• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2010 Jerome Glisse <glisse@freedesktop.org>
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * on the rights to use, copy, modify, merge, publish, distribute, sub
8  * license, and/or sell copies of the Software, and to permit persons to whom
9  * the Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21  * USE OR OTHER DEALINGS IN THE SOFTWARE.
22  */
23 #include "r600_sq.h"
24 #include "r600_opcodes.h"
25 #include "r600_formats.h"
26 #include "r600_shader.h"
27 #include "r600d.h"
28 
29 #include <errno.h>
30 #include "util/u_bitcast.h"
31 #include "util/u_dump.h"
32 #include "util/u_memory.h"
33 #include "util/u_math.h"
34 #include "pipe/p_shader_tokens.h"
35 
36 #include "sb/sb_public.h"
37 
38 #define NUM_OF_CYCLES 3
39 #define NUM_OF_COMPONENTS 4
40 
alu_writes(struct r600_bytecode_alu * alu)41 static inline bool alu_writes(struct r600_bytecode_alu *alu)
42 {
43 	return alu->dst.write || alu->is_op3;
44 }
45 
r600_bytecode_get_num_operands(const struct r600_bytecode_alu * alu)46 static inline unsigned int r600_bytecode_get_num_operands(const struct r600_bytecode_alu *alu)
47 {
48 	return r600_isa_alu(alu->op)->src_count;
49 }
50 
r600_bytecode_cf(void)51 static struct r600_bytecode_cf *r600_bytecode_cf(void)
52 {
53 	struct r600_bytecode_cf *cf = CALLOC_STRUCT(r600_bytecode_cf);
54 
55 	if (!cf)
56 		return NULL;
57 	list_inithead(&cf->list);
58 	list_inithead(&cf->alu);
59 	list_inithead(&cf->vtx);
60 	list_inithead(&cf->tex);
61 	list_inithead(&cf->gds);
62 	return cf;
63 }
64 
r600_bytecode_alu(void)65 static struct r600_bytecode_alu *r600_bytecode_alu(void)
66 {
67 	struct r600_bytecode_alu *alu = CALLOC_STRUCT(r600_bytecode_alu);
68 
69 	if (!alu)
70 		return NULL;
71 	list_inithead(&alu->list);
72 	return alu;
73 }
74 
r600_bytecode_vtx(void)75 static struct r600_bytecode_vtx *r600_bytecode_vtx(void)
76 {
77 	struct r600_bytecode_vtx *vtx = CALLOC_STRUCT(r600_bytecode_vtx);
78 
79 	if (!vtx)
80 		return NULL;
81 	list_inithead(&vtx->list);
82 	return vtx;
83 }
84 
r600_bytecode_tex(void)85 static struct r600_bytecode_tex *r600_bytecode_tex(void)
86 {
87 	struct r600_bytecode_tex *tex = CALLOC_STRUCT(r600_bytecode_tex);
88 
89 	if (!tex)
90 		return NULL;
91 	list_inithead(&tex->list);
92 	return tex;
93 }
94 
r600_bytecode_gds(void)95 static struct r600_bytecode_gds *r600_bytecode_gds(void)
96 {
97 	struct r600_bytecode_gds *gds = CALLOC_STRUCT(r600_bytecode_gds);
98 
99 	if (gds == NULL)
100 		return NULL;
101 	list_inithead(&gds->list);
102 	return gds;
103 }
104 
stack_entry_size(enum radeon_family chip)105 static unsigned stack_entry_size(enum radeon_family chip) {
106 	/* Wavefront size:
107 	 *   64: R600/RV670/RV770/Cypress/R740/Barts/Turks/Caicos/
108 	 *       Aruba/Sumo/Sumo2/redwood/juniper
109 	 *   32: R630/R730/R710/Palm/Cedar
110 	 *   16: R610/Rs780
111 	 *
112 	 * Stack row size:
113 	 * 	Wavefront Size                        16  32  48  64
114 	 * 	Columns per Row (R6xx/R7xx/R8xx only)  8   8   4   4
115 	 * 	Columns per Row (R9xx+)                8   4   4   4 */
116 
117 	switch (chip) {
118 	/* FIXME: are some chips missing here? */
119 	/* wavefront size 16 */
120 	case CHIP_RV610:
121 	case CHIP_RS780:
122 	case CHIP_RV620:
123 	case CHIP_RS880:
124 	/* wavefront size 32 */
125 	case CHIP_RV630:
126 	case CHIP_RV635:
127 	case CHIP_RV730:
128 	case CHIP_RV710:
129 	case CHIP_PALM:
130 	case CHIP_CEDAR:
131 		return 8;
132 
133 	/* wavefront size 64 */
134 	default:
135 		return 4;
136 	}
137 }
138 
r600_bytecode_init(struct r600_bytecode * bc,enum amd_gfx_level gfx_level,enum radeon_family family,bool has_compressed_msaa_texturing)139 void r600_bytecode_init(struct r600_bytecode *bc,
140 			enum amd_gfx_level gfx_level,
141 			enum radeon_family family,
142 			bool has_compressed_msaa_texturing)
143 {
144 	static unsigned next_shader_id = 0;
145 
146 	bc->debug_id = ++next_shader_id;
147 
148 	if ((gfx_level == R600) &&
149 	    (family != CHIP_RV670 && family != CHIP_RS780 && family != CHIP_RS880)) {
150 		bc->ar_handling = AR_HANDLE_RV6XX;
151 
152 		/* Insert a nop after a relative temp write so that a read in
153 		 * the following instruction group gets the right value.  The
154 		 * r600 and EG ISA specs both say that read-after-rel-write of a
155 		 * register in the next instr group is illegal, but apparently
156 		 * that's not true on all chips (see commit
157 		 * c96b9834032952492efbd2d1f5511fe225704918).
158 		 */
159 		bc->r6xx_nop_after_rel_dst = 1;
160 	} else if (family == CHIP_RV770) {
161 		bc->ar_handling = AR_HANDLE_NORMAL;
162 		bc->r6xx_nop_after_rel_dst = 1;
163 	} else {
164 		bc->ar_handling = AR_HANDLE_NORMAL;
165 		bc->r6xx_nop_after_rel_dst = 0;
166 	}
167 
168 	list_inithead(&bc->cf);
169 	bc->gfx_level = gfx_level;
170 	bc->family = family;
171 	bc->has_compressed_msaa_texturing = has_compressed_msaa_texturing;
172 	bc->stack.entry_size = stack_entry_size(family);
173 }
174 
r600_bytecode_add_cf(struct r600_bytecode * bc)175 int r600_bytecode_add_cf(struct r600_bytecode *bc)
176 {
177 	struct r600_bytecode_cf *cf = r600_bytecode_cf();
178 
179 	if (!cf)
180 		return -ENOMEM;
181 	list_addtail(&cf->list, &bc->cf);
182 	if (bc->cf_last) {
183 		cf->id = bc->cf_last->id + 2;
184 		if (bc->cf_last->eg_alu_extended) {
185 			/* take into account extended alu size */
186 			cf->id += 2;
187 			bc->ndw += 2;
188 		}
189 	}
190 	bc->cf_last = cf;
191 	bc->ncf++;
192 	bc->ndw += 2;
193 	bc->force_add_cf = 0;
194 	bc->ar_loaded = 0;
195 	return 0;
196 }
197 
r600_bytecode_add_output(struct r600_bytecode * bc,const struct r600_bytecode_output * output)198 int r600_bytecode_add_output(struct r600_bytecode *bc,
199 		const struct r600_bytecode_output *output)
200 {
201 	int r;
202 
203 	if (output->gpr >= bc->ngpr)
204 		bc->ngpr = output->gpr + 1;
205 
206 	if (bc->cf_last && (bc->cf_last->op == output->op ||
207 		(bc->cf_last->op == CF_OP_EXPORT &&
208 		output->op == CF_OP_EXPORT_DONE)) &&
209 		output->type == bc->cf_last->output.type &&
210 		output->elem_size == bc->cf_last->output.elem_size &&
211 		output->swizzle_x == bc->cf_last->output.swizzle_x &&
212 		output->swizzle_y == bc->cf_last->output.swizzle_y &&
213 		output->swizzle_z == bc->cf_last->output.swizzle_z &&
214 		output->swizzle_w == bc->cf_last->output.swizzle_w &&
215 		output->comp_mask == bc->cf_last->output.comp_mask &&
216 		(output->burst_count + bc->cf_last->output.burst_count) <= 16) {
217 
218 		if ((output->gpr + output->burst_count) == bc->cf_last->output.gpr &&
219 			(output->array_base + output->burst_count) == bc->cf_last->output.array_base) {
220 
221 			bc->cf_last->op = bc->cf_last->output.op = output->op;
222 			bc->cf_last->output.gpr = output->gpr;
223 			bc->cf_last->output.array_base = output->array_base;
224 			bc->cf_last->output.burst_count += output->burst_count;
225 			return 0;
226 
227 		} else if (output->gpr == (bc->cf_last->output.gpr + bc->cf_last->output.burst_count) &&
228 			output->array_base == (bc->cf_last->output.array_base + bc->cf_last->output.burst_count)) {
229 
230 			bc->cf_last->op = bc->cf_last->output.op = output->op;
231 			bc->cf_last->output.burst_count += output->burst_count;
232 			return 0;
233 		}
234 	}
235 
236 	r = r600_bytecode_add_cf(bc);
237 	if (r)
238 		return r;
239 	bc->cf_last->op = output->op;
240 	memcpy(&bc->cf_last->output, output, sizeof(struct r600_bytecode_output));
241 	bc->cf_last->barrier = 1;
242 	return 0;
243 }
244 
r600_bytecode_add_pending_output(struct r600_bytecode * bc,const struct r600_bytecode_output * output)245 int r600_bytecode_add_pending_output(struct r600_bytecode *bc,
246 		const struct r600_bytecode_output *output)
247 {
248 	assert(bc->n_pending_outputs + 1 < ARRAY_SIZE(bc->pending_outputs));
249 	bc->pending_outputs[bc->n_pending_outputs++] = *output;
250 
251 	return 0;
252 }
253 
254 void
r600_bytecode_add_ack(struct r600_bytecode * bc)255 r600_bytecode_add_ack(struct r600_bytecode *bc)
256 {
257 	bc->need_wait_ack = true;
258 }
259 
260 int
r600_bytecode_wait_acks(struct r600_bytecode * bc)261 r600_bytecode_wait_acks(struct r600_bytecode *bc)
262 {
263 	/* Store acks are an R700+ feature. */
264 	if (bc->gfx_level < R700)
265 		return 0;
266 
267 	if (!bc->need_wait_ack)
268 		return 0;
269 
270 	int ret = r600_bytecode_add_cfinst(bc, CF_OP_WAIT_ACK);
271 	if (ret != 0)
272 		return ret;
273 
274 	struct r600_bytecode_cf *cf = bc->cf_last;
275 	cf->barrier = 1;
276 	/* Request a wait if the number of outstanding acks is > 0 */
277 	cf->cf_addr = 0;
278 
279 	return 0;
280 }
281 
282 uint32_t
r600_bytecode_write_export_ack_type(struct r600_bytecode * bc,bool indirect)283 r600_bytecode_write_export_ack_type(struct r600_bytecode *bc, bool indirect)
284 {
285 	if (bc->gfx_level >= R700) {
286 		if (indirect)
287 			return V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_WRITE_IND_ACK_EG;
288 		else
289 			return V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_WRITE_ACK_EG;
290 	} else {
291 		if (indirect)
292 			return V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_WRITE_IND;
293 		else
294 			return V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_WRITE;
295 	}
296 }
297 
298 /* alu instructions that can ony exits once per group */
is_alu_once_inst(struct r600_bytecode_alu * alu)299 static int is_alu_once_inst(struct r600_bytecode_alu *alu)
300 {
301 	return r600_isa_alu(alu->op)->flags & (AF_KILL | AF_PRED) || alu->is_lds_idx_op || alu->op == ALU_OP0_GROUP_BARRIER;
302 }
303 
is_alu_reduction_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)304 static int is_alu_reduction_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
305 {
306 	return (r600_isa_alu(alu->op)->flags & AF_REPL) &&
307 			(r600_isa_alu_slots(bc->isa->hw_class, alu->op) == AF_4V);
308 }
309 
is_alu_mova_inst(struct r600_bytecode_alu * alu)310 static int is_alu_mova_inst(struct r600_bytecode_alu *alu)
311 {
312 	return r600_isa_alu(alu->op)->flags & AF_MOVA;
313 }
314 
alu_uses_rel(struct r600_bytecode_alu * alu)315 static int alu_uses_rel(struct r600_bytecode_alu *alu)
316 {
317 	unsigned num_src = r600_bytecode_get_num_operands(alu);
318 	unsigned src;
319 
320 	if (alu->dst.rel) {
321 		return 1;
322 	}
323 
324 	for (src = 0; src < num_src; ++src) {
325 		if (alu->src[src].rel) {
326 			return 1;
327 		}
328 	}
329 	return 0;
330 }
331 
is_lds_read(int sel)332 static int is_lds_read(int sel)
333 {
334   return sel == EG_V_SQ_ALU_SRC_LDS_OQ_A_POP || sel == EG_V_SQ_ALU_SRC_LDS_OQ_B_POP;
335 }
336 
alu_uses_lds(struct r600_bytecode_alu * alu)337 static int alu_uses_lds(struct r600_bytecode_alu *alu)
338 {
339 	unsigned num_src = r600_bytecode_get_num_operands(alu);
340 	unsigned src;
341 
342 	for (src = 0; src < num_src; ++src) {
343 		if (is_lds_read(alu->src[src].sel)) {
344 			return 1;
345 		}
346 	}
347 	return 0;
348 }
349 
is_alu_64bit_inst(struct r600_bytecode_alu * alu)350 static int is_alu_64bit_inst(struct r600_bytecode_alu *alu)
351 {
352 	const struct alu_op_info *op = r600_isa_alu(alu->op);
353 	return (op->flags & AF_64);
354 }
355 
is_alu_vec_unit_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)356 static int is_alu_vec_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
357 {
358 	unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
359 	return !(slots & AF_S);
360 }
361 
is_alu_trans_unit_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)362 static int is_alu_trans_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
363 {
364 	unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
365 	return !(slots & AF_V);
366 }
367 
368 /* alu instructions that can execute on any unit */
is_alu_any_unit_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)369 static int is_alu_any_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
370 {
371 	unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
372 	return slots == AF_VS;
373 }
374 
is_nop_inst(struct r600_bytecode_alu * alu)375 static int is_nop_inst(struct r600_bytecode_alu *alu)
376 {
377 	return alu->op == ALU_OP0_NOP;
378 }
379 
assign_alu_units(struct r600_bytecode * bc,struct r600_bytecode_alu * alu_first,struct r600_bytecode_alu * assignment[5])380 static int assign_alu_units(struct r600_bytecode *bc, struct r600_bytecode_alu *alu_first,
381 			    struct r600_bytecode_alu *assignment[5])
382 {
383 	struct r600_bytecode_alu *alu;
