• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com>
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/percpu.h>
36 #include <linux/notifier.h>
37 #include <linux/cpu.h>
38 #include <linux/mutex.h>
39 #include <linux/time.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/wait.h>
42 #include <linux/kthread.h>
43 #include <uapi/linux/sched/types.h>
44 #include <linux/prefetch.h>
45 #include <linux/delay.h>
46 #include <linux/random.h>
47 #include <linux/trace_events.h>
48 #include <linux/suspend.h>
49 #include <linux/ftrace.h>
50 #include <linux/tick.h>
51 #include <linux/sysrq.h>
52 #include <linux/kprobes.h>
53 #include <linux/gfp.h>
54 #include <linux/oom.h>
55 #include <linux/smpboot.h>
56 #include <linux/jiffies.h>
57 #include <linux/slab.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/sched/clock.h>
60 #include <linux/vmalloc.h>
61 #include <linux/mm.h>
62 #include <linux/kasan.h>
63 #include "../time/tick-internal.h"
64 
65 #include "tree.h"
66 #include "rcu.h"
67 
68 #ifdef MODULE_PARAM_PREFIX
69 #undef MODULE_PARAM_PREFIX
70 #endif
71 #define MODULE_PARAM_PREFIX "rcutree."
72 
73 /* Data structures. */
74 
75 /*
76  * Steal a bit from the bottom of ->dynticks for idle entry/exit
77  * control.  Initially this is for TLB flushing.
78  */
79 #define RCU_DYNTICK_CTRL_MASK 0x1
80 #define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
81 
82 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
83 	.dynticks_nesting = 1,
84 	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
85 	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
86 };
87 static struct rcu_state rcu_state = {
88 	.level = { &rcu_state.node[0] },
89 	.gp_state = RCU_GP_IDLE,
90 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
91 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
92 	.name = RCU_NAME,
93 	.abbr = RCU_ABBR,
94 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
95 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
96 	.ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
97 };
98 
99 /* Dump rcu_node combining tree at boot to verify correct setup. */
100 static bool dump_tree;
101 module_param(dump_tree, bool, 0444);
102 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
103 static bool use_softirq = true;
104 module_param(use_softirq, bool, 0444);
105 /* Control rcu_node-tree auto-balancing at boot time. */
106 static bool rcu_fanout_exact;
107 module_param(rcu_fanout_exact, bool, 0444);
108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
110 module_param(rcu_fanout_leaf, int, 0444);
111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
112 /* Number of rcu_nodes at specified level. */
113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
115 
116 /*
117  * The rcu_scheduler_active variable is initialized to the value
118  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
119  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
120  * RCU can assume that there is but one task, allowing RCU to (for example)
121  * optimize synchronize_rcu() to a simple barrier().  When this variable
122  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
123  * to detect real grace periods.  This variable is also used to suppress
124  * boot-time false positives from lockdep-RCU error checking.  Finally, it
125  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
126  * is fully initialized, including all of its kthreads having been spawned.
127  */
128 int rcu_scheduler_active __read_mostly;
129 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
130 
131 /*
132  * The rcu_scheduler_fully_active variable transitions from zero to one
133  * during the early_initcall() processing, which is after the scheduler
134  * is capable of creating new tasks.  So RCU processing (for example,
135  * creating tasks for RCU priority boosting) must be delayed until after
136  * rcu_scheduler_fully_active transitions from zero to one.  We also
137  * currently delay invocation of any RCU callbacks until after this point.
138  *
139  * It might later prove better for people registering RCU callbacks during
140  * early boot to take responsibility for these callbacks, but one step at
141  * a time.
142  */
143 static int rcu_scheduler_fully_active __read_mostly;
144 
145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
146 			      unsigned long gps, unsigned long flags);
147 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
148 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
149 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
150 static void invoke_rcu_core(void);
151 static void rcu_report_exp_rdp(struct rcu_data *rdp);
152 static void sync_sched_exp_online_cleanup(int cpu);
153 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
154 
155 /* rcuc/rcub kthread realtime priority */
156 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
157 module_param(kthread_prio, int, 0444);
158 
159 /* Delay in jiffies for grace-period initialization delays, debug only. */
160 
161 static int gp_preinit_delay;
162 module_param(gp_preinit_delay, int, 0444);
163 static int gp_init_delay;
164 module_param(gp_init_delay, int, 0444);
165 static int gp_cleanup_delay;
166 module_param(gp_cleanup_delay, int, 0444);
167 
168 // Add delay to rcu_read_unlock() for strict grace periods.
169 static int rcu_unlock_delay;
170 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
171 module_param(rcu_unlock_delay, int, 0444);
172 #endif
173 
174 /*
175  * This rcu parameter is runtime-read-only. It reflects
176  * a minimum allowed number of objects which can be cached
177  * per-CPU. Object size is equal to one page. This value
178  * can be changed at boot time.
179  */
180 static int rcu_min_cached_objs = 5;
181 module_param(rcu_min_cached_objs, int, 0444);
182 
183 /* Retrieve RCU kthreads priority for rcutorture */
rcu_get_gp_kthreads_prio(void)184 int rcu_get_gp_kthreads_prio(void)
185 {
186 	return kthread_prio;
187 }
188 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
189 
190 /*
191  * Number of grace periods between delays, normalized by the duration of
192  * the delay.  The longer the delay, the more the grace periods between
193  * each delay.  The reason for this normalization is that it means that,
194  * for non-zero delays, the overall slowdown of grace periods is constant
195  * regardless of the duration of the delay.  This arrangement balances
196  * the need for long delays to increase some race probabilities with the
197  * need for fast grace periods to increase other race probabilities.
198  */
199 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
200 
201 /*
202  * Compute the mask of online CPUs for the specified rcu_node structure.
203  * This will not be stable unless the rcu_node structure's ->lock is
204  * held, but the bit corresponding to the current CPU will be stable
205  * in most contexts.
206  */
rcu_rnp_online_cpus(struct rcu_node * rnp)207 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
208 {
209 	return READ_ONCE(rnp->qsmaskinitnext);
210 }
211 
212 /*
213  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
214  * permit this function to be invoked without holding the root rcu_node
215  * structure's ->lock, but of course results can be subject to change.
216  */
rcu_gp_in_progress(void)217 static int rcu_gp_in_progress(void)
218 {
219 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
220 }
221 
222 /*
223  * Return the number of callbacks queued on the specified CPU.
224  * Handles both the nocbs and normal cases.
225  */
rcu_get_n_cbs_cpu(int cpu)226 static long rcu_get_n_cbs_cpu(int cpu)
227 {
228 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
229 
230 	if (rcu_segcblist_is_enabled(&rdp->cblist))
231 		return rcu_segcblist_n_cbs(&rdp->cblist);
232 	return 0;
233 }
234 
rcu_softirq_qs(void)235 void rcu_softirq_qs(void)
236 {
237 	rcu_qs();
238 	rcu_preempt_deferred_qs(current);
239 }
240 
241 /*
242  * Record entry into an extended quiescent state.  This is only to be
243  * called when not already in an extended quiescent state, that is,
244  * RCU is watching prior to the call to this function and is no longer
245  * watching upon return.
246  */
rcu_dynticks_eqs_enter(void)247 static noinstr void rcu_dynticks_eqs_enter(void)
248 {
249 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
250 	int seq;
251 
252 	/*
253 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
254 	 * critical sections, and we also must force ordering with the
255 	 * next idle sojourn.
256 	 */
257 	rcu_dynticks_task_trace_enter();  // Before ->dynticks update!
258 	seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
259 	// RCU is no longer watching.  Better be in extended quiescent state!
260 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
261 		     (seq & RCU_DYNTICK_CTRL_CTR));
262 	/* Better not have special action (TLB flush) pending! */
263 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
264 		     (seq & RCU_DYNTICK_CTRL_MASK));
265 }
266 
267 /*
268  * Record exit from an extended quiescent state.  This is only to be
269  * called from an extended quiescent state, that is, RCU is not watching
270  * prior to the call to this function and is watching upon return.
271  */
rcu_dynticks_eqs_exit(void)272 static noinstr void rcu_dynticks_eqs_exit(void)
273 {
274 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
275 	int seq;
276 
277 	/*
278 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
279 	 * and we also must force ordering with the next RCU read-side
280 	 * critical section.
281 	 */
282 	seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
283 	// RCU is now watching.  Better not be in an extended quiescent state!
284 	rcu_dynticks_task_trace_exit();  // After ->dynticks update!
285 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
286 		     !(seq & RCU_DYNTICK_CTRL_CTR));
287 	if (seq & RCU_DYNTICK_CTRL_MASK) {
288 		arch_atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
289 		smp_mb__after_atomic(); /* _exit after clearing mask. */
290 	}
291 }
292 
293 /*
294  * Reset the current CPU's ->dynticks counter to indicate that the
295  * newly onlined CPU is no longer in an extended quiescent state.
296  * This will either leave the counter unchanged, or increment it
297  * to the next non-quiescent value.
298  *
299  * The non-atomic test/increment sequence works because the upper bits
300  * of the ->dynticks counter are manipulated only by the corresponding CPU,
301  * or when the corresponding CPU is offline.
302  */
rcu_dynticks_eqs_online(void)303 static void rcu_dynticks_eqs_online(void)
304 {
305 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
306 
307 	if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
308 		return;
309 	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
310 }
311 
312 /*
313  * Is the current CPU in an extended quiescent state?
314  *
315  * No ordering, as we are sampling CPU-local information.
316  */
rcu_dynticks_curr_cpu_in_eqs(void)317 static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void)
318 {
319 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
320 
321 	return !(arch_atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
322 }
323 
324 /*
325  * Snapshot the ->dynticks counter with full ordering so as to allow
326  * stable comparison of this counter with past and future snapshots.
327  */
rcu_dynticks_snap(struct rcu_data * rdp)328 static int rcu_dynticks_snap(struct rcu_data *rdp)
329 {
330 	int snap = atomic_add_return(0, &rdp->dynticks);
331 
332 	return snap & ~RCU_DYNTICK_CTRL_MASK;
333 }
334 
335 /*
336  * Return true if the snapshot returned from rcu_dynticks_snap()
337  * indicates that RCU is in an extended quiescent state.
338  */
rcu_dynticks_in_eqs(int snap)339 static bool rcu_dynticks_in_eqs(int snap)
340 {
341 	return !(snap & RCU_DYNTICK_CTRL_CTR);
342 }
343 
344 /*
345  * Return true if the CPU corresponding to the specified rcu_data
346  * structure has spent some time in an extended quiescent state since
347  * rcu_dynticks_snap() returned the specified snapshot.
348  */
rcu_dynticks_in_eqs_since(struct rcu_data * rdp,int snap)349 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
350 {
351 	return snap != rcu_dynticks_snap(rdp);
352 }
353 
354 /*
355  * Return true if the referenced integer is zero while the specified
356  * CPU remains within a single extended quiescent state.
357  */
rcu_dynticks_zero_in_eqs(int cpu,int * vp)358 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
359 {
360 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
361 	int snap;
362 
363 	// If not quiescent, force back to earlier extended quiescent state.
364 	snap = atomic_read(&rdp->dynticks) & ~(RCU_DYNTICK_CTRL_MASK |
365 					       RCU_DYNTICK_CTRL_CTR);
366 
367 	smp_rmb(); // Order ->dynticks and *vp reads.
368 	if (READ_ONCE(*vp))
369 		return false;  // Non-zero, so report failure;
370 	smp_rmb(); // Order *vp read and ->dynticks re-read.
371 
372 	// If still in the same extended quiescent state, we are good!
373 	return snap == (atomic_read(&rdp->dynticks) & ~RCU_DYNTICK_CTRL_MASK);
374 }
375 
376 /*
377  * Set the special (bottom) bit of the specified CPU so that it
378  * will take special action (such as flushing its TLB) on the
379  * next exit from an extended quiescent state.  Returns true if
380  * the bit was successfully set, or false if the CPU was not in
381  * an extended quiescent state.
382  */
rcu_eqs_special_set(int cpu)383 bool rcu_eqs_special_set(int cpu)
384 {
385 	int old;
386 	int new;
387 	int new_old;
388 	struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
389 
390 	new_old = atomic_read(&rdp->dynticks);
391 	do {
392 		old = new_old;
393 		if (old & RCU_DYNTICK_CTRL_CTR)
394 			return false;
395 		new = old | RCU_DYNTICK_CTRL_MASK;
396 		new_old = atomic_cmpxchg(&rdp->dynticks, old, new);
397 	} while (new_old != old);
398 	return true;
399 }
400 
401 /*
402  * Let the RCU core know that this CPU has gone through the scheduler,
403  * which is a quiescent state.  This is called when the need for a
404  * quiescent state is urgent, so we burn an atomic operation and full
405  * memory barriers to let the RCU core know about it, regardless of what
406  * this CPU might (or might not) do in the near future.
407  *
408  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
409  *
410  * The caller must have disabled interrupts and must not be idle.
411  */
rcu_momentary_dyntick_idle(void)412 notrace void rcu_momentary_dyntick_idle(void)
413 {
414 	int special;
415 
416 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
417 	special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
418 				    &this_cpu_ptr(&rcu_data)->dynticks);
419 	/* It is illegal to call this from idle state. */
420 	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
421 	rcu_preempt_deferred_qs(current);
422 }
423 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
424 
425 /**
426  * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
427  *
428  * If the current CPU is idle and running at a first-level (not nested)
429  * interrupt, or directly, from idle, return true.
430  *
431  * The caller must have at least disabled IRQs.
432  */
rcu_is_cpu_rrupt_from_idle(void)433 static int rcu_is_cpu_rrupt_from_idle(void)
434 {
435 	long nesting;
436 
437 	/*
438 	 * Usually called from the tick; but also used from smp_function_call()
439 	 * for expedited grace periods. This latter can result in running from
440 	 * the idle task, instead of an actual IPI.
441 	 */
442 	lockdep_assert_irqs_disabled();
443 
444 	/* Check for counter underflows */
445 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
446 			 "RCU dynticks_nesting counter underflow!");
447 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
448 			 "RCU dynticks_nmi_nesting counter underflow/zero!");
449 
450 	/* Are we at first interrupt nesting level? */
451 	nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting);
452 	if (nesting > 1)
453 		return false;
454 
455 	/*
456 	 * If we're not in an interrupt, we must be in the idle task!
457 	 */
458 	WARN_ON_ONCE(!nesting && !is_idle_task(current));
459 
460 	/* Does CPU appear to be idle from an RCU standpoint? */
461 	return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
462 }
463 
464 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
465 				// Maximum callbacks per rcu_do_batch ...
466 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
467 static long blimit = DEFAULT_RCU_BLIMIT;
468 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
469 static long qhimark = DEFAULT_RCU_QHIMARK;
470 #define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
471 static long qlowmark = DEFAULT_RCU_QLOMARK;
472 #define DEFAULT_RCU_QOVLD_MULT 2
473 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
474 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
475 static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
476 
477 module_param(blimit, long, 0444);
478 module_param(qhimark, long, 0444);
479 module_param(qlowmark, long, 0444);
480 module_param(qovld, long, 0444);
481 
482 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
483 static ulong jiffies_till_next_fqs = ULONG_MAX;
484 static bool rcu_kick_kthreads;
485 static int rcu_divisor = 7;
486 module_param(rcu_divisor, int, 0644);
487 
488 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
489 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
490 module_param(rcu_resched_ns, long, 0644);
491 
492 /*
493  * How long the grace period must be before we start recruiting
494  * quiescent-state help from rcu_note_context_switch().
495  */
496 static ulong jiffies_till_sched_qs = ULONG_MAX;
497 module_param(jiffies_till_sched_qs, ulong, 0444);
498 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
499 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
500 
501 /*
502  * Make sure that we give the grace-period kthread time to detect any
503  * idle CPUs before taking active measures to force quiescent states.
504  * However, don't go below 100 milliseconds, adjusted upwards for really
505  * large systems.
506  */
adjust_jiffies_till_sched_qs(void)507 static void adjust_jiffies_till_sched_qs(void)
508 {
509 	unsigned long j;
510 
511 	/* If jiffies_till_sched_qs was specified, respect the request. */
512 	if (jiffies_till_sched_qs != ULONG_MAX) {
513 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
514 		return;
515 	}
516 	/* Otherwise, set to third fqs scan, but bound below on large system. */
517 	j = READ_ONCE(jiffies_till_first_fqs) +
518 		      2 * READ_ONCE(jiffies_till_next_fqs);
519 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
520 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
521 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
522 	WRITE_ONCE(jiffies_to_sched_qs, j);
523 }
524 
param_set_first_fqs_jiffies(const char * val,const struct kernel_param * kp)525 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
526 {
527 	ulong j;
528 	int ret = kstrtoul(val, 0, &j);
529 
530 	if (!ret) {
531 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
532 		adjust_jiffies_till_sched_qs();
533 	}
534 	return ret;
535 }
536 
param_set_next_fqs_jiffies(const char * val,const struct kernel_param * kp)537 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
538 {
539 	ulong j;
540 	int ret = kstrtoul(val, 0, &j);
541 
542 	if (!ret) {
543 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
544 		adjust_jiffies_till_sched_qs();
545 	}
546 	return ret;
547 }
548 
549 static struct kernel_param_ops first_fqs_jiffies_ops = {
550 	.set = param_set_first_fqs_jiffies,
551 	.get = param_get_ulong,
552 };
553 
554 static struct kernel_param_ops next_fqs_jiffies_ops = {
555 	.set = param_set_next_fqs_jiffies,
556 	.get = param_get_ulong,
557 };
558 
559 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
560 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
561 module_param(rcu_kick_kthreads, bool, 0644);
562 
563 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
564 static int rcu_pending(int user);
565 
566 /*
567  * Return the number of RCU GPs completed thus far for debug & stats.
568  */
rcu_get_gp_seq(void)569 unsigned long rcu_get_gp_seq(void)
570 {
571 	return READ_ONCE(rcu_state.gp_seq);
572 }
573 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
574 
575 /*
576  * Return the number of RCU expedited batches completed thus far for
577  * debug & stats.  Odd numbers mean that a batch is in progress, even
578  * numbers mean idle.  The value returned will thus be roughly double
579  * the cumulative batches since boot.
580  */
rcu_exp_batches_completed(void)581 unsigned long rcu_exp_batches_completed(void)
582 {
583 	return rcu_state.expedited_sequence;
584 }
585 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
586 
587 /*
588  * Return the root node of the rcu_state structure.
589  */
rcu_get_root(void)590 static struct rcu_node *rcu_get_root(void)
591 {
592 	return &rcu_state.node[0];
593 }
594 
595 /*
596  * Send along grace-period-related data for rcutorture diagnostics.
597  */
rcutorture_get_gp_data(enum rcutorture_type test_type,int * flags,unsigned long * gp_seq)598 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
599 			    unsigned long *gp_seq)
600 {
601 	switch (test_type) {
602 	case RCU_FLAVOR:
603 		*flags = READ_ONCE(rcu_state.gp_flags);
604 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
605 		break;
606 	default:
607 		break;
608 	}
609 }
610 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
611 
612 /*
613  * Enter an RCU extended quiescent state, which can be either the
614  * idle loop or adaptive-tickless usermode execution.
615  *
616  * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
617  * the possibility of usermode upcalls having messed up our count
618  * of interrupt nesting level during the prior busy period.
619  */
rcu_eqs_enter(bool user)620 static noinstr void rcu_eqs_enter(bool user)
621 {
622 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
623 
624 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
625 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
626 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
627 		     rdp->dynticks_nesting == 0);
628 	if (rdp->dynticks_nesting != 1) {
629 		// RCU will still be watching, so just do accounting and leave.
