• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion
4  *
5  * Copyright IBM Corporation, 2001
6  *
7  * Author: Dipankar Sarma <dipankar@in.ibm.com>
8  *
9  * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11  * Papers:
12  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14  *
15  * For detailed explanation of Read-Copy Update mechanism see -
16  *		http://lse.sourceforge.net/locking/rcupdate.html
17  *
18  */
19 
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22 
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <asm/processor.h>
31 #include <linux/cpumask.h>
32 
33 #define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
34 #define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
35 #define ulong2long(a)		(*(long *)(&(a)))
36 #define USHORT_CMP_GE(a, b)	(USHRT_MAX / 2 >= (unsigned short)((a) - (b)))
37 #define USHORT_CMP_LT(a, b)	(USHRT_MAX / 2 < (unsigned short)((a) - (b)))
38 
39 /* Exported common interfaces */
40 void call_rcu(struct rcu_head *head, rcu_callback_t func);
41 void rcu_barrier_tasks(void);
42 void rcu_barrier_tasks_rude(void);
43 void synchronize_rcu(void);
44 
45 #ifdef CONFIG_PREEMPT_RCU
46 
47 void __rcu_read_lock(void);
48 void __rcu_read_unlock(void);
49 
50 /*
51  * Defined as a macro as it is a very low level header included from
52  * areas that don't even know about current.  This gives the rcu_read_lock()
53  * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
54  * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
55  */
56 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
57 
58 #else /* #ifdef CONFIG_PREEMPT_RCU */
59 
60 #ifdef CONFIG_TINY_RCU
61 #define rcu_read_unlock_strict() do { } while (0)
62 #else
63 void rcu_read_unlock_strict(void);
64 #endif
65 
__rcu_read_lock(void)66 static inline void __rcu_read_lock(void)
67 {
68 	preempt_disable();
69 }
70 
__rcu_read_unlock(void)71 static inline void __rcu_read_unlock(void)
72 {
73 	preempt_enable();
74 	rcu_read_unlock_strict();
75 }
76 
rcu_preempt_depth(void)77 static inline int rcu_preempt_depth(void)
78 {
79 	return 0;
80 }
81 
82 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
83 
84 /* Internal to kernel */
85 void rcu_init(void);
86 extern int rcu_scheduler_active __read_mostly;
87 void rcu_sched_clock_irq(int user);
88 void rcu_report_dead(unsigned int cpu);
89 void rcutree_migrate_callbacks(int cpu);
90 
91 #ifdef CONFIG_TASKS_RCU_GENERIC
92 void rcu_init_tasks_generic(void);
93 #else
rcu_init_tasks_generic(void)94 static inline void rcu_init_tasks_generic(void) { }
95 #endif
96 
97 #ifdef CONFIG_RCU_STALL_COMMON
98 void rcu_sysrq_start(void);
99 void rcu_sysrq_end(void);
100 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)101 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)102 static inline void rcu_sysrq_end(void) { }
103 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
104 
105 #ifdef CONFIG_NO_HZ_FULL
106 void rcu_user_enter(void);
107 void rcu_user_exit(void);
108 #else
rcu_user_enter(void)109 static inline void rcu_user_enter(void) { }
rcu_user_exit(void)110 static inline void rcu_user_exit(void) { }
111 #endif /* CONFIG_NO_HZ_FULL */
112 
113 #ifdef CONFIG_RCU_NOCB_CPU
114 void rcu_init_nohz(void);
115 void rcu_nocb_flush_deferred_wakeup(void);
116 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)117 static inline void rcu_init_nohz(void) { }
rcu_nocb_flush_deferred_wakeup(void)118 static inline void rcu_nocb_flush_deferred_wakeup(void) { }
119 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
120 
121 /**
122  * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
123  * @a: Code that RCU needs to pay attention to.
124  *
125  * RCU read-side critical sections are forbidden in the inner idle loop,
126  * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
127  * will happily ignore any such read-side critical sections.  However,
128  * things like powertop need tracepoints in the inner idle loop.
129  *
130  * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
131  * will tell RCU that it needs to pay attention, invoke its argument
132  * (in this example, calling the do_something_with_RCU() function),
133  * and then tell RCU to go back to ignoring this CPU.  It is permissible
134  * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
135  * on the order of a million or so, even on 32-bit systems).  It is
136  * not legal to block within RCU_NONIDLE(), nor is it permissible to
137  * transfer control either into or out of RCU_NONIDLE()'s statement.