384 	unsigned i, chan, trans;
385 	int max_slots = bc->gfx_level == CAYMAN ? 4 : 5;
386 
387 	for (i = 0; i < max_slots; i++)
388 		assignment[i] = NULL;
389 
390 	for (alu = alu_first; alu; alu = list_entry(alu->list.next, struct r600_bytecode_alu, list)) {
391 		chan = alu->dst.chan;
392 		if (max_slots == 4)
393 			trans = 0;
394 		else if (is_alu_trans_unit_inst(bc, alu))
395 			trans = 1;
396 		else if (is_alu_vec_unit_inst(bc, alu))
397 			trans = 0;
398 		else if (assignment[chan])
399 			trans = 1; /* Assume ALU_INST_PREFER_VECTOR. */
400 		else
401 			trans = 0;
402 
403 		if (trans) {
404 			if (assignment[4]) {
405 				assert(0); /* ALU.Trans has already been allocated. */
406 				return -1;
407 			}
408 			assignment[4] = alu;
409 		} else {
410                         if (assignment[chan]) {
411 			 	assert(0); /* ALU.chan has already been allocated. */
412 				return -1;
413 			}
414 			assignment[chan] = alu;
415 		}
416 
417 		if (alu->last)
418 			break;
419 	}
420 	return 0;
421 }
422 
423 struct alu_bank_swizzle {
424 	int	hw_gpr[NUM_OF_CYCLES][NUM_OF_COMPONENTS];
425 	int	hw_cfile_addr[4];
426 	int	hw_cfile_elem[4];
427 };
428 
429 static const unsigned cycle_for_bank_swizzle_vec[][3] = {
430 	[SQ_ALU_VEC_012] = { 0, 1, 2 },
431 	[SQ_ALU_VEC_021] = { 0, 2, 1 },
432 	[SQ_ALU_VEC_120] = { 1, 2, 0 },
433 	[SQ_ALU_VEC_102] = { 1, 0, 2 },
434 	[SQ_ALU_VEC_201] = { 2, 0, 1 },
435 	[SQ_ALU_VEC_210] = { 2, 1, 0 }
436 };
437 
438 static const unsigned cycle_for_bank_swizzle_scl[][3] = {
439 	[SQ_ALU_SCL_210] = { 2, 1, 0 },
440 	[SQ_ALU_SCL_122] = { 1, 2, 2 },
441 	[SQ_ALU_SCL_212] = { 2, 1, 2 },
442 	[SQ_ALU_SCL_221] = { 2, 2, 1 }
443 };
444 
init_bank_swizzle(struct alu_bank_swizzle * bs)445 static void init_bank_swizzle(struct alu_bank_swizzle *bs)
446 {
447 	int i, cycle, component;
448 	/* set up gpr use */
449 	for (cycle = 0; cycle < NUM_OF_CYCLES; cycle++)
450 		for (component = 0; component < NUM_OF_COMPONENTS; component++)
451 			 bs->hw_gpr[cycle][component] = -1;
452 	for (i = 0; i < 4; i++)
453 		bs->hw_cfile_addr[i] = -1;
454 	for (i = 0; i < 4; i++)
455 		bs->hw_cfile_elem[i] = -1;
456 }
457 
reserve_gpr(struct alu_bank_swizzle * bs,unsigned sel,unsigned chan,unsigned cycle)458 static int reserve_gpr(struct alu_bank_swizzle *bs, unsigned sel, unsigned chan, unsigned cycle)
459 {
460 	if (bs->hw_gpr[cycle][chan] == -1)
461 		bs->hw_gpr[cycle][chan] = sel;
462 	else if (bs->hw_gpr[cycle][chan] != (int)sel) {
463 		/* Another scalar operation has already used the GPR read port for the channel. */
464 		return -1;
465 	}
466 	return 0;
467 }
468 
reserve_cfile(const struct r600_bytecode * bc,struct alu_bank_swizzle * bs,unsigned sel,unsigned chan)469 static int reserve_cfile(const struct r600_bytecode *bc,
470 			 struct alu_bank_swizzle *bs, unsigned sel, unsigned chan)
471 {
472 	int res, num_res = 4;
473 	if (bc->gfx_level >= R700) {
474 		num_res = 2;
475 		chan /= 2;
476 	}
477 	for (res = 0; res < num_res; ++res) {
478 		if (bs->hw_cfile_addr[res] == -1) {
479 			bs->hw_cfile_addr[res] = sel;
480 			bs->hw_cfile_elem[res] = chan;
481 			return 0;
482 		} else if (bs->hw_cfile_addr[res] == sel &&
483 			bs->hw_cfile_elem[res] == chan)
484 			return 0; /* Read for this scalar element already reserved, nothing to do here. */
485 	}
486 	/* All cfile read ports are used, cannot reference vector element. */
487 	return -1;
488 }
489 
is_gpr(unsigned sel)490 static int is_gpr(unsigned sel)
491 {
492 	return (sel <= 127);
493 }
494 
495 /* CB constants start at 512, and get translated to a kcache index when ALU
496  * clauses are constructed. Note that we handle kcache constants the same way
497  * as (the now gone) cfile constants, is that really required? */
is_kcache(unsigned sel)498 static int is_kcache(unsigned sel)
499 {
500    return (sel > 511 && sel < 4607) || /* Kcache before translation. */
501          (sel > 127 && sel < 192) || /* Kcache 0 & 1 after translation. */
502          (sel > 256  && sel < 320);  /* Kcache 2 & 3 after translation (EG). */
503 }
504 
is_const(int sel)505 static int is_const(int sel)
506 {
507    return is_kcache(sel) ||
508 		(sel >= V_SQ_ALU_SRC_0 &&
509 		sel <= V_SQ_ALU_SRC_LITERAL);
510 }
511 
check_vector(const struct r600_bytecode * bc,const struct r600_bytecode_alu * alu,struct alu_bank_swizzle * bs,int bank_swizzle)512 static int check_vector(const struct r600_bytecode *bc, const struct r600_bytecode_alu *alu,
513 			struct alu_bank_swizzle *bs, int bank_swizzle)
514 {
515 	int r, src, num_src, sel, elem, cycle;
516 
517 	num_src = r600_bytecode_get_num_operands(alu);
518 	for (src = 0; src < num_src; src++) {
519 		sel = alu->src[src].sel;
520 		elem = alu->src[src].chan;
521 		if (is_gpr(sel)) {
522 			cycle = cycle_for_bank_swizzle_vec[bank_swizzle][src];
523 			if (src == 1 && sel == alu->src[0].sel && elem == alu->src[0].chan)
524 				/* Nothing to do; special-case optimization,
525 				 * second source uses first source’s reservation. */
526 				continue;
527 			else {
528 				r = reserve_gpr(bs, sel, elem, cycle);
529 				if (r)
530 					return r;
531 			}
532       } else if (is_kcache(sel)) {
533 			r = reserve_cfile(bc, bs, (alu->src[src].kc_bank<<16) + sel, elem);
534 			if (r)
535 				return r;
536 		}
537 		/* No restrictions on PV, PS, literal or special constants. */
538 	}
539 	return 0;
540 }
541 
check_scalar(const struct r600_bytecode * bc,const struct r600_bytecode_alu * alu,struct alu_bank_swizzle * bs,int bank_swizzle)542 static int check_scalar(const struct r600_bytecode *bc, const struct r600_bytecode_alu *alu,
543 			struct alu_bank_swizzle *bs, int bank_swizzle)
544 {
545 	int r, src, num_src, const_count, sel, elem, cycle;
546 
547 	num_src = r600_bytecode_get_num_operands(alu);
548 	for (const_count = 0, src = 0; src < num_src; ++src) {
549 		sel = alu->src[src].sel;
550 		elem = alu->src[src].chan;
551 		if (is_const(sel)) { /* Any constant, including literal and inline constants. */
552 			if (const_count >= 2)
553 				/* More than two references to a constant in
554 				 * transcendental operation. */
555 				return -1;
556 			else
557 				const_count++;
558 		}
559       if (is_kcache(sel)) {
560 			r = reserve_cfile(bc, bs, (alu->src[src].kc_bank<<16) + sel, elem);
561 			if (r)
562 				return r;
563 		}
564 	}
565 	for (src = 0; src < num_src; ++src) {
566 		sel = alu->src[src].sel;
567 		elem = alu->src[src].chan;
568 		if (is_gpr(sel)) {
569 			cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src];
570 			if (cycle < const_count)
571 				/* Cycle for GPR load conflicts with
572 				 * constant load in transcendental operation. */
573 				return -1;
574 			r = reserve_gpr(bs, sel, elem, cycle);
575 			if (r)
576 				return r;
577 		}
578 		/* PV PS restrictions */
579 		if (const_count && (sel == 254 || sel == 255)) {
580 			cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src];
581 			if (cycle < const_count)
582 				return -1;
583 		}
584 	}
585 	return 0;
586 }
587 
check_and_set_bank_swizzle(const struct r600_bytecode * bc,struct r600_bytecode_alu * slots[5])588 static int check_and_set_bank_swizzle(const struct r600_bytecode *bc,
589 				      struct r600_bytecode_alu *slots[5])
590 {
591 	struct alu_bank_swizzle bs;
592 	int bank_swizzle[5];
593 	int i, r = 0, forced = 1;
594 	boolean scalar_only = bc->gfx_level == CAYMAN ? false : true;
595 	int max_slots = bc->gfx_level == CAYMAN ? 4 : 5;
596 	int max_checks = max_slots * 1000;
597 
598 	for (i = 0; i < max_slots; i++) {
599 		if (slots[i]) {
600 			if (slots[i]->bank_swizzle_force) {
601 				slots[i]->bank_swizzle = slots[i]->bank_swizzle_force;
602 			} else {
603 				forced = 0;
604 			}
605 		}
606 
607 		if (i < 4 && slots[i])
608 			scalar_only = false;
609 	}
610 	if (forced)
611 		return 0;
612 
613 	/* Just check every possible combination of bank swizzle.
614 	 * Not very efficent, but works on the first try in most of the cases. */
615 	for (i = 0; i < 4; i++)
616 		if (!slots[i] || !slots[i]->bank_swizzle_force || slots[i]->is_lds_idx_op)
617 			bank_swizzle[i] = SQ_ALU_VEC_012;
618 		else
619 			bank_swizzle[i] = slots[i]->bank_swizzle;
620 
621 	bank_swizzle[4] = SQ_ALU_SCL_210;
622 
623 	while(bank_swizzle[4] <= SQ_ALU_SCL_221 && max_checks--) {
624 		init_bank_swizzle(&bs);
625 		if (scalar_only == false) {
626 			for (i = 0; i < 4; i++) {
627 				if (slots[i]) {
628 					r = check_vector(bc, slots[i], &bs, bank_swizzle[i]);
629 					if (r)
630 						break;
631 				}
632 			}
633 		} else
634 			r = 0;
635 
636 		if (!r && max_slots == 5 && slots[4]) {
637 			r = check_scalar(bc, slots[4], &bs, bank_swizzle[4]);
638 		}
639 		if (!r) {
640 			for (i = 0; i < max_slots; i++) {
641 				if (slots[i])
642 					slots[i]->bank_swizzle = bank_swizzle[i];
643 			}
644 			return 0;
645 		}
646 
647 		if (scalar_only) {
648 			bank_swizzle[4]++;
649 		} else {
650 			for (i = 0; i < max_slots; i++) {
651 				if (!slots[i] || (!slots[i]->bank_swizzle_force && !slots[i]->is_lds_idx_op)) {
652 					bank_swizzle[i]++;
653 					if (bank_swizzle[i] <= SQ_ALU_VEC_210)
654 						break;
655 					else if (i < max_slots - 1)
656 						bank_swizzle[i] = SQ_ALU_VEC_012;
657 					else
658 						return -1;
659 				}
660 			}
661 		}
662 	}
663 
664 	/* Couldn't find a working swizzle. */
665 	return -1;
666 }
667 
replace_gpr_with_pv_ps(struct r600_bytecode * bc,struct r600_bytecode_alu * slots[5],struct r600_bytecode_alu * alu_prev)668 static int replace_gpr_with_pv_ps(struct r600_bytecode *bc,
669 				  struct r600_bytecode_alu *slots[5], struct r600_bytecode_alu *alu_prev)
670 {
671 	struct r600_bytecode_alu *prev[5];
672 	int gpr[5], chan[5];
673 	int i, j, r, src, num_src;
674 	int max_slots = bc->gfx_level == CAYMAN ? 4 : 5;
675 
676 	r = assign_alu_units(bc, alu_prev, prev);
677 	if (r)
678 		return r;
679 
680 	for (i = 0; i < max_slots; ++i) {
681 		if (prev[i] && alu_writes(prev[i]) && !prev[i]->dst.rel) {
682 
683 			if (is_alu_64bit_inst(prev[i])) {
684 				gpr[i] = -1;
685 				continue;
686 			}
687 
688 			gpr[i] = prev[i]->dst.sel;
689 			/* cube writes more than PV.X */
690 			if (is_alu_reduction_inst(bc, prev[i]))
691 				chan[i] = 0;
692 			else
693 				chan[i] = prev[i]->dst.chan;
694 		} else
695 			gpr[i] = -1;
696 	}
697 
698 	for (i = 0; i < max_slots; ++i) {
699 		struct r600_bytecode_alu *alu = slots[i];
700 		if (!alu)
701 			continue;
702 
703 		if (is_alu_64bit_inst(alu))
704 			continue;
705 		num_src = r600_bytecode_get_num_operands(alu);
706 		for (src = 0; src < num_src; ++src) {
707 			if (!is_gpr(alu->src[src].sel) || alu->src[src].rel)
708 				continue;
709 
710 			if (bc->gfx_level < CAYMAN) {
711 				if (alu->src[src].sel == gpr[4] &&
712 				    alu->src[src].chan == chan[4] &&
713 				    alu_prev->pred_sel == alu->pred_sel) {
714 					alu->src[src].sel = V_SQ_ALU_SRC_PS;
715 					alu->src[src].chan = 0;
716 					continue;
717 				}
718 			}
719 
720 			for (j = 0; j < 4; ++j) {
721 				if (alu->src[src].sel == gpr[j] &&
722 					alu->src[src].chan == j &&
723 				      alu_prev->pred_sel == alu->pred_sel) {
724 					alu->src[src].sel = V_SQ_ALU_SRC_PV;
725 					alu->src[src].chan = chan[j];
726 					break;
727 				}
728 			}
729 		}
730 	}
731 
732 	return 0;
733 }
734 
r600_bytecode_special_constants(uint32_t value,unsigned * sel)735 void r600_bytecode_special_constants(uint32_t value, unsigned *sel)
736 {
737 	switch(value) {
738 	case 0:
739 		*sel = V_SQ_ALU_SRC_0;
740 		break;
741 	case 1:
742 		*sel = V_SQ_ALU_SRC_1_INT;
743 		break;
744 	case -1:
745 		*sel = V_SQ_ALU_SRC_M_1_INT;
746 		break;
747 	case 0x3F800000: /* 1.0f */
748 		*sel = V_SQ_ALU_SRC_1;
749 		break;
750 	case 0x3F000000: /* 0.5f */
751 		*sel = V_SQ_ALU_SRC_0_5;
752 		break;
753 	default:
754 		*sel = V_SQ_ALU_SRC_LITERAL;
755 		break;
756 	}
757 }
758 
759 /* compute how many literal are needed */
r600_bytecode_alu_nliterals(struct r600_bytecode_alu * alu,uint32_t literal[4],unsigned * nliteral)760 static int r600_bytecode_alu_nliterals(struct r600_bytecode_alu *alu,
761 				 uint32_t literal[4], unsigned *nliteral)
762 {
763 	unsigned num_src = r600_bytecode_get_num_operands(alu);
764 	unsigned i, j;
765 
766 	for (i = 0; i < num_src; ++i) {
767 		if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) {
768 			uint32_t value = alu->src[i].value;
769 			unsigned found = 0;
770 			for (j = 0; j < *nliteral; ++j) {
771 				if (literal[j] == value) {
