1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Generic ring buffer
4 *
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 */
7 #include <linux/trace_events.h>
8 #include <linux/ring_buffer.h>
9 #include <linux/trace_clock.h>
10 #include <linux/sched/clock.h>
11 #include <linux/trace_seq.h>
12 #include <linux/spinlock.h>
13 #include <linux/irq_work.h>
14 #include <linux/security.h>
15 #include <linux/uaccess.h>
16 #include <linux/hardirq.h>
17 #include <linux/kthread.h> /* for self test */
18 #include <linux/module.h>
19 #include <linux/percpu.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/list.h>
26 #include <linux/cpu.h>
27 #include <linux/oom.h>
28
29 #include <asm/local.h>
30
31 static void update_pages_handler(struct work_struct *work);
32
33 /*
34 * The ring buffer header is special. We must manually up keep it.
35 */
ring_buffer_print_entry_header(struct trace_seq * s)36 int ring_buffer_print_entry_header(struct trace_seq *s)
37 {
38 trace_seq_puts(s, "# compressed entry header\n");
39 trace_seq_puts(s, "\ttype_len : 5 bits\n");
40 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
41 trace_seq_puts(s, "\tarray : 32 bits\n");
42 trace_seq_putc(s, '\n');
43 trace_seq_printf(s, "\tpadding : type == %d\n",
44 RINGBUF_TYPE_PADDING);
45 trace_seq_printf(s, "\ttime_extend : type == %d\n",
46 RINGBUF_TYPE_TIME_EXTEND);
47 trace_seq_printf(s, "\ttime_stamp : type == %d\n",
48 RINGBUF_TYPE_TIME_STAMP);
49 trace_seq_printf(s, "\tdata max type_len == %d\n",
50 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
51
52 return !trace_seq_has_overflowed(s);
53 }
54
55 /*
56 * The ring buffer is made up of a list of pages. A separate list of pages is
57 * allocated for each CPU. A writer may only write to a buffer that is
58 * associated with the CPU it is currently executing on. A reader may read
59 * from any per cpu buffer.
60 *
61 * The reader is special. For each per cpu buffer, the reader has its own
62 * reader page. When a reader has read the entire reader page, this reader
63 * page is swapped with another page in the ring buffer.
64 *
65 * Now, as long as the writer is off the reader page, the reader can do what
66 * ever it wants with that page. The writer will never write to that page
67 * again (as long as it is out of the ring buffer).
68 *
69 * Here's some silly ASCII art.
70 *
71 * +------+
72 * |reader| RING BUFFER
73 * |page |
74 * +------+ +---+ +---+ +---+
75 * | |-->| |-->| |
76 * +---+ +---+ +---+
77 * ^ |
78 * | |
79 * +---------------+
80 *
81 *
82 * +------+
83 * |reader| RING BUFFER
84 * |page |------------------v
85 * +------+ +---+ +---+ +---+
86 * | |-->| |-->| |
87 * +---+ +---+ +---+
88 * ^ |
89 * | |
90 * +---------------+
91 *
92 *
93 * +------+
94 * |reader| RING BUFFER
95 * |page |------------------v
96 * +------+ +---+ +---+ +---+
97 * ^ | |-->| |-->| |
98 * | +---+ +---+ +---+
99 * | |
100 * | |
101 * +------------------------------+
102 *
103 *
104 * +------+
105 * |buffer| RING BUFFER
106 * |page |------------------v
107 * +------+ +---+ +---+ +---+
108 * ^ | | | |-->| |
109 * | New +---+ +---+ +---+
110 * | Reader------^ |
111 * | page |
112 * +------------------------------+
113 *
114 *
115 * After we make this swap, the reader can hand this page off to the splice
116 * code and be done with it. It can even allocate a new page if it needs to
117 * and swap that into the ring buffer.
118 *
119 * We will be using cmpxchg soon to make all this lockless.
120 *
121 */
122
123 /* Used for individual buffers (after the counter) */
124 #define RB_BUFFER_OFF (1 << 20)
125
126 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
127
128 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
129 #define RB_ALIGNMENT 4U
130 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
131 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
132
133 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
134 # define RB_FORCE_8BYTE_ALIGNMENT 0
135 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
136 #else
137 # define RB_FORCE_8BYTE_ALIGNMENT 1
138 # define RB_ARCH_ALIGNMENT 8U
139 #endif
140
141 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
142
143 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
144 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
145
146 enum {
147 RB_LEN_TIME_EXTEND = 8,
148 RB_LEN_TIME_STAMP = 8,
149 };
150
151 #define skip_time_extend(event) \
152 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
153
154 #define extended_time(event) \
155 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
156
rb_null_event(struct ring_buffer_event * event)157 static inline int rb_null_event(struct ring_buffer_event *event)
158 {
159 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
160 }
161
rb_event_set_padding(struct ring_buffer_event * event)162 static void rb_event_set_padding(struct ring_buffer_event *event)
163 {
164 /* padding has a NULL time_delta */
165 event->type_len = RINGBUF_TYPE_PADDING;
166 event->time_delta = 0;
167 }
168
169 static unsigned
rb_event_data_length(struct ring_buffer_event * event)170 rb_event_data_length(struct ring_buffer_event *event)
171 {
172 unsigned length;
173
174 if (event->type_len)
175 length = event->type_len * RB_ALIGNMENT;
176 else
177 length = event->array[0];
178 return length + RB_EVNT_HDR_SIZE;
179 }
180
181 /*
182 * Return the length of the given event. Will return
183 * the length of the time extend if the event is a
184 * time extend.
185 */
186 static inline unsigned
rb_event_length(struct ring_buffer_event * event)187 rb_event_length(struct ring_buffer_event *event)
188 {
189 switch (event->type_len) {
190 case RINGBUF_TYPE_PADDING:
191 if (rb_null_event(event))
192 /* undefined */
193 return -1;
194 return event->array[0] + RB_EVNT_HDR_SIZE;
195
196 case RINGBUF_TYPE_TIME_EXTEND:
197 return RB_LEN_TIME_EXTEND;
198
199 case RINGBUF_TYPE_TIME_STAMP:
200 return RB_LEN_TIME_STAMP;
201
202 case RINGBUF_TYPE_DATA:
203 return rb_event_data_length(event);
204 default:
205 WARN_ON_ONCE(1);
206 }
207 /* not hit */
208 return 0;
209 }
210
211 /*
212 * Return total length of time extend and data,
213 * or just the event length for all other events.
214 */
215 static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)216 rb_event_ts_length(struct ring_buffer_event *event)
217 {
218 unsigned len = 0;
219
220 if (extended_time(event)) {
221 /* time extends include the data event after it */
222 len = RB_LEN_TIME_EXTEND;
223 event = skip_time_extend(event);
224 }
225 return len + rb_event_length(event);
226 }
227
228 /**
229 * ring_buffer_event_length - return the length of the event
230 * @event: the event to get the length of
231 *
232 * Returns the size of the data load of a data event.
233 * If the event is something other than a data event, it
234 * returns the size of the event itself. With the exception
235 * of a TIME EXTEND, where it still returns the size of the
236 * data load of the data event after it.
237 */
ring_buffer_event_length(struct ring_buffer_event * event)238 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
239 {
240 unsigned length;
241
242 if (extended_time(event))
243 event = skip_time_extend(event);
244
245 length = rb_event_length(event);
246 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
247 return length;
248 length -= RB_EVNT_HDR_SIZE;
249 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
250 length -= sizeof(event->array[0]);
251 return length;
252 }
253 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
254
255 /* inline for ring buffer fast paths */
256 static __always_inline void *
rb_event_data(struct ring_buffer_event * event)257 rb_event_data(struct ring_buffer_event *event)
258 {
259 if (extended_time(event))
260 event = skip_time_extend(event);
261 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
262 /* If length is in len field, then array[0] has the data */
263 if (event->type_len)
264 return (void *)&event->array[0];
265 /* Otherwise length is in array[0] and array[1] has the data */
266 return (void *)&event->array[1];
267 }
268
269 /**
270 * ring_buffer_event_data - return the data of the event
271 * @event: the event to get the data from
272 */
ring_buffer_event_data(struct ring_buffer_event * event)273 void *ring_buffer_event_data(struct ring_buffer_event *event)
274 {
275 return rb_event_data(event);
276 }
277 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
278
279 #define for_each_buffer_cpu(buffer, cpu) \
280 for_each_cpu(cpu, buffer->cpumask)
281
282 #define for_each_online_buffer_cpu(buffer, cpu) \
283 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
284
285 #define TS_SHIFT 27
286 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
287 #define TS_DELTA_TEST (~TS_MASK)
288
289 /**
290 * ring_buffer_event_time_stamp - return the event's extended timestamp
291 * @event: the event to get the timestamp of
292 *
293 * Returns the extended timestamp associated with a data event.
294 * An extended time_stamp is a 64-bit timestamp represented
295 * internally in a special way that makes the best use of space
296 * contained within a ring buffer event. This function decodes
297 * it and maps it to a straight u64 value.
298 */
ring_buffer_event_time_stamp(struct ring_buffer_event * event)299 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
300 {
301 u64 ts;
302
303 ts = event->array[0];
304 ts <<= TS_SHIFT;
305 ts += event->time_delta;
306
307 return ts;
308 }
309
310 /* Flag when events were overwritten */
311 #define RB_MISSED_EVENTS (1 << 31)
312 /* Missed count stored at end */
313 #define RB_MISSED_STORED (1 << 30)
314
315 struct buffer_data_page {
316 u64 time_stamp; /* page time stamp */
317 local_t commit; /* write committed index */
318 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
319 };
320
321 /*
322 * Note, the buffer_page list must be first. The buffer pages
323 * are allocated in cache lines, which means that each buffer
324 * page will be at the beginning of a cache line, and thus
325 * the least significant bits will be zero. We use this to
326 * add flags in the list struct pointers, to make the ring buffer
327 * lockless.
328 */
329 struct buffer_page {
330 struct list_head list; /* list of buffer pages */
331 local_t write; /* index for next write */
332 unsigned read; /* index for next read */
333 local_t entries; /* entries on this page */
334 unsigned long real_end; /* real end of data */
335 struct buffer_data_page *page; /* Actual data page */
336 };
337
338 /*
339 * The buffer page counters, write and entries, must be reset
340 * atomically when crossing page boundaries. To synchronize this
341 * update, two counters are inserted into the number. One is
342 * the actual counter for the write position or count on the page.
343 *
344 * The other is a counter of updaters. Before an update happens
345 * the update partition of the counter is incremented. This will
346 * allow the updater to update the counter atomically.
347 *
348 * The counter is 20 bits, and the state data is 12.
349 */
350 #define RB_WRITE_MASK 0xfffff
351 #define RB_WRITE_INTCNT (1 << 20)
352
rb_init_page(struct buffer_data_page * bpage)353 static void rb_init_page(struct buffer_data_page *bpage)
354 {
355 local_set(&bpage->commit, 0);
356 }
357
358 /*
359 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
360 * this issue out.
361 */
free_buffer_page(struct buffer_page * bpage)362 static void free_buffer_page(struct buffer_page *bpage)
363 {
364 free_page((unsigned long)bpage->page);
365 kfree(bpage);
366 }
367
368 /*
369 * We need to fit the time_stamp delta into 27 bits.
370 */
test_time_stamp(u64 delta)371 static inline int test_time_stamp(u64 delta)
372 {
373 if (delta & TS_DELTA_TEST)
374 return 1;
375 return 0;
376 }
377
378 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
379
380 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
381 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
382
ring_buffer_print_page_header(struct trace_seq * s)383 int ring_buffer_print_page_header(struct trace_seq *s)
384 {
385 struct buffer_data_page field;
386
387 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
388 "offset:0;\tsize:%u;\tsigned:%u;\n",
389 (unsigned int)sizeof(field.time_stamp),
390 (unsigned int)is_signed_type(u64));
391
392 trace_seq_printf(s, "\tfield: local_t commit;\t"
393 "offset:%u;\tsize:%u;\tsigned:%u;\n",
394 (unsigned int)offsetof(typeof(field), commit),
395 (unsigned int)sizeof(field.commit),
396 (unsigned int)is_signed_type(long));
397
398 trace_seq_printf(s, "\tfield: int overwrite;\t"
399 "offset:%u;\tsize:%u;\tsigned:%u;\n",
400 (unsigned int)offsetof(typeof(field), commit),
401 1,
402 (unsigned int)is_signed_type(long));
403
404 trace_seq_printf(s, "\tfield: char data;\t"
405 "offset:%u;\tsize:%u;\tsigned:%u;\n",
406 (unsigned int)offsetof(typeof(field), data),
407 (unsigned int)BUF_PAGE_SIZE,
408 (unsigned int)is_signed_type(char));
409
410 return !trace_seq_has_overflowed(s);
411 }
412
413 struct rb_irq_work {
414 struct irq_work work;
415 wait_queue_head_t waiters;
416 wait_queue_head_t full_waiters;
417 long wait_index;
418 bool waiters_pending;
419 bool full_waiters_pending;
420 bool wakeup_full;
421 };
422
423 /*
424 * Structure to hold event state and handle nested events.
425 */
426 struct rb_event_info {
427 u64 ts;
428 u64 delta;
429 u64 before;
430 u64 after;
431 unsigned long length;
432 struct buffer_page *tail_page;
433 int add_timestamp;
434 };
435
436 /*
437 * Used for the add_timestamp
438 * NONE
439 * EXTEND - wants a time extend
440 * ABSOLUTE - the buffer requests all events to have absolute time stamps
441 * FORCE - force a full time stamp.
442 */
443 enum {
444 RB_ADD_STAMP_NONE = 0,
445 RB_ADD_STAMP_EXTEND = BIT(1),
446 RB_ADD_STAMP_ABSOLUTE = BIT(2),
447 RB_ADD_STAMP_FORCE = BIT(3)
448 };
449 /*
450 * Used for which event context the event is in.
451 * TRANSITION = 0
452 * NMI = 1
453 * IRQ = 2
454 * SOFTIRQ = 3
455 * NORMAL = 4
456 *
457 * See trace_recursive_lock() comment below for more details.
458 */
459 enum {
460 RB_CTX_TRANSITION,
461 RB_CTX_NMI,
462 RB_CTX_IRQ,
463 RB_CTX_SOFTIRQ,
464 RB_CTX_NORMAL,
465 RB_CTX_MAX
466 };
467
468 #if BITS_PER_LONG == 32
469 #define RB_TIME_32
470 #endif
471
472 /* To test on 64 bit machines */
473 //#define RB_TIME_32
474
475 #ifdef RB_TIME_32
476
477 struct rb_time_struct {
478 local_t cnt;
479 local_t top;
480 local_t bottom;
481 };
482 #else
483 #include <asm/local64.h>
484 struct rb_time_struct {
485 local64_t time;
486 };
487 #endif
488 typedef struct rb_time_struct rb_time_t;
489
490 /*
491 * head_page == tail_page && head == tail then buffer is empty.
492 */
493 struct ring_buffer_per_cpu {
494 int cpu;
495 atomic_t record_disabled;
496 atomic_t resize_disabled;
497 struct trace_buffer *buffer;
498 raw_spinlock_t reader_lock; /* serialize readers */
499 arch_spinlock_t lock;
500 struct lock_class_key lock_key;
501 struct buffer_data_page *free_page;
502 unsigned long nr_pages;
503 unsigned int current_context;
504 struct list_head *pages;
505 struct buffer_page *head_page; /* read from head */
506 struct buffer_page *tail_page; /* write to tail */
507 struct buffer_page *commit_page; /* committed pages */
508 struct buffer_page *reader_page;
509 unsigned long lost_events;
510 unsigned long last_overrun;
511 unsigned long nest;
512 local_t entries_bytes;
513 local_t entries;
514 local_t overrun;
515 local_t commit_overrun;
516 local_t dropped_events;
517 local_t committing;
518 local_t commits;
519 local_t pages_touched;
520 local_t pages_lost;
521 local_t pages_read;
522 long last_pages_touch;
523 size_t shortest_full;
524 unsigned long read;
525 unsigned long read_bytes;
526 rb_time_t write_stamp;
527 rb_time_t before_stamp;
528 u64 read_stamp;
529 /* ring buffer pages to update, > 0 to add, < 0 to remove */
530 long nr_pages_to_update;
531 struct list_head new_pages; /* new pages to add */
532 struct work_struct update_pages_work;
533 struct completion update_done;
534
535 struct rb_irq_work irq_work;
536 };
537
538 struct trace_buffer {
539 unsigned flags;
540 int cpus;
541 atomic_t record_disabled;
542 cpumask_var_t cpumask;
543
544 struct lock_class_key *reader_lock_key;
545
546 struct mutex mutex;
547
548 struct ring_buffer_per_cpu **buffers;
549
550 struct hlist_node node;
551 u64 (*clock)(void);
552
553 struct rb_irq_work irq_work;
554 bool time_stamp_abs;
555 };
556
557 struct ring_buffer_iter {
558 struct ring_buffer_per_cpu *cpu_buffer;
559 unsigned long head;
560 unsigned long next_event;
561 struct buffer_page *head_page;
562 struct buffer_page *cache_reader_page;
563 unsigned long cache_read;
564 u64 read_stamp;
565 u64 page_stamp;
566 struct ring_buffer_event *event;
567 int missed_events;
568 };
569
570 #ifdef RB_TIME_32
571
572 /*
573 * On 32 bit machines, local64_t is very expensive. As the ring
574 * buffer doesn't need all the features of a true 64 bit atomic,
575 * on 32 bit, it uses these functions (64 still uses local64_t).
576 *
577 * For the ring buffer, 64 bit required operations for the time is
578 * the following:
579 *
580 * - Only need 59 bits (uses 60 to make it even).
581 * - Reads may fail if it interrupted a modification of the time stamp.
582 * It will succeed if it did not interrupt another write even if
583 * the read itself is interrupted by a write.
584 * It returns whether it was successful or not.
585 *
586 * - Writes always succeed and will overwrite other writes and writes
587 * that were done by events interrupting the current write.
588 *
589 * - A write followed by a read of the same time stamp will always succeed,
590 * but may not contain the same value.
591 *
592 * - A cmpxchg will fail if it interrupted another write or cmpxchg.
593 * Other than that, it acts like a normal cmpxchg.
594 *
595 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
596 * (bottom being the least significant 30 bits of the 60 bit time stamp).
597 *
598 * The two most significant bits of each half holds a 2 bit counter (0-3).
599 * Each update will increment this counter by one.
600 * When reading the top and bottom, if the two counter bits match then the
601 * top and bottom together make a valid 60 bit number.
602 */
603 #define RB_TIME_SHIFT 30
604 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
605
rb_time_cnt(unsigned long val)606 static inline int rb_time_cnt(unsigned long val)
607 {
608 return (val >> RB_TIME_SHIFT) & 3;
609 }
610
rb_time_val(unsigned long top,unsigned long bottom)611 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
612 {
613 u64 val;
614
615 val = top & RB_TIME_VAL_MASK;
616 val <<= RB_TIME_SHIFT;
617 val |= bottom & RB_TIME_VAL_MASK;
618
619 return val;
620 }
621
__rb_time_read(rb_time_t * t,u64 * ret,unsigned long * cnt)622 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
623 {
624 unsigned long top, bottom;
625 unsigned long c;
626
627 /*
628 * If the read is interrupted by a write, then the cnt will
629 * be different. Loop until both top and bottom have been read
630 * without interruption.
631 */
632 do {
633 c = local_read(&t->cnt);
634 top = local_read(&t->top);
635 bottom = local_read(&t->bottom);
636 } while (c != local_read(&t->cnt));
637
638 *cnt = rb_time_cnt(top);
639
640 /* If top and bottom counts don't match, this interrupted a write */
641 if (*cnt != rb_time_cnt(bottom))
642 return false;
643
644 *ret = rb_time_val(top, bottom);
645 return true;
646 }
647
rb_time_read(rb_time_t * t,u64 * ret)648 static bool rb_time_read(rb_time_t *t, u64 *ret)
649 {
650 unsigned long cnt;
651
652 return __rb_time_read(t, ret, &cnt);
653 }
654
rb_time_val_cnt(unsigned long val,unsigned long cnt)655 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
656 {
657 return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
658 }
659
rb_time_split(u64 val,unsigned long * top,unsigned long * bottom)660 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom)
661 {
662 *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
663 *bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
664 }
665
rb_time_val_set(local_t * t,unsigned long val,unsigned long cnt)666 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
667 {
668 val = rb_time_val_cnt(val, cnt);
669 local_set(t, val);
670 }
671
rb_time_set(rb_time_t * t,u64 val)672 static void rb_time_set(rb_time_t *t, u64 val)
673 {
674 unsigned long cnt, top, bottom;
675
676 rb_time_split(val, &top, &bottom);
677
678 /* Writes always succeed with a valid number even if it gets interrupted. */
679 do {
680 cnt = local_inc_return(&t->cnt);
681 rb_time_val_set(&t->top, top, cnt);
682 rb_time_val_set(&t->bottom, bottom, cnt);
683 } while (cnt != local_read(&t->cnt));
684 }
685
686 static inline bool
rb_time_read_cmpxchg(local_t * l,unsigned long expect,unsigned long set)687 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
688 {
689 unsigned long ret;
690
691 ret = local_cmpxchg(l, expect, set);
692 return ret == expect;
693 }
694
rb_time_cmpxchg(rb_time_t * t,u64 expect,u64 set)695 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
696 {
697 unsigned long cnt, top, bottom;
698 unsigned long cnt2, top2, bottom2;
699 u64 val;
700
701 /* The cmpxchg always fails if it interrupted an update */
702 if (!__rb_time_read(t, &val, &cnt2))
703 return false;
704
705 if (val != expect)
706 return false;
707
708 cnt = local_read(&t->cnt);
709 if ((cnt & 3) != cnt2)
710 return false;
711
712 cnt2 = cnt + 1;
713
714 rb_time_split(val, &top, &bottom);
715 top = rb_time_val_cnt(top, cnt);
716 bottom = rb_time_val_cnt(bottom, cnt);
717
718 rb_time_split(set, &top2, &bottom2);
719 top2 = rb_time_val_cnt(top2, cnt2);
720 bottom2 = rb_time_val_cnt(bottom2, cnt2);
721
722 if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
723 return false;
724 if (!rb_time_read_cmpxchg(&t->top, top, top2))
725 return false;
726 if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
727 return false;
728 return true;
729 }
730
731 #else /* 64 bits */
732
733 /* local64_t always succeeds */
734
rb_time_read(rb_time_t * t,u64 * ret)735 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
736 {
737 *ret = local64_read(&t->time);
738 return true;
739 }
rb_time_set(rb_time_t * t,u64 val)740 static void rb_time_set(rb_time_t *t, u64 val)
741 {
742 local64_set(&t->time, val);
743 }
744
rb_time_cmpxchg(rb_time_t * t,u64 expect,u64 set)745 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
746 {
747 u64 val;
748 val = local64_cmpxchg(&t->time, expect, set);
749 return val == expect;
750 }
751 #endif
752
753 /**
754 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
755 * @buffer: The ring_buffer to get the number of pages from
756 * @cpu: The cpu of the ring_buffer to get the number of pages from
757 *
758 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
759 */
ring_buffer_nr_pages(struct trace_buffer * buffer,int cpu)760 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
761 {
762 return buffer->buffers[cpu]->nr_pages;
763 }
764
765 /**
766 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
767 * @buffer: The ring_buffer to get the number of pages from
768 * @cpu: The cpu of the ring_buffer to get the number of pages from
769 *
770 * Returns the number of pages that have content in the ring buffer.