138  */
139 #define RCU_NONIDLE(a) \
140 	do { \
141 		rcu_irq_enter_irqson(); \
142 		do { a; } while (0); \
143 		rcu_irq_exit_irqson(); \
144 	} while (0)
145 
146 /*
147  * Note a quasi-voluntary context switch for RCU-tasks's benefit.
148  * This is a macro rather than an inline function to avoid #include hell.
149  */
150 #ifdef CONFIG_TASKS_RCU_GENERIC
151 
152 # ifdef CONFIG_TASKS_RCU
153 # define rcu_tasks_classic_qs(t, preempt)				\
154 	do {								\
155 		if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout))	\
156 			WRITE_ONCE((t)->rcu_tasks_holdout, false);	\
157 	} while (0)
158 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
159 void synchronize_rcu_tasks(void);
160 # else
161 # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
162 # define call_rcu_tasks call_rcu
163 # define synchronize_rcu_tasks synchronize_rcu
164 # endif
165 
166 # ifdef CONFIG_TASKS_TRACE_RCU
167 # define rcu_tasks_trace_qs(t)						\
168 	do {								\
169 		if (!likely(READ_ONCE((t)->trc_reader_checked)) &&	\
170 		    !unlikely(READ_ONCE((t)->trc_reader_nesting))) {	\
171 			smp_store_release(&(t)->trc_reader_checked, true); \
172 			smp_mb(); /* Readers partitioned by store. */	\
173 		}							\
174 	} while (0)
175 # else
176 # define rcu_tasks_trace_qs(t) do { } while (0)
177 # endif
178 
179 #define rcu_tasks_qs(t, preempt)					\
180 do {									\
181 	rcu_tasks_classic_qs((t), (preempt));				\
182 	rcu_tasks_trace_qs((t));					\
183 } while (0)
184 
185 # ifdef CONFIG_TASKS_RUDE_RCU
186 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
187 void synchronize_rcu_tasks_rude(void);
188 # endif
189 
190 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
191 void exit_tasks_rcu_start(void);
192 void exit_tasks_rcu_stop(void);
193 void exit_tasks_rcu_finish(void);
194 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
195 #define rcu_tasks_qs(t, preempt) do { } while (0)
196 #define rcu_note_voluntary_context_switch(t) do { } while (0)
197 #define call_rcu_tasks call_rcu
198 #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)199 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_stop(void)200 static inline void exit_tasks_rcu_stop(void) { }
exit_tasks_rcu_finish(void)201 static inline void exit_tasks_rcu_finish(void) { }
202 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
203 
204 /**
205  * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
206  *
207  * This macro resembles cond_resched(), except that it is defined to
208  * report potential quiescent states to RCU-tasks even if the cond_resched()
209  * machinery were to be shut off, as some advocate for PREEMPTION kernels.
210  */
211 #define cond_resched_tasks_rcu_qs() \
212 do { \
213 	rcu_tasks_qs(current, false); \
214 	cond_resched(); \
215 } while (0)
216 
217 /*
218  * Infrastructure to implement the synchronize_() primitives in
219  * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
220  */
221 
222 #if defined(CONFIG_TREE_RCU)
223 #include <linux/rcutree.h>
224 #elif defined(CONFIG_TINY_RCU)
225 #include <linux/rcutiny.h>
226 #else
227 #error "Unknown RCU implementation specified to kernel configuration"
228 #endif
229 
230 /*
231  * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
232  * are needed for dynamic initialization and destruction of rcu_head
233  * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
234  * dynamic initialization and destruction of statically allocated rcu_head
235  * structures.  However, rcu_head structures allocated dynamically in the
236  * heap don't need any initialization.
