1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_eu.h"
33 #include "brw_fs.h"
34 #include "brw_fs_live_variables.h"
35 #include "brw_nir.h"
36 #include "brw_vec4_gs_visitor.h"
37 #include "brw_cfg.h"
38 #include "brw_dead_control_flow.h"
39 #include "brw_private.h"
40 #include "dev/intel_debug.h"
41 #include "compiler/glsl_types.h"
42 #include "compiler/nir/nir_builder.h"
43 #include "program/prog_parameter.h"
44 #include "util/u_math.h"
45
46 using namespace brw;
47
48 static unsigned get_lowered_simd_width(const struct brw_compiler *compiler,
49 const fs_inst *inst);
50
51 void
init(enum opcode opcode,uint8_t exec_size,const fs_reg & dst,const fs_reg * src,unsigned sources)52 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
53 const fs_reg *src, unsigned sources)
54 {
55 memset((void*)this, 0, sizeof(*this));
56
57 this->src = new fs_reg[MAX2(sources, 3)];
58 for (unsigned i = 0; i < sources; i++)
59 this->src[i] = src[i];
60
61 this->opcode = opcode;
62 this->dst = dst;
63 this->sources = sources;
64 this->exec_size = exec_size;
65 this->base_mrf = -1;
66
67 assert(dst.file != IMM && dst.file != UNIFORM);
68
69 assert(this->exec_size != 0);
70
71 this->conditional_mod = BRW_CONDITIONAL_NONE;
72
73 /* This will be the case for almost all instructions. */
74 switch (dst.file) {
75 case VGRF:
76 case ARF:
77 case FIXED_GRF:
78 case MRF:
79 case ATTR:
80 this->size_written = dst.component_size(exec_size);
81 break;
82 case BAD_FILE:
83 this->size_written = 0;
84 break;
85 case IMM:
86 case UNIFORM:
87 unreachable("Invalid destination register file");
88 }
89
90 this->writes_accumulator = false;
91 }
92
fs_inst()93 fs_inst::fs_inst()
94 {
95 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
96 }
97
fs_inst(enum opcode opcode,uint8_t exec_size)98 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
99 {
100 init(opcode, exec_size, reg_undef, NULL, 0);
101 }
102
fs_inst(enum opcode opcode,uint8_t exec_size,const fs_reg & dst)103 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
104 {
105 init(opcode, exec_size, dst, NULL, 0);
106 }
107
fs_inst(enum opcode opcode,uint8_t exec_size,const fs_reg & dst,const fs_reg & src0)108 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
109 const fs_reg &src0)
110 {
111 const fs_reg src[1] = { src0 };
112 init(opcode, exec_size, dst, src, 1);
113 }
114
fs_inst(enum opcode opcode,uint8_t exec_size,const fs_reg & dst,const fs_reg & src0,const fs_reg & src1)115 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
116 const fs_reg &src0, const fs_reg &src1)
117 {
118 const fs_reg src[2] = { src0, src1 };
119 init(opcode, exec_size, dst, src, 2);
120 }
121
fs_inst(enum opcode opcode,uint8_t exec_size,const fs_reg & dst,const fs_reg & src0,const fs_reg & src1,const fs_reg & src2)122 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
123 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
124 {
125 const fs_reg src[3] = { src0, src1, src2 };
126 init(opcode, exec_size, dst, src, 3);
127 }
128
fs_inst(enum opcode opcode,uint8_t exec_width,const fs_reg & dst,const fs_reg src[],unsigned sources)129 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
130 const fs_reg src[], unsigned sources)
131 {
132 init(opcode, exec_width, dst, src, sources);
133 }
134
fs_inst(const fs_inst & that)135 fs_inst::fs_inst(const fs_inst &that)
136 {
137 memcpy((void*)this, &that, sizeof(that));
138
139 this->src = new fs_reg[MAX2(that.sources, 3)];
140
141 for (unsigned i = 0; i < that.sources; i++)
142 this->src[i] = that.src[i];
143 }
144
~fs_inst()145 fs_inst::~fs_inst()
146 {
147 delete[] this->src;
148 }
149
150 void
resize_sources(uint8_t num_sources)151 fs_inst::resize_sources(uint8_t num_sources)
152 {
153 if (this->sources != num_sources) {
154 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
155
156 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
157 src[i] = this->src[i];
158
159 delete[] this->src;
160 this->src = src;
161 this->sources = num_sources;
162 }
163 }
164
165 void
VARYING_PULL_CONSTANT_LOAD(const fs_builder & bld,const fs_reg & dst,const fs_reg & surf_index,const fs_reg & varying_offset,uint32_t const_offset,uint8_t alignment)166 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
167 const fs_reg &dst,
168 const fs_reg &surf_index,
169 const fs_reg &varying_offset,
170 uint32_t const_offset,
171 uint8_t alignment)
172 {
173 /* We have our constant surface use a pitch of 4 bytes, so our index can
174 * be any component of a vector, and then we load 4 contiguous
175 * components starting from that.
176 *
177 * We break down the const_offset to a portion added to the variable offset
178 * and a portion done using fs_reg::offset, which means that if you have
179 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
180 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
181 * later notice that those loads are all the same and eliminate the
182 * redundant ones.
183 */
184 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
185 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
186
187 /* The pull load message will load a vec4 (16 bytes). If we are loading
188 * a double this means we are only loading 2 elements worth of data.
189 * We also want to use a 32-bit data type for the dst of the load operation
190 * so other parts of the driver don't get confused about the size of the
191 * result.
192 */
193 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
194 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
195 vec4_result, surf_index, vec4_offset,
196 brw_imm_ud(alignment));
197 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
198
199 shuffle_from_32bit_read(bld, dst, vec4_result,
200 (const_offset & 0xf) / type_sz(dst.type), 1);
201 }
202
203 /**
204 * A helper for MOV generation for fixing up broken hardware SEND dependency
205 * handling.
206 */
207 void
DEP_RESOLVE_MOV(const fs_builder & bld,int grf)208 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
209 {
210 /* The caller always wants uncompressed to emit the minimal extra
211 * dependencies, and to avoid having to deal with aligning its regs to 2.
212 */
213 const fs_builder ubld = bld.annotate("send dependency resolve")
214 .quarter(0);
215
216 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
217 }
218
219 bool
is_send_from_grf() const220 fs_inst::is_send_from_grf() const
221 {
222 switch (opcode) {
223 case SHADER_OPCODE_SEND:
224 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
225 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
226 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
227 case SHADER_OPCODE_INTERLOCK:
228 case SHADER_OPCODE_MEMORY_FENCE:
229 case SHADER_OPCODE_BARRIER:
230 return true;
231 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
232 return src[1].file == VGRF;
233 case FS_OPCODE_FB_WRITE:
234 case FS_OPCODE_FB_READ:
235 return src[0].file == VGRF;
236 default:
237 if (is_tex())
238 return src[0].file == VGRF;
239
240 return false;
241 }
242 }
243
244 bool
is_control_source(unsigned arg) const245 fs_inst::is_control_source(unsigned arg) const
246 {
247 switch (opcode) {
248 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
249 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GFX7:
250 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GFX4:
251 return arg == 0;
252
253 case SHADER_OPCODE_BROADCAST:
254 case SHADER_OPCODE_SHUFFLE:
255 case SHADER_OPCODE_QUAD_SWIZZLE:
256 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
257 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
258 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
259 case SHADER_OPCODE_GET_BUFFER_SIZE:
260 return arg == 1;
261
262 case SHADER_OPCODE_MOV_INDIRECT:
263 case SHADER_OPCODE_CLUSTER_BROADCAST:
264 case SHADER_OPCODE_TEX:
265 case FS_OPCODE_TXB:
266 case SHADER_OPCODE_TXD:
267 case SHADER_OPCODE_TXF:
268 case SHADER_OPCODE_TXF_LZ:
269 case SHADER_OPCODE_TXF_CMS:
270 case SHADER_OPCODE_TXF_CMS_W:
271 case SHADER_OPCODE_TXF_UMS:
272 case SHADER_OPCODE_TXF_MCS:
273 case SHADER_OPCODE_TXL:
274 case SHADER_OPCODE_TXL_LZ:
275 case SHADER_OPCODE_TXS:
276 case SHADER_OPCODE_LOD:
277 case SHADER_OPCODE_TG4:
278 case SHADER_OPCODE_TG4_OFFSET:
279 case SHADER_OPCODE_SAMPLEINFO:
280 return arg == 1 || arg == 2;
281
282 case SHADER_OPCODE_SEND:
283 return arg == 0 || arg == 1;
284
285 default:
286 return false;
287 }
288 }
289
290 bool
is_payload(unsigned arg) const291 fs_inst::is_payload(unsigned arg) const
292 {
293 switch (opcode) {
294 case FS_OPCODE_FB_WRITE:
295 case FS_OPCODE_FB_READ:
296 case VEC4_OPCODE_UNTYPED_ATOMIC:
297 case VEC4_OPCODE_UNTYPED_SURFACE_READ:
298 case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
299 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
300 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
301 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
302 case SHADER_OPCODE_INTERLOCK:
303 case SHADER_OPCODE_MEMORY_FENCE:
304 case SHADER_OPCODE_BARRIER:
305 return arg == 0;
306
307 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GFX7:
308 return arg == 1;
309
310 case SHADER_OPCODE_SEND:
311 return arg == 2 || arg == 3;
312
313 default:
314 if (is_tex())
315 return arg == 0;
316 else
317 return false;
318 }
319 }
320
321 /**
322 * Returns true if this instruction's sources and destinations cannot
323 * safely be the same register.
324 *
325 * In most cases, a register can be written over safely by the same
326 * instruction that is its last use. For a single instruction, the
327 * sources are dereferenced before writing of the destination starts
328 * (naturally).
329 *
330 * However, there are a few cases where this can be problematic:
331 *
332 * - Virtual opcodes that translate to multiple instructions in the
333 * code generator: if src == dst and one instruction writes the
334 * destination before a later instruction reads the source, then
335 * src will have been clobbered.
336 *
337 * - SIMD16 compressed instructions with certain regioning (see below).
338 *
339 * The register allocator uses this information to set up conflicts between
340 * GRF sources and the destination.
341 */
342 bool
has_source_and_destination_hazard() const343 fs_inst::has_source_and_destination_hazard() const
344 {
345 switch (opcode) {
346 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
347 /* Multiple partial writes to the destination */
348 return true;
349 case SHADER_OPCODE_SHUFFLE:
350 /* This instruction returns an arbitrary channel from the source and
351 * gets split into smaller instructions in the generator. It's possible
352 * that one of the instructions will read from a channel corresponding
353 * to an earlier instruction.
354 */
355 case SHADER_OPCODE_SEL_EXEC:
356 /* This is implemented as
357 *
358 * mov(16) g4<1>D 0D { align1 WE_all 1H };
359 * mov(16) g4<1>D g5<8,8,1>D { align1 1H }
360 *
361 * Because the source is only read in the second instruction, the first
362 * may stomp all over it.
363 */
364 return true;
365 case SHADER_OPCODE_QUAD_SWIZZLE:
366 switch (src[1].ud) {
367 case BRW_SWIZZLE_XXXX:
368 case BRW_SWIZZLE_YYYY:
369 case BRW_SWIZZLE_ZZZZ:
370 case BRW_SWIZZLE_WWWW:
371 case BRW_SWIZZLE_XXZZ:
372 case BRW_SWIZZLE_YYWW:
373 case BRW_SWIZZLE_XYXY:
374 case BRW_SWIZZLE_ZWZW:
375 /* These can be implemented as a single Align1 region on all
376 * platforms, so there's never a hazard between source and
377 * destination. C.f. fs_generator::generate_quad_swizzle().
378 */
379 return false;
380 default:
381 return !is_uniform(src[0]);
382 }
383 default:
384 /* The SIMD16 compressed instruction
385 *
386 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
387 *
388 * is actually decoded in hardware as:
389 *
390 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
391 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
392 *
393 * Which is safe. However, if we have uniform accesses
394 * happening, we get into trouble:
395 *
396 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
397 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
398 *
399 * Now our destination for the first instruction overwrote the
400 * second instruction's src0, and we get garbage for those 8
401 * pixels. There's a similar issue for the pre-gfx6
402 * pixel_x/pixel_y, which are registers of 16-bit values and thus
403 * would get stomped by the first decode as well.
404 */
405 if (exec_size == 16) {
406 for (int i = 0; i < sources; i++) {
407 if (src[i].file == VGRF && (src[i].stride == 0 ||
408 src[i].type == BRW_REGISTER_TYPE_UW ||
409 src[i].type == BRW_REGISTER_TYPE_W ||
410 src[i].type == BRW_REGISTER_TYPE_UB ||
411 src[i].type == BRW_REGISTER_TYPE_B)) {
412 return true;
413 }
414 }
415 }
416 return false;
417 }
418 }
419
420 bool
can_do_source_mods(const struct intel_device_info * devinfo) const421 fs_inst::can_do_source_mods(const struct intel_device_info *devinfo) const
422 {
423 if (devinfo->ver == 6 && is_math())
424 return false;
425
426 if (is_send_from_grf())
427 return false;
428
429 /* From Wa_1604601757:
430 *
431 * "When multiplying a DW and any lower precision integer, source modifier
432 * is not supported."
433 */
434 if (devinfo->ver >= 12 && (opcode == BRW_OPCODE_MUL ||
435 opcode == BRW_OPCODE_MAD)) {
436 const brw_reg_type exec_type = get_exec_type(this);
437 const unsigned min_type_sz = opcode == BRW_OPCODE_MAD ?