630 		rdp->dynticks_nesting--;
631 		return;
632 	}
633 
634 	lockdep_assert_irqs_disabled();
635 	instrumentation_begin();
636 	trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
637 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
638 	rdp = this_cpu_ptr(&rcu_data);
639 	rcu_prepare_for_idle();
640 	rcu_preempt_deferred_qs(current);
641 
642 	// instrumentation for the noinstr rcu_dynticks_eqs_enter()
643 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
644 
645 	instrumentation_end();
646 	WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
647 	// RCU is watching here ...
648 	rcu_dynticks_eqs_enter();
649 	// ... but is no longer watching here.
650 	rcu_dynticks_task_enter();
651 }
652 
653 /**
654  * rcu_idle_enter - inform RCU that current CPU is entering idle
655  *
656  * Enter idle mode, in other words, -leave- the mode in which RCU
657  * read-side critical sections can occur.  (Though RCU read-side
658  * critical sections can occur in irq handlers in idle, a possibility
659  * handled by irq_enter() and irq_exit().)
660  *
661  * If you add or remove a call to rcu_idle_enter(), be sure to test with
662  * CONFIG_RCU_EQS_DEBUG=y.
663  */
rcu_idle_enter(void)664 void rcu_idle_enter(void)
665 {
666 	lockdep_assert_irqs_disabled();
667 	rcu_eqs_enter(false);
668 }
669 EXPORT_SYMBOL_GPL(rcu_idle_enter);
670 
671 #ifdef CONFIG_NO_HZ_FULL
672 /**
673  * rcu_user_enter - inform RCU that we are resuming userspace.
674  *
675  * Enter RCU idle mode right before resuming userspace.  No use of RCU
676  * is permitted between this call and rcu_user_exit(). This way the
677  * CPU doesn't need to maintain the tick for RCU maintenance purposes
678  * when the CPU runs in userspace.
679  *
680  * If you add or remove a call to rcu_user_enter(), be sure to test with
681  * CONFIG_RCU_EQS_DEBUG=y.
682  */
rcu_user_enter(void)683 noinstr void rcu_user_enter(void)
684 {
685 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
686 
687 	lockdep_assert_irqs_disabled();
688 
689 	instrumentation_begin();
690 	do_nocb_deferred_wakeup(rdp);
691 	instrumentation_end();
692 
693 	rcu_eqs_enter(true);
694 }
695 #endif /* CONFIG_NO_HZ_FULL */
696 
697 /**
698  * rcu_nmi_exit - inform RCU of exit from NMI context
699  *
700  * If we are returning from the outermost NMI handler that interrupted an
701  * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
702  * to let the RCU grace-period handling know that the CPU is back to
703  * being RCU-idle.
704  *
705  * If you add or remove a call to rcu_nmi_exit(), be sure to test
706  * with CONFIG_RCU_EQS_DEBUG=y.
707  */
rcu_nmi_exit(void)708 noinstr void rcu_nmi_exit(void)
709 {
710 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
711 
712 	instrumentation_begin();
713 	/*
714 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
715 	 * (We are exiting an NMI handler, so RCU better be paying attention
716 	 * to us!)
717 	 */
718 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
719 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
720 
721 	/*
722 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
723 	 * leave it in non-RCU-idle state.
724 	 */
725 	if (rdp->dynticks_nmi_nesting != 1) {
726 		trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
727 				  atomic_read(&rdp->dynticks));
728 		WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
729 			   rdp->dynticks_nmi_nesting - 2);
730 		instrumentation_end();
731 		return;
732 	}
733 
734 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
735 	trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
736 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
737 
738 	if (!in_nmi())
739 		rcu_prepare_for_idle();
740 
741 	// instrumentation for the noinstr rcu_dynticks_eqs_enter()
742 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
743 	instrumentation_end();
744 
745 	// RCU is watching here ...
746 	rcu_dynticks_eqs_enter();
747 	// ... but is no longer watching here.
748 
749 	if (!in_nmi())
750 		rcu_dynticks_task_enter();
751 }
752 
753 /**
754  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
755  *
756  * Exit from an interrupt handler, which might possibly result in entering
757  * idle mode, in other words, leaving the mode in which read-side critical
758  * sections can occur.  The caller must have disabled interrupts.
759  *
760  * This code assumes that the idle loop never does anything that might
761  * result in unbalanced calls to irq_enter() and irq_exit().  If your
762  * architecture's idle loop violates this assumption, RCU will give you what
763  * you deserve, good and hard.  But very infrequently and irreproducibly.
764  *
765  * Use things like work queues to work around this limitation.
766  *
767  * You have been warned.
768  *
769  * If you add or remove a call to rcu_irq_exit(), be sure to test with
770  * CONFIG_RCU_EQS_DEBUG=y.
771  */
rcu_irq_exit(void)772 void noinstr rcu_irq_exit(void)
773 {
774 	lockdep_assert_irqs_disabled();
775 	rcu_nmi_exit();
776 }
777 
778 /**
779  * rcu_irq_exit_preempt - Inform RCU that current CPU is exiting irq
780  *			  towards in kernel preemption
781  *
782  * Same as rcu_irq_exit() but has a sanity check that scheduling is safe
783  * from RCU point of view. Invoked from return from interrupt before kernel
784  * preemption.
785  */
rcu_irq_exit_preempt(void)786 void rcu_irq_exit_preempt(void)
787 {
788 	lockdep_assert_irqs_disabled();
789 	rcu_nmi_exit();
790 
791 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
792 			 "RCU dynticks_nesting counter underflow/zero!");
793 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
794 			 DYNTICK_IRQ_NONIDLE,
795 			 "Bad RCU  dynticks_nmi_nesting counter\n");
796 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
797 			 "RCU in extended quiescent state!");
798 }
799 
800 #ifdef CONFIG_PROVE_RCU
801 /**
802  * rcu_irq_exit_check_preempt - Validate that scheduling is possible
803  */
rcu_irq_exit_check_preempt(void)804 void rcu_irq_exit_check_preempt(void)
805 {
806 	lockdep_assert_irqs_disabled();
807 
808 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
809 			 "RCU dynticks_nesting counter underflow/zero!");
810 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
811 			 DYNTICK_IRQ_NONIDLE,
812 			 "Bad RCU  dynticks_nmi_nesting counter\n");
813 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
814 			 "RCU in extended quiescent state!");
815 }
816 #endif /* #ifdef CONFIG_PROVE_RCU */
817 
818 /*
819  * Wrapper for rcu_irq_exit() where interrupts are enabled.
820  *
821  * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
822  * with CONFIG_RCU_EQS_DEBUG=y.
823  */
rcu_irq_exit_irqson(void)824 void rcu_irq_exit_irqson(void)
825 {
826 	unsigned long flags;
827 
828 	local_irq_save(flags);
829 	rcu_irq_exit();
830 	local_irq_restore(flags);
831 }
832 
833 /*
834  * Exit an RCU extended quiescent state, which can be either the
835  * idle loop or adaptive-tickless usermode execution.
836  *
837  * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
838  * allow for the possibility of usermode upcalls messing up our count of
839  * interrupt nesting level during the busy period that is just now starting.
840  */
rcu_eqs_exit(bool user)841 static void noinstr rcu_eqs_exit(bool user)
842 {
843 	struct rcu_data *rdp;
844 	long oldval;
845 
846 	lockdep_assert_irqs_disabled();
847 	rdp = this_cpu_ptr(&rcu_data);
848 	oldval = rdp->dynticks_nesting;
849 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
850 	if (oldval) {
851 		// RCU was already watching, so just do accounting and leave.
852 		rdp->dynticks_nesting++;
853 		return;
854 	}
855 	rcu_dynticks_task_exit();
856 	// RCU is not watching here ...
857 	rcu_dynticks_eqs_exit();
858 	// ... but is watching here.
859 	instrumentation_begin();
860 
861 	// instrumentation for the noinstr rcu_dynticks_eqs_exit()
862 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
863 
864 	rcu_cleanup_after_idle();
865 	trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
866 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
867 	WRITE_ONCE(rdp->dynticks_nesting, 1);
868 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
869 	WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
870 	instrumentation_end();
871 }
872 
873 /**
874  * rcu_idle_exit - inform RCU that current CPU is leaving idle
875  *
876  * Exit idle mode, in other words, -enter- the mode in which RCU
877  * read-side critical sections can occur.
878  *
879  * If you add or remove a call to rcu_idle_exit(), be sure to test with
880  * CONFIG_RCU_EQS_DEBUG=y.
881  */
rcu_idle_exit(void)882 void rcu_idle_exit(void)
883 {
884 	unsigned long flags;
885 
886 	local_irq_save(flags);
887 	rcu_eqs_exit(false);
888 	local_irq_restore(flags);
889 }
890 EXPORT_SYMBOL_GPL(rcu_idle_exit);
891 
892 #ifdef CONFIG_NO_HZ_FULL
893 /**
894  * rcu_user_exit - inform RCU that we are exiting userspace.
895  *
896  * Exit RCU idle mode while entering the kernel because it can
897  * run a RCU read side critical section anytime.
898  *
899  * If you add or remove a call to rcu_user_exit(), be sure to test with
900  * CONFIG_RCU_EQS_DEBUG=y.
901  */
rcu_user_exit(void)902 void noinstr rcu_user_exit(void)
903 {
904 	rcu_eqs_exit(1);
905 }
906 
907 /**
908  * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
909  *
910  * The scheduler tick is not normally enabled when CPUs enter the kernel
911  * from nohz_full userspace execution.  After all, nohz_full userspace
912  * execution is an RCU quiescent state and the time executing in the kernel
913  * is quite short.  Except of course when it isn't.  And it is not hard to
914  * cause a large system to spend tens of seconds or even minutes looping
915  * in the kernel, which can cause a number of problems, include RCU CPU
916  * stall warnings.
917  *
918  * Therefore, if a nohz_full CPU fails to report a quiescent state
919  * in a timely manner, the RCU grace-period kthread sets that CPU's
920  * ->rcu_urgent_qs flag with the expectation that the next interrupt or
921  * exception will invoke this function, which will turn on the scheduler
922  * tick, which will enable RCU to detect that CPU's quiescent states,
923  * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
924  * The tick will be disabled once a quiescent state is reported for
925  * this CPU.
926  *
927  * Of course, in carefully tuned systems, there might never be an
928  * interrupt or exception.  In that case, the RCU grace-period kthread
929  * will eventually cause one to happen.  However, in less carefully
930  * controlled environments, this function allows RCU to get what it
931  * needs without creating otherwise useless interruptions.
932  */
__rcu_irq_enter_check_tick(void)933 void __rcu_irq_enter_check_tick(void)
934 {
935 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
936 
937 	// If we're here from NMI there's nothing to do.
938 	if (in_nmi())
939 		return;
940 
941 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
942 			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
943 
944 	if (!tick_nohz_full_cpu(rdp->cpu) ||
945 	    !READ_ONCE(rdp->rcu_urgent_qs) ||
946 	    READ_ONCE(rdp->rcu_forced_tick)) {
947 		// RCU doesn't need nohz_full help from this CPU, or it is
948 		// already getting that help.
949 		return;
950 	}
951 
952 	// We get here only when not in an extended quiescent state and
953 	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
954 	// already watching and (2) The fact that we are in an interrupt
955 	// handler and that the rcu_node lock is an irq-disabled lock
956 	// prevents self-deadlock.  So we can safely recheck under the lock.
957 	// Note that the nohz_full state currently cannot change.
958 	raw_spin_lock_rcu_node(rdp->mynode);
959 	if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
960 		// A nohz_full CPU is in the kernel and RCU needs a
961 		// quiescent state.  Turn on the tick!
962 		WRITE_ONCE(rdp->rcu_forced_tick, true);
963 		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
964 	}
965 	raw_spin_unlock_rcu_node(rdp->mynode);
966 }
967 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick);
968 #endif /* CONFIG_NO_HZ_FULL */
969 
970 /**
971  * rcu_nmi_enter - inform RCU of entry to NMI context
972  *
973  * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
974  * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
975  * that the CPU is active.  This implementation permits nested NMIs, as
976  * long as the nesting level does not overflow an int.  (You will probably
977  * run out of stack space first.)
978  *
979  * If you add or remove a call to rcu_nmi_enter(), be sure to test
980  * with CONFIG_RCU_EQS_DEBUG=y.
981  */
rcu_nmi_enter(void)982 noinstr void rcu_nmi_enter(void)
983 {
984 	long incby = 2;
985 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
986 
987 	/* Complain about underflow. */
988 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
989 
990 	/*
991 	 * If idle from RCU viewpoint, atomically increment ->dynticks
992 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
993 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
994 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
995 	 * to be in the outermost NMI handler that interrupted an RCU-idle
996 	 * period (observation due to Andy Lutomirski).
997 	 */
998 	if (rcu_dynticks_curr_cpu_in_eqs()) {
999 
1000 		if (!in_nmi())
1001 			rcu_dynticks_task_exit();
1002 
1003 		// RCU is not watching here ...
1004 		rcu_dynticks_eqs_exit();
1005 		// ... but is watching here.
1006 
1007 		if (!in_nmi()) {
1008 			instrumentation_begin();
1009 			rcu_cleanup_after_idle();
1010 			instrumentation_end();
1011 		}
1012 
1013 		instrumentation_begin();
1014 		// instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs()
1015 		instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks));
1016 		// instrumentation for the noinstr rcu_dynticks_eqs_exit()
1017 		instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
1018 
1019 		incby = 1;
1020 	} else if (!in_nmi()) {
1021 		instrumentation_begin();
1022 		rcu_irq_enter_check_tick();
1023 	} else  {
1024 		instrumentation_begin();
1025 	}
1026 
1027 	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1028 			  rdp->dynticks_nmi_nesting,
1029 			  rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
1030 	instrumentation_end();
1031 	WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
1032 		   rdp->dynticks_nmi_nesting + incby);
1033 	barrier();
1034 }
1035 
1036 /**
1037  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1038  *
1039  * Enter an interrupt handler, which might possibly result in exiting
1040  * idle mode, in other words, entering the mode in which read-side critical
1041  * sections can occur.  The caller must have disabled interrupts.
1042  *
1043  * Note that the Linux kernel is fully capable of entering an interrupt
1044  * handler that it never exits, for example when doing upcalls to user mode!
1045  * This code assumes that the idle loop never does upcalls to user mode.
1046  * If your architecture's idle loop does do upcalls to user mode (or does
1047  * anything else that results in unbalanced calls to the irq_enter() and
1048  * irq_exit() functions), RCU will give you what you deserve, good and hard.
1049  * But very infrequently and irreproducibly.
1050  *
1051  * Use things like work queues to work around this limitation.
1052  *
1053  * You have been warned.
1054  *
1055  * If you add or remove a call to rcu_irq_enter(), be sure to test with
1056  * CONFIG_RCU_EQS_DEBUG=y.
1057  */
rcu_irq_enter(void)1058 noinstr void rcu_irq_enter(void)
1059 {
1060 	lockdep_assert_irqs_disabled();
1061 	rcu_nmi_enter();
1062 }
1063 
1064 /*
1065  * Wrapper for rcu_irq_enter() where interrupts are enabled.
1066  *
1067  * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1068  * with CONFIG_RCU_EQS_DEBUG=y.
1069  */
rcu_irq_enter_irqson(void)1070 void rcu_irq_enter_irqson(void)
1071 {
1072 	unsigned long flags;
1073 
1074 	local_irq_save(flags);
1075 	rcu_irq_enter();
1076 	local_irq_restore(flags);
1077 }
1078 
1079 /*
1080  * If any sort of urgency was applied to the current CPU (for example,
1081  * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
1082  * to get to a quiescent state, disable it.
1083  */
rcu_disable_urgency_upon_qs(struct rcu_data * rdp)1084 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
1085 {
1086 	raw_lockdep_assert_held_rcu_node(rdp->mynode);
1087 	WRITE_ONCE(rdp->rcu_urgent_qs, false);
1088 	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
1089 	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
1090 		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1091 		WRITE_ONCE(rdp->rcu_forced_tick, false);
1092 	}
1093 }
1094 
1095 /**
1096  * rcu_is_watching - see if RCU thinks that the current CPU is not idle
1097  *
1098  * Return true if RCU is watching the running CPU, which means that this
1099  * CPU can safely enter RCU read-side critical sections.  In other words,
1100  * if the current CPU is not in its idle loop or is in an interrupt or
1101  * NMI handler, return true.
1102  *
1103  * Make notrace because it can be called by the internal functions of
1104  * ftrace, and making this notrace removes unnecessary recursion calls.
1105  */
rcu_is_watching(void)1106 notrace bool rcu_is_watching(void)
1107 {
1108 	bool ret;
1109 
1110 	preempt_disable_notrace();
1111 	ret = !rcu_dynticks_curr_cpu_in_eqs();
1112 	preempt_enable_notrace();
1113 	return ret;
1114 }
1115 EXPORT_SYMBOL_GPL(rcu_is_watching);
1116 
1117 /*
1118  * If a holdout task is actually running, request an urgent quiescent
1119  * state from its CPU.  This is unsynchronized, so migrations can cause
1120  * the request to go to the wrong CPU.  Which is OK, all that will happen
1121  * is that the CPU's next context switch will be a bit slower and next
1122  * time around this task will generate another request.
1123  */
rcu_request_urgent_qs_task(struct task_struct * t)1124 void rcu_request_urgent_qs_task(struct task_struct *t)
1125 {
1126 	int cpu;
1127 
1128 	barrier();
1129 	cpu = task_cpu(t);
1130 	if (!task_curr(t))
1131 		return; /* This task is not running on that CPU. */
1132 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
1133 }
1134 
1135 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1136 
1137 /*
1138  * Is the current CPU online as far as RCU is concerned?
1139  *
1140  * Disable preemption to avoid false positives that could otherwise
1141  * happen due to the current CPU number being sampled, this task being
1142  * preempted, its old CPU being taken offline, resuming on some other CPU,
1143  * then determining that its old CPU is now offline.
1144  *
1145  * Disable checking if in an NMI handler because we cannot safely
1146  * report errors from NMI handlers anyway.  In addition, it is OK to use
1147  * RCU on an offline processor during initial boot, hence the check for
1148  * rcu_scheduler_fully_active.
1149  */
rcu_lockdep_current_cpu_online(void)1150 bool rcu_lockdep_current_cpu_online(void)
1151 {
1152 	struct rcu_data *rdp;
1153 	struct rcu_node *rnp;
1154 	bool ret = false;
1155 
1156 	if (in_nmi() || !rcu_scheduler_fully_active)
1157 		return true;
1158 	preempt_disable_notrace();
1159 	rdp = this_cpu_ptr(&rcu_data);
1160 	rnp = rdp->mynode;
1161 	if (rdp->grpmask & rcu_rnp_online_cpus(rnp) || READ_ONCE(rnp->ofl_seq) & 0x1)
1162 		ret = true;
1163 	preempt_enable_notrace();
1164 	return ret;
1165 }
1166 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1167 
1168 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1169 
1170 /*
1171  * We are reporting a quiescent state on behalf of some other CPU, so
1172  * it is our responsibility to check for and handle potential overflow
1173  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1174  * After all, the CPU might be in deep idle state, and thus executing no
1175  * code whatsoever.
1176  */
rcu_gpnum_ovf(struct rcu_node * rnp,struct rcu_data * rdp)1177 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1178 {
1179 	raw_lockdep_assert_held_rcu_node(rnp);
1180 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1181 			 rnp->gp_seq))
1182 		WRITE_ONCE(rdp->gpwrap, true);
1183 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1184 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1185 }
1186 
1187 /*
1188  * Snapshot the specified CPU's dynticks counter so that we can later
1189  * credit them with an implicit quiescent state.  Return 1 if this CPU
1190  * is in dynticks idle mode, which is an extended quiescent state.