237  */
238 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
239 void init_rcu_head(struct rcu_head *head);
240 void destroy_rcu_head(struct rcu_head *head);
241 void init_rcu_head_on_stack(struct rcu_head *head);
242 void destroy_rcu_head_on_stack(struct rcu_head *head);
243 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)244 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)245 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)246 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)247 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
248 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
249 
250 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
251 bool rcu_lockdep_current_cpu_online(void);
252 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)253 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
254 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
255 
256 #ifdef CONFIG_DEBUG_LOCK_ALLOC
257 
rcu_lock_acquire(struct lockdep_map * map)258 static inline void rcu_lock_acquire(struct lockdep_map *map)
259 {
260 	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
261 }
262 
rcu_lock_release(struct lockdep_map * map)263 static inline void rcu_lock_release(struct lockdep_map *map)
264 {
265 	lock_release(map, _THIS_IP_);
266 }
267 
268 extern struct lockdep_map rcu_lock_map;
269 extern struct lockdep_map rcu_bh_lock_map;
270 extern struct lockdep_map rcu_sched_lock_map;
271 extern struct lockdep_map rcu_callback_map;
272 int debug_lockdep_rcu_enabled(void);
273 int rcu_read_lock_held(void);
274 int rcu_read_lock_bh_held(void);
275 int rcu_read_lock_sched_held(void);
276 int rcu_read_lock_any_held(void);
277 
278 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
279 
280 # define rcu_lock_acquire(a)		do { } while (0)
281 # define rcu_lock_release(a)		do { } while (0)
282 
rcu_read_lock_held(void)283 static inline int rcu_read_lock_held(void)
284 {
285 	return 1;
286 }
287 
rcu_read_lock_bh_held(void)288 static inline int rcu_read_lock_bh_held(void)
289 {
290 	return 1;
291 }
292 
rcu_read_lock_sched_held(void)293 static inline int rcu_read_lock_sched_held(void)
294 {
295 	return !preemptible();
296 }
297 
rcu_read_lock_any_held(void)298 static inline int rcu_read_lock_any_held(void)
299 {
300 	return !preemptible();
301 }
302 
303 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
304 
305 #ifdef CONFIG_PROVE_RCU
306 
307 /**
308  * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
309  * @c: condition to check
310  * @s: informative message
311  *
312  * This checks debug_lockdep_rcu_enabled() before checking (c) to
313  * prevent early boot splats due to lockdep not yet being initialized,
314  * and rechecks it after checking (c) to prevent false-positive splats
315  * due to races with lockdep being disabled.  See commit 3066820034b5dd
316  * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail.
317  */
318 #define RCU_LOCKDEP_WARN(c, s)						\
319 	do {								\
320 		static bool __section(".data.unlikely") __warned;	\
321 		if (debug_lockdep_rcu_enabled() && (c) &&		\
322 		    debug_lockdep_rcu_enabled() && !__warned) {		\
323 			__warned = true;				\
324 			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
325 		}							\
326 	} while (0)
327 
328 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)329 static inline void rcu_preempt_sleep_check(void)
330 {
331 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
332 			 "Illegal context switch in RCU read-side critical section");
333 }
334 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)335 static inline void rcu_preempt_sleep_check(void) { }
336 #endif /* #else #ifdef CONFIG_PROVE_RCU */
337 
338 #define rcu_sleep_check()						\
339 	do {								\
340 		rcu_preempt_sleep_check();				\
341 		RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),	\
342 				 "Illegal context switch in RCU-bh read-side critical section"); \
343 		RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),	\
344 				 "Illegal context switch in RCU-sched read-side critical section"); \
345 	} while (0)
346 
347 #else /* #ifdef CONFIG_PROVE_RCU */
348 
349 #define RCU_LOCKDEP_WARN(c, s) do { } while (0)
350 #define rcu_sleep_check() do { } while (0)
351 
352 #endif /* #else #ifdef CONFIG_PROVE_RCU */
353 
354 /*
355  * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
356  * and rcu_assign_pointer().  Some of these could be folded into their
357  * callers, but they are left separate in order to ease introduction of
358  * multiple pointers markings to match different RCU implementations
359  * (e.g., __srcu), should this make sense in the future.
360  */
361 
362 #ifdef __CHECKER__
363 #define rcu_check_sparse(p, space) \
364 	((void)(((typeof(*p) space *)p) == p))
365 #else /* #ifdef __CHECKER__ */
366 #define rcu_check_sparse(p, space)
367 #endif /* #else #ifdef __CHECKER__ */
368 
369 #define __rcu_access_pointer(p, space) \
370 ({ \
371 	typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
372 	rcu_check_sparse(p, space); \
373 	((typeof(*p) __force __kernel *)(_________p1)); \
374 })
375 #define __rcu_dereference_check(p, c, space) \
376 ({ \
377 	/* Dependency order vs. p above. */ \
378 	typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
379 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
380 	rcu_check_sparse(p, space); \
381 	((typeof(*p) __force __kernel *)(________p1)); \
382 })
383 #define __rcu_dereference_protected(p, c, space) \
384 ({ \
385 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
386 	rcu_check_sparse(p, space); \
387 	((typeof(*p) __force __kernel *)(p)); \
388 })
389 #define rcu_dereference_raw(p) \
390 ({ \
391 	/* Dependency order vs. p above. */ \
392 	typeof(p) ________p1 = READ_ONCE(p); \
393 	((typeof(*p) __force __kernel *)(________p1)); \
394 })
395 
396 /**
397  * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
398  * @v: The value to statically initialize with.