438 MIN2(type_sz(src[1].type), type_sz(src[2].type)) :
439 MIN2(type_sz(src[0].type), type_sz(src[1].type));
440
441 if (brw_reg_type_is_integer(exec_type) &&
442 type_sz(exec_type) >= 4 &&
443 type_sz(exec_type) != min_type_sz)
444 return false;
445 }
446
447 if (!backend_instruction::can_do_source_mods())
448 return false;
449
450 return true;
451 }
452
453 bool
can_do_cmod()454 fs_inst::can_do_cmod()
455 {
456 if (!backend_instruction::can_do_cmod())
457 return false;
458
459 /* The accumulator result appears to get used for the conditional modifier
460 * generation. When negating a UD value, there is a 33rd bit generated for
461 * the sign in the accumulator value, so now you can't check, for example,
462 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
463 */
464 for (unsigned i = 0; i < sources; i++) {
465 if (brw_reg_type_is_unsigned_integer(src[i].type) && src[i].negate)
466 return false;
467 }
468
469 return true;
470 }
471
472 bool
can_change_types() const473 fs_inst::can_change_types() const
474 {
475 return dst.type == src[0].type &&
476 !src[0].abs && !src[0].negate && !saturate &&
477 (opcode == BRW_OPCODE_MOV ||
478 (opcode == BRW_OPCODE_SEL &&
479 dst.type == src[1].type &&
480 predicate != BRW_PREDICATE_NONE &&
481 !src[1].abs && !src[1].negate));
482 }
483
484 void
init()485 fs_reg::init()
486 {
487 memset((void*)this, 0, sizeof(*this));
488 type = BRW_REGISTER_TYPE_UD;
489 stride = 1;
490 }
491
492 /** Generic unset register constructor. */
fs_reg()493 fs_reg::fs_reg()
494 {
495 init();
496 this->file = BAD_FILE;
497 }
498
fs_reg(struct::brw_reg reg)499 fs_reg::fs_reg(struct ::brw_reg reg) :
500 backend_reg(reg)
501 {
502 this->offset = 0;
503 this->stride = 1;
504 if (this->file == IMM &&
505 (this->type != BRW_REGISTER_TYPE_V &&
506 this->type != BRW_REGISTER_TYPE_UV &&
507 this->type != BRW_REGISTER_TYPE_VF)) {
508 this->stride = 0;
509 }
510 }
511
512 bool
equals(const fs_reg & r) const513 fs_reg::equals(const fs_reg &r) const
514 {
515 return (this->backend_reg::equals(r) &&
516 stride == r.stride);
517 }
518
519 bool
negative_equals(const fs_reg & r) const520 fs_reg::negative_equals(const fs_reg &r) const
521 {
522 return (this->backend_reg::negative_equals(r) &&
523 stride == r.stride);
524 }
525
526 bool
is_contiguous() const527 fs_reg::is_contiguous() const
528 {
529 switch (file) {
530 case ARF:
531 case FIXED_GRF:
532 return hstride == BRW_HORIZONTAL_STRIDE_1 &&
533 vstride == width + hstride;
534 case MRF:
535 case VGRF:
536 case ATTR:
537 return stride == 1;
538 case UNIFORM:
539 case IMM:
540 case BAD_FILE:
541 return true;
542 }
543
544 unreachable("Invalid register file");
545 }
546
547 unsigned
component_size(unsigned width) const548 fs_reg::component_size(unsigned width) const
549 {
550 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
551 hstride == 0 ? 0 :
552 1 << (hstride - 1));
553 return MAX2(width * stride, 1) * type_sz(type);
554 }
555
556 /**
557 * Create a MOV to read the timestamp register.
558 */
559 fs_reg
get_timestamp(const fs_builder & bld)560 fs_visitor::get_timestamp(const fs_builder &bld)
561 {
562 assert(devinfo->ver >= 7);
563
564 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
565 BRW_ARF_TIMESTAMP,
566 0),
567 BRW_REGISTER_TYPE_UD));
568
569 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
570
571 /* We want to read the 3 fields we care about even if it's not enabled in
572 * the dispatch.
573 */
574 bld.group(4, 0).exec_all().MOV(dst, ts);
575
576 return dst;
577 }
578
579 void
vfail(const char * format,va_list va)580 fs_visitor::vfail(const char *format, va_list va)
581 {
582 char *msg;
583
584 if (failed)
585 return;
586
587 failed = true;
588
589 msg = ralloc_vasprintf(mem_ctx, format, va);
590 msg = ralloc_asprintf(mem_ctx, "SIMD%d %s compile failed: %s\n",
591 dispatch_width, stage_abbrev, msg);
592
593 this->fail_msg = msg;
594
595 if (unlikely(debug_enabled)) {
596 fprintf(stderr, "%s", msg);
597 }
598 }
599
600 void
fail(const char * format,...)601 fs_visitor::fail(const char *format, ...)
602 {
603 va_list va;
604
605 va_start(va, format);
606 vfail(format, va);
607 va_end(va);
608 }
609
610 /**
611 * Mark this program as impossible to compile with dispatch width greater
612 * than n.
613 *
614 * During the SIMD8 compile (which happens first), we can detect and flag
615 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
616 * SIMD16+ compile altogether.
617 *
618 * During a compile of dispatch width greater than n (if one happens anyway),
619 * this just calls fail().
620 */
621 void
limit_dispatch_width(unsigned n,const char * msg)622 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
623 {
624 if (dispatch_width > n) {
625 fail("%s", msg);
626 } else {
627 max_dispatch_width = MIN2(max_dispatch_width, n);
628 brw_shader_perf_log(compiler, log_data,
629 "Shader dispatch width limited to SIMD%d: %s\n",
630 n, msg);
631 }
632 }
633
634 /**
635 * Returns true if the instruction has a flag that means it won't
636 * update an entire destination register.
637 *
638 * For example, dead code elimination and live variable analysis want to know
639 * when a write to a variable screens off any preceding values that were in
640 * it.
641 */
642 bool
is_partial_write() const643 fs_inst::is_partial_write() const
644 {
645 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
646 (this->exec_size * type_sz(this->dst.type)) < 32 ||
647 !this->dst.is_contiguous() ||
648 this->dst.offset % REG_SIZE != 0);
649 }
650
651 unsigned
components_read(unsigned i) const652 fs_inst::components_read(unsigned i) const
653 {
654 /* Return zero if the source is not present. */
655 if (src[i].file == BAD_FILE)
656 return 0;
657
658 switch (opcode) {
659 case FS_OPCODE_LINTERP:
660 if (i == 0)
661 return 2;
662 else
663 return 1;
664
665 case FS_OPCODE_PIXEL_X:
666 case FS_OPCODE_PIXEL_Y:
667 assert(i < 2);
668 if (i == 0)
669 return 2;
670 else
671 return 1;
672
673 case FS_OPCODE_FB_WRITE_LOGICAL:
674 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
675 /* First/second FB write color. */
676 if (i < 2)
677 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
678 else
679 return 1;
680
681 case SHADER_OPCODE_TEX_LOGICAL:
682 case SHADER_OPCODE_TXD_LOGICAL:
683 case SHADER_OPCODE_TXF_LOGICAL:
684 case SHADER_OPCODE_TXL_LOGICAL:
685 case SHADER_OPCODE_TXS_LOGICAL:
686 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
687 case FS_OPCODE_TXB_LOGICAL:
688 case SHADER_OPCODE_TXF_CMS_LOGICAL:
689 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
690 case SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL:
691 case SHADER_OPCODE_TXF_UMS_LOGICAL:
692 case SHADER_OPCODE_TXF_MCS_LOGICAL:
693 case SHADER_OPCODE_LOD_LOGICAL:
694 case SHADER_OPCODE_TG4_LOGICAL:
695 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
696 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
697 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
698 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
699 /* Texture coordinates. */
700 if (i == TEX_LOGICAL_SRC_COORDINATE)
701 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
702 /* Texture derivatives. */
703 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
704 opcode == SHADER_OPCODE_TXD_LOGICAL)
705 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
706 /* Texture offset. */
707 else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
708 return 2;
709 /* MCS */
710 else if (i == TEX_LOGICAL_SRC_MCS) {
711 if (opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
712 return 2;
713 else if (opcode == SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL)
714 return 4;
715 else
716 return 1;
717 } else
718 return 1;
719
720 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
721 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
722 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM);
723 /* Surface coordinates. */
724 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
725 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
726 /* Surface operation source (ignored for reads). */
727 else if (i == SURFACE_LOGICAL_SRC_DATA)
728 return 0;
729 else
730 return 1;
731
732 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
733 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
734 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
735 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
736 /* Surface coordinates. */
737 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
738 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
739 /* Surface operation source. */
740 else if (i == SURFACE_LOGICAL_SRC_DATA)
741 return src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
742 else
743 return 1;
744
745 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
746 case SHADER_OPCODE_A64_OWORD_BLOCK_READ_LOGICAL:
747 case SHADER_OPCODE_A64_UNALIGNED_OWORD_BLOCK_READ_LOGICAL:
748 assert(src[2].file == IMM);
749 return 1;
750
751 case SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL:
752 assert(src[2].file == IMM);
753 if (i == 1) { /* data to write */
754 const unsigned comps = src[2].ud / exec_size;
755 assert(comps > 0);
756 return comps;
757 } else {
758 return 1;
759 }
760
761 case SHADER_OPCODE_OWORD_BLOCK_READ_LOGICAL:
762 case SHADER_OPCODE_UNALIGNED_OWORD_BLOCK_READ_LOGICAL:
763 assert(src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
764 return 1;
765
766 case SHADER_OPCODE_OWORD_BLOCK_WRITE_LOGICAL:
767 assert(src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
768 if (i == SURFACE_LOGICAL_SRC_DATA) {
769 const unsigned comps = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud / exec_size;
770 assert(comps > 0);
771 return comps;
772 } else {
773 return 1;
774 }
775
776 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
777 assert(src[2].file == IMM);
778 return i == 1 ? src[2].ud : 1;
779
780 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
781 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT16_LOGICAL:
782 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
783 assert(src[2].file == IMM);
784 if (i == 1) {
785 /* Data source */
786 const unsigned op = src[2].ud;
787 switch (op) {
788 case BRW_AOP_INC:
789 case BRW_AOP_DEC:
790 case BRW_AOP_PREDEC:
791 return 0;
792 case BRW_AOP_CMPWR:
793 return 2;
794 default:
795 return 1;
796 }
797 } else {
798 return 1;
799 }
800
801 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT16_LOGICAL:
802 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT32_LOGICAL:
803 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT64_LOGICAL:
804 assert(src[2].file == IMM);
805 if (i == 1) {
806 /* Data source */
807 const unsigned op = src[2].ud;
808 return op == BRW_AOP_FCMPWR ? 2 : 1;
809 } else {
810 return 1;
811 }
812
813 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
814 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
815 /* Scattered logical opcodes use the following params:
816 * src[0] Surface coordinates
817 * src[1] Surface operation source (ignored for reads)
818 * src[2] Surface
819 * src[3] IMM with always 1 dimension.
820 * src[4] IMM with arg bitsize for scattered read/write 8, 16, 32
821 */
822 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
823 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
824 return i == SURFACE_LOGICAL_SRC_DATA ? 0 : 1;
825
826 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
827 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
828 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
829 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
830 return 1;
831
832 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
833 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
834 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
835 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
836 const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
837 /* Surface coordinates. */
838 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
839 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
840 /* Surface operation source. */
841 else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_CMPWR)
842 return 2;
843 else if (i == SURFACE_LOGICAL_SRC_DATA &&
844 (op == BRW_AOP_INC || op == BRW_AOP_DEC || op == BRW_AOP_PREDEC))
845 return 0;
846 else
847 return 1;
848 }
849 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
850 return (i == 0 ? 2 : 1);
851
852 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL: {
853 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
854 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
855 const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
856 /* Surface coordinates. */
857 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
858 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
859 /* Surface operation source. */
860 else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_FCMPWR)
861 return 2;
862 else
863 return 1;
864 }
865
866 case SHADER_OPCODE_URB_WRITE_LOGICAL:
867 if (i == URB_LOGICAL_SRC_DATA)
868 return mlen - 1 -
869 unsigned(src[URB_LOGICAL_SRC_PER_SLOT_OFFSETS].file != BAD_FILE) -
870 unsigned(src[URB_LOGICAL_SRC_CHANNEL_MASK].file != BAD_FILE);
871 else
872 return 1;
873
874 default:
875 return 1;
876 }
877 }
878
879 unsigned
size_read(int arg) const880 fs_inst::size_read(int arg) const
881 {
882 switch (opcode) {
883 case SHADER_OPCODE_SEND:
884 if (arg == 2) {
885 return mlen * REG_SIZE;
886 } else if (arg == 3) {
887 return ex_mlen * REG_SIZE;
888 }
889 break;
890
891 case FS_OPCODE_FB_WRITE:
892 case FS_OPCODE_REP_FB_WRITE:
893 if (arg == 0) {
894 if (base_mrf >= 0)
895 return src[0].file == BAD_FILE ? 0 : 2 * REG_SIZE;
896 else
897 return mlen * REG_SIZE;
898 }
899 break;
900
901 case FS_OPCODE_FB_READ:
902 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
903 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
904 if (arg == 0)
905 return mlen * REG_SIZE;
906 break;
907
908 case FS_OPCODE_SET_SAMPLE_ID:
909 if (arg == 1)
910 return 1;
911 break;
912
913 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GFX7:
914 /* The payload is actually stored in src1 */
915 if (arg == 1)
916 return mlen * REG_SIZE;
917 break;
918
919 case FS_OPCODE_LINTERP:
920 if (arg == 1)
921 return 16;
922 break;
923
924 case SHADER_OPCODE_LOAD_PAYLOAD:
925 if (arg < this->header_size)
926 return REG_SIZE;
927 break;
928
929 case CS_OPCODE_CS_TERMINATE:
930 case SHADER_OPCODE_BARRIER:
931 return REG_SIZE;
932
933 case SHADER_OPCODE_MOV_INDIRECT:
934 if (arg == 0) {
935 assert(src[2].file == IMM);
936 return src[2].ud;
937 }
938 break;
939
940 default:
941 if (is_tex() && arg == 0 && src[0].file == VGRF)
942 return mlen * REG_SIZE;
943 break;
944 }
945
946 switch (src[arg].file) {
947 case UNIFORM:
948 case IMM:
949 return components_read(arg) * type_sz(src[arg].type);
950 case BAD_FILE:
951 case ARF:
952 case FIXED_GRF:
953 case VGRF:
954 case ATTR:
955 return components_read(arg) * src[arg].component_size(exec_size);
956 case MRF:
957 unreachable("MRF registers are not allowed as sources");
958 }
959 return 0;
960 }
961
962 namespace {
963 unsigned
predicate_width(brw_predicate predicate)964 predicate_width(brw_predicate predicate)
965 {
966 switch (predicate) {
967 case BRW_PREDICATE_NONE: return 1;
968 case BRW_PREDICATE_NORMAL: return 1;
969 case BRW_PREDICATE_ALIGN1_ANY2H: return 2;
970 case BRW_PREDICATE_ALIGN1_ALL2H: return 2;
971 case BRW_PREDICATE_ALIGN1_ANY4H: return 4;
972 case BRW_PREDICATE_ALIGN1_ALL4H: return 4;
973 case BRW_PREDICATE_ALIGN1_ANY8H: return 8;
974 case BRW_PREDICATE_ALIGN1_ALL8H: return 8;
975 case BRW_PREDICATE_ALIGN1_ANY16H: return 16;
976 case BRW_PREDICATE_ALIGN1_ALL16H: return 16;
977 case BRW_PREDICATE_ALIGN1_ANY32H: return 32;
978 case BRW_PREDICATE_ALIGN1_ALL32H: return 32;
979 default: unreachable("Unsupported predicate");
980 }
981 }
982
983 /* Return the subset of flag registers that an instruction could
984 * potentially read or write based on the execution controls and flag
985 * subregister number of the instruction.
