, NoAlias};
289 case Intrinsic::dbg_addr:
290 case Intrinsic::dbg_declare:
291 case Intrinsic::dbg_label:
292 case Intrinsic::dbg_value:
293 llvm_unreachable("debuginfo shouldn't have associated defs!");
294 default:
295 break;
296 }
297 }
298
299 if (UseCall) {
300 ModRefInfo I = AA.getModRefInfo(DefInst, UseCall);
301 AR = isMustSet(I) ? MustAlias : MayAlias;
302 return {isModOrRefSet(I), AR};
303 }
304
305 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
306 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
307 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};
308
309 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
310 AR = isMustSet(I) ? MustAlias : MayAlias;
311 return {isModSet(I), AR};
312 }
313
314 template <typename AliasAnalysisType>
instructionClobbersQuery(MemoryDef * MD,const MemoryUseOrDef * MU,const MemoryLocOrCall & UseMLOC,AliasAnalysisType & AA)315 static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
316 const MemoryUseOrDef *MU,
317 const MemoryLocOrCall &UseMLOC,
318 AliasAnalysisType &AA) {
319 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
320 // to exist while MemoryLocOrCall is pushed through places.
321 if (UseMLOC.IsCall)
322 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
323 AA);
324 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
325 AA);
326 }
327
328 // Return true when MD may alias MU, return false otherwise.
defClobbersUseOrDef(MemoryDef * MD,const MemoryUseOrDef * MU,AliasAnalysis & AA)329 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
330 AliasAnalysis &AA) {
331 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
332 }
333
334 namespace {
335
336 struct UpwardsMemoryQuery {
337 // True if our original query started off as a call
338 bool IsCall = false;
339 // The pointer location we started the query with. This will be empty if
340 // IsCall is true.
341 MemoryLocation StartingLoc;
342 // This is the instruction we were querying about.
343 const Instruction *Inst = nullptr;
344 // The MemoryAccess we actually got called with, used to test local domination
345 const MemoryAccess *OriginalAccess = nullptr;
346 Optional<AliasResult> AR = MayAlias;
347 bool SkipSelfAccess = false;
348
349 UpwardsMemoryQuery() = default;
350
UpwardsMemoryQuery__anonca0ba56e0411::UpwardsMemoryQuery351 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
352 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) {
353 if (!IsCall)
354 StartingLoc = MemoryLocation::get(Inst);
355 }
356 };
357
358 } // end anonymous namespace
359
lifetimeEndsAt(MemoryDef * MD,const MemoryLocation & Loc,BatchAAResults & AA)360 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
361 BatchAAResults &AA) {
362 Instruction *Inst = MD->getMemoryInst();
363 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
364 switch (II->getIntrinsicID()) {
365 case Intrinsic::lifetime_end:
366 return AA.alias(MemoryLocation(II->getArgOperand(1)), Loc) == MustAlias;
367 default:
368 return false;
369 }
370 }
371 return false;
372 }
373
374 template <typename AliasAnalysisType>
isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType & AA,const Instruction * I)375 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA,
376 const Instruction *I) {
377 // If the memory can't be changed, then loads of the memory can't be
378 // clobbered.
379 return isa<LoadInst>(I) && (I->hasMetadata(LLVMContext::MD_invariant_load) ||
380 AA.pointsToConstantMemory(MemoryLocation(
381 cast<LoadInst>(I)->getPointerOperand())));
382 }
383
384 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
385 /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
386 ///
387 /// This is meant to be as simple and self-contained as possible. Because it
388 /// uses no cache, etc., it can be relatively expensive.
389 ///
390 /// \param Start The MemoryAccess that we want to walk from.
391 /// \param ClobberAt A clobber for Start.
392 /// \param StartLoc The MemoryLocation for Start.
393 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to.
394 /// \param Query The UpwardsMemoryQuery we used for our search.
395 /// \param AA The AliasAnalysis we used for our search.
396 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
397
398 template <typename AliasAnalysisType>
399 LLVM_ATTRIBUTE_UNUSED static void
checkClobberSanity(const MemoryAccess * Start,MemoryAccess * ClobberAt,const MemoryLocation & StartLoc,const MemorySSA & MSSA,const UpwardsMemoryQuery & Query,AliasAnalysisType & AA,bool AllowImpreciseClobber=false)400 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt,
401 const MemoryLocation &StartLoc, const MemorySSA &MSSA,
402 const UpwardsMemoryQuery &Query, AliasAnalysisType &AA,
403 bool AllowImpreciseClobber = false) {
404 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
405
406 if (MSSA.isLiveOnEntryDef(Start)) {
407 assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
408 "liveOnEntry must clobber itself");
409 return;
410 }
411
412 bool FoundClobber = false;
413 DenseSet<ConstMemoryAccessPair> VisitedPhis;
414 SmallVector<ConstMemoryAccessPair, 8> Worklist;
415 Worklist.emplace_back(Start, StartLoc);
416 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
417 // is found, complain.
418 while (!Worklist.empty()) {
419 auto MAP = Worklist.pop_back_val();
420 // All we care about is that nothing from Start to ClobberAt clobbers Start.
421 // We learn nothing from revisiting nodes.
422 if (!VisitedPhis.insert(MAP).second)
423 continue;
424
425 for (const auto *MA : def_chain(MAP.first)) {
426 if (MA == ClobberAt) {
427 if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
428 // instructionClobbersQuery isn't essentially free, so don't use `|=`,
429 // since it won't let us short-circuit.
430 //
431 // Also, note that this can't be hoisted out of the `Worklist` loop,
432 // since MD may only act as a clobber for 1 of N MemoryLocations.
433 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
434 if (!FoundClobber) {
435 ClobberAlias CA =
436 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
437 if (CA.IsClobber) {
438 FoundClobber = true;
439 // Not used: CA.AR;
440 }
441 }
442 }
443 break;
444 }
445
446 // We should never hit liveOnEntry, unless it's the clobber.
447 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
448
449 if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
450 // If Start is a Def, skip self.
451 if (MD == Start)
452 continue;
453
454 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
455 .IsClobber &&
456 "Found clobber before reaching ClobberAt!");
457 continue;
458 }
459
460 if (const auto *MU = dyn_cast<MemoryUse>(MA)) {
461 (void)MU;
462 assert (MU == Start &&
463 "Can only find use in def chain if Start is a use");
464 continue;
465 }
466
467 assert(isa<MemoryPhi>(MA));
468 Worklist.append(
469 upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}),
470 upward_defs_end());
471 }
472 }
473
474 // If the verify is done following an optimization, it's possible that
475 // ClobberAt was a conservative clobbering, that we can now infer is not a
476 // true clobbering access. Don't fail the verify if that's the case.
477 // We do have accesses that claim they're optimized, but could be optimized
478 // further. Updating all these can be expensive, so allow it for now (FIXME).
479 if (AllowImpreciseClobber)
480 return;
481
482 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
483 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
484 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
485 "ClobberAt never acted as a clobber");
486 }
487
488 namespace {
489
490 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
491 /// in one class.
492 template <class AliasAnalysisType> class ClobberWalker {
493 /// Save a few bytes by using unsigned instead of size_t.
494 using ListIndex = unsigned;
495
496 /// Represents a span of contiguous MemoryDefs, potentially ending in a
497 /// MemoryPhi.
498 struct DefPath {
499 MemoryLocation Loc;
500 // Note that, because we always walk in reverse, Last will always dominate
501 // First. Also note that First and Last are inclusive.
502 MemoryAccess *First;
503 MemoryAccess *Last;
504 Optional<ListIndex> Previous;
505
DefPath__anonca0ba56e0511::ClobberWalker::DefPath506 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
507 Optional<ListIndex> Previous)
508 : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
509
DefPath__anonca0ba56e0511::ClobberWalker::DefPath510 DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
511 Optional<ListIndex> Previous)
512 : DefPath(Loc, Init, Init, Previous) {}
513 };
514
515 const MemorySSA &MSSA;
516 AliasAnalysisType &AA;
517 DominatorTree &DT;
518 UpwardsMemoryQuery *Query;
519 unsigned *UpwardWalkLimit;
520
521 // Phi optimization bookkeeping
522 SmallVector<DefPath, 32> Paths;
523 DenseSet<ConstMemoryAccessPair> VisitedPhis;
524
525 /// Find the nearest def or phi that `From` can legally be optimized to.
getWalkTarget(const MemoryPhi * From) const526 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
527 assert(From->getNumOperands() && "Phi with no operands?");
528
529 BasicBlock *BB = From->getBlock();
530 MemoryAccess *Result = MSSA.getLiveOnEntryDef();
531 DomTreeNode *Node = DT.getNode(BB);
532 while ((Node = Node->getIDom())) {
533 auto *Defs = MSSA.getBlockDefs(Node->getBlock());
534 if (Defs)
535 return &*Defs->rbegin();
536 }
537 return Result;
538 }
539
540 /// Result of calling walkToPhiOrClobber.
541 struct UpwardsWalkResult {
542 /// The "Result" of the walk. Either a clobber, the last thing we walked, or
543 /// both. Include alias info when clobber found.
544 MemoryAccess *Result;
545 bool IsKnownClobber;
546 Optional<AliasResult> AR;
547 };
548
549 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
550 /// This will update Desc.Last as it walks. It will (optionally) also stop at
551 /// StopAt.
552 ///
553 /// This does not test for whether StopAt is a clobber
554 UpwardsWalkResult
walkToPhiOrClobber(DefPath & Desc,const MemoryAccess * StopAt=nullptr,const MemoryAccess * SkipStopAt=nullptr) const555 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr,
556 const MemoryAccess *SkipStopAt = nullptr) const {
557 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
558 assert(UpwardWalkLimit && "Need a valid walk limit");
559 bool LimitAlreadyReached = false;
560 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set
561 // it to 1. This will not do any alias() calls. It either returns in the
562 // first iteration in the loop below, or is set back to 0 if all def chains
563 // are free of MemoryDefs.