1191  */
dyntick_save_progress_counter(struct rcu_data * rdp)1192 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1193 {
1194 	rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1195 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1196 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1197 		rcu_gpnum_ovf(rdp->mynode, rdp);
1198 		return 1;
1199 	}
1200 	return 0;
1201 }
1202 
1203 /*
1204  * Return true if the specified CPU has passed through a quiescent
1205  * state by virtue of being in or having passed through an dynticks
1206  * idle state since the last call to dyntick_save_progress_counter()
1207  * for this same CPU, or by virtue of having been offline.
1208  */
rcu_implicit_dynticks_qs(struct rcu_data * rdp)1209 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1210 {
1211 	unsigned long jtsq;
1212 	bool *rnhqp;
1213 	bool *ruqp;
1214 	struct rcu_node *rnp = rdp->mynode;
1215 
1216 	/*
1217 	 * If the CPU passed through or entered a dynticks idle phase with
1218 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1219 	 * already acknowledged the request to pass through a quiescent
1220 	 * state.  Either way, that CPU cannot possibly be in an RCU
1221 	 * read-side critical section that started before the beginning
1222 	 * of the current RCU grace period.
1223 	 */
1224 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1225 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1226 		rcu_gpnum_ovf(rnp, rdp);
1227 		return 1;
1228 	}
1229 
1230 	/*
1231 	 * Complain if a CPU that is considered to be offline from RCU's
1232 	 * perspective has not yet reported a quiescent state.  After all,
1233 	 * the offline CPU should have reported a quiescent state during
1234 	 * the CPU-offline process, or, failing that, by rcu_gp_init()
1235 	 * if it ran concurrently with either the CPU going offline or the
1236 	 * last task on a leaf rcu_node structure exiting its RCU read-side
1237 	 * critical section while all CPUs corresponding to that structure
1238 	 * are offline.  This added warning detects bugs in any of these
1239 	 * code paths.
1240 	 *
1241 	 * The rcu_node structure's ->lock is held here, which excludes
1242 	 * the relevant portions the CPU-hotplug code, the grace-period
1243 	 * initialization code, and the rcu_read_unlock() code paths.
1244 	 *
1245 	 * For more detail, please refer to the "Hotplug CPU" section
1246 	 * of RCU's Requirements documentation.
1247 	 */
1248 	if (WARN_ON_ONCE(!(rdp->grpmask & rcu_rnp_online_cpus(rnp)))) {
1249 		bool onl;
1250 		struct rcu_node *rnp1;
1251 
1252 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1253 			__func__, rnp->grplo, rnp->grphi, rnp->level,
1254 			(long)rnp->gp_seq, (long)rnp->completedqs);
1255 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1256 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1257 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1258 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1259 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1260 			__func__, rdp->cpu, ".o"[onl],
1261 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1262 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1263 		return 1; /* Break things loose after complaining. */
1264 	}
1265 
1266 	/*
1267 	 * A CPU running for an extended time within the kernel can
1268 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1269 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1270 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1271 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1272 	 * variable are safe because the assignments are repeated if this
1273 	 * CPU failed to pass through a quiescent state.  This code
1274 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
1275 	 * is set way high.
1276 	 */
1277 	jtsq = READ_ONCE(jiffies_to_sched_qs);
1278 	ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1279 	rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1280 	if (!READ_ONCE(*rnhqp) &&
1281 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1282 	     time_after(jiffies, rcu_state.jiffies_resched) ||
1283 	     rcu_state.cbovld)) {
1284 		WRITE_ONCE(*rnhqp, true);
1285 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1286 		smp_store_release(ruqp, true);
1287 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1288 		WRITE_ONCE(*ruqp, true);
1289 	}
1290 
1291 	/*
1292 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1293 	 * The above code handles this, but only for straight cond_resched().
1294 	 * And some in-kernel loops check need_resched() before calling
1295 	 * cond_resched(), which defeats the above code for CPUs that are
1296 	 * running in-kernel with scheduling-clock interrupts disabled.
1297 	 * So hit them over the head with the resched_cpu() hammer!
1298 	 */
1299 	if (tick_nohz_full_cpu(rdp->cpu) &&
1300 	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
1301 	     rcu_state.cbovld)) {
1302 		WRITE_ONCE(*ruqp, true);
1303 		resched_cpu(rdp->cpu);
1304 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1305 	}
1306 
1307 	/*
1308 	 * If more than halfway to RCU CPU stall-warning time, invoke
1309 	 * resched_cpu() more frequently to try to loosen things up a bit.
1310 	 * Also check to see if the CPU is getting hammered with interrupts,
1311 	 * but only once per grace period, just to keep the IPIs down to
1312 	 * a dull roar.
1313 	 */
1314 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
1315 		if (time_after(jiffies,
1316 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1317 			resched_cpu(rdp->cpu);
1318 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1319 		}
1320 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1321 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1322 		    (rnp->ffmask & rdp->grpmask)) {
1323 			init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1324 			atomic_set(&rdp->rcu_iw.flags, IRQ_WORK_HARD_IRQ);
1325 			rdp->rcu_iw_pending = true;
1326 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
1327 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1328 		}
1329 	}
1330 
1331 	return 0;
1332 }
1333 
1334 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
trace_rcu_this_gp(struct rcu_node * rnp,struct rcu_data * rdp,unsigned long gp_seq_req,const char * s)1335 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1336 			      unsigned long gp_seq_req, const char *s)
1337 {
1338 	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
1339 				      gp_seq_req, rnp->level,
1340 				      rnp->grplo, rnp->grphi, s);
1341 }
1342 
1343 /*
1344  * rcu_start_this_gp - Request the start of a particular grace period
1345  * @rnp_start: The leaf node of the CPU from which to start.
1346  * @rdp: The rcu_data corresponding to the CPU from which to start.
1347  * @gp_seq_req: The gp_seq of the grace period to start.
1348  *
1349  * Start the specified grace period, as needed to handle newly arrived
1350  * callbacks.  The required future grace periods are recorded in each
1351  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1352  * is reason to awaken the grace-period kthread.
1353  *
1354  * The caller must hold the specified rcu_node structure's ->lock, which
1355  * is why the caller is responsible for waking the grace-period kthread.
1356  *
1357  * Returns true if the GP thread needs to be awakened else false.
1358  */
rcu_start_this_gp(struct rcu_node * rnp_start,struct rcu_data * rdp,unsigned long gp_seq_req)1359 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1360 			      unsigned long gp_seq_req)
1361 {
1362 	bool ret = false;
1363 	struct rcu_node *rnp;
1364 
1365 	/*
1366 	 * Use funnel locking to either acquire the root rcu_node
1367 	 * structure's lock or bail out if the need for this grace period
1368 	 * has already been recorded -- or if that grace period has in
1369 	 * fact already started.  If there is already a grace period in
1370 	 * progress in a non-leaf node, no recording is needed because the
1371 	 * end of the grace period will scan the leaf rcu_node structures.
1372 	 * Note that rnp_start->lock must not be released.
1373 	 */
1374 	raw_lockdep_assert_held_rcu_node(rnp_start);
1375 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1376 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
1377 		if (rnp != rnp_start)
1378 			raw_spin_lock_rcu_node(rnp);
1379 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1380 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1381 		    (rnp != rnp_start &&
1382 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1383 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1384 					  TPS("Prestarted"));
1385 			goto unlock_out;
1386 		}
1387 		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1388 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1389 			/*
1390 			 * We just marked the leaf or internal node, and a
1391 			 * grace period is in progress, which means that
1392 			 * rcu_gp_cleanup() will see the marking.  Bail to
1393 			 * reduce contention.
1394 			 */
1395 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1396 					  TPS("Startedleaf"));
1397 			goto unlock_out;
1398 		}
1399 		if (rnp != rnp_start && rnp->parent != NULL)
1400 			raw_spin_unlock_rcu_node(rnp);
1401 		if (!rnp->parent)
1402 			break;  /* At root, and perhaps also leaf. */
1403 	}
1404 
1405 	/* If GP already in progress, just leave, otherwise start one. */
1406 	if (rcu_gp_in_progress()) {
1407 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1408 		goto unlock_out;
1409 	}
1410 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1411 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1412 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1413 	if (!READ_ONCE(rcu_state.gp_kthread)) {
1414 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1415 		goto unlock_out;
1416 	}
1417 	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1418 	ret = true;  /* Caller must wake GP kthread. */
1419 unlock_out:
1420 	/* Push furthest requested GP to leaf node and rcu_data structure. */
1421 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1422 		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1423 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1424 	}
1425 	if (rnp != rnp_start)
1426 		raw_spin_unlock_rcu_node(rnp);
1427 	return ret;
1428 }
1429 
1430 /*
1431  * Clean up any old requests for the just-ended grace period.  Also return
1432  * whether any additional grace periods have been requested.
1433  */
rcu_future_gp_cleanup(struct rcu_node * rnp)1434 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1435 {
1436 	bool needmore;
1437 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1438 
1439 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1440 	if (!needmore)
1441 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1442 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1443 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1444 	return needmore;
1445 }
1446 
1447 /*
1448  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1449  * interrupt or softirq handler, in which case we just might immediately
1450  * sleep upon return, resulting in a grace-period hang), and don't bother
1451  * awakening when there is nothing for the grace-period kthread to do
1452  * (as in several CPUs raced to awaken, we lost), and finally don't try
1453  * to awaken a kthread that has not yet been created.  If all those checks
1454  * are passed, track some debug information and awaken.
1455  *
1456  * So why do the self-wakeup when in an interrupt or softirq handler
1457  * in the grace-period kthread's context?  Because the kthread might have
1458  * been interrupted just as it was going to sleep, and just after the final
1459  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1460  * is required, and is therefore supplied.
1461  */
rcu_gp_kthread_wake(void)1462 static void rcu_gp_kthread_wake(void)
1463 {
1464 	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1465 
1466 	if ((current == t && !in_irq() && !in_serving_softirq()) ||
1467 	    !READ_ONCE(rcu_state.gp_flags) || !t)
1468 		return;
1469 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1470 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1471 	swake_up_one(&rcu_state.gp_wq);
1472 }
1473 
1474 /*
1475  * If there is room, assign a ->gp_seq number to any callbacks on this
1476  * CPU that have not already been assigned.  Also accelerate any callbacks
1477  * that were previously assigned a ->gp_seq number that has since proven
1478  * to be too conservative, which can happen if callbacks get assigned a
1479  * ->gp_seq number while RCU is idle, but with reference to a non-root
1480  * rcu_node structure.  This function is idempotent, so it does not hurt
1481  * to call it repeatedly.  Returns an flag saying that we should awaken
1482  * the RCU grace-period kthread.
1483  *
1484  * The caller must hold rnp->lock with interrupts disabled.
1485  */
rcu_accelerate_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1486 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1487 {
1488 	unsigned long gp_seq_req;
1489 	bool ret = false;
1490 
1491 	rcu_lockdep_assert_cblist_protected(rdp);
1492 	raw_lockdep_assert_held_rcu_node(rnp);
1493 
1494 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1495 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1496 		return false;
1497 
1498 	/*
1499 	 * Callbacks are often registered with incomplete grace-period
1500 	 * information.  Something about the fact that getting exact
1501 	 * information requires acquiring a global lock...  RCU therefore
1502 	 * makes a conservative estimate of the grace period number at which
1503 	 * a given callback will become ready to invoke.	The following
1504 	 * code checks this estimate and improves it when possible, thus
1505 	 * accelerating callback invocation to an earlier grace-period
1506 	 * number.
1507 	 */
1508 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1509 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1510 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1511 
1512 	/* Trace depending on how much we were able to accelerate. */
1513 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1514 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1515 	else
1516 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1517 
1518 	return ret;
1519 }
1520 
1521 /*
1522  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1523  * rcu_node structure's ->lock be held.  It consults the cached value
1524  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1525  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1526  * while holding the leaf rcu_node structure's ->lock.
1527  */
rcu_accelerate_cbs_unlocked(struct rcu_node * rnp,struct rcu_data * rdp)1528 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1529 					struct rcu_data *rdp)
1530 {
1531 	unsigned long c;
1532 	bool needwake;
1533 
1534 	rcu_lockdep_assert_cblist_protected(rdp);
1535 	c = rcu_seq_snap(&rcu_state.gp_seq);
1536 	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1537 		/* Old request still live, so mark recent callbacks. */
1538 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1539 		return;
1540 	}
1541 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1542 	needwake = rcu_accelerate_cbs(rnp, rdp);
1543 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1544 	if (needwake)
1545 		rcu_gp_kthread_wake();
1546 }
1547 
1548 /*
1549  * Move any callbacks whose grace period has completed to the
1550  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1551  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1552  * sublist.  This function is idempotent, so it does not hurt to
1553  * invoke it repeatedly.  As long as it is not invoked -too- often...
1554  * Returns true if the RCU grace-period kthread needs to be awakened.
1555  *
1556  * The caller must hold rnp->lock with interrupts disabled.
1557  */
rcu_advance_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1558 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1559 {
1560 	rcu_lockdep_assert_cblist_protected(rdp);
1561 	raw_lockdep_assert_held_rcu_node(rnp);
1562 
1563 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1564 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1565 		return false;
1566 
1567 	/*
1568 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1569 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1570 	 */
1571 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1572 
1573 	/* Classify any remaining callbacks. */
1574 	return rcu_accelerate_cbs(rnp, rdp);
1575 }
1576 
1577 /*
1578  * Move and classify callbacks, but only if doing so won't require
1579  * that the RCU grace-period kthread be awakened.
1580  */
rcu_advance_cbs_nowake(struct rcu_node * rnp,struct rcu_data * rdp)1581 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1582 						  struct rcu_data *rdp)
1583 {
1584 	rcu_lockdep_assert_cblist_protected(rdp);
1585 	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1586 		return;
1587 	// The grace period cannot end while we hold the rcu_node lock.
1588 	if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1589 		WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1590 	raw_spin_unlock_rcu_node(rnp);
1591 }
1592 
1593 /*
1594  * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1595  * quiescent state.  This is intended to be invoked when the CPU notices
1596  * a new grace period.
1597  */
rcu_strict_gp_check_qs(void)1598 static void rcu_strict_gp_check_qs(void)
1599 {
1600 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1601 		rcu_read_lock();
1602 		rcu_read_unlock();
1603 	}
1604 }
1605 
1606 /*
1607  * Update CPU-local rcu_data state to record the beginnings and ends of
1608  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1609  * structure corresponding to the current CPU, and must have irqs disabled.
1610  * Returns true if the grace-period kthread needs to be awakened.
1611  */
__note_gp_changes(struct rcu_node * rnp,struct rcu_data * rdp)1612 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1613 {
1614 	bool ret = false;
1615 	bool need_qs;
1616 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1617 			       rcu_segcblist_is_offloaded(&rdp->cblist);
1618 
1619 	raw_lockdep_assert_held_rcu_node(rnp);
1620 
1621 	if (rdp->gp_seq == rnp->gp_seq)
1622 		return false; /* Nothing to do. */
1623 
1624 	/* Handle the ends of any preceding grace periods first. */
1625 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1626 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1627 		if (!offloaded)
1628 			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1629 		rdp->core_needs_qs = false;
1630 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1631 	} else {
1632 		if (!offloaded)
1633 			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1634 		if (rdp->core_needs_qs)
1635 			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1636 	}
1637 
1638 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1639 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1640 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1641 		/*
1642 		 * If the current grace period is waiting for this CPU,
1643 		 * set up to detect a quiescent state, otherwise don't
1644 		 * go looking for one.
1645 		 */
1646 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1647 		need_qs = !!(rnp->qsmask & rdp->grpmask);
1648 		rdp->cpu_no_qs.b.norm = need_qs;
1649 		rdp->core_needs_qs = need_qs;
1650 		zero_cpu_stall_ticks(rdp);
1651 	}
1652 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1653 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1654 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1655 	WRITE_ONCE(rdp->gpwrap, false);
1656 	rcu_gpnum_ovf(rnp, rdp);
1657 	return ret;
1658 }
1659 
note_gp_changes(struct rcu_data * rdp)1660 static void note_gp_changes(struct rcu_data *rdp)
1661 {
1662 	unsigned long flags;
1663 	bool needwake;
1664 	struct rcu_node *rnp;
1665 
1666 	local_irq_save(flags);
1667 	rnp = rdp->mynode;
1668 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1669 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1670 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1671 		local_irq_restore(flags);
1672 		return;
1673 	}
1674 	needwake = __note_gp_changes(rnp, rdp);
1675 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1676 	rcu_strict_gp_check_qs();
1677 	if (needwake)
1678 		rcu_gp_kthread_wake();
1679 }
1680 
rcu_gp_slow(int delay)1681 static void rcu_gp_slow(int delay)
1682 {
1683 	if (delay > 0 &&
1684 	    !(rcu_seq_ctr(rcu_state.gp_seq) %
1685 	      (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1686 		schedule_timeout_idle(delay);
1687 }
1688 
1689 static unsigned long sleep_duration;
1690 
1691 /* Allow rcutorture to stall the grace-period kthread. */
rcu_gp_set_torture_wait(int duration)1692 void rcu_gp_set_torture_wait(int duration)
1693 {
1694 	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1695 		WRITE_ONCE(sleep_duration, duration);
1696 }
1697 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1698 
1699 /* Actually implement the aforementioned wait. */
rcu_gp_torture_wait(void)1700 static void rcu_gp_torture_wait(void)
1701 {
1702 	unsigned long duration;
1703 
1704 	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1705 		return;
1706 	duration = xchg(&sleep_duration, 0UL);
1707 	if (duration > 0) {
1708 		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1709 		schedule_timeout_idle(duration);
1710 		pr_alert("%s: Wait complete\n", __func__);
1711 	}
1712 }
1713 
1714 /*
1715  * Handler for on_each_cpu() to invoke the target CPU's RCU core
1716  * processing.
1717  */
rcu_strict_gp_boundary(void * unused)1718 static void rcu_strict_gp_boundary(void *unused)
1719 {
1720 	invoke_rcu_core();
1721 }
1722 
1723 /*
1724  * Initialize a new grace period.  Return false if no grace period required.
1725  */
rcu_gp_init(void)1726 static bool rcu_gp_init(void)
1727 {
1728 	unsigned long firstseq;
1729 	unsigned long flags;
1730 	unsigned long oldmask;
1731 	unsigned long mask;
1732 	struct rcu_data *rdp;
1733 	struct rcu_node *rnp = rcu_get_root();
1734 
1735 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1736 	raw_spin_lock_irq_rcu_node(rnp);
1737 	if (!READ_ONCE(rcu_state.gp_flags)) {
1738 		/* Spurious wakeup, tell caller to go back to sleep.  */
1739 		raw_spin_unlock_irq_rcu_node(rnp);
1740 		return false;
1741 	}
1742 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1743 
1744 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1745 		/*
1746 		 * Grace period already in progress, don't start another.
1747 		 * Not supposed to be able to happen.
1748 		 */
1749 		raw_spin_unlock_irq_rcu_node(rnp);
1750 		return false;
1751 	}
1752 
1753 	/* Advance to a new grace period and initialize state. */
1754 	record_gp_stall_check_time();
1755 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1756 	rcu_seq_start(&rcu_state.gp_seq);
1757 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1758 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1759 	raw_spin_unlock_irq_rcu_node(rnp);
1760 
1761 	/*
1762 	 * Apply per-leaf buffered online and offline operations to
1763 	 * the rcu_node tree. Note that this new grace period need not
1764 	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1765 	 * offlining path, when combined with checks in this function,
1766 	 * will handle CPUs that are currently going offline or that will
1767 	 * go offline later.  Please also refer to "Hotplug CPU" section
1768 	 * of RCU's Requirements documentation.
1769 	 */
1770 	rcu_state.gp_state = RCU_GP_ONOFF;
1771 	rcu_for_each_leaf_node(rnp) {
1772 		smp_mb(); // Pair with barriers used when updating ->ofl_seq to odd values.
1773 		firstseq = READ_ONCE(rnp->ofl_seq);
1774 		if (firstseq & 0x1)
1775 			while (firstseq == READ_ONCE(rnp->ofl_seq))
1776 				schedule_timeout_idle(1);  // Can't wake unless RCU is watching.