986 */
987 unsigned
flag_mask(const fs_inst * inst,unsigned width)988 flag_mask(const fs_inst *inst, unsigned width)
989 {
990 assert(util_is_power_of_two_nonzero(width));
991 const unsigned start = (inst->flag_subreg * 16 + inst->group) &
992 ~(width - 1);
993 const unsigned end = start + ALIGN(inst->exec_size, width);
994 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
995 }
996
997 unsigned
bit_mask(unsigned n)998 bit_mask(unsigned n)
999 {
1000 return (n >= CHAR_BIT * sizeof(bit_mask(n)) ? ~0u : (1u << n) - 1);
1001 }
1002
1003 unsigned
flag_mask(const fs_reg & r,unsigned sz)1004 flag_mask(const fs_reg &r, unsigned sz)
1005 {
1006 if (r.file == ARF) {
1007 const unsigned start = (r.nr - BRW_ARF_FLAG) * 4 + r.subnr;
1008 const unsigned end = start + sz;
1009 return bit_mask(end) & ~bit_mask(start);
1010 } else {
1011 return 0;
1012 }
1013 }
1014 }
1015
1016 unsigned
flags_read(const intel_device_info * devinfo) const1017 fs_inst::flags_read(const intel_device_info *devinfo) const
1018 {
1019 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
1020 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
1021 /* The vertical predication modes combine corresponding bits from
1022 * f0.0 and f1.0 on Gfx7+, and f0.0 and f0.1 on older hardware.
1023 */
1024 const unsigned shift = devinfo->ver >= 7 ? 4 : 2;
1025 return flag_mask(this, 1) << shift | flag_mask(this, 1);
1026 } else if (predicate) {
1027 return flag_mask(this, predicate_width(predicate));
1028 } else {
1029 unsigned mask = 0;
1030 for (int i = 0; i < sources; i++) {
1031 mask |= flag_mask(src[i], size_read(i));
1032 }
1033 return mask;
1034 }
1035 }
1036
1037 unsigned
flags_written(const intel_device_info * devinfo) const1038 fs_inst::flags_written(const intel_device_info *devinfo) const
1039 {
1040 /* On Gfx4 and Gfx5, sel.l (for min) and sel.ge (for max) are implemented
1041 * using a separate cmpn and sel instruction. This lowering occurs in
1042 * fs_vistor::lower_minmax which is called very, very late.
1043 */
1044 if ((conditional_mod && ((opcode != BRW_OPCODE_SEL || devinfo->ver <= 5) &&
1045 opcode != BRW_OPCODE_CSEL &&
1046 opcode != BRW_OPCODE_IF &&
1047 opcode != BRW_OPCODE_WHILE)) ||
1048 opcode == FS_OPCODE_FB_WRITE) {
1049 return flag_mask(this, 1);
1050 } else if (opcode == SHADER_OPCODE_FIND_LIVE_CHANNEL ||
1051 opcode == SHADER_OPCODE_FIND_LAST_LIVE_CHANNEL ||
1052 opcode == FS_OPCODE_LOAD_LIVE_CHANNELS) {
1053 return flag_mask(this, 32);
1054 } else {
1055 return flag_mask(dst, size_written);
1056 }
1057 }
1058
1059 /**
1060 * Returns how many MRFs an FS opcode will write over.
1061 *
1062 * Note that this is not the 0 or 1 implied writes in an actual gen
1063 * instruction -- the FS opcodes often generate MOVs in addition.
1064 */
1065 unsigned
implied_mrf_writes() const1066 fs_inst::implied_mrf_writes() const
1067 {
1068 if (mlen == 0)
1069 return 0;
1070
1071 if (base_mrf == -1)
1072 return 0;
1073
1074 switch (opcode) {
1075 case SHADER_OPCODE_RCP:
1076 case SHADER_OPCODE_RSQ:
1077 case SHADER_OPCODE_SQRT:
1078 case SHADER_OPCODE_EXP2:
1079 case SHADER_OPCODE_LOG2:
1080 case SHADER_OPCODE_SIN:
1081 case SHADER_OPCODE_COS:
1082 return 1 * exec_size / 8;
1083 case SHADER_OPCODE_POW:
1084 case SHADER_OPCODE_INT_QUOTIENT:
1085 case SHADER_OPCODE_INT_REMAINDER:
1086 return 2 * exec_size / 8;
1087 case SHADER_OPCODE_TEX:
1088 case FS_OPCODE_TXB:
1089 case SHADER_OPCODE_TXD:
1090 case SHADER_OPCODE_TXF:
1091 case SHADER_OPCODE_TXF_CMS:
1092 case SHADER_OPCODE_TXF_MCS:
1093 case SHADER_OPCODE_TG4:
1094 case SHADER_OPCODE_TG4_OFFSET:
1095 case SHADER_OPCODE_TXL:
1096 case SHADER_OPCODE_TXS:
1097 case SHADER_OPCODE_LOD:
1098 case SHADER_OPCODE_SAMPLEINFO:
1099 return 1;
1100 case FS_OPCODE_FB_WRITE:
1101 case FS_OPCODE_REP_FB_WRITE:
1102 return src[0].file == BAD_FILE ? 0 : 2;
1103 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
1104 case SHADER_OPCODE_GFX4_SCRATCH_READ:
1105 return 1;
1106 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GFX4:
1107 return mlen;
1108 case SHADER_OPCODE_GFX4_SCRATCH_WRITE:
1109 return mlen;
1110 default:
1111 unreachable("not reached");
1112 }
1113 }
1114
1115 fs_reg
vgrf(const glsl_type * const type)1116 fs_visitor::vgrf(const glsl_type *const type)
1117 {
1118 int reg_width = dispatch_width / 8;
1119 return fs_reg(VGRF,
1120 alloc.allocate(glsl_count_dword_slots(type, false) * reg_width),
1121 brw_type_for_base_type(type));
1122 }
1123
fs_reg(enum brw_reg_file file,int nr)1124 fs_reg::fs_reg(enum brw_reg_file file, int nr)
1125 {
1126 init();
1127 this->file = file;
1128 this->nr = nr;
1129 this->type = BRW_REGISTER_TYPE_F;
1130 this->stride = (file == UNIFORM ? 0 : 1);
1131 }
1132
fs_reg(enum brw_reg_file file,int nr,enum brw_reg_type type)1133 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1134 {
1135 init();
1136 this->file = file;
1137 this->nr = nr;
1138 this->type = type;
1139 this->stride = (file == UNIFORM ? 0 : 1);
1140 }
1141
1142 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1143 * This brings in those uniform definitions
1144 */
1145 void
import_uniforms(fs_visitor * v)1146 fs_visitor::import_uniforms(fs_visitor *v)
1147 {
1148 this->push_constant_loc = v->push_constant_loc;
1149 this->uniforms = v->uniforms;
1150 this->subgroup_id = v->subgroup_id;
1151 for (unsigned i = 0; i < ARRAY_SIZE(this->group_size); i++)
1152 this->group_size[i] = v->group_size[i];
1153 }
1154
1155 void
emit_fragcoord_interpolation(fs_reg wpos)1156 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1157 {
1158 assert(stage == MESA_SHADER_FRAGMENT);
1159
1160 /* gl_FragCoord.x */
1161 bld.MOV(wpos, this->pixel_x);
1162 wpos = offset(wpos, bld, 1);
1163
1164 /* gl_FragCoord.y */
1165 bld.MOV(wpos, this->pixel_y);
1166 wpos = offset(wpos, bld, 1);
1167
1168 /* gl_FragCoord.z */
1169 if (devinfo->ver >= 6) {
1170 bld.MOV(wpos, this->pixel_z);
1171 } else {
1172 bld.emit(FS_OPCODE_LINTERP, wpos,
1173 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1174 component(interp_reg(VARYING_SLOT_POS, 2), 0));
1175 }
1176 wpos = offset(wpos, bld, 1);
1177
1178 /* gl_FragCoord.w: Already set up in emit_interpolation */
1179 bld.MOV(wpos, this->wpos_w);
1180 }
1181
1182 enum brw_barycentric_mode
brw_barycentric_mode(nir_intrinsic_instr * intr)1183 brw_barycentric_mode(nir_intrinsic_instr *intr)
1184 {
1185 const glsl_interp_mode mode =
1186 (enum glsl_interp_mode) nir_intrinsic_interp_mode(intr);
1187
1188 /* Barycentric modes don't make sense for flat inputs. */
1189 assert(mode != INTERP_MODE_FLAT);
1190
1191 unsigned bary;
1192 switch (intr->intrinsic) {
1193 case nir_intrinsic_load_barycentric_pixel:
1194 case nir_intrinsic_load_barycentric_at_offset:
1195 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1196 break;
1197 case nir_intrinsic_load_barycentric_centroid:
1198 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1199 break;
1200 case nir_intrinsic_load_barycentric_sample:
1201 case nir_intrinsic_load_barycentric_at_sample:
1202 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1203 break;
1204 default:
1205 unreachable("invalid intrinsic");
1206 }
1207
1208 if (mode == INTERP_MODE_NOPERSPECTIVE)
1209 bary += 3;
1210
1211 return (enum brw_barycentric_mode) bary;
1212 }
1213
1214 /**
1215 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1216 */
1217 static enum brw_barycentric_mode
centroid_to_pixel(enum brw_barycentric_mode bary)1218 centroid_to_pixel(enum brw_barycentric_mode bary)
1219 {
1220 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1221 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1222 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1223 }
1224
1225 fs_reg
emit_frontfacing_interpolation()1226 fs_visitor::emit_frontfacing_interpolation()
1227 {
1228 fs_reg ff = bld.vgrf(BRW_REGISTER_TYPE_D);
1229
1230 if (devinfo->ver >= 12) {
1231 fs_reg g1 = fs_reg(retype(brw_vec1_grf(1, 1), BRW_REGISTER_TYPE_W));
1232
1233 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_W);
1234 bld.ASR(tmp, g1, brw_imm_d(15));
1235 bld.NOT(ff, tmp);
1236 } else if (devinfo->ver >= 6) {
1237 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1238 * a boolean result from this (~0/true or 0/false).
1239 *
1240 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1241 * this task in only one instruction:
1242 * - a negation source modifier will flip the bit; and
1243 * - a W -> D type conversion will sign extend the bit into the high
1244 * word of the destination.
1245 *
1246 * An ASR 15 fills the low word of the destination.
1247 */
1248 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1249 g0.negate = true;
1250
1251 bld.ASR(ff, g0, brw_imm_d(15));
1252 } else {
1253 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1254 * a boolean result from this (1/true or 0/false).
1255 *
1256 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1257 * the negation source modifier to flip it. Unfortunately the SHR
1258 * instruction only operates on UD (or D with an abs source modifier)
1259 * sources without negation.
1260 *
1261 * Instead, use ASR (which will give ~0/true or 0/false).
1262 */
1263 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1264 g1_6.negate = true;
1265
1266 bld.ASR(ff, g1_6, brw_imm_d(31));
1267 }
1268
1269 return ff;
1270 }
1271
1272 fs_reg
emit_samplepos_setup()1273 fs_visitor::emit_samplepos_setup()
1274 {
1275 assert(stage == MESA_SHADER_FRAGMENT);
1276 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1277 assert(devinfo->ver >= 6);
1278
1279 const fs_builder abld = bld.annotate("compute sample position");
1280 fs_reg pos = abld.vgrf(BRW_REGISTER_TYPE_F, 2);
1281
1282 if (!wm_prog_data->persample_dispatch) {
1283 /* From ARB_sample_shading specification:
1284 * "When rendering to a non-multisample buffer, or if multisample
1285 * rasterization is disabled, gl_SamplePosition will always be
1286 * (0.5, 0.5).