564 if (!*UpwardWalkLimit) {
565 *UpwardWalkLimit = 1;
566 LimitAlreadyReached = true;
567 }
568
569 for (MemoryAccess *Current : def_chain(Desc.Last)) {
570 Desc.Last = Current;
571 if (Current == StopAt || Current == SkipStopAt)
572 return {Current, false, MayAlias};
573
574 if (auto *MD = dyn_cast<MemoryDef>(Current)) {
575 if (MSSA.isLiveOnEntryDef(MD))
576 return {MD, true, MustAlias};
577
578 if (!--*UpwardWalkLimit)
579 return {Current, true, MayAlias};
580
581 ClobberAlias CA =
582 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
583 if (CA.IsClobber)
584 return {MD, true, CA.AR};
585 }
586 }
587
588 if (LimitAlreadyReached)
589 *UpwardWalkLimit = 0;
590
591 assert(isa<MemoryPhi>(Desc.Last) &&
592 "Ended at a non-clobber that's not a phi?");
593 return {Desc.Last, false, MayAlias};
594 }
595
addSearches(MemoryPhi * Phi,SmallVectorImpl<ListIndex> & PausedSearches,ListIndex PriorNode)596 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
597 ListIndex PriorNode) {
598 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
599 upward_defs_end());
600 for (const MemoryAccessPair &P : UpwardDefs) {
601 PausedSearches.push_back(Paths.size());
602 Paths.emplace_back(P.second, P.first, PriorNode);
603 }
604 }
605
606 /// Represents a search that terminated after finding a clobber. This clobber
607 /// may or may not be present in the path of defs from LastNode..SearchStart,
608 /// since it may have been retrieved from cache.
609 struct TerminatedPath {
610 MemoryAccess *Clobber;
611 ListIndex LastNode;
612 };
613
614 /// Get an access that keeps us from optimizing to the given phi.
615 ///
616 /// PausedSearches is an array of indices into the Paths array. Its incoming
617 /// value is the indices of searches that stopped at the last phi optimization
618 /// target. It's left in an unspecified state.
619 ///
620 /// If this returns None, NewPaused is a vector of searches that terminated
621 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
622 Optional<TerminatedPath>
getBlockingAccess(const MemoryAccess * StopWhere,SmallVectorImpl<ListIndex> & PausedSearches,SmallVectorImpl<ListIndex> & NewPaused,SmallVectorImpl<TerminatedPath> & Terminated)623 getBlockingAccess(const MemoryAccess *StopWhere,
624 SmallVectorImpl<ListIndex> &PausedSearches,
625 SmallVectorImpl<ListIndex> &NewPaused,
626 SmallVectorImpl<TerminatedPath> &Terminated) {
627 assert(!PausedSearches.empty() && "No searches to continue?");
628
629 // BFS vs DFS really doesn't make a difference here, so just do a DFS with
630 // PausedSearches as our stack.
631 while (!PausedSearches.empty()) {
632 ListIndex PathIndex = PausedSearches.pop_back_val();
633 DefPath &Node = Paths[PathIndex];
634
635 // If we've already visited this path with this MemoryLocation, we don't
636 // need to do so again.
637 //
638 // NOTE: That we just drop these paths on the ground makes caching
639 // behavior sporadic. e.g. given a diamond:
640 // A
641 // B C
642 // D
643 //
644 // ...If we walk D, B, A, C, we'll only cache the result of phi
645 // optimization for A, B, and D; C will be skipped because it dies here.
646 // This arguably isn't the worst thing ever, since:
647 // - We generally query things in a top-down order, so if we got below D
648 // without needing cache entries for {C, MemLoc}, then chances are
649 // that those cache entries would end up ultimately unused.
650 // - We still cache things for A, so C only needs to walk up a bit.
651 // If this behavior becomes problematic, we can fix without a ton of extra
652 // work.
653 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
654 continue;
655
656 const MemoryAccess *SkipStopWhere = nullptr;
657 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) {
658 assert(isa<MemoryDef>(Query->OriginalAccess));
659 SkipStopWhere = Query->OriginalAccess;
660 }
661
662 UpwardsWalkResult Res = walkToPhiOrClobber(Node,
663 /*StopAt=*/StopWhere,
664 /*SkipStopAt=*/SkipStopWhere);
665 if (Res.IsKnownClobber) {
666 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere);
667
668 // If this wasn't a cache hit, we hit a clobber when walking. That's a
669 // failure.
670 TerminatedPath Term{Res.Result, PathIndex};
671 if (!MSSA.dominates(Res.Result, StopWhere))
672 return Term;
673
674 // Otherwise, it's a valid thing to potentially optimize to.
675 Terminated.push_back(Term);
676 continue;
677 }
678
679 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) {
680 // We've hit our target. Save this path off for if we want to continue
681 // walking. If we are in the mode of skipping the OriginalAccess, and
682 // we've reached back to the OriginalAccess, do not save path, we've
683 // just looped back to self.
684 if (Res.Result != SkipStopWhere)
685 NewPaused.push_back(PathIndex);
686 continue;
687 }
688
689 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
690 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
691 }
692
693 return None;
694 }
695
696 template <typename T, typename Walker>
697 struct generic_def_path_iterator
698 : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
699 std::forward_iterator_tag, T *> {
generic_def_path_iterator__anonca0ba56e0511::ClobberWalker::generic_def_path_iterator700 generic_def_path_iterator() {}
generic_def_path_iterator__anonca0ba56e0511::ClobberWalker::generic_def_path_iterator701 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
702
operator *__anonca0ba56e0511::ClobberWalker::generic_def_path_iterator703 T &operator*() const { return curNode(); }
704
operator ++__anonca0ba56e0511::ClobberWalker::generic_def_path_iterator705 generic_def_path_iterator &operator++() {
706 N = curNode().Previous;
707 return *this;
708 }
709
operator ==__anonca0ba56e0511::ClobberWalker::generic_def_path_iterator710 bool operator==(const generic_def_path_iterator &O) const {
711 if (N.hasValue() != O.N.hasValue())
712 return false;
713 return !N.hasValue() || *N == *O.N;
714 }
715
716 private:
curNode__anonca0ba56e0511::ClobberWalker::generic_def_path_iterator717 T &curNode() const { return W->Paths[*N]; }
718
719 Walker *W = nullptr;
720 Optional<ListIndex> N = None;
721 };
722
723 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
724 using const_def_path_iterator =
725 generic_def_path_iterator<const DefPath, const ClobberWalker>;
726
def_path(ListIndex From)727 iterator_range<def_path_iterator> def_path(ListIndex From) {
728 return make_range(def_path_iterator(this, From), def_path_iterator());
729 }
730
const_def_path(ListIndex From) const731 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
732 return make_range(const_def_path_iterator(this, From),
733 const_def_path_iterator());
734 }
735
736 struct OptznResult {
737 /// The path that contains our result.
738 TerminatedPath PrimaryClobber;
739 /// The paths that we can legally cache back from, but that aren't
740 /// necessarily the result of the Phi optimization.
741 SmallVector<TerminatedPath, 4> OtherClobbers;
742 };
743
defPathIndex(const DefPath & N) const744 ListIndex defPathIndex(const DefPath &N) const {
745 // The assert looks nicer if we don't need to do &N
746 const DefPath *NP = &N;
747 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
748 "Out of bounds DefPath!");
749 return NP - &Paths.front();
750 }
751
752 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
753 /// that act as legal clobbers. Note that this won't return *all* clobbers.
754 ///
755 /// Phi optimization algorithm tl;dr:
756 /// - Find the earliest def/phi, A, we can optimize to
757 /// - Find if all paths from the starting memory access ultimately reach A
758 /// - If not, optimization isn't possible.
759 /// - Otherwise, walk from A to another clobber or phi, A'.
760 /// - If A' is a def, we're done.
761 /// - If A' is a phi, try to optimize it.
762 ///
763 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
764 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
tryOptimizePhi(MemoryPhi * Phi,MemoryAccess * Start,const MemoryLocation & Loc)765 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
766 const MemoryLocation &Loc) {
767 assert(Paths.empty() && VisitedPhis.empty() &&
768 "Reset the optimization state.");
769
770 Paths.emplace_back(Loc, Start, Phi, None);
771 // Stores how many "valid" optimization nodes we had prior to calling
772 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
773 auto PriorPathsSize = Paths.size();
774
775 SmallVector<ListIndex, 16> PausedSearches;
776 SmallVector<ListIndex, 8> NewPaused;
777 SmallVector<TerminatedPath, 4> TerminatedPaths;
778
779 addSearches(Phi, PausedSearches, 0);
780
781 // Moves the TerminatedPath with the "most dominated" Clobber to the end of
782 // Paths.
783 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
784 assert(!Paths.empty() && "Need a path to move");
785 auto Dom = Paths.begin();
786 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
787 if (!MSSA.dominates(I->Clobber, Dom->Clobber))
788 Dom = I;
789 auto Last = Paths.end() - 1;
790 if (Last != Dom)
791 std::iter_swap(Last, Dom);
792 };
793
794 MemoryPhi *Current = Phi;
795 while (true) {
796 assert(!MSSA.isLiveOnEntryDef(Current) &&
797 "liveOnEntry wasn't treated as a clobber?");
798
799 const auto *Target = getWalkTarget(Current);
800 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
801 // optimization for the prior phi.
802 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
803 return MSSA.dominates(P.Clobber, Target);
804 }));
805
806 // FIXME: This is broken, because the Blocker may be reported to be
807 // liveOnEntry, and we'll happily wait for that to disappear (read: never)
808 // For the moment, this is fine, since we do nothing with blocker info.
809 if (Optional<TerminatedPath> Blocker = getBlockingAccess(
810 Target, PausedSearches, NewPaused, TerminatedPaths)) {
811
812 // Find the node we started at. We can't search based on N->Last, since
813 // we may have gone around a loop with a different MemoryLocation.
814 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
815 return defPathIndex(N) < PriorPathsSize;
816 });
817 assert(Iter != def_path_iterator());
818
819 DefPath &CurNode = *Iter;
820 assert(CurNode.Last == Current);
821
822 // Two things:
823 // A. We can't reliably cache all of NewPaused back. Consider a case
824 // where we have two paths in NewPaused; one of which can't optimize
825 // above this phi, whereas the other can. If we cache the second path
826 // back, we'll end up with suboptimal cache entries. We can handle
827 // cases like this a bit better when we either try to find all
828 // clobbers that block phi optimization, or when our cache starts
829 // supporting unfinished searches.
830 // B. We can't reliably cache TerminatedPaths back here without doing
831 // extra checks; consider a case like:
832 // T
833 // / \
834 // D C
835 // \ /
836 // S
837 // Where T is our target, C is a node with a clobber on it, D is a
838 // diamond (with a clobber *only* on the left or right node, N), and
839 // S is our start. Say we walk to D, through the node opposite N
840 // (read: ignoring the clobber), and see a cache entry in the top
841 // node of D. That cache entry gets put into TerminatedPaths. We then
842 // walk up to C (N is later in our worklist), find the clobber, and
843 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache
844 // the bottom part of D to the cached clobber, ignoring the clobber
845 // in N. Again, this problem goes away if we start tracking all
846 // blockers for a given phi optimization.