399  */
400 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
401 
402 /**
403  * rcu_assign_pointer() - assign to RCU-protected pointer
404  * @p: pointer to assign to
405  * @v: value to assign (publish)
406  *
407  * Assigns the specified value to the specified RCU-protected
408  * pointer, ensuring that any concurrent RCU readers will see
409  * any prior initialization.
410  *
411  * Inserts memory barriers on architectures that require them
412  * (which is most of them), and also prevents the compiler from
413  * reordering the code that initializes the structure after the pointer
414  * assignment.  More importantly, this call documents which pointers
415  * will be dereferenced by RCU read-side code.
416  *
417  * In some special cases, you may use RCU_INIT_POINTER() instead
418  * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
419  * to the fact that it does not constrain either the CPU or the compiler.
420  * That said, using RCU_INIT_POINTER() when you should have used
421  * rcu_assign_pointer() is a very bad thing that results in
422  * impossible-to-diagnose memory corruption.  So please be careful.
423  * See the RCU_INIT_POINTER() comment header for details.
424  *
425  * Note that rcu_assign_pointer() evaluates each of its arguments only
426  * once, appearances notwithstanding.  One of the "extra" evaluations
427  * is in typeof() and the other visible only to sparse (__CHECKER__),
428  * neither of which actually execute the argument.  As with most cpp
429  * macros, this execute-arguments-only-once property is important, so
430  * please be careful when making changes to rcu_assign_pointer() and the
431  * other macros that it invokes.
432  */
433 #define rcu_assign_pointer(p, v)					      \
434 do {									      \
435 	uintptr_t _r_a_p__v = (uintptr_t)(v);				      \
436 	rcu_check_sparse(p, __rcu);					      \
437 									      \
438 	if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)	      \
439 		WRITE_ONCE((p), (typeof(p))(_r_a_p__v));		      \
440 	else								      \
441 		smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
442 } while (0)
443 
444 /**
445  * rcu_replace_pointer() - replace an RCU pointer, returning its old value
446  * @rcu_ptr: RCU pointer, whose old value is returned
447  * @ptr: regular pointer
448  * @c: the lockdep conditions under which the dereference will take place
449  *
450  * Perform a replacement, where @rcu_ptr is an RCU-annotated
451  * pointer and @c is the lockdep argument that is passed to the
452  * rcu_dereference_protected() call used to read that pointer.  The old
453  * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
454  */
455 #define rcu_replace_pointer(rcu_ptr, ptr, c)				\
456 ({									\
457 	typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));	\
458 	rcu_assign_pointer((rcu_ptr), (ptr));				\
459 	__tmp;								\
460 })
461 
462 /**
463  * rcu_access_pointer() - fetch RCU pointer with no dereferencing
464  * @p: The pointer to read
465  *
466  * Return the value of the specified RCU-protected pointer, but omit the
467  * lockdep checks for being in an RCU read-side critical section.  This is
468  * useful when the value of this pointer is accessed, but the pointer is
469  * not dereferenced, for example, when testing an RCU-protected pointer
470  * against NULL.  Although rcu_access_pointer() may also be used in cases
471  * where update-side locks prevent the value of the pointer from changing,
472  * you should instead use rcu_dereference_protected() for this use case.
473  *
474  * It is also permissible to use rcu_access_pointer() when read-side
475  * access to the pointer was removed at least one grace period ago, as
476  * is the case in the context of the RCU callback that is freeing up
477  * the data, or after a synchronize_rcu() returns.  This can be useful
478  * when tearing down multi-linked structures after a grace period
479  * has elapsed.
480  */
481 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
482 
483 /**
484  * rcu_dereference_check() - rcu_dereference with debug checking
485  * @p: The pointer to read, prior to dereferencing
486  * @c: The conditions under which the dereference will take place
487  *
488  * Do an rcu_dereference(), but check that the conditions under which the
489  * dereference will take place are correct.  Typically the conditions
490  * indicate the various locking conditions that should be held at that
491  * point.  The check should return true if the conditions are satisfied.
492  * An implicit check for being in an RCU read-side critical section
493  * (rcu_read_lock()) is included.
494  *
495  * For example:
496  *
497  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
498  *
499  * could be used to indicate to lockdep that foo->bar may only be dereferenced
500  * if either rcu_read_lock() is held, or that the lock required to replace
501  * the bar struct at foo->bar is held.
502  *
503  * Note that the list of conditions may also include indications of when a lock
504  * need not be held, for example during initialisation or destruction of the
505  * target struct:
506  *
507  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
508  *					      atomic_read(&foo->usage) == 0);
509  *
510  * Inserts memory barriers on architectures that require them
511  * (currently only the Alpha), prevents the compiler from refetching
512  * (and from merging fetches), and, more importantly, documents exactly
513  * which pointers are protected by RCU and checks that the pointer is
514  * annotated as __rcu.