771 */
ring_buffer_nr_dirty_pages(struct trace_buffer * buffer,int cpu)772 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
773 {
774 size_t read;
775 size_t lost;
776 size_t cnt;
777
778 read = local_read(&buffer->buffers[cpu]->pages_read);
779 lost = local_read(&buffer->buffers[cpu]->pages_lost);
780 cnt = local_read(&buffer->buffers[cpu]->pages_touched);
781
782 if (WARN_ON_ONCE(cnt < lost))
783 return 0;
784
785 cnt -= lost;
786
787 /* The reader can read an empty page, but not more than that */
788 if (cnt < read) {
789 WARN_ON_ONCE(read > cnt + 1);
790 return 0;
791 }
792
793 return cnt - read;
794 }
795
full_hit(struct trace_buffer * buffer,int cpu,int full)796 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
797 {
798 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
799 size_t nr_pages;
800 size_t dirty;
801
802 nr_pages = cpu_buffer->nr_pages;
803 if (!nr_pages || !full)
804 return true;
805
806 dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
807
808 return (dirty * 100) > (full * nr_pages);
809 }
810
811 /*
812 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
813 *
814 * Schedules a delayed work to wake up any task that is blocked on the
815 * ring buffer waiters queue.
816 */
rb_wake_up_waiters(struct irq_work * work)817 static void rb_wake_up_waiters(struct irq_work *work)
818 {
819 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
820
821 wake_up_all(&rbwork->waiters);
822 if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
823 rbwork->wakeup_full = false;
824 rbwork->full_waiters_pending = false;
825 wake_up_all(&rbwork->full_waiters);
826 }
827 }
828
829 /**
830 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
831 * @buffer: The ring buffer to wake waiters on
832 *
833 * In the case of a file that represents a ring buffer is closing,
834 * it is prudent to wake up any waiters that are on this.
835 */
ring_buffer_wake_waiters(struct trace_buffer * buffer,int cpu)836 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
837 {
838 struct ring_buffer_per_cpu *cpu_buffer;
839 struct rb_irq_work *rbwork;
840
841 if (cpu == RING_BUFFER_ALL_CPUS) {
842
843 /* Wake up individual ones too. One level recursion */
844 for_each_buffer_cpu(buffer, cpu)
845 ring_buffer_wake_waiters(buffer, cpu);
846
847 rbwork = &buffer->irq_work;
848 } else {
849 cpu_buffer = buffer->buffers[cpu];
850 rbwork = &cpu_buffer->irq_work;
851 }
852
853 rbwork->wait_index++;
854 /* make sure the waiters see the new index */
855 smp_wmb();
856
857 rb_wake_up_waiters(&rbwork->work);
858 }
859
860 /**
861 * ring_buffer_wait - wait for input to the ring buffer
862 * @buffer: buffer to wait on
863 * @cpu: the cpu buffer to wait on
864 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
865 *
866 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
867 * as data is added to any of the @buffer's cpu buffers. Otherwise
868 * it will wait for data to be added to a specific cpu buffer.
869 */
ring_buffer_wait(struct trace_buffer * buffer,int cpu,int full)870 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
871 {
872 struct ring_buffer_per_cpu *cpu_buffer;
873 DEFINE_WAIT(wait);
874 struct rb_irq_work *work;
875 long wait_index;
876 int ret = 0;
877
878 /*
879 * Depending on what the caller is waiting for, either any
880 * data in any cpu buffer, or a specific buffer, put the
881 * caller on the appropriate wait queue.
882 */
883 if (cpu == RING_BUFFER_ALL_CPUS) {
884 work = &buffer->irq_work;
885 /* Full only makes sense on per cpu reads */
886 full = 0;
887 } else {
888 if (!cpumask_test_cpu(cpu, buffer->cpumask))
889 return -ENODEV;
890 cpu_buffer = buffer->buffers[cpu];
891 work = &cpu_buffer->irq_work;
892 }
893
894 wait_index = READ_ONCE(work->wait_index);
895
896 while (true) {
897 if (full)
898 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
899 else
900 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
901
902 /*
903 * The events can happen in critical sections where
904 * checking a work queue can cause deadlocks.
905 * After adding a task to the queue, this flag is set
906 * only to notify events to try to wake up the queue
907 * using irq_work.
908 *
909 * We don't clear it even if the buffer is no longer
910 * empty. The flag only causes the next event to run
911 * irq_work to do the work queue wake up. The worse
912 * that can happen if we race with !trace_empty() is that
913 * an event will cause an irq_work to try to wake up
914 * an empty queue.
915 *
916 * There's no reason to protect this flag either, as
917 * the work queue and irq_work logic will do the necessary
918 * synchronization for the wake ups. The only thing
919 * that is necessary is that the wake up happens after
920 * a task has been queued. It's OK for spurious wake ups.
921 */
922 if (full)
923 work->full_waiters_pending = true;
924 else
925 work->waiters_pending = true;
926
927 if (signal_pending(current)) {
928 ret = -EINTR;
929 break;
930 }
931
932 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
933 break;
934
935 if (cpu != RING_BUFFER_ALL_CPUS &&
936 !ring_buffer_empty_cpu(buffer, cpu)) {
937 unsigned long flags;
938 bool pagebusy;
939 bool done;
940
941 if (!full)
942 break;
943
944 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
945 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
946 done = !pagebusy && full_hit(buffer, cpu, full);
947
948 if (!cpu_buffer->shortest_full ||
949 cpu_buffer->shortest_full > full)
950 cpu_buffer->shortest_full = full;
951 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
952 if (done)
953 break;
954 }
955
956 schedule();
957
958 /* Make sure to see the new wait index */
959 smp_rmb();
960 if (wait_index != work->wait_index)
961 break;
962 }
963
964 if (full)
965 finish_wait(&work->full_waiters, &wait);
966 else
967 finish_wait(&work->waiters, &wait);
968
969 return ret;
970 }
971
972 /**
973 * ring_buffer_poll_wait - poll on buffer input
974 * @buffer: buffer to wait on
975 * @cpu: the cpu buffer to wait on
976 * @filp: the file descriptor
977 * @poll_table: The poll descriptor
978 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
979 *
980 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
981 * as data is added to any of the @buffer's cpu buffers. Otherwise
982 * it will wait for data to be added to a specific cpu buffer.
983 *
984 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
985 * zero otherwise.
986 */
ring_buffer_poll_wait(struct trace_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table,int full)987 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
988 struct file *filp, poll_table *poll_table, int full)
989 {
990 struct ring_buffer_per_cpu *cpu_buffer;
991 struct rb_irq_work *work;
992
993 if (cpu == RING_BUFFER_ALL_CPUS) {
994 work = &buffer->irq_work;
995 full = 0;
996 } else {
997 if (!cpumask_test_cpu(cpu, buffer->cpumask))
998 return -EINVAL;
999
1000 cpu_buffer = buffer->buffers[cpu];
1001 work = &cpu_buffer->irq_work;
1002 }
1003
1004 if (full) {
1005 poll_wait(filp, &work->full_waiters, poll_table);
1006 work->full_waiters_pending = true;
1007 } else {
1008 poll_wait(filp, &work->waiters, poll_table);
1009 work->waiters_pending = true;
1010 }
1011
1012 /*
1013 * There's a tight race between setting the waiters_pending and
1014 * checking if the ring buffer is empty. Once the waiters_pending bit
1015 * is set, the next event will wake the task up, but we can get stuck
1016 * if there's only a single event in.
1017 *
1018 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1019 * but adding a memory barrier to all events will cause too much of a
1020 * performance hit in the fast path. We only need a memory barrier when
1021 * the buffer goes from empty to having content. But as this race is
1022 * extremely small, and it's not a problem if another event comes in, we
1023 * will fix it later.
1024 */
1025 smp_mb();
1026
1027 if (full)
1028 return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
1029
1030 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1031 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1032 return EPOLLIN | EPOLLRDNORM;
1033 return 0;
1034 }
1035
1036 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1037 #define RB_WARN_ON(b, cond) \
1038 ({ \
1039 int _____ret = unlikely(cond); \
1040 if (_____ret) { \
1041 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1042 struct ring_buffer_per_cpu *__b = \
1043 (void *)b; \
1044 atomic_inc(&__b->buffer->record_disabled); \
1045 } else \
1046 atomic_inc(&b->record_disabled); \
1047 WARN_ON(1); \
1048 } \
1049 _____ret; \
1050 })
1051
1052 /* Up this if you want to test the TIME_EXTENTS and normalization */
1053 #define DEBUG_SHIFT 0
1054
rb_time_stamp(struct trace_buffer * buffer)1055 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1056 {
1057 u64 ts;
1058
1059 /* Skip retpolines :-( */
1060 if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1061 ts = trace_clock_local();
1062 else
1063 ts = buffer->clock();
1064
1065 /* shift to debug/test normalization and TIME_EXTENTS */
1066 return ts << DEBUG_SHIFT;
1067 }
1068
ring_buffer_time_stamp(struct trace_buffer * buffer,int cpu)1069 u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu)
1070 {
1071 u64 time;
1072
1073 preempt_disable_notrace();
1074 time = rb_time_stamp(buffer);
1075 preempt_enable_notrace();
1076
1077 return time;
1078 }
1079 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1080
ring_buffer_normalize_time_stamp(struct trace_buffer * buffer,int cpu,u64 * ts)1081 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1082 int cpu, u64 *ts)
1083 {
1084 /* Just stupid testing the normalize function and deltas */
1085 *ts >>= DEBUG_SHIFT;
1086 }
1087 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1088
1089 /*
1090 * Making the ring buffer lockless makes things tricky.
1091 * Although writes only happen on the CPU that they are on,
1092 * and they only need to worry about interrupts. Reads can
1093 * happen on any CPU.
1094 *
1095 * The reader page is always off the ring buffer, but when the
1096 * reader finishes with a page, it needs to swap its page with
1097 * a new one from the buffer. The reader needs to take from
1098 * the head (writes go to the tail). But if a writer is in overwrite
1099 * mode and wraps, it must push the head page forward.
1100 *
1101 * Here lies the problem.
1102 *
1103 * The reader must be careful to replace only the head page, and
1104 * not another one. As described at the top of the file in the
1105 * ASCII art, the reader sets its old page to point to the next
1106 * page after head. It then sets the page after head to point to
1107 * the old reader page. But if the writer moves the head page
1108 * during this operation, the reader could end up with the tail.
1109 *
1110 * We use cmpxchg to help prevent this race. We also do something
1111 * special with the page before head. We set the LSB to 1.
1112 *
1113 * When the writer must push the page forward, it will clear the
1114 * bit that points to the head page, move the head, and then set
1115 * the bit that points to the new head page.
1116 *
1117 * We also don't want an interrupt coming in and moving the head
1118 * page on another writer. Thus we use the second LSB to catch
1119 * that too. Thus:
1120 *
1121 * head->list->prev->next bit 1 bit 0
1122 * ------- -------
1123 * Normal page 0 0
1124 * Points to head page 0 1
1125 * New head page 1 0
1126 *
1127 * Note we can not trust the prev pointer of the head page, because:
1128 *
1129 * +----+ +-----+ +-----+
1130 * | |------>| T |---X--->| N |
1131 * | |<------| | | |
1132 * +----+ +-----+ +-----+
1133 * ^ ^ |
1134 * | +-----+ | |
1135 * +----------| R |----------+ |
1136 * | |<-----------+
1137 * +-----+
1138 *
1139 * Key: ---X--> HEAD flag set in pointer
1140 * T Tail page
1141 * R Reader page
1142 * N Next page
1143 *
1144 * (see __rb_reserve_next() to see where this happens)
1145 *
1146 * What the above shows is that the reader just swapped out
1147 * the reader page with a page in the buffer, but before it
1148 * could make the new header point back to the new page added
1149 * it was preempted by a writer. The writer moved forward onto
1150 * the new page added by the reader and is about to move forward
1151 * again.
1152 *
1153 * You can see, it is legitimate for the previous pointer of
1154 * the head (or any page) not to point back to itself. But only
1155 * temporarily.
1156 */
1157
1158 #define RB_PAGE_NORMAL 0UL
1159 #define RB_PAGE_HEAD 1UL
1160 #define RB_PAGE_UPDATE 2UL
1161
1162
1163 #define RB_FLAG_MASK 3UL
1164
1165 /* PAGE_MOVED is not part of the mask */
1166 #define RB_PAGE_MOVED 4UL
1167
1168 /*
1169 * rb_list_head - remove any bit
1170 */
rb_list_head(struct list_head * list)1171 static struct list_head *rb_list_head(struct list_head *list)
1172 {
1173 unsigned long val = (unsigned long)list;
1174
1175 return (struct list_head *)(val & ~RB_FLAG_MASK);
1176 }
1177
1178 /*
1179 * rb_is_head_page - test if the given page is the head page
1180 *
1181 * Because the reader may move the head_page pointer, we can
1182 * not trust what the head page is (it may be pointing to
1183 * the reader page). But if the next page is a header page,
1184 * its flags will be non zero.
1185 */
1186 static inline int
rb_is_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * page,struct list_head * list)1187 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1188 struct buffer_page *page, struct list_head *list)
1189 {
1190 unsigned long val;
1191
1192 val = (unsigned long)list->next;
1193
1194 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1195 return RB_PAGE_MOVED;
1196
1197 return val & RB_FLAG_MASK;
1198 }
1199
1200 /*
1201 * rb_is_reader_page
1202 *
1203 * The unique thing about the reader page, is that, if the
1204 * writer is ever on it, the previous pointer never points
1205 * back to the reader page.
1206 */
rb_is_reader_page(struct buffer_page * page)1207 static bool rb_is_reader_page(struct buffer_page *page)
1208 {
1209 struct list_head *list = page->list.prev;
1210
1211 return rb_list_head(list->next) != &page->list;
1212 }
1213
1214 /*
1215 * rb_set_list_to_head - set a list_head to be pointing to head.
1216 */
rb_set_list_to_head(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1217 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
1218 struct list_head *list)
1219 {
1220 unsigned long *ptr;
1221
1222 ptr = (unsigned long *)&list->next;
1223 *ptr |= RB_PAGE_HEAD;
1224 *ptr &= ~RB_PAGE_UPDATE;
1225 }
1226
1227 /*
1228 * rb_head_page_activate - sets up head page
1229 */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)1230 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1231 {
1232 struct buffer_page *head;
1233
1234 head = cpu_buffer->head_page;
1235 if (!head)
1236 return;
1237
1238 /*
1239 * Set the previous list pointer to have the HEAD flag.
1240 */
1241 rb_set_list_to_head(cpu_buffer, head->list.prev);
1242 }
1243
rb_list_head_clear(struct list_head * list)1244 static void rb_list_head_clear(struct list_head *list)
1245 {
1246 unsigned long *ptr = (unsigned long *)&list->next;
1247
1248 *ptr &= ~RB_FLAG_MASK;
1249 }
1250
1251 /*
1252 * rb_head_page_deactivate - clears head page ptr (for free list)
1253 */
1254 static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)1255 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1256 {
1257 struct list_head *hd;
1258
1259 /* Go through the whole list and clear any pointers found. */
1260 rb_list_head_clear(cpu_buffer->pages);
1261
1262 list_for_each(hd, cpu_buffer->pages)
1263 rb_list_head_clear(hd);
1264 }
1265
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)1266 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1267 struct buffer_page *head,
1268 struct buffer_page *prev,
1269 int old_flag, int new_flag)
1270 {
1271 struct list_head *list;
1272 unsigned long val = (unsigned long)&head->list;
1273 unsigned long ret;
1274
1275 list = &prev->list;
1276
1277 val &= ~RB_FLAG_MASK;
1278
1279 ret = cmpxchg((unsigned long *)&list->next,
1280 val | old_flag, val | new_flag);
1281
1282 /* check if the reader took the page */
1283 if ((ret & ~RB_FLAG_MASK) != val)
1284 return RB_PAGE_MOVED;
1285
1286 return ret & RB_FLAG_MASK;
1287 }
1288
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1289 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1290 struct buffer_page *head,
1291 struct buffer_page *prev,
1292 int old_flag)
1293 {
1294 return rb_head_page_set(cpu_buffer, head, prev,
1295 old_flag, RB_PAGE_UPDATE);
1296 }
1297
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1298 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1299 struct buffer_page *head,
1300 struct buffer_page *prev,
1301 int old_flag)
1302 {
1303 return rb_head_page_set(cpu_buffer, head, prev,
1304 old_flag, RB_PAGE_HEAD);
1305 }
1306
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1307 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1308 struct buffer_page *head,
1309 struct buffer_page *prev,
1310 int old_flag)
1311 {
1312 return rb_head_page_set(cpu_buffer, head, prev,
1313 old_flag, RB_PAGE_NORMAL);
1314 }
1315
rb_inc_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page ** bpage)1316 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
1317 struct buffer_page **bpage)
1318 {
1319 struct list_head *p = rb_list_head((*bpage)->list.next);
1320
1321 *bpage = list_entry(p, struct buffer_page, list);
1322 }
1323
1324 static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)1325 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1326 {
1327 struct buffer_page *head;
1328 struct buffer_page *page;
1329 struct list_head *list;
1330 int i;
1331
1332 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1333 return NULL;
1334
1335 /* sanity check */
1336 list = cpu_buffer->pages;
1337 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1338 return NULL;
1339
1340 page = head = cpu_buffer->head_page;
1341 /*
1342 * It is possible that the writer moves the header behind
1343 * where we started, and we miss in one loop.
1344 * A second loop should grab the header, but we'll do
1345 * three loops just because I'm paranoid.
1346 */
1347 for (i = 0; i < 3; i++) {
1348 do {
1349 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1350 cpu_buffer->head_page = page;
1351 return page;
1352 }
1353 rb_inc_page(cpu_buffer, &page);
1354 } while (page != head);
1355 }
1356
1357 RB_WARN_ON(cpu_buffer, 1);
1358
1359 return NULL;
1360 }
1361
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)1362 static int rb_head_page_replace(struct buffer_page *old,
1363 struct buffer_page *new)
1364 {
1365 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1366 unsigned long val;
1367 unsigned long ret;
1368
1369 val = *ptr & ~RB_FLAG_MASK;
1370 val |= RB_PAGE_HEAD;
1371
1372 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1373
1374 return ret == val;
1375 }
1376
1377 /*
1378 * rb_tail_page_update - move the tail page forward
1379 */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1380 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1381 struct buffer_page *tail_page,
1382 struct buffer_page *next_page)
1383 {
1384 unsigned long old_entries;
1385 unsigned long old_write;
1386
1387 /*
1388 * The tail page now needs to be moved forward.
1389 *
1390 * We need to reset the tail page, but without messing
1391 * with possible erasing of data brought in by interrupts
1392 * that have moved the tail page and are currently on it.
1393 *
1394 * We add a counter to the write field to denote this.
1395 */
1396 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1397 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1398
1399 local_inc(&cpu_buffer->pages_touched);
1400 /*
1401 * Just make sure we have seen our old_write and synchronize
1402 * with any interrupts that come in.
1403 */
1404 barrier();
1405
1406 /*
1407 * If the tail page is still the same as what we think
1408 * it is, then it is up to us to update the tail
1409 * pointer.
1410 */
1411 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1412 /* Zero the write counter */
1413 unsigned long val = old_write & ~RB_WRITE_MASK;
1414 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1415
1416 /*
1417 * This will only succeed if an interrupt did
1418 * not come in and change it. In which case, we
1419 * do not want to modify it.
1420 *
1421 * We add (void) to let the compiler know that we do not care
1422 * about the return value of these functions. We use the
1423 * cmpxchg to only update if an interrupt did not already
1424 * do it for us. If the cmpxchg fails, we don't care.
1425 */
1426 (void)local_cmpxchg(&next_page->write, old_write, val);
1427 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1428
1429 /*
1430 * No need to worry about races with clearing out the commit.
1431 * it only can increment when a commit takes place. But that
1432 * only happens in the outer most nested commit.
1433 */
1434 local_set(&next_page->page->commit, 0);
1435
1436 /* Again, either we update tail_page or an interrupt does */
1437 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1438 }
1439 }
1440
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1441 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1442 struct buffer_page *bpage)
1443 {
1444 unsigned long val = (unsigned long)bpage;
1445
1446 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1447 return 1;
1448
1449 return 0;
1450 }
1451
1452 /**
1453 * rb_check_pages - integrity check of buffer pages
1454 * @cpu_buffer: CPU buffer with pages to test
1455 *
1456 * As a safety measure we check to make sure the data pages have not
1457 * been corrupted.
1458 */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1459 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1460 {
1461 struct list_head *head = rb_list_head(cpu_buffer->pages);
1462 struct list_head *tmp;
1463
1464 if (RB_WARN_ON(cpu_buffer,
1465 rb_list_head(rb_list_head(head->next)->prev) != head))
1466 return -1;
1467
1468 if (RB_WARN_ON(cpu_buffer,
1469 rb_list_head(rb_list_head(head->prev)->next) != head))
1470 return -1;
1471
1472 for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1473 if (RB_WARN_ON(cpu_buffer,
1474 rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1475 return -1;
1476
1477 if (RB_WARN_ON(cpu_buffer,
1478 rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1479 return -1;
1480 }
1481
1482 return 0;
1483 }
1484
__rb_allocate_pages(long nr_pages,struct list_head * pages,int cpu)1485 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1486 {
1487 struct buffer_page *bpage, *tmp;
1488 bool user_thread = current->mm != NULL;
1489 gfp_t mflags;
1490 long i;
1491
1492 /*
1493 * Check if the available memory is there first.
1494 * Note, si_mem_available() only gives us a rough estimate of available
1495 * memory. It may not be accurate. But we don't care, we just want
1496 * to prevent doing any allocation when it is obvious that it is
1497 * not going to succeed.
1498 */
1499 i = si_mem_available();
1500 if (i < nr_pages)
1501 return -ENOMEM;
1502
1503 /*
1504 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1505 * gracefully without invoking oom-killer and the system is not
1506 * destabilized.