1287 */
1288 bld.MOV(offset(pos, bld, 0), brw_imm_f(0.5f));
1289 bld.MOV(offset(pos, bld, 1), brw_imm_f(0.5f));
1290 return pos;
1291 }
1292
1293 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1294 * mode will be enabled.
1295 *
1296 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1297 * R31.1:0 Position Offset X/Y for Slot[3:0]
1298 * R31.3:2 Position Offset X/Y for Slot[7:4]
1299 * .....
1300 *
1301 * The X, Y sample positions come in as bytes in thread payload. So, read
1302 * the positions using vstride=16, width=8, hstride=2.
1303 */
1304 const fs_reg sample_pos_reg =
1305 fetch_payload_reg(abld, payload.sample_pos_reg, BRW_REGISTER_TYPE_W);
1306
1307 for (unsigned i = 0; i < 2; i++) {
1308 fs_reg tmp_d = bld.vgrf(BRW_REGISTER_TYPE_D);
1309 abld.MOV(tmp_d, subscript(sample_pos_reg, BRW_REGISTER_TYPE_B, i));
1310 /* Convert int_sample_pos to floating point */
1311 fs_reg tmp_f = bld.vgrf(BRW_REGISTER_TYPE_F);
1312 abld.MOV(tmp_f, tmp_d);
1313 /* Scale to the range [0, 1] */
1314 abld.MUL(offset(pos, abld, i), tmp_f, brw_imm_f(1 / 16.0f));
1315 }
1316
1317 return pos;
1318 }
1319
1320 fs_reg
emit_sampleid_setup()1321 fs_visitor::emit_sampleid_setup()
1322 {
1323 assert(stage == MESA_SHADER_FRAGMENT);
1324 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1325 assert(devinfo->ver >= 6);
1326
1327 const fs_builder abld = bld.annotate("compute sample id");
1328 fs_reg sample_id = abld.vgrf(BRW_REGISTER_TYPE_UD);
1329
1330 assert(key->multisample_fbo);
1331
1332 if (devinfo->ver >= 8) {
1333 /* Sample ID comes in as 4-bit numbers in g1.0:
1334 *
1335 * 15:12 Slot 3 SampleID (only used in SIMD16)
1336 * 11:8 Slot 2 SampleID (only used in SIMD16)
1337 * 7:4 Slot 1 SampleID
1338 * 3:0 Slot 0 SampleID
1339 *
1340 * Each slot corresponds to four channels, so we want to replicate each
1341 * half-byte value to 4 channels in a row:
1342 *
1343 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1344 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1345 *
1346 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1347 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1348 *
1349 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1350 * channels to read the first byte (7:0), and the second group of 8
1351 * channels to read the second byte (15:8). Then, we shift right by
1352 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1353 * values into place. Finally, we AND with 0xf to keep the low nibble.
1354 *
1355 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1356 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1357 *
1358 * TODO: These payload bits exist on Gfx7 too, but they appear to always
1359 * be zero, so this code fails to work. We should find out why.
1360 */
1361 const fs_reg tmp = abld.vgrf(BRW_REGISTER_TYPE_UW);
1362
1363 for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) {
1364 const fs_builder hbld = abld.group(MIN2(16, dispatch_width), i);
1365 hbld.SHR(offset(tmp, hbld, i),
1366 stride(retype(brw_vec1_grf(1 + i, 0), BRW_REGISTER_TYPE_UB),
1367 1, 8, 0),
1368 brw_imm_v(0x44440000));
1369 }
1370
1371 abld.AND(sample_id, tmp, brw_imm_w(0xf));
1372 } else {
1373 const fs_reg t1 = component(abld.vgrf(BRW_REGISTER_TYPE_UD), 0);
1374 const fs_reg t2 = abld.vgrf(BRW_REGISTER_TYPE_UW);
1375
1376 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1377 * 8x multisampling, subspan 0 will represent sample N (where N
1378 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1379 * 7. We can find the value of N by looking at R0.0 bits 7:6
1380 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1381 * (since samples are always delivered in pairs). That is, we
1382 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1383 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1384 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1385 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1386 * populating a temporary variable with the sequence (0, 1, 2, 3),
1387 * and then reading from it using vstride=1, width=4, hstride=0.
1388 * These computations hold good for 4x multisampling as well.
1389 *
1390 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1391 * the first four slots are sample 0 of subspan 0; the next four
1392 * are sample 1 of subspan 0; the third group is sample 0 of
1393 * subspan 1, and finally sample 1 of subspan 1.
1394 */
1395
1396 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1397 * accommodate 16x MSAA.
1398 */
1399 abld.exec_all().group(1, 0)
1400 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
1401 brw_imm_ud(0xc0));
1402 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1403
1404 /* This works for SIMD8-SIMD16. It also works for SIMD32 but only if we
1405 * can assume 4x MSAA. Disallow it on IVB+
1406 *
1407 * FINISHME: One day, we could come up with a way to do this that
1408 * actually works on gfx7.
1409 */
1410 if (devinfo->ver >= 7)
1411 limit_dispatch_width(16, "gl_SampleId is unsupported in SIMD32 on gfx7");
1412 abld.exec_all().group(8, 0).MOV(t2, brw_imm_v(0x32103210));
1413
1414 /* This special instruction takes care of setting vstride=1,
1415 * width=4, hstride=0 of t2 during an ADD instruction.
1416 */
1417 abld.emit(FS_OPCODE_SET_SAMPLE_ID, sample_id, t1, t2);
1418 }
1419
1420 return sample_id;
1421 }
1422
1423 fs_reg
emit_samplemaskin_setup()1424 fs_visitor::emit_samplemaskin_setup()
1425 {
1426 assert(stage == MESA_SHADER_FRAGMENT);
1427 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1428 assert(devinfo->ver >= 6);
1429
1430 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_D);
1431
1432 /* The HW doesn't provide us with expected values. */
1433 assert(!wm_prog_data->per_coarse_pixel_dispatch);
1434
1435 fs_reg coverage_mask =
1436 fetch_payload_reg(bld, payload.sample_mask_in_reg, BRW_REGISTER_TYPE_D);
1437
1438 if (wm_prog_data->persample_dispatch) {
1439 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1440 * and a mask representing which sample is being processed by the
1441 * current shader invocation.
1442 *
1443 * From the OES_sample_variables specification:
1444 * "When per-sample shading is active due to the use of a fragment input
1445 * qualified by "sample" or due to the use of the gl_SampleID or
1446 * gl_SamplePosition variables, only the bit for the current sample is
1447 * set in gl_SampleMaskIn."
1448 */
1449 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1450
1451 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1452 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = emit_sampleid_setup();
1453
1454 fs_reg one = vgrf(glsl_type::int_type);
1455 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1456 abld.MOV(one, brw_imm_d(1));
1457 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1458 abld.AND(mask, enabled_mask, coverage_mask);
1459 } else {
1460 /* In per-pixel mode, the coverage mask is sufficient. */
1461 mask = coverage_mask;
1462 }
1463 return mask;
1464 }
1465
1466 fs_reg
emit_shading_rate_setup()1467 fs_visitor::emit_shading_rate_setup()
1468 {
1469 assert(devinfo->ver >= 11);
1470
1471 const fs_builder abld = bld.annotate("compute fragment shading rate");
1472 fs_reg rate = abld.vgrf(BRW_REGISTER_TYPE_UD);
1473
1474 struct brw_wm_prog_data *wm_prog_data =
1475 brw_wm_prog_data(bld.shader->stage_prog_data);
1476
1477 /* Coarse pixel shading size fields overlap with other fields of not in
1478 * coarse pixel dispatch mode, so report 0 when that's not the case.
1479 */
1480 if (wm_prog_data->per_coarse_pixel_dispatch) {
1481 /* The shading rates provided in the shader are the actual 2D shading
1482 * rate while the SPIR-V built-in is the enum value that has the shading
1483 * rate encoded as a bitfield. Fortunately, the bitfield value is just
1484 * the shading rate divided by two and shifted.
1485 */
1486
1487 /* r1.0 - 0:7 ActualCoarsePixelShadingSize.X */
1488 fs_reg actual_x = fs_reg(retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UB));
1489 /* r1.0 - 15:8 ActualCoarsePixelShadingSize.Y */
1490 fs_reg actual_y = byte_offset(actual_x, 1);
1491
1492 fs_reg int_rate_x = bld.vgrf(BRW_REGISTER_TYPE_UD);
1493 fs_reg int_rate_y = bld.vgrf(BRW_REGISTER_TYPE_UD);
1494
1495 abld.SHR(int_rate_y, actual_y, brw_imm_ud(1));
1496 abld.SHR(int_rate_x, actual_x, brw_imm_ud(1));
1497 abld.SHL(int_rate_x, int_rate_x, brw_imm_ud(2));
1498 abld.OR(rate, int_rate_x, int_rate_y);
1499 } else {
1500 abld.MOV(rate, brw_imm_ud(0));
1501 }
1502
1503 return rate;
1504 }
1505
1506 fs_reg
resolve_source_modifiers(const fs_reg & src)1507 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1508 {
1509 if (!src.abs && !src.negate)
1510 return src;
1511
1512 fs_reg temp = bld.vgrf(src.type);
1513 bld.MOV(temp, src);
1514
1515 return temp;
1516 }
1517
1518 void
emit_gs_thread_end()1519 fs_visitor::emit_gs_thread_end()
1520 {
1521 assert(stage == MESA_SHADER_GEOMETRY);
1522
1523 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1524
1525 if (gs_compile->control_data_header_size_bits > 0) {
1526 emit_gs_control_data_bits(this->final_gs_vertex_count);
1527 }
1528
1529 const fs_builder abld = bld.annotate("thread end");
1530 fs_inst *inst;
1531
1532 if (gs_prog_data->static_vertex_count != -1) {
1533 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1534 if (prev->opcode == SHADER_OPCODE_URB_WRITE_LOGICAL) {
1535 prev->eot = true;
1536
1537 /* Delete now dead instructions. */
1538 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1539 if (dead == prev)
1540 break;
1541 dead->remove();
1542 }
1543 return;
1544 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1545 break;
1546 }
1547 }
1548 fs_reg srcs[URB_LOGICAL_NUM_SRCS];
1549 srcs[URB_LOGICAL_SRC_HANDLE] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1550 inst = abld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef,
1551 srcs, ARRAY_SIZE(srcs));
1552 inst->mlen = 1;
1553 } else {
1554 fs_reg srcs[URB_LOGICAL_NUM_SRCS];
1555 srcs[URB_LOGICAL_SRC_HANDLE] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1556 srcs[URB_LOGICAL_SRC_DATA] = this->final_gs_vertex_count;
1557 inst = abld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef,
1558 srcs, ARRAY_SIZE(srcs));
1559 inst->mlen = 2;
1560 }
1561 inst->eot = true;
1562 inst->offset = 0;
1563 }
1564
1565 void
assign_curb_setup()1566 fs_visitor::assign_curb_setup()
1567 {
1568 unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
1569
1570 unsigned ubo_push_length = 0;
1571 unsigned ubo_push_start[4];
1572 for (int i = 0; i < 4; i++) {
1573 ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length);
1574 ubo_push_length += stage_prog_data->ubo_ranges[i].length;
1575 }
1576
1577 prog_data->curb_read_length = uniform_push_length + ubo_push_length;
1578
1579 uint64_t used = 0;
1580 bool is_compute = gl_shader_stage_is_compute(stage);
1581
1582 if (is_compute && brw_cs_prog_data(prog_data)->uses_inline_data) {
1583 /* With COMPUTE_WALKER, we can push up to one register worth of data via
1584 * the inline data parameter in the COMPUTE_WALKER command itself.
1585 *
1586 * TODO: Support inline data and push at the same time.
1587 */
1588 assert(devinfo->verx10 >= 125);
1589 assert(uniform_push_length <= 1);
1590 } else if (is_compute && devinfo->verx10 >= 125) {
1591 fs_builder ubld = bld.exec_all().group(8, 0).at(
1592 cfg->first_block(), cfg->first_block()->start());
1593
1594 /* The base address for our push data is passed in as R0.0[31:6]. We
1595 * have to mask off the bottom 6 bits.
1596 */
1597 fs_reg base_addr = ubld.vgrf(BRW_REGISTER_TYPE_UD);
1598 ubld.group(1, 0).AND(base_addr,
1599 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
1600 brw_imm_ud(INTEL_MASK(31, 6)));
1601
1602 fs_reg header0 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
1603 ubld.MOV(header0, brw_imm_ud(0));
1604 ubld.group(1, 0).SHR(component(header0, 2), base_addr, brw_imm_ud(4));
1605
1606 /* On Gfx12-HP we load constants at the start of the program using A32
1607 * stateless messages.
1608 */
1609 for (unsigned i = 0; i < uniform_push_length;) {
1610 /* Limit ourselves to HW limit of 8 Owords (8 * 16bytes = 128 bytes
1611 * or 4 registers).
1612 */
1613 unsigned num_regs = MIN2(uniform_push_length - i, 4);
1614 assert(num_regs > 0);
1615 num_regs = 1 << util_logbase2(num_regs);
1616
1617 fs_reg header;
1618 if (i == 0) {
1619 header = header0;
1620 } else {
1621 header = ubld.vgrf(BRW_REGISTER_TYPE_UD);
1622 ubld.MOV(header, brw_imm_ud(0));
1623 ubld.group(1, 0).ADD(component(header, 2),
1624 component(header0, 2),
1625 brw_imm_ud(i * 2));
1626 }
1627
1628 fs_reg srcs[4] = {
1629 brw_imm_ud(0), /* desc */
1630 brw_imm_ud(0), /* ex_desc */
1631 header, /* payload */
1632 fs_reg(), /* payload2 */
1633 };
1634
1635 fs_reg dest = retype(brw_vec8_grf(payload.num_regs + i, 0),
1636 BRW_REGISTER_TYPE_UD);
1637
1638 /* This instruction has to be run SIMD16 if we're filling more than a
1639 * single register.