772 					found = 1;
773 					break;
774 				}
775 			}
776 			if (!found) {
777 				if (*nliteral >= 4)
778 					return -EINVAL;
779 				literal[(*nliteral)++] = value;
780 			}
781 		}
782 	}
783 	return 0;
784 }
785 
r600_bytecode_alu_adjust_literals(struct r600_bytecode_alu * alu,uint32_t literal[4],unsigned nliteral)786 static void r600_bytecode_alu_adjust_literals(struct r600_bytecode_alu *alu,
787 					      uint32_t literal[4], unsigned nliteral)
788 {
789 	unsigned num_src = r600_bytecode_get_num_operands(alu);
790 	unsigned i, j;
791 
792 	for (i = 0; i < num_src; ++i) {
793 		if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) {
794 			uint32_t value = alu->src[i].value;
795 			for (j = 0; j < nliteral; ++j) {
796 				if (literal[j] == value) {
797 					alu->src[i].chan = j;
798 					break;
799 				}
800 			}
801 		}
802 	}
803 }
804 
merge_inst_groups(struct r600_bytecode * bc,struct r600_bytecode_alu * slots[5],struct r600_bytecode_alu * alu_prev)805 static int merge_inst_groups(struct r600_bytecode *bc, struct r600_bytecode_alu *slots[5],
806 			     struct r600_bytecode_alu *alu_prev)
807 {
808 	struct r600_bytecode_alu *prev[5];
809 	struct r600_bytecode_alu *result[5] = { NULL };
810 
811         uint8_t interp_xz = 0;
812 
813 	uint32_t literal[4], prev_literal[4];
814 	unsigned nliteral = 0, prev_nliteral = 0;
815 
816 	int i, j, r, src, num_src;
817 	int num_once_inst = 0;
818 	int have_mova = 0, have_rel = 0;
819 	int max_slots = bc->gfx_level == CAYMAN ? 4 : 5;
820 
821 	r = assign_alu_units(bc, alu_prev, prev);
822 	if (r)
823 		return r;
824 
825 	for (i = 0; i < max_slots; ++i) {
826 		if (prev[i]) {
827 		      if (prev[i]->pred_sel)
828 			      return 0;
829 		      if (is_alu_once_inst(prev[i]))
830 			      return 0;
831 
832                       if (prev[i]->op == ALU_OP1_INTERP_LOAD_P0)
833                          interp_xz |= 3;
834                       if (prev[i]->op == ALU_OP2_INTERP_X)
835                          interp_xz |= 1;
836                       if (prev[i]->op == ALU_OP2_INTERP_Z)
837                          interp_xz |= 2;
838 		}
839 		if (slots[i]) {
840 			if (slots[i]->pred_sel)
841 				return 0;
842 			if (is_alu_once_inst(slots[i]))
843 				return 0;
844                         if (slots[i]->op == ALU_OP1_INTERP_LOAD_P0)
845                            interp_xz |= 3;
846                         if (slots[i]->op == ALU_OP2_INTERP_X)
847                            interp_xz |= 1;
848                         if (slots[i]->op == ALU_OP2_INTERP_Z)
849                            interp_xz |= 2;
850 		}
851                 if (interp_xz == 3)
852                    return 0;
853 	}
854 
855 	for (i = 0; i < max_slots; ++i) {
856 		struct r600_bytecode_alu *alu;
857 
858 		if (num_once_inst > 0)
859 		   return 0;
860 
861 		/* check number of literals */
862 		if (prev[i]) {
863 			if (r600_bytecode_alu_nliterals(prev[i], literal, &nliteral))
864 				return 0;
865 			if (r600_bytecode_alu_nliterals(prev[i], prev_literal, &prev_nliteral))
866 				return 0;
867 			if (is_alu_mova_inst(prev[i])) {
868 				if (have_rel)
869 					return 0;
870 				have_mova = 1;
871 			}
872 
873 			if (alu_uses_rel(prev[i])) {
874 				if (have_mova) {
875 					return 0;
876 				}
877 				have_rel = 1;
878 			}
879 			if (alu_uses_lds(prev[i]))
880 				return 0;
881 
882 			num_once_inst += is_alu_once_inst(prev[i]);
883 		}
884 		if (slots[i] && r600_bytecode_alu_nliterals(slots[i], literal, &nliteral))
885 			return 0;
886 
887 		/* Let's check used slots. */
888 		if (prev[i] && !slots[i]) {
889 			result[i] = prev[i];
890 			continue;
891 		} else if (prev[i] && slots[i]) {
892 			if (max_slots == 5 && result[4] == NULL && prev[4] == NULL && slots[4] == NULL) {
893 				/* Trans unit is still free try to use it. */
894 				if (is_alu_any_unit_inst(bc, slots[i]) && !alu_uses_lds(slots[i])) {
895 					result[i] = prev[i];
896 					result[4] = slots[i];
897 				} else if (is_alu_any_unit_inst(bc, prev[i])) {
898 					if (slots[i]->dst.sel == prev[i]->dst.sel &&
899 					    alu_writes(slots[i]) &&
900 					    alu_writes(prev[i]))
901 						return 0;
902 
903 					result[i] = slots[i];
904 					result[4] = prev[i];
905 				} else
906 					return 0;
907 			} else
908 				return 0;
909 		} else if(!slots[i]) {
910 			continue;
911 		} else {
912 			if (max_slots == 5 && slots[i] && prev[4] &&
913 					slots[i]->dst.sel == prev[4]->dst.sel &&
914 					slots[i]->dst.chan == prev[4]->dst.chan &&
915 					alu_writes(slots[i]) &&
916 					alu_writes(prev[4]))
917 				return 0;
918 
919 			result[i] = slots[i];
920 		}
921 
922 		alu = slots[i];
923 		num_once_inst += is_alu_once_inst(alu);
924 
925 		/* don't reschedule NOPs */
926 		if (is_nop_inst(alu))
927 			return 0;
928 
929 		if (is_alu_mova_inst(alu)) {
930 			if (have_rel) {
931 				return 0;
932 			}
933 			have_mova = 1;
934 		}
935 
936 		if (alu_uses_rel(alu)) {
937 			if (have_mova) {
938 				return 0;
939 			}
940 			have_rel = 1;
941 		}
942 
943 		if (alu->op == ALU_OP0_SET_CF_IDX0 ||
944 			alu->op == ALU_OP0_SET_CF_IDX1)
945 			return 0; /* data hazard with MOVA */
946 
947 		/* Let's check source gprs */
948 		num_src = r600_bytecode_get_num_operands(alu);
949 		for (src = 0; src < num_src; ++src) {
950 
951 			/* Constants don't matter. */
952 			if (!is_gpr(alu->src[src].sel))
953 				continue;
954 
955 			for (j = 0; j < max_slots; ++j) {
956 				if (!prev[j] || !alu_writes(prev[j]))
957 					continue;
958 
959 				/* If it's relative then we can't determin which gpr is really used. */
960 				if (prev[j]->dst.chan == alu->src[src].chan &&
961 					(prev[j]->dst.sel == alu->src[src].sel ||
962 					prev[j]->dst.rel || alu->src[src].rel))
963 					return 0;
964 			}
965 		}
966 	}
967 
968 	/* more than one PRED_ or KILL_ ? */
969 	if (num_once_inst > 1)
970 		return 0;
971 
972 	/* check if the result can still be swizzlet */
973 	r = check_and_set_bank_swizzle(bc, result);
974 	if (r)
975 		return 0;
976 
977 	/* looks like everything worked out right, apply the changes */
978 
979 	/* undo adding previus literals */
980 	bc->cf_last->ndw -= align(prev_nliteral, 2);
981 
982 	/* sort instructions */
983 	for (i = 0; i < max_slots; ++i) {
984 		slots[i] = result[i];
985 		if (result[i]) {
986 			list_del(&result[i]->list);
987 			result[i]->last = 0;
988 			list_addtail(&result[i]->list, &bc->cf_last->alu);
989 		}
990 	}
991 
992 	/* determine new last instruction */
993 	list_entry(bc->cf_last->alu.prev, struct r600_bytecode_alu, list)->last = 1;
994 
995 	/* determine new first instruction */
996 	for (i = 0; i < max_slots; ++i) {
997 		if (result[i]) {
998 			bc->cf_last->curr_bs_head = result[i];
999 			break;
1000 		}
1001 	}
1002 
1003 	bc->cf_last->prev_bs_head = bc->cf_last->prev2_bs_head;
1004 	bc->cf_last->prev2_bs_head = NULL;
1005 
1006 	return 0;
1007 }
1008 
1009 /* we'll keep kcache sets sorted by bank & addr */
r600_bytecode_alloc_kcache_line(struct r600_bytecode * bc,struct r600_bytecode_kcache * kcache,unsigned bank,unsigned line,unsigned index_mode)1010 static int r600_bytecode_alloc_kcache_line(struct r600_bytecode *bc,
1011 		struct r600_bytecode_kcache *kcache,
1012 		unsigned bank, unsigned line, unsigned index_mode)
1013 {
1014 	int i, kcache_banks = bc->gfx_level >= EVERGREEN ? 4 : 2;
1015 
1016 	for (i = 0; i < kcache_banks; i++) {
1017 		if (kcache[i].mode) {
1018 			int d;
1019 
1020 			if (kcache[i].bank < bank)
1021 				continue;
1022 
1023 			if ((kcache[i].bank == bank && kcache[i].addr > line+1) ||
1024 					kcache[i].bank > bank) {
1025 				/* try to insert new line */
1026 				if (kcache[kcache_banks-1].mode) {
1027 					/* all sets are in use */
1028 					return -ENOMEM;
1029 				}
1030 
1031 				memmove(&kcache[i+1],&kcache[i], (kcache_banks-i-1)*sizeof(struct r600_bytecode_kcache));
1032 				kcache[i].mode = V_SQ_CF_KCACHE_LOCK_1;
1033 				kcache[i].bank = bank;
1034 				kcache[i].addr = line;
1035 				kcache[i].index_mode = index_mode;
1036 				return 0;
1037 			}
1038 
1039 			d = line - kcache[i].addr;
1040 
1041 			if (d == -1) {
1042 				kcache[i].addr--;
1043 				if (kcache[i].mode == V_SQ_CF_KCACHE_LOCK_2) {
1044 					/* we are prepending the line to the current set,
1045 					 * discarding the existing second line,
1046 					 * so we'll have to insert line+2 after it */
1047 					line += 2;
1048 					continue;
1049 				} else if (kcache[i].mode == V_SQ_CF_KCACHE_LOCK_1) {
1050 					kcache[i].mode = V_SQ_CF_KCACHE_LOCK_2;
1051 					return 0;
1052 				} else {
1053 					/* V_SQ_CF_KCACHE_LOCK_LOOP_INDEX is not supported */
1054 					return -ENOMEM;
1055 				}
1056 			} else if (d == 1) {
1057 				kcache[i].mode = V_SQ_CF_KCACHE_LOCK_2;
1058 				return 0;
1059 			} else if (d == 0)
1060 				return 0;
1061 		} else { /* free kcache set - use it */
1062 			kcache[i].mode = V_SQ_CF_KCACHE_LOCK_1;
1063 			kcache[i].bank = bank;
1064 			kcache[i].addr = line;
1065 			kcache[i].index_mode = index_mode;
1066 			return 0;
1067 		}
1068 	}
1069 	return -ENOMEM;
1070 }
1071 
r600_bytecode_alloc_inst_kcache_lines(struct r600_bytecode * bc,struct r600_bytecode_kcache * kcache,struct r600_bytecode_alu * alu)1072 static int r600_bytecode_alloc_inst_kcache_lines(struct r600_bytecode *bc,
1073 		struct r600_bytecode_kcache *kcache,
1074 		struct r600_bytecode_alu *alu)
1075 {
1076 	int i, r;
1077 
1078 	for (i = 0; i < 3; i++) {
1079 		unsigned bank, line, sel = alu->src[i].sel, index_mode;
1080 
1081 		if (sel < 512)
1082 			continue;
1083 
1084 		bank = alu->src[i].kc_bank;
1085 		assert(bank < R600_MAX_HW_CONST_BUFFERS);
1086 		line = (sel-512)>>4;
1087 		index_mode = alu->src[i].kc_rel ? 1 : 0; // V_SQ_CF_INDEX_0 / V_SQ_CF_INDEX_NONE
1088 
1089 		if ((r = r600_bytecode_alloc_kcache_line(bc, kcache, bank, line, index_mode)))
1090 			return r;
1091 	}
1092 	return 0;
1093 }
1094 
r600_bytecode_assign_kcache_banks(struct r600_bytecode_alu * alu,struct r600_bytecode_kcache * kcache)1095 static int r600_bytecode_assign_kcache_banks(
1096 		struct r600_bytecode_alu *alu,
1097 		struct r600_bytecode_kcache * kcache)
1098 {
1099 	int i, j;
1100 
1101 	/* Alter the src operands to refer to the kcache. */
1102 	for (i = 0; i < 3; ++i) {
1103 		static const unsigned int base[] = {128, 160, 256, 288};
1104 		unsigned int line, sel = alu->src[i].sel, found = 0;
1105 
1106 		if (sel < 512)
1107 			continue;
1108 
1109 		sel -= 512;
1110 		line = sel>>4;
1111 
1112 		for (j = 0; j < 4 && !found; ++j) {
1113 			switch (kcache[j].mode) {
1114 			case V_SQ_CF_KCACHE_NOP:
1115 			case V_SQ_CF_KCACHE_LOCK_LOOP_INDEX:
1116 				R600_ERR("unexpected kcache line mode\n");
1117 				return -ENOMEM;
1118 			default:
1119 				if (kcache[j].bank == alu->src[i].kc_bank &&
1120 						kcache[j].addr <= line &&
1121 						line < kcache[j].addr + kcache[j].mode) {
1122 					alu->src[i].sel = sel - (kcache[j].addr<<4);
1123 					alu->src[i].sel += base[j];
1124 					found=1;
1125 			    }
1126 			}
1127 		}
1128 	}
1129 	return 0;
1130 }
1131 
r600_bytecode_alloc_kcache_lines(struct r600_bytecode * bc,struct r600_bytecode_alu * alu,unsigned type)1132 static int r600_bytecode_alloc_kcache_lines(struct r600_bytecode *bc,
1133 		struct r600_bytecode_alu *alu,
1134 		unsigned type)
1135 {
1136 	struct r600_bytecode_kcache kcache_sets[4];
1137 	struct r600_bytecode_kcache *kcache = kcache_sets;
1138 	int r;
1139 
1140 	memcpy(kcache, bc->cf_last->kcache, 4 * sizeof(struct r600_bytecode_kcache));
1141 
1142 	if ((r = r600_bytecode_alloc_inst_kcache_lines(bc, kcache, alu))) {
1143 		/* can't alloc, need to start new clause */
1144 
1145 		/* Make sure the CF ends with an "last" instruction when
1146 		 * we split an ALU group because of a new CF */
1147 		if (!list_is_empty(&bc->cf_last->alu))  {
1148 			struct r600_bytecode_alu *last_submitted =
1149 				list_last_entry(&bc->cf_last->alu, struct r600_bytecode_alu, list);
1150 				last_submitted->last = 1;
1151 		}
1152 
1153 		if ((r = r600_bytecode_add_cf(bc))) {
1154 			return r;
1155 		}
1156 		bc->cf_last->op = type;
1157 
1158 		/* retry with the new clause */
1159 		kcache = bc->cf_last->kcache;
1160 		if ((r = r600_bytecode_alloc_inst_kcache_lines(bc, kcache, alu))) {
1161 			/* can't alloc again- should never happen */
1162 			return r;
1163 		}
1164 	} else {
1165 		/* update kcache sets */
1166 		memcpy(bc->cf_last->kcache, kcache, 4 * sizeof(struct r600_bytecode_kcache));