1507 */
1508 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1509
1510 /*
1511 * If a user thread allocates too much, and si_mem_available()
1512 * reports there's enough memory, even though there is not.
1513 * Make sure the OOM killer kills this thread. This can happen
1514 * even with RETRY_MAYFAIL because another task may be doing
1515 * an allocation after this task has taken all memory.
1516 * This is the task the OOM killer needs to take out during this
1517 * loop, even if it was triggered by an allocation somewhere else.
1518 */
1519 if (user_thread)
1520 set_current_oom_origin();
1521 for (i = 0; i < nr_pages; i++) {
1522 struct page *page;
1523
1524 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1525 mflags, cpu_to_node(cpu));
1526 if (!bpage)
1527 goto free_pages;
1528
1529 list_add(&bpage->list, pages);
1530
1531 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1532 if (!page)
1533 goto free_pages;
1534 bpage->page = page_address(page);
1535 rb_init_page(bpage->page);
1536
1537 if (user_thread && fatal_signal_pending(current))
1538 goto free_pages;
1539 }
1540 if (user_thread)
1541 clear_current_oom_origin();
1542
1543 return 0;
1544
1545 free_pages:
1546 list_for_each_entry_safe(bpage, tmp, pages, list) {
1547 list_del_init(&bpage->list);
1548 free_buffer_page(bpage);
1549 }
1550 if (user_thread)
1551 clear_current_oom_origin();
1552
1553 return -ENOMEM;
1554 }
1555
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)1556 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1557 unsigned long nr_pages)
1558 {
1559 LIST_HEAD(pages);
1560
1561 WARN_ON(!nr_pages);
1562
1563 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1564 return -ENOMEM;
1565
1566 /*
1567 * The ring buffer page list is a circular list that does not
1568 * start and end with a list head. All page list items point to
1569 * other pages.
1570 */
1571 cpu_buffer->pages = pages.next;
1572 list_del(&pages);
1573
1574 cpu_buffer->nr_pages = nr_pages;
1575
1576 rb_check_pages(cpu_buffer);
1577
1578 return 0;
1579 }
1580
1581 static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct trace_buffer * buffer,long nr_pages,int cpu)1582 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1583 {
1584 struct ring_buffer_per_cpu *cpu_buffer;
1585 struct buffer_page *bpage;
1586 struct page *page;
1587 int ret;
1588
1589 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1590 GFP_KERNEL, cpu_to_node(cpu));
1591 if (!cpu_buffer)
1592 return NULL;
1593
1594 cpu_buffer->cpu = cpu;
1595 cpu_buffer->buffer = buffer;
1596 raw_spin_lock_init(&cpu_buffer->reader_lock);
1597 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1598 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1599 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1600 init_completion(&cpu_buffer->update_done);
1601 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1602 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1603 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1604
1605 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1606 GFP_KERNEL, cpu_to_node(cpu));
1607 if (!bpage)
1608 goto fail_free_buffer;
1609
1610 rb_check_bpage(cpu_buffer, bpage);
1611
1612 cpu_buffer->reader_page = bpage;
1613 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1614 if (!page)
1615 goto fail_free_reader;
1616 bpage->page = page_address(page);
1617 rb_init_page(bpage->page);
1618
1619 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1620 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1621
1622 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1623 if (ret < 0)
1624 goto fail_free_reader;
1625
1626 cpu_buffer->head_page
1627 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1628 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1629
1630 rb_head_page_activate(cpu_buffer);
1631
1632 return cpu_buffer;
1633
1634 fail_free_reader:
1635 free_buffer_page(cpu_buffer->reader_page);
1636
1637 fail_free_buffer:
1638 kfree(cpu_buffer);
1639 return NULL;
1640 }
1641
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)1642 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1643 {
1644 struct list_head *head = cpu_buffer->pages;
1645 struct buffer_page *bpage, *tmp;
1646
1647 irq_work_sync(&cpu_buffer->irq_work.work);
1648
1649 free_buffer_page(cpu_buffer->reader_page);
1650
1651 if (head) {
1652 rb_head_page_deactivate(cpu_buffer);
1653
1654 list_for_each_entry_safe(bpage, tmp, head, list) {
1655 list_del_init(&bpage->list);
1656 free_buffer_page(bpage);
1657 }
1658 bpage = list_entry(head, struct buffer_page, list);
1659 free_buffer_page(bpage);
1660 }
1661
1662 kfree(cpu_buffer);
1663 }
1664
1665 /**
1666 * __ring_buffer_alloc - allocate a new ring_buffer
1667 * @size: the size in bytes per cpu that is needed.
1668 * @flags: attributes to set for the ring buffer.
1669 * @key: ring buffer reader_lock_key.
1670 *
1671 * Currently the only flag that is available is the RB_FL_OVERWRITE
1672 * flag. This flag means that the buffer will overwrite old data
1673 * when the buffer wraps. If this flag is not set, the buffer will
1674 * drop data when the tail hits the head.
1675 */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)1676 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1677 struct lock_class_key *key)
1678 {
1679 struct trace_buffer *buffer;
1680 long nr_pages;
1681 int bsize;
1682 int cpu;
1683 int ret;
1684
1685 /* keep it in its own cache line */
1686 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1687 GFP_KERNEL);
1688 if (!buffer)
1689 return NULL;
1690
1691 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1692 goto fail_free_buffer;
1693
1694 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1695 buffer->flags = flags;
1696 buffer->clock = trace_clock_local;
1697 buffer->reader_lock_key = key;
1698
1699 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1700 init_waitqueue_head(&buffer->irq_work.waiters);
1701
1702 /* need at least two pages */
1703 if (nr_pages < 2)
1704 nr_pages = 2;
1705
1706 buffer->cpus = nr_cpu_ids;
1707
1708 bsize = sizeof(void *) * nr_cpu_ids;
1709 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1710 GFP_KERNEL);
1711 if (!buffer->buffers)
1712 goto fail_free_cpumask;
1713
1714 cpu = raw_smp_processor_id();
1715 cpumask_set_cpu(cpu, buffer->cpumask);
1716 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1717 if (!buffer->buffers[cpu])
1718 goto fail_free_buffers;
1719
1720 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1721 if (ret < 0)
1722 goto fail_free_buffers;
1723
1724 mutex_init(&buffer->mutex);
1725
1726 return buffer;
1727
1728 fail_free_buffers:
1729 for_each_buffer_cpu(buffer, cpu) {
1730 if (buffer->buffers[cpu])
1731 rb_free_cpu_buffer(buffer->buffers[cpu]);
1732 }
1733 kfree(buffer->buffers);
1734
1735 fail_free_cpumask:
1736 free_cpumask_var(buffer->cpumask);
1737
1738 fail_free_buffer:
1739 kfree(buffer);
1740 return NULL;
1741 }
1742 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1743
1744 /**
1745 * ring_buffer_free - free a ring buffer.
1746 * @buffer: the buffer to free.
1747 */
1748 void
ring_buffer_free(struct trace_buffer * buffer)1749 ring_buffer_free(struct trace_buffer *buffer)
1750 {
1751 int cpu;
1752
1753 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1754
1755 irq_work_sync(&buffer->irq_work.work);
1756
1757 for_each_buffer_cpu(buffer, cpu)
1758 rb_free_cpu_buffer(buffer->buffers[cpu]);
1759
1760 kfree(buffer->buffers);
1761 free_cpumask_var(buffer->cpumask);
1762
1763 kfree(buffer);
1764 }
1765 EXPORT_SYMBOL_GPL(ring_buffer_free);
1766
ring_buffer_set_clock(struct trace_buffer * buffer,u64 (* clock)(void))1767 void ring_buffer_set_clock(struct trace_buffer *buffer,
1768 u64 (*clock)(void))
1769 {
1770 buffer->clock = clock;
1771 }
1772
ring_buffer_set_time_stamp_abs(struct trace_buffer * buffer,bool abs)1773 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1774 {
1775 buffer->time_stamp_abs = abs;
1776 }
1777
ring_buffer_time_stamp_abs(struct trace_buffer * buffer)1778 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1779 {
1780 return buffer->time_stamp_abs;
1781 }
1782
1783 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1784
rb_page_entries(struct buffer_page * bpage)1785 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1786 {
1787 return local_read(&bpage->entries) & RB_WRITE_MASK;
1788 }
1789
rb_page_write(struct buffer_page * bpage)1790 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1791 {
1792 return local_read(&bpage->write) & RB_WRITE_MASK;
1793 }
1794
1795 static int
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)1796 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1797 {
1798 struct list_head *tail_page, *to_remove, *next_page;
1799 struct buffer_page *to_remove_page, *tmp_iter_page;
1800 struct buffer_page *last_page, *first_page;
1801 unsigned long nr_removed;
1802 unsigned long head_bit;
1803 int page_entries;
1804
1805 head_bit = 0;
1806
1807 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1808 atomic_inc(&cpu_buffer->record_disabled);
1809 /*
1810 * We don't race with the readers since we have acquired the reader
1811 * lock. We also don't race with writers after disabling recording.
1812 * This makes it easy to figure out the first and the last page to be
1813 * removed from the list. We unlink all the pages in between including
1814 * the first and last pages. This is done in a busy loop so that we
1815 * lose the least number of traces.
1816 * The pages are freed after we restart recording and unlock readers.
1817 */
1818 tail_page = &cpu_buffer->tail_page->list;
1819
1820 /*
1821 * tail page might be on reader page, we remove the next page
1822 * from the ring buffer
1823 */
1824 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1825 tail_page = rb_list_head(tail_page->next);
1826 to_remove = tail_page;
1827
1828 /* start of pages to remove */
1829 first_page = list_entry(rb_list_head(to_remove->next),
1830 struct buffer_page, list);
1831
1832 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1833 to_remove = rb_list_head(to_remove)->next;
1834 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1835 }
1836
1837 next_page = rb_list_head(to_remove)->next;
1838
1839 /*
1840 * Now we remove all pages between tail_page and next_page.
1841 * Make sure that we have head_bit value preserved for the
1842 * next page
1843 */
1844 tail_page->next = (struct list_head *)((unsigned long)next_page |
1845 head_bit);
1846 next_page = rb_list_head(next_page);
1847 next_page->prev = tail_page;
1848
1849 /* make sure pages points to a valid page in the ring buffer */
1850 cpu_buffer->pages = next_page;
1851
1852 /* update head page */
1853 if (head_bit)
1854 cpu_buffer->head_page = list_entry(next_page,
1855 struct buffer_page, list);
1856
1857 /*
1858 * change read pointer to make sure any read iterators reset
1859 * themselves
1860 */
1861 cpu_buffer->read = 0;
1862
1863 /* pages are removed, resume tracing and then free the pages */
1864 atomic_dec(&cpu_buffer->record_disabled);
1865 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1866
1867 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1868
1869 /* last buffer page to remove */
1870 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1871 list);
1872 tmp_iter_page = first_page;
1873
1874 do {
1875 cond_resched();
1876
1877 to_remove_page = tmp_iter_page;
1878 rb_inc_page(cpu_buffer, &tmp_iter_page);
1879
1880 /* update the counters */
1881 page_entries = rb_page_entries(to_remove_page);
1882 if (page_entries) {
1883 /*
1884 * If something was added to this page, it was full
1885 * since it is not the tail page. So we deduct the
1886 * bytes consumed in ring buffer from here.
1887 * Increment overrun to account for the lost events.
1888 */
1889 local_add(page_entries, &cpu_buffer->overrun);
1890 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1891 local_inc(&cpu_buffer->pages_lost);
1892 }
1893
1894 /*
1895 * We have already removed references to this list item, just
1896 * free up the buffer_page and its page
1897 */
1898 free_buffer_page(to_remove_page);
1899 nr_removed--;
1900
1901 } while (to_remove_page != last_page);
1902
1903 RB_WARN_ON(cpu_buffer, nr_removed);
1904
1905 return nr_removed == 0;
1906 }
1907
1908 static int
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)1909 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1910 {
1911 struct list_head *pages = &cpu_buffer->new_pages;
1912 int retries, success;
1913
1914 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1915 /*
1916 * We are holding the reader lock, so the reader page won't be swapped
1917 * in the ring buffer. Now we are racing with the writer trying to
1918 * move head page and the tail page.
1919 * We are going to adapt the reader page update process where:
1920 * 1. We first splice the start and end of list of new pages between
1921 * the head page and its previous page.
1922 * 2. We cmpxchg the prev_page->next to point from head page to the
1923 * start of new pages list.
1924 * 3. Finally, we update the head->prev to the end of new list.
1925 *
1926 * We will try this process 10 times, to make sure that we don't keep
1927 * spinning.
1928 */
1929 retries = 10;
1930 success = 0;
1931 while (retries--) {
1932 struct list_head *head_page, *prev_page, *r;
1933 struct list_head *last_page, *first_page;
1934 struct list_head *head_page_with_bit;
1935
1936 head_page = &rb_set_head_page(cpu_buffer)->list;
1937 if (!head_page)
1938 break;
1939 prev_page = head_page->prev;
1940
1941 first_page = pages->next;
1942 last_page = pages->prev;
1943
1944 head_page_with_bit = (struct list_head *)
1945 ((unsigned long)head_page | RB_PAGE_HEAD);
1946
1947 last_page->next = head_page_with_bit;
1948 first_page->prev = prev_page;
1949
1950 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1951
1952 if (r == head_page_with_bit) {
1953 /*
1954 * yay, we replaced the page pointer to our new list,
1955 * now, we just have to update to head page's prev
1956 * pointer to point to end of list
1957 */
1958 head_page->prev = last_page;
1959 success = 1;
1960 break;
1961 }
1962 }
1963
1964 if (success)
1965 INIT_LIST_HEAD(pages);
1966 /*
1967 * If we weren't successful in adding in new pages, warn and stop
1968 * tracing
1969 */
1970 RB_WARN_ON(cpu_buffer, !success);
1971 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1972
1973 /* free pages if they weren't inserted */
1974 if (!success) {
1975 struct buffer_page *bpage, *tmp;
1976 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1977 list) {
1978 list_del_init(&bpage->list);
1979 free_buffer_page(bpage);
1980 }
1981 }
1982 return success;
1983 }
1984
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)1985 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1986 {
1987 int success;
1988
1989 if (cpu_buffer->nr_pages_to_update > 0)
1990 success = rb_insert_pages(cpu_buffer);
1991 else
1992 success = rb_remove_pages(cpu_buffer,
1993 -cpu_buffer->nr_pages_to_update);
1994
1995 if (success)
1996 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1997 }
1998
update_pages_handler(struct work_struct * work)1999 static void update_pages_handler(struct work_struct *work)
2000 {
2001 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2002 struct ring_buffer_per_cpu, update_pages_work);
2003 rb_update_pages(cpu_buffer);
2004 complete(&cpu_buffer->update_done);
2005 }
2006
2007 /**
2008 * ring_buffer_resize - resize the ring buffer
2009 * @buffer: the buffer to resize.
2010 * @size: the new size.
2011 * @cpu_id: the cpu buffer to resize
2012 *
2013 * Minimum size is 2 * BUF_PAGE_SIZE.
2014 *
2015 * Returns 0 on success and < 0 on failure.
2016 */
ring_buffer_resize(struct trace_buffer * buffer,unsigned long size,int cpu_id)2017 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2018 int cpu_id)
2019 {
2020 struct ring_buffer_per_cpu *cpu_buffer;
2021 unsigned long nr_pages;
2022 int cpu, err;
2023
2024 /*
2025 * Always succeed at resizing a non-existent buffer:
2026 */
2027 if (!buffer)
2028 return 0;
2029
2030 /* Make sure the requested buffer exists */
2031 if (cpu_id != RING_BUFFER_ALL_CPUS &&
2032 !cpumask_test_cpu(cpu_id, buffer->cpumask))
2033 return 0;
2034
2035 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2036
2037 /* we need a minimum of two pages */
2038 if (nr_pages < 2)
2039 nr_pages = 2;
2040
2041 size = nr_pages * BUF_PAGE_SIZE;
2042
2043 /* prevent another thread from changing buffer sizes */
2044 mutex_lock(&buffer->mutex);
2045
2046
2047 if (cpu_id == RING_BUFFER_ALL_CPUS) {
2048 /*
2049 * Don't succeed if resizing is disabled, as a reader might be
2050 * manipulating the ring buffer and is expecting a sane state while
2051 * this is true.
2052 */
2053 for_each_buffer_cpu(buffer, cpu) {
2054 cpu_buffer = buffer->buffers[cpu];
2055 if (atomic_read(&cpu_buffer->resize_disabled)) {
2056 err = -EBUSY;
2057 goto out_err_unlock;
2058 }
2059 }
2060
2061 /* calculate the pages to update */
2062 for_each_buffer_cpu(buffer, cpu) {
2063 cpu_buffer = buffer->buffers[cpu];
2064
2065 cpu_buffer->nr_pages_to_update = nr_pages -
2066 cpu_buffer->nr_pages;
2067 /*
2068 * nothing more to do for removing pages or no update
2069 */
2070 if (cpu_buffer->nr_pages_to_update <= 0)
2071 continue;
2072 /*
2073 * to add pages, make sure all new pages can be
2074 * allocated without receiving ENOMEM
2075 */
2076 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2077 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
2078 &cpu_buffer->new_pages, cpu)) {
2079 /* not enough memory for new pages */
2080 err = -ENOMEM;
2081 goto out_err;
2082 }
2083 }
2084
2085 get_online_cpus();
2086 /*
2087 * Fire off all the required work handlers
2088 * We can't schedule on offline CPUs, but it's not necessary
2089 * since we can change their buffer sizes without any race.
2090 */
2091 for_each_buffer_cpu(buffer, cpu) {
2092 cpu_buffer = buffer->buffers[cpu];
2093 if (!cpu_buffer->nr_pages_to_update)
2094 continue;
2095
2096 /* Can't run something on an offline CPU. */
2097 if (!cpu_online(cpu)) {
2098 rb_update_pages(cpu_buffer);
2099 cpu_buffer->nr_pages_to_update = 0;
2100 } else {
2101 schedule_work_on(cpu,
2102 &cpu_buffer->update_pages_work);
2103 }
2104 }
2105
2106 /* wait for all the updates to complete */
2107 for_each_buffer_cpu(buffer, cpu) {
2108 cpu_buffer = buffer->buffers[cpu];
2109 if (!cpu_buffer->nr_pages_to_update)
2110 continue;
2111
2112 if (cpu_online(cpu))
2113 wait_for_completion(&cpu_buffer->update_done);
2114 cpu_buffer->nr_pages_to_update = 0;
2115 }
2116
2117 put_online_cpus();
2118 } else {
2119 /* Make sure this CPU has been initialized */
2120 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
2121 goto out;
2122
2123 cpu_buffer = buffer->buffers[cpu_id];
2124
2125 if (nr_pages == cpu_buffer->nr_pages)
2126 goto out;
2127
2128 /*
2129 * Don't succeed if resizing is disabled, as a reader might be
2130 * manipulating the ring buffer and is expecting a sane state while
2131 * this is true.
2132 */
2133 if (atomic_read(&cpu_buffer->resize_disabled)) {
2134 err = -EBUSY;
2135 goto out_err_unlock;
2136 }
2137
2138 cpu_buffer->nr_pages_to_update = nr_pages -
2139 cpu_buffer->nr_pages;
2140
2141 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2142 if (cpu_buffer->nr_pages_to_update > 0 &&
2143 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
2144 &cpu_buffer->new_pages, cpu_id)) {
2145 err = -ENOMEM;
2146 goto out_err;
2147 }
2148
2149 get_online_cpus();
2150
2151 /* Can't run something on an offline CPU. */
2152 if (!cpu_online(cpu_id))
2153 rb_update_pages(cpu_buffer);
2154 else {
2155 schedule_work_on(cpu_id,
2156 &cpu_buffer->update_pages_work);
2157 wait_for_completion(&cpu_buffer->update_done);
2158 }
2159
2160 cpu_buffer->nr_pages_to_update = 0;
2161 put_online_cpus();
2162 }
2163
2164 out:
2165 /*
2166 * The ring buffer resize can happen with the ring buffer
2167 * enabled, so that the update disturbs the tracing as little
2168 * as possible. But if the buffer is disabled, we do not need
2169 * to worry about that, and we can take the time to verify
2170 * that the buffer is not corrupt.
2171 */
2172 if (atomic_read(&buffer->record_disabled)) {
2173 atomic_inc(&buffer->record_disabled);
2174 /*
2175 * Even though the buffer was disabled, we must make sure
2176 * that it is truly disabled before calling rb_check_pages.
2177 * There could have been a race between checking
2178 * record_disable and incrementing it.
2179 */
2180 synchronize_rcu();
2181 for_each_buffer_cpu(buffer, cpu) {
2182 cpu_buffer = buffer->buffers[cpu];
2183 rb_check_pages(cpu_buffer);
2184 }
2185 atomic_dec(&buffer->record_disabled);
2186 }
2187
2188 mutex_unlock(&buffer->mutex);
2189 return 0;
2190
2191 out_err:
2192 for_each_buffer_cpu(buffer, cpu) {
2193 struct buffer_page *bpage, *tmp;
2194
2195 cpu_buffer = buffer->buffers[cpu];
2196 cpu_buffer->nr_pages_to_update = 0;
2197
2198 if (list_empty(&cpu_buffer->new_pages))
2199 continue;
2200
2201 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2202 list) {
2203 list_del_init(&bpage->list);
2204 free_buffer_page(bpage);
2205 }
2206 }
2207 out_err_unlock:
2208 mutex_unlock(&buffer->mutex);
2209 return err;
2210 }
2211 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2212
ring_buffer_change_overwrite(struct trace_buffer * buffer,int val)2213 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2214 {
2215 mutex_lock(&buffer->mutex);
2216 if (val)
2217 buffer->flags |= RB_FL_OVERWRITE;
2218 else
2219 buffer->flags &= ~RB_FL_OVERWRITE;
2220 mutex_unlock(&buffer->mutex);
2221 }
2222 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2223
__rb_page_index(struct buffer_page * bpage,unsigned index)2224 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2225 {
2226 return bpage->page->data + index;
2227 }
2228
2229 static __always_inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)2230 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2231 {
2232 return __rb_page_index(cpu_buffer->reader_page,
2233 cpu_buffer->reader_page->read);
2234 }
2235
rb_page_commit(struct buffer_page * bpage)2236 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2237 {
2238 return local_read(&bpage->page->commit);
2239 }
2240
2241 static struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)2242 rb_iter_head_event(struct ring_buffer_iter *iter)
2243 {
2244 struct ring_buffer_event *event;
2245 struct buffer_page *iter_head_page = iter->head_page;
2246 unsigned long commit;
2247 unsigned length;
2248
2249 if (iter->head != iter->next_event)
2250 return iter->event;
2251
2252 /*
2253 * When the writer goes across pages, it issues a cmpxchg which
2254 * is a mb(), which will synchronize with the rmb here.