1640 */
1641 unsigned send_width = MIN2(16, num_regs * 8);
1642
1643 fs_inst *send = ubld.group(send_width, 0).emit(SHADER_OPCODE_SEND,
1644 dest, srcs, 4);
1645 send->sfid = GFX7_SFID_DATAPORT_DATA_CACHE;
1646 send->desc = brw_dp_desc(devinfo, GFX8_BTI_STATELESS_NON_COHERENT,
1647 GFX7_DATAPORT_DC_OWORD_BLOCK_READ,
1648 BRW_DATAPORT_OWORD_BLOCK_OWORDS(num_regs * 2));
1649 send->header_size = 1;
1650 send->mlen = 1;
1651 send->size_written = num_regs * REG_SIZE;
1652 send->send_is_volatile = true;
1653
1654 i += num_regs;
1655 }
1656
1657 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
1658 }
1659
1660 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1661 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1662 for (unsigned int i = 0; i < inst->sources; i++) {
1663 if (inst->src[i].file == UNIFORM) {
1664 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1665 int constant_nr;
1666 if (inst->src[i].nr >= UBO_START) {
1667 /* constant_nr is in 32-bit units, the rest are in bytes */
1668 constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] +
1669 inst->src[i].offset / 4;
1670 } else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1671 constant_nr = push_constant_loc[uniform_nr];
1672 } else {
1673 /* Section 5.11 of the OpenGL 4.1 spec says:
1674 * "Out-of-bounds reads return undefined values, which include
1675 * values from other variables of the active program or zero."
1676 * Just return the first push constant.
1677 */
1678 constant_nr = 0;
1679 }
1680
1681 assert(constant_nr / 8 < 64);
1682 used |= BITFIELD64_BIT(constant_nr / 8);
1683
1684 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1685 constant_nr / 8,
1686 constant_nr % 8);
1687 brw_reg.abs = inst->src[i].abs;
1688 brw_reg.negate = inst->src[i].negate;
1689
1690 assert(inst->src[i].stride == 0);
1691 inst->src[i] = byte_offset(
1692 retype(brw_reg, inst->src[i].type),
1693 inst->src[i].offset % 4);
1694 }
1695 }
1696 }
1697
1698 uint64_t want_zero = used & stage_prog_data->zero_push_reg;
1699 if (want_zero) {
1700 fs_builder ubld = bld.exec_all().group(8, 0).at(
1701 cfg->first_block(), cfg->first_block()->start());
1702
1703 /* push_reg_mask_param is in 32-bit units */
1704 unsigned mask_param = stage_prog_data->push_reg_mask_param;
1705 struct brw_reg mask = brw_vec1_grf(payload.num_regs + mask_param / 8,
1706 mask_param % 8);
1707
1708 fs_reg b32;
1709 for (unsigned i = 0; i < 64; i++) {
1710 if (i % 16 == 0 && (want_zero & BITFIELD64_RANGE(i, 16))) {
1711 fs_reg shifted = ubld.vgrf(BRW_REGISTER_TYPE_W, 2);
1712 ubld.SHL(horiz_offset(shifted, 8),
1713 byte_offset(retype(mask, BRW_REGISTER_TYPE_W), i / 8),
1714 brw_imm_v(0x01234567));
1715 ubld.SHL(shifted, horiz_offset(shifted, 8), brw_imm_w(8));
1716
1717 fs_builder ubld16 = ubld.group(16, 0);
1718 b32 = ubld16.vgrf(BRW_REGISTER_TYPE_D);
1719 ubld16.group(16, 0).ASR(b32, shifted, brw_imm_w(15));
1720 }
1721
1722 if (want_zero & BITFIELD64_BIT(i)) {
1723 assert(i < prog_data->curb_read_length);
1724 struct brw_reg push_reg =
1725 retype(brw_vec8_grf(payload.num_regs + i, 0),
1726 BRW_REGISTER_TYPE_D);
1727
1728 ubld.AND(push_reg, push_reg, component(b32, i % 16));
1729 }
1730 }
1731
1732 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
1733 }
1734
1735 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1736 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1737 }
1738
1739 /*
1740 * Build up an array of indices into the urb_setup array that
1741 * references the active entries of the urb_setup array.
1742 * Used to accelerate walking the active entries of the urb_setup array
1743 * on each upload.
1744 */
1745 void
brw_compute_urb_setup_index(struct brw_wm_prog_data * wm_prog_data)1746 brw_compute_urb_setup_index(struct brw_wm_prog_data *wm_prog_data)
1747 {
1748 /* TODO(mesh): Review usage of this in the context of Mesh, we may want to
1749 * skip per-primitive attributes here.
1750 */
1751
1752 /* Make sure uint8_t is sufficient */
1753 STATIC_ASSERT(VARYING_SLOT_MAX <= 0xff);
1754 uint8_t index = 0;
1755 for (uint8_t attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1756 if (wm_prog_data->urb_setup[attr] >= 0) {
1757 wm_prog_data->urb_setup_attribs[index++] = attr;
1758 }
1759 }
1760 wm_prog_data->urb_setup_attribs_count = index;
1761 }
1762
1763 static void
calculate_urb_setup(const struct intel_device_info * devinfo,const struct brw_wm_prog_key * key,struct brw_wm_prog_data * prog_data,const nir_shader * nir,const struct brw_mue_map * mue_map)1764 calculate_urb_setup(const struct intel_device_info *devinfo,
1765 const struct brw_wm_prog_key *key,
1766 struct brw_wm_prog_data *prog_data,
1767 const nir_shader *nir,
1768 const struct brw_mue_map *mue_map)
1769 {
1770 memset(prog_data->urb_setup, -1,
1771 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1772
1773 int urb_next = 0;
1774
1775 const uint64_t inputs_read =
1776 nir->info.inputs_read & ~nir->info.per_primitive_inputs;
1777
1778 /* Figure out where each of the incoming setup attributes lands. */
1779 if (mue_map) {
1780 /* Per-Primitive Attributes are laid out by Hardware before the regular
1781 * attributes, so order them like this to make easy later to map setup
1782 * into real HW registers.
1783 */
1784 if (nir->info.per_primitive_inputs) {
1785 uint64_t per_prim_inputs_read =
1786 nir->info.inputs_read & nir->info.per_primitive_inputs;
1787
1788 /* In Mesh, PRIMITIVE_SHADING_RATE, VIEWPORT and LAYER slots
1789 * are always at the beginning, because they come from MUE
1790 * Primitive Header, not Per-Primitive Attributes.
1791 */
1792 const uint64_t primitive_header_bits = VARYING_BIT_VIEWPORT |
1793 VARYING_BIT_LAYER |
1794 VARYING_BIT_PRIMITIVE_SHADING_RATE;
1795
1796 if (per_prim_inputs_read & primitive_header_bits) {
1797 /* Primitive Shading Rate, Layer and Viewport live in the same
1798 * 4-dwords slot (psr is dword 0, layer is dword 1, and viewport
1799 * is dword 2).
1800 */
1801 if (per_prim_inputs_read & VARYING_BIT_PRIMITIVE_SHADING_RATE)
1802 prog_data->urb_setup[VARYING_SLOT_PRIMITIVE_SHADING_RATE] = 0;
1803
1804 if (per_prim_inputs_read & VARYING_BIT_LAYER)
1805 prog_data->urb_setup[VARYING_SLOT_LAYER] = 0;
1806
1807 if (per_prim_inputs_read & VARYING_BIT_VIEWPORT)
1808 prog_data->urb_setup[VARYING_SLOT_VIEWPORT] = 0;
1809
1810 /* 3DSTATE_SBE_MESH.Per[Primitive|Vertex]URBEntryOutputRead[Offset|Length]
1811 * are in full GRFs (8 dwords) and MUE Primitive Header is 8 dwords,
1812 * so next per-primitive attribute must be placed in slot 2 (each slot
1813 * is 4 dwords long).
1814 */
1815 urb_next = 2;
1816 per_prim_inputs_read &= ~primitive_header_bits;
1817 }
1818
1819 for (unsigned i = 0; i < VARYING_SLOT_MAX; i++) {
1820 if (per_prim_inputs_read & BITFIELD64_BIT(i)) {
1821 prog_data->urb_setup[i] = urb_next++;
1822 }
1823 }
1824
1825 /* The actual setup attributes later must be aligned to a full GRF. */
1826 urb_next = ALIGN(urb_next, 2);
1827
1828 prog_data->num_per_primitive_inputs = urb_next;
1829 }
1830
1831 const uint64_t clip_dist_bits = VARYING_BIT_CLIP_DIST0 |
1832 VARYING_BIT_CLIP_DIST1;
1833
1834 uint64_t unique_fs_attrs = inputs_read & BRW_FS_VARYING_INPUT_MASK;
1835
1836 if (inputs_read & clip_dist_bits) {
1837 assert(mue_map->per_vertex_header_size_dw > 8);
1838 unique_fs_attrs &= ~clip_dist_bits;
1839 }
1840
1841 /* In Mesh, CLIP_DIST slots are always at the beginning, because
1842 * they come from MUE Vertex Header, not Per-Vertex Attributes.
1843 */
1844 if (inputs_read & clip_dist_bits) {
1845 prog_data->urb_setup[VARYING_SLOT_CLIP_DIST0] = urb_next++;
1846 prog_data->urb_setup[VARYING_SLOT_CLIP_DIST1] = urb_next++;
1847 }
1848
1849 /* Per-Vertex attributes are laid out ordered. Because we always link
1850 * Mesh and Fragment shaders, the which slots are written and read by
1851 * each of them will match. */
1852 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1853 if (unique_fs_attrs & BITFIELD64_BIT(i))
1854 prog_data->urb_setup[i] = urb_next++;
1855 }
1856 } else if (devinfo->ver >= 6) {
1857 uint64_t vue_header_bits =
1858 VARYING_BIT_PSIZ | VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT;
1859
1860 uint64_t unique_fs_attrs = inputs_read & BRW_FS_VARYING_INPUT_MASK;
1861
1862 /* VUE header fields all live in the same URB slot, so we pass them
1863 * as a single FS input attribute. We want to only count them once.
1864 */
1865 if (inputs_read & vue_header_bits) {
1866 unique_fs_attrs &= ~vue_header_bits;
1867 unique_fs_attrs |= VARYING_BIT_PSIZ;
1868 }
1869
1870 if (util_bitcount64(unique_fs_attrs) <= 16) {
1871 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1872 * first 16 varying inputs, so we can put them wherever we want.
1873 * Just put them in order.
1874 *
1875 * This is useful because it means that (a) inputs not used by the
1876 * fragment shader won't take up valuable register space, and (b) we
1877 * won't have to recompile the fragment shader if it gets paired with
1878 * a different vertex (or geometry) shader.
1879 *
1880 * VUE header fields share the same FS input attribute.
1881 */
1882 if (inputs_read & vue_header_bits) {
1883 if (inputs_read & VARYING_BIT_PSIZ)
1884 prog_data->urb_setup[VARYING_SLOT_PSIZ] = urb_next;
1885 if (inputs_read & VARYING_BIT_LAYER)
1886 prog_data->urb_setup[VARYING_SLOT_LAYER] = urb_next;
1887 if (inputs_read & VARYING_BIT_VIEWPORT)
1888 prog_data->urb_setup[VARYING_SLOT_VIEWPORT] = urb_next;
1889
1890 urb_next++;
1891 }
1892
1893 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1894 if (inputs_read & BRW_FS_VARYING_INPUT_MASK & ~vue_header_bits &
1895 BITFIELD64_BIT(i)) {
1896 prog_data->urb_setup[i] = urb_next++;
1897 }
1898 }
1899 } else {
1900 /* We have enough input varyings that the SF/SBE pipeline stage can't
1901 * arbitrarily rearrange them to suit our whim; we have to put them
1902 * in an order that matches the output of the previous pipeline stage
1903 * (geometry or vertex shader).
1904 */
1905
1906 /* Re-compute the VUE map here in the case that the one coming from
1907 * geometry has more than one position slot (used for Primitive
1908 * Replication).
1909 */
1910 struct brw_vue_map prev_stage_vue_map;
1911 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1912 key->input_slots_valid,
1913 nir->info.separate_shader, 1);
1914
1915 int first_slot =
1916 brw_compute_first_urb_slot_required(inputs_read,
1917 &prev_stage_vue_map);
1918
1919 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1920 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1921 slot++) {
1922 int varying = prev_stage_vue_map.slot_to_varying[slot];
1923 if (varying != BRW_VARYING_SLOT_PAD &&
1924 (inputs_read & BRW_FS_VARYING_INPUT_MASK &
1925 BITFIELD64_BIT(varying))) {
1926 prog_data->urb_setup[varying] = slot - first_slot;
1927 }
1928 }
1929 urb_next = prev_stage_vue_map.num_slots - first_slot;
1930 }
1931 } else {
1932 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1933 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1934 /* Point size is packed into the header, not as a general attribute */
1935 if (i == VARYING_SLOT_PSIZ)
1936 continue;
1937
1938 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1939 /* The back color slot is skipped when the front color is
1940 * also written to. In addition, some slots can be
1941 * written in the vertex shader and not read in the
1942 * fragment shader. So the register number must always be
1943 * incremented, mapped or not.
1944 */
1945 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1946 prog_data->urb_setup[i] = urb_next;
1947 urb_next++;
1948 }
1949 }
1950
1951 /*
1952 * It's a FS only attribute, and we did interpolation for this attribute
1953 * in SF thread. So, count it here, too.