1777 		smp_mb(); // Pair with barriers used when updating ->ofl_seq to even values.
1778 		raw_spin_lock(&rcu_state.ofl_lock);
1779 		raw_spin_lock_irq_rcu_node(rnp);
1780 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1781 		    !rnp->wait_blkd_tasks) {
1782 			/* Nothing to do on this leaf rcu_node structure. */
1783 			raw_spin_unlock_irq_rcu_node(rnp);
1784 			raw_spin_unlock(&rcu_state.ofl_lock);
1785 			continue;
1786 		}
1787 
1788 		/* Record old state, apply changes to ->qsmaskinit field. */
1789 		oldmask = rnp->qsmaskinit;
1790 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1791 
1792 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1793 		if (!oldmask != !rnp->qsmaskinit) {
1794 			if (!oldmask) { /* First online CPU for rcu_node. */
1795 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1796 					rcu_init_new_rnp(rnp);
1797 			} else if (rcu_preempt_has_tasks(rnp)) {
1798 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1799 			} else { /* Last offline CPU and can propagate. */
1800 				rcu_cleanup_dead_rnp(rnp);
1801 			}
1802 		}
1803 
1804 		/*
1805 		 * If all waited-on tasks from prior grace period are
1806 		 * done, and if all this rcu_node structure's CPUs are
1807 		 * still offline, propagate up the rcu_node tree and
1808 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1809 		 * rcu_node structure's CPUs has since come back online,
1810 		 * simply clear ->wait_blkd_tasks.
1811 		 */
1812 		if (rnp->wait_blkd_tasks &&
1813 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1814 			rnp->wait_blkd_tasks = false;
1815 			if (!rnp->qsmaskinit)
1816 				rcu_cleanup_dead_rnp(rnp);
1817 		}
1818 
1819 		raw_spin_unlock_irq_rcu_node(rnp);
1820 		raw_spin_unlock(&rcu_state.ofl_lock);
1821 	}
1822 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1823 
1824 	/*
1825 	 * Set the quiescent-state-needed bits in all the rcu_node
1826 	 * structures for all currently online CPUs in breadth-first
1827 	 * order, starting from the root rcu_node structure, relying on the
1828 	 * layout of the tree within the rcu_state.node[] array.  Note that
1829 	 * other CPUs will access only the leaves of the hierarchy, thus
1830 	 * seeing that no grace period is in progress, at least until the
1831 	 * corresponding leaf node has been initialized.
1832 	 *
1833 	 * The grace period cannot complete until the initialization
1834 	 * process finishes, because this kthread handles both.
1835 	 */
1836 	rcu_state.gp_state = RCU_GP_INIT;
1837 	rcu_for_each_node_breadth_first(rnp) {
1838 		rcu_gp_slow(gp_init_delay);
1839 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1840 		rdp = this_cpu_ptr(&rcu_data);
1841 		rcu_preempt_check_blocked_tasks(rnp);
1842 		rnp->qsmask = rnp->qsmaskinit;
1843 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1844 		if (rnp == rdp->mynode)
1845 			(void)__note_gp_changes(rnp, rdp);
1846 		rcu_preempt_boost_start_gp(rnp);
1847 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1848 					    rnp->level, rnp->grplo,
1849 					    rnp->grphi, rnp->qsmask);
1850 		/* Quiescent states for tasks on any now-offline CPUs. */
1851 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1852 		rnp->rcu_gp_init_mask = mask;
1853 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1854 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1855 		else
1856 			raw_spin_unlock_irq_rcu_node(rnp);
1857 		cond_resched_tasks_rcu_qs();
1858 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1859 	}
1860 
1861 	// If strict, make all CPUs aware of new grace period.
1862 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1863 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1864 
1865 	return true;
1866 }
1867 
1868 /*
1869  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1870  * time.
1871  */
rcu_gp_fqs_check_wake(int * gfp)1872 static bool rcu_gp_fqs_check_wake(int *gfp)
1873 {
1874 	struct rcu_node *rnp = rcu_get_root();
1875 
1876 	// If under overload conditions, force an immediate FQS scan.
1877 	if (*gfp & RCU_GP_FLAG_OVLD)
1878 		return true;
1879 
1880 	// Someone like call_rcu() requested a force-quiescent-state scan.
1881 	*gfp = READ_ONCE(rcu_state.gp_flags);
1882 	if (*gfp & RCU_GP_FLAG_FQS)
1883 		return true;
1884 
1885 	// The current grace period has completed.
1886 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1887 		return true;
1888 
1889 	return false;
1890 }
1891 
1892 /*
1893  * Do one round of quiescent-state forcing.
1894  */
rcu_gp_fqs(bool first_time)1895 static void rcu_gp_fqs(bool first_time)
1896 {
1897 	struct rcu_node *rnp = rcu_get_root();
1898 
1899 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1900 	WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1901 	if (first_time) {
1902 		/* Collect dyntick-idle snapshots. */
1903 		force_qs_rnp(dyntick_save_progress_counter);
1904 	} else {
1905 		/* Handle dyntick-idle and offline CPUs. */
1906 		force_qs_rnp(rcu_implicit_dynticks_qs);
1907 	}
1908 	/* Clear flag to prevent immediate re-entry. */
1909 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1910 		raw_spin_lock_irq_rcu_node(rnp);
1911 		WRITE_ONCE(rcu_state.gp_flags,
1912 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1913 		raw_spin_unlock_irq_rcu_node(rnp);
1914 	}
1915 }
1916 
1917 /*
1918  * Loop doing repeated quiescent-state forcing until the grace period ends.
1919  */
rcu_gp_fqs_loop(void)1920 static void rcu_gp_fqs_loop(void)
1921 {
1922 	bool first_gp_fqs;
1923 	int gf = 0;
1924 	unsigned long j;
1925 	int ret;
1926 	struct rcu_node *rnp = rcu_get_root();
1927 
1928 	first_gp_fqs = true;
1929 	j = READ_ONCE(jiffies_till_first_fqs);
1930 	if (rcu_state.cbovld)
1931 		gf = RCU_GP_FLAG_OVLD;
1932 	ret = 0;
1933 	for (;;) {
1934 		if (!ret) {
1935 			rcu_state.jiffies_force_qs = jiffies + j;
1936 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1937 				   jiffies + (j ? 3 * j : 2));
1938 		}
1939 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1940 				       TPS("fqswait"));
1941 		rcu_state.gp_state = RCU_GP_WAIT_FQS;
1942 		ret = swait_event_idle_timeout_exclusive(
1943 				rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1944 		rcu_gp_torture_wait();
1945 		rcu_state.gp_state = RCU_GP_DOING_FQS;
1946 		/* Locking provides needed memory barriers. */
1947 		/* If grace period done, leave loop. */
1948 		if (!READ_ONCE(rnp->qsmask) &&
1949 		    !rcu_preempt_blocked_readers_cgp(rnp))
1950 			break;
1951 		/* If time for quiescent-state forcing, do it. */
1952 		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1953 		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1954 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1955 					       TPS("fqsstart"));
1956 			rcu_gp_fqs(first_gp_fqs);
1957 			gf = 0;
1958 			if (first_gp_fqs) {
1959 				first_gp_fqs = false;
1960 				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1961 			}
1962 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1963 					       TPS("fqsend"));
1964 			cond_resched_tasks_rcu_qs();
1965 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1966 			ret = 0; /* Force full wait till next FQS. */
1967 			j = READ_ONCE(jiffies_till_next_fqs);
1968 		} else {
1969 			/* Deal with stray signal. */
1970 			cond_resched_tasks_rcu_qs();
1971 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1972 			WARN_ON(signal_pending(current));
1973 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1974 					       TPS("fqswaitsig"));
1975 			ret = 1; /* Keep old FQS timing. */
1976 			j = jiffies;
1977 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1978 				j = 1;
1979 			else
1980 				j = rcu_state.jiffies_force_qs - j;
1981 			gf = 0;
1982 		}
1983 	}
1984 }
1985 
1986 /*
1987  * Clean up after the old grace period.
1988  */
rcu_gp_cleanup(void)1989 static void rcu_gp_cleanup(void)
1990 {
1991 	int cpu;
1992 	bool needgp = false;
1993 	unsigned long gp_duration;
1994 	unsigned long new_gp_seq;
1995 	bool offloaded;
1996 	struct rcu_data *rdp;
1997 	struct rcu_node *rnp = rcu_get_root();
1998 	struct swait_queue_head *sq;
1999 
2000 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
2001 	raw_spin_lock_irq_rcu_node(rnp);
2002 	rcu_state.gp_end = jiffies;
2003 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2004 	if (gp_duration > rcu_state.gp_max)
2005 		rcu_state.gp_max = gp_duration;
2006 
2007 	/*
2008 	 * We know the grace period is complete, but to everyone else
2009 	 * it appears to still be ongoing.  But it is also the case
2010 	 * that to everyone else it looks like there is nothing that
2011 	 * they can do to advance the grace period.  It is therefore
2012 	 * safe for us to drop the lock in order to mark the grace
2013 	 * period as completed in all of the rcu_node structures.
2014 	 */
2015 	raw_spin_unlock_irq_rcu_node(rnp);
2016 
2017 	/*
2018 	 * Propagate new ->gp_seq value to rcu_node structures so that
2019 	 * other CPUs don't have to wait until the start of the next grace
2020 	 * period to process their callbacks.  This also avoids some nasty
2021 	 * RCU grace-period initialization races by forcing the end of
2022 	 * the current grace period to be completely recorded in all of
2023 	 * the rcu_node structures before the beginning of the next grace
2024 	 * period is recorded in any of the rcu_node structures.
2025 	 */
2026 	new_gp_seq = rcu_state.gp_seq;
2027 	rcu_seq_end(&new_gp_seq);
2028 	rcu_for_each_node_breadth_first(rnp) {
2029 		raw_spin_lock_irq_rcu_node(rnp);
2030 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2031 			dump_blkd_tasks(rnp, 10);
2032 		WARN_ON_ONCE(rnp->qsmask);
2033 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2034 		rdp = this_cpu_ptr(&rcu_data);
2035 		if (rnp == rdp->mynode)
2036 			needgp = __note_gp_changes(rnp, rdp) || needgp;
2037 		/* smp_mb() provided by prior unlock-lock pair. */
2038 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
2039 		// Reset overload indication for CPUs no longer overloaded
2040 		if (rcu_is_leaf_node(rnp))
2041 			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
2042 				rdp = per_cpu_ptr(&rcu_data, cpu);
2043 				check_cb_ovld_locked(rdp, rnp);
2044 			}
2045 		sq = rcu_nocb_gp_get(rnp);
2046 		raw_spin_unlock_irq_rcu_node(rnp);
2047 		rcu_nocb_gp_cleanup(sq);
2048 		cond_resched_tasks_rcu_qs();
2049 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
2050 		rcu_gp_slow(gp_cleanup_delay);
2051 	}
2052 	rnp = rcu_get_root();
2053 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2054 
2055 	/* Declare grace period done, trace first to use old GP number. */
2056 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2057 	rcu_seq_end(&rcu_state.gp_seq);
2058 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2059 	rcu_state.gp_state = RCU_GP_IDLE;
2060 	/* Check for GP requests since above loop. */
2061 	rdp = this_cpu_ptr(&rcu_data);
2062 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2063 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2064 				  TPS("CleanupMore"));
2065 		needgp = true;
2066 	}
2067 	/* Advance CBs to reduce false positives below. */
2068 	offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2069 		    rcu_segcblist_is_offloaded(&rdp->cblist);
2070 	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2071 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2072 		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2073 		trace_rcu_grace_period(rcu_state.name,
2074 				       rcu_state.gp_seq,
2075 				       TPS("newreq"));
2076 	} else {
2077 		WRITE_ONCE(rcu_state.gp_flags,
2078 			   rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2079 	}
2080 	raw_spin_unlock_irq_rcu_node(rnp);
2081 
2082 	// If strict, make all CPUs aware of the end of the old grace period.
2083 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2084 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
2085 }
2086 
2087 /*
2088  * Body of kthread that handles grace periods.
2089  */
rcu_gp_kthread(void * unused)2090 static int __noreturn rcu_gp_kthread(void *unused)
2091 {
2092 	rcu_bind_gp_kthread();
2093 	for (;;) {
2094 
2095 		/* Handle grace-period start. */
2096 		for (;;) {
2097 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2098 					       TPS("reqwait"));
2099 			rcu_state.gp_state = RCU_GP_WAIT_GPS;
2100 			swait_event_idle_exclusive(rcu_state.gp_wq,
2101 					 READ_ONCE(rcu_state.gp_flags) &
2102 					 RCU_GP_FLAG_INIT);
2103 			rcu_gp_torture_wait();
2104 			rcu_state.gp_state = RCU_GP_DONE_GPS;
2105 			/* Locking provides needed memory barrier. */
2106 			if (rcu_gp_init())
2107 				break;
2108 			cond_resched_tasks_rcu_qs();
2109 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2110 			WARN_ON(signal_pending(current));
2111 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2112 					       TPS("reqwaitsig"));
2113 		}
2114 
2115 		/* Handle quiescent-state forcing. */
2116 		rcu_gp_fqs_loop();
2117 
2118 		/* Handle grace-period end. */
2119 		rcu_state.gp_state = RCU_GP_CLEANUP;
2120 		rcu_gp_cleanup();
2121 		rcu_state.gp_state = RCU_GP_CLEANED;
2122 	}
2123 }
2124 
2125 /*
2126  * Report a full set of quiescent states to the rcu_state data structure.
2127  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2128  * another grace period is required.  Whether we wake the grace-period
2129  * kthread or it awakens itself for the next round of quiescent-state
2130  * forcing, that kthread will clean up after the just-completed grace
2131  * period.  Note that the caller must hold rnp->lock, which is released
2132  * before return.
2133  */
rcu_report_qs_rsp(unsigned long flags)2134 static void rcu_report_qs_rsp(unsigned long flags)
2135 	__releases(rcu_get_root()->lock)
2136 {
2137 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
2138 	WARN_ON_ONCE(!rcu_gp_in_progress());
2139 	WRITE_ONCE(rcu_state.gp_flags,
2140 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2141 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2142 	rcu_gp_kthread_wake();
2143 }
2144 
2145 /*
2146  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2147  * Allows quiescent states for a group of CPUs to be reported at one go
2148  * to the specified rcu_node structure, though all the CPUs in the group
2149  * must be represented by the same rcu_node structure (which need not be a
2150  * leaf rcu_node structure, though it often will be).  The gps parameter
2151  * is the grace-period snapshot, which means that the quiescent states
2152  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
2153  * must be held upon entry, and it is released before return.
2154  *
2155  * As a special case, if mask is zero, the bit-already-cleared check is
2156  * disabled.  This allows propagating quiescent state due to resumed tasks
2157  * during grace-period initialization.
2158  */
rcu_report_qs_rnp(unsigned long mask,struct rcu_node * rnp,unsigned long gps,unsigned long flags)2159 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2160 			      unsigned long gps, unsigned long flags)
2161 	__releases(rnp->lock)
2162 {
2163 	unsigned long oldmask = 0;
2164 	struct rcu_node *rnp_c;
2165 
2166 	raw_lockdep_assert_held_rcu_node(rnp);
2167 
2168 	/* Walk up the rcu_node hierarchy. */
2169 	for (;;) {
2170 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2171 
2172 			/*
2173 			 * Our bit has already been cleared, or the
2174 			 * relevant grace period is already over, so done.
2175 			 */
2176 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2177 			return;
2178 		}
2179 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2180 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2181 			     rcu_preempt_blocked_readers_cgp(rnp));
2182 		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2183 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2184 						 mask, rnp->qsmask, rnp->level,
2185 						 rnp->grplo, rnp->grphi,
2186 						 !!rnp->gp_tasks);
2187 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2188 
2189 			/* Other bits still set at this level, so done. */
2190 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2191 			return;
2192 		}
2193 		rnp->completedqs = rnp->gp_seq;
2194 		mask = rnp->grpmask;
2195 		if (rnp->parent == NULL) {
2196 
2197 			/* No more levels.  Exit loop holding root lock. */
2198 
2199 			break;
2200 		}
2201 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2202 		rnp_c = rnp;
2203 		rnp = rnp->parent;
2204 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2205 		oldmask = READ_ONCE(rnp_c->qsmask);
2206 	}
2207 
2208 	/*
2209 	 * Get here if we are the last CPU to pass through a quiescent
2210 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2211 	 * to clean up and start the next grace period if one is needed.
2212 	 */
2213 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2214 }
2215 
2216 /*
2217  * Record a quiescent state for all tasks that were previously queued
2218  * on the specified rcu_node structure and that were blocking the current
2219  * RCU grace period.  The caller must hold the corresponding rnp->lock with
2220  * irqs disabled, and this lock is released upon return, but irqs remain
2221  * disabled.
2222  */
2223 static void __maybe_unused
rcu_report_unblock_qs_rnp(struct rcu_node * rnp,unsigned long flags)2224 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2225 	__releases(rnp->lock)
2226 {
2227 	unsigned long gps;
2228 	unsigned long mask;
2229 	struct rcu_node *rnp_p;
2230 
2231 	raw_lockdep_assert_held_rcu_node(rnp);
2232 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2233 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2234 	    rnp->qsmask != 0) {
2235 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2236 		return;  /* Still need more quiescent states! */
2237 	}
2238 
2239 	rnp->completedqs = rnp->gp_seq;
2240 	rnp_p = rnp->parent;
2241 	if (rnp_p == NULL) {
2242 		/*
2243 		 * Only one rcu_node structure in the tree, so don't
2244 		 * try to report up to its nonexistent parent!
2245 		 */
2246 		rcu_report_qs_rsp(flags);
2247 		return;
2248 	}
2249 
2250 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2251 	gps = rnp->gp_seq;
2252 	mask = rnp->grpmask;
2253 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2254 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2255 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2256 }
2257 
2258 /*
2259  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2260  * structure.  This must be called from the specified CPU.
2261  */
2262 static void
rcu_report_qs_rdp(struct rcu_data * rdp)2263 rcu_report_qs_rdp(struct rcu_data *rdp)
2264 {
2265 	unsigned long flags;
2266 	unsigned long mask;
2267 	bool needwake = false;
2268 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2269 			       rcu_segcblist_is_offloaded(&rdp->cblist);
2270 	struct rcu_node *rnp;
2271 
2272 	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2273 	rnp = rdp->mynode;
2274 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2275 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2276 	    rdp->gpwrap) {
2277 
2278 		/*
2279 		 * The grace period in which this quiescent state was
2280 		 * recorded has ended, so don't report it upwards.
2281 		 * We will instead need a new quiescent state that lies
2282 		 * within the current grace period.
2283 		 */
2284 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2285 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2286 		return;
2287 	}
2288 	mask = rdp->grpmask;
2289 	rdp->core_needs_qs = false;
2290 	if ((rnp->qsmask & mask) == 0) {
2291 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2292 	} else {
2293 		/*
2294 		 * This GP can't end until cpu checks in, so all of our
2295 		 * callbacks can be processed during the next GP.
2296 		 */
2297 		if (!offloaded)
2298 			needwake = rcu_accelerate_cbs(rnp, rdp);
2299 
2300 		rcu_disable_urgency_upon_qs(rdp);
2301 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2302 		/* ^^^ Released rnp->lock */
2303 		if (needwake)
2304 			rcu_gp_kthread_wake();
2305 	}
2306 }
2307 
2308 /*
2309  * Check to see if there is a new grace period of which this CPU
2310  * is not yet aware, and if so, set up local rcu_data state for it.
2311  * Otherwise, see if this CPU has just passed through its first
2312  * quiescent state for this grace period, and record that fact if so.