2255 * (see rb_tail_page_update() and __rb_reserve_next())
2256 */
2257 commit = rb_page_commit(iter_head_page);
2258 smp_rmb();
2259 event = __rb_page_index(iter_head_page, iter->head);
2260 length = rb_event_length(event);
2261
2262 /*
2263 * READ_ONCE() doesn't work on functions and we don't want the
2264 * compiler doing any crazy optimizations with length.
2265 */
2266 barrier();
2267
2268 if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2269 /* Writer corrupted the read? */
2270 goto reset;
2271
2272 memcpy(iter->event, event, length);
2273 /*
2274 * If the page stamp is still the same after this rmb() then the
2275 * event was safely copied without the writer entering the page.
2276 */
2277 smp_rmb();
2278
2279 /* Make sure the page didn't change since we read this */
2280 if (iter->page_stamp != iter_head_page->page->time_stamp ||
2281 commit > rb_page_commit(iter_head_page))
2282 goto reset;
2283
2284 iter->next_event = iter->head + length;
2285 return iter->event;
2286 reset:
2287 /* Reset to the beginning */
2288 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2289 iter->head = 0;
2290 iter->next_event = 0;
2291 iter->missed_events = 1;
2292 return NULL;
2293 }
2294
2295 /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)2296 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2297 {
2298 return rb_page_commit(bpage);
2299 }
2300
2301 static __always_inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)2302 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2303 {
2304 return rb_page_commit(cpu_buffer->commit_page);
2305 }
2306
2307 static __always_inline unsigned
rb_event_index(struct ring_buffer_event * event)2308 rb_event_index(struct ring_buffer_event *event)
2309 {
2310 unsigned long addr = (unsigned long)event;
2311
2312 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2313 }
2314
rb_inc_iter(struct ring_buffer_iter * iter)2315 static void rb_inc_iter(struct ring_buffer_iter *iter)
2316 {
2317 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2318
2319 /*
2320 * The iterator could be on the reader page (it starts there).
2321 * But the head could have moved, since the reader was
2322 * found. Check for this case and assign the iterator
2323 * to the head page instead of next.
2324 */
2325 if (iter->head_page == cpu_buffer->reader_page)
2326 iter->head_page = rb_set_head_page(cpu_buffer);
2327 else
2328 rb_inc_page(cpu_buffer, &iter->head_page);
2329
2330 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2331 iter->head = 0;
2332 iter->next_event = 0;
2333 }
2334
2335 /*
2336 * rb_handle_head_page - writer hit the head page
2337 *
2338 * Returns: +1 to retry page
2339 * 0 to continue
2340 * -1 on error
2341 */
2342 static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)2343 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2344 struct buffer_page *tail_page,
2345 struct buffer_page *next_page)
2346 {
2347 struct buffer_page *new_head;
2348 int entries;
2349 int type;
2350 int ret;
2351
2352 entries = rb_page_entries(next_page);
2353
2354 /*
2355 * The hard part is here. We need to move the head
2356 * forward, and protect against both readers on
2357 * other CPUs and writers coming in via interrupts.
2358 */
2359 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2360 RB_PAGE_HEAD);
2361
2362 /*
2363 * type can be one of four:
2364 * NORMAL - an interrupt already moved it for us
2365 * HEAD - we are the first to get here.
2366 * UPDATE - we are the interrupt interrupting
2367 * a current move.
2368 * MOVED - a reader on another CPU moved the next
2369 * pointer to its reader page. Give up
2370 * and try again.
2371 */
2372
2373 switch (type) {
2374 case RB_PAGE_HEAD:
2375 /*
2376 * We changed the head to UPDATE, thus
2377 * it is our responsibility to update
2378 * the counters.
2379 */
2380 local_add(entries, &cpu_buffer->overrun);
2381 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2382 local_inc(&cpu_buffer->pages_lost);
2383
2384 /*
2385 * The entries will be zeroed out when we move the
2386 * tail page.
2387 */
2388
2389 /* still more to do */
2390 break;
2391
2392 case RB_PAGE_UPDATE:
2393 /*
2394 * This is an interrupt that interrupt the
2395 * previous update. Still more to do.
2396 */
2397 break;
2398 case RB_PAGE_NORMAL:
2399 /*
2400 * An interrupt came in before the update
2401 * and processed this for us.
2402 * Nothing left to do.
2403 */
2404 return 1;
2405 case RB_PAGE_MOVED:
2406 /*
2407 * The reader is on another CPU and just did
2408 * a swap with our next_page.
2409 * Try again.
2410 */
2411 return 1;
2412 default:
2413 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2414 return -1;
2415 }
2416
2417 /*
2418 * Now that we are here, the old head pointer is
2419 * set to UPDATE. This will keep the reader from
2420 * swapping the head page with the reader page.
2421 * The reader (on another CPU) will spin till
2422 * we are finished.
2423 *
2424 * We just need to protect against interrupts
2425 * doing the job. We will set the next pointer
2426 * to HEAD. After that, we set the old pointer
2427 * to NORMAL, but only if it was HEAD before.
2428 * otherwise we are an interrupt, and only
2429 * want the outer most commit to reset it.
2430 */
2431 new_head = next_page;
2432 rb_inc_page(cpu_buffer, &new_head);
2433
2434 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2435 RB_PAGE_NORMAL);
2436
2437 /*
2438 * Valid returns are:
2439 * HEAD - an interrupt came in and already set it.
2440 * NORMAL - One of two things:
2441 * 1) We really set it.
2442 * 2) A bunch of interrupts came in and moved
2443 * the page forward again.
2444 */
2445 switch (ret) {
2446 case RB_PAGE_HEAD:
2447 case RB_PAGE_NORMAL:
2448 /* OK */
2449 break;
2450 default:
2451 RB_WARN_ON(cpu_buffer, 1);
2452 return -1;
2453 }
2454
2455 /*
2456 * It is possible that an interrupt came in,
2457 * set the head up, then more interrupts came in
2458 * and moved it again. When we get back here,
2459 * the page would have been set to NORMAL but we
2460 * just set it back to HEAD.
2461 *
2462 * How do you detect this? Well, if that happened
2463 * the tail page would have moved.
2464 */
2465 if (ret == RB_PAGE_NORMAL) {
2466 struct buffer_page *buffer_tail_page;
2467
2468 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2469 /*
2470 * If the tail had moved passed next, then we need
2471 * to reset the pointer.
2472 */
2473 if (buffer_tail_page != tail_page &&
2474 buffer_tail_page != next_page)
2475 rb_head_page_set_normal(cpu_buffer, new_head,
2476 next_page,
2477 RB_PAGE_HEAD);
2478 }
2479
2480 /*
2481 * If this was the outer most commit (the one that
2482 * changed the original pointer from HEAD to UPDATE),
2483 * then it is up to us to reset it to NORMAL.
2484 */
2485 if (type == RB_PAGE_HEAD) {
2486 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2487 tail_page,
2488 RB_PAGE_UPDATE);
2489 if (RB_WARN_ON(cpu_buffer,
2490 ret != RB_PAGE_UPDATE))
2491 return -1;
2492 }
2493
2494 return 0;
2495 }
2496
2497 static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)2498 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2499 unsigned long tail, struct rb_event_info *info)
2500 {
2501 struct buffer_page *tail_page = info->tail_page;
2502 struct ring_buffer_event *event;
2503 unsigned long length = info->length;
2504
2505 /*
2506 * Only the event that crossed the page boundary
2507 * must fill the old tail_page with padding.
2508 */
2509 if (tail >= BUF_PAGE_SIZE) {
2510 /*
2511 * If the page was filled, then we still need
2512 * to update the real_end. Reset it to zero
2513 * and the reader will ignore it.
2514 */
2515 if (tail == BUF_PAGE_SIZE)
2516 tail_page->real_end = 0;
2517
2518 local_sub(length, &tail_page->write);
2519 return;
2520 }
2521
2522 event = __rb_page_index(tail_page, tail);
2523
2524 /* account for padding bytes */
2525 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2526
2527 /*
2528 * Save the original length to the meta data.
2529 * This will be used by the reader to add lost event
2530 * counter.
2531 */
2532 tail_page->real_end = tail;
2533
2534 /*
2535 * If this event is bigger than the minimum size, then
2536 * we need to be careful that we don't subtract the
2537 * write counter enough to allow another writer to slip
2538 * in on this page.
2539 * We put in a discarded commit instead, to make sure
2540 * that this space is not used again.
2541 *
2542 * If we are less than the minimum size, we don't need to
2543 * worry about it.
2544 */
2545 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2546 /* No room for any events */
2547
2548 /* Mark the rest of the page with padding */
2549 rb_event_set_padding(event);
2550
2551 /* Make sure the padding is visible before the write update */
2552 smp_wmb();
2553
2554 /* Set the write back to the previous setting */
2555 local_sub(length, &tail_page->write);
2556 return;
2557 }
2558
2559 /* Put in a discarded event */
2560 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2561 event->type_len = RINGBUF_TYPE_PADDING;
2562 /* time delta must be non zero */
2563 event->time_delta = 1;
2564
2565 /* Make sure the padding is visible before the tail_page->write update */
2566 smp_wmb();
2567
2568 /* Set write to end of buffer */
2569 length = (tail + length) - BUF_PAGE_SIZE;
2570 local_sub(length, &tail_page->write);
2571 }
2572
2573 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2574
2575 /*
2576 * This is the slow path, force gcc not to inline it.
2577 */
2578 static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)2579 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2580 unsigned long tail, struct rb_event_info *info)
2581 {
2582 struct buffer_page *tail_page = info->tail_page;
2583 struct buffer_page *commit_page = cpu_buffer->commit_page;
2584 struct trace_buffer *buffer = cpu_buffer->buffer;
2585 struct buffer_page *next_page;
2586 int ret;
2587
2588 next_page = tail_page;
2589
2590 rb_inc_page(cpu_buffer, &next_page);
2591
2592 /*
2593 * If for some reason, we had an interrupt storm that made
2594 * it all the way around the buffer, bail, and warn
2595 * about it.
2596 */
2597 if (unlikely(next_page == commit_page)) {
2598 local_inc(&cpu_buffer->commit_overrun);
2599 goto out_reset;
2600 }
2601
2602 /*
2603 * This is where the fun begins!
2604 *
2605 * We are fighting against races between a reader that
2606 * could be on another CPU trying to swap its reader
2607 * page with the buffer head.
2608 *
2609 * We are also fighting against interrupts coming in and
2610 * moving the head or tail on us as well.
2611 *
2612 * If the next page is the head page then we have filled
2613 * the buffer, unless the commit page is still on the
2614 * reader page.
2615 */
2616 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2617
2618 /*
2619 * If the commit is not on the reader page, then
2620 * move the header page.
2621 */
2622 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2623 /*
2624 * If we are not in overwrite mode,
2625 * this is easy, just stop here.
2626 */
2627 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2628 local_inc(&cpu_buffer->dropped_events);
2629 goto out_reset;
2630 }
2631
2632 ret = rb_handle_head_page(cpu_buffer,
2633 tail_page,
2634 next_page);
2635 if (ret < 0)
2636 goto out_reset;
2637 if (ret)
2638 goto out_again;
2639 } else {
2640 /*
2641 * We need to be careful here too. The
2642 * commit page could still be on the reader
2643 * page. We could have a small buffer, and
2644 * have filled up the buffer with events
2645 * from interrupts and such, and wrapped.
2646 *
2647 * Note, if the tail page is also the on the
2648 * reader_page, we let it move out.
2649 */
2650 if (unlikely((cpu_buffer->commit_page !=
2651 cpu_buffer->tail_page) &&
2652 (cpu_buffer->commit_page ==
2653 cpu_buffer->reader_page))) {
2654 local_inc(&cpu_buffer->commit_overrun);
2655 goto out_reset;
2656 }
2657 }
2658 }
2659
2660 rb_tail_page_update(cpu_buffer, tail_page, next_page);
2661
2662 out_again:
2663
2664 rb_reset_tail(cpu_buffer, tail, info);
2665
2666 /* Commit what we have for now. */
2667 rb_end_commit(cpu_buffer);
2668 /* rb_end_commit() decs committing */
2669 local_inc(&cpu_buffer->committing);
2670
2671 /* fail and let the caller try again */
2672 return ERR_PTR(-EAGAIN);
2673
2674 out_reset:
2675 /* reset write */
2676 rb_reset_tail(cpu_buffer, tail, info);
2677
2678 return NULL;
2679 }
2680
2681 /* Slow path */
2682 static struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_event * event,u64 delta,bool abs)2683 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2684 {
2685 if (abs)
2686 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2687 else
2688 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2689
2690 /* Not the first event on the page, or not delta? */
2691 if (abs || rb_event_index(event)) {
2692 event->time_delta = delta & TS_MASK;
2693 event->array[0] = delta >> TS_SHIFT;
2694 } else {
2695 /* nope, just zero it */
2696 event->time_delta = 0;
2697 event->array[0] = 0;
2698 }
2699
2700 return skip_time_extend(event);
2701 }
2702
2703 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2704 struct ring_buffer_event *event);
2705
2706 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_stable(void)2707 static inline bool sched_clock_stable(void)
2708 {
2709 return true;
2710 }
2711 #endif
2712
2713 static void
rb_check_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)2714 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2715 struct rb_event_info *info)
2716 {
2717 u64 write_stamp;
2718
2719 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2720 (unsigned long long)info->delta,
2721 (unsigned long long)info->ts,
2722 (unsigned long long)info->before,
2723 (unsigned long long)info->after,
2724 (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2725 sched_clock_stable() ? "" :
2726 "If you just came from a suspend/resume,\n"
2727 "please switch to the trace global clock:\n"
2728 " echo global > /sys/kernel/debug/tracing/trace_clock\n"
2729 "or add trace_clock=global to the kernel command line\n");
2730 }
2731
rb_add_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event ** event,struct rb_event_info * info,u64 * delta,unsigned int * length)2732 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2733 struct ring_buffer_event **event,
2734 struct rb_event_info *info,
2735 u64 *delta,
2736 unsigned int *length)
2737 {
2738 bool abs = info->add_timestamp &
2739 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2740
2741 if (unlikely(info->delta > (1ULL << 59))) {
2742 /* did the clock go backwards */
2743 if (info->before == info->after && info->before > info->ts) {
2744 /* not interrupted */
2745 static int once;
2746
2747 /*
2748 * This is possible with a recalibrating of the TSC.
2749 * Do not produce a call stack, but just report it.
2750 */
2751 if (!once) {
2752 once++;
2753 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2754 info->before, info->ts);
2755 }
2756 } else
2757 rb_check_timestamp(cpu_buffer, info);
2758 if (!abs)
2759 info->delta = 0;
2760 }
2761 *event = rb_add_time_stamp(*event, info->delta, abs);
2762 *length -= RB_LEN_TIME_EXTEND;
2763 *delta = 0;
2764 }
2765
2766 /**
2767 * rb_update_event - update event type and data
2768 * @cpu_buffer: The per cpu buffer of the @event
2769 * @event: the event to update
2770 * @info: The info to update the @event with (contains length and delta)
2771 *
2772 * Update the type and data fields of the @event. The length
2773 * is the actual size that is written to the ring buffer,
2774 * and with this, we can determine what to place into the
2775 * data field.
2776 */
2777 static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,struct rb_event_info * info)2778 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2779 struct ring_buffer_event *event,
2780 struct rb_event_info *info)
2781 {
2782 unsigned length = info->length;
2783 u64 delta = info->delta;
2784
2785 /*
2786 * If we need to add a timestamp, then we
2787 * add it to the start of the reserved space.
2788 */
2789 if (unlikely(info->add_timestamp))
2790 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2791
2792 event->time_delta = delta;
2793 length -= RB_EVNT_HDR_SIZE;
2794 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2795 event->type_len = 0;
2796 event->array[0] = length;
2797 } else
2798 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2799 }
2800
rb_calculate_event_length(unsigned length)2801 static unsigned rb_calculate_event_length(unsigned length)
2802 {
2803 struct ring_buffer_event event; /* Used only for sizeof array */
2804
2805 /* zero length can cause confusions */
2806 if (!length)
2807 length++;
2808
2809 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2810 length += sizeof(event.array[0]);
2811
2812 length += RB_EVNT_HDR_SIZE;
2813 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2814
2815 /*
2816 * In case the time delta is larger than the 27 bits for it
2817 * in the header, we need to add a timestamp. If another
2818 * event comes in when trying to discard this one to increase
2819 * the length, then the timestamp will be added in the allocated
2820 * space of this event. If length is bigger than the size needed
2821 * for the TIME_EXTEND, then padding has to be used. The events
2822 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2823 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2824 * As length is a multiple of 4, we only need to worry if it
2825 * is 12 (RB_LEN_TIME_EXTEND + 4).
2826 */
2827 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2828 length += RB_ALIGNMENT;
2829
2830 return length;
2831 }
2832
2833 static __always_inline bool
rb_event_is_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2834 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2835 struct ring_buffer_event *event)
2836 {
2837 unsigned long addr = (unsigned long)event;
2838 unsigned long index;
2839
2840 index = rb_event_index(event);
2841 addr &= PAGE_MASK;
2842
2843 return cpu_buffer->commit_page->page == (void *)addr &&
2844 rb_commit_index(cpu_buffer) == index;
2845 }
2846
rb_time_delta(struct ring_buffer_event * event)2847 static u64 rb_time_delta(struct ring_buffer_event *event)
2848 {
2849 switch (event->type_len) {
2850 case RINGBUF_TYPE_PADDING:
2851 return 0;
2852
2853 case RINGBUF_TYPE_TIME_EXTEND:
2854 return ring_buffer_event_time_stamp(event);
2855
2856 case RINGBUF_TYPE_TIME_STAMP:
2857 return 0;
2858
2859 case RINGBUF_TYPE_DATA:
2860 return event->time_delta;
2861 default:
2862 return 0;
2863 }
2864 }
2865
2866 static inline int
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2867 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2868 struct ring_buffer_event *event)
2869 {
2870 unsigned long new_index, old_index;
2871 struct buffer_page *bpage;
2872 unsigned long index;
2873 unsigned long addr;
2874 u64 write_stamp;
2875 u64 delta;
2876
2877 new_index = rb_event_index(event);
2878 old_index = new_index + rb_event_ts_length(event);
2879 addr = (unsigned long)event;
2880 addr &= PAGE_MASK;
2881
2882 bpage = READ_ONCE(cpu_buffer->tail_page);
2883
2884 delta = rb_time_delta(event);
2885
2886 if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
2887 return 0;
2888
2889 /* Make sure the write stamp is read before testing the location */
2890 barrier();
2891
2892 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2893 unsigned long write_mask =
2894 local_read(&bpage->write) & ~RB_WRITE_MASK;
2895 unsigned long event_length = rb_event_length(event);
2896
2897 /* Something came in, can't discard */
2898 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
2899 write_stamp, write_stamp - delta))
2900 return 0;
2901
2902 /*
2903 * It's possible that the event time delta is zero
2904 * (has the same time stamp as the previous event)
2905 * in which case write_stamp and before_stamp could
2906 * be the same. In such a case, force before_stamp
2907 * to be different than write_stamp. It doesn't
2908 * matter what it is, as long as its different.
2909 */
2910 if (!delta)
2911 rb_time_set(&cpu_buffer->before_stamp, 0);
2912
2913 /*
2914 * If an event were to come in now, it would see that the
2915 * write_stamp and the before_stamp are different, and assume
2916 * that this event just added itself before updating
2917 * the write stamp. The interrupting event will fix the
2918 * write stamp for us, and use the before stamp as its delta.
2919 */
2920
2921 /*
2922 * This is on the tail page. It is possible that
2923 * a write could come in and move the tail page
2924 * and write to the next page. That is fine
2925 * because we just shorten what is on this page.
2926 */
2927 old_index += write_mask;
2928 new_index += write_mask;
2929 index = local_cmpxchg(&bpage->write, old_index, new_index);
2930 if (index == old_index) {
2931 /* update counters */
2932 local_sub(event_length, &cpu_buffer->entries_bytes);
2933 return 1;
2934 }
2935 }
2936
2937 /* could not discard */
2938 return 0;
2939 }
2940
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)2941 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2942 {
2943 local_inc(&cpu_buffer->committing);
2944 local_inc(&cpu_buffer->commits);
2945 }
2946
2947 static __always_inline void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)2948 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2949 {
2950 unsigned long max_count;
2951
2952 /*
2953 * We only race with interrupts and NMIs on this CPU.
2954 * If we own the commit event, then we can commit
2955 * all others that interrupted us, since the interruptions
2956 * are in stack format (they finish before they come
2957 * back to us). This allows us to do a simple loop to
2958 * assign the commit to the tail.
2959 */
2960 again:
2961 max_count = cpu_buffer->nr_pages * 100;
2962
2963 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2964 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2965 return;
2966 if (RB_WARN_ON(cpu_buffer,
2967 rb_is_reader_page(cpu_buffer->tail_page)))
2968 return;
2969 /*
2970 * No need for a memory barrier here, as the update
2971 * of the tail_page did it for this page.
2972 */
2973 local_set(&cpu_buffer->commit_page->page->commit,
2974 rb_page_write(cpu_buffer->commit_page));
2975 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2976 /* add barrier to keep gcc from optimizing too much */
2977 barrier();
2978 }
2979 while (rb_commit_index(cpu_buffer) !=
2980 rb_page_write(cpu_buffer->commit_page)) {
2981
2982 /* Make sure the readers see the content of what is committed. */
2983 smp_wmb();
2984 local_set(&cpu_buffer->commit_page->page->commit,
2985 rb_page_write(cpu_buffer->commit_page));
2986 RB_WARN_ON(cpu_buffer,
2987 local_read(&cpu_buffer->commit_page->page->commit) &
2988 ~RB_WRITE_MASK);
2989 barrier();
2990 }
2991
2992 /* again, keep gcc from optimizing */
2993 barrier();
2994
2995 /*
2996 * If an interrupt came in just after the first while loop
2997 * and pushed the tail page forward, we will be left with
2998 * a dangling commit that will never go forward.
2999 */
3000 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3001 goto again;
3002 }
3003
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)3004 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3005 {
3006 unsigned long commits;
3007
3008 if (RB_WARN_ON(cpu_buffer,
3009 !local_read(&cpu_buffer->committing)))
3010 return;
3011
3012 again:
3013 commits = local_read(&cpu_buffer->commits);
3014 /* synchronize with interrupts */
3015 barrier();
3016 if (local_read(&cpu_buffer->committing) == 1)
3017 rb_set_commit_to_write(cpu_buffer);
3018
3019 local_dec(&cpu_buffer->committing);
3020
3021 /* synchronize with interrupts */
3022 barrier();
3023
3024 /*
3025 * Need to account for interrupts coming in between the
3026 * updating of the commit page and the clearing of the
3027 * committing counter.