847 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
848 return {Result, {}};
849 }
850
851 // If there's nothing left to search, then all paths led to valid clobbers
852 // that we got from our cache; pick the nearest to the start, and allow
853 // the rest to be cached back.
854 if (NewPaused.empty()) {
855 MoveDominatedPathToEnd(TerminatedPaths);
856 TerminatedPath Result = TerminatedPaths.pop_back_val();
857 return {Result, std::move(TerminatedPaths)};
858 }
859
860 MemoryAccess *DefChainEnd = nullptr;
861 SmallVector<TerminatedPath, 4> Clobbers;
862 for (ListIndex Paused : NewPaused) {
863 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
864 if (WR.IsKnownClobber)
865 Clobbers.push_back({WR.Result, Paused});
866 else
867 // Micro-opt: If we hit the end of the chain, save it.
868 DefChainEnd = WR.Result;
869 }
870
871 if (!TerminatedPaths.empty()) {
872 // If we couldn't find the dominating phi/liveOnEntry in the above loop,
873 // do it now.
874 if (!DefChainEnd)
875 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
876 DefChainEnd = MA;
877 assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry");
878
879 // If any of the terminated paths don't dominate the phi we'll try to
880 // optimize, we need to figure out what they are and quit.
881 const BasicBlock *ChainBB = DefChainEnd->getBlock();
882 for (const TerminatedPath &TP : TerminatedPaths) {
883 // Because we know that DefChainEnd is as "high" as we can go, we
884 // don't need local dominance checks; BB dominance is sufficient.
885 if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
886 Clobbers.push_back(TP);
887 }
888 }
889
890 // If we have clobbers in the def chain, find the one closest to Current
891 // and quit.
892 if (!Clobbers.empty()) {
893 MoveDominatedPathToEnd(Clobbers);
894 TerminatedPath Result = Clobbers.pop_back_val();
895 return {Result, std::move(Clobbers)};
896 }
897
898 assert(all_of(NewPaused,
899 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
900
901 // Because liveOnEntry is a clobber, this must be a phi.
902 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
903
904 PriorPathsSize = Paths.size();
905 PausedSearches.clear();
906 for (ListIndex I : NewPaused)
907 addSearches(DefChainPhi, PausedSearches, I);
908 NewPaused.clear();
909
910 Current = DefChainPhi;
911 }
912 }
913
verifyOptResult(const OptznResult & R) const914 void verifyOptResult(const OptznResult &R) const {
915 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
916 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
917 }));
918 }
919
resetPhiOptznState()920 void resetPhiOptznState() {
921 Paths.clear();
922 VisitedPhis.clear();
923 }
924
925 public:
ClobberWalker(const MemorySSA & MSSA,AliasAnalysisType & AA,DominatorTree & DT)926 ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT)
927 : MSSA(MSSA), AA(AA), DT(DT) {}
928
getAA()929 AliasAnalysisType *getAA() { return &AA; }
930 /// Finds the nearest clobber for the given query, optimizing phis if
931 /// possible.
findClobber(MemoryAccess * Start,UpwardsMemoryQuery & Q,unsigned & UpWalkLimit)932 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q,
933 unsigned &UpWalkLimit) {
934 Query = &Q;
935 UpwardWalkLimit = &UpWalkLimit;
936 // Starting limit must be > 0.
937 if (!UpWalkLimit)
938 UpWalkLimit++;
939
940 MemoryAccess *Current = Start;
941 // This walker pretends uses don't exist. If we're handed one, silently grab
942 // its def. (This has the nice side-effect of ensuring we never cache uses)
943 if (auto *MU = dyn_cast<MemoryUse>(Start))
944 Current = MU->getDefiningAccess();
945
946 DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
947 // Fast path for the overly-common case (no crazy phi optimization
948 // necessary)
949 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
950 MemoryAccess *Result;
951 if (WalkResult.IsKnownClobber) {
952 Result = WalkResult.Result;
953 Q.AR = WalkResult.AR;
954 } else {
955 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
956 Current, Q.StartingLoc);
957 verifyOptResult(OptRes);
958 resetPhiOptznState();
959 Result = OptRes.PrimaryClobber.Clobber;
960 }
961
962 #ifdef EXPENSIVE_CHECKS
963 if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0)
964 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
965 #endif
966 return Result;
967 }
968 };
969
970 struct RenamePassData {
971 DomTreeNode *DTN;
972 DomTreeNode::const_iterator ChildIt;
973 MemoryAccess *IncomingVal;
974
RenamePassData__anonca0ba56e0511::RenamePassData975 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
976 MemoryAccess *M)
977 : DTN(D), ChildIt(It), IncomingVal(M) {}
978
swap__anonca0ba56e0511::RenamePassData979 void swap(RenamePassData &RHS) {
980 std::swap(DTN, RHS.DTN);
981 std::swap(ChildIt, RHS.ChildIt);
982 std::swap(IncomingVal, RHS.IncomingVal);
983 }
984 };
985
986 } // end anonymous namespace
987
988 namespace llvm {
989
990 template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase {
991 ClobberWalker<AliasAnalysisType> Walker;
992 MemorySSA *MSSA;
993
994 public:
ClobberWalkerBase(MemorySSA * M,AliasAnalysisType * A,DominatorTree * D)995 ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D)
996 : Walker(*M, *A, *D), MSSA(M) {}
997
998 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *,
999 const MemoryLocation &,
1000 unsigned &);
1001 // Third argument (bool), defines whether the clobber search should skip the
1002 // original queried access. If true, there will be a follow-up query searching
1003 // for a clobber access past "self". Note that the Optimized access is not
1004 // updated if a new clobber is found by this SkipSelf search. If this
1005 // additional query becomes heavily used we may decide to cache the result.
1006 // Walker instantiations will decide how to set the SkipSelf bool.
1007 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool);
1008 };
1009
1010 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
1011 /// longer does caching on its own, but the name has been retained for the
1012 /// moment.
1013 template <class AliasAnalysisType>
1014 class MemorySSA::CachingWalker final : public MemorySSAWalker {
1015 ClobberWalkerBase<AliasAnalysisType> *Walker;
1016
1017 public:
CachingWalker(MemorySSA * M,ClobberWalkerBase<AliasAnalysisType> * W)1018 CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W)
1019 : MemorySSAWalker(M), Walker(W) {}
1020 ~CachingWalker() override = default;
1021
1022 using MemorySSAWalker::getClobberingMemoryAccess;
1023
getClobberingMemoryAccess(MemoryAccess * MA,unsigned & UWL)1024 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) {
1025 return Walker->getClobberingMemoryAccessBase(MA, UWL, false);
1026 }
getClobberingMemoryAccess(MemoryAccess * MA,const MemoryLocation & Loc,unsigned & UWL)1027 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1028 const MemoryLocation &Loc,
1029 unsigned &UWL) {
1030 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL);
1031 }
1032
getClobberingMemoryAccess(MemoryAccess * MA)1033 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override {
1034 unsigned UpwardWalkLimit = MaxCheckLimit;
1035 return getClobberingMemoryAccess(MA, UpwardWalkLimit);
1036 }
getClobberingMemoryAccess(MemoryAccess * MA,const MemoryLocation & Loc)1037 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1038 const MemoryLocation &Loc) override {
1039 unsigned UpwardWalkLimit = MaxCheckLimit;
1040 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit);
1041 }
1042
invalidateInfo(MemoryAccess * MA)1043 void invalidateInfo(MemoryAccess *MA) override {
1044 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1045 MUD->resetOptimized();
1046 }
1047 };
1048
1049 template <class AliasAnalysisType>
1050 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker {
1051 ClobberWalkerBase<AliasAnalysisType> *Walker;
1052
1053 public:
SkipSelfWalker(MemorySSA * M,ClobberWalkerBase<AliasAnalysisType> * W)1054 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W)
1055 : MemorySSAWalker(M), Walker(W) {}
1056 ~SkipSelfWalker() override = default;
1057
1058 using MemorySSAWalker::getClobberingMemoryAccess;
1059
getClobberingMemoryAccess(MemoryAccess * MA,unsigned & UWL)1060 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) {
1061 return Walker->getClobberingMemoryAccessBase(MA, UWL, true);
1062 }
getClobberingMemoryAccess(MemoryAccess * MA,const MemoryLocation & Loc,unsigned & UWL)1063 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1064 const MemoryLocation &Loc,
1065 unsigned &UWL) {
1066 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL);
1067 }
1068
getClobberingMemoryAccess(MemoryAccess * MA)1069 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override {
1070 unsigned UpwardWalkLimit = MaxCheckLimit;
1071 return getClobberingMemoryAccess(MA, UpwardWalkLimit);
1072 }
getClobberingMemoryAccess(MemoryAccess * MA,const MemoryLocation & Loc)1073 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1074 const MemoryLocation &Loc) override {
1075 unsigned UpwardWalkLimit = MaxCheckLimit;
1076 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit);
1077 }
1078
invalidateInfo(MemoryAccess * MA)1079 void invalidateInfo(MemoryAccess *MA) override {
1080 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1081 MUD->resetOptimized();
1082 }
1083 };
1084
1085 } // end namespace llvm
1086
renameSuccessorPhis(BasicBlock * BB,MemoryAccess * IncomingVal,bool RenameAllUses)1087 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
1088 bool RenameAllUses) {
1089 // Pass through values to our successors
1090 for (const BasicBlock *S : successors(BB)) {
1091 auto It = PerBlockAccesses.find(S);
1092 // Rename the phi nodes in our successor block
1093 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1094 continue;
1095 AccessList *Accesses = It->second.get();
1096 auto *Phi = cast<MemoryPhi>(&Accesses->front());
1097 if (RenameAllUses) {
1098 bool ReplacementDone = false;
1099 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
1100 if (Phi->getIncomingBlock(I) == BB) {
1101 Phi->setIncomingValue(I, IncomingVal);
1102 ReplacementDone = true;
1103 }
1104 (void) ReplacementDone;
1105 assert(ReplacementDone && "Incomplete phi during partial rename");
1106 } else
1107 Phi->addIncoming(IncomingVal, BB);
1108 }
1109 }
1110
1111 /// Rename a single basic block into MemorySSA form.
1112 /// Uses the standard SSA renaming algorithm.
1113 /// \returns The new incoming value.
renameBlock(BasicBlock * BB,MemoryAccess * IncomingVal,bool RenameAllUses)1114 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
1115 bool RenameAllUses) {
1116 auto It = PerBlockAccesses.find(BB);
1117 // Skip most processing if the list is empty.