2313  */
2314 static void
rcu_check_quiescent_state(struct rcu_data * rdp)2315 rcu_check_quiescent_state(struct rcu_data *rdp)
2316 {
2317 	/* Check for grace-period ends and beginnings. */
2318 	note_gp_changes(rdp);
2319 
2320 	/*
2321 	 * Does this CPU still need to do its part for current grace period?
2322 	 * If no, return and let the other CPUs do their part as well.
2323 	 */
2324 	if (!rdp->core_needs_qs)
2325 		return;
2326 
2327 	/*
2328 	 * Was there a quiescent state since the beginning of the grace
2329 	 * period? If no, then exit and wait for the next call.
2330 	 */
2331 	if (rdp->cpu_no_qs.b.norm)
2332 		return;
2333 
2334 	/*
2335 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2336 	 * judge of that).
2337 	 */
2338 	rcu_report_qs_rdp(rdp);
2339 }
2340 
2341 /*
2342  * Near the end of the offline process.  Trace the fact that this CPU
2343  * is going offline.
2344  */
rcutree_dying_cpu(unsigned int cpu)2345 int rcutree_dying_cpu(unsigned int cpu)
2346 {
2347 	bool blkd;
2348 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2349 	struct rcu_node *rnp = rdp->mynode;
2350 
2351 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2352 		return 0;
2353 
2354 	blkd = !!(rnp->qsmask & rdp->grpmask);
2355 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2356 			       blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2357 	return 0;
2358 }
2359 
2360 /*
2361  * All CPUs for the specified rcu_node structure have gone offline,
2362  * and all tasks that were preempted within an RCU read-side critical
2363  * section while running on one of those CPUs have since exited their RCU
2364  * read-side critical section.  Some other CPU is reporting this fact with
2365  * the specified rcu_node structure's ->lock held and interrupts disabled.
2366  * This function therefore goes up the tree of rcu_node structures,
2367  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2368  * the leaf rcu_node structure's ->qsmaskinit field has already been
2369  * updated.
2370  *
2371  * This function does check that the specified rcu_node structure has
2372  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2373  * prematurely.  That said, invoking it after the fact will cost you
2374  * a needless lock acquisition.  So once it has done its work, don't
2375  * invoke it again.
2376  */
rcu_cleanup_dead_rnp(struct rcu_node * rnp_leaf)2377 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2378 {
2379 	long mask;
2380 	struct rcu_node *rnp = rnp_leaf;
2381 
2382 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2383 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2384 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2385 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2386 		return;
2387 	for (;;) {
2388 		mask = rnp->grpmask;
2389 		rnp = rnp->parent;
2390 		if (!rnp)
2391 			break;
2392 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2393 		rnp->qsmaskinit &= ~mask;
2394 		/* Between grace periods, so better already be zero! */
2395 		WARN_ON_ONCE(rnp->qsmask);
2396 		if (rnp->qsmaskinit) {
2397 			raw_spin_unlock_rcu_node(rnp);
2398 			/* irqs remain disabled. */
2399 			return;
2400 		}
2401 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2402 	}
2403 }
2404 
2405 /*
2406  * The CPU has been completely removed, and some other CPU is reporting
2407  * this fact from process context.  Do the remainder of the cleanup.
2408  * There can only be one CPU hotplug operation at a time, so no need for
2409  * explicit locking.
2410  */
rcutree_dead_cpu(unsigned int cpu)2411 int rcutree_dead_cpu(unsigned int cpu)
2412 {
2413 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2414 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2415 
2416 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2417 		return 0;
2418 
2419 	/* Adjust any no-longer-needed kthreads. */
2420 	rcu_boost_kthread_setaffinity(rnp, -1);
2421 	/* Do any needed no-CB deferred wakeups from this CPU. */
2422 	do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2423 
2424 	// Stop-machine done, so allow nohz_full to disable tick.
2425 	tick_dep_clear(TICK_DEP_BIT_RCU);
2426 	return 0;
2427 }
2428 
2429 /*
2430  * Invoke any RCU callbacks that have made it to the end of their grace
2431  * period.  Thottle as specified by rdp->blimit.
2432  */
rcu_do_batch(struct rcu_data * rdp)2433 static void rcu_do_batch(struct rcu_data *rdp)
2434 {
2435 	int div;
2436 	unsigned long flags;
2437 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2438 			       rcu_segcblist_is_offloaded(&rdp->cblist);
2439 	struct rcu_head *rhp;
2440 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2441 	long bl, count;
2442 	long pending, tlimit = 0;
2443 
2444 	/* If no callbacks are ready, just return. */
2445 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2446 		trace_rcu_batch_start(rcu_state.name,
2447 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2448 		trace_rcu_batch_end(rcu_state.name, 0,
2449 				    !rcu_segcblist_empty(&rdp->cblist),
2450 				    need_resched(), is_idle_task(current),
2451 				    rcu_is_callbacks_kthread());
2452 		return;
2453 	}
2454 
2455 	/*
2456 	 * Extract the list of ready callbacks, disabling to prevent
2457 	 * races with call_rcu() from interrupt handlers.  Leave the
2458 	 * callback counts, as rcu_barrier() needs to be conservative.
2459 	 */
2460 	local_irq_save(flags);
2461 	rcu_nocb_lock(rdp);
2462 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2463 	pending = rcu_segcblist_n_cbs(&rdp->cblist);
2464 	div = READ_ONCE(rcu_divisor);
2465 	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2466 	bl = max(rdp->blimit, pending >> div);
2467 	if (in_serving_softirq() && unlikely(bl > 100)) {
2468 		long rrn = READ_ONCE(rcu_resched_ns);
2469 
2470 		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2471 		tlimit = local_clock() + rrn;
2472 	}
2473 	trace_rcu_batch_start(rcu_state.name,
2474 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2475 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2476 	if (offloaded)
2477 		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2478 	rcu_nocb_unlock_irqrestore(rdp, flags);
2479 
2480 	/* Invoke callbacks. */
2481 	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2482 	rhp = rcu_cblist_dequeue(&rcl);
2483 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2484 		rcu_callback_t f;
2485 
2486 		debug_rcu_head_unqueue(rhp);
2487 
2488 		rcu_lock_acquire(&rcu_callback_map);
2489 		trace_rcu_invoke_callback(rcu_state.name, rhp);
2490 
2491 		f = rhp->func;
2492 		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2493 		f(rhp);
2494 
2495 		rcu_lock_release(&rcu_callback_map);
2496 
2497 		/*
2498 		 * Stop only if limit reached and CPU has something to do.
2499 		 * Note: The rcl structure counts down from zero.
2500 		 */
2501 		if (in_serving_softirq()) {
2502 			if (-rcl.len >= bl && (need_resched() ||
2503 					(!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2504 				break;
2505 
2506 			/*
2507 			 * Make sure we don't spend too much time here and deprive other
2508 			 * softirq vectors of CPU cycles.
2509 			 */
2510 			if (unlikely(tlimit)) {
2511 				/* only call local_clock() every 32 callbacks */
2512 				if (likely((-rcl.len & 31) || local_clock() < tlimit))
2513 					continue;
2514 				/* Exceeded the time limit, so leave. */
2515 				break;
2516 			}
2517 		} else {
2518 			local_bh_enable();
2519 			lockdep_assert_irqs_enabled();
2520 			cond_resched_tasks_rcu_qs();
2521 			lockdep_assert_irqs_enabled();
2522 			local_bh_disable();
2523 		}
2524 	}
2525 
2526 	local_irq_save(flags);
2527 	rcu_nocb_lock(rdp);
2528 	count = -rcl.len;
2529 	rdp->n_cbs_invoked += count;
2530 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2531 			    is_idle_task(current), rcu_is_callbacks_kthread());
2532 
2533 	/* Update counts and requeue any remaining callbacks. */
2534 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2535 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2536 	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2537 
2538 	/* Reinstate batch limit if we have worked down the excess. */
2539 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2540 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2541 		rdp->blimit = blimit;
2542 
2543 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2544 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2545 		rdp->qlen_last_fqs_check = 0;
2546 		rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2547 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2548 		rdp->qlen_last_fqs_check = count;
2549 
2550 	/*
2551 	 * The following usually indicates a double call_rcu().  To track
2552 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2553 	 */
2554 	WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist));
2555 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2556 		     count != 0 && rcu_segcblist_empty(&rdp->cblist));
2557 
2558 	rcu_nocb_unlock_irqrestore(rdp, flags);
2559 
2560 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2561 	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2562 		invoke_rcu_core();
2563 	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2564 }
2565 
2566 /*
2567  * This function is invoked from each scheduling-clock interrupt,
2568  * and checks to see if this CPU is in a non-context-switch quiescent
2569  * state, for example, user mode or idle loop.  It also schedules RCU
2570  * core processing.  If the current grace period has gone on too long,
2571  * it will ask the scheduler to manufacture a context switch for the sole
2572  * purpose of providing a providing the needed quiescent state.
2573  */
rcu_sched_clock_irq(int user)2574 void rcu_sched_clock_irq(int user)
2575 {
2576 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2577 	lockdep_assert_irqs_disabled();
2578 	raw_cpu_inc(rcu_data.ticks_this_gp);
2579 	/* The load-acquire pairs with the store-release setting to true. */
2580 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2581 		/* Idle and userspace execution already are quiescent states. */
2582 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2583 			set_tsk_need_resched(current);
2584 			set_preempt_need_resched();
2585 		}
2586 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2587 	}
2588 	rcu_flavor_sched_clock_irq(user);
2589 	if (rcu_pending(user))
2590 		invoke_rcu_core();
2591 	lockdep_assert_irqs_disabled();
2592 
2593 	trace_rcu_utilization(TPS("End scheduler-tick"));
2594 }
2595 
2596 /*
2597  * Scan the leaf rcu_node structures.  For each structure on which all
2598  * CPUs have reported a quiescent state and on which there are tasks
2599  * blocking the current grace period, initiate RCU priority boosting.
2600  * Otherwise, invoke the specified function to check dyntick state for
2601  * each CPU that has not yet reported a quiescent state.
2602  */
force_qs_rnp(int (* f)(struct rcu_data * rdp))2603 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2604 {
2605 	int cpu;
2606 	unsigned long flags;
2607 	unsigned long mask;
2608 	struct rcu_data *rdp;
2609 	struct rcu_node *rnp;
2610 
2611 	rcu_state.cbovld = rcu_state.cbovldnext;
2612 	rcu_state.cbovldnext = false;
2613 	rcu_for_each_leaf_node(rnp) {
2614 		cond_resched_tasks_rcu_qs();
2615 		mask = 0;
2616 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2617 		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2618 		if (rnp->qsmask == 0) {
2619 			if (rcu_preempt_blocked_readers_cgp(rnp)) {
2620 				/*
2621 				 * No point in scanning bits because they
2622 				 * are all zero.  But we might need to
2623 				 * priority-boost blocked readers.
2624 				 */
2625 				rcu_initiate_boost(rnp, flags);
2626 				/* rcu_initiate_boost() releases rnp->lock */
2627 				continue;
2628 			}
2629 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2630 			continue;
2631 		}
2632 		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2633 			rdp = per_cpu_ptr(&rcu_data, cpu);
2634 			if (f(rdp)) {
2635 				mask |= rdp->grpmask;
2636 				rcu_disable_urgency_upon_qs(rdp);
2637 			}
2638 		}
2639 		if (mask != 0) {
2640 			/* Idle/offline CPUs, report (releases rnp->lock). */
2641 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2642 		} else {
2643 			/* Nothing to do here, so just drop the lock. */
2644 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2645 		}
2646 	}
2647 }
2648 
2649 /*
2650  * Force quiescent states on reluctant CPUs, and also detect which
2651  * CPUs are in dyntick-idle mode.
2652  */
rcu_force_quiescent_state(void)2653 void rcu_force_quiescent_state(void)
2654 {
2655 	unsigned long flags;
2656 	bool ret;
2657 	struct rcu_node *rnp;
2658 	struct rcu_node *rnp_old = NULL;
2659 
2660 	/* Funnel through hierarchy to reduce memory contention. */
2661 	rnp = raw_cpu_read(rcu_data.mynode);
2662 	for (; rnp != NULL; rnp = rnp->parent) {
2663 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2664 		       !raw_spin_trylock(&rnp->fqslock);
2665 		if (rnp_old != NULL)
2666 			raw_spin_unlock(&rnp_old->fqslock);
2667 		if (ret)
2668 			return;
2669 		rnp_old = rnp;
2670 	}
2671 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2672 
2673 	/* Reached the root of the rcu_node tree, acquire lock. */
2674 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2675 	raw_spin_unlock(&rnp_old->fqslock);
2676 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2677 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2678 		return;  /* Someone beat us to it. */
2679 	}
2680 	WRITE_ONCE(rcu_state.gp_flags,
2681 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2682 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2683 	rcu_gp_kthread_wake();
2684 }
2685 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2686 
2687 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2688 // grace periods.
strict_work_handler(struct work_struct * work)2689 static void strict_work_handler(struct work_struct *work)
2690 {
2691 	rcu_read_lock();
2692 	rcu_read_unlock();
2693 }
2694 
2695 /* Perform RCU core processing work for the current CPU.  */
rcu_core(void)2696 static __latent_entropy void rcu_core(void)
2697 {
2698 	unsigned long flags;
2699 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2700 	struct rcu_node *rnp = rdp->mynode;
2701 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2702 			       rcu_segcblist_is_offloaded(&rdp->cblist);
2703 
2704 	if (cpu_is_offline(smp_processor_id()))
2705 		return;
2706 	trace_rcu_utilization(TPS("Start RCU core"));
2707 	WARN_ON_ONCE(!rdp->beenonline);
2708 
2709 	/* Report any deferred quiescent states if preemption enabled. */
2710 	if (!(preempt_count() & PREEMPT_MASK)) {
2711 		rcu_preempt_deferred_qs(current);
2712 	} else if (rcu_preempt_need_deferred_qs(current)) {
2713 		set_tsk_need_resched(current);
2714 		set_preempt_need_resched();
2715 	}
2716 
2717 	/* Update RCU state based on any recent quiescent states. */
2718 	rcu_check_quiescent_state(rdp);
2719 
2720 	/* No grace period and unregistered callbacks? */
2721 	if (!rcu_gp_in_progress() &&
2722 	    rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) {
2723 		local_irq_save(flags);
2724 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2725 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2726 		local_irq_restore(flags);
2727 	}
2728 
2729 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2730 
2731 	/* If there are callbacks ready, invoke them. */
2732 	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2733 	    likely(READ_ONCE(rcu_scheduler_fully_active)))
2734 		rcu_do_batch(rdp);
2735 
2736 	/* Do any needed deferred wakeups of rcuo kthreads. */
2737 	do_nocb_deferred_wakeup(rdp);
2738 	trace_rcu_utilization(TPS("End RCU core"));
2739 
2740 	// If strict GPs, schedule an RCU reader in a clean environment.
2741 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2742 		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2743 }
2744 
rcu_core_si(struct softirq_action * h)2745 static void rcu_core_si(struct softirq_action *h)
2746 {
2747 	rcu_core();
2748 }
2749 
rcu_wake_cond(struct task_struct * t,int status)2750 static void rcu_wake_cond(struct task_struct *t, int status)
2751 {
2752 	/*
2753 	 * If the thread is yielding, only wake it when this
2754 	 * is invoked from idle
2755 	 */
2756 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2757 		wake_up_process(t);
2758 }
2759 
invoke_rcu_core_kthread(void)2760 static void invoke_rcu_core_kthread(void)
2761 {
2762 	struct task_struct *t;
2763 	unsigned long flags;
2764 
2765 	local_irq_save(flags);
2766 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2767 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2768 	if (t != NULL && t != current)
2769 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2770 	local_irq_restore(flags);
2771 }
2772 
2773 /*
2774  * Wake up this CPU's rcuc kthread to do RCU core processing.
2775  */
invoke_rcu_core(void)2776 static void invoke_rcu_core(void)
2777 {
2778 	if (!cpu_online(smp_processor_id()))
2779 		return;
2780 	if (use_softirq)
2781 		raise_softirq(RCU_SOFTIRQ);
2782 	else
2783 		invoke_rcu_core_kthread();
2784 }
2785 
rcu_cpu_kthread_park(unsigned int cpu)2786 static void rcu_cpu_kthread_park(unsigned int cpu)
2787 {
2788 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2789 }
2790 
rcu_cpu_kthread_should_run(unsigned int cpu)2791 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2792 {
2793 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2794 }
2795 
2796 /*
2797  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2798  * the RCU softirq used in configurations of RCU that do not support RCU
2799  * priority boosting.
2800  */
rcu_cpu_kthread(unsigned int cpu)2801 static void rcu_cpu_kthread(unsigned int cpu)
2802 {
2803 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2804 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2805 	int spincnt;
2806 
2807 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2808 	for (spincnt = 0; spincnt < 10; spincnt++) {
2809 		local_bh_disable();
2810 		*statusp = RCU_KTHREAD_RUNNING;
2811 		local_irq_disable();
2812 		work = *workp;
2813 		*workp = 0;
2814 		local_irq_enable();
2815 		if (work)
2816 			rcu_core();
2817 		local_bh_enable();
2818 		if (*workp == 0) {
2819 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2820 			*statusp = RCU_KTHREAD_WAITING;
2821 			return;
2822 		}
2823 	}
2824 	*statusp = RCU_KTHREAD_YIELDING;
2825 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2826 	schedule_timeout_idle(2);
2827 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2828 	*statusp = RCU_KTHREAD_WAITING;
2829 }
2830 
2831 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2832 	.store			= &rcu_data.rcu_cpu_kthread_task,
2833 	.thread_should_run	= rcu_cpu_kthread_should_run,
2834 	.thread_fn		= rcu_cpu_kthread,
2835 	.thread_comm		= "rcuc/%u",
2836 	.setup			= rcu_cpu_kthread_setup,
2837 	.park			= rcu_cpu_kthread_park,
2838 };
2839 
2840 /*
2841  * Spawn per-CPU RCU core processing kthreads.
2842  */
rcu_spawn_core_kthreads(void)2843 static int __init rcu_spawn_core_kthreads(void)
2844 {
2845 	int cpu;
2846 
2847 	for_each_possible_cpu(cpu)
2848 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2849 	if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2850 		return 0;
2851 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2852 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2853 	return 0;
2854 }
2855 
2856 /*
2857  * Handle any core-RCU processing required by a call_rcu() invocation.
2858  */
__call_rcu_core(struct rcu_data * rdp,struct rcu_head * head,unsigned long flags)2859 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2860 			    unsigned long flags)
2861 {
2862 	/*
2863 	 * If called from an extended quiescent state, invoke the RCU
2864 	 * core in order to force a re-evaluation of RCU's idleness.
2865 	 */
2866 	if (!rcu_is_watching())
2867 		invoke_rcu_core();
2868 
2869 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2870 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2871 		return;
2872 
2873 	/*
2874 	 * Force the grace period if too many callbacks or too long waiting.
2875 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2876 	 * if some other CPU has recently done so.  Also, don't bother
2877 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2878 	 * is the only one waiting for a grace period to complete.
2879 	 */
2880 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2881 		     rdp->qlen_last_fqs_check + qhimark)) {
2882 
2883 		/* Are we ignoring a completed grace period? */
2884 		note_gp_changes(rdp);
2885 
2886 		/* Start a new grace period if one not already started. */
2887 		if (!rcu_gp_in_progress()) {
2888 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2889 		} else {
2890 			/* Give the grace period a kick. */
2891 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2892 			if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2893 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2894 				rcu_force_quiescent_state();
2895 			rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2896 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2897 		}
2898 	}
2899 }
2900 
2901 /*
2902  * RCU callback function to leak a callback.
2903  */
rcu_leak_callback(struct rcu_head * rhp)2904 static void rcu_leak_callback(struct rcu_head *rhp)
2905 {
2906 }
2907 
2908 /*
2909  * Check and if necessary update the leaf rcu_node structure's
2910  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2911  * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2912  * structure's ->lock.