1954 *
1955 * See compile_sf_prog() for more info.
1956 */
1957 if (inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1958 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1959 }
1960
1961 prog_data->num_varying_inputs = urb_next - prog_data->num_per_primitive_inputs;
1962 prog_data->inputs = inputs_read;
1963
1964 brw_compute_urb_setup_index(prog_data);
1965 }
1966
1967 void
assign_urb_setup()1968 fs_visitor::assign_urb_setup()
1969 {
1970 assert(stage == MESA_SHADER_FRAGMENT);
1971 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1972
1973 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1974
1975 /* Offset all the urb_setup[] index by the actual position of the
1976 * setup regs, now that the location of the constants has been chosen.
1977 */
1978 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1979 for (int i = 0; i < inst->sources; i++) {
1980 if (inst->src[i].file == ATTR) {
1981 /* ATTR regs in the FS are in units of logical scalar inputs each
1982 * of which consumes half of a GRF register.
1983 */
1984 assert(inst->src[i].offset < REG_SIZE / 2);
1985 const unsigned grf = urb_start + inst->src[i].nr / 2;
1986 const unsigned offset = (inst->src[i].nr % 2) * (REG_SIZE / 2) +
1987 inst->src[i].offset;
1988 const unsigned width = inst->src[i].stride == 0 ?
1989 1 : MIN2(inst->exec_size, 8);
1990 struct brw_reg reg = stride(
1991 byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1992 offset),
1993 width * inst->src[i].stride,
1994 width, inst->src[i].stride);
1995 reg.abs = inst->src[i].abs;
1996 reg.negate = inst->src[i].negate;
1997 inst->src[i] = reg;
1998 }
1999 }
2000 }
2001
2002 /* Each attribute is 4 setup channels, each of which is half a reg. */
2003 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
2004
2005 /* Unlike regular attributes, per-primitive attributes have all 4 channels
2006 * in the same slot, so each GRF can store two slots.
2007 */
2008 assert(prog_data->num_per_primitive_inputs % 2 == 0);
2009 this->first_non_payload_grf += prog_data->num_per_primitive_inputs / 2;
2010 }
2011
2012 void
convert_attr_sources_to_hw_regs(fs_inst * inst)2013 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
2014 {
2015 for (int i = 0; i < inst->sources; i++) {
2016 if (inst->src[i].file == ATTR) {
2017 int grf = payload.num_regs +
2018 prog_data->curb_read_length +
2019 inst->src[i].nr +
2020 inst->src[i].offset / REG_SIZE;
2021
2022 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
2023 *
2024 * VertStride must be used to cross GRF register boundaries. This
2025 * rule implies that elements within a 'Width' cannot cross GRF
2026 * boundaries.
2027 *
2028 * So, for registers that are large enough, we have to split the exec
2029 * size in two and trust the compression state to sort it out.
2030 */
2031 unsigned total_size = inst->exec_size *
2032 inst->src[i].stride *
2033 type_sz(inst->src[i].type);
2034
2035 assert(total_size <= 2 * REG_SIZE);
2036 const unsigned exec_size =
2037 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
2038
2039 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
2040 struct brw_reg reg =
2041 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
2042 inst->src[i].offset % REG_SIZE),
2043 exec_size * inst->src[i].stride,
2044 width, inst->src[i].stride);
2045 reg.abs = inst->src[i].abs;
2046 reg.negate = inst->src[i].negate;
2047
2048 inst->src[i] = reg;
2049 }
2050 }
2051 }
2052
2053 void
assign_vs_urb_setup()2054 fs_visitor::assign_vs_urb_setup()
2055 {
2056 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
2057
2058 assert(stage == MESA_SHADER_VERTEX);
2059
2060 /* Each attribute is 4 regs. */
2061 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
2062
2063 assert(vs_prog_data->base.urb_read_length <= 15);
2064
2065 /* Rewrite all ATTR file references to the hw grf that they land in. */
2066 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2067 convert_attr_sources_to_hw_regs(inst);
2068 }
2069 }
2070
2071 void
assign_tcs_urb_setup()2072 fs_visitor::assign_tcs_urb_setup()
2073 {
2074 assert(stage == MESA_SHADER_TESS_CTRL);
2075
2076 /* Rewrite all ATTR file references to HW_REGs. */
2077 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2078 convert_attr_sources_to_hw_regs(inst);
2079 }
2080 }
2081
2082 void
assign_tes_urb_setup()2083 fs_visitor::assign_tes_urb_setup()
2084 {
2085 assert(stage == MESA_SHADER_TESS_EVAL);
2086
2087 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
2088
2089 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
2090
2091 /* Rewrite all ATTR file references to HW_REGs. */
2092 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2093 convert_attr_sources_to_hw_regs(inst);
2094 }
2095 }
2096
2097 void
assign_gs_urb_setup()2098 fs_visitor::assign_gs_urb_setup()
2099 {
2100 assert(stage == MESA_SHADER_GEOMETRY);
2101
2102 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
2103
2104 first_non_payload_grf +=
2105 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
2106
2107 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2108 /* Rewrite all ATTR file references to GRFs. */
2109 convert_attr_sources_to_hw_regs(inst);
2110 }
2111 }
2112
2113
2114 /**
2115 * Split large virtual GRFs into separate components if we can.
2116 *
2117 * This pass aggressively splits VGRFs into as small a chunks as possible,
2118 * down to single registers if it can. If no VGRFs can be split, we return
2119 * false so this pass can safely be used inside an optimization loop. We
2120 * want to split, because virtual GRFs are what we register allocate and
2121 * spill (due to contiguousness requirements for some instructions), and
2122 * they're what we naturally generate in the codegen process, but most
2123 * virtual GRFs don't actually need to be contiguous sets of GRFs. If we
2124 * split, we'll end up with reduced live intervals and better dead code
2125 * elimination and coalescing.
2126 */
2127 bool
split_virtual_grfs()2128 fs_visitor::split_virtual_grfs()
2129 {
2130 /* Compact the register file so we eliminate dead vgrfs. This
2131 * only defines split points for live registers, so if we have
2132 * too large dead registers they will hit assertions later.
2133 */
2134 compact_virtual_grfs();
2135
2136 int num_vars = this->alloc.count;
2137
2138 /* Count the total number of registers */
2139 int reg_count = 0;
2140 int vgrf_to_reg[num_vars];
2141 for (int i = 0; i < num_vars; i++) {
2142 vgrf_to_reg[i] = reg_count;
2143 reg_count += alloc.sizes[i];
2144 }
2145
2146 /* An array of "split points". For each register slot, this indicates
2147 * if this slot can be separated from the previous slot. Every time an
2148 * instruction uses multiple elements of a register (as a source or
2149 * destination), we mark the used slots as inseparable. Then we go
2150 * through and split the registers into the smallest pieces we can.
2151 */
2152 bool *split_points = new bool[reg_count];
2153 memset(split_points, 0, reg_count * sizeof(*split_points));
2154
2155 /* Mark all used registers as fully splittable */
2156 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2157 if (inst->dst.file == VGRF) {
2158 int reg = vgrf_to_reg[inst->dst.nr];
2159 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
2160 split_points[reg + j] = true;
2161 }
2162
2163 for (int i = 0; i < inst->sources; i++) {
2164 if (inst->src[i].file == VGRF) {
2165 int reg = vgrf_to_reg[inst->src[i].nr];
2166 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
2167 split_points[reg + j] = true;
2168 }
2169 }
2170 }
2171
2172 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2173 /* We fix up undef instructions later */
2174 if (inst->opcode == SHADER_OPCODE_UNDEF) {
2175 /* UNDEF instructions are currently only used to undef entire
2176 * registers. We need this invariant later when we split them.
2177 */
2178 assert(inst->dst.file == VGRF);
2179 assert(inst->dst.offset == 0);
2180 assert(inst->size_written == alloc.sizes[inst->dst.nr] * REG_SIZE);
2181 continue;
2182 }
2183
2184 if (inst->dst.file == VGRF) {
2185 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
2186 for (unsigned j = 1; j < regs_written(inst); j++)
2187 split_points[reg + j] = false;
2188 }
2189 for (int i = 0; i < inst->sources; i++) {
2190 if (inst->src[i].file == VGRF) {
2191 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
2192 for (unsigned j = 1; j < regs_read(inst, i); j++)
2193 split_points[reg + j] = false;
2194 }
2195 }
2196 }
2197
2198 /* Bitset of which registers have been split */
2199 bool *vgrf_has_split = new bool[num_vars];
2200 memset(vgrf_has_split, 0, num_vars * sizeof(*vgrf_has_split));
2201
2202 int *new_virtual_grf = new int[reg_count];
2203 int *new_reg_offset = new int[reg_count];
2204
2205 int reg = 0;
2206 bool has_splits = false;
2207 for (int i = 0; i < num_vars; i++) {
2208 /* The first one should always be 0 as a quick sanity check. */
2209 assert(split_points[reg] == false);
2210
2211 /* j = 0 case */
2212 new_reg_offset[reg] = 0;
2213 reg++;
2214 int offset = 1;
2215
2216 /* j > 0 case */
2217 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
2218 /* If this is a split point, reset the offset to 0 and allocate a
2219 * new virtual GRF for the previous offset many registers
2220 */
2221 if (split_points[reg]) {
2222 has_splits = true;
2223 vgrf_has_split[i] = true;
2224 assert(offset <= MAX_VGRF_SIZE);
2225 int grf = alloc.allocate(offset);
2226 for (int k = reg - offset; k < reg; k++)
2227 new_virtual_grf[k] = grf;
2228 offset = 0;
2229 }
2230 new_reg_offset[reg] = offset;
2231 offset++;
2232 reg++;
2233 }
2234
2235 /* The last one gets the original register number */
2236 assert(offset <= MAX_VGRF_SIZE);
2237 alloc.sizes[i] = offset;
2238 for (int k = reg - offset; k < reg; k++)
2239 new_virtual_grf[k] = i;
2240 }
2241 assert(reg == reg_count);
2242
2243 bool progress;
2244 if (!has_splits) {
2245 progress = false;
2246 goto cleanup;
2247 }
2248
2249 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2250 if (inst->opcode == SHADER_OPCODE_UNDEF) {
2251 assert(inst->dst.file == VGRF);
2252 if (vgrf_has_split[inst->dst.nr]) {
2253 const fs_builder ibld(this, block, inst);
2254 assert(inst->size_written % REG_SIZE == 0);
2255 unsigned reg_offset = 0;
2256 while (reg_offset < inst->size_written / REG_SIZE) {
2257 reg = vgrf_to_reg[inst->dst.nr] + reg_offset;
2258 ibld.UNDEF(fs_reg(VGRF, new_virtual_grf[reg], inst->dst.type));
2259 reg_offset += alloc.sizes[new_virtual_grf[reg]];
2260 }
2261 inst->remove(block);
2262 } else {
2263 reg = vgrf_to_reg[inst->dst.nr];
2264 assert(new_reg_offset[reg] == 0);
2265 assert(new_virtual_grf[reg] == (int)inst->dst.nr);
2266 }
2267 continue;
2268 }
2269
2270 if (inst->dst.file == VGRF) {
2271 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
2272 if (vgrf_has_split[inst->dst.nr]) {
2273 inst->dst.nr = new_virtual_grf[reg];
2274 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
2275 inst->dst.offset % REG_SIZE;
2276 assert((unsigned)new_reg_offset[reg] <
2277 alloc.sizes[new_virtual_grf[reg]]);
2278 } else {
2279 assert(new_reg_offset[reg] == inst->dst.offset / REG_SIZE);
2280 assert(new_virtual_grf[reg] == (int)inst->dst.nr);
2281 }
2282 }
2283 for (int i = 0; i < inst->sources; i++) {
2284 if (inst->src[i].file != VGRF)
2285 continue;
2286
2287 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
2288 if (vgrf_has_split[inst->src[i].nr]) {
2289 inst->src[i].nr = new_virtual_grf[reg];
2290 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
2291 inst->src[i].offset % REG_SIZE;
2292 assert((unsigned)new_reg_offset[reg] <
2293 alloc.sizes[new_virtual_grf[reg]]);
2294 } else {
2295 assert(new_reg_offset[reg] == inst->src[i].offset / REG_SIZE);
2296 assert(new_virtual_grf[reg] == (int)inst->src[i].nr);
2297 }
2298 }
2299 }
2300 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES);
2301
2302 progress = true;
2303
2304 cleanup:
2305 delete[] split_points;
2306 delete[] vgrf_has_split;
2307 delete[] new_virtual_grf;
2308 delete[] new_reg_offset;
2309
2310 return progress;
2311 }
2312
2313 /**
2314 * Remove unused virtual GRFs and compact the vgrf_* arrays.
2315 *
2316 * During code generation, we create tons of temporary variables, many of
2317 * which get immediately killed and are never used again. Yet, in later
2318 * optimization and analysis passes, such as compute_live_intervals, we need
2319 * to loop over all the virtual GRFs. Compacting them can save a lot of
2320 * overhead.
2321 */
2322 bool
compact_virtual_grfs()2323 fs_visitor::compact_virtual_grfs()
2324 {
2325 bool progress = false;
2326 int *remap_table = new int[this->alloc.count];
2327 memset(remap_table, -1, this->alloc.count * sizeof(int));
2328
2329 /* Mark which virtual GRFs are used. */
2330 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
2331 if (inst->dst.file == VGRF)
2332 remap_table[inst->dst.nr] = 0;
2333
2334 for (int i = 0; i < inst->sources; i++) {
2335 if (inst->src[i].file == VGRF)
2336 remap_table[inst->src[i].nr] = 0;
2337 }
2338 }
2339
2340 /* Compact the GRF arrays. */
2341 int new_index = 0;
2342 for (unsigned i = 0; i < this->alloc.count; i++) {
2343 if (remap_table[i] == -1) {
2344 /* We just found an unused register. This means that we are
2345 * actually going to compact something.