3028 */
3029 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3030 !local_read(&cpu_buffer->committing)) {
3031 local_inc(&cpu_buffer->committing);
3032 goto again;
3033 }
3034 }
3035
rb_event_discard(struct ring_buffer_event * event)3036 static inline void rb_event_discard(struct ring_buffer_event *event)
3037 {
3038 if (extended_time(event))
3039 event = skip_time_extend(event);
3040
3041 /* array[0] holds the actual length for the discarded event */
3042 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3043 event->type_len = RINGBUF_TYPE_PADDING;
3044 /* time delta must be non zero */
3045 if (!event->time_delta)
3046 event->time_delta = 1;
3047 }
3048
rb_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3049 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
3050 struct ring_buffer_event *event)
3051 {
3052 local_inc(&cpu_buffer->entries);
3053 rb_end_commit(cpu_buffer);
3054 }
3055
3056 static __always_inline void
rb_wakeups(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)3057 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3058 {
3059 if (buffer->irq_work.waiters_pending) {
3060 buffer->irq_work.waiters_pending = false;
3061 /* irq_work_queue() supplies it's own memory barriers */
3062 irq_work_queue(&buffer->irq_work.work);
3063 }
3064
3065 if (cpu_buffer->irq_work.waiters_pending) {
3066 cpu_buffer->irq_work.waiters_pending = false;
3067 /* irq_work_queue() supplies it's own memory barriers */
3068 irq_work_queue(&cpu_buffer->irq_work.work);
3069 }
3070
3071 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3072 return;
3073
3074 if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3075 return;
3076
3077 if (!cpu_buffer->irq_work.full_waiters_pending)
3078 return;
3079
3080 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3081
3082 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3083 return;
3084
3085 cpu_buffer->irq_work.wakeup_full = true;
3086 cpu_buffer->irq_work.full_waiters_pending = false;
3087 /* irq_work_queue() supplies it's own memory barriers */
3088 irq_work_queue(&cpu_buffer->irq_work.work);
3089 }
3090
3091 /*
3092 * The lock and unlock are done within a preempt disable section.
3093 * The current_context per_cpu variable can only be modified
3094 * by the current task between lock and unlock. But it can
3095 * be modified more than once via an interrupt. To pass this
3096 * information from the lock to the unlock without having to
3097 * access the 'in_interrupt()' functions again (which do show
3098 * a bit of overhead in something as critical as function tracing,
3099 * we use a bitmask trick.
3100 *
3101 * bit 1 = NMI context
3102 * bit 2 = IRQ context
3103 * bit 3 = SoftIRQ context
3104 * bit 4 = normal context.
3105 *
3106 * This works because this is the order of contexts that can
3107 * preempt other contexts. A SoftIRQ never preempts an IRQ
3108 * context.
3109 *
3110 * When the context is determined, the corresponding bit is
3111 * checked and set (if it was set, then a recursion of that context
3112 * happened).
3113 *
3114 * On unlock, we need to clear this bit. To do so, just subtract
3115 * 1 from the current_context and AND it to itself.
3116 *
3117 * (binary)
3118 * 101 - 1 = 100
3119 * 101 & 100 = 100 (clearing bit zero)
3120 *
3121 * 1010 - 1 = 1001
3122 * 1010 & 1001 = 1000 (clearing bit 1)
3123 *
3124 * The least significant bit can be cleared this way, and it
3125 * just so happens that it is the same bit corresponding to
3126 * the current context.
3127 *
3128 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3129 * is set when a recursion is detected at the current context, and if
3130 * the TRANSITION bit is already set, it will fail the recursion.
3131 * This is needed because there's a lag between the changing of
3132 * interrupt context and updating the preempt count. In this case,
3133 * a false positive will be found. To handle this, one extra recursion
3134 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3135 * bit is already set, then it is considered a recursion and the function
3136 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3137 *
3138 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3139 * to be cleared. Even if it wasn't the context that set it. That is,
3140 * if an interrupt comes in while NORMAL bit is set and the ring buffer
3141 * is called before preempt_count() is updated, since the check will
3142 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3143 * NMI then comes in, it will set the NMI bit, but when the NMI code
3144 * does the trace_recursive_unlock() it will clear the TRANSTION bit
3145 * and leave the NMI bit set. But this is fine, because the interrupt
3146 * code that set the TRANSITION bit will then clear the NMI bit when it
3147 * calls trace_recursive_unlock(). If another NMI comes in, it will
3148 * set the TRANSITION bit and continue.
3149 *
3150 * Note: The TRANSITION bit only handles a single transition between context.
3151 */
3152
3153 static __always_inline int
trace_recursive_lock(struct ring_buffer_per_cpu * cpu_buffer)3154 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3155 {
3156 unsigned int val = cpu_buffer->current_context;
3157 unsigned long pc = preempt_count();
3158 int bit;
3159
3160 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
3161 bit = RB_CTX_NORMAL;
3162 else
3163 bit = pc & NMI_MASK ? RB_CTX_NMI :
3164 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
3165
3166 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3167 /*
3168 * It is possible that this was called by transitioning
3169 * between interrupt context, and preempt_count() has not
3170 * been updated yet. In this case, use the TRANSITION bit.
3171 */
3172 bit = RB_CTX_TRANSITION;
3173 if (val & (1 << (bit + cpu_buffer->nest)))
3174 return 1;
3175 }
3176
3177 val |= (1 << (bit + cpu_buffer->nest));
3178 cpu_buffer->current_context = val;
3179
3180 return 0;
3181 }
3182
3183 static __always_inline void
trace_recursive_unlock(struct ring_buffer_per_cpu * cpu_buffer)3184 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3185 {
3186 cpu_buffer->current_context &=
3187 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3188 }
3189
3190 /* The recursive locking above uses 5 bits */
3191 #define NESTED_BITS 5
3192
3193 /**
3194 * ring_buffer_nest_start - Allow to trace while nested
3195 * @buffer: The ring buffer to modify
3196 *
3197 * The ring buffer has a safety mechanism to prevent recursion.
3198 * But there may be a case where a trace needs to be done while
3199 * tracing something else. In this case, calling this function
3200 * will allow this function to nest within a currently active
3201 * ring_buffer_lock_reserve().
3202 *
3203 * Call this function before calling another ring_buffer_lock_reserve() and
3204 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3205 */
ring_buffer_nest_start(struct trace_buffer * buffer)3206 void ring_buffer_nest_start(struct trace_buffer *buffer)
3207 {
3208 struct ring_buffer_per_cpu *cpu_buffer;
3209 int cpu;
3210
3211 /* Enabled by ring_buffer_nest_end() */
3212 preempt_disable_notrace();
3213 cpu = raw_smp_processor_id();
3214 cpu_buffer = buffer->buffers[cpu];
3215 /* This is the shift value for the above recursive locking */
3216 cpu_buffer->nest += NESTED_BITS;
3217 }
3218
3219 /**
3220 * ring_buffer_nest_end - Allow to trace while nested
3221 * @buffer: The ring buffer to modify
3222 *
3223 * Must be called after ring_buffer_nest_start() and after the
3224 * ring_buffer_unlock_commit().
3225 */
ring_buffer_nest_end(struct trace_buffer * buffer)3226 void ring_buffer_nest_end(struct trace_buffer *buffer)
3227 {
3228 struct ring_buffer_per_cpu *cpu_buffer;
3229 int cpu;
3230
3231 /* disabled by ring_buffer_nest_start() */
3232 cpu = raw_smp_processor_id();
3233 cpu_buffer = buffer->buffers[cpu];
3234 /* This is the shift value for the above recursive locking */
3235 cpu_buffer->nest -= NESTED_BITS;
3236 preempt_enable_notrace();
3237 }
3238
3239 /**
3240 * ring_buffer_unlock_commit - commit a reserved
3241 * @buffer: The buffer to commit to
3242 * @event: The event pointer to commit.
3243 *
3244 * This commits the data to the ring buffer, and releases any locks held.
3245 *
3246 * Must be paired with ring_buffer_lock_reserve.
3247 */
ring_buffer_unlock_commit(struct trace_buffer * buffer,struct ring_buffer_event * event)3248 int ring_buffer_unlock_commit(struct trace_buffer *buffer,
3249 struct ring_buffer_event *event)
3250 {
3251 struct ring_buffer_per_cpu *cpu_buffer;
3252 int cpu = raw_smp_processor_id();
3253
3254 cpu_buffer = buffer->buffers[cpu];
3255
3256 rb_commit(cpu_buffer, event);
3257
3258 rb_wakeups(buffer, cpu_buffer);
3259
3260 trace_recursive_unlock(cpu_buffer);
3261
3262 preempt_enable_notrace();
3263
3264 return 0;
3265 }
3266 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3267
3268 static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)3269 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3270 struct rb_event_info *info)
3271 {
3272 struct ring_buffer_event *event;
3273 struct buffer_page *tail_page;
3274 unsigned long tail, write, w;
3275 bool a_ok;
3276 bool b_ok;
3277
3278 /* Don't let the compiler play games with cpu_buffer->tail_page */
3279 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3280
3281 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK;
3282 barrier();
3283 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3284 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3285 barrier();
3286 info->ts = rb_time_stamp(cpu_buffer->buffer);
3287
3288 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3289 info->delta = info->ts;
3290 } else {
3291 /*
3292 * If interrupting an event time update, we may need an
3293 * absolute timestamp.
3294 * Don't bother if this is the start of a new page (w == 0).
3295 */
3296 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3297 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3298 info->length += RB_LEN_TIME_EXTEND;
3299 } else {
3300 info->delta = info->ts - info->after;
3301 if (unlikely(test_time_stamp(info->delta))) {
3302 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3303 info->length += RB_LEN_TIME_EXTEND;
3304 }
3305 }
3306 }
3307
3308 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts);
3309
3310 /*C*/ write = local_add_return(info->length, &tail_page->write);
3311
3312 /* set write to only the index of the write */
3313 write &= RB_WRITE_MASK;
3314
3315 tail = write - info->length;
3316
3317 /* See if we shot pass the end of this buffer page */
3318 if (unlikely(write > BUF_PAGE_SIZE)) {
3319 /* before and after may now different, fix it up*/
3320 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3321 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3322 if (a_ok && b_ok && info->before != info->after)
3323 (void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3324 info->before, info->after);
3325 return rb_move_tail(cpu_buffer, tail, info);
3326 }
3327
3328 if (likely(tail == w)) {
3329 u64 save_before;
3330 bool s_ok;
3331
3332 /* Nothing interrupted us between A and C */
3333 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts);
3334 barrier();
3335 /*E*/ s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3336 RB_WARN_ON(cpu_buffer, !s_ok);
3337 if (likely(!(info->add_timestamp &
3338 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3339 /* This did not interrupt any time update */
3340 info->delta = info->ts - info->after;
3341 else
3342 /* Just use full timestamp for inerrupting event */
3343 info->delta = info->ts;
3344 barrier();
3345 if (unlikely(info->ts != save_before)) {
3346 /* SLOW PATH - Interrupted between C and E */
3347
3348 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3349 RB_WARN_ON(cpu_buffer, !a_ok);
3350
3351 /* Write stamp must only go forward */
3352 if (save_before > info->after) {
3353 /*
3354 * We do not care about the result, only that
3355 * it gets updated atomically.
3356 */
3357 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3358 info->after, save_before);
3359 }
3360 }
3361 } else {
3362 u64 ts;
3363 /* SLOW PATH - Interrupted between A and C */
3364 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3365 /* Was interrupted before here, write_stamp must be valid */
3366 RB_WARN_ON(cpu_buffer, !a_ok);
3367 ts = rb_time_stamp(cpu_buffer->buffer);
3368 barrier();
3369 /*E*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3370 info->after < ts &&
3371 rb_time_cmpxchg(&cpu_buffer->write_stamp,
3372 info->after, ts)) {
3373 /* Nothing came after this event between C and E */
3374 info->delta = ts - info->after;
3375 info->ts = ts;
3376 } else {
3377 /*
3378 * Interrupted beween C and E:
3379 * Lost the previous events time stamp. Just set the
3380 * delta to zero, and this will be the same time as
3381 * the event this event interrupted. And the events that
3382 * came after this will still be correct (as they would
3383 * have built their delta on the previous event.
3384 */
3385 info->delta = 0;
3386 }
3387 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3388 }
3389
3390 /*
3391 * If this is the first commit on the page, then it has the same
3392 * timestamp as the page itself.
3393 */
3394 if (unlikely(!tail && !(info->add_timestamp &
3395 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3396 info->delta = 0;
3397
3398 /* We reserved something on the buffer */
3399
3400 event = __rb_page_index(tail_page, tail);
3401 rb_update_event(cpu_buffer, event, info);
3402
3403 local_inc(&tail_page->entries);
3404
3405 /*
3406 * If this is the first commit on the page, then update
3407 * its timestamp.
3408 */
3409 if (unlikely(!tail))
3410 tail_page->page->time_stamp = info->ts;
3411
3412 /* account for these added bytes */
3413 local_add(info->length, &cpu_buffer->entries_bytes);
3414
3415 return event;
3416 }
3417
3418 static __always_inline struct ring_buffer_event *
rb_reserve_next_event(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)3419 rb_reserve_next_event(struct trace_buffer *buffer,
3420 struct ring_buffer_per_cpu *cpu_buffer,
3421 unsigned long length)
3422 {
3423 struct ring_buffer_event *event;
3424 struct rb_event_info info;
3425 int nr_loops = 0;
3426 int add_ts_default;
3427
3428 rb_start_commit(cpu_buffer);
3429 /* The commit page can not change after this */
3430
3431 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3432 /*
3433 * Due to the ability to swap a cpu buffer from a buffer
3434 * it is possible it was swapped before we committed.
3435 * (committing stops a swap). We check for it here and
3436 * if it happened, we have to fail the write.
3437 */
3438 barrier();
3439 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3440 local_dec(&cpu_buffer->committing);
3441 local_dec(&cpu_buffer->commits);
3442 return NULL;
3443 }
3444 #endif
3445
3446 info.length = rb_calculate_event_length(length);
3447
3448 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3449 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3450 info.length += RB_LEN_TIME_EXTEND;
3451 } else {
3452 add_ts_default = RB_ADD_STAMP_NONE;
3453 }
3454
3455 again:
3456 info.add_timestamp = add_ts_default;
3457 info.delta = 0;
3458
3459 /*
3460 * We allow for interrupts to reenter here and do a trace.
3461 * If one does, it will cause this original code to loop
3462 * back here. Even with heavy interrupts happening, this
3463 * should only happen a few times in a row. If this happens
3464 * 1000 times in a row, there must be either an interrupt
3465 * storm or we have something buggy.
3466 * Bail!
3467 */
3468 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3469 goto out_fail;
3470
3471 event = __rb_reserve_next(cpu_buffer, &info);
3472
3473 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3474 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3475 info.length -= RB_LEN_TIME_EXTEND;
3476 goto again;
3477 }
3478
3479 if (likely(event))
3480 return event;
3481 out_fail:
3482 rb_end_commit(cpu_buffer);
3483 return NULL;
3484 }
3485
3486 /**
3487 * ring_buffer_lock_reserve - reserve a part of the buffer
3488 * @buffer: the ring buffer to reserve from
3489 * @length: the length of the data to reserve (excluding event header)
3490 *
3491 * Returns a reserved event on the ring buffer to copy directly to.
3492 * The user of this interface will need to get the body to write into
3493 * and can use the ring_buffer_event_data() interface.
3494 *
3495 * The length is the length of the data needed, not the event length
3496 * which also includes the event header.
3497 *
3498 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3499 * If NULL is returned, then nothing has been allocated or locked.
3500 */
3501 struct ring_buffer_event *
ring_buffer_lock_reserve(struct trace_buffer * buffer,unsigned long length)3502 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3503 {
3504 struct ring_buffer_per_cpu *cpu_buffer;
3505 struct ring_buffer_event *event;
3506 int cpu;
3507
3508 /* If we are tracing schedule, we don't want to recurse */
3509 preempt_disable_notrace();
3510
3511 if (unlikely(atomic_read(&buffer->record_disabled)))
3512 goto out;
3513
3514 cpu = raw_smp_processor_id();
3515
3516 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3517 goto out;
3518
3519 cpu_buffer = buffer->buffers[cpu];
3520
3521 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3522 goto out;
3523
3524 if (unlikely(length > BUF_MAX_DATA_SIZE))
3525 goto out;
3526
3527 if (unlikely(trace_recursive_lock(cpu_buffer)))
3528 goto out;
3529
3530 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3531 if (!event)
3532 goto out_unlock;
3533
3534 return event;
3535
3536 out_unlock:
3537 trace_recursive_unlock(cpu_buffer);
3538 out:
3539 preempt_enable_notrace();
3540 return NULL;
3541 }
3542 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3543
3544 /*
3545 * Decrement the entries to the page that an event is on.
3546 * The event does not even need to exist, only the pointer
3547 * to the page it is on. This may only be called before the commit
3548 * takes place.
3549 */
3550 static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3551 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3552 struct ring_buffer_event *event)
3553 {
3554 unsigned long addr = (unsigned long)event;
3555 struct buffer_page *bpage = cpu_buffer->commit_page;
3556 struct buffer_page *start;
3557
3558 addr &= PAGE_MASK;
3559
3560 /* Do the likely case first */
3561 if (likely(bpage->page == (void *)addr)) {
3562 local_dec(&bpage->entries);
3563 return;
3564 }
3565
3566 /*
3567 * Because the commit page may be on the reader page we
3568 * start with the next page and check the end loop there.
3569 */
3570 rb_inc_page(cpu_buffer, &bpage);
3571 start = bpage;
3572 do {
3573 if (bpage->page == (void *)addr) {
3574 local_dec(&bpage->entries);
3575 return;
3576 }
3577 rb_inc_page(cpu_buffer, &bpage);
3578 } while (bpage != start);
3579
3580 /* commit not part of this buffer?? */
3581 RB_WARN_ON(cpu_buffer, 1);
3582 }
3583
3584 /**
3585 * ring_buffer_commit_discard - discard an event that has not been committed
3586 * @buffer: the ring buffer
3587 * @event: non committed event to discard
3588 *
3589 * Sometimes an event that is in the ring buffer needs to be ignored.
3590 * This function lets the user discard an event in the ring buffer
3591 * and then that event will not be read later.
3592 *
3593 * This function only works if it is called before the item has been
3594 * committed. It will try to free the event from the ring buffer
3595 * if another event has not been added behind it.
3596 *
3597 * If another event has been added behind it, it will set the event
3598 * up as discarded, and perform the commit.
3599 *
3600 * If this function is called, do not call ring_buffer_unlock_commit on
3601 * the event.
3602 */
ring_buffer_discard_commit(struct trace_buffer * buffer,struct ring_buffer_event * event)3603 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3604 struct ring_buffer_event *event)
3605 {
3606 struct ring_buffer_per_cpu *cpu_buffer;
3607 int cpu;
3608
3609 /* The event is discarded regardless */
3610 rb_event_discard(event);
3611
3612 cpu = smp_processor_id();
3613 cpu_buffer = buffer->buffers[cpu];
3614
3615 /*
3616 * This must only be called if the event has not been
3617 * committed yet. Thus we can assume that preemption
3618 * is still disabled.
3619 */
3620 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3621
3622 rb_decrement_entry(cpu_buffer, event);
3623 if (rb_try_to_discard(cpu_buffer, event))
3624 goto out;
3625
3626 out:
3627 rb_end_commit(cpu_buffer);
3628
3629 trace_recursive_unlock(cpu_buffer);
3630
3631 preempt_enable_notrace();
3632
3633 }
3634 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3635
3636 /**
3637 * ring_buffer_write - write data to the buffer without reserving
3638 * @buffer: The ring buffer to write to.
3639 * @length: The length of the data being written (excluding the event header)
3640 * @data: The data to write to the buffer.
3641 *
3642 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3643 * one function. If you already have the data to write to the buffer, it
3644 * may be easier to simply call this function.
3645 *
3646 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3647 * and not the length of the event which would hold the header.
3648 */
ring_buffer_write(struct trace_buffer * buffer,unsigned long length,void * data)3649 int ring_buffer_write(struct trace_buffer *buffer,
3650 unsigned long length,
3651 void *data)
3652 {
3653 struct ring_buffer_per_cpu *cpu_buffer;
3654 struct ring_buffer_event *event;
3655 void *body;
3656 int ret = -EBUSY;
3657 int cpu;
3658
3659 preempt_disable_notrace();
3660
3661 if (atomic_read(&buffer->record_disabled))
3662 goto out;
3663
3664 cpu = raw_smp_processor_id();
3665
3666 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3667 goto out;
3668
3669 cpu_buffer = buffer->buffers[cpu];
3670
3671 if (atomic_read(&cpu_buffer->record_disabled))
3672 goto out;
3673
3674 if (length > BUF_MAX_DATA_SIZE)
3675 goto out;
3676
3677 if (unlikely(trace_recursive_lock(cpu_buffer)))
3678 goto out;
3679
3680 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3681 if (!event)
3682 goto out_unlock;
3683
3684 body = rb_event_data(event);
3685
3686 memcpy(body, data, length);
3687
3688 rb_commit(cpu_buffer, event);
3689
3690 rb_wakeups(buffer, cpu_buffer);
3691
3692 ret = 0;
3693
3694 out_unlock:
3695 trace_recursive_unlock(cpu_buffer);
3696
3697 out:
3698 preempt_enable_notrace();
3699
3700 return ret;
3701 }
3702 EXPORT_SYMBOL_GPL(ring_buffer_write);
3703
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)3704 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3705 {
3706 struct buffer_page *reader = cpu_buffer->reader_page;
3707 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3708 struct buffer_page *commit = cpu_buffer->commit_page;
3709
3710 /* In case of error, head will be NULL */
3711 if (unlikely(!head))
3712 return true;
3713
3714 /* Reader should exhaust content in reader page */
3715 if (reader->read != rb_page_commit(reader))
3716 return false;
3717
3718 /*
3719 * If writers are committing on the reader page, knowing all
3720 * committed content has been read, the ring buffer is empty.
3721 */
3722 if (commit == reader)
3723 return true;
3724
3725 /*
3726 * If writers are committing on a page other than reader page
3727 * and head page, there should always be content to read.
3728 */
3729 if (commit != head)
3730 return false;
3731
3732 /*
3733 * Writers are committing on the head page, we just need
3734 * to care about there're committed data, and the reader will
3735 * swap reader page with head page when it is to read data.
3736 */
3737 return rb_page_commit(commit) == 0;
3738 }
3739
3740 /**
3741 * ring_buffer_record_disable - stop all writes into the buffer
3742 * @buffer: The ring buffer to stop writes to.
3743 *
3744 * This prevents all writes to the buffer. Any attempt to write
3745 * to the buffer after this will fail and return NULL.