2913  */
check_cb_ovld_locked(struct rcu_data * rdp,struct rcu_node * rnp)2914 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2915 {
2916 	raw_lockdep_assert_held_rcu_node(rnp);
2917 	if (qovld_calc <= 0)
2918 		return; // Early boot and wildcard value set.
2919 	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2920 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2921 	else
2922 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2923 }
2924 
2925 /*
2926  * Check and if necessary update the leaf rcu_node structure's
2927  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2928  * number of queued RCU callbacks.  No locks need be held, but the
2929  * caller must have disabled interrupts.
2930  *
2931  * Note that this function ignores the possibility that there are a lot
2932  * of callbacks all of which have already seen the end of their respective
2933  * grace periods.  This omission is due to the need for no-CBs CPUs to
2934  * be holding ->nocb_lock to do this check, which is too heavy for a
2935  * common-case operation.
2936  */
check_cb_ovld(struct rcu_data * rdp)2937 static void check_cb_ovld(struct rcu_data *rdp)
2938 {
2939 	struct rcu_node *const rnp = rdp->mynode;
2940 
2941 	if (qovld_calc <= 0 ||
2942 	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2943 	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2944 		return; // Early boot wildcard value or already set correctly.
2945 	raw_spin_lock_rcu_node(rnp);
2946 	check_cb_ovld_locked(rdp, rnp);
2947 	raw_spin_unlock_rcu_node(rnp);
2948 }
2949 
2950 /* Helper function for call_rcu() and friends.  */
2951 static void
__call_rcu(struct rcu_head * head,rcu_callback_t func)2952 __call_rcu(struct rcu_head *head, rcu_callback_t func)
2953 {
2954 	unsigned long flags;
2955 	struct rcu_data *rdp;
2956 	bool was_alldone;
2957 
2958 	/* Misaligned rcu_head! */
2959 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2960 
2961 	if (debug_rcu_head_queue(head)) {
2962 		/*
2963 		 * Probable double call_rcu(), so leak the callback.
2964 		 * Use rcu:rcu_callback trace event to find the previous
2965 		 * time callback was passed to __call_rcu().
2966 		 */
2967 		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2968 			  head, head->func);
2969 		WRITE_ONCE(head->func, rcu_leak_callback);
2970 		return;
2971 	}
2972 	head->func = func;
2973 	head->next = NULL;
2974 	local_irq_save(flags);
2975 	kasan_record_aux_stack(head);
2976 	rdp = this_cpu_ptr(&rcu_data);
2977 
2978 	/* Add the callback to our list. */
2979 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2980 		// This can trigger due to call_rcu() from offline CPU:
2981 		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2982 		WARN_ON_ONCE(!rcu_is_watching());
2983 		// Very early boot, before rcu_init().  Initialize if needed
2984 		// and then drop through to queue the callback.
2985 		if (rcu_segcblist_empty(&rdp->cblist))
2986 			rcu_segcblist_init(&rdp->cblist);
2987 	}
2988 
2989 	check_cb_ovld(rdp);
2990 	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2991 		return; // Enqueued onto ->nocb_bypass, so just leave.
2992 	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2993 	rcu_segcblist_enqueue(&rdp->cblist, head);
2994 	if (__is_kvfree_rcu_offset((unsigned long)func))
2995 		trace_rcu_kvfree_callback(rcu_state.name, head,
2996 					 (unsigned long)func,
2997 					 rcu_segcblist_n_cbs(&rdp->cblist));
2998 	else
2999 		trace_rcu_callback(rcu_state.name, head,
3000 				   rcu_segcblist_n_cbs(&rdp->cblist));
3001 
3002 	/* Go handle any RCU core processing required. */
3003 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
3004 	    unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) {
3005 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
3006 	} else {
3007 		__call_rcu_core(rdp, head, flags);
3008 		local_irq_restore(flags);
3009 	}
3010 }
3011 
3012 /**
3013  * call_rcu() - Queue an RCU callback for invocation after a grace period.
3014  * @head: structure to be used for queueing the RCU updates.
3015  * @func: actual callback function to be invoked after the grace period
3016  *
3017  * The callback function will be invoked some time after a full grace
3018  * period elapses, in other words after all pre-existing RCU read-side
3019  * critical sections have completed.  However, the callback function
3020  * might well execute concurrently with RCU read-side critical sections
3021  * that started after call_rcu() was invoked.  RCU read-side critical
3022  * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
3023  * may be nested.  In addition, regions of code across which interrupts,
3024  * preemption, or softirqs have been disabled also serve as RCU read-side
3025  * critical sections.  This includes hardware interrupt handlers, softirq
3026  * handlers, and NMI handlers.
3027  *
3028  * Note that all CPUs must agree that the grace period extended beyond
3029  * all pre-existing RCU read-side critical section.  On systems with more
3030  * than one CPU, this means that when "func()" is invoked, each CPU is
3031  * guaranteed to have executed a full memory barrier since the end of its
3032  * last RCU read-side critical section whose beginning preceded the call
3033  * to call_rcu().  It also means that each CPU executing an RCU read-side
3034  * critical section that continues beyond the start of "func()" must have
3035  * executed a memory barrier after the call_rcu() but before the beginning
3036  * of that RCU read-side critical section.  Note that these guarantees
3037  * include CPUs that are offline, idle, or executing in user mode, as
3038  * well as CPUs that are executing in the kernel.
3039  *
3040  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
3041  * resulting RCU callback function "func()", then both CPU A and CPU B are
3042  * guaranteed to execute a full memory barrier during the time interval
3043  * between the call to call_rcu() and the invocation of "func()" -- even
3044  * if CPU A and CPU B are the same CPU (but again only if the system has
3045  * more than one CPU).
3046  */
call_rcu(struct rcu_head * head,rcu_callback_t func)3047 void call_rcu(struct rcu_head *head, rcu_callback_t func)
3048 {
3049 	__call_rcu(head, func);
3050 }
3051 EXPORT_SYMBOL_GPL(call_rcu);
3052 
3053 
3054 /* Maximum number of jiffies to wait before draining a batch. */
3055 #define KFREE_DRAIN_JIFFIES (HZ / 50)
3056 #define KFREE_N_BATCHES 2
3057 #define FREE_N_CHANNELS 2
3058 
3059 /**
3060  * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
3061  * @nr_records: Number of active pointers in the array
3062  * @next: Next bulk object in the block chain
3063  * @records: Array of the kvfree_rcu() pointers
3064  */
3065 struct kvfree_rcu_bulk_data {
3066 	unsigned long nr_records;
3067 	struct kvfree_rcu_bulk_data *next;
3068 	void *records[];
3069 };
3070 
3071 /*
3072  * This macro defines how many entries the "records" array
3073  * will contain. It is based on the fact that the size of
3074  * kvfree_rcu_bulk_data structure becomes exactly one page.
3075  */
3076 #define KVFREE_BULK_MAX_ENTR \
3077 	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
3078 
3079 /**
3080  * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
3081  * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
3082  * @head_free: List of kfree_rcu() objects waiting for a grace period
3083  * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
3084  * @krcp: Pointer to @kfree_rcu_cpu structure
3085  */
3086 
3087 struct kfree_rcu_cpu_work {
3088 	struct rcu_work rcu_work;
3089 	struct rcu_head *head_free;
3090 	struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
3091 	struct kfree_rcu_cpu *krcp;
3092 };
3093 
3094 /**
3095  * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
3096  * @head: List of kfree_rcu() objects not yet waiting for a grace period
3097  * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
3098  * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
3099  * @lock: Synchronize access to this structure
3100  * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
3101  * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
3102  * @initialized: The @rcu_work fields have been initialized
3103  * @count: Number of objects for which GP not started
3104  * @bkvcache:
3105  *	A simple cache list that contains objects for reuse purpose.
3106  *	In order to save some per-cpu space the list is singular.
3107  *	Even though it is lockless an access has to be protected by the
3108  *	per-cpu lock.
3109  * @page_cache_work: A work to refill the cache when it is empty
3110  * @work_in_progress: Indicates that page_cache_work is running
3111  * @hrtimer: A hrtimer for scheduling a page_cache_work
3112  * @nr_bkv_objs: number of allocated objects at @bkvcache.
3113  *
3114  * This is a per-CPU structure.  The reason that it is not included in
3115  * the rcu_data structure is to permit this code to be extracted from
3116  * the RCU files.  Such extraction could allow further optimization of
3117  * the interactions with the slab allocators.
3118  */
3119 struct kfree_rcu_cpu {
3120 	struct rcu_head *head;
3121 	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
3122 	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3123 	raw_spinlock_t lock;
3124 	struct delayed_work monitor_work;
3125 	bool monitor_todo;
3126 	bool initialized;
3127 	int count;
3128 
3129 	struct work_struct page_cache_work;
3130 	atomic_t work_in_progress;
3131 	struct hrtimer hrtimer;
3132 
3133 	struct llist_head bkvcache;
3134 	int nr_bkv_objs;
3135 };
3136 
3137 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
3138 	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
3139 };
3140 
3141 static __always_inline void
debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data * bhead)3142 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
3143 {
3144 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3145 	int i;
3146 
3147 	for (i = 0; i < bhead->nr_records; i++)
3148 		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
3149 #endif
3150 }
3151 
3152 static inline struct kfree_rcu_cpu *
krc_this_cpu_lock(unsigned long * flags)3153 krc_this_cpu_lock(unsigned long *flags)
3154 {
3155 	struct kfree_rcu_cpu *krcp;
3156 
3157 	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
3158 	krcp = this_cpu_ptr(&krc);
3159 	raw_spin_lock(&krcp->lock);
3160 
3161 	return krcp;
3162 }
3163 
3164 static inline void
krc_this_cpu_unlock(struct kfree_rcu_cpu * krcp,unsigned long flags)3165 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
3166 {
3167 	raw_spin_unlock(&krcp->lock);
3168 	local_irq_restore(flags);
3169 }
3170 
3171 static inline struct kvfree_rcu_bulk_data *
get_cached_bnode(struct kfree_rcu_cpu * krcp)3172 get_cached_bnode(struct kfree_rcu_cpu *krcp)
3173 {
3174 	if (!krcp->nr_bkv_objs)
3175 		return NULL;
3176 
3177 	krcp->nr_bkv_objs--;
3178 	return (struct kvfree_rcu_bulk_data *)
3179 		llist_del_first(&krcp->bkvcache);
3180 }
3181 
3182 static inline bool
put_cached_bnode(struct kfree_rcu_cpu * krcp,struct kvfree_rcu_bulk_data * bnode)3183 put_cached_bnode(struct kfree_rcu_cpu *krcp,
3184 	struct kvfree_rcu_bulk_data *bnode)
3185 {
3186 	// Check the limit.
3187 	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3188 		return false;
3189 
3190 	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3191 	krcp->nr_bkv_objs++;
3192 	return true;
3193 
3194 }
3195 
3196 /*
3197  * This function is invoked in workqueue context after a grace period.
3198  * It frees all the objects queued on ->bhead_free or ->head_free.
3199  */
kfree_rcu_work(struct work_struct * work)3200 static void kfree_rcu_work(struct work_struct *work)
3201 {
3202 	unsigned long flags;
3203 	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3204 	struct rcu_head *head, *next;
3205 	struct kfree_rcu_cpu *krcp;
3206 	struct kfree_rcu_cpu_work *krwp;
3207 	int i, j;
3208 
3209 	krwp = container_of(to_rcu_work(work),
3210 			    struct kfree_rcu_cpu_work, rcu_work);
3211 	krcp = krwp->krcp;
3212 
3213 	raw_spin_lock_irqsave(&krcp->lock, flags);
3214 	// Channels 1 and 2.
3215 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3216 		bkvhead[i] = krwp->bkvhead_free[i];
3217 		krwp->bkvhead_free[i] = NULL;
3218 	}
3219 
3220 	// Channel 3.
3221 	head = krwp->head_free;
3222 	krwp->head_free = NULL;
3223 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3224 
3225 	// Handle two first channels.
3226 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3227 		for (; bkvhead[i]; bkvhead[i] = bnext) {
3228 			bnext = bkvhead[i]->next;
3229 			debug_rcu_bhead_unqueue(bkvhead[i]);
3230 
3231 			rcu_lock_acquire(&rcu_callback_map);
3232 			if (i == 0) { // kmalloc() / kfree().
3233 				trace_rcu_invoke_kfree_bulk_callback(
3234 					rcu_state.name, bkvhead[i]->nr_records,
3235 					bkvhead[i]->records);
3236 
3237 				kfree_bulk(bkvhead[i]->nr_records,
3238 					bkvhead[i]->records);
3239 			} else { // vmalloc() / vfree().
3240 				for (j = 0; j < bkvhead[i]->nr_records; j++) {
3241 					trace_rcu_invoke_kvfree_callback(
3242 						rcu_state.name,
3243 						bkvhead[i]->records[j], 0);
3244 
3245 					vfree(bkvhead[i]->records[j]);
3246 				}
3247 			}
3248 			rcu_lock_release(&rcu_callback_map);
3249 
3250 			raw_spin_lock_irqsave(&krcp->lock, flags);
3251 			if (put_cached_bnode(krcp, bkvhead[i]))
3252 				bkvhead[i] = NULL;
3253 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3254 
3255 			if (bkvhead[i])
3256 				free_page((unsigned long) bkvhead[i]);
3257 
3258 			cond_resched_tasks_rcu_qs();
3259 		}
3260 	}
3261 
3262 	/*
3263 	 * Emergency case only. It can happen under low memory
3264 	 * condition when an allocation gets failed, so the "bulk"
3265 	 * path can not be temporary maintained.
3266 	 */
3267 	for (; head; head = next) {
3268 		unsigned long offset = (unsigned long)head->func;
3269 		void *ptr = (void *)head - offset;
3270 
3271 		next = head->next;
3272 		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3273 		rcu_lock_acquire(&rcu_callback_map);
3274 		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3275 
3276 		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3277 			kvfree(ptr);
3278 
3279 		rcu_lock_release(&rcu_callback_map);
3280 		cond_resched_tasks_rcu_qs();
3281 	}
3282 }
3283 
3284 /*
3285  * Schedule the kfree batch RCU work to run in workqueue context after a GP.
3286  *
3287  * This function is invoked by kfree_rcu_monitor() when the KFREE_DRAIN_JIFFIES
3288  * timeout has been reached.
3289  */
queue_kfree_rcu_work(struct kfree_rcu_cpu * krcp)3290 static inline bool queue_kfree_rcu_work(struct kfree_rcu_cpu *krcp)
3291 {
3292 	struct kfree_rcu_cpu_work *krwp;
3293 	bool repeat = false;
3294 	int i, j;
3295 
3296 	lockdep_assert_held(&krcp->lock);
3297 
3298 	for (i = 0; i < KFREE_N_BATCHES; i++) {
3299 		krwp = &(krcp->krw_arr[i]);
3300 
3301 		/*
3302 		 * Try to detach bkvhead or head and attach it over any
3303 		 * available corresponding free channel. It can be that
3304 		 * a previous RCU batch is in progress, it means that
3305 		 * immediately to queue another one is not possible so
3306 		 * return false to tell caller to retry.
3307 		 */
3308 		if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3309 			(krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
3310 				(krcp->head && !krwp->head_free)) {
3311 			// Channel 1 corresponds to SLAB ptrs.
3312 			// Channel 2 corresponds to vmalloc ptrs.
3313 			for (j = 0; j < FREE_N_CHANNELS; j++) {
3314 				if (!krwp->bkvhead_free[j]) {
3315 					krwp->bkvhead_free[j] = krcp->bkvhead[j];
3316 					krcp->bkvhead[j] = NULL;
3317 				}
3318 			}
3319 
3320 			// Channel 3 corresponds to emergency path.
3321 			if (!krwp->head_free) {
3322 				krwp->head_free = krcp->head;
3323 				krcp->head = NULL;
3324 			}
3325 
3326 			WRITE_ONCE(krcp->count, 0);
3327 
3328 			/*
3329 			 * One work is per one batch, so there are three
3330 			 * "free channels", the batch can handle. It can
3331 			 * be that the work is in the pending state when
3332 			 * channels have been detached following by each
3333 			 * other.
3334 			 */
3335 			queue_rcu_work(system_wq, &krwp->rcu_work);
3336 		}
3337 
3338 		// Repeat if any "free" corresponding channel is still busy.
3339 		if (krcp->bkvhead[0] || krcp->bkvhead[1] || krcp->head)
3340 			repeat = true;
3341 	}
3342 
3343 	return !repeat;
3344 }
3345 
kfree_rcu_drain_unlock(struct kfree_rcu_cpu * krcp,unsigned long flags)3346 static inline void kfree_rcu_drain_unlock(struct kfree_rcu_cpu *krcp,
3347 					  unsigned long flags)
3348 {
3349 	// Attempt to start a new batch.
3350 	krcp->monitor_todo = false;
3351 	if (queue_kfree_rcu_work(krcp)) {
3352 		// Success! Our job is done here.
3353 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3354 		return;
3355 	}
3356 
3357 	// Previous RCU batch still in progress, try again later.
3358 	krcp->monitor_todo = true;
3359 	schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3360 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3361 }
3362 
3363 /*
3364  * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3365  * It invokes kfree_rcu_drain_unlock() to attempt to start another batch.
3366  */
kfree_rcu_monitor(struct work_struct * work)3367 static void kfree_rcu_monitor(struct work_struct *work)
3368 {
3369 	unsigned long flags;
3370 	struct kfree_rcu_cpu *krcp = container_of(work, struct kfree_rcu_cpu,
3371 						 monitor_work.work);
3372 
3373 	raw_spin_lock_irqsave(&krcp->lock, flags);
3374 	if (krcp->monitor_todo)
3375 		kfree_rcu_drain_unlock(krcp, flags);
3376 	else
3377 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3378 }
3379 
3380 static enum hrtimer_restart
schedule_page_work_fn(struct hrtimer * t)3381 schedule_page_work_fn(struct hrtimer *t)
3382 {
3383 	struct kfree_rcu_cpu *krcp =
3384 		container_of(t, struct kfree_rcu_cpu, hrtimer);
3385 
3386 	queue_work(system_highpri_wq, &krcp->page_cache_work);
3387 	return HRTIMER_NORESTART;
3388 }
3389 
fill_page_cache_func(struct work_struct * work)3390 static void fill_page_cache_func(struct work_struct *work)
3391 {
3392 	struct kvfree_rcu_bulk_data *bnode;
3393 	struct kfree_rcu_cpu *krcp =
3394 		container_of(work, struct kfree_rcu_cpu,
3395 			page_cache_work);
3396 	unsigned long flags;
3397 	bool pushed;
3398 	int i;
3399 
3400 	for (i = 0; i < rcu_min_cached_objs; i++) {
3401 		bnode = (struct kvfree_rcu_bulk_data *)
3402 			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3403 
3404 		if (!bnode)
3405 			break;
3406 
3407 		raw_spin_lock_irqsave(&krcp->lock, flags);
3408 		pushed = put_cached_bnode(krcp, bnode);
3409 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3410 
3411 		if (!pushed) {
3412 			free_page((unsigned long) bnode);
3413 			break;
3414 		}
3415 	}
3416 
3417 	atomic_set(&krcp->work_in_progress, 0);
3418 }
3419 
3420 static void
run_page_cache_worker(struct kfree_rcu_cpu * krcp)3421 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3422 {
3423 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3424 			!atomic_xchg(&krcp->work_in_progress, 1)) {
3425 		hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC,
3426 			HRTIMER_MODE_REL);
3427 		krcp->hrtimer.function = schedule_page_work_fn;
3428 		hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3429 	}
3430 }
3431 
3432 static inline bool
kvfree_call_rcu_add_ptr_to_bulk(struct kfree_rcu_cpu * krcp,void * ptr)3433 kvfree_call_rcu_add_ptr_to_bulk(struct kfree_rcu_cpu *krcp, void *ptr)
3434 {
3435 	struct kvfree_rcu_bulk_data *bnode;
3436 	int idx;
3437 
3438 	if (unlikely(!krcp->initialized))
3439 		return false;
3440 
3441 	lockdep_assert_held(&krcp->lock);
3442 	idx = !!is_vmalloc_addr(ptr);
3443 
3444 	/* Check if a new block is required. */
3445 	if (!krcp->bkvhead[idx] ||
3446 			krcp->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3447 		bnode = get_cached_bnode(krcp);
3448 		/* Switch to emergency path. */
3449 		if (!bnode)
3450 			return false;
3451 
3452 		/* Initialize the new block. */
3453 		bnode->nr_records = 0;
3454 		bnode->next = krcp->bkvhead[idx];
3455 
3456 		/* Attach it to the head. */
3457 		krcp->bkvhead[idx] = bnode;
3458 	}
3459 
3460 	/* Finally insert. */
3461 	krcp->bkvhead[idx]->records
3462 		[krcp->bkvhead[idx]->nr_records++] = ptr;
3463 
3464 	return true;
3465 }
3466 
3467 /*
3468  * Queue a request for lazy invocation of appropriate free routine after a
3469  * grace period. Please note there are three paths are maintained, two are the
3470  * main ones that use array of pointers interface and third one is emergency
3471  * one, that is used only when the main path can not be maintained temporary,
3472  * due to memory pressure.