1118 if (It != PerBlockAccesses.end()) {
1119 AccessList *Accesses = It->second.get();
1120 for (MemoryAccess &L : *Accesses) {
1121 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
1122 if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
1123 MUD->setDefiningAccess(IncomingVal);
1124 if (isa<MemoryDef>(&L))
1125 IncomingVal = &L;
1126 } else {
1127 IncomingVal = &L;
1128 }
1129 }
1130 }
1131 return IncomingVal;
1132 }
1133
1134 /// This is the standard SSA renaming algorithm.
1135 ///
1136 /// We walk the dominator tree in preorder, renaming accesses, and then filling
1137 /// in phi nodes in our successors.
renamePass(DomTreeNode * Root,MemoryAccess * IncomingVal,SmallPtrSetImpl<BasicBlock * > & Visited,bool SkipVisited,bool RenameAllUses)1138 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
1139 SmallPtrSetImpl<BasicBlock *> &Visited,
1140 bool SkipVisited, bool RenameAllUses) {
1141 assert(Root && "Trying to rename accesses in an unreachable block");
1142
1143 SmallVector<RenamePassData, 32> WorkStack;
1144 // Skip everything if we already renamed this block and we are skipping.
1145 // Note: You can't sink this into the if, because we need it to occur
1146 // regardless of whether we skip blocks or not.
1147 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
1148 if (SkipVisited && AlreadyVisited)
1149 return;
1150
1151 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
1152 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
1153 WorkStack.push_back({Root, Root->begin(), IncomingVal});
1154
1155 while (!WorkStack.empty()) {
1156 DomTreeNode *Node = WorkStack.back().DTN;
1157 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1158 IncomingVal = WorkStack.back().IncomingVal;
1159
1160 if (ChildIt == Node->end()) {
1161 WorkStack.pop_back();
1162 } else {
1163 DomTreeNode *Child = *ChildIt;
1164 ++WorkStack.back().ChildIt;
1165 BasicBlock *BB = Child->getBlock();
1166 // Note: You can't sink this into the if, because we need it to occur
1167 // regardless of whether we skip blocks or not.
1168 AlreadyVisited = !Visited.insert(BB).second;
1169 if (SkipVisited && AlreadyVisited) {
1170 // We already visited this during our renaming, which can happen when
1171 // being asked to rename multiple blocks. Figure out the incoming val,
1172 // which is the last def.
1173 // Incoming value can only change if there is a block def, and in that
1174 // case, it's the last block def in the list.
1175 if (auto *BlockDefs = getWritableBlockDefs(BB))
1176 IncomingVal = &*BlockDefs->rbegin();
1177 } else
1178 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1179 renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
1180 WorkStack.push_back({Child, Child->begin(), IncomingVal});
1181 }
1182 }
1183 }
1184
1185 /// This handles unreachable block accesses by deleting phi nodes in
1186 /// unreachable blocks, and marking all other unreachable MemoryAccess's as
1187 /// being uses of the live on entry definition.
markUnreachableAsLiveOnEntry(BasicBlock * BB)1188 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1189 assert(!DT->isReachableFromEntry(BB) &&
1190 "Reachable block found while handling unreachable blocks");
1191
1192 // Make sure phi nodes in our reachable successors end up with a
1193 // LiveOnEntryDef for our incoming edge, even though our block is forward
1194 // unreachable. We could just disconnect these blocks from the CFG fully,
1195 // but we do not right now.
1196 for (const BasicBlock *S : successors(BB)) {
1197 if (!DT->isReachableFromEntry(S))
1198 continue;
1199 auto It = PerBlockAccesses.find(S);
1200 // Rename the phi nodes in our successor block
1201 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1202 continue;
1203 AccessList *Accesses = It->second.get();
1204 auto *Phi = cast<MemoryPhi>(&Accesses->front());
1205 Phi->addIncoming(LiveOnEntryDef.get(), BB);
1206 }
1207
1208 auto It = PerBlockAccesses.find(BB);
1209 if (It == PerBlockAccesses.end())
1210 return;
1211
1212 auto &Accesses = It->second;
1213 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1214 auto Next = std::next(AI);
1215 // If we have a phi, just remove it. We are going to replace all
1216 // users with live on entry.
1217 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1218 UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1219 else
1220 Accesses->erase(AI);
1221 AI = Next;
1222 }
1223 }
1224
MemorySSA(Function & Func,AliasAnalysis * AA,DominatorTree * DT)1225 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1226 : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
1227 SkipWalker(nullptr), NextID(0) {
1228 // Build MemorySSA using a batch alias analysis. This reuses the internal
1229 // state that AA collects during an alias()/getModRefInfo() call. This is
1230 // safe because there are no CFG changes while building MemorySSA and can
1231 // significantly reduce the time spent by the compiler in AA, because we will
1232 // make queries about all the instructions in the Function.
1233 assert(AA && "No alias analysis?");
1234 BatchAAResults BatchAA(*AA);
1235 buildMemorySSA(BatchAA);
1236 // Intentionally leave AA to nullptr while building so we don't accidently
1237 // use non-batch AliasAnalysis.
1238 this->AA = AA;
1239 // Also create the walker here.
1240 getWalker();
1241 }
1242
~MemorySSA()1243 MemorySSA::~MemorySSA() {
1244 // Drop all our references
1245 for (const auto &Pair : PerBlockAccesses)
1246 for (MemoryAccess &MA : *Pair.second)
1247 MA.dropAllReferences();
1248 }
1249
getOrCreateAccessList(const BasicBlock * BB)1250 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
1251 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1252
1253 if (Res.second)
1254 Res.first->second = std::make_unique<AccessList>();
1255 return Res.first->second.get();
1256 }
1257
getOrCreateDefsList(const BasicBlock * BB)1258 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1259 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1260
1261 if (Res.second)
1262 Res.first->second = std::make_unique<DefsList>();
1263 return Res.first->second.get();
1264 }
1265
1266 namespace llvm {
1267
1268 /// This class is a batch walker of all MemoryUse's in the program, and points
1269 /// their defining access at the thing that actually clobbers them. Because it
1270 /// is a batch walker that touches everything, it does not operate like the
1271 /// other walkers. This walker is basically performing a top-down SSA renaming
1272 /// pass, where the version stack is used as the cache. This enables it to be
1273 /// significantly more time and memory efficient than using the regular walker,
1274 /// which is walking bottom-up.
1275 class MemorySSA::OptimizeUses {
1276 public:
OptimizeUses(MemorySSA * MSSA,CachingWalker<BatchAAResults> * Walker,BatchAAResults * BAA,DominatorTree * DT)1277 OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker,
1278 BatchAAResults *BAA, DominatorTree *DT)
1279 : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {}
1280
1281 void optimizeUses();
1282
1283 private:
1284 /// This represents where a given memorylocation is in the stack.
1285 struct MemlocStackInfo {
1286 // This essentially is keeping track of versions of the stack. Whenever
1287 // the stack changes due to pushes or pops, these versions increase.
1288 unsigned long StackEpoch;
1289 unsigned long PopEpoch;
1290 // This is the lower bound of places on the stack to check. It is equal to
1291 // the place the last stack walk ended.
1292 // Note: Correctness depends on this being initialized to 0, which densemap
1293 // does
1294 unsigned long LowerBound;
1295 const BasicBlock *LowerBoundBlock;
1296 // This is where the last walk for this memory location ended.
1297 unsigned long LastKill;
1298 bool LastKillValid;
1299 Optional<AliasResult> AR;
1300 };
1301
1302 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1303 SmallVectorImpl<MemoryAccess *> &,
1304 DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
1305
1306 MemorySSA *MSSA;
1307 CachingWalker<BatchAAResults> *Walker;
1308 BatchAAResults *AA;
1309 DominatorTree *DT;
1310 };
1311
1312 } // end namespace llvm
1313
1314 /// Optimize the uses in a given block This is basically the SSA renaming
1315 /// algorithm, with one caveat: We are able to use a single stack for all
1316 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
1317 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
1318 /// going to be some position in that stack of possible ones.
1319 ///
1320 /// We track the stack positions that each MemoryLocation needs
1321 /// to check, and last ended at. This is because we only want to check the
1322 /// things that changed since last time. The same MemoryLocation should
1323 /// get clobbered by the same store (getModRefInfo does not use invariantness or
1324 /// things like this, and if they start, we can modify MemoryLocOrCall to
1325 /// include relevant data)
optimizeUsesInBlock(const BasicBlock * BB,unsigned long & StackEpoch,unsigned long & PopEpoch,SmallVectorImpl<MemoryAccess * > & VersionStack,DenseMap<MemoryLocOrCall,MemlocStackInfo> & LocStackInfo)1326 void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1327 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1328 SmallVectorImpl<MemoryAccess *> &VersionStack,
1329 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1330
1331 /// If no accesses, nothing to do.
1332 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1333 if (Accesses == nullptr)
1334 return;
1335
1336 // Pop everything that doesn't dominate the current block off the stack,
1337 // increment the PopEpoch to account for this.
1338 while (true) {
1339 assert(
1340 !VersionStack.empty() &&
1341 "Version stack should have liveOnEntry sentinel dominating everything");
1342 BasicBlock *BackBlock = VersionStack.back()->getBlock();
1343 if (DT->dominates(BackBlock, BB))
1344 break;
1345 while (VersionStack.back()->getBlock() == BackBlock)
1346 VersionStack.pop_back();
1347 ++PopEpoch;
1348 }
1349
1350 for (MemoryAccess &MA : *Accesses) {
1351 auto *MU = dyn_cast<MemoryUse>(&MA);
1352 if (!MU) {
1353 VersionStack.push_back(&MA);
1354 ++StackEpoch;
1355 continue;
1356 }
1357
1358 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
1359 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
1360 continue;
1361 }
1362
1363 MemoryLocOrCall UseMLOC(MU);
1364 auto &LocInfo = LocStackInfo[UseMLOC];
1365 // If the pop epoch changed, it means we've removed stuff from top of
1366 // stack due to changing blocks. We may have to reset the lower bound or
1367 // last kill info.
1368 if (LocInfo.PopEpoch != PopEpoch) {
1369 LocInfo.PopEpoch = PopEpoch;
1370 LocInfo.StackEpoch = StackEpoch;
1371 // If the lower bound was in something that no longer dominates us, we
1372 // have to reset it.
1373 // We can't simply track stack size, because the stack may have had
1374 // pushes/pops in the meantime.