1167 	}
1168 
1169 	/* if we actually used more than 2 kcache sets, or have relative indexing - use ALU_EXTENDED on eg+ */
1170 	if (kcache[2].mode != V_SQ_CF_KCACHE_NOP ||
1171 		kcache[0].index_mode || kcache[1].index_mode || kcache[2].index_mode || kcache[3].index_mode) {
1172 		if (bc->gfx_level < EVERGREEN)
1173 			return -ENOMEM;
1174 		bc->cf_last->eg_alu_extended = 1;
1175 	}
1176 
1177 	return 0;
1178 }
1179 
insert_nop_r6xx(struct r600_bytecode * bc,int max_slots)1180 static int insert_nop_r6xx(struct r600_bytecode *bc, int max_slots)
1181 {
1182 	struct r600_bytecode_alu alu;
1183 	int r, i;
1184 
1185 	for (i = 0; i < max_slots; i++) {
1186 		memset(&alu, 0, sizeof(alu));
1187 		alu.op = ALU_OP0_NOP;
1188 		alu.src[0].chan = i & 3;
1189 		alu.dst.chan = i & 3;
1190 		alu.last = (i == max_slots - 1);
1191 		r = r600_bytecode_add_alu(bc, &alu);
1192 		if (r)
1193 			return r;
1194 	}
1195 	return 0;
1196 }
1197 
1198 /* load AR register from gpr (bc->ar_reg) with MOVA_INT */
load_ar_r6xx(struct r600_bytecode * bc,bool for_src)1199 static int load_ar_r6xx(struct r600_bytecode *bc, bool for_src)
1200 {
1201 	struct r600_bytecode_alu alu;
1202 	int r;
1203 
1204 	if (bc->ar_loaded)
1205 		return 0;
1206 
1207 	/* hack to avoid making MOVA the last instruction in the clause */
1208 	if ((bc->cf_last->ndw>>1) >= 110)
1209 		bc->force_add_cf = 1;
1210    else if (for_src) {
1211       insert_nop_r6xx(bc, 4);
1212       bc->nalu_groups++;
1213    }
1214 
1215 	memset(&alu, 0, sizeof(alu));
1216 	alu.op = ALU_OP1_MOVA_GPR_INT;
1217 	alu.src[0].sel = bc->ar_reg;
1218 	alu.src[0].chan = bc->ar_chan;
1219 	alu.last = 1;
1220 	alu.index_mode = INDEX_MODE_LOOP;
1221 	r = r600_bytecode_add_alu(bc, &alu);
1222 	if (r)
1223 		return r;
1224 
1225 	/* no requirement to set uses waterfall on MOVA_GPR_INT */
1226 	bc->ar_loaded = 1;
1227 	return 0;
1228 }
1229 
1230 /* load AR register from gpr (bc->ar_reg) with MOVA_INT */
r600_load_ar(struct r600_bytecode * bc,bool for_src)1231 int r600_load_ar(struct r600_bytecode *bc, bool for_src)
1232 {
1233 	struct r600_bytecode_alu alu;
1234 	int r;
1235 
1236 	if (bc->ar_handling)
1237 		return load_ar_r6xx(bc, for_src);
1238 
1239 	if (bc->ar_loaded)
1240 		return 0;
1241 
1242 	/* hack to avoid making MOVA the last instruction in the clause */
1243 	if ((bc->cf_last->ndw>>1) >= 110)
1244 		bc->force_add_cf = 1;
1245 
1246 	memset(&alu, 0, sizeof(alu));
1247 	alu.op = ALU_OP1_MOVA_INT;
1248 	alu.src[0].sel = bc->ar_reg;
1249 	alu.src[0].chan = bc->ar_chan;
1250 	alu.last = 1;
1251 	r = r600_bytecode_add_alu(bc, &alu);
1252 	if (r)
1253 		return r;
1254 
1255 	bc->cf_last->r6xx_uses_waterfall = 1;
1256 	bc->ar_loaded = 1;
1257 	return 0;
1258 }
1259 
r600_bytecode_add_alu_type(struct r600_bytecode * bc,const struct r600_bytecode_alu * alu,unsigned type)1260 int r600_bytecode_add_alu_type(struct r600_bytecode *bc,
1261 		const struct r600_bytecode_alu *alu, unsigned type)
1262 {
1263 	struct r600_bytecode_alu *nalu = r600_bytecode_alu();
1264 	struct r600_bytecode_alu *lalu;
1265 	int i, r;
1266 
1267 	if (!nalu)
1268 		return -ENOMEM;
1269 	memcpy(nalu, alu, sizeof(struct r600_bytecode_alu));
1270 
1271 	if (alu->is_op3) {
1272 		/* will fail later since alu does not support it. */
1273 		assert(!alu->src[0].abs && !alu->src[1].abs && !alu->src[2].abs);
1274 	}
1275 
1276 	if (bc->cf_last != NULL && bc->cf_last->op != type) {
1277 		/* check if we could add it anyway */
1278 		if ((bc->cf_last->op == CF_OP_ALU && type == CF_OP_ALU_PUSH_BEFORE) ||
1279 		 	(bc->cf_last->op == CF_OP_ALU_PUSH_BEFORE && type == CF_OP_ALU)) {
1280 		 	LIST_FOR_EACH_ENTRY(lalu, &bc->cf_last->alu, list) {
1281 		 		if (lalu->execute_mask) {
1282 					bc->force_add_cf = 1;
1283 					break;
1284 				}
1285 		 		type = CF_OP_ALU_PUSH_BEFORE;
1286 			}
1287 		} else
1288 			bc->force_add_cf = 1;
1289 	}
1290 
1291 	/* cf can contains only alu or only vtx or only tex */
1292 	if (bc->cf_last == NULL || bc->force_add_cf) {
1293                if (bc->cf_last && bc->cf_last->curr_bs_head)
1294                   bc->cf_last->curr_bs_head->last = 1;
1295 		r = r600_bytecode_add_cf(bc);
1296 		if (r) {
1297 			free(nalu);
1298 			return r;
1299 		}
1300 	}
1301 	bc->cf_last->op = type;
1302 
1303 	/* Load index register if required */
1304 	if (bc->gfx_level >= EVERGREEN) {
1305 		for (i = 0; i < 3; i++)
1306 			if (nalu->src[i].kc_bank &&  nalu->src[i].kc_rel)
1307 				egcm_load_index_reg(bc, 0, true);
1308 	}
1309 
1310 	/* Check AR usage and load it if required */
1311 	for (i = 0; i < 3; i++)
1312 		if (nalu->src[i].rel && !bc->ar_loaded)
1313 			r600_load_ar(bc, true);
1314 
1315 	if (nalu->dst.rel && !bc->ar_loaded)
1316 		r600_load_ar(bc, false);
1317 
1318 	/* Setup the kcache for this ALU instruction. This will start a new
1319 	 * ALU clause if needed. */
1320 	if ((r = r600_bytecode_alloc_kcache_lines(bc, nalu, type))) {
1321 		free(nalu);
1322 		return r;
1323 	}
1324 
1325 	if (!bc->cf_last->curr_bs_head) {
1326 		bc->cf_last->curr_bs_head = nalu;
1327 	}
1328 	/* number of gpr == the last gpr used in any alu */
1329 	for (i = 0; i < 3; i++) {
1330 		if (nalu->src[i].sel >= bc->ngpr && nalu->src[i].sel < 128) {
1331 			bc->ngpr = nalu->src[i].sel + 1;
1332 		}
1333 		if (nalu->src[i].sel == V_SQ_ALU_SRC_LITERAL)
1334 			r600_bytecode_special_constants(nalu->src[i].value,
1335 				&nalu->src[i].sel);
1336 	}
1337 	if (nalu->dst.write && nalu->dst.sel >= bc->ngpr) {
1338 		bc->ngpr = nalu->dst.sel + 1;
1339 	}
1340 	list_addtail(&nalu->list, &bc->cf_last->alu);
1341 	/* each alu use 2 dwords */
1342 	bc->cf_last->ndw += 2;
1343 	bc->ndw += 2;
1344 
1345 	/* process cur ALU instructions for bank swizzle */
1346 	if (nalu->last) {
1347 		uint32_t literal[4];
1348 		unsigned nliteral;
1349 		struct r600_bytecode_alu *slots[5];
1350 		int max_slots = bc->gfx_level == CAYMAN ? 4 : 5;
1351 		r = assign_alu_units(bc, bc->cf_last->curr_bs_head, slots);
1352 		if (r)
1353 			return r;
1354 
1355 		if (bc->cf_last->prev_bs_head) {
1356          struct r600_bytecode_alu *cur_prev_head = bc->cf_last->prev_bs_head;
1357 			r = merge_inst_groups(bc, slots, cur_prev_head);
1358 			if (r)
1359 				return r;
1360          if (cur_prev_head != bc->cf_last->prev_bs_head)
1361             bc->nalu_groups--;
1362 		}
1363 
1364 		if (bc->cf_last->prev_bs_head) {
1365 			r = replace_gpr_with_pv_ps(bc, slots, bc->cf_last->prev_bs_head);
1366 			if (r)
1367 				return r;
1368 		}
1369 
1370 		r = check_and_set_bank_swizzle(bc, slots);
1371 		if (r)
1372 			return r;
1373 
1374 		for (i = 0, nliteral = 0; i < max_slots; i++) {
1375 			if (slots[i]) {
1376 				r = r600_bytecode_alu_nliterals(slots[i], literal, &nliteral);
1377 				if (r)
1378 					return r;
1379 			}
1380 		}
1381 		bc->cf_last->ndw += align(nliteral, 2);
1382 
1383 		/* at most 128 slots, one add alu can add 5 slots + 4 constants(2 slots)
1384 		 * worst case */
1385 		if ((bc->cf_last->ndw >> 1) >= 120) {
1386 			bc->force_add_cf = 1;
1387 		}
1388 
1389 		bc->cf_last->prev2_bs_head = bc->cf_last->prev_bs_head;
1390 		bc->cf_last->prev_bs_head = bc->cf_last->curr_bs_head;
1391 		bc->cf_last->curr_bs_head = NULL;
1392 
1393 		bc->nalu_groups++;
1394 
1395 		if (bc->r6xx_nop_after_rel_dst) {
1396 			for (int i = 0; i < max_slots; ++i) {
1397 				if (slots[i] && slots[i]->dst.rel) {
1398 					insert_nop_r6xx(bc, max_slots);
1399 					bc->nalu_groups++;
1400 					break;
1401 				}
1402 			}
1403 		}
1404 	}
1405 
1406 	/* Might need to insert spill write ops after current clause */
1407 	if (nalu->last && bc->n_pending_outputs) {
1408 		while (bc->n_pending_outputs) {
1409 			r = r600_bytecode_add_output(bc, &bc->pending_outputs[--bc->n_pending_outputs]);
1410 			if (r)
1411 				return r;
1412 		}
1413 	}
1414 
1415 	return 0;
1416 }
1417 
r600_bytecode_add_alu(struct r600_bytecode * bc,const struct r600_bytecode_alu * alu)1418 int r600_bytecode_add_alu(struct r600_bytecode *bc, const struct r600_bytecode_alu *alu)
1419 {
1420 	return r600_bytecode_add_alu_type(bc, alu, CF_OP_ALU);
1421 }
1422 
r600_bytecode_num_tex_and_vtx_instructions(const struct r600_bytecode * bc)1423 static unsigned r600_bytecode_num_tex_and_vtx_instructions(const struct r600_bytecode *bc)
1424 {
1425 	switch (bc->gfx_level) {
1426 	case R600:
1427 		return 8;
1428 
1429 	case R700:
1430 	case EVERGREEN:
1431 	case CAYMAN:
1432 		return 16;
1433 
1434 	default:
1435 		R600_ERR("Unknown gfx level %d.\n", bc->gfx_level);
1436 		return 8;
1437 	}
1438 }
1439 
last_inst_was_not_vtx_fetch(struct r600_bytecode * bc)1440 static inline boolean last_inst_was_not_vtx_fetch(struct r600_bytecode *bc)
1441 {
1442 	return !((r600_isa_cf(bc->cf_last->op)->flags & CF_FETCH) &&
1443 		 bc->cf_last->op != CF_OP_GDS &&
1444 		 (bc->gfx_level == CAYMAN ||
1445 		  bc->cf_last->op != CF_OP_TEX));
1446 }
1447 
r600_bytecode_add_vtx_internal(struct r600_bytecode * bc,const struct r600_bytecode_vtx * vtx,bool use_tc)1448 static int r600_bytecode_add_vtx_internal(struct r600_bytecode *bc, const struct r600_bytecode_vtx *vtx,
1449 					  bool use_tc)
1450 {
1451 	struct r600_bytecode_vtx *nvtx = r600_bytecode_vtx();
1452 	int r;
1453 
1454 	if (!nvtx)
1455 		return -ENOMEM;
1456 	memcpy(nvtx, vtx, sizeof(struct r600_bytecode_vtx));
1457 
1458 	/* Load index register if required */
1459 	if (bc->gfx_level >= EVERGREEN) {
1460 		if (vtx->buffer_index_mode)
1461 			egcm_load_index_reg(bc, vtx->buffer_index_mode - 1, false);
1462 	}
1463 
1464 	/* cf can contains only alu or only vtx or only tex */
1465 	if (bc->cf_last == NULL ||
1466 	    last_inst_was_not_vtx_fetch(bc) ||
1467 	    bc->force_add_cf) {
1468 		r = r600_bytecode_add_cf(bc);
1469 		if (r) {
1470 			free(nvtx);
1471 			return r;
1472 		}
1473 		switch (bc->gfx_level) {
1474 		case R600:
1475 		case R700:
1476 			bc->cf_last->op = CF_OP_VTX;
1477 			break;
1478 		case EVERGREEN:
1479 			if (use_tc)
1480 				bc->cf_last->op = CF_OP_TEX;
1481 			else
1482 				bc->cf_last->op = CF_OP_VTX;
1483 			break;
1484 		case CAYMAN:
1485 			bc->cf_last->op = CF_OP_TEX;
1486 			break;
1487 		default:
1488 			R600_ERR("Unknown gfx level %d.\n", bc->gfx_level);
1489 			free(nvtx);
1490 			return -EINVAL;
1491 		}
1492 	}
1493 	list_addtail(&nvtx->list, &bc->cf_last->vtx);
1494 	/* each fetch use 4 dwords */
1495 	bc->cf_last->ndw += 4;
1496 	bc->ndw += 4;
1497 	if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1498 		bc->force_add_cf = 1;
1499 
1500 	bc->ngpr = MAX2(bc->ngpr, vtx->src_gpr + 1);
1501 	bc->ngpr = MAX2(bc->ngpr, vtx->dst_gpr + 1);
1502 
1503 	return 0;
1504 }
1505 
r600_bytecode_add_vtx(struct r600_bytecode * bc,const struct r600_bytecode_vtx * vtx)1506 int r600_bytecode_add_vtx(struct r600_bytecode *bc, const struct r600_bytecode_vtx *vtx)
1507 {
1508 	return r600_bytecode_add_vtx_internal(bc, vtx, false);
1509 }
1510 
r600_bytecode_add_vtx_tc(struct r600_bytecode * bc,const struct r600_bytecode_vtx * vtx)1511 int r600_bytecode_add_vtx_tc(struct r600_bytecode *bc, const struct r600_bytecode_vtx *vtx)
1512 {
1513 	return r600_bytecode_add_vtx_internal(bc, vtx, true);
1514 }
1515 
r600_bytecode_add_tex(struct r600_bytecode * bc,const struct r600_bytecode_tex * tex)1516 int r600_bytecode_add_tex(struct r600_bytecode *bc, const struct r600_bytecode_tex *tex)
1517 {
1518 	struct r600_bytecode_tex *ntex = r600_bytecode_tex();
1519 	int r;
1520 
1521 	if (!ntex)
1522 		return -ENOMEM;
1523 	memcpy(ntex, tex, sizeof(struct r600_bytecode_tex));
1524 
1525 	/* Load index register if required */
1526 	if (bc->gfx_level >= EVERGREEN) {
1527 		if (tex->sampler_index_mode || tex->resource_index_mode)
1528 			egcm_load_index_reg(bc, 1, false);
1529 	}
1530 
1531 	/* we can't fetch data und use it as texture lookup address in the same TEX clause */
1532 	if (bc->cf_last != NULL &&
1533 		bc->cf_last->op == CF_OP_TEX) {
1534 		struct r600_bytecode_tex *ttex;
1535 		LIST_FOR_EACH_ENTRY(ttex, &bc->cf_last->tex, list) {
1536 			if (ttex->dst_gpr == ntex->src_gpr &&
1537                             (ttex->dst_sel_x < 4 || ttex->dst_sel_y < 4 ||
1538                              ttex->dst_sel_z < 4 || ttex->dst_sel_w < 4)) {
1539 				bc->force_add_cf = 1;
1540 				break;
1541 			}
1542 		}
1543 		/* vtx instrs get inserted after tex, so make sure we aren't moving the tex
1544 		 * before (say) the instr fetching the texcoord.