3473  *
3474  * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3475  * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3476  * be free'd in workqueue context. This allows us to: batch requests together to
3477  * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3478  */
kvfree_call_rcu(struct rcu_head * head,rcu_callback_t func)3479 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3480 {
3481 	unsigned long flags;
3482 	struct kfree_rcu_cpu *krcp;
3483 	bool success;
3484 	void *ptr;
3485 
3486 	if (head) {
3487 		ptr = (void *) head - (unsigned long) func;
3488 	} else {
3489 		/*
3490 		 * Please note there is a limitation for the head-less
3491 		 * variant, that is why there is a clear rule for such
3492 		 * objects: it can be used from might_sleep() context
3493 		 * only. For other places please embed an rcu_head to
3494 		 * your data.
3495 		 */
3496 		might_sleep();
3497 		ptr = (unsigned long *) func;
3498 	}
3499 
3500 	krcp = krc_this_cpu_lock(&flags);
3501 
3502 	// Queue the object but don't yet schedule the batch.
3503 	if (debug_rcu_head_queue(ptr)) {
3504 		// Probable double kfree_rcu(), just leak.
3505 		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3506 			  __func__, head);
3507 
3508 		// Mark as success and leave.
3509 		success = true;
3510 		goto unlock_return;
3511 	}
3512 
3513 	success = kvfree_call_rcu_add_ptr_to_bulk(krcp, ptr);
3514 	if (!success) {
3515 		run_page_cache_worker(krcp);
3516 
3517 		if (head == NULL)
3518 			// Inline if kvfree_rcu(one_arg) call.
3519 			goto unlock_return;
3520 
3521 		head->func = func;
3522 		head->next = krcp->head;
3523 		krcp->head = head;
3524 		success = true;
3525 	}
3526 
3527 	WRITE_ONCE(krcp->count, krcp->count + 1);
3528 
3529 	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3530 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3531 	    !krcp->monitor_todo) {
3532 		krcp->monitor_todo = true;
3533 		schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3534 	}
3535 
3536 unlock_return:
3537 	krc_this_cpu_unlock(krcp, flags);
3538 
3539 	/*
3540 	 * Inline kvfree() after synchronize_rcu(). We can do
3541 	 * it from might_sleep() context only, so the current
3542 	 * CPU can pass the QS state.
3543 	 */
3544 	if (!success) {
3545 		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3546 		synchronize_rcu();
3547 		kvfree(ptr);
3548 	}
3549 }
3550 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3551 
3552 static unsigned long
kfree_rcu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)3553 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3554 {
3555 	int cpu;
3556 	unsigned long count = 0;
3557 
3558 	/* Snapshot count of all CPUs */
3559 	for_each_possible_cpu(cpu) {
3560 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3561 
3562 		count += READ_ONCE(krcp->count);
3563 	}
3564 
3565 	return count;
3566 }
3567 
3568 static unsigned long
kfree_rcu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)3569 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3570 {
3571 	int cpu, freed = 0;
3572 	unsigned long flags;
3573 
3574 	for_each_possible_cpu(cpu) {
3575 		int count;
3576 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3577 
3578 		count = krcp->count;
3579 		raw_spin_lock_irqsave(&krcp->lock, flags);
3580 		if (krcp->monitor_todo)
3581 			kfree_rcu_drain_unlock(krcp, flags);
3582 		else
3583 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3584 
3585 		sc->nr_to_scan -= count;
3586 		freed += count;
3587 
3588 		if (sc->nr_to_scan <= 0)
3589 			break;
3590 	}
3591 
3592 	return freed == 0 ? SHRINK_STOP : freed;
3593 }
3594 
3595 static struct shrinker kfree_rcu_shrinker = {
3596 	.count_objects = kfree_rcu_shrink_count,
3597 	.scan_objects = kfree_rcu_shrink_scan,
3598 	.batch = 0,
3599 	.seeks = DEFAULT_SEEKS,
3600 };
3601 
kfree_rcu_scheduler_running(void)3602 void __init kfree_rcu_scheduler_running(void)
3603 {
3604 	int cpu;
3605 	unsigned long flags;
3606 
3607 	for_each_possible_cpu(cpu) {
3608 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3609 
3610 		raw_spin_lock_irqsave(&krcp->lock, flags);
3611 		if (!krcp->head || krcp->monitor_todo) {
3612 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3613 			continue;
3614 		}
3615 		krcp->monitor_todo = true;
3616 		schedule_delayed_work_on(cpu, &krcp->monitor_work,
3617 					 KFREE_DRAIN_JIFFIES);
3618 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3619 	}
3620 }
3621 
3622 /*
3623  * During early boot, any blocking grace-period wait automatically
3624  * implies a grace period.  Later on, this is never the case for PREEMPTION.
3625  *
3626  * Howevr, because a context switch is a grace period for !PREEMPTION, any
3627  * blocking grace-period wait automatically implies a grace period if
3628  * there is only one CPU online at any point time during execution of
3629  * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
3630  * occasionally incorrectly indicate that there are multiple CPUs online
3631  * when there was in fact only one the whole time, as this just adds some
3632  * overhead: RCU still operates correctly.
3633  */
rcu_blocking_is_gp(void)3634 static int rcu_blocking_is_gp(void)
3635 {
3636 	int ret;
3637 
3638 	if (IS_ENABLED(CONFIG_PREEMPTION))
3639 		return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
3640 	might_sleep();  /* Check for RCU read-side critical section. */
3641 	preempt_disable();
3642 	ret = num_online_cpus() <= 1;
3643 	preempt_enable();
3644 	return ret;
3645 }
3646 
3647 /**
3648  * synchronize_rcu - wait until a grace period has elapsed.
3649  *
3650  * Control will return to the caller some time after a full grace
3651  * period has elapsed, in other words after all currently executing RCU
3652  * read-side critical sections have completed.  Note, however, that
3653  * upon return from synchronize_rcu(), the caller might well be executing
3654  * concurrently with new RCU read-side critical sections that began while
3655  * synchronize_rcu() was waiting.  RCU read-side critical sections are
3656  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
3657  * In addition, regions of code across which interrupts, preemption, or
3658  * softirqs have been disabled also serve as RCU read-side critical
3659  * sections.  This includes hardware interrupt handlers, softirq handlers,
3660  * and NMI handlers.
3661  *
3662  * Note that this guarantee implies further memory-ordering guarantees.
3663  * On systems with more than one CPU, when synchronize_rcu() returns,
3664  * each CPU is guaranteed to have executed a full memory barrier since
3665  * the end of its last RCU read-side critical section whose beginning
3666  * preceded the call to synchronize_rcu().  In addition, each CPU having
3667  * an RCU read-side critical section that extends beyond the return from
3668  * synchronize_rcu() is guaranteed to have executed a full memory barrier
3669  * after the beginning of synchronize_rcu() and before the beginning of
3670  * that RCU read-side critical section.  Note that these guarantees include
3671  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3672  * that are executing in the kernel.
3673  *
3674  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3675  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3676  * to have executed a full memory barrier during the execution of
3677  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3678  * again only if the system has more than one CPU).
3679  */
synchronize_rcu(void)3680 void synchronize_rcu(void)
3681 {
3682 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3683 			 lock_is_held(&rcu_lock_map) ||
3684 			 lock_is_held(&rcu_sched_lock_map),
3685 			 "Illegal synchronize_rcu() in RCU read-side critical section");
3686 	if (rcu_blocking_is_gp())
3687 		return;
3688 	if (rcu_gp_is_expedited())
3689 		synchronize_rcu_expedited();
3690 	else
3691 		wait_rcu_gp(call_rcu);
3692 }
3693 EXPORT_SYMBOL_GPL(synchronize_rcu);
3694 
3695 /**
3696  * get_state_synchronize_rcu - Snapshot current RCU state
3697  *
3698  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3699  * to determine whether or not a full grace period has elapsed in the
3700  * meantime.
3701  */
get_state_synchronize_rcu(void)3702 unsigned long get_state_synchronize_rcu(void)
3703 {
3704 	/*
3705 	 * Any prior manipulation of RCU-protected data must happen
3706 	 * before the load from ->gp_seq.
3707 	 */
3708 	smp_mb();  /* ^^^ */
3709 	return rcu_seq_snap(&rcu_state.gp_seq);
3710 }
3711 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3712 
3713 /**
3714  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3715  *
3716  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3717  *
3718  * If a full RCU grace period has elapsed since the earlier call to
3719  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3720  * synchronize_rcu() to wait for a full grace period.
3721  *
3722  * Yes, this function does not take counter wrap into account.  But
3723  * counter wrap is harmless.  If the counter wraps, we have waited for
3724  * more than 2 billion grace periods (and way more on a 64-bit system!),
3725  * so waiting for one additional grace period should be just fine.
3726  */
cond_synchronize_rcu(unsigned long oldstate)3727 void cond_synchronize_rcu(unsigned long oldstate)
3728 {
3729 	if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
3730 		synchronize_rcu();
3731 	else
3732 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3733 }
3734 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3735 
3736 /*
3737  * Check to see if there is any immediate RCU-related work to be done by
3738  * the current CPU, returning 1 if so and zero otherwise.  The checks are
3739  * in order of increasing expense: checks that can be carried out against
3740  * CPU-local state are performed first.  However, we must check for CPU
3741  * stalls first, else we might not get a chance.
3742  */
rcu_pending(int user)3743 static int rcu_pending(int user)
3744 {
3745 	bool gp_in_progress;
3746 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3747 	struct rcu_node *rnp = rdp->mynode;
3748 
3749 	lockdep_assert_irqs_disabled();
3750 
3751 	/* Check for CPU stalls, if enabled. */
3752 	check_cpu_stall(rdp);
3753 
3754 	/* Does this CPU need a deferred NOCB wakeup? */
3755 	if (rcu_nocb_need_deferred_wakeup(rdp))
3756 		return 1;
3757 
3758 	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3759 	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3760 		return 0;
3761 
3762 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3763 	gp_in_progress = rcu_gp_in_progress();
3764 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3765 		return 1;
3766 
3767 	/* Does this CPU have callbacks ready to invoke? */
3768 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
3769 		return 1;
3770 
3771 	/* Has RCU gone idle with this CPU needing another grace period? */
3772 	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3773 	    (!IS_ENABLED(CONFIG_RCU_NOCB_CPU) ||
3774 	     !rcu_segcblist_is_offloaded(&rdp->cblist)) &&
3775 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3776 		return 1;
3777 
3778 	/* Have RCU grace period completed or started?  */
3779 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3780 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3781 		return 1;
3782 
3783 	/* nothing to do */
3784 	return 0;
3785 }
3786 
3787 /*
3788  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3789  * the compiler is expected to optimize this away.
3790  */
rcu_barrier_trace(const char * s,int cpu,unsigned long done)3791 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3792 {
3793 	trace_rcu_barrier(rcu_state.name, s, cpu,
3794 			  atomic_read(&rcu_state.barrier_cpu_count), done);
3795 }
3796 
3797 /*
3798  * RCU callback function for rcu_barrier().  If we are last, wake
3799  * up the task executing rcu_barrier().
3800  *
3801  * Note that the value of rcu_state.barrier_sequence must be captured
3802  * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3803  * other CPUs might count the value down to zero before this CPU gets
3804  * around to invoking rcu_barrier_trace(), which might result in bogus
3805  * data from the next instance of rcu_barrier().
3806  */
rcu_barrier_callback(struct rcu_head * rhp)3807 static void rcu_barrier_callback(struct rcu_head *rhp)
3808 {
3809 	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3810 
3811 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3812 		rcu_barrier_trace(TPS("LastCB"), -1, s);
3813 		complete(&rcu_state.barrier_completion);
3814 	} else {
3815 		rcu_barrier_trace(TPS("CB"), -1, s);
3816 	}
3817 }
3818 
3819 /*
3820  * Called with preemption disabled, and from cross-cpu IRQ context.
3821  */
rcu_barrier_func(void * cpu_in)3822 static void rcu_barrier_func(void *cpu_in)
3823 {
3824 	uintptr_t cpu = (uintptr_t)cpu_in;
3825 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3826 
3827 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3828 	rdp->barrier_head.func = rcu_barrier_callback;
3829 	debug_rcu_head_queue(&rdp->barrier_head);
3830 	rcu_nocb_lock(rdp);
3831 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
3832 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3833 		atomic_inc(&rcu_state.barrier_cpu_count);
3834 	} else {
3835 		debug_rcu_head_unqueue(&rdp->barrier_head);
3836 		rcu_barrier_trace(TPS("IRQNQ"), -1,
3837 				  rcu_state.barrier_sequence);
3838 	}
3839 	rcu_nocb_unlock(rdp);
3840 }
3841 
3842 /**
3843  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3844  *
3845  * Note that this primitive does not necessarily wait for an RCU grace period
3846  * to complete.  For example, if there are no RCU callbacks queued anywhere
3847  * in the system, then rcu_barrier() is within its rights to return
3848  * immediately, without waiting for anything, much less an RCU grace period.
3849  */
rcu_barrier(void)3850 void rcu_barrier(void)
3851 {
3852 	uintptr_t cpu;
3853 	struct rcu_data *rdp;
3854 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3855 
3856 	rcu_barrier_trace(TPS("Begin"), -1, s);
3857 
3858 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3859 	mutex_lock(&rcu_state.barrier_mutex);
3860 
3861 	/* Did someone else do our work for us? */
3862 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3863 		rcu_barrier_trace(TPS("EarlyExit"), -1,
3864 				  rcu_state.barrier_sequence);
3865 		smp_mb(); /* caller's subsequent code after above check. */
3866 		mutex_unlock(&rcu_state.barrier_mutex);
3867 		return;
3868 	}
3869 
3870 	/* Mark the start of the barrier operation. */
3871 	rcu_seq_start(&rcu_state.barrier_sequence);
3872 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3873 
3874 	/*
3875 	 * Initialize the count to two rather than to zero in order
3876 	 * to avoid a too-soon return to zero in case of an immediate
3877 	 * invocation of the just-enqueued callback (or preemption of
3878 	 * this task).  Exclude CPU-hotplug operations to ensure that no
3879 	 * offline non-offloaded CPU has callbacks queued.
3880 	 */
3881 	init_completion(&rcu_state.barrier_completion);
3882 	atomic_set(&rcu_state.barrier_cpu_count, 2);
3883 	get_online_cpus();
3884 
3885 	/*
3886 	 * Force each CPU with callbacks to register a new callback.
3887 	 * When that callback is invoked, we will know that all of the
3888 	 * corresponding CPU's preceding callbacks have been invoked.
3889 	 */
3890 	for_each_possible_cpu(cpu) {
3891 		rdp = per_cpu_ptr(&rcu_data, cpu);
3892 		if (cpu_is_offline(cpu) &&
3893 		    !rcu_segcblist_is_offloaded(&rdp->cblist))
3894 			continue;
3895 		if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) {
3896 			rcu_barrier_trace(TPS("OnlineQ"), cpu,
3897 					  rcu_state.barrier_sequence);
3898 			smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1);
3899 		} else if (rcu_segcblist_n_cbs(&rdp->cblist) &&
3900 			   cpu_is_offline(cpu)) {
3901 			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu,
3902 					  rcu_state.barrier_sequence);
3903 			local_irq_disable();
3904 			rcu_barrier_func((void *)cpu);
3905 			local_irq_enable();
3906 		} else if (cpu_is_offline(cpu)) {
3907 			rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu,
3908 					  rcu_state.barrier_sequence);
3909 		} else {
3910 			rcu_barrier_trace(TPS("OnlineNQ"), cpu,
3911 					  rcu_state.barrier_sequence);
3912 		}
3913 	}
3914 	put_online_cpus();
3915 
3916 	/*
3917 	 * Now that we have an rcu_barrier_callback() callback on each
3918 	 * CPU, and thus each counted, remove the initial count.
3919 	 */
3920 	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
3921 		complete(&rcu_state.barrier_completion);
3922 
3923 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3924 	wait_for_completion(&rcu_state.barrier_completion);
3925 
3926 	/* Mark the end of the barrier operation. */
3927 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
3928 	rcu_seq_end(&rcu_state.barrier_sequence);
3929 
3930 	/* Other rcu_barrier() invocations can now safely proceed. */
3931 	mutex_unlock(&rcu_state.barrier_mutex);
3932 }
3933 EXPORT_SYMBOL_GPL(rcu_barrier);
3934 
3935 /*
3936  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3937  * first CPU in a given leaf rcu_node structure coming online.  The caller
3938  * must hold the corresponding leaf rcu_node ->lock with interrrupts
3939  * disabled.
3940  */
rcu_init_new_rnp(struct rcu_node * rnp_leaf)3941 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3942 {
3943 	long mask;
3944 	long oldmask;
3945 	struct rcu_node *rnp = rnp_leaf;
3946 
3947 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
3948 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
3949 	for (;;) {
3950 		mask = rnp->grpmask;
3951 		rnp = rnp->parent;
3952 		if (rnp == NULL)
3953 			return;
3954 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3955 		oldmask = rnp->qsmaskinit;
3956 		rnp->qsmaskinit |= mask;
3957 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3958 		if (oldmask)
3959 			return;
3960 	}
3961 }
3962 
3963 /*
3964  * Do boot-time initialization of a CPU's per-CPU RCU data.
3965  */
3966 static void __init
rcu_boot_init_percpu_data(int cpu)3967 rcu_boot_init_percpu_data(int cpu)
3968 {
3969 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3970 
3971 	/* Set up local state, ensuring consistent view of global state. */
3972 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3973 	INIT_WORK(&rdp->strict_work, strict_work_handler);
3974 	WARN_ON_ONCE(rdp->dynticks_nesting != 1);
3975 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
3976 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3977 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3978 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3979 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3980 	rdp->cpu = cpu;
3981 	rcu_boot_init_nocb_percpu_data(rdp);
3982 }
3983 
3984 /*
3985  * Invoked early in the CPU-online process, when pretty much all services
3986  * are available.  The incoming CPU is not present.
3987  *
3988  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
3989  * offline event can be happening at a given time.  Note also that we can
3990  * accept some slop in the rsp->gp_seq access due to the fact that this
3991  * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
3992  * And any offloaded callbacks are being numbered elsewhere.