1375 // XXX: This is non-optimal, but only is slower cases with heavily
1376 // branching dominator trees. To get the optimal number of queries would
1377 // be to make lowerbound and lastkill a per-loc stack, and pop it until
1378 // the top of that stack dominates us. This does not seem worth it ATM.
1379 // A much cheaper optimization would be to always explore the deepest
1380 // branch of the dominator tree first. This will guarantee this resets on
1381 // the smallest set of blocks.
1382 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
1383 !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
1384 // Reset the lower bound of things to check.
1385 // TODO: Some day we should be able to reset to last kill, rather than
1386 // 0.
1387 LocInfo.LowerBound = 0;
1388 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
1389 LocInfo.LastKillValid = false;
1390 }
1391 } else if (LocInfo.StackEpoch != StackEpoch) {
1392 // If all that has changed is the StackEpoch, we only have to check the
1393 // new things on the stack, because we've checked everything before. In
1394 // this case, the lower bound of things to check remains the same.
1395 LocInfo.PopEpoch = PopEpoch;
1396 LocInfo.StackEpoch = StackEpoch;
1397 }
1398 if (!LocInfo.LastKillValid) {
1399 LocInfo.LastKill = VersionStack.size() - 1;
1400 LocInfo.LastKillValid = true;
1401 LocInfo.AR = MayAlias;
1402 }
1403
1404 // At this point, we should have corrected last kill and LowerBound to be
1405 // in bounds.
1406 assert(LocInfo.LowerBound < VersionStack.size() &&
1407 "Lower bound out of range");
1408 assert(LocInfo.LastKill < VersionStack.size() &&
1409 "Last kill info out of range");
1410 // In any case, the new upper bound is the top of the stack.
1411 unsigned long UpperBound = VersionStack.size() - 1;
1412
1413 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
1414 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1415 << *(MU->getMemoryInst()) << ")"
1416 << " because there are "
1417 << UpperBound - LocInfo.LowerBound
1418 << " stores to disambiguate\n");
1419 // Because we did not walk, LastKill is no longer valid, as this may
1420 // have been a kill.
1421 LocInfo.LastKillValid = false;
1422 continue;
1423 }
1424 bool FoundClobberResult = false;
1425 unsigned UpwardWalkLimit = MaxCheckLimit;
1426 while (UpperBound > LocInfo.LowerBound) {
1427 if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1428 // For phis, use the walker, see where we ended up, go there
1429 MemoryAccess *Result =
1430 Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit);
1431 // We are guaranteed to find it or something is wrong
1432 while (VersionStack[UpperBound] != Result) {
1433 assert(UpperBound != 0);
1434 --UpperBound;
1435 }
1436 FoundClobberResult = true;
1437 break;
1438 }
1439
1440 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
1441 // If the lifetime of the pointer ends at this instruction, it's live on
1442 // entry.
1443 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
1444 // Reset UpperBound to liveOnEntryDef's place in the stack
1445 UpperBound = 0;
1446 FoundClobberResult = true;
1447 LocInfo.AR = MustAlias;
1448 break;
1449 }
1450 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1451 if (CA.IsClobber) {
1452 FoundClobberResult = true;
1453 LocInfo.AR = CA.AR;
1454 break;
1455 }
1456 --UpperBound;
1457 }
1458
1459 // Note: Phis always have AliasResult AR set to MayAlias ATM.
1460
1461 // At the end of this loop, UpperBound is either a clobber, or lower bound
1462 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1463 if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
1464 // We were last killed now by where we got to
1465 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1466 LocInfo.AR = None;
1467 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
1468 LocInfo.LastKill = UpperBound;
1469 } else {
1470 // Otherwise, we checked all the new ones, and now we know we can get to
1471 // LastKill.
1472 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
1473 }
1474 LocInfo.LowerBound = VersionStack.size() - 1;
1475 LocInfo.LowerBoundBlock = BB;
1476 }
1477 }
1478
1479 /// Optimize uses to point to their actual clobbering definitions.
optimizeUses()1480 void MemorySSA::OptimizeUses::optimizeUses() {
1481 SmallVector<MemoryAccess *, 16> VersionStack;
1482 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
1483 VersionStack.push_back(MSSA->getLiveOnEntryDef());
1484
1485 unsigned long StackEpoch = 1;
1486 unsigned long PopEpoch = 1;
1487 // We perform a non-recursive top-down dominator tree walk.
1488 for (const auto *DomNode : depth_first(DT->getRootNode()))
1489 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1490 LocStackInfo);
1491 }
1492
placePHINodes(const SmallPtrSetImpl<BasicBlock * > & DefiningBlocks)1493 void MemorySSA::placePHINodes(
1494 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
1495 // Determine where our MemoryPhi's should go
1496 ForwardIDFCalculator IDFs(*DT);
1497 IDFs.setDefiningBlocks(DefiningBlocks);
1498 SmallVector<BasicBlock *, 32> IDFBlocks;
1499 IDFs.calculate(IDFBlocks);
1500
1501 // Now place MemoryPhi nodes.
1502 for (auto &BB : IDFBlocks)
1503 createMemoryPhi(BB);
1504 }
1505
buildMemorySSA(BatchAAResults & BAA)1506 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) {
1507 // We create an access to represent "live on entry", for things like
1508 // arguments or users of globals, where the memory they use is defined before
1509 // the beginning of the function. We do not actually insert it into the IR.
1510 // We do not define a live on exit for the immediate uses, and thus our
1511 // semantics do *not* imply that something with no immediate uses can simply
1512 // be removed.
1513 BasicBlock &StartingPoint = F.getEntryBlock();
1514 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1515 &StartingPoint, NextID++));
1516
1517 // We maintain lists of memory accesses per-block, trading memory for time. We
1518 // could just look up the memory access for every possible instruction in the
1519 // stream.
1520 SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
1521 // Go through each block, figure out where defs occur, and chain together all
1522 // the accesses.
1523 for (BasicBlock &B : F) {
1524 bool InsertIntoDef = false;
1525 AccessList *Accesses = nullptr;
1526 DefsList *Defs = nullptr;
1527 for (Instruction &I : B) {
1528 MemoryUseOrDef *MUD = createNewAccess(&I, &BAA);
1529 if (!MUD)
1530 continue;
1531
1532 if (!Accesses)
1533 Accesses = getOrCreateAccessList(&B);
1534 Accesses->push_back(MUD);
1535 if (isa<MemoryDef>(MUD)) {
1536 InsertIntoDef = true;
1537 if (!Defs)
1538 Defs = getOrCreateDefsList(&B);
1539 Defs->push_back(*MUD);
1540 }
1541 }
1542 if (InsertIntoDef)
1543 DefiningBlocks.insert(&B);
1544 }
1545 placePHINodes(DefiningBlocks);
1546
1547 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1548 // filled in with all blocks.
1549 SmallPtrSet<BasicBlock *, 16> Visited;
1550 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1551
1552 ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT);
1553 CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase);
1554 OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses();
1555
1556 // Mark the uses in unreachable blocks as live on entry, so that they go
1557 // somewhere.
1558 for (auto &BB : F)
1559 if (!Visited.count(&BB))
1560 markUnreachableAsLiveOnEntry(&BB);
1561 }
1562
getWalker()1563 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1564
getWalkerImpl()1565 MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() {
1566 if (Walker)
1567 return Walker.get();
1568
1569 if (!WalkerBase)
1570 WalkerBase =
1571 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT);
1572
1573 Walker =
1574 std::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get());
1575 return Walker.get();
1576 }
1577
getSkipSelfWalker()1578 MemorySSAWalker *MemorySSA::getSkipSelfWalker() {
1579 if (SkipWalker)
1580 return SkipWalker.get();
1581
1582 if (!WalkerBase)
1583 WalkerBase =
1584 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT);
1585
1586 SkipWalker =
1587 std::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get());
1588 return SkipWalker.get();
1589 }
1590
1591
1592 // This is a helper function used by the creation routines. It places NewAccess
1593 // into the access and defs lists for a given basic block, at the given
1594 // insertion point.
insertIntoListsForBlock(MemoryAccess * NewAccess,const BasicBlock * BB,InsertionPlace Point)1595 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1596 const BasicBlock *BB,
1597 InsertionPlace Point) {
1598 auto *Accesses = getOrCreateAccessList(BB);
1599 if (Point == Beginning) {
1600 // If it's a phi node, it goes first, otherwise, it goes after any phi
1601 // nodes.
1602 if (isa<MemoryPhi>(NewAccess)) {
1603 Accesses->push_front(NewAccess);
1604 auto *Defs = getOrCreateDefsList(BB);
1605 Defs->push_front(*NewAccess);
1606 } else {
1607 auto AI = find_if_not(
1608 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1609 Accesses->insert(AI, NewAccess);
1610 if (!isa<MemoryUse>(NewAccess)) {
1611 auto *Defs = getOrCreateDefsList(BB);
1612 auto DI = find_if_not(
1613 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1614 Defs->insert(DI, *NewAccess);
1615 }
1616 }
1617 } else {
1618 Accesses->push_back(NewAccess);
1619 if (!isa<MemoryUse>(NewAccess)) {
1620 auto *Defs = getOrCreateDefsList(BB);
1621 Defs->push_back(*NewAccess);
1622 }
1623 }
1624 BlockNumberingValid.erase(BB);
1625 }
1626
insertIntoListsBefore(MemoryAccess * What,const BasicBlock * BB,AccessList::iterator InsertPt)1627 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1628 AccessList::iterator InsertPt) {
1629 auto *Accesses = getWritableBlockAccesses(BB);
1630 bool WasEnd = InsertPt == Accesses->end();
1631 Accesses->insert(AccessList::iterator(InsertPt), What);
1632 if (!isa<MemoryUse>(What)) {
1633 auto *Defs = getOrCreateDefsList(BB);
1634 // If we got asked to insert at the end, we have an easy job, just shove it
1635 // at the end. If we got asked to insert before an existing def, we also get
1636 // an iterator. If we got asked to insert before a use, we have to hunt for
1637 // the next def.
1638 if (WasEnd) {
1639 Defs->push_back(*What);
1640 } else if (isa<MemoryDef>(InsertPt)) {
1641 Defs->insert(InsertPt->getDefsIterator(), *What);
1642 } else {
1643 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1644 ++InsertPt;
1645 // Either we found a def, or we are inserting at the end
1646 if (InsertPt == Accesses->end())
1647 Defs->push_back(*What);
1648 else
1649 Defs->insert(InsertPt->getDefsIterator(), *What);
1650 }
1651 }
1652 BlockNumberingValid.erase(BB);
1653 }
1654
prepareForMoveTo(MemoryAccess * What,BasicBlock * BB)1655 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
1656 // Keep it in the lookup tables, remove from the lists
1657 removeFromLists(What, false);
1658
1659 // Note that moving should implicitly invalidate the optimized state of a
1660 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1661 // MemoryDef.