515  */
516 #define rcu_dereference_check(p, c) \
517 	__rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
518 
519 /**
520  * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
521  * @p: The pointer to read, prior to dereferencing
522  * @c: The conditions under which the dereference will take place
523  *
524  * This is the RCU-bh counterpart to rcu_dereference_check().
525  */
526 #define rcu_dereference_bh_check(p, c) \
527 	__rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
528 
529 /**
530  * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
531  * @p: The pointer to read, prior to dereferencing
532  * @c: The conditions under which the dereference will take place
533  *
534  * This is the RCU-sched counterpart to rcu_dereference_check().
535  */
536 #define rcu_dereference_sched_check(p, c) \
537 	__rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
538 				__rcu)
539 
540 /*
541  * The tracing infrastructure traces RCU (we want that), but unfortunately
542  * some of the RCU checks causes tracing to lock up the system.
543  *
544  * The no-tracing version of rcu_dereference_raw() must not call
545  * rcu_read_lock_held().
546  */
547 #define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu)
548 
549 /**
550  * rcu_dereference_protected() - fetch RCU pointer when updates prevented
551  * @p: The pointer to read, prior to dereferencing
552  * @c: The conditions under which the dereference will take place
553  *
554  * Return the value of the specified RCU-protected pointer, but omit
555  * the READ_ONCE().  This is useful in cases where update-side locks
556  * prevent the value of the pointer from changing.  Please note that this
557  * primitive does *not* prevent the compiler from repeating this reference
558  * or combining it with other references, so it should not be used without
559  * protection of appropriate locks.
560  *
561  * This function is only for update-side use.  Using this function
562  * when protected only by rcu_read_lock() will result in infrequent
563  * but very ugly failures.
564  */
565 #define rcu_dereference_protected(p, c) \
566 	__rcu_dereference_protected((p), (c), __rcu)
567 
568 
569 /**
570  * rcu_dereference() - fetch RCU-protected pointer for dereferencing
571  * @p: The pointer to read, prior to dereferencing
572  *
573  * This is a simple wrapper around rcu_dereference_check().
574  */
575 #define rcu_dereference(p) rcu_dereference_check(p, 0)
576 
577 /**
578  * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
579  * @p: The pointer to read, prior to dereferencing
580  *
581  * Makes rcu_dereference_check() do the dirty work.
582  */
583 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
584 
585 /**
586  * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
587  * @p: The pointer to read, prior to dereferencing
588  *
589  * Makes rcu_dereference_check() do the dirty work.
590  */
591 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
592 
593 /**
594  * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
595  * @p: The pointer to hand off
596  *
597  * This is simply an identity function, but it documents where a pointer
598  * is handed off from RCU to some other synchronization mechanism, for
599  * example, reference counting or locking.  In C11, it would map to
600  * kill_dependency().  It could be used as follows::
601  *
602  *	rcu_read_lock();
603  *	p = rcu_dereference(gp);
604  *	long_lived = is_long_lived(p);
605  *	if (long_lived) {
606  *		if (!atomic_inc_not_zero(p->refcnt))
607  *			long_lived = false;
608  *		else
609  *			p = rcu_pointer_handoff(p);
610  *	}
611  *	rcu_read_unlock();
612  */
613 #define rcu_pointer_handoff(p) (p)
614 
615 /**
616  * rcu_read_lock() - mark the beginning of an RCU read-side critical section
617  *
618  * When synchronize_rcu() is invoked on one CPU while other CPUs
619  * are within RCU read-side critical sections, then the
620  * synchronize_rcu() is guaranteed to block until after all the other
621  * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
622  * on one CPU while other CPUs are within RCU read-side critical
623  * sections, invocation of the corresponding RCU callback is deferred
624  * until after the all the other CPUs exit their critical sections.
625  *
626  * Note, however, that RCU callbacks are permitted to run concurrently
627  * with new RCU read-side critical sections.  One way that this can happen
628  * is via the following sequence of events: (1) CPU 0 enters an RCU
629  * read-side critical section, (2) CPU 1 invokes call_rcu() to register
630  * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
631  * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
632  * callback is invoked.  This is legal, because the RCU read-side critical
633  * section that was running concurrently with the call_rcu() (and which
634  * therefore might be referencing something that the corresponding RCU
635  * callback would free up) has completed before the corresponding
636  * RCU callback is invoked.
637  *
638  * RCU read-side critical sections may be nested.  Any deferred actions
639  * will be deferred until the outermost RCU read-side critical section
640  * completes.