1545 		 */
1546 		if (!list_is_empty(&bc->cf_last->vtx))
1547 			bc->force_add_cf = 1;
1548 
1549 		/* slight hack to make gradients always go into same cf */
1550 		if (ntex->op == FETCH_OP_SET_GRADIENTS_H)
1551 			bc->force_add_cf = 1;
1552 	}
1553 
1554 	/* cf can contains only alu or only vtx or only tex */
1555 	if (bc->cf_last == NULL ||
1556 		bc->cf_last->op != CF_OP_TEX ||
1557 	        bc->force_add_cf) {
1558 		r = r600_bytecode_add_cf(bc);
1559 		if (r) {
1560 			free(ntex);
1561 			return r;
1562 		}
1563 		bc->cf_last->op = CF_OP_TEX;
1564 	}
1565 	if (ntex->src_gpr >= bc->ngpr) {
1566 		bc->ngpr = ntex->src_gpr + 1;
1567 	}
1568 	if (ntex->dst_gpr >= bc->ngpr) {
1569 		bc->ngpr = ntex->dst_gpr + 1;
1570 	}
1571 	list_addtail(&ntex->list, &bc->cf_last->tex);
1572 	/* each texture fetch use 4 dwords */
1573 	bc->cf_last->ndw += 4;
1574 	bc->ndw += 4;
1575 	if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1576 		bc->force_add_cf = 1;
1577 	return 0;
1578 }
1579 
r600_bytecode_add_gds(struct r600_bytecode * bc,const struct r600_bytecode_gds * gds)1580 int r600_bytecode_add_gds(struct r600_bytecode *bc, const struct r600_bytecode_gds *gds)
1581 {
1582 	struct r600_bytecode_gds *ngds = r600_bytecode_gds();
1583 	int r;
1584 
1585 	if (ngds == NULL)
1586 		return -ENOMEM;
1587 	memcpy(ngds, gds, sizeof(struct r600_bytecode_gds));
1588 
1589 	if (bc->gfx_level >= EVERGREEN) {
1590 		if (gds->uav_index_mode)
1591 			egcm_load_index_reg(bc, gds->uav_index_mode - 1, false);
1592 	}
1593 
1594 	if (bc->cf_last == NULL ||
1595 	    bc->cf_last->op != CF_OP_GDS ||
1596 	    bc->force_add_cf) {
1597 		r = r600_bytecode_add_cf(bc);
1598 		if (r) {
1599 			free(ngds);
1600 			return r;
1601 		}
1602 		bc->cf_last->op = CF_OP_GDS;
1603 	}
1604 
1605 	list_addtail(&ngds->list, &bc->cf_last->gds);
1606 	bc->cf_last->ndw += 4; /* each GDS uses 4 dwords */
1607 	if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1608 		bc->force_add_cf = 1;
1609 	return 0;
1610 }
1611 
r600_bytecode_add_cfinst(struct r600_bytecode * bc,unsigned op)1612 int r600_bytecode_add_cfinst(struct r600_bytecode *bc, unsigned op)
1613 {
1614 	int r;
1615 
1616 	/* Emit WAIT_ACK before control flow to ensure pending writes are always acked. */
1617 	if (op != CF_OP_WAIT_ACK && op != CF_OP_MEM_SCRATCH)
1618 		r600_bytecode_wait_acks(bc);
1619 
1620 	r = r600_bytecode_add_cf(bc);
1621 	if (r)
1622 		return r;
1623 
1624 	bc->cf_last->cond = V_SQ_CF_COND_ACTIVE;
1625 	bc->cf_last->op = op;
1626 	return 0;
1627 }
1628 
cm_bytecode_add_cf_end(struct r600_bytecode * bc)1629 int cm_bytecode_add_cf_end(struct r600_bytecode *bc)
1630 {
1631 	return r600_bytecode_add_cfinst(bc, CF_OP_CF_END);
1632 }
1633 
1634 /* common to all 3 families */
r600_bytecode_vtx_build(struct r600_bytecode * bc,struct r600_bytecode_vtx * vtx,unsigned id)1635 static int r600_bytecode_vtx_build(struct r600_bytecode *bc, struct r600_bytecode_vtx *vtx, unsigned id)
1636 {
1637 	if (r600_isa_fetch(vtx->op)->flags & FF_MEM)
1638 		return r700_bytecode_fetch_mem_build(bc, vtx, id);
1639 	bc->bytecode[id] = S_SQ_VTX_WORD0_VTX_INST(r600_isa_fetch_opcode(bc->isa->hw_class, vtx->op)) |
1640 			S_SQ_VTX_WORD0_BUFFER_ID(vtx->buffer_id) |
1641 			S_SQ_VTX_WORD0_FETCH_TYPE(vtx->fetch_type) |
1642 			S_SQ_VTX_WORD0_SRC_GPR(vtx->src_gpr) |
1643 			S_SQ_VTX_WORD0_SRC_SEL_X(vtx->src_sel_x);
1644 	if (bc->gfx_level < CAYMAN)
1645 		bc->bytecode[id] |= S_SQ_VTX_WORD0_MEGA_FETCH_COUNT(vtx->mega_fetch_count);
1646 	id++;
1647 	bc->bytecode[id++] = S_SQ_VTX_WORD1_DST_SEL_X(vtx->dst_sel_x) |
1648 				S_SQ_VTX_WORD1_DST_SEL_Y(vtx->dst_sel_y) |
1649 				S_SQ_VTX_WORD1_DST_SEL_Z(vtx->dst_sel_z) |
1650 				S_SQ_VTX_WORD1_DST_SEL_W(vtx->dst_sel_w) |
1651 				S_SQ_VTX_WORD1_USE_CONST_FIELDS(vtx->use_const_fields) |
1652 				S_SQ_VTX_WORD1_DATA_FORMAT(vtx->data_format) |
1653 				S_SQ_VTX_WORD1_NUM_FORMAT_ALL(vtx->num_format_all) |
1654 				S_SQ_VTX_WORD1_FORMAT_COMP_ALL(vtx->format_comp_all) |
1655 				S_SQ_VTX_WORD1_SRF_MODE_ALL(vtx->srf_mode_all) |
1656 				S_SQ_VTX_WORD1_GPR_DST_GPR(vtx->dst_gpr);
1657 	bc->bytecode[id] = S_SQ_VTX_WORD2_OFFSET(vtx->offset)|
1658 				S_SQ_VTX_WORD2_ENDIAN_SWAP(vtx->endian);
1659 	if (bc->gfx_level >= EVERGREEN)
1660 		bc->bytecode[id] |= ((vtx->buffer_index_mode & 0x3) << 21); // S_SQ_VTX_WORD2_BIM(vtx->buffer_index_mode);
1661 	if (bc->gfx_level < CAYMAN)
1662 		bc->bytecode[id] |= S_SQ_VTX_WORD2_MEGA_FETCH(1);
1663 	id++;
1664 	bc->bytecode[id++] = 0;
1665 	return 0;
1666 }
1667 
1668 /* common to all 3 families */
r600_bytecode_tex_build(struct r600_bytecode * bc,struct r600_bytecode_tex * tex,unsigned id)1669 static int r600_bytecode_tex_build(struct r600_bytecode *bc, struct r600_bytecode_tex *tex, unsigned id)
1670 {
1671 	bc->bytecode[id] = S_SQ_TEX_WORD0_TEX_INST(
1672 					r600_isa_fetch_opcode(bc->isa->hw_class, tex->op)) |
1673 			    EG_S_SQ_TEX_WORD0_INST_MOD(tex->inst_mod) |
1674 				S_SQ_TEX_WORD0_RESOURCE_ID(tex->resource_id) |
1675 				S_SQ_TEX_WORD0_SRC_GPR(tex->src_gpr) |
1676 				S_SQ_TEX_WORD0_SRC_REL(tex->src_rel);
1677 	if (bc->gfx_level >= EVERGREEN)
1678 		bc->bytecode[id] |= ((tex->sampler_index_mode & 0x3) << 27) | // S_SQ_TEX_WORD0_SIM(tex->sampler_index_mode);
1679 				((tex->resource_index_mode & 0x3) << 25); // S_SQ_TEX_WORD0_RIM(tex->resource_index_mode)
1680 	id++;
1681 	bc->bytecode[id++] = S_SQ_TEX_WORD1_DST_GPR(tex->dst_gpr) |
1682 				S_SQ_TEX_WORD1_DST_REL(tex->dst_rel) |
1683 				S_SQ_TEX_WORD1_DST_SEL_X(tex->dst_sel_x) |
1684 				S_SQ_TEX_WORD1_DST_SEL_Y(tex->dst_sel_y) |
1685 				S_SQ_TEX_WORD1_DST_SEL_Z(tex->dst_sel_z) |
1686 				S_SQ_TEX_WORD1_DST_SEL_W(tex->dst_sel_w) |
1687 				S_SQ_TEX_WORD1_LOD_BIAS(tex->lod_bias) |
1688 				S_SQ_TEX_WORD1_COORD_TYPE_X(tex->coord_type_x) |
1689 				S_SQ_TEX_WORD1_COORD_TYPE_Y(tex->coord_type_y) |
1690 				S_SQ_TEX_WORD1_COORD_TYPE_Z(tex->coord_type_z) |
1691 				S_SQ_TEX_WORD1_COORD_TYPE_W(tex->coord_type_w);
1692 	bc->bytecode[id++] = S_SQ_TEX_WORD2_OFFSET_X(tex->offset_x) |
1693 				S_SQ_TEX_WORD2_OFFSET_Y(tex->offset_y) |
1694 				S_SQ_TEX_WORD2_OFFSET_Z(tex->offset_z) |
1695 				S_SQ_TEX_WORD2_SAMPLER_ID(tex->sampler_id) |
1696 				S_SQ_TEX_WORD2_SRC_SEL_X(tex->src_sel_x) |
1697 				S_SQ_TEX_WORD2_SRC_SEL_Y(tex->src_sel_y) |
1698 				S_SQ_TEX_WORD2_SRC_SEL_Z(tex->src_sel_z) |
1699 				S_SQ_TEX_WORD2_SRC_SEL_W(tex->src_sel_w);
1700 	bc->bytecode[id++] = 0;
1701 	return 0;
1702 }
1703 
1704 /* r600 only, r700/eg bits in r700_asm.c */
r600_bytecode_alu_build(struct r600_bytecode * bc,struct r600_bytecode_alu * alu,unsigned id)1705 static int r600_bytecode_alu_build(struct r600_bytecode *bc, struct r600_bytecode_alu *alu, unsigned id)
1706 {
1707 	unsigned opcode = r600_isa_alu_opcode(bc->isa->hw_class, alu->op);
1708 
1709 	/* don't replace gpr by pv or ps for destination register */
1710 	bc->bytecode[id++] = S_SQ_ALU_WORD0_SRC0_SEL(alu->src[0].sel) |
1711 				S_SQ_ALU_WORD0_SRC0_REL(alu->src[0].rel) |
1712 				S_SQ_ALU_WORD0_SRC0_CHAN(alu->src[0].chan) |
1713 				S_SQ_ALU_WORD0_SRC0_NEG(alu->src[0].neg) |
1714 				S_SQ_ALU_WORD0_SRC1_SEL(alu->src[1].sel) |
1715 				S_SQ_ALU_WORD0_SRC1_REL(alu->src[1].rel) |
1716 				S_SQ_ALU_WORD0_SRC1_CHAN(alu->src[1].chan) |
1717 				S_SQ_ALU_WORD0_SRC1_NEG(alu->src[1].neg) |
1718 				S_SQ_ALU_WORD0_INDEX_MODE(alu->index_mode) |
1719 				S_SQ_ALU_WORD0_PRED_SEL(alu->pred_sel) |
1720 				S_SQ_ALU_WORD0_LAST(alu->last);
1721 
1722 	if (alu->is_op3) {
1723 		assert(!alu->src[0].abs && !alu->src[1].abs && !alu->src[2].abs);
1724 		bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) |
1725 					S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) |
1726 					S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) |
1727 					S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) |
1728 					S_SQ_ALU_WORD1_OP3_SRC2_SEL(alu->src[2].sel) |
1729 					S_SQ_ALU_WORD1_OP3_SRC2_REL(alu->src[2].rel) |
1730 					S_SQ_ALU_WORD1_OP3_SRC2_CHAN(alu->src[2].chan) |
1731 					S_SQ_ALU_WORD1_OP3_SRC2_NEG(alu->src[2].neg) |
1732 					S_SQ_ALU_WORD1_OP3_ALU_INST(opcode) |
1733 					S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle);
1734 	} else {
1735 		bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) |
1736 					S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) |
1737 					S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) |
1738 					S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) |
1739 					S_SQ_ALU_WORD1_OP2_SRC0_ABS(alu->src[0].abs) |
1740 					S_SQ_ALU_WORD1_OP2_SRC1_ABS(alu->src[1].abs) |
1741 					S_SQ_ALU_WORD1_OP2_WRITE_MASK(alu->dst.write) |
1742 					S_SQ_ALU_WORD1_OP2_OMOD(alu->omod) |
1743 					S_SQ_ALU_WORD1_OP2_ALU_INST(opcode) |
1744 					S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle) |
1745 					S_SQ_ALU_WORD1_OP2_UPDATE_EXECUTE_MASK(alu->execute_mask) |
1746 					S_SQ_ALU_WORD1_OP2_UPDATE_PRED(alu->update_pred);
1747 	}
1748 	return 0;
1749 }
1750 
r600_bytecode_cf_vtx_build(uint32_t * bytecode,const struct r600_bytecode_cf * cf)1751 static void r600_bytecode_cf_vtx_build(uint32_t *bytecode, const struct r600_bytecode_cf *cf)
1752 {
1753 	*bytecode++ = S_SQ_CF_WORD0_ADDR(cf->addr >> 1);
1754 	*bytecode++ = S_SQ_CF_WORD1_CF_INST(r600_isa_cf_opcode(ISA_CC_R600, cf->op)) |
1755 			S_SQ_CF_WORD1_BARRIER(1) |
1756 			S_SQ_CF_WORD1_COUNT((cf->ndw / 4) - 1)|
1757 			S_SQ_CF_WORD1_END_OF_PROGRAM(cf->end_of_program);
1758 }
1759 
1760 /* common for r600/r700 - eg in eg_asm.c */
r600_bytecode_cf_build(struct r600_bytecode * bc,struct r600_bytecode_cf * cf)1761 static int r600_bytecode_cf_build(struct r600_bytecode *bc, struct r600_bytecode_cf *cf)
1762 {
1763 	unsigned id = cf->id;
1764 	const struct cf_op_info *cfop = r600_isa_cf(cf->op);
1765 	unsigned opcode = r600_isa_cf_opcode(bc->isa->hw_class, cf->op);
1766 
1767 
1768 	if (cf->op == CF_NATIVE) {
1769 		bc->bytecode[id++] = cf->isa[0];
1770 		bc->bytecode[id++] = cf->isa[1];
1771 	} else if (cfop->flags & CF_ALU) {
1772 		bc->bytecode[id++] = S_SQ_CF_ALU_WORD0_ADDR(cf->addr >> 1) |
1773 			S_SQ_CF_ALU_WORD0_KCACHE_MODE0(cf->kcache[0].mode) |
1774 			S_SQ_CF_ALU_WORD0_KCACHE_BANK0(cf->kcache[0].bank) |
1775 			S_SQ_CF_ALU_WORD0_KCACHE_BANK1(cf->kcache[1].bank);
1776 
1777 		bc->bytecode[id++] = S_SQ_CF_ALU_WORD1_CF_INST(opcode) |
1778 			S_SQ_CF_ALU_WORD1_KCACHE_MODE1(cf->kcache[1].mode) |
1779 			S_SQ_CF_ALU_WORD1_KCACHE_ADDR0(cf->kcache[0].addr) |
1780 			S_SQ_CF_ALU_WORD1_KCACHE_ADDR1(cf->kcache[1].addr) |
1781 					S_SQ_CF_ALU_WORD1_BARRIER(1) |
1782 					S_SQ_CF_ALU_WORD1_USES_WATERFALL(bc->gfx_level == R600 ? cf->r6xx_uses_waterfall : 0) |
1783 					S_SQ_CF_ALU_WORD1_COUNT((cf->ndw / 2) - 1);
1784 	} else if (cfop->flags & CF_FETCH) {
1785 		if (bc->gfx_level == R700)
1786 			r700_bytecode_cf_vtx_build(&bc->bytecode[id], cf);
1787 		else
1788 			r600_bytecode_cf_vtx_build(&bc->bytecode[id], cf);
1789 	} else if (cfop->flags & CF_EXP) {
1790 		bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) |
1791 			S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) |
1792 			S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) |
1793 			S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type) |
1794 			S_SQ_CF_ALLOC_EXPORT_WORD0_INDEX_GPR(cf->output.index_gpr);
1795 		bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) |
1796 			S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_X(cf->output.swizzle_x) |
1797 			S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Y(cf->output.swizzle_y) |
1798 			S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Z(cf->output.swizzle_z) |
1799 			S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_W(cf->output.swizzle_w) |
1800 			S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->barrier) |
1801 			S_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(opcode) |
1802 			S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->end_of_program);
1803 	} else if (cfop->flags & CF_MEM) {
1804 		bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) |
1805 			S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) |
1806 			S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) |
1807 			S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type) |
1808 			S_SQ_CF_ALLOC_EXPORT_WORD0_INDEX_GPR(cf->output.index_gpr);
1809 		bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) |
1810 			S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->barrier) |
1811 			S_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(opcode) |
1812 			S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->end_of_program) |