1662 if (auto *MD = dyn_cast<MemoryDef>(What))
1663 MD->resetOptimized();
1664 What->setBlock(BB);
1665 }
1666
1667 // Move What before Where in the IR. The end result is that What will belong to
1668 // the right lists and have the right Block set, but will not otherwise be
1669 // correct. It will not have the right defining access, and if it is a def,
1670 // things below it will not properly be updated.
moveTo(MemoryUseOrDef * What,BasicBlock * BB,AccessList::iterator Where)1671 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1672 AccessList::iterator Where) {
1673 prepareForMoveTo(What, BB);
1674 insertIntoListsBefore(What, BB, Where);
1675 }
1676
moveTo(MemoryAccess * What,BasicBlock * BB,InsertionPlace Point)1677 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
1678 InsertionPlace Point) {
1679 if (isa<MemoryPhi>(What)) {
1680 assert(Point == Beginning &&
1681 "Can only move a Phi at the beginning of the block");
1682 // Update lookup table entry
1683 ValueToMemoryAccess.erase(What->getBlock());
1684 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
1685 (void)Inserted;
1686 assert(Inserted && "Cannot move a Phi to a block that already has one");
1687 }
1688
1689 prepareForMoveTo(What, BB);
1690 insertIntoListsForBlock(What, BB, Point);
1691 }
1692
createMemoryPhi(BasicBlock * BB)1693 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1694 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
1695 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
1696 // Phi's always are placed at the front of the block.
1697 insertIntoListsForBlock(Phi, BB, Beginning);
1698 ValueToMemoryAccess[BB] = Phi;
1699 return Phi;
1700 }
1701
createDefinedAccess(Instruction * I,MemoryAccess * Definition,const MemoryUseOrDef * Template,bool CreationMustSucceed)1702 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1703 MemoryAccess *Definition,
1704 const MemoryUseOrDef *Template,
1705 bool CreationMustSucceed) {
1706 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1707 MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template);
1708 if (CreationMustSucceed)
1709 assert(NewAccess != nullptr && "Tried to create a memory access for a "
1710 "non-memory touching instruction");
1711 if (NewAccess)
1712 NewAccess->setDefiningAccess(Definition);
1713 return NewAccess;
1714 }
1715
1716 // Return true if the instruction has ordering constraints.
1717 // Note specifically that this only considers stores and loads
1718 // because others are still considered ModRef by getModRefInfo.
isOrdered(const Instruction * I)1719 static inline bool isOrdered(const Instruction *I) {
1720 if (auto *SI = dyn_cast<StoreInst>(I)) {
1721 if (!SI->isUnordered())
1722 return true;
1723 } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1724 if (!LI->isUnordered())
1725 return true;
1726 }
1727 return false;
1728 }
1729
1730 /// Helper function to create new memory accesses
1731 template <typename AliasAnalysisType>
createNewAccess(Instruction * I,AliasAnalysisType * AAP,const MemoryUseOrDef * Template)1732 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I,
1733 AliasAnalysisType *AAP,
1734 const MemoryUseOrDef *Template) {
1735 // The assume intrinsic has a control dependency which we model by claiming
1736 // that it writes arbitrarily. Debuginfo intrinsics may be considered
1737 // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory
1738 // dependencies here.
1739 // FIXME: Replace this special casing with a more accurate modelling of
1740 // assume's control dependency.
1741 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1742 if (II->getIntrinsicID() == Intrinsic::assume)
1743 return nullptr;
1744
1745 // Using a nonstandard AA pipelines might leave us with unexpected modref
1746 // results for I, so add a check to not model instructions that may not read
1747 // from or write to memory. This is necessary for correctness.
1748 if (!I->mayReadFromMemory() && !I->mayWriteToMemory())
1749 return nullptr;
1750
1751 bool Def, Use;
1752 if (Template) {
1753 Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr;
1754 Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr;
1755 #if !defined(NDEBUG)
1756 ModRefInfo ModRef = AAP->getModRefInfo(I, None);
1757 bool DefCheck, UseCheck;
1758 DefCheck = isModSet(ModRef) || isOrdered(I);
1759 UseCheck = isRefSet(ModRef);
1760 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template");
1761 #endif
1762 } else {
1763 // Find out what affect this instruction has on memory.
1764 ModRefInfo ModRef = AAP->getModRefInfo(I, None);
1765 // The isOrdered check is used to ensure that volatiles end up as defs
1766 // (atomics end up as ModRef right now anyway). Until we separate the
1767 // ordering chain from the memory chain, this enables people to see at least
1768 // some relative ordering to volatiles. Note that getClobberingMemoryAccess
1769 // will still give an answer that bypasses other volatile loads. TODO:
1770 // Separate memory aliasing and ordering into two different chains so that
1771 // we can precisely represent both "what memory will this read/write/is
1772 // clobbered by" and "what instructions can I move this past".
1773 Def = isModSet(ModRef) || isOrdered(I);
1774 Use = isRefSet(ModRef);
1775 }
1776
1777 // It's possible for an instruction to not modify memory at all. During
1778 // construction, we ignore them.
1779 if (!Def && !Use)
1780 return nullptr;
1781
1782 MemoryUseOrDef *MUD;
1783 if (Def)
1784 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
1785 else
1786 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
1787 ValueToMemoryAccess[I] = MUD;
1788 return MUD;
1789 }
1790
1791 /// Returns true if \p Replacer dominates \p Replacee .
dominatesUse(const MemoryAccess * Replacer,const MemoryAccess * Replacee) const1792 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
1793 const MemoryAccess *Replacee) const {
1794 if (isa<MemoryUseOrDef>(Replacee))
1795 return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
1796 const auto *MP = cast<MemoryPhi>(Replacee);
1797 // For a phi node, the use occurs in the predecessor block of the phi node.
1798 // Since we may occur multiple times in the phi node, we have to check each
1799 // operand to ensure Replacer dominates each operand where Replacee occurs.
1800 for (const Use &Arg : MP->operands()) {
1801 if (Arg.get() != Replacee &&
1802 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
1803 return false;
1804 }
1805 return true;
1806 }
1807
1808 /// Properly remove \p MA from all of MemorySSA's lookup tables.
removeFromLookups(MemoryAccess * MA)1809 void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1810 assert(MA->use_empty() &&
1811 "Trying to remove memory access that still has uses");
1812 BlockNumbering.erase(MA);
1813 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1814 MUD->setDefiningAccess(nullptr);
1815 // Invalidate our walker's cache if necessary
1816 if (!isa<MemoryUse>(MA))
1817 getWalker()->invalidateInfo(MA);
1818
1819 Value *MemoryInst;
1820 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1821 MemoryInst = MUD->getMemoryInst();
1822 else
1823 MemoryInst = MA->getBlock();
1824
1825 auto VMA = ValueToMemoryAccess.find(MemoryInst);
1826 if (VMA->second == MA)
1827 ValueToMemoryAccess.erase(VMA);
1828 }
1829
1830 /// Properly remove \p MA from all of MemorySSA's lists.
1831 ///
1832 /// Because of the way the intrusive list and use lists work, it is important to
1833 /// do removal in the right order.
1834 /// ShouldDelete defaults to true, and will cause the memory access to also be
1835 /// deleted, not just removed.
removeFromLists(MemoryAccess * MA,bool ShouldDelete)1836 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
1837 BasicBlock *BB = MA->getBlock();
1838 // The access list owns the reference, so we erase it from the non-owning list
1839 // first.
1840 if (!isa<MemoryUse>(MA)) {
1841 auto DefsIt = PerBlockDefs.find(BB);
1842 std::unique_ptr<DefsList> &Defs = DefsIt->second;
1843 Defs->remove(*MA);
1844 if (Defs->empty())
1845 PerBlockDefs.erase(DefsIt);
1846 }
1847
1848 // The erase call here will delete it. If we don't want it deleted, we call
1849 // remove instead.
1850 auto AccessIt = PerBlockAccesses.find(BB);
1851 std::unique_ptr<AccessList> &Accesses = AccessIt->second;
1852 if (ShouldDelete)
1853 Accesses->erase(MA);
1854 else
1855 Accesses->remove(MA);
1856
1857 if (Accesses->empty()) {
1858 PerBlockAccesses.erase(AccessIt);
1859 BlockNumberingValid.erase(BB);
1860 }
1861 }
1862
print(raw_ostream & OS) const1863 void MemorySSA::print(raw_ostream &OS) const {
1864 MemorySSAAnnotatedWriter Writer(this);
1865 F.print(OS, &Writer);
1866 }
1867
1868 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1869 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
1870 #endif
1871
verifyMemorySSA() const1872 void MemorySSA::verifyMemorySSA() const {
1873 verifyOrderingDominationAndDefUses(F);
1874 verifyDominationNumbers(F);
1875 verifyPrevDefInPhis(F);
1876 // Previously, the verification used to also verify that the clobberingAccess
1877 // cached by MemorySSA is the same as the clobberingAccess found at a later
1878 // query to AA. This does not hold true in general due to the current fragility
1879 // of BasicAA which has arbitrary caps on the things it analyzes before giving
1880 // up. As a result, transformations that are correct, will lead to BasicAA
1881 // returning different Alias answers before and after that transformation.
1882 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so
1883 // random, in the worst case we'd need to rebuild MemorySSA from scratch after
1884 // every transformation, which defeats the purpose of using it. For such an
1885 // example, see test4 added in D51960.
1886 }
1887
verifyPrevDefInPhis(Function & F) const1888 void MemorySSA::verifyPrevDefInPhis(Function &F) const {
1889 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
1890 for (const BasicBlock &BB : F) {
1891 if (MemoryPhi *Phi = getMemoryAccess(&BB)) {
1892 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1893 auto *Pred = Phi->getIncomingBlock(I);
1894 auto *IncAcc = Phi->getIncomingValue(I);
1895 // If Pred has no unreachable predecessors, get last def looking at
1896 // IDoms. If, while walkings IDoms, any of these has an unreachable
1897 // predecessor, then the incoming def can be any access.