3746 *
3747 * The caller should call synchronize_rcu() after this.
3748 */
ring_buffer_record_disable(struct trace_buffer * buffer)3749 void ring_buffer_record_disable(struct trace_buffer *buffer)
3750 {
3751 atomic_inc(&buffer->record_disabled);
3752 }
3753 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3754
3755 /**
3756 * ring_buffer_record_enable - enable writes to the buffer
3757 * @buffer: The ring buffer to enable writes
3758 *
3759 * Note, multiple disables will need the same number of enables
3760 * to truly enable the writing (much like preempt_disable).
3761 */
ring_buffer_record_enable(struct trace_buffer * buffer)3762 void ring_buffer_record_enable(struct trace_buffer *buffer)
3763 {
3764 atomic_dec(&buffer->record_disabled);
3765 }
3766 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3767
3768 /**
3769 * ring_buffer_record_off - stop all writes into the buffer
3770 * @buffer: The ring buffer to stop writes to.
3771 *
3772 * This prevents all writes to the buffer. Any attempt to write
3773 * to the buffer after this will fail and return NULL.
3774 *
3775 * This is different than ring_buffer_record_disable() as
3776 * it works like an on/off switch, where as the disable() version
3777 * must be paired with a enable().
3778 */
ring_buffer_record_off(struct trace_buffer * buffer)3779 void ring_buffer_record_off(struct trace_buffer *buffer)
3780 {
3781 unsigned int rd;
3782 unsigned int new_rd;
3783
3784 do {
3785 rd = atomic_read(&buffer->record_disabled);
3786 new_rd = rd | RB_BUFFER_OFF;
3787 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3788 }
3789 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3790
3791 /**
3792 * ring_buffer_record_on - restart writes into the buffer
3793 * @buffer: The ring buffer to start writes to.
3794 *
3795 * This enables all writes to the buffer that was disabled by
3796 * ring_buffer_record_off().
3797 *
3798 * This is different than ring_buffer_record_enable() as
3799 * it works like an on/off switch, where as the enable() version
3800 * must be paired with a disable().
3801 */
ring_buffer_record_on(struct trace_buffer * buffer)3802 void ring_buffer_record_on(struct trace_buffer *buffer)
3803 {
3804 unsigned int rd;
3805 unsigned int new_rd;
3806
3807 do {
3808 rd = atomic_read(&buffer->record_disabled);
3809 new_rd = rd & ~RB_BUFFER_OFF;
3810 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3811 }
3812 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3813
3814 /**
3815 * ring_buffer_record_is_on - return true if the ring buffer can write
3816 * @buffer: The ring buffer to see if write is enabled
3817 *
3818 * Returns true if the ring buffer is in a state that it accepts writes.
3819 */
ring_buffer_record_is_on(struct trace_buffer * buffer)3820 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
3821 {
3822 return !atomic_read(&buffer->record_disabled);
3823 }
3824
3825 /**
3826 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3827 * @buffer: The ring buffer to see if write is set enabled
3828 *
3829 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3830 * Note that this does NOT mean it is in a writable state.
3831 *
3832 * It may return true when the ring buffer has been disabled by
3833 * ring_buffer_record_disable(), as that is a temporary disabling of
3834 * the ring buffer.
3835 */
ring_buffer_record_is_set_on(struct trace_buffer * buffer)3836 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
3837 {
3838 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3839 }
3840
3841 /**
3842 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3843 * @buffer: The ring buffer to stop writes to.
3844 * @cpu: The CPU buffer to stop
3845 *
3846 * This prevents all writes to the buffer. Any attempt to write
3847 * to the buffer after this will fail and return NULL.
3848 *
3849 * The caller should call synchronize_rcu() after this.
3850 */
ring_buffer_record_disable_cpu(struct trace_buffer * buffer,int cpu)3851 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
3852 {
3853 struct ring_buffer_per_cpu *cpu_buffer;
3854
3855 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3856 return;
3857
3858 cpu_buffer = buffer->buffers[cpu];
3859 atomic_inc(&cpu_buffer->record_disabled);
3860 }
3861 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3862
3863 /**
3864 * ring_buffer_record_enable_cpu - enable writes to the buffer
3865 * @buffer: The ring buffer to enable writes
3866 * @cpu: The CPU to enable.
3867 *
3868 * Note, multiple disables will need the same number of enables
3869 * to truly enable the writing (much like preempt_disable).
3870 */
ring_buffer_record_enable_cpu(struct trace_buffer * buffer,int cpu)3871 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
3872 {
3873 struct ring_buffer_per_cpu *cpu_buffer;
3874
3875 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3876 return;
3877
3878 cpu_buffer = buffer->buffers[cpu];
3879 atomic_dec(&cpu_buffer->record_disabled);
3880 }
3881 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3882
3883 /*
3884 * The total entries in the ring buffer is the running counter
3885 * of entries entered into the ring buffer, minus the sum of
3886 * the entries read from the ring buffer and the number of
3887 * entries that were overwritten.
3888 */
3889 static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)3890 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3891 {
3892 return local_read(&cpu_buffer->entries) -
3893 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3894 }
3895
3896 /**
3897 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3898 * @buffer: The ring buffer
3899 * @cpu: The per CPU buffer to read from.
3900 */
ring_buffer_oldest_event_ts(struct trace_buffer * buffer,int cpu)3901 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
3902 {
3903 unsigned long flags;
3904 struct ring_buffer_per_cpu *cpu_buffer;
3905 struct buffer_page *bpage;
3906 u64 ret = 0;
3907
3908 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3909 return 0;
3910
3911 cpu_buffer = buffer->buffers[cpu];
3912 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3913 /*
3914 * if the tail is on reader_page, oldest time stamp is on the reader
3915 * page
3916 */
3917 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3918 bpage = cpu_buffer->reader_page;
3919 else
3920 bpage = rb_set_head_page(cpu_buffer);
3921 if (bpage)
3922 ret = bpage->page->time_stamp;
3923 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3924
3925 return ret;
3926 }
3927 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3928
3929 /**
3930 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3931 * @buffer: The ring buffer
3932 * @cpu: The per CPU buffer to read from.
3933 */
ring_buffer_bytes_cpu(struct trace_buffer * buffer,int cpu)3934 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
3935 {
3936 struct ring_buffer_per_cpu *cpu_buffer;
3937 unsigned long ret;
3938
3939 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3940 return 0;
3941
3942 cpu_buffer = buffer->buffers[cpu];
3943 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3944
3945 return ret;
3946 }
3947 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3948
3949 /**
3950 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3951 * @buffer: The ring buffer
3952 * @cpu: The per CPU buffer to get the entries from.
3953 */
ring_buffer_entries_cpu(struct trace_buffer * buffer,int cpu)3954 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
3955 {
3956 struct ring_buffer_per_cpu *cpu_buffer;
3957
3958 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3959 return 0;
3960
3961 cpu_buffer = buffer->buffers[cpu];
3962
3963 return rb_num_of_entries(cpu_buffer);
3964 }
3965 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3966
3967 /**
3968 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3969 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3970 * @buffer: The ring buffer
3971 * @cpu: The per CPU buffer to get the number of overruns from
3972 */
ring_buffer_overrun_cpu(struct trace_buffer * buffer,int cpu)3973 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
3974 {
3975 struct ring_buffer_per_cpu *cpu_buffer;
3976 unsigned long ret;
3977
3978 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3979 return 0;
3980
3981 cpu_buffer = buffer->buffers[cpu];
3982 ret = local_read(&cpu_buffer->overrun);
3983
3984 return ret;
3985 }
3986 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3987
3988 /**
3989 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3990 * commits failing due to the buffer wrapping around while there are uncommitted
3991 * events, such as during an interrupt storm.
3992 * @buffer: The ring buffer
3993 * @cpu: The per CPU buffer to get the number of overruns from
3994 */
3995 unsigned long
ring_buffer_commit_overrun_cpu(struct trace_buffer * buffer,int cpu)3996 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
3997 {
3998 struct ring_buffer_per_cpu *cpu_buffer;
3999 unsigned long ret;
4000
4001 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4002 return 0;
4003
4004 cpu_buffer = buffer->buffers[cpu];
4005 ret = local_read(&cpu_buffer->commit_overrun);
4006
4007 return ret;
4008 }
4009 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4010
4011 /**
4012 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4013 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4014 * @buffer: The ring buffer
4015 * @cpu: The per CPU buffer to get the number of overruns from
4016 */
4017 unsigned long
ring_buffer_dropped_events_cpu(struct trace_buffer * buffer,int cpu)4018 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4019 {
4020 struct ring_buffer_per_cpu *cpu_buffer;
4021 unsigned long ret;
4022
4023 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4024 return 0;
4025
4026 cpu_buffer = buffer->buffers[cpu];
4027 ret = local_read(&cpu_buffer->dropped_events);
4028
4029 return ret;
4030 }
4031 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4032
4033 /**
4034 * ring_buffer_read_events_cpu - get the number of events successfully read
4035 * @buffer: The ring buffer
4036 * @cpu: The per CPU buffer to get the number of events read
4037 */
4038 unsigned long
ring_buffer_read_events_cpu(struct trace_buffer * buffer,int cpu)4039 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4040 {
4041 struct ring_buffer_per_cpu *cpu_buffer;
4042
4043 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4044 return 0;
4045
4046 cpu_buffer = buffer->buffers[cpu];
4047 return cpu_buffer->read;
4048 }
4049 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4050
4051 /**
4052 * ring_buffer_entries - get the number of entries in a buffer
4053 * @buffer: The ring buffer
4054 *
4055 * Returns the total number of entries in the ring buffer
4056 * (all CPU entries)
4057 */
ring_buffer_entries(struct trace_buffer * buffer)4058 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4059 {
4060 struct ring_buffer_per_cpu *cpu_buffer;
4061 unsigned long entries = 0;
4062 int cpu;
4063
4064 /* if you care about this being correct, lock the buffer */
4065 for_each_buffer_cpu(buffer, cpu) {
4066 cpu_buffer = buffer->buffers[cpu];
4067 entries += rb_num_of_entries(cpu_buffer);
4068 }
4069
4070 return entries;
4071 }
4072 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4073
4074 /**
4075 * ring_buffer_overruns - get the number of overruns in buffer
4076 * @buffer: The ring buffer
4077 *
4078 * Returns the total number of overruns in the ring buffer
4079 * (all CPU entries)
4080 */
ring_buffer_overruns(struct trace_buffer * buffer)4081 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4082 {
4083 struct ring_buffer_per_cpu *cpu_buffer;
4084 unsigned long overruns = 0;
4085 int cpu;
4086
4087 /* if you care about this being correct, lock the buffer */
4088 for_each_buffer_cpu(buffer, cpu) {
4089 cpu_buffer = buffer->buffers[cpu];
4090 overruns += local_read(&cpu_buffer->overrun);
4091 }
4092
4093 return overruns;
4094 }
4095 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4096
rb_iter_reset(struct ring_buffer_iter * iter)4097 static void rb_iter_reset(struct ring_buffer_iter *iter)
4098 {
4099 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4100
4101 /* Iterator usage is expected to have record disabled */
4102 iter->head_page = cpu_buffer->reader_page;
4103 iter->head = cpu_buffer->reader_page->read;
4104 iter->next_event = iter->head;
4105
4106 iter->cache_reader_page = iter->head_page;
4107 iter->cache_read = cpu_buffer->read;
4108
4109 if (iter->head) {
4110 iter->read_stamp = cpu_buffer->read_stamp;
4111 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4112 } else {
4113 iter->read_stamp = iter->head_page->page->time_stamp;
4114 iter->page_stamp = iter->read_stamp;
4115 }
4116 }
4117
4118 /**
4119 * ring_buffer_iter_reset - reset an iterator
4120 * @iter: The iterator to reset
4121 *
4122 * Resets the iterator, so that it will start from the beginning
4123 * again.
4124 */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)4125 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4126 {
4127 struct ring_buffer_per_cpu *cpu_buffer;
4128 unsigned long flags;
4129
4130 if (!iter)
4131 return;
4132
4133 cpu_buffer = iter->cpu_buffer;
4134
4135 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4136 rb_iter_reset(iter);
4137 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4138 }
4139 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4140
4141 /**
4142 * ring_buffer_iter_empty - check if an iterator has no more to read
4143 * @iter: The iterator to check
4144 */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)4145 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4146 {
4147 struct ring_buffer_per_cpu *cpu_buffer;
4148 struct buffer_page *reader;
4149 struct buffer_page *head_page;
4150 struct buffer_page *commit_page;
4151 struct buffer_page *curr_commit_page;
4152 unsigned commit;
4153 u64 curr_commit_ts;
4154 u64 commit_ts;
4155
4156 cpu_buffer = iter->cpu_buffer;
4157 reader = cpu_buffer->reader_page;
4158 head_page = cpu_buffer->head_page;
4159 commit_page = cpu_buffer->commit_page;
4160 commit_ts = commit_page->page->time_stamp;
4161
4162 /*
4163 * When the writer goes across pages, it issues a cmpxchg which
4164 * is a mb(), which will synchronize with the rmb here.
4165 * (see rb_tail_page_update())
4166 */
4167 smp_rmb();
4168 commit = rb_page_commit(commit_page);
4169 /* We want to make sure that the commit page doesn't change */
4170 smp_rmb();
4171
4172 /* Make sure commit page didn't change */
4173 curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4174 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4175
4176 /* If the commit page changed, then there's more data */
4177 if (curr_commit_page != commit_page ||
4178 curr_commit_ts != commit_ts)
4179 return 0;
4180
4181 /* Still racy, as it may return a false positive, but that's OK */
4182 return ((iter->head_page == commit_page && iter->head >= commit) ||
4183 (iter->head_page == reader && commit_page == head_page &&
4184 head_page->read == commit &&
4185 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4186 }
4187 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4188
4189 static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)4190 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4191 struct ring_buffer_event *event)
4192 {
4193 u64 delta;
4194
4195 switch (event->type_len) {
4196 case RINGBUF_TYPE_PADDING:
4197 return;
4198
4199 case RINGBUF_TYPE_TIME_EXTEND:
4200 delta = ring_buffer_event_time_stamp(event);
4201 cpu_buffer->read_stamp += delta;
4202 return;
4203
4204 case RINGBUF_TYPE_TIME_STAMP:
4205 delta = ring_buffer_event_time_stamp(event);
4206 cpu_buffer->read_stamp = delta;
4207 return;
4208
4209 case RINGBUF_TYPE_DATA:
4210 cpu_buffer->read_stamp += event->time_delta;
4211 return;
4212
4213 default:
4214 RB_WARN_ON(cpu_buffer, 1);
4215 }
4216 return;
4217 }
4218
4219 static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)4220 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4221 struct ring_buffer_event *event)
4222 {
4223 u64 delta;
4224
4225 switch (event->type_len) {
4226 case RINGBUF_TYPE_PADDING:
4227 return;
4228
4229 case RINGBUF_TYPE_TIME_EXTEND:
4230 delta = ring_buffer_event_time_stamp(event);
4231 iter->read_stamp += delta;
4232 return;
4233
4234 case RINGBUF_TYPE_TIME_STAMP:
4235 delta = ring_buffer_event_time_stamp(event);
4236 iter->read_stamp = delta;
4237 return;
4238
4239 case RINGBUF_TYPE_DATA:
4240 iter->read_stamp += event->time_delta;
4241 return;
4242
4243 default:
4244 RB_WARN_ON(iter->cpu_buffer, 1);
4245 }
4246 return;
4247 }
4248
4249 static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)4250 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4251 {
4252 struct buffer_page *reader = NULL;
4253 unsigned long overwrite;
4254 unsigned long flags;
4255 int nr_loops = 0;
4256 int ret;
4257
4258 local_irq_save(flags);
4259 arch_spin_lock(&cpu_buffer->lock);
4260
4261 again:
4262 /*
4263 * This should normally only loop twice. But because the
4264 * start of the reader inserts an empty page, it causes
4265 * a case where we will loop three times. There should be no
4266 * reason to loop four times (that I know of).
4267 */
4268 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4269 reader = NULL;
4270 goto out;
4271 }
4272
4273 reader = cpu_buffer->reader_page;
4274
4275 /* If there's more to read, return this page */
4276 if (cpu_buffer->reader_page->read < rb_page_size(reader))
4277 goto out;
4278
4279 /* Never should we have an index greater than the size */
4280 if (RB_WARN_ON(cpu_buffer,
4281 cpu_buffer->reader_page->read > rb_page_size(reader)))
4282 goto out;
4283
4284 /* check if we caught up to the tail */
4285 reader = NULL;
4286 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4287 goto out;
4288
4289 /* Don't bother swapping if the ring buffer is empty */
4290 if (rb_num_of_entries(cpu_buffer) == 0)
4291 goto out;
4292
4293 /*
4294 * Reset the reader page to size zero.
4295 */
4296 local_set(&cpu_buffer->reader_page->write, 0);
4297 local_set(&cpu_buffer->reader_page->entries, 0);
4298 local_set(&cpu_buffer->reader_page->page->commit, 0);
4299 cpu_buffer->reader_page->real_end = 0;
4300
4301 spin:
4302 /*
4303 * Splice the empty reader page into the list around the head.
4304 */
4305 reader = rb_set_head_page(cpu_buffer);
4306 if (!reader)
4307 goto out;
4308 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4309 cpu_buffer->reader_page->list.prev = reader->list.prev;
4310
4311 /*
4312 * cpu_buffer->pages just needs to point to the buffer, it
4313 * has no specific buffer page to point to. Lets move it out
4314 * of our way so we don't accidentally swap it.
4315 */
4316 cpu_buffer->pages = reader->list.prev;
4317
4318 /* The reader page will be pointing to the new head */
4319 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
4320
4321 /*
4322 * We want to make sure we read the overruns after we set up our
4323 * pointers to the next object. The writer side does a
4324 * cmpxchg to cross pages which acts as the mb on the writer
4325 * side. Note, the reader will constantly fail the swap
4326 * while the writer is updating the pointers, so this
4327 * guarantees that the overwrite recorded here is the one we
4328 * want to compare with the last_overrun.
4329 */
4330 smp_mb();
4331 overwrite = local_read(&(cpu_buffer->overrun));
4332
4333 /*
4334 * Here's the tricky part.
4335 *
4336 * We need to move the pointer past the header page.
4337 * But we can only do that if a writer is not currently
4338 * moving it. The page before the header page has the
4339 * flag bit '1' set if it is pointing to the page we want.
4340 * but if the writer is in the process of moving it
4341 * than it will be '2' or already moved '0'.
4342 */
4343
4344 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4345
4346 /*
4347 * If we did not convert it, then we must try again.
4348 */
4349 if (!ret)
4350 goto spin;
4351
4352 /*
4353 * Yay! We succeeded in replacing the page.
4354 *
4355 * Now make the new head point back to the reader page.
4356 */
4357 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4358 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
4359
4360 local_inc(&cpu_buffer->pages_read);
4361
4362 /* Finally update the reader page to the new head */
4363 cpu_buffer->reader_page = reader;
4364 cpu_buffer->reader_page->read = 0;
4365
4366 if (overwrite != cpu_buffer->last_overrun) {
4367 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4368 cpu_buffer->last_overrun = overwrite;
4369 }
4370
4371 goto again;
4372
4373 out:
4374 /* Update the read_stamp on the first event */
4375 if (reader && reader->read == 0)
4376 cpu_buffer->read_stamp = reader->page->time_stamp;
4377
4378 arch_spin_unlock(&cpu_buffer->lock);
4379 local_irq_restore(flags);
4380
4381 /*
4382 * The writer has preempt disable, wait for it. But not forever
4383 * Although, 1 second is pretty much "forever"
4384 */
4385 #define USECS_WAIT 1000000
4386 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4387 /* If the write is past the end of page, a writer is still updating it */
4388 if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4389 break;
4390
4391 udelay(1);
4392
4393 /* Get the latest version of the reader write value */
4394 smp_rmb();
4395 }
4396
4397 /* The writer is not moving forward? Something is wrong */
4398 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4399 reader = NULL;
4400
4401 /*
4402 * Make sure we see any padding after the write update
4403 * (see rb_reset_tail()).
4404 *
4405 * In addition, a writer may be writing on the reader page
4406 * if the page has not been fully filled, so the read barrier
4407 * is also needed to make sure we see the content of what is
4408 * committed by the writer (see rb_set_commit_to_write()).
4409 */
4410 smp_rmb();
4411
4412
4413 return reader;
4414 }
4415
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)4416 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4417 {
4418 struct ring_buffer_event *event;
4419 struct buffer_page *reader;
4420 unsigned length;
4421
4422 reader = rb_get_reader_page(cpu_buffer);
4423
4424 /* This function should not be called when buffer is empty */
4425 if (RB_WARN_ON(cpu_buffer, !reader))
4426 return;
4427
4428 event = rb_reader_event(cpu_buffer);
4429
4430 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4431 cpu_buffer->read++;
4432
4433 rb_update_read_stamp(cpu_buffer, event);
4434
4435 length = rb_event_length(event);
4436 cpu_buffer->reader_page->read += length;
4437 }
4438
rb_advance_iter(struct ring_buffer_iter * iter)4439 static void rb_advance_iter(struct ring_buffer_iter *iter)
4440 {
4441 struct ring_buffer_per_cpu *cpu_buffer;
4442
4443 cpu_buffer = iter->cpu_buffer;
4444
4445 /* If head == next_event then we need to jump to the next event */
4446 if (iter->head == iter->next_event) {
4447 /* If the event gets overwritten again, there's nothing to do */
4448 if (rb_iter_head_event(iter) == NULL)
4449 return;
4450 }
4451
4452 iter->head = iter->next_event;
4453
4454 /*
4455 * Check if we are at the end of the buffer.
4456 */
4457 if (iter->next_event >= rb_page_size(iter->head_page)) {
4458 /* discarded commits can make the page empty */
4459 if (iter->head_page == cpu_buffer->commit_page)
4460 return;
4461 rb_inc_iter(iter);
4462 return;
4463 }
4464
4465 rb_update_iter_read_stamp(iter, iter->event);
4466 }
4467
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)4468 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4469 {
4470 return cpu_buffer->lost_events;
4471 }
4472
4473 static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)4474 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4475 unsigned long *lost_events)
4476 {
4477 struct ring_buffer_event *event;
4478 struct buffer_page *reader;
4479 int nr_loops = 0;
4480
4481 if (ts)
4482 *ts = 0;
4483 again:
4484 /*
4485 * We repeat when a time extend is encountered.
4486 * Since the time extend is always attached to a data event,
4487 * we should never loop more than once.
4488 * (We never hit the following condition more than twice).