641  *
642  * You can avoid reading and understanding the next paragraph by
643  * following this rule: don't put anything in an rcu_read_lock() RCU
644  * read-side critical section that would block in a !PREEMPTION kernel.
645  * But if you want the full story, read on!
646  *
647  * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
648  * it is illegal to block while in an RCU read-side critical section.
649  * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
650  * kernel builds, RCU read-side critical sections may be preempted,
651  * but explicit blocking is illegal.  Finally, in preemptible RCU
652  * implementations in real-time (with -rt patchset) kernel builds, RCU
653  * read-side critical sections may be preempted and they may also block, but
654  * only when acquiring spinlocks that are subject to priority inheritance.
655  */
rcu_read_lock(void)656 static __always_inline void rcu_read_lock(void)
657 {
658 	__rcu_read_lock();
659 	__acquire(RCU);
660 	rcu_lock_acquire(&rcu_lock_map);
661 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
662 			 "rcu_read_lock() used illegally while idle");
663 }
664 
665 /*
666  * So where is rcu_write_lock()?  It does not exist, as there is no
667  * way for writers to lock out RCU readers.  This is a feature, not
668  * a bug -- this property is what provides RCU's performance benefits.
669  * Of course, writers must coordinate with each other.  The normal
670  * spinlock primitives work well for this, but any other technique may be
671  * used as well.  RCU does not care how the writers keep out of each
672  * others' way, as long as they do so.
673  */
674 
675 /**
676  * rcu_read_unlock() - marks the end of an RCU read-side critical section.
677  *
678  * In most situations, rcu_read_unlock() is immune from deadlock.
679  * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
680  * is responsible for deboosting, which it does via rt_mutex_unlock().
681  * Unfortunately, this function acquires the scheduler's runqueue and
682  * priority-inheritance spinlocks.  This means that deadlock could result
683  * if the caller of rcu_read_unlock() already holds one of these locks or
684  * any lock that is ever acquired while holding them.
685  *
686  * That said, RCU readers are never priority boosted unless they were
687  * preempted.  Therefore, one way to avoid deadlock is to make sure
688  * that preemption never happens within any RCU read-side critical
689  * section whose outermost rcu_read_unlock() is called with one of
690  * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
691  * a number of ways, for example, by invoking preempt_disable() before
692  * critical section's outermost rcu_read_lock().
693  *
694  * Given that the set of locks acquired by rt_mutex_unlock() might change
695  * at any time, a somewhat more future-proofed approach is to make sure
696  * that that preemption never happens within any RCU read-side critical
697  * section whose outermost rcu_read_unlock() is called with irqs disabled.
698  * This approach relies on the fact that rt_mutex_unlock() currently only
699  * acquires irq-disabled locks.
700  *
701  * The second of these two approaches is best in most situations,
702  * however, the first approach can also be useful, at least to those
703  * developers willing to keep abreast of the set of locks acquired by
704  * rt_mutex_unlock().
705  *
706  * See rcu_read_lock() for more information.
707  */
rcu_read_unlock(void)708 static inline void rcu_read_unlock(void)
709 {
710 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
711 			 "rcu_read_unlock() used illegally while idle");
712 	__release(RCU);
713 	__rcu_read_unlock();
714 	rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
715 }
716 
717 /**
718  * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
719  *
720  * This is equivalent of rcu_read_lock(), but also disables softirqs.
721  * Note that anything else that disables softirqs can also serve as
722  * an RCU read-side critical section.
723  *
724  * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
725  * must occur in the same context, for example, it is illegal to invoke
726  * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
727  * was invoked from some other task.
728  */
rcu_read_lock_bh(void)729 static inline void rcu_read_lock_bh(void)
730 {
731 	local_bh_disable();
732 	__acquire(RCU_BH);
733 	rcu_lock_acquire(&rcu_bh_lock_map);
734 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
735 			 "rcu_read_lock_bh() used illegally while idle");
736 }
737 
738 /**
739  * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
740  *
741  * See rcu_read_lock_bh() for more information.
742  */
rcu_read_unlock_bh(void)743 static inline void rcu_read_unlock_bh(void)
744 {
745 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
746 			 "rcu_read_unlock_bh() used illegally while idle");
747 	rcu_lock_release(&rcu_bh_lock_map);
748 	__release(RCU_BH);
749 	local_bh_enable();
750 }
751 
752 /**
753  * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
754  *
755  * This is equivalent of rcu_read_lock(), but disables preemption.
756  * Read-side critical sections can also be introduced by anything else
757  * that disables preemption, including local_irq_disable() and friends.