1898 if (auto *DTNode = DT->getNode(Pred)) {
1899 while (DTNode) {
1900 if (auto *DefList = getBlockDefs(DTNode->getBlock())) {
1901 auto *LastAcc = &*(--DefList->end());
1902 assert(LastAcc == IncAcc &&
1903 "Incorrect incoming access into phi.");
1904 break;
1905 }
1906 DTNode = DTNode->getIDom();
1907 }
1908 } else {
1909 // If Pred has unreachable predecessors, but has at least a Def, the
1910 // incoming access can be the last Def in Pred, or it could have been
1911 // optimized to LoE. After an update, though, the LoE may have been
1912 // replaced by another access, so IncAcc may be any access.
1913 // If Pred has unreachable predecessors and no Defs, incoming access
1914 // should be LoE; However, after an update, it may be any access.
1915 }
1916 }
1917 }
1918 }
1919 #endif
1920 }
1921
1922 /// Verify that all of the blocks we believe to have valid domination numbers
1923 /// actually have valid domination numbers.
verifyDominationNumbers(const Function & F) const1924 void MemorySSA::verifyDominationNumbers(const Function &F) const {
1925 #ifndef NDEBUG
1926 if (BlockNumberingValid.empty())
1927 return;
1928
1929 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
1930 for (const BasicBlock &BB : F) {
1931 if (!ValidBlocks.count(&BB))
1932 continue;
1933
1934 ValidBlocks.erase(&BB);
1935
1936 const AccessList *Accesses = getBlockAccesses(&BB);
1937 // It's correct to say an empty block has valid numbering.
1938 if (!Accesses)
1939 continue;
1940
1941 // Block numbering starts at 1.
1942 unsigned long LastNumber = 0;
1943 for (const MemoryAccess &MA : *Accesses) {
1944 auto ThisNumberIter = BlockNumbering.find(&MA);
1945 assert(ThisNumberIter != BlockNumbering.end() &&
1946 "MemoryAccess has no domination number in a valid block!");
1947
1948 unsigned long ThisNumber = ThisNumberIter->second;
1949 assert(ThisNumber > LastNumber &&
1950 "Domination numbers should be strictly increasing!");
1951 LastNumber = ThisNumber;
1952 }
1953 }
1954
1955 assert(ValidBlocks.empty() &&
1956 "All valid BasicBlocks should exist in F -- dangling pointers?");
1957 #endif
1958 }
1959
1960 /// Verify ordering: the order and existence of MemoryAccesses matches the
1961 /// order and existence of memory affecting instructions.
1962 /// Verify domination: each definition dominates all of its uses.
1963 /// Verify def-uses: the immediate use information - walk all the memory
1964 /// accesses and verifying that, for each use, it appears in the appropriate
1965 /// def's use list
verifyOrderingDominationAndDefUses(Function & F) const1966 void MemorySSA::verifyOrderingDominationAndDefUses(Function &F) const {
1967 #if !defined(NDEBUG)
1968 // Walk all the blocks, comparing what the lookups think and what the access
1969 // lists think, as well as the order in the blocks vs the order in the access
1970 // lists.
1971 SmallVector<MemoryAccess *, 32> ActualAccesses;
1972 SmallVector<MemoryAccess *, 32> ActualDefs;
1973 for (BasicBlock &B : F) {
1974 const AccessList *AL = getBlockAccesses(&B);
1975 const auto *DL = getBlockDefs(&B);
1976 MemoryPhi *Phi = getMemoryAccess(&B);
1977 if (Phi) {
1978 // Verify ordering.
1979 ActualAccesses.push_back(Phi);
1980 ActualDefs.push_back(Phi);
1981 // Verify domination
1982 for (const Use &U : Phi->uses())
1983 assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses");
1984 #if defined(EXPENSIVE_CHECKS)
1985 // Verify def-uses.
1986 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1987 pred_begin(&B), pred_end(&B))) &&
1988 "Incomplete MemoryPhi Node");
1989 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1990 verifyUseInDefs(Phi->getIncomingValue(I), Phi);
1991 assert(find(predecessors(&B), Phi->getIncomingBlock(I)) !=
1992 pred_end(&B) &&
1993 "Incoming phi block not a block predecessor");
1994 }
1995 #endif
1996 }
1997
1998 for (Instruction &I : B) {
1999 MemoryUseOrDef *MA = getMemoryAccess(&I);
2000 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
2001 "We have memory affecting instructions "
2002 "in this block but they are not in the "
2003 "access list or defs list");
2004 if (MA) {
2005 // Verify ordering.
2006 ActualAccesses.push_back(MA);
2007 if (MemoryAccess *MD = dyn_cast<MemoryDef>(MA)) {
2008 // Verify ordering.
2009 ActualDefs.push_back(MA);
2010 // Verify domination.
2011 for (const Use &U : MD->uses())
2012 assert(dominates(MD, U) &&
2013 "Memory Def does not dominate it's uses");
2014 }
2015 #if defined(EXPENSIVE_CHECKS)
2016 // Verify def-uses.
2017 verifyUseInDefs(MA->getDefiningAccess(), MA);
2018 #endif
2019 }
2020 }
2021 // Either we hit the assert, really have no accesses, or we have both
2022 // accesses and an access list. Same with defs.
2023 if (!AL && !DL)
2024 continue;
2025 // Verify ordering.
2026 assert(AL->size() == ActualAccesses.size() &&
2027 "We don't have the same number of accesses in the block as on the "
2028 "access list");
2029 assert((DL || ActualDefs.size() == 0) &&
2030 "Either we should have a defs list, or we should have no defs");
2031 assert((!DL || DL->size() == ActualDefs.size()) &&
2032 "We don't have the same number of defs in the block as on the "
2033 "def list");
2034 auto ALI = AL->begin();
2035 auto AAI = ActualAccesses.begin();
2036 while (ALI != AL->end() && AAI != ActualAccesses.end()) {
2037 assert(&*ALI == *AAI && "Not the same accesses in the same order");
2038 ++ALI;
2039 ++AAI;
2040 }
2041 ActualAccesses.clear();
2042 if (DL) {
2043 auto DLI = DL->begin();
2044 auto ADI = ActualDefs.begin();
2045 while (DLI != DL->end() && ADI != ActualDefs.end()) {
2046 assert(&*DLI == *ADI && "Not the same defs in the same order");
2047 ++DLI;
2048 ++ADI;
2049 }
2050 }
2051 ActualDefs.clear();
2052 }
2053 #endif
2054 }
2055
2056 /// Verify the def-use lists in MemorySSA, by verifying that \p Use
2057 /// appears in the use list of \p Def.
verifyUseInDefs(MemoryAccess * Def,MemoryAccess * Use) const2058 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
2059 #ifndef NDEBUG
2060 // The live on entry use may cause us to get a NULL def here
2061 if (!Def)
2062 assert(isLiveOnEntryDef(Use) &&
2063 "Null def but use not point to live on entry def");
2064 else
2065 assert(is_contained(Def->users(), Use) &&
2066 "Did not find use in def's use list");
2067 #endif
2068 }
2069
2070 /// Perform a local numbering on blocks so that instruction ordering can be
2071 /// determined in constant time.
2072 /// TODO: We currently just number in order. If we numbered by N, we could
2073 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
2074 /// log2(N) sequences of mixed before and after) without needing to invalidate
2075 /// the numbering.
renumberBlock(const BasicBlock * B) const2076 void MemorySSA::renumberBlock(const BasicBlock *B) const {
2077 // The pre-increment ensures the numbers really start at 1.
2078 unsigned long CurrentNumber = 0;
2079 const AccessList *AL = getBlockAccesses(B);
2080 assert(AL != nullptr && "Asking to renumber an empty block");
2081 for (const auto &I : *AL)
2082 BlockNumbering[&I] = ++CurrentNumber;
2083 BlockNumberingValid.insert(B);
2084 }
2085
2086 /// Determine, for two memory accesses in the same block,
2087 /// whether \p Dominator dominates \p Dominatee.
2088 /// \returns True if \p Dominator dominates \p Dominatee.
locallyDominates(const MemoryAccess * Dominator,const MemoryAccess * Dominatee) const2089 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
2090 const MemoryAccess *Dominatee) const {
2091 const BasicBlock *DominatorBlock = Dominator->getBlock();
2092
2093 assert((DominatorBlock == Dominatee->getBlock()) &&
2094 "Asking for local domination when accesses are in different blocks!");
2095 // A node dominates itself.
2096 if (Dominatee == Dominator)
2097 return true;
2098
2099 // When Dominatee is defined on function entry, it is not dominated by another
2100 // memory access.
2101 if (isLiveOnEntryDef(Dominatee))
2102 return false;
2103
2104 // When Dominator is defined on function entry, it dominates the other memory
2105 // access.
2106 if (isLiveOnEntryDef(Dominator))
2107 return true;
2108
2109 if (!BlockNumberingValid.count(DominatorBlock))
2110 renumberBlock(DominatorBlock);
2111
2112 unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
2113 // All numbers start with 1
2114 assert(DominatorNum != 0 && "Block was not numbered properly");
2115 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
2116 assert(DominateeNum != 0 && "Block was not numbered properly");
2117 return DominatorNum < DominateeNum;
2118 }
2119
dominates(const MemoryAccess * Dominator,const MemoryAccess * Dominatee) const2120 bool MemorySSA::dominates(const MemoryAccess *Dominator,
2121 const MemoryAccess *Dominatee) const {
2122 if (Dominator == Dominatee)
2123 return true;
2124
2125 if (isLiveOnEntryDef(Dominatee))
2126 return false;
2127
2128 if (Dominator->getBlock() != Dominatee->getBlock())
2129 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
2130 return locallyDominates(Dominator, Dominatee);
2131 }
2132
dominates(const MemoryAccess * Dominator,const Use & Dominatee) const2133 bool MemorySSA::dominates(const MemoryAccess *Dominator,
2134 const Use &Dominatee) const {
2135 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
2136 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
2137 // The def must dominate the incoming block of the phi.
2138 if (UseBB != Dominator->getBlock())
2139 return DT->dominates(Dominator->getBlock(), UseBB);
2140 // If the UseBB and the DefBB are the same, compare locally.
2141 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
2142 }
2143 // If it's not a PHI node use, the normal dominates can already handle it.