2346 */
2347 progress = true;
2348 } else {
2349 remap_table[i] = new_index;
2350 alloc.sizes[new_index] = alloc.sizes[i];
2351 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES);
2352 ++new_index;
2353 }
2354 }
2355
2356 this->alloc.count = new_index;
2357
2358 /* Patch all the instructions to use the newly renumbered registers */
2359 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2360 if (inst->dst.file == VGRF)
2361 inst->dst.nr = remap_table[inst->dst.nr];
2362
2363 for (int i = 0; i < inst->sources; i++) {
2364 if (inst->src[i].file == VGRF)
2365 inst->src[i].nr = remap_table[inst->src[i].nr];
2366 }
2367 }
2368
2369 /* Patch all the references to delta_xy, since they're used in register
2370 * allocation. If they're unused, switch them to BAD_FILE so we don't
2371 * think some random VGRF is delta_xy.
2372 */
2373 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2374 if (delta_xy[i].file == VGRF) {
2375 if (remap_table[delta_xy[i].nr] != -1) {
2376 delta_xy[i].nr = remap_table[delta_xy[i].nr];
2377 } else {
2378 delta_xy[i].file = BAD_FILE;
2379 }
2380 }
2381 }
2382
2383 delete[] remap_table;
2384
2385 return progress;
2386 }
2387
2388 static int
get_subgroup_id_param_index(const intel_device_info * devinfo,const brw_stage_prog_data * prog_data)2389 get_subgroup_id_param_index(const intel_device_info *devinfo,
2390 const brw_stage_prog_data *prog_data)
2391 {
2392 if (prog_data->nr_params == 0)
2393 return -1;
2394
2395 if (devinfo->verx10 >= 125)
2396 return -1;
2397
2398 /* The local thread id is always the last parameter in the list */
2399 uint32_t last_param = prog_data->param[prog_data->nr_params - 1];
2400 if (last_param == BRW_PARAM_BUILTIN_SUBGROUP_ID)
2401 return prog_data->nr_params - 1;
2402
2403 return -1;
2404 }
2405
2406 /**
2407 * Assign UNIFORM file registers to either push constants or pull constants.
2408 *
2409 * We allow a fragment shader to have more than the specified minimum
2410 * maximum number of fragment shader uniform components (64). If
2411 * there are too many of these, they'd fill up all of register space.
2412 * So, this will push some of them out to the pull constant buffer and
2413 * update the program to load them.
2414 */
2415 void
assign_constant_locations()2416 fs_visitor::assign_constant_locations()
2417 {
2418 /* Only the first compile gets to decide on locations. */
2419 if (push_constant_loc)
2420 return;
2421
2422 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2423 for (unsigned u = 0; u < uniforms; u++)
2424 push_constant_loc[u] = u;
2425
2426 /* Now that we know how many regular uniforms we'll push, reduce the
2427 * UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits.
2428 */
2429 /* For gen4/5:
2430 * Only allow 16 registers (128 uniform components) as push constants.
2431 *
2432 * If changing this value, note the limitation about total_regs in
2433 * brw_curbe.c/crocus_state.c
2434 */
2435 const unsigned max_push_length = compiler->devinfo->ver < 6 ? 16 : 64;
2436 unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
2437 for (int i = 0; i < 4; i++) {
2438 struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2439
2440 if (push_length + range->length > max_push_length)
2441 range->length = max_push_length - push_length;
2442
2443 push_length += range->length;
2444 }
2445 assert(push_length <= max_push_length);
2446 }
2447
2448 bool
get_pull_locs(const fs_reg & src,unsigned * out_surf_index,unsigned * out_pull_index)2449 fs_visitor::get_pull_locs(const fs_reg &src,
2450 unsigned *out_surf_index,
2451 unsigned *out_pull_index)
2452 {
2453 assert(src.file == UNIFORM);
2454
2455 if (src.nr < UBO_START)
2456 return false;
2457
2458 const struct brw_ubo_range *range =
2459 &prog_data->ubo_ranges[src.nr - UBO_START];
2460
2461 /* If this access is in our (reduced) range, use the push data. */
2462 if (src.offset / 32 < range->length)
2463 return false;
2464
2465 *out_surf_index = range->block;
2466 *out_pull_index = (32 * range->start + src.offset) / 4;
2467
2468 prog_data->has_ubo_pull = true;
2469
2470 return true;
2471 }
2472
2473 /**
2474 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2475 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2476 */
2477 void
lower_constant_loads()2478 fs_visitor::lower_constant_loads()
2479 {
2480 unsigned index, pull_index;
2481
2482 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2483 /* Set up the annotation tracking for new generated instructions. */
2484 const fs_builder ibld(this, block, inst);
2485
2486 for (int i = 0; i < inst->sources; i++) {
2487 if (inst->src[i].file != UNIFORM)
2488 continue;
2489
2490 /* We'll handle this case later */
2491 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2492 continue;
2493
2494 if (!get_pull_locs(inst->src[i], &index, &pull_index))
2495 continue;
2496
2497 assert(inst->src[i].stride == 0);
2498
2499 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2500 const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2501 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2502 const unsigned base = pull_index * 4;
2503
2504 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2505 dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2506
2507 /* Rewrite the instruction to use the temporary VGRF. */
2508 inst->src[i].file = VGRF;
2509 inst->src[i].nr = dst.nr;
2510 inst->src[i].offset = (base & (block_sz - 1)) +
2511 inst->src[i].offset % 4;
2512 }
2513
2514 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2515 inst->src[0].file == UNIFORM) {
2516
2517 if (!get_pull_locs(inst->src[0], &index, &pull_index))
2518 continue;
2519
2520 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2521 brw_imm_ud(index),
2522 inst->src[1],
2523 pull_index * 4, 4);
2524 inst->remove(block);
2525 }
2526 }
2527 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
2528 }
2529
2530 bool
opt_algebraic()2531 fs_visitor::opt_algebraic()
2532 {
2533 bool progress = false;
2534
2535 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2536 switch (inst->opcode) {
2537 case BRW_OPCODE_MOV:
2538 if (!devinfo->has_64bit_float &&
2539 inst->dst.type == BRW_REGISTER_TYPE_DF) {
2540 assert(inst->dst.type == inst->src[0].type);
2541 assert(!inst->saturate);
2542 assert(!inst->src[0].abs);
2543 assert(!inst->src[0].negate);
2544 const brw::fs_builder ibld(this, block, inst);
2545
2546 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_F, 1),
2547 subscript(inst->src[0], BRW_REGISTER_TYPE_F, 1));
2548 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_F, 0),
2549 subscript(inst->src[0], BRW_REGISTER_TYPE_F, 0));
2550
2551 inst->remove(block);
2552 progress = true;
2553 }
2554
2555 if (!devinfo->has_64bit_int &&
2556 (inst->dst.type == BRW_REGISTER_TYPE_UQ ||
2557 inst->dst.type == BRW_REGISTER_TYPE_Q)) {
2558 assert(inst->dst.type == inst->src[0].type);
2559 assert(!inst->saturate);
2560 assert(!inst->src[0].abs);
2561 assert(!inst->src[0].negate);
2562 const brw::fs_builder ibld(this, block, inst);
2563
2564 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2565 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1));
2566 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2567 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0));
2568
2569 inst->remove(block);
2570 progress = true;
2571 }
2572
2573 if ((inst->conditional_mod == BRW_CONDITIONAL_Z ||
2574 inst->conditional_mod == BRW_CONDITIONAL_NZ) &&
2575 inst->dst.is_null() &&
2576 (inst->src[0].abs || inst->src[0].negate)) {
2577 inst->src[0].abs = false;
2578 inst->src[0].negate = false;
2579 progress = true;
2580 break;
2581 }
2582
2583 if (inst->src[0].file != IMM)
2584 break;
2585
2586 if (inst->saturate) {
2587 /* Full mixed-type saturates don't happen. However, we can end up
2588 * with things like:
2589 *
2590 * mov.sat(8) g21<1>DF -1F
2591 *
2592 * Other mixed-size-but-same-base-type cases may also be possible.
2593 */
2594 if (inst->dst.type != inst->src[0].type &&
2595 inst->dst.type != BRW_REGISTER_TYPE_DF &&
2596 inst->src[0].type != BRW_REGISTER_TYPE_F)
2597 assert(!"unimplemented: saturate mixed types");
2598
2599 if (brw_saturate_immediate(inst->src[0].type,
2600 &inst->src[0].as_brw_reg())) {
2601 inst->saturate = false;
2602 progress = true;
2603 }
2604 }
2605 break;
2606
2607 case BRW_OPCODE_MUL:
2608 if (inst->src[1].file != IMM)
2609 continue;
2610
2611 if (brw_reg_type_is_floating_point(inst->src[1].type))
2612 break;
2613
2614 /* a * 1.0 = a */
2615 if (inst->src[1].is_one()) {
2616 inst->opcode = BRW_OPCODE_MOV;
2617 inst->src[1] = reg_undef;
2618 progress = true;
2619 break;
2620 }
2621
2622 /* a * -1.0 = -a */
2623 if (inst->src[1].is_negative_one()) {
2624 inst->opcode = BRW_OPCODE_MOV;
2625 inst->src[0].negate = !inst->src[0].negate;
2626 inst->src[1] = reg_undef;
2627 progress = true;
2628 break;
2629 }
2630
2631 break;
2632 case BRW_OPCODE_ADD:
2633 if (inst->src[1].file != IMM)
2634 continue;
2635
2636 if (brw_reg_type_is_integer(inst->src[1].type) &&
2637 inst->src[1].is_zero()) {
2638 inst->opcode = BRW_OPCODE_MOV;
2639 inst->src[1] = reg_undef;
2640 progress = true;
2641 break;
2642 }
2643
2644 if (inst->src[0].file == IMM) {
2645 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2646 inst->opcode = BRW_OPCODE_MOV;
2647 inst->src[0].f += inst->src[1].f;
2648 inst->src[1] = reg_undef;
2649 progress = true;
2650 break;
2651 }
2652 break;
2653 case BRW_OPCODE_OR:
2654 if (inst->src[0].equals(inst->src[1]) ||
2655 inst->src[1].is_zero()) {
2656 /* On Gfx8+, the OR instruction can have a source modifier that
2657 * performs logical not on the operand. Cases of 'OR r0, ~r1, 0'
2658 * or 'OR r0, ~r1, ~r1' should become a NOT instead of a MOV.
2659 */
2660 if (inst->src[0].negate) {
2661 inst->opcode = BRW_OPCODE_NOT;
2662 inst->src[0].negate = false;
2663 } else {
2664 inst->opcode = BRW_OPCODE_MOV;
2665 }
2666 inst->src[1] = reg_undef;
2667 progress = true;
2668 break;
2669 }
2670 break;
2671 case BRW_OPCODE_CMP:
2672 if ((inst->conditional_mod == BRW_CONDITIONAL_Z ||
2673 inst->conditional_mod == BRW_CONDITIONAL_NZ) &&
2674 inst->src[1].is_zero() &&
2675 (inst->src[0].abs || inst->src[0].negate)) {
2676 inst->src[0].abs = false;
2677 inst->src[0].negate = false;
2678 progress = true;
2679 break;
2680 }
2681 break;
2682 case BRW_OPCODE_SEL:
2683 if (!devinfo->has_64bit_float &&
2684 !devinfo->has_64bit_int &&
2685 (inst->dst.type == BRW_REGISTER_TYPE_DF ||
2686 inst->dst.type == BRW_REGISTER_TYPE_UQ ||
2687 inst->dst.type == BRW_REGISTER_TYPE_Q)) {
2688 assert(inst->dst.type == inst->src[0].type);
2689 assert(!inst->saturate);
2690 assert(!inst->src[0].abs && !inst->src[0].negate);
2691 assert(!inst->src[1].abs && !inst->src[1].negate);
2692 const brw::fs_builder ibld(this, block, inst);
2693
2694 set_predicate(inst->predicate,
2695 ibld.SEL(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2696 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
2697 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0)));
2698 set_predicate(inst->predicate,
2699 ibld.SEL(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2700 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1),
2701 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 1)));
2702
2703 inst->remove(block);
2704 progress = true;
2705 }
2706 if (inst->src[0].equals(inst->src[1])) {
2707 inst->opcode = BRW_OPCODE_MOV;
2708 inst->src[1] = reg_undef;
2709 inst->predicate = BRW_PREDICATE_NONE;
2710 inst->predicate_inverse = false;
2711 progress = true;
2712 } else if (inst->saturate && inst->src[1].file == IMM) {
2713 switch (inst->conditional_mod) {
2714 case BRW_CONDITIONAL_LE:
2715 case BRW_CONDITIONAL_L:
2716 switch (inst->src[1].type) {
2717 case BRW_REGISTER_TYPE_F:
2718 if (inst->src[1].f >= 1.0f) {
2719 inst->opcode = BRW_OPCODE_MOV;
2720 inst->src[1] = reg_undef;
2721 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2722 progress = true;
2723 }
2724 break;
2725 default:
2726 break;
2727 }
2728 break;
2729 case BRW_CONDITIONAL_GE:
2730 case BRW_CONDITIONAL_G:
2731 switch (inst->src[1].type) {
2732 case BRW_REGISTER_TYPE_F:
2733 if (inst->src[1].f <= 0.0f) {
2734 inst->opcode = BRW_OPCODE_MOV;
2735 inst->src[1] = reg_undef;
2736 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2737 progress = true;
2738 }
2739 break;
2740 default:
2741 break;
2742 }
2743 default:
2744 break;
2745 }
2746 }
2747 break;
2748 case BRW_OPCODE_MAD:
2749 if (inst->src[0].type != BRW_REGISTER_TYPE_F ||
2750 inst->src[1].type != BRW_REGISTER_TYPE_F ||
2751 inst->src[2].type != BRW_REGISTER_TYPE_F)
2752 break;
2753 if (inst->src[1].is_one()) {
2754 inst->opcode = BRW_OPCODE_ADD;
2755 inst->src[1] = inst->src[2];
2756 inst->src[2] = reg_undef;
2757 progress = true;
2758 } else if (inst->src[2].is_one()) {
2759 inst->opcode = BRW_OPCODE_ADD;
2760 inst->src[2] = reg_undef;
2761 progress = true;
2762 }
2763 break;
2764 case SHADER_OPCODE_BROADCAST:
2765 if (is_uniform(inst->src[0])) {
2766 inst->opcode = BRW_OPCODE_MOV;
2767 inst->sources = 1;
2768 inst->force_writemask_all = true;
2769 progress = true;
2770 } else if (inst->src[1].file == IMM) {
2771 inst->opcode = BRW_OPCODE_MOV;
2772 /* It's possible that the selected component will be too large and
2773 * overflow the register. This can happen if someone does a
2774 * readInvocation() from GLSL or SPIR-V and provides an OOB
2775 * invocationIndex. If this happens and we some how manage
2776 * to constant fold it in and get here, then component() may cause
2777 * us to start reading outside of the VGRF which will lead to an
2778 * assert later. Instead, just let it wrap around if it goes over
2779 * exec_size.