758  *
759  * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
760  * must occur in the same context, for example, it is illegal to invoke
761  * rcu_read_unlock_sched() from process context if the matching
762  * rcu_read_lock_sched() was invoked from an NMI handler.
763  */
rcu_read_lock_sched(void)764 static inline void rcu_read_lock_sched(void)
765 {
766 	preempt_disable();
767 	__acquire(RCU_SCHED);
768 	rcu_lock_acquire(&rcu_sched_lock_map);
769 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
770 			 "rcu_read_lock_sched() used illegally while idle");
771 }
772 
773 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)774 static inline notrace void rcu_read_lock_sched_notrace(void)
775 {
776 	preempt_disable_notrace();
777 	__acquire(RCU_SCHED);
778 }
779 
780 /**
781  * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
782  *
783  * See rcu_read_lock_sched() for more information.
784  */
rcu_read_unlock_sched(void)785 static inline void rcu_read_unlock_sched(void)
786 {
787 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
788 			 "rcu_read_unlock_sched() used illegally while idle");
789 	rcu_lock_release(&rcu_sched_lock_map);
790 	__release(RCU_SCHED);
791 	preempt_enable();
792 }
793 
794 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)795 static inline notrace void rcu_read_unlock_sched_notrace(void)
796 {
797 	__release(RCU_SCHED);
798 	preempt_enable_notrace();
799 }
800 
801 /**
802  * RCU_INIT_POINTER() - initialize an RCU protected pointer
803  * @p: The pointer to be initialized.
804  * @v: The value to initialized the pointer to.
805  *
806  * Initialize an RCU-protected pointer in special cases where readers
807  * do not need ordering constraints on the CPU or the compiler.  These
808  * special cases are:
809  *
810  * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
811  * 2.	The caller has taken whatever steps are required to prevent
812  *	RCU readers from concurrently accessing this pointer *or*
813  * 3.	The referenced data structure has already been exposed to
814  *	readers either at compile time or via rcu_assign_pointer() *and*
815  *
816  *	a.	You have not made *any* reader-visible changes to
817  *		this structure since then *or*
818  *	b.	It is OK for readers accessing this structure from its
819  *		new location to see the old state of the structure.  (For
820  *		example, the changes were to statistical counters or to
821  *		other state where exact synchronization is not required.)
822  *
823  * Failure to follow these rules governing use of RCU_INIT_POINTER() will
824  * result in impossible-to-diagnose memory corruption.  As in the structures
825  * will look OK in crash dumps, but any concurrent RCU readers might
826  * see pre-initialized values of the referenced data structure.  So
827  * please be very careful how you use RCU_INIT_POINTER()!!!
828  *
829  * If you are creating an RCU-protected linked structure that is accessed
830  * by a single external-to-structure RCU-protected pointer, then you may
831  * use RCU_INIT_POINTER() to initialize the internal RCU-protected
832  * pointers, but you must use rcu_assign_pointer() to initialize the
833  * external-to-structure pointer *after* you have completely initialized
834  * the reader-accessible portions of the linked structure.
835  *
836  * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
837  * ordering guarantees for either the CPU or the compiler.
838  */
839 #define RCU_INIT_POINTER(p, v) \
840 	do { \
841 		rcu_check_sparse(p, __rcu); \
842 		WRITE_ONCE(p, RCU_INITIALIZER(v)); \
843 	} while (0)
844 
845 /**
846  * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
847  * @p: The pointer to be initialized.
848  * @v: The value to initialized the pointer to.
849  *
850  * GCC-style initialization for an RCU-protected pointer in a structure field.
851  */
852 #define RCU_POINTER_INITIALIZER(p, v) \
853 		.p = RCU_INITIALIZER(v)
854 
855 /*
856  * Does the specified offset indicate that the corresponding rcu_head
857  * structure can be handled by kvfree_rcu()?
858  */
859 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
860 
861 /*
862  * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
863  */
864 #define __kvfree_rcu(head, offset) \
865 	do { \
866 		BUILD_BUG_ON(!__is_kvfree_rcu_offset(offset)); \
867 		kvfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
868 	} while (0)
869 
870 /**
871  * kfree_rcu() - kfree an object after a grace period.
872  * @ptr:	pointer to kfree
873  * @rhf:	the name of the struct rcu_head within the type of @ptr.
874  *
875  * Many rcu callbacks functions just call kfree() on the base structure.
876  * These functions are trivial, but their size adds up, and furthermore
877  * when they are used in a kernel module, that module must invoke the
878  * high-latency rcu_barrier() function at module-unload time.