4489 */
4490 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4491 return NULL;
4492
4493 reader = rb_get_reader_page(cpu_buffer);
4494 if (!reader)
4495 return NULL;
4496
4497 event = rb_reader_event(cpu_buffer);
4498
4499 switch (event->type_len) {
4500 case RINGBUF_TYPE_PADDING:
4501 if (rb_null_event(event))
4502 RB_WARN_ON(cpu_buffer, 1);
4503 /*
4504 * Because the writer could be discarding every
4505 * event it creates (which would probably be bad)
4506 * if we were to go back to "again" then we may never
4507 * catch up, and will trigger the warn on, or lock
4508 * the box. Return the padding, and we will release
4509 * the current locks, and try again.
4510 */
4511 return event;
4512
4513 case RINGBUF_TYPE_TIME_EXTEND:
4514 /* Internal data, OK to advance */
4515 rb_advance_reader(cpu_buffer);
4516 goto again;
4517
4518 case RINGBUF_TYPE_TIME_STAMP:
4519 if (ts) {
4520 *ts = ring_buffer_event_time_stamp(event);
4521 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4522 cpu_buffer->cpu, ts);
4523 }
4524 /* Internal data, OK to advance */
4525 rb_advance_reader(cpu_buffer);
4526 goto again;
4527
4528 case RINGBUF_TYPE_DATA:
4529 if (ts && !(*ts)) {
4530 *ts = cpu_buffer->read_stamp + event->time_delta;
4531 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4532 cpu_buffer->cpu, ts);
4533 }
4534 if (lost_events)
4535 *lost_events = rb_lost_events(cpu_buffer);
4536 return event;
4537
4538 default:
4539 RB_WARN_ON(cpu_buffer, 1);
4540 }
4541
4542 return NULL;
4543 }
4544 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4545
4546 static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)4547 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4548 {
4549 struct trace_buffer *buffer;
4550 struct ring_buffer_per_cpu *cpu_buffer;
4551 struct ring_buffer_event *event;
4552 int nr_loops = 0;
4553
4554 if (ts)
4555 *ts = 0;
4556
4557 cpu_buffer = iter->cpu_buffer;
4558 buffer = cpu_buffer->buffer;
4559
4560 /*
4561 * Check if someone performed a consuming read to
4562 * the buffer. A consuming read invalidates the iterator
4563 * and we need to reset the iterator in this case.
4564 */
4565 if (unlikely(iter->cache_read != cpu_buffer->read ||
4566 iter->cache_reader_page != cpu_buffer->reader_page))
4567 rb_iter_reset(iter);
4568
4569 again:
4570 if (ring_buffer_iter_empty(iter))
4571 return NULL;
4572
4573 /*
4574 * As the writer can mess with what the iterator is trying
4575 * to read, just give up if we fail to get an event after
4576 * three tries. The iterator is not as reliable when reading
4577 * the ring buffer with an active write as the consumer is.
4578 * Do not warn if the three failures is reached.
4579 */
4580 if (++nr_loops > 3)
4581 return NULL;
4582
4583 if (rb_per_cpu_empty(cpu_buffer))
4584 return NULL;
4585
4586 if (iter->head >= rb_page_size(iter->head_page)) {
4587 rb_inc_iter(iter);
4588 goto again;
4589 }
4590
4591 event = rb_iter_head_event(iter);
4592 if (!event)
4593 goto again;
4594
4595 switch (event->type_len) {
4596 case RINGBUF_TYPE_PADDING:
4597 if (rb_null_event(event)) {
4598 rb_inc_iter(iter);
4599 goto again;
4600 }
4601 rb_advance_iter(iter);
4602 return event;
4603
4604 case RINGBUF_TYPE_TIME_EXTEND:
4605 /* Internal data, OK to advance */
4606 rb_advance_iter(iter);
4607 goto again;
4608
4609 case RINGBUF_TYPE_TIME_STAMP:
4610 if (ts) {
4611 *ts = ring_buffer_event_time_stamp(event);
4612 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4613 cpu_buffer->cpu, ts);
4614 }
4615 /* Internal data, OK to advance */
4616 rb_advance_iter(iter);
4617 goto again;
4618
4619 case RINGBUF_TYPE_DATA:
4620 if (ts && !(*ts)) {
4621 *ts = iter->read_stamp + event->time_delta;
4622 ring_buffer_normalize_time_stamp(buffer,
4623 cpu_buffer->cpu, ts);
4624 }
4625 return event;
4626
4627 default:
4628 RB_WARN_ON(cpu_buffer, 1);
4629 }
4630
4631 return NULL;
4632 }
4633 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4634
rb_reader_lock(struct ring_buffer_per_cpu * cpu_buffer)4635 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4636 {
4637 if (likely(!in_nmi())) {
4638 raw_spin_lock(&cpu_buffer->reader_lock);
4639 return true;
4640 }
4641
4642 /*
4643 * If an NMI die dumps out the content of the ring buffer
4644 * trylock must be used to prevent a deadlock if the NMI
4645 * preempted a task that holds the ring buffer locks. If
4646 * we get the lock then all is fine, if not, then continue
4647 * to do the read, but this can corrupt the ring buffer,
4648 * so it must be permanently disabled from future writes.
4649 * Reading from NMI is a oneshot deal.
4650 */
4651 if (raw_spin_trylock(&cpu_buffer->reader_lock))
4652 return true;
4653
4654 /* Continue without locking, but disable the ring buffer */
4655 atomic_inc(&cpu_buffer->record_disabled);
4656 return false;
4657 }
4658
4659 static inline void
rb_reader_unlock(struct ring_buffer_per_cpu * cpu_buffer,bool locked)4660 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4661 {
4662 if (likely(locked))
4663 raw_spin_unlock(&cpu_buffer->reader_lock);
4664 return;
4665 }
4666
4667 /**
4668 * ring_buffer_peek - peek at the next event to be read
4669 * @buffer: The ring buffer to read
4670 * @cpu: The cpu to peak at
4671 * @ts: The timestamp counter of this event.
4672 * @lost_events: a variable to store if events were lost (may be NULL)
4673 *
4674 * This will return the event that will be read next, but does
4675 * not consume the data.
4676 */
4677 struct ring_buffer_event *
ring_buffer_peek(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)4678 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4679 unsigned long *lost_events)
4680 {
4681 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4682 struct ring_buffer_event *event;
4683 unsigned long flags;
4684 bool dolock;
4685
4686 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4687 return NULL;
4688
4689 again:
4690 local_irq_save(flags);
4691 dolock = rb_reader_lock(cpu_buffer);
4692 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4693 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4694 rb_advance_reader(cpu_buffer);
4695 rb_reader_unlock(cpu_buffer, dolock);
4696 local_irq_restore(flags);
4697
4698 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4699 goto again;
4700
4701 return event;
4702 }
4703
4704 /** ring_buffer_iter_dropped - report if there are dropped events
4705 * @iter: The ring buffer iterator
4706 *
4707 * Returns true if there was dropped events since the last peek.
4708 */
ring_buffer_iter_dropped(struct ring_buffer_iter * iter)4709 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4710 {
4711 bool ret = iter->missed_events != 0;
4712
4713 iter->missed_events = 0;
4714 return ret;
4715 }
4716 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4717
4718 /**
4719 * ring_buffer_iter_peek - peek at the next event to be read
4720 * @iter: The ring buffer iterator
4721 * @ts: The timestamp counter of this event.
4722 *
4723 * This will return the event that will be read next, but does
4724 * not increment the iterator.
4725 */
4726 struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)4727 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4728 {
4729 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4730 struct ring_buffer_event *event;
4731 unsigned long flags;
4732
4733 again:
4734 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4735 event = rb_iter_peek(iter, ts);
4736 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4737
4738 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4739 goto again;
4740
4741 return event;
4742 }
4743
4744 /**
4745 * ring_buffer_consume - return an event and consume it
4746 * @buffer: The ring buffer to get the next event from
4747 * @cpu: the cpu to read the buffer from
4748 * @ts: a variable to store the timestamp (may be NULL)
4749 * @lost_events: a variable to store if events were lost (may be NULL)
4750 *
4751 * Returns the next event in the ring buffer, and that event is consumed.
4752 * Meaning, that sequential reads will keep returning a different event,
4753 * and eventually empty the ring buffer if the producer is slower.
4754 */
4755 struct ring_buffer_event *
ring_buffer_consume(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)4756 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4757 unsigned long *lost_events)
4758 {
4759 struct ring_buffer_per_cpu *cpu_buffer;
4760 struct ring_buffer_event *event = NULL;
4761 unsigned long flags;
4762 bool dolock;
4763
4764 again:
4765 /* might be called in atomic */
4766 preempt_disable();
4767
4768 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4769 goto out;
4770
4771 cpu_buffer = buffer->buffers[cpu];
4772 local_irq_save(flags);
4773 dolock = rb_reader_lock(cpu_buffer);
4774
4775 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4776 if (event) {
4777 cpu_buffer->lost_events = 0;
4778 rb_advance_reader(cpu_buffer);
4779 }
4780
4781 rb_reader_unlock(cpu_buffer, dolock);
4782 local_irq_restore(flags);
4783
4784 out:
4785 preempt_enable();
4786
4787 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4788 goto again;
4789
4790 return event;
4791 }
4792 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4793
4794 /**
4795 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4796 * @buffer: The ring buffer to read from
4797 * @cpu: The cpu buffer to iterate over
4798 * @flags: gfp flags to use for memory allocation
4799 *
4800 * This performs the initial preparations necessary to iterate
4801 * through the buffer. Memory is allocated, buffer recording
4802 * is disabled, and the iterator pointer is returned to the caller.
4803 *
4804 * Disabling buffer recording prevents the reading from being
4805 * corrupted. This is not a consuming read, so a producer is not
4806 * expected.
4807 *
4808 * After a sequence of ring_buffer_read_prepare calls, the user is
4809 * expected to make at least one call to ring_buffer_read_prepare_sync.
4810 * Afterwards, ring_buffer_read_start is invoked to get things going
4811 * for real.
4812 *
4813 * This overall must be paired with ring_buffer_read_finish.
4814 */
4815 struct ring_buffer_iter *
ring_buffer_read_prepare(struct trace_buffer * buffer,int cpu,gfp_t flags)4816 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4817 {
4818 struct ring_buffer_per_cpu *cpu_buffer;
4819 struct ring_buffer_iter *iter;
4820
4821 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4822 return NULL;
4823
4824 iter = kzalloc(sizeof(*iter), flags);
4825 if (!iter)
4826 return NULL;
4827
4828 iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
4829 if (!iter->event) {
4830 kfree(iter);
4831 return NULL;
4832 }
4833
4834 cpu_buffer = buffer->buffers[cpu];
4835
4836 iter->cpu_buffer = cpu_buffer;
4837
4838 atomic_inc(&cpu_buffer->resize_disabled);
4839
4840 return iter;
4841 }
4842 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4843
4844 /**
4845 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4846 *
4847 * All previously invoked ring_buffer_read_prepare calls to prepare
4848 * iterators will be synchronized. Afterwards, read_buffer_read_start
4849 * calls on those iterators are allowed.
4850 */
4851 void
ring_buffer_read_prepare_sync(void)4852 ring_buffer_read_prepare_sync(void)
4853 {
4854 synchronize_rcu();
4855 }
4856 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4857
4858 /**
4859 * ring_buffer_read_start - start a non consuming read of the buffer
4860 * @iter: The iterator returned by ring_buffer_read_prepare
4861 *
4862 * This finalizes the startup of an iteration through the buffer.
4863 * The iterator comes from a call to ring_buffer_read_prepare and
4864 * an intervening ring_buffer_read_prepare_sync must have been
4865 * performed.
4866 *
4867 * Must be paired with ring_buffer_read_finish.
4868 */
4869 void
ring_buffer_read_start(struct ring_buffer_iter * iter)4870 ring_buffer_read_start(struct ring_buffer_iter *iter)
4871 {
4872 struct ring_buffer_per_cpu *cpu_buffer;
4873 unsigned long flags;
4874
4875 if (!iter)
4876 return;
4877
4878 cpu_buffer = iter->cpu_buffer;
4879
4880 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4881 arch_spin_lock(&cpu_buffer->lock);
4882 rb_iter_reset(iter);
4883 arch_spin_unlock(&cpu_buffer->lock);
4884 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4885 }
4886 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4887
4888 /**
4889 * ring_buffer_read_finish - finish reading the iterator of the buffer
4890 * @iter: The iterator retrieved by ring_buffer_start
4891 *
4892 * This re-enables the recording to the buffer, and frees the
4893 * iterator.
4894 */
4895 void
ring_buffer_read_finish(struct ring_buffer_iter * iter)4896 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4897 {
4898 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4899 unsigned long flags;
4900
4901 /*
4902 * Ring buffer is disabled from recording, here's a good place
4903 * to check the integrity of the ring buffer.
4904 * Must prevent readers from trying to read, as the check
4905 * clears the HEAD page and readers require it.
4906 */
4907 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4908 rb_check_pages(cpu_buffer);
4909 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4910
4911 atomic_dec(&cpu_buffer->resize_disabled);
4912 kfree(iter->event);
4913 kfree(iter);
4914 }
4915 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4916
4917 /**
4918 * ring_buffer_iter_advance - advance the iterator to the next location
4919 * @iter: The ring buffer iterator
4920 *
4921 * Move the location of the iterator such that the next read will
4922 * be the next location of the iterator.
4923 */
ring_buffer_iter_advance(struct ring_buffer_iter * iter)4924 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
4925 {
4926 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4927 unsigned long flags;
4928
4929 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4930
4931 rb_advance_iter(iter);
4932
4933 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4934 }
4935 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
4936
4937 /**
4938 * ring_buffer_size - return the size of the ring buffer (in bytes)
4939 * @buffer: The ring buffer.
4940 * @cpu: The CPU to get ring buffer size from.
4941 */
ring_buffer_size(struct trace_buffer * buffer,int cpu)4942 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
4943 {
4944 /*
4945 * Earlier, this method returned
4946 * BUF_PAGE_SIZE * buffer->nr_pages
4947 * Since the nr_pages field is now removed, we have converted this to
4948 * return the per cpu buffer value.
4949 */
4950 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4951 return 0;
4952
4953 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4954 }
4955 EXPORT_SYMBOL_GPL(ring_buffer_size);
4956
4957 static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)4958 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4959 {
4960 rb_head_page_deactivate(cpu_buffer);
4961
4962 cpu_buffer->head_page
4963 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4964 local_set(&cpu_buffer->head_page->write, 0);
4965 local_set(&cpu_buffer->head_page->entries, 0);
4966 local_set(&cpu_buffer->head_page->page->commit, 0);
4967
4968 cpu_buffer->head_page->read = 0;
4969
4970 cpu_buffer->tail_page = cpu_buffer->head_page;
4971 cpu_buffer->commit_page = cpu_buffer->head_page;
4972
4973 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4974 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4975 local_set(&cpu_buffer->reader_page->write, 0);
4976 local_set(&cpu_buffer->reader_page->entries, 0);
4977 local_set(&cpu_buffer->reader_page->page->commit, 0);
4978 cpu_buffer->reader_page->read = 0;
4979
4980 local_set(&cpu_buffer->entries_bytes, 0);
4981 local_set(&cpu_buffer->overrun, 0);
4982 local_set(&cpu_buffer->commit_overrun, 0);
4983 local_set(&cpu_buffer->dropped_events, 0);
4984 local_set(&cpu_buffer->entries, 0);
4985 local_set(&cpu_buffer->committing, 0);
4986 local_set(&cpu_buffer->commits, 0);
4987 local_set(&cpu_buffer->pages_touched, 0);
4988 local_set(&cpu_buffer->pages_lost, 0);
4989 local_set(&cpu_buffer->pages_read, 0);
4990 cpu_buffer->last_pages_touch = 0;
4991 cpu_buffer->shortest_full = 0;
4992 cpu_buffer->read = 0;
4993 cpu_buffer->read_bytes = 0;
4994
4995 rb_time_set(&cpu_buffer->write_stamp, 0);
4996 rb_time_set(&cpu_buffer->before_stamp, 0);
4997
4998 cpu_buffer->lost_events = 0;
4999 cpu_buffer->last_overrun = 0;
5000
5001 rb_head_page_activate(cpu_buffer);
5002 }
5003
5004 /* Must have disabled the cpu buffer then done a synchronize_rcu */
reset_disabled_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)5005 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5006 {
5007 unsigned long flags;
5008
5009 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5010
5011 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5012 goto out;
5013
5014 arch_spin_lock(&cpu_buffer->lock);
5015
5016 rb_reset_cpu(cpu_buffer);
5017
5018 arch_spin_unlock(&cpu_buffer->lock);
5019
5020 out:
5021 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5022 }
5023
5024 /**
5025 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5026 * @buffer: The ring buffer to reset a per cpu buffer of
5027 * @cpu: The CPU buffer to be reset
5028 */
ring_buffer_reset_cpu(struct trace_buffer * buffer,int cpu)5029 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5030 {
5031 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5032
5033 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5034 return;
5035
5036 /* prevent another thread from changing buffer sizes */
5037 mutex_lock(&buffer->mutex);
5038
5039 atomic_inc(&cpu_buffer->resize_disabled);
5040 atomic_inc(&cpu_buffer->record_disabled);
5041
5042 /* Make sure all commits have finished */
5043 synchronize_rcu();
5044
5045 reset_disabled_cpu_buffer(cpu_buffer);
5046
5047 atomic_dec(&cpu_buffer->record_disabled);
5048 atomic_dec(&cpu_buffer->resize_disabled);
5049
5050 mutex_unlock(&buffer->mutex);
5051 }
5052 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5053
5054 /* Flag to ensure proper resetting of atomic variables */
5055 #define RESET_BIT (1 << 30)
5056
5057 /**
5058 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5059 * @buffer: The ring buffer to reset a per cpu buffer of
5060 * @cpu: The CPU buffer to be reset
5061 */
ring_buffer_reset_online_cpus(struct trace_buffer * buffer)5062 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5063 {
5064 struct ring_buffer_per_cpu *cpu_buffer;
5065 int cpu;
5066
5067 /* prevent another thread from changing buffer sizes */
5068 mutex_lock(&buffer->mutex);
5069
5070 for_each_online_buffer_cpu(buffer, cpu) {
5071 cpu_buffer = buffer->buffers[cpu];
5072
5073 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
5074 atomic_inc(&cpu_buffer->record_disabled);
5075 }
5076
5077 /* Make sure all commits have finished */
5078 synchronize_rcu();
5079
5080 for_each_buffer_cpu(buffer, cpu) {
5081 cpu_buffer = buffer->buffers[cpu];
5082
5083 /*
5084 * If a CPU came online during the synchronize_rcu(), then
5085 * ignore it.
5086 */
5087 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
5088 continue;
5089
5090 reset_disabled_cpu_buffer(cpu_buffer);
5091
5092 atomic_dec(&cpu_buffer->record_disabled);
5093 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
5094 }
5095
5096 mutex_unlock(&buffer->mutex);
5097 }
5098
5099 /**
5100 * ring_buffer_reset - reset a ring buffer
5101 * @buffer: The ring buffer to reset all cpu buffers
5102 */
ring_buffer_reset(struct trace_buffer * buffer)5103 void ring_buffer_reset(struct trace_buffer *buffer)
5104 {
5105 struct ring_buffer_per_cpu *cpu_buffer;
5106 int cpu;
5107
5108 /* prevent another thread from changing buffer sizes */
5109 mutex_lock(&buffer->mutex);
5110
5111 for_each_buffer_cpu(buffer, cpu) {
5112 cpu_buffer = buffer->buffers[cpu];
5113
5114 atomic_inc(&cpu_buffer->resize_disabled);
5115 atomic_inc(&cpu_buffer->record_disabled);
5116 }
5117
5118 /* Make sure all commits have finished */
5119 synchronize_rcu();
5120
5121 for_each_buffer_cpu(buffer, cpu) {
5122 cpu_buffer = buffer->buffers[cpu];
5123
5124 reset_disabled_cpu_buffer(cpu_buffer);
5125
5126 atomic_dec(&cpu_buffer->record_disabled);
5127 atomic_dec(&cpu_buffer->resize_disabled);
5128 }
5129
5130 mutex_unlock(&buffer->mutex);
5131 }
5132 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5133
5134 /**
5135 * rind_buffer_empty - is the ring buffer empty?
5136 * @buffer: The ring buffer to test
5137 */
ring_buffer_empty(struct trace_buffer * buffer)5138 bool ring_buffer_empty(struct trace_buffer *buffer)
5139 {
5140 struct ring_buffer_per_cpu *cpu_buffer;
5141 unsigned long flags;
5142 bool dolock;
5143 int cpu;
5144 int ret;
5145
5146 /* yes this is racy, but if you don't like the race, lock the buffer */
5147 for_each_buffer_cpu(buffer, cpu) {
5148 cpu_buffer = buffer->buffers[cpu];
5149 local_irq_save(flags);
5150 dolock = rb_reader_lock(cpu_buffer);
5151 ret = rb_per_cpu_empty(cpu_buffer);
5152 rb_reader_unlock(cpu_buffer, dolock);
5153 local_irq_restore(flags);
5154
5155 if (!ret)
5156 return false;
5157 }
5158
5159 return true;
5160 }
5161 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5162
5163 /**
5164 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5165 * @buffer: The ring buffer
5166 * @cpu: The CPU buffer to test
5167 */
ring_buffer_empty_cpu(struct trace_buffer * buffer,int cpu)5168 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5169 {
5170 struct ring_buffer_per_cpu *cpu_buffer;
5171 unsigned long flags;
5172 bool dolock;
5173 int ret;
5174
5175 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5176 return true;
5177
5178 cpu_buffer = buffer->buffers[cpu];
5179 local_irq_save(flags);
5180 dolock = rb_reader_lock(cpu_buffer);
5181 ret = rb_per_cpu_empty(cpu_buffer);
5182 rb_reader_unlock(cpu_buffer, dolock);
5183 local_irq_restore(flags);
5184
5185 return ret;
5186 }
5187 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5188
5189 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5190 /**
5191 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5192 * @buffer_a: One buffer to swap with
5193 * @buffer_b: The other buffer to swap with
5194 * @cpu: the CPU of the buffers to swap
5195 *
5196 * This function is useful for tracers that want to take a "snapshot"
5197 * of a CPU buffer and has another back up buffer lying around.
5198 * it is expected that the tracer handles the cpu buffer not being
5199 * used at the moment.