1813 			S_SQ_CF_ALLOC_EXPORT_WORD1_BUF_ARRAY_SIZE(cf->output.array_size) |
1814 			S_SQ_CF_ALLOC_EXPORT_WORD1_BUF_COMP_MASK(cf->output.comp_mask);
1815 	} else {
1816 		bc->bytecode[id++] = S_SQ_CF_WORD0_ADDR(cf->cf_addr >> 1);
1817 		bc->bytecode[id++] = S_SQ_CF_WORD1_CF_INST(opcode) |
1818 					S_SQ_CF_WORD1_BARRIER(1) |
1819 			                S_SQ_CF_WORD1_COND(cf->cond) |
1820 			                S_SQ_CF_WORD1_POP_COUNT(cf->pop_count) |
1821 					S_SQ_CF_WORD1_END_OF_PROGRAM(cf->end_of_program);
1822 	}
1823 	return 0;
1824 }
1825 
r600_bytecode_build(struct r600_bytecode * bc)1826 int r600_bytecode_build(struct r600_bytecode *bc)
1827 {
1828 	struct r600_bytecode_cf *cf;
1829 	struct r600_bytecode_alu *alu;
1830 	struct r600_bytecode_vtx *vtx;
1831 	struct r600_bytecode_tex *tex;
1832 	struct r600_bytecode_gds *gds;
1833 	uint32_t literal[4];
1834 	unsigned nliteral;
1835 	unsigned addr;
1836 	int i, r;
1837 
1838 	if (!bc->nstack) { // If not 0, Stack_size already provided by llvm
1839 		if (bc->stack.max_entries)
1840 			bc->nstack = bc->stack.max_entries;
1841 		else if (bc->type == PIPE_SHADER_VERTEX ||
1842 			 bc->type == PIPE_SHADER_TESS_EVAL ||
1843 			 bc->type == PIPE_SHADER_TESS_CTRL)
1844 			bc->nstack = 1;
1845 	}
1846 
1847 	/* first path compute addr of each CF block */
1848 	/* addr start after all the CF instructions */
1849 	addr = bc->cf_last->id + 2;
1850 	LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
1851 		if (r600_isa_cf(cf->op)->flags & CF_FETCH) {
1852 			addr += 3;
1853 			addr &= 0xFFFFFFFCUL;
1854 		}
1855 		cf->addr = addr;
1856 		addr += cf->ndw;
1857 		bc->ndw = cf->addr + cf->ndw;
1858 	}
1859 	free(bc->bytecode);
1860 	bc->bytecode = calloc(4, bc->ndw);
1861 	if (bc->bytecode == NULL)
1862 		return -ENOMEM;
1863 	LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
1864 		const struct cf_op_info *cfop = r600_isa_cf(cf->op);
1865 		addr = cf->addr;
1866 		if (bc->gfx_level >= EVERGREEN)
1867 			r = eg_bytecode_cf_build(bc, cf);
1868 		else
1869 			r = r600_bytecode_cf_build(bc, cf);
1870 		if (r)
1871 			return r;
1872 		if (cfop->flags & CF_ALU) {
1873 			nliteral = 0;
1874 			memset(literal, 0, sizeof(literal));
1875 			LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
1876 				r = r600_bytecode_alu_nliterals(alu, literal, &nliteral);
1877 				if (r)
1878 					return r;
1879 				r600_bytecode_alu_adjust_literals(alu, literal, nliteral);
1880 				r600_bytecode_assign_kcache_banks(alu, cf->kcache);
1881 
1882 				switch(bc->gfx_level) {
1883 				case R600:
1884 					r = r600_bytecode_alu_build(bc, alu, addr);
1885 					break;
1886 				case R700:
1887 					r = r700_bytecode_alu_build(bc, alu, addr);
1888 					break;
1889 				case EVERGREEN:
1890 				case CAYMAN:
1891 					r = eg_bytecode_alu_build(bc, alu, addr);
1892 					break;
1893 				default:
1894 					R600_ERR("unknown gfx level %d.\n", bc->gfx_level);
1895 					return -EINVAL;
1896 				}
1897 				if (r)
1898 					return r;
1899 				addr += 2;
1900 				if (alu->last) {
1901 					for (i = 0; i < align(nliteral, 2); ++i) {
1902 						bc->bytecode[addr++] = literal[i];
1903 					}
1904 					nliteral = 0;
1905 					memset(literal, 0, sizeof(literal));
1906 				}
1907 			}
1908 		} else if (cf->op == CF_OP_VTX) {
1909 			LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
1910 				r = r600_bytecode_vtx_build(bc, vtx, addr);
1911 				if (r)
1912 					return r;
1913 				addr += 4;
1914 			}
1915 		} else if (cf->op == CF_OP_GDS) {
1916 			assert(bc->gfx_level >= EVERGREEN);
1917 			LIST_FOR_EACH_ENTRY(gds, &cf->gds, list) {
1918 				r = eg_bytecode_gds_build(bc, gds, addr);
1919 				if (r)
1920 					return r;
1921 				addr += 4;
1922 			}
1923 		} else if (cf->op == CF_OP_TEX) {
1924 			LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
1925 				assert(bc->gfx_level >= EVERGREEN);
1926 				r = r600_bytecode_vtx_build(bc, vtx, addr);
1927 				if (r)
1928 					return r;
1929 				addr += 4;
1930 			}
1931 			LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
1932 				r = r600_bytecode_tex_build(bc, tex, addr);
1933 				if (r)
1934 					return r;
1935 				addr += 4;
1936 			}
1937 		}
1938 	}
1939 	return 0;
1940 }
1941 
r600_bytecode_clear(struct r600_bytecode * bc)1942 void r600_bytecode_clear(struct r600_bytecode *bc)
1943 {
1944 	struct r600_bytecode_cf *cf = NULL, *next_cf;
1945 
1946 	free(bc->bytecode);
1947 	bc->bytecode = NULL;
1948 
1949 	LIST_FOR_EACH_ENTRY_SAFE(cf, next_cf, &bc->cf, list) {
1950 		struct r600_bytecode_alu *alu = NULL, *next_alu;
1951 		struct r600_bytecode_tex *tex = NULL, *next_tex;
1952 		struct r600_bytecode_tex *vtx = NULL, *next_vtx;
1953 		struct r600_bytecode_gds *gds = NULL, *next_gds;
1954 
1955 		LIST_FOR_EACH_ENTRY_SAFE(alu, next_alu, &cf->alu, list) {
1956 			free(alu);
1957 		}
1958 
1959 		list_inithead(&cf->alu);
1960 
1961 		LIST_FOR_EACH_ENTRY_SAFE(tex, next_tex, &cf->tex, list) {
1962 			free(tex);
1963 		}
1964 
1965 		list_inithead(&cf->tex);
1966 
1967 		LIST_FOR_EACH_ENTRY_SAFE(vtx, next_vtx, &cf->vtx, list) {
1968 			free(vtx);
1969 		}
1970 
1971 		list_inithead(&cf->vtx);
1972 
1973 		LIST_FOR_EACH_ENTRY_SAFE(gds, next_gds, &cf->gds, list) {
1974 			free(gds);
1975 		}
1976 
1977 		list_inithead(&cf->gds);
1978 
1979 		free(cf);
1980 	}
1981 
1982 	list_inithead(&cf->list);
1983 }
1984 
print_swizzle(unsigned swz)1985 static int print_swizzle(unsigned swz)
1986 {
1987 	const char * swzchars = "xyzw01?_";
1988 	assert(swz<8 && swz != 6);
1989 	return fprintf(stderr, "%c", swzchars[swz]);
1990 }
1991 
print_sel(unsigned sel,unsigned rel,unsigned index_mode,unsigned need_brackets)1992 static int print_sel(unsigned sel, unsigned rel, unsigned index_mode,
1993 		unsigned need_brackets)
1994 {
1995 	int o = 0;
1996 	if (rel && index_mode >= 5 && sel < 128)
1997 		o += fprintf(stderr, "G");
1998 	if (rel || need_brackets) {
1999 		o += fprintf(stderr, "[");
2000 	}
2001 	o += fprintf(stderr, "%d", sel);
2002 	if (rel) {
2003 		if (index_mode == 0 || index_mode == 6)
2004 			o += fprintf(stderr, "+AR");
2005 		else if (index_mode == 4)
2006 			o += fprintf(stderr, "+AL");
2007 	}
2008 	if (rel || need_brackets) {
2009 		o += fprintf(stderr, "]");
2010 	}
2011 	return o;
2012 }
2013 
print_dst(struct r600_bytecode_alu * alu)2014 static int print_dst(struct r600_bytecode_alu *alu)
2015 {
2016 	int o = 0;
2017 	unsigned sel = alu->dst.sel;
2018 	char reg_char = 'R';
2019 	if (sel > 128 - 4) { /* clause temporary gpr */
2020 		sel -= 128 - 4;
2021 		reg_char = 'T';
2022 	}
2023 
2024 	if (alu_writes(alu)) {
2025 		o += fprintf(stderr, "%c", reg_char);
2026 		o += print_sel(alu->dst.sel, alu->dst.rel, alu->index_mode, 0);
2027 	} else {
2028 		o += fprintf(stderr, "__");
2029 	}
2030 	o += fprintf(stderr, ".");
2031 	o += print_swizzle(alu->dst.chan);
2032 	return o;
2033 }
2034 
print_src(struct r600_bytecode_alu * alu,unsigned idx)2035 static int print_src(struct r600_bytecode_alu *alu, unsigned idx)
2036 {
2037 	int o = 0;
2038 	struct r600_bytecode_alu_src *src = &alu->src[idx];
2039 	unsigned sel = src->sel, need_sel = 1, need_chan = 1, need_brackets = 0;
2040 
2041 	if (src->neg)
2042 		o += fprintf(stderr,"-");
2043 	if (src->abs)
2044 		o += fprintf(stderr,"|");
2045 
2046 	if (sel < 128 - 4) {
2047 		o += fprintf(stderr, "R");
2048 	} else if (sel < 128) {
2049 		o += fprintf(stderr, "T");
2050 		sel -= 128 - 4;
2051 	} else if (sel < 160) {
2052 		o += fprintf(stderr, "KC0");
2053 		need_brackets = 1;
2054 		sel -= 128;
2055 	} else if (sel < 192) {
2056 		o += fprintf(stderr, "KC1");
2057 		need_brackets = 1;
2058 		sel -= 160;
2059 	} else if (sel >= 512) {
2060 		o += fprintf(stderr, "C%d", src->kc_bank);
2061 		need_brackets = 1;
2062 		sel -= 512;
2063 	} else if (sel >= 448) {
2064 		o += fprintf(stderr, "Param");
2065 		sel -= 448;
2066 		need_chan = 0;
2067 	} else if (sel >= 288) {
2068 		o += fprintf(stderr, "KC3");
2069 		need_brackets = 1;
2070 		sel -= 288;
2071 	} else if (sel >= 256) {
2072 		o += fprintf(stderr, "KC2");
2073 		need_brackets = 1;
2074 		sel -= 256;
2075 	} else {
2076 		need_sel = 0;
2077 		need_chan = 0;
2078 		switch (sel) {
2079 		case EG_V_SQ_ALU_SRC_LDS_DIRECT_A:
2080 			o += fprintf(stderr, "LDS_A[0x%08X]", src->value);
2081 			break;
2082 		case EG_V_SQ_ALU_SRC_LDS_DIRECT_B:
2083 			o += fprintf(stderr, "LDS_B[0x%08X]", src->value);
2084 			break;
2085 		case EG_V_SQ_ALU_SRC_LDS_OQ_A:
2086 			o += fprintf(stderr, "LDS_OQ_A");
2087 			need_chan = 1;
2088 			break;
2089 		case EG_V_SQ_ALU_SRC_LDS_OQ_B:
2090 			o += fprintf(stderr, "LDS_OQ_B");
2091 			need_chan = 1;
2092 			break;
2093 		case EG_V_SQ_ALU_SRC_LDS_OQ_A_POP:
2094 			o += fprintf(stderr, "LDS_OQ_A_POP");
2095 			need_chan = 1;
2096 			break;
2097 		case EG_V_SQ_ALU_SRC_LDS_OQ_B_POP:
2098 			o += fprintf(stderr, "LDS_OQ_B_POP");
2099 			need_chan = 1;
2100 			break;
2101 		case EG_V_SQ_ALU_SRC_TIME_LO:
2102 			o += fprintf(stderr, "TIME_LO");
2103 			break;
2104 		case EG_V_SQ_ALU_SRC_TIME_HI:
2105 			o += fprintf(stderr, "TIME_HI");
2106 			break;
2107 		case EG_V_SQ_ALU_SRC_SE_ID:
2108 			o += fprintf(stderr, "SE_ID");
2109 			break;
2110 		case EG_V_SQ_ALU_SRC_SIMD_ID:
2111 			o += fprintf(stderr, "SIMD_ID");
2112 			break;
2113 		case EG_V_SQ_ALU_SRC_HW_WAVE_ID:
2114 			o += fprintf(stderr, "HW_WAVE_ID");
2115 			break;
2116 		case V_SQ_ALU_SRC_PS:
2117 			o += fprintf(stderr, "PS");
2118 			break;
2119 		case V_SQ_ALU_SRC_PV:
2120 			o += fprintf(stderr, "PV");
2121 			need_chan = 1;
2122 			break;
2123 		case V_SQ_ALU_SRC_LITERAL:
2124 			o += fprintf(stderr, "[0x%08X %f]", src->value, u_bitcast_u2f(src->value));
2125 			break;
2126 		case V_SQ_ALU_SRC_0_5:
2127 			o += fprintf(stderr, "0.5");
2128 			break;
2129 		case V_SQ_ALU_SRC_M_1_INT:
2130 			o += fprintf(stderr, "-1");
2131 			break;
2132 		case V_SQ_ALU_SRC_1_INT:
2133 			o += fprintf(stderr, "1");
2134 			break;
2135 		case V_SQ_ALU_SRC_1:
2136 			o += fprintf(stderr, "1.0");
2137 			break;
2138 		case V_SQ_ALU_SRC_0:
2139 			o += fprintf(stderr, "0");
2140 			break;
2141 		default:
2142 			o += fprintf(stderr, "??IMM_%d", sel);
2143 			break;
2144 		}
2145 	}
2146 
2147 	if (need_sel)
2148 		o += print_sel(sel, src->rel, alu->index_mode, need_brackets);
2149 
2150 	if (need_chan) {
2151 		o += fprintf(stderr, ".");
2152 		o += print_swizzle(src->chan);
2153 	}
2154 
2155 	if (src->abs)
2156 		o += fprintf(stderr,"|");
2157 
2158 	return o;
2159 }
2160 
print_indent(int p,int c)2161 static int print_indent(int p, int c)
2162 {
2163 	int o = 0;
2164 	while (p++ < c)
2165 		o += fprintf(stderr, " ");
2166 	return o;
2167 }
2168 
r600_bytecode_disasm(struct r600_bytecode * bc)2169 void r600_bytecode_disasm(struct r600_bytecode *bc)
2170 {
2171 	const char *index_mode[] = {"CF_INDEX_NONE", "CF_INDEX_0", "CF_INDEX_1"};
2172 	static int index = 0;
2173 	struct r600_bytecode_cf *cf = NULL;
2174 	struct r600_bytecode_alu *alu = NULL;
2175 	struct r600_bytecode_vtx *vtx = NULL;
2176 	struct r600_bytecode_tex *tex = NULL;
2177 	struct r600_bytecode_gds *gds = NULL;
2178 
2179 	unsigned i, id, ngr = 0, last;
2180 	uint32_t literal[4];
2181 	unsigned nliteral;
2182 	char chip = '6';
2183 
2184 	switch (bc->gfx_level) {
2185 	case R700:
2186 		chip = '7';
2187 		break;
2188 	case EVERGREEN:
2189 		chip = 'E';
2190 		break;
2191 	case CAYMAN:
2192 		chip = 'C';
2193 		break;
2194 	case R600:
2195 	default:
2196 		chip = '6';
2197 		break;
2198 	}
2199 	fprintf(stderr, "bytecode %d dw -- %d gprs -- %d nstack -------------\n",
2200 	        bc->ndw, bc->ngpr, bc->nstack);
2201 	fprintf(stderr, "shader %d -- %c\n", index++, chip);
2202 
2203 	LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
2204 		id = cf->id;
2205 		if (cf->op == CF_NATIVE) {
2206 			fprintf(stderr, "%04d %08X %08X CF_NATIVE\n", id, bc->bytecode[id],
2207 					bc->bytecode[id + 1]);
2208 		} else {
2209 			const struct cf_op_info *cfop = r600_isa_cf(cf->op);
2210 			if (cfop->flags & CF_ALU) {
2211 				if (cf->eg_alu_extended) {
2212 					fprintf(stderr, "%04d %08X %08X  %s\n", id, bc->bytecode[id],
2213 							bc->bytecode[id + 1], "ALU_EXT");
2214 					id += 2;
2215 				}
2216 				fprintf(stderr, "%04d %08X %08X  %s ", id, bc->bytecode[id],
2217 						bc->bytecode[id + 1], cfop->name);
2218 				fprintf(stderr, "%d @%d ", cf->ndw / 2, cf->addr);
2219 				for (i = 0; i < 4; ++i) {
2220 					if (cf->kcache[i].mode) {
2221 						int c_start = (cf->kcache[i].addr << 4);
2222 						int c_end = c_start + (cf->kcache[i].mode << 4);
2223 						fprintf(stderr, "KC%d[CB%d:%d-%d%s%s] ",
2224 						        i, cf->kcache[i].bank, c_start, c_end,