879  *
880  * The kfree_rcu() function handles this issue.  Rather than encoding a
881  * function address in the embedded rcu_head structure, kfree_rcu() instead
882  * encodes the offset of the rcu_head structure within the base structure.
883  * Because the functions are not allowed in the low-order 4096 bytes of
884  * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
885  * If the offset is larger than 4095 bytes, a compile-time error will
886  * be generated in __kvfree_rcu(). If this error is triggered, you can
887  * either fall back to use of call_rcu() or rearrange the structure to
888  * position the rcu_head structure into the first 4096 bytes.
889  *
890  * Note that the allowable offset might decrease in the future, for example,
891  * to allow something like kmem_cache_free_rcu().
892  *
893  * The BUILD_BUG_ON check must not involve any function calls, hence the
894  * checks are done in macros here.
895  */
896 #define kfree_rcu(ptr, rhf)						\
897 do {									\
898 	typeof (ptr) ___p = (ptr);					\
899 									\
900 	if (___p)							\
901 		__kvfree_rcu(&((___p)->rhf), offsetof(typeof(*(ptr)), rhf)); \
902 } while (0)
903 
904 /**
905  * kvfree_rcu() - kvfree an object after a grace period.
906  *
907  * This macro consists of one or two arguments and it is
908  * based on whether an object is head-less or not. If it
909  * has a head then a semantic stays the same as it used
910  * to be before:
911  *
912  *     kvfree_rcu(ptr, rhf);
913  *
914  * where @ptr is a pointer to kvfree(), @rhf is the name
915  * of the rcu_head structure within the type of @ptr.
916  *
917  * When it comes to head-less variant, only one argument
918  * is passed and that is just a pointer which has to be
919  * freed after a grace period. Therefore the semantic is
920  *
921  *     kvfree_rcu(ptr);
922  *
923  * where @ptr is a pointer to kvfree().
924  *
925  * Please note, head-less way of freeing is permitted to
926  * use from a context that has to follow might_sleep()
927  * annotation. Otherwise, please switch and embed the
928  * rcu_head structure within the type of @ptr.
929  */
930 #define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__,		\
931 	kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__)
932 
933 #define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME
934 #define kvfree_rcu_arg_2(ptr, rhf) kfree_rcu(ptr, rhf)
935 #define kvfree_rcu_arg_1(ptr)					\
936 do {								\
937 	typeof(ptr) ___p = (ptr);				\
938 								\
939 	if (___p)						\
940 		kvfree_call_rcu(NULL, (rcu_callback_t) (___p));	\
941 } while (0)
942 
943 /*
944  * Place this after a lock-acquisition primitive to guarantee that
945  * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
946  * if the UNLOCK and LOCK are executed by the same CPU or if the
947  * UNLOCK and LOCK operate on the same lock variable.
948  */
949 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
950 #define smp_mb__after_unlock_lock()	smp_mb()  /* Full ordering for lock. */
951 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
952 #define smp_mb__after_unlock_lock()	do { } while (0)
953 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
954 
955 
956 /* Has the specified rcu_head structure been handed to call_rcu()? */
957 
958 /**
959  * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
960  * @rhp: The rcu_head structure to initialize.
961  *
962  * If you intend to invoke rcu_head_after_call_rcu() to test whether a
963  * given rcu_head structure has already been passed to call_rcu(), then
964  * you must also invoke this rcu_head_init() function on it just after
965  * allocating that structure.  Calls to this function must not race with
966  * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
967  */
rcu_head_init(struct rcu_head * rhp)968 static inline void rcu_head_init(struct rcu_head *rhp)
969 {
970 	rhp->func = (rcu_callback_t)~0L;
971 }
972 
973 /**
974  * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
975  * @rhp: The rcu_head structure to test.
976  * @f: The function passed to call_rcu() along with @rhp.
977  *
978  * Returns @true if the @rhp has been passed to call_rcu() with @func,
979  * and @false otherwise.  Emits a warning in any other case, including
980  * the case where @rhp has already been invoked after a grace period.
981  * Calls to this function must not race with callback invocation.  One way
982  * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
983  * in an RCU read-side critical section that includes a read-side fetch
984  * of the pointer to the structure containing @rhp.
985  */
986 static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)987 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
988 {
989 	rcu_callback_t func = READ_ONCE(rhp->func);
990 
991 	if (func == f)
992 		return true;
993 	WARN_ON_ONCE(func != (rcu_callback_t)~0L);
994 	return false;
995 }
996 
997 /* kernel/ksysfs.c definitions */
998 extern int rcu_expedited;
999 extern int rcu_normal;
1000 
1001 #endif /* __LINUX_RCUPDATE_H */
1002