5200 */
ring_buffer_swap_cpu(struct trace_buffer * buffer_a,struct trace_buffer * buffer_b,int cpu)5201 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5202 struct trace_buffer *buffer_b, int cpu)
5203 {
5204 struct ring_buffer_per_cpu *cpu_buffer_a;
5205 struct ring_buffer_per_cpu *cpu_buffer_b;
5206 int ret = -EINVAL;
5207
5208 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5209 !cpumask_test_cpu(cpu, buffer_b->cpumask))
5210 goto out;
5211
5212 cpu_buffer_a = buffer_a->buffers[cpu];
5213 cpu_buffer_b = buffer_b->buffers[cpu];
5214
5215 /* At least make sure the two buffers are somewhat the same */
5216 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5217 goto out;
5218
5219 ret = -EAGAIN;
5220
5221 if (atomic_read(&buffer_a->record_disabled))
5222 goto out;
5223
5224 if (atomic_read(&buffer_b->record_disabled))
5225 goto out;
5226
5227 if (atomic_read(&cpu_buffer_a->record_disabled))
5228 goto out;
5229
5230 if (atomic_read(&cpu_buffer_b->record_disabled))
5231 goto out;
5232
5233 /*
5234 * We can't do a synchronize_rcu here because this
5235 * function can be called in atomic context.
5236 * Normally this will be called from the same CPU as cpu.
5237 * If not it's up to the caller to protect this.
5238 */
5239 atomic_inc(&cpu_buffer_a->record_disabled);
5240 atomic_inc(&cpu_buffer_b->record_disabled);
5241
5242 ret = -EBUSY;
5243 if (local_read(&cpu_buffer_a->committing))
5244 goto out_dec;
5245 if (local_read(&cpu_buffer_b->committing))
5246 goto out_dec;
5247
5248 buffer_a->buffers[cpu] = cpu_buffer_b;
5249 buffer_b->buffers[cpu] = cpu_buffer_a;
5250
5251 cpu_buffer_b->buffer = buffer_a;
5252 cpu_buffer_a->buffer = buffer_b;
5253
5254 ret = 0;
5255
5256 out_dec:
5257 atomic_dec(&cpu_buffer_a->record_disabled);
5258 atomic_dec(&cpu_buffer_b->record_disabled);
5259 out:
5260 return ret;
5261 }
5262 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5263 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5264
5265 /**
5266 * ring_buffer_alloc_read_page - allocate a page to read from buffer
5267 * @buffer: the buffer to allocate for.
5268 * @cpu: the cpu buffer to allocate.
5269 *
5270 * This function is used in conjunction with ring_buffer_read_page.
5271 * When reading a full page from the ring buffer, these functions
5272 * can be used to speed up the process. The calling function should
5273 * allocate a few pages first with this function. Then when it
5274 * needs to get pages from the ring buffer, it passes the result
5275 * of this function into ring_buffer_read_page, which will swap
5276 * the page that was allocated, with the read page of the buffer.
5277 *
5278 * Returns:
5279 * The page allocated, or ERR_PTR
5280 */
ring_buffer_alloc_read_page(struct trace_buffer * buffer,int cpu)5281 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5282 {
5283 struct ring_buffer_per_cpu *cpu_buffer;
5284 struct buffer_data_page *bpage = NULL;
5285 unsigned long flags;
5286 struct page *page;
5287
5288 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5289 return ERR_PTR(-ENODEV);
5290
5291 cpu_buffer = buffer->buffers[cpu];
5292 local_irq_save(flags);
5293 arch_spin_lock(&cpu_buffer->lock);
5294
5295 if (cpu_buffer->free_page) {
5296 bpage = cpu_buffer->free_page;
5297 cpu_buffer->free_page = NULL;
5298 }
5299
5300 arch_spin_unlock(&cpu_buffer->lock);
5301 local_irq_restore(flags);
5302
5303 if (bpage)
5304 goto out;
5305
5306 page = alloc_pages_node(cpu_to_node(cpu),
5307 GFP_KERNEL | __GFP_NORETRY, 0);
5308 if (!page)
5309 return ERR_PTR(-ENOMEM);
5310
5311 bpage = page_address(page);
5312
5313 out:
5314 rb_init_page(bpage);
5315
5316 return bpage;
5317 }
5318 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5319
5320 /**
5321 * ring_buffer_free_read_page - free an allocated read page
5322 * @buffer: the buffer the page was allocate for
5323 * @cpu: the cpu buffer the page came from
5324 * @data: the page to free
5325 *
5326 * Free a page allocated from ring_buffer_alloc_read_page.
5327 */
ring_buffer_free_read_page(struct trace_buffer * buffer,int cpu,void * data)5328 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5329 {
5330 struct ring_buffer_per_cpu *cpu_buffer;
5331 struct buffer_data_page *bpage = data;
5332 struct page *page = virt_to_page(bpage);
5333 unsigned long flags;
5334
5335 if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5336 return;
5337
5338 cpu_buffer = buffer->buffers[cpu];
5339
5340 /* If the page is still in use someplace else, we can't reuse it */
5341 if (page_ref_count(page) > 1)
5342 goto out;
5343
5344 local_irq_save(flags);
5345 arch_spin_lock(&cpu_buffer->lock);
5346
5347 if (!cpu_buffer->free_page) {
5348 cpu_buffer->free_page = bpage;
5349 bpage = NULL;
5350 }
5351
5352 arch_spin_unlock(&cpu_buffer->lock);
5353 local_irq_restore(flags);
5354
5355 out:
5356 free_page((unsigned long)bpage);
5357 }
5358 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5359
5360 /**
5361 * ring_buffer_read_page - extract a page from the ring buffer
5362 * @buffer: buffer to extract from
5363 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5364 * @len: amount to extract
5365 * @cpu: the cpu of the buffer to extract
5366 * @full: should the extraction only happen when the page is full.
5367 *
5368 * This function will pull out a page from the ring buffer and consume it.
5369 * @data_page must be the address of the variable that was returned
5370 * from ring_buffer_alloc_read_page. This is because the page might be used
5371 * to swap with a page in the ring buffer.
5372 *
5373 * for example:
5374 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
5375 * if (IS_ERR(rpage))
5376 * return PTR_ERR(rpage);
5377 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5378 * if (ret >= 0)
5379 * process_page(rpage, ret);
5380 *
5381 * When @full is set, the function will not return true unless
5382 * the writer is off the reader page.
5383 *
5384 * Note: it is up to the calling functions to handle sleeps and wakeups.
5385 * The ring buffer can be used anywhere in the kernel and can not
5386 * blindly call wake_up. The layer that uses the ring buffer must be
5387 * responsible for that.
5388 *
5389 * Returns:
5390 * >=0 if data has been transferred, returns the offset of consumed data.
5391 * <0 if no data has been transferred.
5392 */
ring_buffer_read_page(struct trace_buffer * buffer,void ** data_page,size_t len,int cpu,int full)5393 int ring_buffer_read_page(struct trace_buffer *buffer,
5394 void **data_page, size_t len, int cpu, int full)
5395 {
5396 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5397 struct ring_buffer_event *event;
5398 struct buffer_data_page *bpage;
5399 struct buffer_page *reader;
5400 unsigned long missed_events;
5401 unsigned long flags;
5402 unsigned int commit;
5403 unsigned int read;
5404 u64 save_timestamp;
5405 int ret = -1;
5406
5407 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5408 goto out;
5409
5410 /*
5411 * If len is not big enough to hold the page header, then
5412 * we can not copy anything.
5413 */
5414 if (len <= BUF_PAGE_HDR_SIZE)
5415 goto out;
5416
5417 len -= BUF_PAGE_HDR_SIZE;
5418
5419 if (!data_page)
5420 goto out;
5421
5422 bpage = *data_page;
5423 if (!bpage)
5424 goto out;
5425
5426 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5427
5428 reader = rb_get_reader_page(cpu_buffer);
5429 if (!reader)
5430 goto out_unlock;
5431
5432 event = rb_reader_event(cpu_buffer);
5433
5434 read = reader->read;
5435 commit = rb_page_commit(reader);
5436
5437 /* Check if any events were dropped */
5438 missed_events = cpu_buffer->lost_events;
5439
5440 /*
5441 * If this page has been partially read or
5442 * if len is not big enough to read the rest of the page or
5443 * a writer is still on the page, then
5444 * we must copy the data from the page to the buffer.
5445 * Otherwise, we can simply swap the page with the one passed in.
5446 */
5447 if (read || (len < (commit - read)) ||
5448 cpu_buffer->reader_page == cpu_buffer->commit_page) {
5449 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5450 unsigned int rpos = read;
5451 unsigned int pos = 0;
5452 unsigned int size;
5453
5454 /*
5455 * If a full page is expected, this can still be returned
5456 * if there's been a previous partial read and the
5457 * rest of the page can be read and the commit page is off
5458 * the reader page.
5459 */
5460 if (full &&
5461 (!read || (len < (commit - read)) ||
5462 cpu_buffer->reader_page == cpu_buffer->commit_page))
5463 goto out_unlock;
5464
5465 if (len > (commit - read))
5466 len = (commit - read);
5467
5468 /* Always keep the time extend and data together */
5469 size = rb_event_ts_length(event);
5470
5471 if (len < size)
5472 goto out_unlock;
5473
5474 /* save the current timestamp, since the user will need it */
5475 save_timestamp = cpu_buffer->read_stamp;
5476
5477 /* Need to copy one event at a time */
5478 do {
5479 /* We need the size of one event, because
5480 * rb_advance_reader only advances by one event,
5481 * whereas rb_event_ts_length may include the size of
5482 * one or two events.
5483 * We have already ensured there's enough space if this
5484 * is a time extend. */
5485 size = rb_event_length(event);
5486 memcpy(bpage->data + pos, rpage->data + rpos, size);
5487
5488 len -= size;
5489
5490 rb_advance_reader(cpu_buffer);
5491 rpos = reader->read;
5492 pos += size;
5493
5494 if (rpos >= commit)
5495 break;
5496
5497 event = rb_reader_event(cpu_buffer);
5498 /* Always keep the time extend and data together */
5499 size = rb_event_ts_length(event);
5500 } while (len >= size);
5501
5502 /* update bpage */
5503 local_set(&bpage->commit, pos);
5504 bpage->time_stamp = save_timestamp;
5505
5506 /* we copied everything to the beginning */
5507 read = 0;
5508 } else {
5509 /* update the entry counter */
5510 cpu_buffer->read += rb_page_entries(reader);
5511 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5512
5513 /* swap the pages */
5514 rb_init_page(bpage);
5515 bpage = reader->page;
5516 reader->page = *data_page;
5517 local_set(&reader->write, 0);
5518 local_set(&reader->entries, 0);
5519 reader->read = 0;
5520 *data_page = bpage;
5521
5522 /*
5523 * Use the real_end for the data size,
5524 * This gives us a chance to store the lost events
5525 * on the page.
5526 */
5527 if (reader->real_end)
5528 local_set(&bpage->commit, reader->real_end);
5529 }
5530 ret = read;
5531
5532 cpu_buffer->lost_events = 0;
5533
5534 commit = local_read(&bpage->commit);
5535 /*
5536 * Set a flag in the commit field if we lost events
5537 */
5538 if (missed_events) {
5539 /* If there is room at the end of the page to save the
5540 * missed events, then record it there.
5541 */
5542 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5543 memcpy(&bpage->data[commit], &missed_events,
5544 sizeof(missed_events));
5545 local_add(RB_MISSED_STORED, &bpage->commit);
5546 commit += sizeof(missed_events);
5547 }
5548 local_add(RB_MISSED_EVENTS, &bpage->commit);
5549 }
5550
5551 /*
5552 * This page may be off to user land. Zero it out here.
5553 */
5554 if (commit < BUF_PAGE_SIZE)
5555 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5556
5557 out_unlock:
5558 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5559
5560 out:
5561 return ret;
5562 }
5563 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5564
5565 /*
5566 * We only allocate new buffers, never free them if the CPU goes down.
5567 * If we were to free the buffer, then the user would lose any trace that was in
5568 * the buffer.
5569 */
trace_rb_cpu_prepare(unsigned int cpu,struct hlist_node * node)5570 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5571 {
5572 struct trace_buffer *buffer;
5573 long nr_pages_same;
5574 int cpu_i;
5575 unsigned long nr_pages;
5576
5577 buffer = container_of(node, struct trace_buffer, node);
5578 if (cpumask_test_cpu(cpu, buffer->cpumask))
5579 return 0;
5580
5581 nr_pages = 0;
5582 nr_pages_same = 1;
5583 /* check if all cpu sizes are same */
5584 for_each_buffer_cpu(buffer, cpu_i) {
5585 /* fill in the size from first enabled cpu */
5586 if (nr_pages == 0)
5587 nr_pages = buffer->buffers[cpu_i]->nr_pages;
5588 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5589 nr_pages_same = 0;
5590 break;
5591 }
5592 }
5593 /* allocate minimum pages, user can later expand it */
5594 if (!nr_pages_same)
5595 nr_pages = 2;
5596 buffer->buffers[cpu] =
5597 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5598 if (!buffer->buffers[cpu]) {
5599 WARN(1, "failed to allocate ring buffer on CPU %u\n",
5600 cpu);
5601 return -ENOMEM;
5602 }
5603 smp_wmb();
5604 cpumask_set_cpu(cpu, buffer->cpumask);
5605 return 0;
5606 }
5607
5608 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5609 /*
5610 * This is a basic integrity check of the ring buffer.
5611 * Late in the boot cycle this test will run when configured in.
5612 * It will kick off a thread per CPU that will go into a loop
5613 * writing to the per cpu ring buffer various sizes of data.
5614 * Some of the data will be large items, some small.
5615 *
5616 * Another thread is created that goes into a spin, sending out
5617 * IPIs to the other CPUs to also write into the ring buffer.
5618 * this is to test the nesting ability of the buffer.
5619 *
5620 * Basic stats are recorded and reported. If something in the
5621 * ring buffer should happen that's not expected, a big warning
5622 * is displayed and all ring buffers are disabled.
5623 */
5624 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5625
5626 struct rb_test_data {
5627 struct trace_buffer *buffer;
5628 unsigned long events;
5629 unsigned long bytes_written;
5630 unsigned long bytes_alloc;
5631 unsigned long bytes_dropped;
5632 unsigned long events_nested;
5633 unsigned long bytes_written_nested;
5634 unsigned long bytes_alloc_nested;
5635 unsigned long bytes_dropped_nested;
5636 int min_size_nested;
5637 int max_size_nested;
5638 int max_size;
5639 int min_size;
5640 int cpu;
5641 int cnt;
5642 };
5643
5644 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5645
5646 /* 1 meg per cpu */
5647 #define RB_TEST_BUFFER_SIZE 1048576
5648
5649 static char rb_string[] __initdata =
5650 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5651 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5652 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5653
5654 static bool rb_test_started __initdata;
5655
5656 struct rb_item {
5657 int size;
5658 char str[];
5659 };
5660
rb_write_something(struct rb_test_data * data,bool nested)5661 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5662 {
5663 struct ring_buffer_event *event;
5664 struct rb_item *item;
5665 bool started;
5666 int event_len;
5667 int size;
5668 int len;
5669 int cnt;
5670
5671 /* Have nested writes different that what is written */
5672 cnt = data->cnt + (nested ? 27 : 0);
5673
5674 /* Multiply cnt by ~e, to make some unique increment */
5675 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5676
5677 len = size + sizeof(struct rb_item);
5678
5679 started = rb_test_started;
5680 /* read rb_test_started before checking buffer enabled */
5681 smp_rmb();
5682
5683 event = ring_buffer_lock_reserve(data->buffer, len);
5684 if (!event) {
5685 /* Ignore dropped events before test starts. */
5686 if (started) {
5687 if (nested)
5688 data->bytes_dropped += len;
5689 else
5690 data->bytes_dropped_nested += len;
5691 }
5692 return len;
5693 }
5694
5695 event_len = ring_buffer_event_length(event);
5696
5697 if (RB_WARN_ON(data->buffer, event_len < len))
5698 goto out;
5699
5700 item = ring_buffer_event_data(event);
5701 item->size = size;
5702 memcpy(item->str, rb_string, size);
5703
5704 if (nested) {
5705 data->bytes_alloc_nested += event_len;
5706 data->bytes_written_nested += len;
5707 data->events_nested++;
5708 if (!data->min_size_nested || len < data->min_size_nested)
5709 data->min_size_nested = len;
5710 if (len > data->max_size_nested)
5711 data->max_size_nested = len;
5712 } else {
5713 data->bytes_alloc += event_len;
5714 data->bytes_written += len;
5715 data->events++;
5716 if (!data->min_size || len < data->min_size)
5717 data->max_size = len;
5718 if (len > data->max_size)
5719 data->max_size = len;
5720 }
5721
5722 out:
5723 ring_buffer_unlock_commit(data->buffer, event);
5724
5725 return 0;
5726 }
5727
rb_test(void * arg)5728 static __init int rb_test(void *arg)
5729 {
5730 struct rb_test_data *data = arg;
5731
5732 while (!kthread_should_stop()) {
5733 rb_write_something(data, false);
5734 data->cnt++;
5735
5736 set_current_state(TASK_INTERRUPTIBLE);
5737 /* Now sleep between a min of 100-300us and a max of 1ms */
5738 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5739 }
5740
5741 return 0;
5742 }
5743
rb_ipi(void * ignore)5744 static __init void rb_ipi(void *ignore)
5745 {
5746 struct rb_test_data *data;
5747 int cpu = smp_processor_id();
5748
5749 data = &rb_data[cpu];
5750 rb_write_something(data, true);
5751 }
5752
rb_hammer_test(void * arg)5753 static __init int rb_hammer_test(void *arg)
5754 {
5755 while (!kthread_should_stop()) {
5756
5757 /* Send an IPI to all cpus to write data! */
5758 smp_call_function(rb_ipi, NULL, 1);
5759 /* No sleep, but for non preempt, let others run */
5760 schedule();
5761 }
5762
5763 return 0;
5764 }
5765
test_ringbuffer(void)5766 static __init int test_ringbuffer(void)
5767 {
5768 struct task_struct *rb_hammer;
5769 struct trace_buffer *buffer;
5770 int cpu;
5771 int ret = 0;
5772
5773 if (security_locked_down(LOCKDOWN_TRACEFS)) {
5774 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5775 return 0;
5776 }
5777
5778 pr_info("Running ring buffer tests...\n");
5779
5780 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5781 if (WARN_ON(!buffer))
5782 return 0;
5783
5784 /* Disable buffer so that threads can't write to it yet */
5785 ring_buffer_record_off(buffer);
5786
5787 for_each_online_cpu(cpu) {
5788 rb_data[cpu].buffer = buffer;
5789 rb_data[cpu].cpu = cpu;
5790 rb_data[cpu].cnt = cpu;
5791 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5792 "rbtester/%d", cpu);
5793 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5794 pr_cont("FAILED\n");
5795 ret = PTR_ERR(rb_threads[cpu]);
5796 goto out_free;
5797 }
5798
5799 kthread_bind(rb_threads[cpu], cpu);
5800 wake_up_process(rb_threads[cpu]);
5801 }
5802
5803 /* Now create the rb hammer! */
5804 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5805 if (WARN_ON(IS_ERR(rb_hammer))) {
5806 pr_cont("FAILED\n");
5807 ret = PTR_ERR(rb_hammer);
5808 goto out_free;
5809 }
5810
5811 ring_buffer_record_on(buffer);
5812 /*
5813 * Show buffer is enabled before setting rb_test_started.
5814 * Yes there's a small race window where events could be
5815 * dropped and the thread wont catch it. But when a ring
5816 * buffer gets enabled, there will always be some kind of
5817 * delay before other CPUs see it. Thus, we don't care about
5818 * those dropped events. We care about events dropped after
5819 * the threads see that the buffer is active.
5820 */
5821 smp_wmb();
5822 rb_test_started = true;
5823
5824 set_current_state(TASK_INTERRUPTIBLE);
5825 /* Just run for 10 seconds */;
5826 schedule_timeout(10 * HZ);
5827
5828 kthread_stop(rb_hammer);
5829
5830 out_free:
5831 for_each_online_cpu(cpu) {
5832 if (!rb_threads[cpu])
5833 break;
5834 kthread_stop(rb_threads[cpu]);
5835 }
5836 if (ret) {
5837 ring_buffer_free(buffer);
5838 return ret;
5839 }
5840
5841 /* Report! */
5842 pr_info("finished\n");
5843 for_each_online_cpu(cpu) {
5844 struct ring_buffer_event *event;
5845 struct rb_test_data *data = &rb_data[cpu];
5846 struct rb_item *item;
5847 unsigned long total_events;
5848 unsigned long total_dropped;
5849 unsigned long total_written;
5850 unsigned long total_alloc;
5851 unsigned long total_read = 0;
5852 unsigned long total_size = 0;
5853 unsigned long total_len = 0;
5854 unsigned long total_lost = 0;
5855 unsigned long lost;
5856 int big_event_size;
5857 int small_event_size;
5858
5859 ret = -1;
5860
5861 total_events = data->events + data->events_nested;
5862 total_written = data->bytes_written + data->bytes_written_nested;
5863 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5864 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5865
5866 big_event_size = data->max_size + data->max_size_nested;
5867 small_event_size = data->min_size + data->min_size_nested;
5868
5869 pr_info("CPU %d:\n", cpu);
5870 pr_info(" events: %ld\n", total_events);
5871 pr_info(" dropped bytes: %ld\n", total_dropped);
5872 pr_info(" alloced bytes: %ld\n", total_alloc);
5873 pr_info(" written bytes: %ld\n", total_written);
5874 pr_info(" biggest event: %d\n", big_event_size);
5875 pr_info(" smallest event: %d\n", small_event_size);
5876
5877 if (RB_WARN_ON(buffer, total_dropped))
5878 break;
5879
5880 ret = 0;
5881
5882 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5883 total_lost += lost;
5884 item = ring_buffer_event_data(event);
5885 total_len += ring_buffer_event_length(event);
5886 total_size += item->size + sizeof(struct rb_item);
5887 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5888 pr_info("FAILED!\n");
5889 pr_info("buffer had: %.*s\n", item->size, item->str);
5890 pr_info("expected: %.*s\n", item->size, rb_string);
5891 RB_WARN_ON(buffer, 1);
5892 ret = -1;
5893 break;
5894 }
5895 total_read++;
5896 }
5897 if (ret)
5898 break;
5899
5900 ret = -1;
5901
5902 pr_info(" read events: %ld\n", total_read);
5903 pr_info(" lost events: %ld\n", total_lost);
5904 pr_info(" total events: %ld\n", total_lost + total_read);
5905 pr_info(" recorded len bytes: %ld\n", total_len);
5906 pr_info(" recorded size bytes: %ld\n", total_size);
5907 if (total_lost)
5908 pr_info(" With dropped events, record len and size may not match\n"
5909 " alloced and written from above\n");
5910 if (!total_lost) {
5911 if (RB_WARN_ON(buffer, total_len != total_alloc ||
5912 total_size != total_written))
5913 break;
5914 }
5915 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5916 break;
5917
5918 ret = 0;
5919 }
5920 if (!ret)
5921 pr_info("Ring buffer PASSED!\n");
5922
5923 ring_buffer_free(buffer);
5924 return 0;
5925 }
5926
5927 late_initcall(test_ringbuffer);
5928 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5929