2225 						        cf->kcache[i].index_mode ? " " : "",
2226 						        cf->kcache[i].index_mode ? index_mode[cf->kcache[i].index_mode] : "");
2227 					}
2228 				}
2229 				fprintf(stderr, "\n");
2230 			} else if (cfop->flags & CF_FETCH) {
2231 				fprintf(stderr, "%04d %08X %08X  %s ", id, bc->bytecode[id],
2232 						bc->bytecode[id + 1], cfop->name);
2233 				fprintf(stderr, "%d @%d ", cf->ndw / 4, cf->addr);
2234 				if (cf->vpm)
2235 					fprintf(stderr, "VPM ");
2236 				if (cf->end_of_program)
2237 					fprintf(stderr, "EOP ");
2238 				fprintf(stderr, "\n");
2239 
2240 			} else if (cfop->flags & CF_EXP) {
2241 				int o = 0;
2242 				const char *exp_type[] = {"PIXEL", "POS  ", "PARAM"};
2243 				o += fprintf(stderr, "%04d %08X %08X  %s ", id, bc->bytecode[id],
2244 						bc->bytecode[id + 1], cfop->name);
2245 				o += print_indent(o, 43);
2246 				o += fprintf(stderr, "%s ", exp_type[cf->output.type]);
2247 				if (cf->output.burst_count > 1) {
2248 					o += fprintf(stderr, "%d-%d ", cf->output.array_base,
2249 							cf->output.array_base + cf->output.burst_count - 1);
2250 
2251 					o += print_indent(o, 55);
2252 					o += fprintf(stderr, "R%d-%d.", cf->output.gpr,
2253 							cf->output.gpr + cf->output.burst_count - 1);
2254 				} else {
2255 					o += fprintf(stderr, "%d ", cf->output.array_base);
2256 					o += print_indent(o, 55);
2257 					o += fprintf(stderr, "R%d.", cf->output.gpr);
2258 				}
2259 
2260 				o += print_swizzle(cf->output.swizzle_x);
2261 				o += print_swizzle(cf->output.swizzle_y);
2262 				o += print_swizzle(cf->output.swizzle_z);
2263 				o += print_swizzle(cf->output.swizzle_w);
2264 
2265 				print_indent(o, 67);
2266 
2267 				fprintf(stderr, " ES:%X ", cf->output.elem_size);
2268 				if (cf->mark)
2269 					fprintf(stderr, "MARK ");
2270 				if (!cf->barrier)
2271 					fprintf(stderr, "NO_BARRIER ");
2272 				if (cf->end_of_program)
2273 					fprintf(stderr, "EOP ");
2274 				fprintf(stderr, "\n");
2275 			} else if (r600_isa_cf(cf->op)->flags & CF_MEM) {
2276 				int o = 0;
2277 				const char *exp_type[] = {"WRITE", "WRITE_IND", "WRITE_ACK",
2278 						"WRITE_IND_ACK"};
2279 				o += fprintf(stderr, "%04d %08X %08X  %s ", id,
2280 						bc->bytecode[id], bc->bytecode[id + 1], cfop->name);
2281 				o += print_indent(o, 43);
2282 				o += fprintf(stderr, "%s ", exp_type[cf->output.type]);
2283 
2284 				if (r600_isa_cf(cf->op)->flags & CF_RAT) {
2285 					o += fprintf(stderr, "RAT%d", cf->rat.id);
2286 					if (cf->rat.index_mode) {
2287 						o += fprintf(stderr, "[IDX%d]", cf->rat.index_mode - 1);
2288 					}
2289 					o += fprintf(stderr, " INST: %d ", cf->rat.inst);
2290 				}
2291 
2292 				if (cf->output.burst_count > 1) {
2293 					o += fprintf(stderr, "%d-%d ", cf->output.array_base,
2294 							cf->output.array_base + cf->output.burst_count - 1);
2295 					o += print_indent(o, 55);
2296 					o += fprintf(stderr, "R%d-%d.", cf->output.gpr,
2297 							cf->output.gpr + cf->output.burst_count - 1);
2298 				} else {
2299 					o += fprintf(stderr, "%d ", cf->output.array_base);
2300 					o += print_indent(o, 55);
2301 					o += fprintf(stderr, "R%d.", cf->output.gpr);
2302 				}
2303 				for (i = 0; i < 4; ++i) {
2304 					if (cf->output.comp_mask & (1 << i))
2305 						o += print_swizzle(i);
2306 					else
2307 						o += print_swizzle(7);
2308 				}
2309 
2310 				if (cf->output.type == V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_WRITE_IND ||
2311 				    cf->output.type == V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_READ_IND)
2312 					o += fprintf(stderr, " R%d", cf->output.index_gpr);
2313 
2314 				o += print_indent(o, 67);
2315 
2316 				fprintf(stderr, " ES:%i ", cf->output.elem_size);
2317 				if (cf->output.array_size != 0xFFF)
2318 					fprintf(stderr, "AS:%i ", cf->output.array_size);
2319 				if (cf->mark)
2320 					fprintf(stderr, "MARK ");
2321 				if (!cf->barrier)
2322 					fprintf(stderr, "NO_BARRIER ");
2323 				if (cf->end_of_program)
2324 					fprintf(stderr, "EOP ");
2325 
2326 				if (cf->output.mark)
2327 					fprintf(stderr, "MARK ");
2328 
2329 				fprintf(stderr, "\n");
2330 			} else {
2331 				fprintf(stderr, "%04d %08X %08X  %s ", id, bc->bytecode[id],
2332 						bc->bytecode[id + 1], cfop->name);
2333 				fprintf(stderr, "@%d ", cf->cf_addr);
2334 				if (cf->cond)
2335 					fprintf(stderr, "CND:%X ", cf->cond);
2336 				if (cf->pop_count)
2337 					fprintf(stderr, "POP:%X ", cf->pop_count);
2338 				if (cf->count && (cfop->flags & CF_EMIT))
2339 					fprintf(stderr, "STREAM%d ", cf->count);
2340 				if (cf->vpm)
2341 					fprintf(stderr, "VPM ");
2342 				if (cf->end_of_program)
2343 					fprintf(stderr, "EOP ");
2344 				fprintf(stderr, "\n");
2345 			}
2346 		}
2347 
2348 		id = cf->addr;
2349 		nliteral = 0;
2350 		last = 1;
2351 		LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
2352 			const char *omod_str[] = {"","*2","*4","/2"};
2353 			const struct alu_op_info *aop = r600_isa_alu(alu->op);
2354 			int o = 0;
2355 
2356 			r600_bytecode_alu_nliterals(alu, literal, &nliteral);
2357 			o += fprintf(stderr, " %04d %08X %08X  ", id, bc->bytecode[id], bc->bytecode[id+1]);
2358 			if (last)
2359 				o += fprintf(stderr, "%4d ", ++ngr);
2360 			else
2361 				o += fprintf(stderr, "     ");
2362 			o += fprintf(stderr, "%c%c %c ", alu->execute_mask ? 'M':' ',
2363 					alu->update_pred ? 'P':' ',
2364 					alu->pred_sel ? alu->pred_sel==2 ? '0':'1':' ');
2365 
2366 			o += fprintf(stderr, "%s%s%s ", aop->name,
2367 					omod_str[alu->omod], alu->dst.clamp ? "_sat":"");
2368 
2369 			o += print_indent(o,60);
2370 			o += print_dst(alu);
2371 			for (i = 0; i < aop->src_count; ++i) {
2372 				o += fprintf(stderr, i == 0 ? ",  ": ", ");
2373 				o += print_src(alu, i);
2374 			}
2375 
2376 			if (alu->bank_swizzle) {
2377 				o += print_indent(o,75);
2378 				o += fprintf(stderr, "  BS:%d", alu->bank_swizzle);
2379 			}
2380 
2381 			fprintf(stderr, "\n");
2382 			id += 2;
2383 
2384 			if (alu->last) {
2385 				for (i = 0; i < nliteral; i++, id++) {
2386 					float *f = (float*)(bc->bytecode + id);
2387 					o = fprintf(stderr, " %04d %08X", id, bc->bytecode[id]);
2388 					print_indent(o, 60);
2389 					fprintf(stderr, " %f (%d)\n", *f, *(bc->bytecode + id));
2390 				}
2391 				id += nliteral & 1;
2392 				nliteral = 0;
2393 			}
2394 			last = alu->last;
2395 		}
2396 
2397 		LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
2398 			int o = 0;
2399 			o += fprintf(stderr, " %04d %08X %08X %08X   ", id, bc->bytecode[id],
2400 					bc->bytecode[id + 1], bc->bytecode[id + 2]);
2401 
2402 			o += fprintf(stderr, "%s ", r600_isa_fetch(tex->op)->name);
2403 
2404 			o += print_indent(o, 50);
2405 
2406 			o += fprintf(stderr, "R%d.", tex->dst_gpr);
2407 			o += print_swizzle(tex->dst_sel_x);
2408 			o += print_swizzle(tex->dst_sel_y);
2409 			o += print_swizzle(tex->dst_sel_z);
2410 			o += print_swizzle(tex->dst_sel_w);
2411 
2412 			o += fprintf(stderr, ", R%d.", tex->src_gpr);
2413 			o += print_swizzle(tex->src_sel_x);
2414 			o += print_swizzle(tex->src_sel_y);
2415 			o += print_swizzle(tex->src_sel_z);
2416 			o += print_swizzle(tex->src_sel_w);
2417 
2418 			o += fprintf(stderr, ",  RID:%d", tex->resource_id);
2419 			o += fprintf(stderr, ", SID:%d  ", tex->sampler_id);
2420 
2421 			if (tex->sampler_index_mode)
2422 				fprintf(stderr, "SQ_%s ", index_mode[tex->sampler_index_mode]);
2423 
2424 			if (tex->lod_bias)
2425 				fprintf(stderr, "LB:%d ", tex->lod_bias);
2426 
2427 			fprintf(stderr, "CT:%c%c%c%c ",
2428 					tex->coord_type_x ? 'N' : 'U',
2429 					tex->coord_type_y ? 'N' : 'U',
2430 					tex->coord_type_z ? 'N' : 'U',
2431 					tex->coord_type_w ? 'N' : 'U');
2432 
2433 			if (tex->offset_x)
2434 				fprintf(stderr, "OX:%d ", tex->offset_x);
2435 			if (tex->offset_y)
2436 				fprintf(stderr, "OY:%d ", tex->offset_y);
2437 			if (tex->offset_z)
2438 				fprintf(stderr, "OZ:%d ", tex->offset_z);
2439 
2440 			id += 4;
2441 			fprintf(stderr, "\n");
2442 		}
2443 
2444 		LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
2445 			int o = 0;
2446 			const char * fetch_type[] = {"VERTEX", "INSTANCE", ""};
2447 			o += fprintf(stderr, " %04d %08X %08X %08X   ", id, bc->bytecode[id],
2448 					bc->bytecode[id + 1], bc->bytecode[id + 2]);
2449 
2450 			o += fprintf(stderr, "%s ", r600_isa_fetch(vtx->op)->name);
2451 
2452 			o += print_indent(o, 50);
2453 
2454 			o += fprintf(stderr, "R%d.", vtx->dst_gpr);
2455 			o += print_swizzle(vtx->dst_sel_x);
2456 			o += print_swizzle(vtx->dst_sel_y);
2457 			o += print_swizzle(vtx->dst_sel_z);
2458 			o += print_swizzle(vtx->dst_sel_w);
2459 
2460 			o += fprintf(stderr, ", R%d.", vtx->src_gpr);
2461 			o += print_swizzle(vtx->src_sel_x);
2462 			if (r600_isa_fetch(vtx->op)->flags & FF_MEM)
2463 				o += print_swizzle(vtx->src_sel_y);
2464 
2465 			if (vtx->offset)
2466 				fprintf(stderr, " +%db", vtx->offset);
2467 
2468 			o += print_indent(o, 55);
2469 
2470 			fprintf(stderr, ",  RID:%d ", vtx->buffer_id);
2471 
2472 			fprintf(stderr, "%s ", fetch_type[vtx->fetch_type]);
2473 
2474 			if (bc->gfx_level < CAYMAN && vtx->mega_fetch_count)
2475 				fprintf(stderr, "MFC:%d ", vtx->mega_fetch_count);
2476 
2477 			if (bc->gfx_level >= EVERGREEN && vtx->buffer_index_mode)
2478 				fprintf(stderr, "SQ_%s ", index_mode[vtx->buffer_index_mode]);
2479 
2480 			if (r600_isa_fetch(vtx->op)->flags & FF_MEM) {
2481 				if (vtx->uncached)
2482 					fprintf(stderr, "UNCACHED ");
2483 				if (vtx->indexed)
2484 					fprintf(stderr, "INDEXED:%d ", vtx->indexed);
2485 
2486 				fprintf(stderr, "ELEM_SIZE:%d ", vtx->elem_size);
2487 				if (vtx->burst_count)
2488 					fprintf(stderr, "BURST_COUNT:%d ", vtx->burst_count);
2489 				fprintf(stderr, "ARRAY_BASE:%d ", vtx->array_base);
2490 				fprintf(stderr, "ARRAY_SIZE:%d ", vtx->array_size);
2491 			}
2492 
2493 			fprintf(stderr, "UCF:%d ", vtx->use_const_fields);
2494 			fprintf(stderr, "FMT(DTA:%d ", vtx->data_format);
2495 			fprintf(stderr, "NUM:%d ", vtx->num_format_all);
2496 			fprintf(stderr, "COMP:%d ", vtx->format_comp_all);
2497 			fprintf(stderr, "MODE:%d)\n", vtx->srf_mode_all);
2498 
2499 			id += 4;
2500 		}
2501 
2502 		LIST_FOR_EACH_ENTRY(gds, &cf->gds, list) {
2503 			int o = 0;
2504 			o += fprintf(stderr, " %04d %08X %08X %08X   ", id, bc->bytecode[id],
2505 					bc->bytecode[id + 1], bc->bytecode[id + 2]);
2506 
2507 			o += fprintf(stderr, "%s ", r600_isa_fetch(gds->op)->name);
2508 
2509 			if (gds->op != FETCH_OP_TF_WRITE) {
2510 				o += fprintf(stderr, "R%d.", gds->dst_gpr);
2511 				o += print_swizzle(gds->dst_sel_x);
2512 				o += print_swizzle(gds->dst_sel_y);
2513 				o += print_swizzle(gds->dst_sel_z);
2514 				o += print_swizzle(gds->dst_sel_w);
2515 			}
2516 
2517 			o += fprintf(stderr, ", R%d.", gds->src_gpr);
2518 			o += print_swizzle(gds->src_sel_x);
2519 			o += print_swizzle(gds->src_sel_y);
2520 			o += print_swizzle(gds->src_sel_z);
2521 
2522 			if (gds->op != FETCH_OP_TF_WRITE) {
2523 				o += fprintf(stderr, ", R%d.", gds->src_gpr2);
2524 			}
2525 			if (gds->alloc_consume) {
2526 				o += fprintf(stderr, " UAV: %d", gds->uav_id);
2527 				if (gds->uav_index_mode)
2528 					o += fprintf(stderr, "[%s]", index_mode[gds->uav_index_mode]);
2529 			}
2530 			fprintf(stderr, "\n");
2531 			id += 4;
2532 		}
2533 	}
2534 
2535 	fprintf(stderr, "--------------------------------------\n");
2536 }
2537 
r600_vertex_data_type(enum pipe_format pformat,unsigned * format,unsigned * num_format,unsigned * format_comp,unsigned * endian)2538 void r600_vertex_data_type(enum pipe_format pformat,
2539 				  unsigned *format,
2540 				  unsigned *num_format, unsigned *format_comp, unsigned *endian)
2541 {
2542 	const struct util_format_description *desc;
2543 	unsigned i;
2544 
2545 	*format = 0;
2546 	*num_format = 0;
2547 	*format_comp = 0;
2548 	*endian = ENDIAN_NONE;
2549 
2550 	if (pformat == PIPE_FORMAT_R11G11B10_FLOAT) {
2551 		*format = FMT_10_11_11_FLOAT;
2552 		*endian = r600_endian_swap(32);
2553 		return;
2554 	}
2555 
2556 	if (pformat == PIPE_FORMAT_B5G6R5_UNORM) {
2557 		*format = FMT_5_6_5;
2558 		*endian = r600_endian_swap(16);
2559 		return;
2560 	}
2561 
2562 	if (pformat == PIPE_FORMAT_B5G5R5A1_UNORM) {
2563 		*format = FMT_1_5_5_5;
2564 		*endian = r600_endian_swap(16);
2565 		return;
2566 	}
2567 
2568 	if (pformat == PIPE_FORMAT_A1B5G5R5_UNORM) {
2569 		*format = FMT_5_5_5_1;
2570 		return;
2571 	}
2572 
2573 	desc = util_format_description(pformat);