3993  */
rcutree_prepare_cpu(unsigned int cpu)3994 int rcutree_prepare_cpu(unsigned int cpu)
3995 {
3996 	unsigned long flags;
3997 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3998 	struct rcu_node *rnp = rcu_get_root();
3999 
4000 	/* Set up local state, ensuring consistent view of global state. */
4001 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4002 	rdp->qlen_last_fqs_check = 0;
4003 	rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4004 	rdp->blimit = blimit;
4005 	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
4006 	    !rcu_segcblist_is_offloaded(&rdp->cblist))
4007 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
4008 	rdp->dynticks_nesting = 1;	/* CPU not up, no tearing. */
4009 	rcu_dynticks_eqs_online();
4010 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4011 
4012 	/*
4013 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4014 	 * propagation up the rcu_node tree will happen at the beginning
4015 	 * of the next grace period.
4016 	 */
4017 	rnp = rdp->mynode;
4018 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4019 	rdp->beenonline = true;	 /* We have now been online. */
4020 	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4021 	rdp->gp_seq_needed = rdp->gp_seq;
4022 	rdp->cpu_no_qs.b.norm = true;
4023 	rdp->core_needs_qs = false;
4024 	rdp->rcu_iw_pending = false;
4025 	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4026 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4027 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4028 	rcu_prepare_kthreads(cpu);
4029 	rcu_spawn_cpu_nocb_kthread(cpu);
4030 
4031 	return 0;
4032 }
4033 
4034 /*
4035  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4036  */
rcutree_affinity_setting(unsigned int cpu,int outgoing)4037 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4038 {
4039 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4040 
4041 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4042 }
4043 
4044 /*
4045  * Near the end of the CPU-online process.  Pretty much all services
4046  * enabled, and the CPU is now very much alive.
4047  */
rcutree_online_cpu(unsigned int cpu)4048 int rcutree_online_cpu(unsigned int cpu)
4049 {
4050 	unsigned long flags;
4051 	struct rcu_data *rdp;
4052 	struct rcu_node *rnp;
4053 
4054 	rdp = per_cpu_ptr(&rcu_data, cpu);
4055 	rnp = rdp->mynode;
4056 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4057 	rnp->ffmask |= rdp->grpmask;
4058 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4059 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4060 		return 0; /* Too early in boot for scheduler work. */
4061 	sync_sched_exp_online_cleanup(cpu);
4062 	rcutree_affinity_setting(cpu, -1);
4063 
4064 	// Stop-machine done, so allow nohz_full to disable tick.
4065 	tick_dep_clear(TICK_DEP_BIT_RCU);
4066 	return 0;
4067 }
4068 
4069 /*
4070  * Near the beginning of the process.  The CPU is still very much alive
4071  * with pretty much all services enabled.
4072  */
rcutree_offline_cpu(unsigned int cpu)4073 int rcutree_offline_cpu(unsigned int cpu)
4074 {
4075 	unsigned long flags;
4076 	struct rcu_data *rdp;
4077 	struct rcu_node *rnp;
4078 
4079 	rdp = per_cpu_ptr(&rcu_data, cpu);
4080 	rnp = rdp->mynode;
4081 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4082 	rnp->ffmask &= ~rdp->grpmask;
4083 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4084 
4085 	rcutree_affinity_setting(cpu, cpu);
4086 
4087 	// nohz_full CPUs need the tick for stop-machine to work quickly
4088 	tick_dep_set(TICK_DEP_BIT_RCU);
4089 	return 0;
4090 }
4091 
4092 /*
4093  * Mark the specified CPU as being online so that subsequent grace periods
4094  * (both expedited and normal) will wait on it.  Note that this means that
4095  * incoming CPUs are not allowed to use RCU read-side critical sections
4096  * until this function is called.  Failing to observe this restriction
4097  * will result in lockdep splats.
4098  *
4099  * Note that this function is special in that it is invoked directly
4100  * from the incoming CPU rather than from the cpuhp_step mechanism.
4101  * This is because this function must be invoked at a precise location.
4102  */
rcu_cpu_starting(unsigned int cpu)4103 void rcu_cpu_starting(unsigned int cpu)
4104 {
4105 	unsigned long flags;
4106 	unsigned long mask;
4107 	struct rcu_data *rdp;
4108 	struct rcu_node *rnp;
4109 	bool newcpu;
4110 
4111 	rdp = per_cpu_ptr(&rcu_data, cpu);
4112 	if (rdp->cpu_started)
4113 		return;
4114 	rdp->cpu_started = true;
4115 
4116 	rnp = rdp->mynode;
4117 	mask = rdp->grpmask;
4118 	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4119 	WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4120 	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4121 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4122 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4123 	newcpu = !(rnp->expmaskinitnext & mask);
4124 	rnp->expmaskinitnext |= mask;
4125 	/* Allow lockless access for expedited grace periods. */
4126 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4127 	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4128 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4129 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4130 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4131 	if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
4132 		rcu_disable_urgency_upon_qs(rdp);
4133 		/* Report QS -after- changing ->qsmaskinitnext! */
4134 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4135 	} else {
4136 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4137 	}
4138 	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4139 	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4140 	WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4141 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4142 }
4143 
4144 /*
4145  * The outgoing function has no further need of RCU, so remove it from
4146  * the rcu_node tree's ->qsmaskinitnext bit masks.
4147  *
4148  * Note that this function is special in that it is invoked directly
4149  * from the outgoing CPU rather than from the cpuhp_step mechanism.
4150  * This is because this function must be invoked at a precise location.
4151  */
rcu_report_dead(unsigned int cpu)4152 void rcu_report_dead(unsigned int cpu)
4153 {
4154 	unsigned long flags;
4155 	unsigned long mask;
4156 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4157 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4158 
4159 	/* QS for any half-done expedited grace period. */
4160 	preempt_disable();
4161 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
4162 	preempt_enable();
4163 	rcu_preempt_deferred_qs(current);
4164 
4165 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4166 	mask = rdp->grpmask;
4167 	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4168 	WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4169 	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4170 	raw_spin_lock(&rcu_state.ofl_lock);
4171 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4172 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4173 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4174 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4175 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4176 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4177 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4178 	}
4179 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4180 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4181 	raw_spin_unlock(&rcu_state.ofl_lock);
4182 	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4183 	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4184 	WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4185 
4186 	rdp->cpu_started = false;
4187 }
4188 
4189 #ifdef CONFIG_HOTPLUG_CPU
4190 /*
4191  * The outgoing CPU has just passed through the dying-idle state, and we
4192  * are being invoked from the CPU that was IPIed to continue the offline
4193  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
4194  */
rcutree_migrate_callbacks(int cpu)4195 void rcutree_migrate_callbacks(int cpu)
4196 {
4197 	unsigned long flags;
4198 	struct rcu_data *my_rdp;
4199 	struct rcu_node *my_rnp;
4200 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4201 	bool needwake;
4202 
4203 	if (rcu_segcblist_is_offloaded(&rdp->cblist) ||
4204 	    rcu_segcblist_empty(&rdp->cblist))
4205 		return;  /* No callbacks to migrate. */
4206 
4207 	local_irq_save(flags);
4208 	my_rdp = this_cpu_ptr(&rcu_data);
4209 	my_rnp = my_rdp->mynode;
4210 	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4211 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
4212 	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4213 	/* Leverage recent GPs and set GP for new callbacks. */
4214 	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4215 		   rcu_advance_cbs(my_rnp, my_rdp);
4216 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4217 	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4218 	rcu_segcblist_disable(&rdp->cblist);
4219 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
4220 		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
4221 	if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) {
4222 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4223 		__call_rcu_nocb_wake(my_rdp, true, flags);
4224 	} else {
4225 		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4226 		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4227 	}
4228 	if (needwake)
4229 		rcu_gp_kthread_wake();
4230 	lockdep_assert_irqs_enabled();
4231 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4232 		  !rcu_segcblist_empty(&rdp->cblist),
4233 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4234 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4235 		  rcu_segcblist_first_cb(&rdp->cblist));
4236 }
4237 #endif
4238 
4239 /*
4240  * On non-huge systems, use expedited RCU grace periods to make suspend
4241  * and hibernation run faster.
4242  */
rcu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)4243 static int rcu_pm_notify(struct notifier_block *self,
4244 			 unsigned long action, void *hcpu)
4245 {
4246 	switch (action) {
4247 	case PM_HIBERNATION_PREPARE:
4248 	case PM_SUSPEND_PREPARE:
4249 		rcu_expedite_gp();
4250 		break;
4251 	case PM_POST_HIBERNATION:
4252 	case PM_POST_SUSPEND:
4253 		rcu_unexpedite_gp();
4254 		break;
4255 	default:
4256 		break;
4257 	}
4258 	return NOTIFY_OK;
4259 }
4260 
4261 /*
4262  * Spawn the kthreads that handle RCU's grace periods.
4263  */
rcu_spawn_gp_kthread(void)4264 static int __init rcu_spawn_gp_kthread(void)
4265 {
4266 	unsigned long flags;
4267 	int kthread_prio_in = kthread_prio;
4268 	struct rcu_node *rnp;
4269 	struct sched_param sp;
4270 	struct task_struct *t;
4271 
4272 	/* Force priority into range. */
4273 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4274 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4275 		kthread_prio = 2;
4276 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4277 		kthread_prio = 1;
4278 	else if (kthread_prio < 0)
4279 		kthread_prio = 0;
4280 	else if (kthread_prio > 99)
4281 		kthread_prio = 99;
4282 
4283 	if (kthread_prio != kthread_prio_in)
4284 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4285 			 kthread_prio, kthread_prio_in);
4286 
4287 	rcu_scheduler_fully_active = 1;
4288 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4289 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4290 		return 0;
4291 	if (kthread_prio) {
4292 		sp.sched_priority = kthread_prio;
4293 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4294 	}
4295 	rnp = rcu_get_root();
4296 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4297 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4298 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4299 	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4300 	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4301 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4302 	wake_up_process(t);
4303 	rcu_spawn_nocb_kthreads();
4304 	rcu_spawn_boost_kthreads();
4305 	rcu_spawn_core_kthreads();
4306 	return 0;
4307 }
4308 early_initcall(rcu_spawn_gp_kthread);
4309 
4310 /*
4311  * This function is invoked towards the end of the scheduler's
4312  * initialization process.  Before this is called, the idle task might
4313  * contain synchronous grace-period primitives (during which time, this idle
4314  * task is booting the system, and such primitives are no-ops).  After this
4315  * function is called, any synchronous grace-period primitives are run as
4316  * expedited, with the requesting task driving the grace period forward.
4317  * A later core_initcall() rcu_set_runtime_mode() will switch to full
4318  * runtime RCU functionality.
4319  */
rcu_scheduler_starting(void)4320 void rcu_scheduler_starting(void)
4321 {
4322 	WARN_ON(num_online_cpus() != 1);
4323 	WARN_ON(nr_context_switches() > 0);
4324 	rcu_test_sync_prims();
4325 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4326 	rcu_test_sync_prims();
4327 }
4328 
4329 /*
4330  * Helper function for rcu_init() that initializes the rcu_state structure.
4331  */
rcu_init_one(void)4332 static void __init rcu_init_one(void)
4333 {
4334 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4335 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4336 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4337 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4338 
4339 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4340 	int cpustride = 1;
4341 	int i;
4342 	int j;
4343 	struct rcu_node *rnp;
4344 
4345 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4346 
4347 	/* Silence gcc 4.8 false positive about array index out of range. */
4348 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4349 		panic("rcu_init_one: rcu_num_lvls out of range");
4350 
4351 	/* Initialize the level-tracking arrays. */
4352 
4353 	for (i = 1; i < rcu_num_lvls; i++)
4354 		rcu_state.level[i] =
4355 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4356 	rcu_init_levelspread(levelspread, num_rcu_lvl);
4357 
4358 	/* Initialize the elements themselves, starting from the leaves. */
4359 
4360 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4361 		cpustride *= levelspread[i];
4362 		rnp = rcu_state.level[i];
4363 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4364 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4365 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4366 						   &rcu_node_class[i], buf[i]);
4367 			raw_spin_lock_init(&rnp->fqslock);
4368 			lockdep_set_class_and_name(&rnp->fqslock,
4369 						   &rcu_fqs_class[i], fqs[i]);
4370 			rnp->gp_seq = rcu_state.gp_seq;
4371 			rnp->gp_seq_needed = rcu_state.gp_seq;
4372 			rnp->completedqs = rcu_state.gp_seq;
4373 			rnp->qsmask = 0;
4374 			rnp->qsmaskinit = 0;
4375 			rnp->grplo = j * cpustride;
4376 			rnp->grphi = (j + 1) * cpustride - 1;
4377 			if (rnp->grphi >= nr_cpu_ids)
4378 				rnp->grphi = nr_cpu_ids - 1;
4379 			if (i == 0) {
4380 				rnp->grpnum = 0;
4381 				rnp->grpmask = 0;
4382 				rnp->parent = NULL;
4383 			} else {
4384 				rnp->grpnum = j % levelspread[i - 1];
4385 				rnp->grpmask = BIT(rnp->grpnum);
4386 				rnp->parent = rcu_state.level[i - 1] +
4387 					      j / levelspread[i - 1];
4388 			}
4389 			rnp->level = i;
4390 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4391 			rcu_init_one_nocb(rnp);
4392 			init_waitqueue_head(&rnp->exp_wq[0]);
4393 			init_waitqueue_head(&rnp->exp_wq[1]);
4394 			init_waitqueue_head(&rnp->exp_wq[2]);
4395 			init_waitqueue_head(&rnp->exp_wq[3]);
4396 			spin_lock_init(&rnp->exp_lock);
4397 		}
4398 	}
4399 
4400 	init_swait_queue_head(&rcu_state.gp_wq);
4401 	init_swait_queue_head(&rcu_state.expedited_wq);
4402 	rnp = rcu_first_leaf_node();
4403 	for_each_possible_cpu(i) {
4404 		while (i > rnp->grphi)
4405 			rnp++;
4406 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4407 		rcu_boot_init_percpu_data(i);
4408 	}
4409 }
4410 
4411 /*
4412  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4413  * replace the definitions in tree.h because those are needed to size
4414  * the ->node array in the rcu_state structure.
4415  */
rcu_init_geometry(void)4416 void rcu_init_geometry(void)
4417 {
4418 	ulong d;
4419 	int i;
4420 	static unsigned long old_nr_cpu_ids;
4421 	int rcu_capacity[RCU_NUM_LVLS];
4422 	static bool initialized;
4423 
4424 	if (initialized) {
4425 		/*
4426 		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4427 		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4428 		 */
4429 		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4430 		return;
4431 	}
4432 
4433 	old_nr_cpu_ids = nr_cpu_ids;
4434 	initialized = true;
4435 
4436 	/*
4437 	 * Initialize any unspecified boot parameters.
4438 	 * The default values of jiffies_till_first_fqs and
4439 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4440 	 * value, which is a function of HZ, then adding one for each
4441 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4442 	 */
4443 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4444 	if (jiffies_till_first_fqs == ULONG_MAX)
4445 		jiffies_till_first_fqs = d;
4446 	if (jiffies_till_next_fqs == ULONG_MAX)
4447 		jiffies_till_next_fqs = d;
4448 	adjust_jiffies_till_sched_qs();
4449 
4450 	/* If the compile-time values are accurate, just leave. */
4451 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4452 	    nr_cpu_ids == NR_CPUS)
4453 		return;
4454 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4455 		rcu_fanout_leaf, nr_cpu_ids);
4456 
4457 	/*
4458 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4459 	 * and cannot exceed the number of bits in the rcu_node masks.
4460 	 * Complain and fall back to the compile-time values if this
4461 	 * limit is exceeded.
4462 	 */
4463 	if (rcu_fanout_leaf < 2 ||
4464 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4465 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4466 		WARN_ON(1);
4467 		return;
4468 	}
4469 
4470 	/*
4471 	 * Compute number of nodes that can be handled an rcu_node tree
4472 	 * with the given number of levels.
4473 	 */
4474 	rcu_capacity[0] = rcu_fanout_leaf;
4475 	for (i = 1; i < RCU_NUM_LVLS; i++)
4476 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4477 
4478 	/*
4479 	 * The tree must be able to accommodate the configured number of CPUs.
4480 	 * If this limit is exceeded, fall back to the compile-time values.
4481 	 */
4482 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4483 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4484 		WARN_ON(1);
4485 		return;
4486 	}
4487 
4488 	/* Calculate the number of levels in the tree. */
4489 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4490 	}
4491 	rcu_num_lvls = i + 1;
4492 
4493 	/* Calculate the number of rcu_nodes at each level of the tree. */
4494 	for (i = 0; i < rcu_num_lvls; i++) {
4495 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4496 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4497 	}
4498 
4499 	/* Calculate the total number of rcu_node structures. */
4500 	rcu_num_nodes = 0;
4501 	for (i = 0; i < rcu_num_lvls; i++)
4502 		rcu_num_nodes += num_rcu_lvl[i];
4503 }
4504 
4505 /*
4506  * Dump out the structure of the rcu_node combining tree associated
4507  * with the rcu_state structure.
4508  */
rcu_dump_rcu_node_tree(void)4509 static void __init rcu_dump_rcu_node_tree(void)
4510 {
4511 	int level = 0;
4512 	struct rcu_node *rnp;
4513 
4514 	pr_info("rcu_node tree layout dump\n");
4515 	pr_info(" ");
4516 	rcu_for_each_node_breadth_first(rnp) {
4517 		if (rnp->level != level) {
4518 			pr_cont("\n");
4519 			pr_info(" ");
4520 			level = rnp->level;
4521 		}
4522 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4523 	}
4524 	pr_cont("\n");
4525 }
4526 
4527 struct workqueue_struct *rcu_gp_wq;
4528 struct workqueue_struct *rcu_par_gp_wq;
4529 
kfree_rcu_batch_init(void)4530 static void __init kfree_rcu_batch_init(void)
4531 {
4532 	int cpu;
4533 	int i;
4534 
4535 	for_each_possible_cpu(cpu) {
4536 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4537 
4538 		for (i = 0; i < KFREE_N_BATCHES; i++) {
4539 			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4540 			krcp->krw_arr[i].krcp = krcp;
4541 		}
4542 
4543 		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4544 		INIT_WORK(&krcp->page_cache_work, fill_page_cache_func);
4545 		krcp->initialized = true;
4546 	}
4547 	if (register_shrinker(&kfree_rcu_shrinker))
4548 		pr_err("Failed to register kfree_rcu() shrinker!\n");
4549 }
4550 
rcu_init(void)4551 void __init rcu_init(void)
4552 {
4553 	int cpu;
4554 
4555 	rcu_early_boot_tests();
4556 
4557 	kfree_rcu_batch_init();
4558 	rcu_bootup_announce();
4559 	rcu_init_geometry();
4560 	rcu_init_one();
4561 	if (dump_tree)
4562 		rcu_dump_rcu_node_tree();
4563 	if (use_softirq)
4564 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
4565 
4566 	/*
4567 	 * We don't need protection against CPU-hotplug here because
4568 	 * this is called early in boot, before either interrupts
4569 	 * or the scheduler are operational.
4570 	 */
4571 	pm_notifier(rcu_pm_notify, 0);
4572 	for_each_online_cpu(cpu) {
4573 		rcutree_prepare_cpu(cpu);
4574 		rcu_cpu_starting(cpu);
4575 		rcutree_online_cpu(cpu);
4576 	}
4577 
4578 	/* Create workqueue for expedited GPs and for Tree SRCU. */
4579 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4580 	WARN_ON(!rcu_gp_wq);
4581 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4582 	WARN_ON(!rcu_par_gp_wq);
4583 	srcu_init();
4584 
4585 	/* Fill in default value for rcutree.qovld boot parameter. */
4586 	/* -After- the rcu_node ->lock fields are initialized! */
4587 	if (qovld < 0)
4588 		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4589 	else
4590 		qovld_calc = qovld;
4591 }
4592 
4593 #include "tree_stall.h"
4594 #include "tree_exp.h"
4595 #include "tree_plugin.h"
4596