2144 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
2145 }
2146
2147 const static char LiveOnEntryStr[] = "liveOnEntry";
2148
print(raw_ostream & OS) const2149 void MemoryAccess::print(raw_ostream &OS) const {
2150 switch (getValueID()) {
2151 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
2152 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
2153 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
2154 }
2155 llvm_unreachable("invalid value id");
2156 }
2157
print(raw_ostream & OS) const2158 void MemoryDef::print(raw_ostream &OS) const {
2159 MemoryAccess *UO = getDefiningAccess();
2160
2161 auto printID = [&OS](MemoryAccess *A) {
2162 if (A && A->getID())
2163 OS << A->getID();
2164 else
2165 OS << LiveOnEntryStr;
2166 };
2167
2168 OS << getID() << " = MemoryDef(";
2169 printID(UO);
2170 OS << ")";
2171
2172 if (isOptimized()) {
2173 OS << "->";
2174 printID(getOptimized());
2175
2176 if (Optional<AliasResult> AR = getOptimizedAccessType())
2177 OS << " " << *AR;
2178 }
2179 }
2180
print(raw_ostream & OS) const2181 void MemoryPhi::print(raw_ostream &OS) const {
2182 bool First = true;
2183 OS << getID() << " = MemoryPhi(";
2184 for (const auto &Op : operands()) {
2185 BasicBlock *BB = getIncomingBlock(Op);
2186 MemoryAccess *MA = cast<MemoryAccess>(Op);
2187 if (!First)
2188 OS << ',';
2189 else
2190 First = false;
2191
2192 OS << '{';
2193 if (BB->hasName())
2194 OS << BB->getName();
2195 else
2196 BB->printAsOperand(OS, false);
2197 OS << ',';
2198 if (unsigned ID = MA->getID())
2199 OS << ID;
2200 else
2201 OS << LiveOnEntryStr;
2202 OS << '}';
2203 }
2204 OS << ')';
2205 }
2206
print(raw_ostream & OS) const2207 void MemoryUse::print(raw_ostream &OS) const {
2208 MemoryAccess *UO = getDefiningAccess();
2209 OS << "MemoryUse(";
2210 if (UO && UO->getID())
2211 OS << UO->getID();
2212 else
2213 OS << LiveOnEntryStr;
2214 OS << ')';
2215
2216 if (Optional<AliasResult> AR = getOptimizedAccessType())
2217 OS << " " << *AR;
2218 }
2219
dump() const2220 void MemoryAccess::dump() const {
2221 // Cannot completely remove virtual function even in release mode.
2222 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2223 print(dbgs());
2224 dbgs() << "\n";
2225 #endif
2226 }
2227
2228 char MemorySSAPrinterLegacyPass::ID = 0;
2229
MemorySSAPrinterLegacyPass()2230 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
2231 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
2232 }
2233
getAnalysisUsage(AnalysisUsage & AU) const2234 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
2235 AU.setPreservesAll();
2236 AU.addRequired<MemorySSAWrapperPass>();
2237 }
2238
runOnFunction(Function & F)2239 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
2240 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2241 MSSA.print(dbgs());
2242 if (VerifyMemorySSA)
2243 MSSA.verifyMemorySSA();
2244 return false;
2245 }
2246
2247 AnalysisKey MemorySSAAnalysis::Key;
2248
run(Function & F,FunctionAnalysisManager & AM)2249 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
2250 FunctionAnalysisManager &AM) {
2251 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2252 auto &AA = AM.getResult<AAManager>(F);
2253 return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT));
2254 }
2255
invalidate(Function & F,const PreservedAnalyses & PA,FunctionAnalysisManager::Invalidator & Inv)2256 bool MemorySSAAnalysis::Result::invalidate(
2257 Function &F, const PreservedAnalyses &PA,
2258 FunctionAnalysisManager::Invalidator &Inv) {
2259 auto PAC = PA.getChecker<MemorySSAAnalysis>();
2260 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
2261 Inv.invalidate<AAManager>(F, PA) ||
2262 Inv.invalidate<DominatorTreeAnalysis>(F, PA);
2263 }
2264
run(Function & F,FunctionAnalysisManager & AM)2265 PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
2266 FunctionAnalysisManager &AM) {
2267 OS << "MemorySSA for function: " << F.getName() << "\n";
2268 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
2269
2270 return PreservedAnalyses::all();
2271 }
2272
run(Function & F,FunctionAnalysisManager & AM)2273 PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
2274 FunctionAnalysisManager &AM) {
2275 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
2276
2277 return PreservedAnalyses::all();
2278 }
2279
2280 char MemorySSAWrapperPass::ID = 0;
2281
MemorySSAWrapperPass()2282 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
2283 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2284 }
2285
releaseMemory()2286 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2287
getAnalysisUsage(AnalysisUsage & AU) const2288 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2289 AU.setPreservesAll();
2290 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2291 AU.addRequiredTransitive<AAResultsWrapperPass>();
2292 }
2293
runOnFunction(Function & F)2294 bool MemorySSAWrapperPass::runOnFunction(Function &F) {
2295 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2296 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2297 MSSA.reset(new MemorySSA(F, &AA, &DT));
2298 return false;
2299 }
2300
verifyAnalysis() const2301 void MemorySSAWrapperPass::verifyAnalysis() const {
2302 if (VerifyMemorySSA)
2303 MSSA->verifyMemorySSA();
2304 }
2305
print(raw_ostream & OS,const Module * M) const2306 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
2307 MSSA->print(OS);
2308 }
2309
MemorySSAWalker(MemorySSA * M)2310 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2311
2312 /// Walk the use-def chains starting at \p StartingAccess and find
2313 /// the MemoryAccess that actually clobbers Loc.
2314 ///
2315 /// \returns our clobbering memory access
2316 template <typename AliasAnalysisType>
2317 MemoryAccess *
getClobberingMemoryAccessBase(MemoryAccess * StartingAccess,const MemoryLocation & Loc,unsigned & UpwardWalkLimit)2318 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase(
2319 MemoryAccess *StartingAccess, const MemoryLocation &Loc,
2320 unsigned &UpwardWalkLimit) {
2321 if (isa<MemoryPhi>(StartingAccess))
2322 return StartingAccess;
2323
2324 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
2325 if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2326 return StartingUseOrDef;
2327
2328 Instruction *I = StartingUseOrDef->getMemoryInst();
2329
2330 // Conservatively, fences are always clobbers, so don't perform the walk if we
2331 // hit a fence.
2332 if (!isa<CallBase>(I) && I->isFenceLike())
2333 return StartingUseOrDef;
2334
2335 UpwardsMemoryQuery Q;
2336 Q.OriginalAccess = StartingUseOrDef;
2337 Q.StartingLoc = Loc;
2338 Q.Inst = I;
2339 Q.IsCall = false;
2340
2341 // Unlike the other function, do not walk to the def of a def, because we are
2342 // handed something we already believe is the clobbering access.
2343 // We never set SkipSelf to true in Q in this method.
2344 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
2345 ? StartingUseOrDef->getDefiningAccess()
2346 : StartingUseOrDef;
2347
2348 MemoryAccess *Clobber =
2349 Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit);
2350 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2351 LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n");
2352 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2353 LLVM_DEBUG(dbgs() << *Clobber << "\n");
2354 return Clobber;
2355 }
2356
2357 template <typename AliasAnalysisType>
2358 MemoryAccess *
getClobberingMemoryAccessBase(MemoryAccess * MA,unsigned & UpwardWalkLimit,bool SkipSelf)2359 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase(
2360 MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) {
2361 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2362 // If this is a MemoryPhi, we can't do anything.
2363 if (!StartingAccess)
2364 return MA;
2365
2366 bool IsOptimized = false;
2367
2368 // If this is an already optimized use or def, return the optimized result.
2369 // Note: Currently, we store the optimized def result in a separate field,
2370 // since we can't use the defining access.
2371 if (StartingAccess->isOptimized()) {
2372 if (!SkipSelf || !isa<MemoryDef>(StartingAccess))
2373 return StartingAccess->getOptimized();
2374 IsOptimized = true;
2375 }
2376
2377 const Instruction *I = StartingAccess->getMemoryInst();
2378 // We can't sanely do anything with a fence, since they conservatively clobber
2379 // all memory, and have no locations to get pointers from to try to
2380 // disambiguate.
2381 if (!isa<CallBase>(I) && I->isFenceLike())
2382 return StartingAccess;
2383
2384 UpwardsMemoryQuery Q(I, StartingAccess);
2385
2386 if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) {
2387 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
2388 StartingAccess->setOptimized(LiveOnEntry);
2389 StartingAccess->setOptimizedAccessType(None);
2390 return LiveOnEntry;
2391 }
2392
2393 MemoryAccess *OptimizedAccess;
2394 if (!IsOptimized) {
2395 // Start with the thing we already think clobbers this location
2396 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2397
2398 // At this point, DefiningAccess may be the live on entry def.
2399 // If it is, we will not get a better result.
2400 if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
2401 StartingAccess->setOptimized(DefiningAccess);
2402 StartingAccess->setOptimizedAccessType(None);
2403 return DefiningAccess;
2404 }
2405
2406 OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit);
2407 StartingAccess->setOptimized(OptimizedAccess);
2408 if (MSSA->isLiveOnEntryDef(OptimizedAccess))
2409 StartingAccess->setOptimizedAccessType(None);
2410 else if (Q.AR == MustAlias)
2411 StartingAccess->setOptimizedAccessType(MustAlias);
2412 } else
2413 OptimizedAccess = StartingAccess->getOptimized();
2414
2415 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2416 LLVM_DEBUG(dbgs() << *StartingAccess << "\n");
2417 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is ");
2418 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n");
2419
2420 MemoryAccess *Result;
2421 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) &&
2422 isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) {
2423 assert(isa<MemoryDef>(Q.OriginalAccess));
2424 Q.SkipSelfAccess = true;
2425 Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit);
2426 } else
2427 Result = OptimizedAccess;
2428
2429 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf);
2430 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n");
2431
2432 return Result;
2433 }
2434
2435 MemoryAccess *
getClobberingMemoryAccess(MemoryAccess * MA)2436 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2437 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2438 return Use->getDefiningAccess();
2439 return MA;
2440 }
2441
getClobberingMemoryAccess(MemoryAccess * StartingAccess,const MemoryLocation &)2442 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
2443 MemoryAccess *StartingAccess, const MemoryLocation &) {
2444 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2445 return Use->getDefiningAccess();
2446 return StartingAccess;
2447 }
2448
deleteMe(DerivedUser * Self)2449 void MemoryPhi::deleteMe(DerivedUser *Self) {
2450 delete static_cast<MemoryPhi *>(Self);
2451 }
2452
deleteMe(DerivedUser * Self)2453 void MemoryDef::deleteMe(DerivedUser *Self) {
2454 delete static_cast<MemoryDef *>(Self);
2455 }
2456
deleteMe(DerivedUser * Self)2457 void MemoryUse::deleteMe(DerivedUser *Self) {
2458 delete static_cast<MemoryUse *>(Self);
2459 }
2460