2574 	if (desc->layout != UTIL_FORMAT_LAYOUT_PLAIN) {
2575 		goto out_unknown;
2576 	}
2577 
2578 	/* Find the first non-VOID channel. */
2579 	for (i = 0; i < 4; i++) {
2580 		if (desc->channel[i].type != UTIL_FORMAT_TYPE_VOID) {
2581 			break;
2582 		}
2583 	}
2584 
2585 	*endian = r600_endian_swap(desc->channel[i].size);
2586 
2587 	switch (desc->channel[i].type) {
2588 	/* Half-floats, floats, ints */
2589 	case UTIL_FORMAT_TYPE_FLOAT:
2590 		switch (desc->channel[i].size) {
2591 		case 16:
2592 			switch (desc->nr_channels) {
2593 			case 1:
2594 				*format = FMT_16_FLOAT;
2595 				break;
2596 			case 2:
2597 				*format = FMT_16_16_FLOAT;
2598 				break;
2599 			case 3:
2600 			case 4:
2601 				*format = FMT_16_16_16_16_FLOAT;
2602 				break;
2603 			}
2604 			break;
2605 		case 32:
2606 			switch (desc->nr_channels) {
2607 			case 1:
2608 				*format = FMT_32_FLOAT;
2609 				break;
2610 			case 2:
2611 				*format = FMT_32_32_FLOAT;
2612 				break;
2613 			case 3:
2614 				*format = FMT_32_32_32_FLOAT;
2615 				break;
2616 			case 4:
2617 				*format = FMT_32_32_32_32_FLOAT;
2618 				break;
2619 			}
2620 			break;
2621 		default:
2622 			goto out_unknown;
2623 		}
2624 		break;
2625 		/* Unsigned ints */
2626 	case UTIL_FORMAT_TYPE_UNSIGNED:
2627 		/* Signed ints */
2628 	case UTIL_FORMAT_TYPE_SIGNED:
2629 		switch (desc->channel[i].size) {
2630 		case 4:
2631 			switch (desc->nr_channels) {
2632 			case 2:
2633 				*format = FMT_4_4;
2634 				break;
2635 			case 4:
2636 				*format = FMT_4_4_4_4;
2637 				break;
2638 			}
2639 			break;
2640 		case 8:
2641 			switch (desc->nr_channels) {
2642 			case 1:
2643 				*format = FMT_8;
2644 				break;
2645 			case 2:
2646 				*format = FMT_8_8;
2647 				break;
2648 			case 3:
2649 			case 4:
2650 				*format = FMT_8_8_8_8;
2651 				break;
2652 			}
2653 			break;
2654 		case 10:
2655 			if (desc->nr_channels != 4)
2656 				goto out_unknown;
2657 
2658 			*format = FMT_2_10_10_10;
2659 			break;
2660 		case 16:
2661 			switch (desc->nr_channels) {
2662 			case 1:
2663 				*format = FMT_16;
2664 				break;
2665 			case 2:
2666 				*format = FMT_16_16;
2667 				break;
2668 			case 3:
2669 			case 4:
2670 				*format = FMT_16_16_16_16;
2671 				break;
2672 			}
2673 			break;
2674 		case 32:
2675 			switch (desc->nr_channels) {
2676 			case 1:
2677 				*format = FMT_32;
2678 				break;
2679 			case 2:
2680 				*format = FMT_32_32;
2681 				break;
2682 			case 3:
2683 				*format = FMT_32_32_32;
2684 				break;
2685 			case 4:
2686 				*format = FMT_32_32_32_32;
2687 				break;
2688 			}
2689 			break;
2690 		default:
2691 			goto out_unknown;
2692 		}
2693 		break;
2694 	default:
2695 		goto out_unknown;
2696 	}
2697 
2698 	if (desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
2699 		*format_comp = 1;
2700 	}
2701 
2702 	*num_format = 0;
2703 	if (desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED ||
2704 	    desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
2705 		if (!desc->channel[i].normalized) {
2706 			if (desc->channel[i].pure_integer)
2707 				*num_format = 1;
2708 			else
2709 				*num_format = 2;
2710 		}
2711 	}
2712 	return;
2713 out_unknown:
2714 	R600_ERR("unsupported vertex format %s\n", util_format_name(pformat));
2715 }
2716 
r600_create_vertex_fetch_shader(struct pipe_context * ctx,unsigned count,const struct pipe_vertex_element * elements)2717 void *r600_create_vertex_fetch_shader(struct pipe_context *ctx,
2718 				      unsigned count,
2719 				      const struct pipe_vertex_element *elements)
2720 {
2721 	struct r600_context *rctx = (struct r600_context *)ctx;
2722 	struct r600_bytecode bc;
2723 	struct r600_bytecode_vtx vtx;
2724 	const struct util_format_description *desc;
2725 	unsigned fetch_resource_start = rctx->b.gfx_level >= EVERGREEN ? 0 : 160;
2726 	unsigned format, num_format, format_comp, endian;
2727 	uint32_t *bytecode;
2728 	int i, j, r, fs_size;
2729 	struct r600_fetch_shader *shader;
2730 	unsigned no_sb = rctx->screen->b.debug_flags & DBG_NO_SB ||
2731                          (rctx->screen->b.debug_flags & DBG_NIR);
2732 	unsigned sb_disasm = !no_sb || (rctx->screen->b.debug_flags & DBG_SB_DISASM);
2733 
2734 	assert(count < 32);
2735 
2736 	memset(&bc, 0, sizeof(bc));
2737 	r600_bytecode_init(&bc, rctx->b.gfx_level, rctx->b.family,
2738 			   rctx->screen->has_compressed_msaa_texturing);
2739 
2740 	bc.isa = rctx->isa;
2741 
2742 	for (i = 0; i < count; i++) {
2743 		if (elements[i].instance_divisor > 1) {
2744 			if (rctx->b.gfx_level == CAYMAN) {
2745 				for (j = 0; j < 4; j++) {
2746 					struct r600_bytecode_alu alu;
2747 					memset(&alu, 0, sizeof(alu));
2748 					alu.op = ALU_OP2_MULHI_UINT;
2749 					alu.src[0].sel = 0;
2750 					alu.src[0].chan = 3;
2751 					alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
2752 					alu.src[1].value = (1ll << 32) / elements[i].instance_divisor + 1;
2753 					alu.dst.sel = i + 1;
2754 					alu.dst.chan = j;
2755 					alu.dst.write = j == 3;
2756 					alu.last = j == 3;
2757 					if ((r = r600_bytecode_add_alu(&bc, &alu))) {
2758 						r600_bytecode_clear(&bc);
2759 						return NULL;
2760 					}
2761 				}
2762 			} else {
2763 				struct r600_bytecode_alu alu;
2764 				memset(&alu, 0, sizeof(alu));
2765 				alu.op = ALU_OP2_MULHI_UINT;
2766 				alu.src[0].sel = 0;
2767 				alu.src[0].chan = 3;
2768 				alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
2769 				alu.src[1].value = (1ll << 32) / elements[i].instance_divisor + 1;
2770 				alu.dst.sel = i + 1;
2771 				alu.dst.chan = 3;
2772 				alu.dst.write = 1;
2773 				alu.last = 1;
2774 				if ((r = r600_bytecode_add_alu(&bc, &alu))) {
2775 					r600_bytecode_clear(&bc);
2776 					return NULL;
2777 				}
2778 			}
2779 		}
2780 	}
2781 
2782 	for (i = 0; i < count; i++) {
2783 		r600_vertex_data_type(elements[i].src_format,
2784 				      &format, &num_format, &format_comp, &endian);
2785 
2786 		desc = util_format_description(elements[i].src_format);
2787 
2788 		if (elements[i].src_offset > 65535) {
2789 			r600_bytecode_clear(&bc);
2790 			R600_ERR("too big src_offset: %u\n", elements[i].src_offset);
2791 			return NULL;
2792 		}
2793 
2794 		memset(&vtx, 0, sizeof(vtx));
2795 		vtx.buffer_id = elements[i].vertex_buffer_index + fetch_resource_start;
2796 		vtx.fetch_type = elements[i].instance_divisor ? SQ_VTX_FETCH_INSTANCE_DATA : SQ_VTX_FETCH_VERTEX_DATA;
2797 		vtx.src_gpr = elements[i].instance_divisor > 1 ? i + 1 : 0;
2798 		vtx.src_sel_x = elements[i].instance_divisor ? 3 : 0;
2799 		vtx.mega_fetch_count = 0x1F;
2800 		vtx.dst_gpr = i + 1;
2801 		vtx.dst_sel_x = desc->swizzle[0];
2802 		vtx.dst_sel_y = desc->swizzle[1];
2803 		vtx.dst_sel_z = desc->swizzle[2];
2804 		vtx.dst_sel_w = desc->swizzle[3];
2805 		vtx.data_format = format;
2806 		vtx.num_format_all = num_format;
2807 		vtx.format_comp_all = format_comp;
2808 		vtx.offset = elements[i].src_offset;
2809 		vtx.endian = endian;
2810 
2811 		if ((r = r600_bytecode_add_vtx(&bc, &vtx))) {
2812 			r600_bytecode_clear(&bc);
2813 			return NULL;
2814 		}
2815 	}
2816 
2817 	r600_bytecode_add_cfinst(&bc, CF_OP_RET);
2818 
2819 	if ((r = r600_bytecode_build(&bc))) {
2820 		r600_bytecode_clear(&bc);
2821 		return NULL;
2822 	}
2823 
2824 	if (rctx->screen->b.debug_flags & DBG_FS) {
2825 		fprintf(stderr, "--------------------------------------------------------------\n");
2826 		fprintf(stderr, "Vertex elements state:\n");
2827 		for (i = 0; i < count; i++) {
2828 			fprintf(stderr, "   ");
2829 			util_dump_vertex_element(stderr, elements+i);
2830 			fprintf(stderr, "\n");
2831 		}
2832 
2833 		if (!sb_disasm) {
2834 			r600_bytecode_disasm(&bc);
2835 
2836 			fprintf(stderr, "______________________________________________________________\n");
2837 		} else {
2838 			r600_sb_bytecode_process(rctx, &bc, NULL, 1 /*dump*/, 0 /*optimize*/);
2839 		}
2840 	}
2841 
2842 	fs_size = bc.ndw*4;
2843 
2844 	/* Allocate the CSO. */
2845 	shader = CALLOC_STRUCT(r600_fetch_shader);
2846 	if (!shader) {
2847 		r600_bytecode_clear(&bc);
2848 		return NULL;
2849 	}
2850 
2851 	u_suballocator_alloc(&rctx->allocator_fetch_shader, fs_size, 256,
2852 			     &shader->offset,
2853 			     (struct pipe_resource**)&shader->buffer);
2854 	if (!shader->buffer) {
2855 		r600_bytecode_clear(&bc);
2856 		FREE(shader);
2857 		return NULL;
2858 	}
2859 
2860 	bytecode = r600_buffer_map_sync_with_rings
2861 		(&rctx->b, shader->buffer,
2862 		PIPE_MAP_WRITE | PIPE_MAP_UNSYNCHRONIZED | RADEON_MAP_TEMPORARY);
2863 	bytecode += shader->offset / 4;
2864 
2865 	if (R600_BIG_ENDIAN) {
2866 		for (i = 0; i < fs_size / 4; ++i) {
2867 			bytecode[i] = util_cpu_to_le32(bc.bytecode[i]);
2868 		}
2869 	} else {
2870 		memcpy(bytecode, bc.bytecode, fs_size);
2871 	}
2872 	rctx->b.ws->buffer_unmap(rctx->b.ws, shader->buffer->buf);
2873 
2874 	r600_bytecode_clear(&bc);
2875 	return shader;
2876 }
2877 
r600_bytecode_alu_read(struct r600_bytecode * bc,struct r600_bytecode_alu * alu,uint32_t word0,uint32_t word1)2878 void r600_bytecode_alu_read(struct r600_bytecode *bc,
2879 		struct r600_bytecode_alu *alu, uint32_t word0, uint32_t word1)
2880 {
2881 	/* WORD0 */
2882 	alu->src[0].sel = G_SQ_ALU_WORD0_SRC0_SEL(word0);
2883 	alu->src[0].rel = G_SQ_ALU_WORD0_SRC0_REL(word0);
2884 	alu->src[0].chan = G_SQ_ALU_WORD0_SRC0_CHAN(word0);
2885 	alu->src[0].neg = G_SQ_ALU_WORD0_SRC0_NEG(word0);
2886 	alu->src[1].sel = G_SQ_ALU_WORD0_SRC1_SEL(word0);
2887 	alu->src[1].rel = G_SQ_ALU_WORD0_SRC1_REL(word0);
2888 	alu->src[1].chan = G_SQ_ALU_WORD0_SRC1_CHAN(word0);
2889 	alu->src[1].neg = G_SQ_ALU_WORD0_SRC1_NEG(word0);
2890 	alu->index_mode = G_SQ_ALU_WORD0_INDEX_MODE(word0);
2891 	alu->pred_sel = G_SQ_ALU_WORD0_PRED_SEL(word0);
2892 	alu->last = G_SQ_ALU_WORD0_LAST(word0);
2893 
2894 	/* WORD1 */
2895 	alu->bank_swizzle = G_SQ_ALU_WORD1_BANK_SWIZZLE(word1);
2896 	if (alu->bank_swizzle)
2897 		alu->bank_swizzle_force = alu->bank_swizzle;
2898 	alu->dst.sel = G_SQ_ALU_WORD1_DST_GPR(word1);
2899 	alu->dst.rel = G_SQ_ALU_WORD1_DST_REL(word1);
2900 	alu->dst.chan = G_SQ_ALU_WORD1_DST_CHAN(word1);
2901 	alu->dst.clamp = G_SQ_ALU_WORD1_CLAMP(word1);
2902 	if (G_SQ_ALU_WORD1_ENCODING(word1)) /*ALU_DWORD1_OP3*/
2903 	{
2904 		alu->is_op3 = 1;
2905 		alu->src[2].sel = G_SQ_ALU_WORD1_OP3_SRC2_SEL(word1);
2906 		alu->src[2].rel = G_SQ_ALU_WORD1_OP3_SRC2_REL(word1);
2907 		alu->src[2].chan = G_SQ_ALU_WORD1_OP3_SRC2_CHAN(word1);
2908 		alu->src[2].neg = G_SQ_ALU_WORD1_OP3_SRC2_NEG(word1);
2909 		alu->op = r600_isa_alu_by_opcode(bc->isa,
2910 				G_SQ_ALU_WORD1_OP3_ALU_INST(word1), /* is_op3 = */ 1);
2911 
2912 	}
2913 	else /*ALU_DWORD1_OP2*/
2914 	{
2915 		alu->src[0].abs = G_SQ_ALU_WORD1_OP2_SRC0_ABS(word1);
2916 		alu->src[1].abs = G_SQ_ALU_WORD1_OP2_SRC1_ABS(word1);
2917 		alu->op = r600_isa_alu_by_opcode(bc->isa,
2918 				G_SQ_ALU_WORD1_OP2_ALU_INST(word1), /* is_op3 = */ 0);
2919 		alu->omod = G_SQ_ALU_WORD1_OP2_OMOD(word1);
2920 		alu->dst.write = G_SQ_ALU_WORD1_OP2_WRITE_MASK(word1);
2921 		alu->update_pred = G_SQ_ALU_WORD1_OP2_UPDATE_PRED(word1);
2922 		alu->execute_mask =
2923 			G_SQ_ALU_WORD1_OP2_UPDATE_EXECUTE_MASK(word1);
2924 	}
2925 }
2926 
2927 #if 0
2928 void r600_bytecode_export_read(struct r600_bytecode *bc,
2929 		struct r600_bytecode_output *output, uint32_t word0, uint32_t word1)
2930 {
2931 	output->array_base = G_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(word0);
2932 	output->type = G_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(word0);
2933 	output->gpr = G_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(word0);
2934 	output->elem_size = G_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(word0);
2935 
2936 	output->swizzle_x = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_X(word1);
2937 	output->swizzle_y = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Y(word1);
2938 	output->swizzle_z = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Z(word1);
2939 	output->swizzle_w = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_W(word1);
2940 	output->burst_count = G_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(word1);
2941 	output->end_of_program = G_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(word1);
2942     output->op = r600_isa_cf_by_opcode(bc->isa,
2943 			G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(word1), 0);
2944 	output->barrier = G_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(word1);
2945 	output->array_size = G_SQ_CF_ALLOC_EXPORT_WORD1_BUF_ARRAY_SIZE(word1);
2946 	output->comp_mask = G_SQ_CF_ALLOC_EXPORT_WORD1_BUF_COMP_MASK(word1);
2947 }
2948 #endif
2949