2780 */
2781 const unsigned comp = inst->src[1].ud & (inst->exec_size - 1);
2782 inst->src[0] = component(inst->src[0], comp);
2783 inst->sources = 1;
2784 inst->force_writemask_all = true;
2785 progress = true;
2786 }
2787 break;
2788
2789 case SHADER_OPCODE_SHUFFLE:
2790 if (is_uniform(inst->src[0])) {
2791 inst->opcode = BRW_OPCODE_MOV;
2792 inst->sources = 1;
2793 progress = true;
2794 } else if (inst->src[1].file == IMM) {
2795 inst->opcode = BRW_OPCODE_MOV;
2796 inst->src[0] = component(inst->src[0],
2797 inst->src[1].ud);
2798 inst->sources = 1;
2799 progress = true;
2800 }
2801 break;
2802
2803 default:
2804 break;
2805 }
2806
2807 /* Swap if src[0] is immediate. */
2808 if (progress && inst->is_commutative()) {
2809 if (inst->src[0].file == IMM) {
2810 fs_reg tmp = inst->src[1];
2811 inst->src[1] = inst->src[0];
2812 inst->src[0] = tmp;
2813 }
2814 }
2815 }
2816
2817 if (progress)
2818 invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW |
2819 DEPENDENCY_INSTRUCTION_DETAIL);
2820
2821 return progress;
2822 }
2823
2824 /**
2825 * Optimize sample messages that have constant zero values for the trailing
2826 * texture coordinates. We can just reduce the message length for these
2827 * instructions instead of reserving a register for it. Trailing parameters
2828 * that aren't sent default to zero anyway. This will cause the dead code
2829 * eliminator to remove the MOV instruction that would otherwise be emitted to
2830 * set up the zero value.
2831 */
2832 bool
opt_zero_samples()2833 fs_visitor::opt_zero_samples()
2834 {
2835 /* Gfx4 infers the texturing opcode based on the message length so we can't
2836 * change it. Gfx12.5 has restrictions on the number of coordinate
2837 * parameters that have to be provided for some texture types
2838 * (Wa_14013363432).
2839 */
2840 if (devinfo->ver < 5 || devinfo->verx10 == 125)
2841 return false;
2842
2843 bool progress = false;
2844
2845 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2846 if (!inst->is_tex())
2847 continue;
2848
2849 fs_inst *load_payload = (fs_inst *) inst->prev;
2850
2851 if (load_payload->is_head_sentinel() ||
2852 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2853 continue;
2854
2855 /* We don't want to remove the message header or the first parameter.
2856 * Removing the first parameter is not allowed, see the Haswell PRM
2857 * volume 7, page 149:
2858 *
2859 * "Parameter 0 is required except for the sampleinfo message, which
2860 * has no parameter 0"
2861 */
2862 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2863 load_payload->src[(inst->mlen - inst->header_size) /
2864 (inst->exec_size / 8) +
2865 inst->header_size - 1].is_zero()) {
2866 inst->mlen -= inst->exec_size / 8;
2867 progress = true;
2868 }
2869 }
2870
2871 if (progress)
2872 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
2873
2874 return progress;
2875 }
2876
2877 /**
2878 * Opportunistically split SEND message payloads.
2879 *
2880 * Gfx9+ supports "split" SEND messages, which take two payloads that are
2881 * implicitly concatenated. If we find a SEND message with a single payload,
2882 * we can split that payload in two. This results in smaller contiguous
2883 * register blocks for us to allocate. But it can help beyond that, too.
2884 *
2885 * We try and split a LOAD_PAYLOAD between sources which change registers.
2886 * For example, a sampler message often contains a x/y/z coordinate that may
2887 * already be in a contiguous VGRF, combined with an LOD, shadow comparitor,
2888 * or array index, which comes from elsewhere. In this case, the first few
2889 * sources will be different offsets of the same VGRF, then a later source
2890 * will be a different VGRF. So we split there, possibly eliminating the
2891 * payload concatenation altogether.
2892 */
2893 bool
opt_split_sends()2894 fs_visitor::opt_split_sends()
2895 {
2896 if (devinfo->ver < 9)
2897 return false;
2898
2899 bool progress = false;
2900
2901 const fs_live_variables &live = live_analysis.require();
2902
2903 int next_ip = 0;
2904
2905 foreach_block_and_inst_safe(block, fs_inst, send, cfg) {
2906 int ip = next_ip;
2907 next_ip++;
2908
2909 if (send->opcode != SHADER_OPCODE_SEND ||
2910 send->mlen == 1 || send->ex_mlen > 0)
2911 continue;
2912
2913 /* Don't split payloads which are also read later. */
2914 assert(send->src[2].file == VGRF);
2915 if (live.vgrf_end[send->src[2].nr] > ip)
2916 continue;
2917
2918 fs_inst *lp = (fs_inst *) send->prev;
2919
2920 if (lp->is_head_sentinel() || lp->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2921 continue;
2922
2923 if (lp->dst.file != send->src[2].file || lp->dst.nr != send->src[2].nr)
2924 continue;
2925
2926 /* Split either after the header (if present), or when consecutive
2927 * sources switch from one VGRF to a different one.
2928 */
2929 unsigned i = lp->header_size;
2930 if (lp->header_size == 0) {
2931 for (i = 1; i < lp->sources; i++) {
2932 if (lp->src[i].file == BAD_FILE)
2933 continue;
2934
2935 if (lp->src[0].file != lp->src[i].file ||
2936 lp->src[0].nr != lp->src[i].nr)
2937 break;
2938 }
2939 }
2940
2941 if (i != lp->sources) {
2942 const fs_builder ibld(this, block, lp);
2943 fs_inst *lp2 =
2944 ibld.LOAD_PAYLOAD(lp->dst, &lp->src[i], lp->sources - i, 0);
2945
2946 lp->resize_sources(i);
2947 lp->size_written -= lp2->size_written;
2948
2949 lp->dst = fs_reg(VGRF, alloc.allocate(lp->size_written / REG_SIZE), lp->dst.type);
2950 lp2->dst = fs_reg(VGRF, alloc.allocate(lp2->size_written / REG_SIZE), lp2->dst.type);
2951
2952 send->resize_sources(4);
2953 send->src[2] = lp->dst;
2954 send->src[3] = lp2->dst;
2955 send->ex_mlen = lp2->size_written / REG_SIZE;
2956 send->mlen -= send->ex_mlen;
2957
2958 progress = true;
2959 }
2960 }
2961
2962 if (progress)
2963 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
2964
2965 return progress;
2966 }
2967
2968
2969 bool
opt_register_renaming()2970 fs_visitor::opt_register_renaming()
2971 {
2972 bool progress = false;
2973 int depth = 0;
2974
2975 unsigned remap[alloc.count];
2976 memset(remap, ~0u, sizeof(unsigned) * alloc.count);
2977
2978 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2979 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2980 depth++;
2981 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2982 inst->opcode == BRW_OPCODE_WHILE) {
2983 depth--;
2984 }
2985
2986 /* Rewrite instruction sources. */
2987 for (int i = 0; i < inst->sources; i++) {
2988 if (inst->src[i].file == VGRF &&
2989 remap[inst->src[i].nr] != ~0u &&
2990 remap[inst->src[i].nr] != inst->src[i].nr) {
2991 inst->src[i].nr = remap[inst->src[i].nr];
2992 progress = true;
2993 }
2994 }
2995
2996 const unsigned dst = inst->dst.nr;
2997
2998 if (depth == 0 &&
2999 inst->dst.file == VGRF &&
3000 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
3001 !inst->is_partial_write()) {
3002 if (remap[dst] == ~0u) {
3003 remap[dst] = dst;
3004 } else {
3005 remap[dst] = alloc.allocate(regs_written(inst));
3006 inst->dst.nr = remap[dst];
3007 progress = true;
3008 }
3009 } else if (inst->dst.file == VGRF &&
3010 remap[dst] != ~0u &&
3011 remap[dst] != dst) {
3012 inst->dst.nr = remap[dst];
3013 progress = true;
3014 }
3015 }
3016
3017 if (progress) {
3018 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL |
3019 DEPENDENCY_VARIABLES);
3020
3021 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
3022 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != ~0u) {
3023 delta_xy[i].nr = remap[delta_xy[i].nr];
3024 }
3025 }
3026 }
3027
3028 return progress;
3029 }
3030
3031 /**
3032 * Remove redundant or useless halts.
3033 *
3034 * For example, we can eliminate halts in the following sequence:
3035 *
3036 * halt (redundant with the next halt)
3037 * halt (useless; jumps to the next instruction)
3038 * halt-target
3039 */
3040 bool
opt_redundant_halt()3041 fs_visitor::opt_redundant_halt()
3042 {
3043 bool progress = false;
3044
3045 unsigned halt_count = 0;
3046 fs_inst *halt_target = NULL;
3047 bblock_t *halt_target_block = NULL;
3048 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3049 if (inst->opcode == BRW_OPCODE_HALT)
3050 halt_count++;
3051
3052 if (inst->opcode == SHADER_OPCODE_HALT_TARGET) {
3053 halt_target = inst;
3054 halt_target_block = block;
3055 break;
3056 }
3057 }
3058
3059 if (!halt_target) {
3060 assert(halt_count == 0);
3061 return false;
3062 }
3063
3064 /* Delete any HALTs immediately before the halt target. */
3065 for (fs_inst *prev = (fs_inst *) halt_target->prev;
3066 !prev->is_head_sentinel() && prev->opcode == BRW_OPCODE_HALT;
3067 prev = (fs_inst *) halt_target->prev) {
3068 prev->remove(halt_target_block);
3069 halt_count--;
3070 progress = true;
3071 }
3072
3073 if (halt_count == 0) {
3074 halt_target->remove(halt_target_block);
3075 progress = true;
3076 }
3077
3078 if (progress)
3079 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3080
3081 return progress;
3082 }
3083
3084 /**
3085 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
3086 * from \p r.offset which overlaps the region starting at \p s.offset and
3087 * spanning \p ds bytes.
3088 */
3089 static inline unsigned
mask_relative_to(const fs_reg & r,const fs_reg & s,unsigned ds)3090 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
3091 {
3092 const int rel_offset = reg_offset(s) - reg_offset(r);
3093 const int shift = rel_offset / REG_SIZE;
3094 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
3095 assert(reg_space(r) == reg_space(s) &&
3096 shift >= 0 && shift < int(8 * sizeof(unsigned)));
3097 return ((1 << n) - 1) << shift;
3098 }
3099
3100 bool
compute_to_mrf()3101 fs_visitor::compute_to_mrf()
3102 {
3103 bool progress = false;
3104 int next_ip = 0;
3105
3106 /* No MRFs on Gen >= 7. */
3107 if (devinfo->ver >= 7)
3108 return false;
3109
3110 const fs_live_variables &live = live_analysis.require();
3111
3112 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3113 int ip = next_ip;
3114 next_ip++;
3115
3116 if (inst->opcode != BRW_OPCODE_MOV ||
3117 inst->is_partial_write() ||
3118 inst->dst.file != MRF || inst->src[0].file != VGRF ||
3119 inst->dst.type != inst->src[0].type ||
3120 inst->src[0].abs || inst->src[0].negate ||
3121 !inst->src[0].is_contiguous() ||
3122 inst->src[0].offset % REG_SIZE != 0)
3123 continue;
3124
3125 /* Can't compute-to-MRF this GRF if someone else was going to
3126 * read it later.
3127 */
3128 if (live.vgrf_end[inst->src[0].nr] > ip)
3129 continue;
3130
3131 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
3132 * things that computed the value of all GRFs of the source region. The
3133 * regs_left bitset keeps track of the registers we haven't yet found a
3134 * generating instruction for.
3135 */
3136 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
3137
3138 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3139 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3140 inst->src[0], inst->size_read(0))) {
3141 /* Found the last thing to write our reg we want to turn
3142 * into a compute-to-MRF.
3143 */
3144
3145 /* If this one instruction didn't populate all the
3146 * channels, bail. We might be able to rewrite everything
3147 * that writes that reg, but it would require smarter
3148 * tracking.
3149 */
3150 if (scan_inst->is_partial_write())
3151 break;
3152
3153 /* Handling things not fully contained in the source of the copy
3154 * would need us to understand coalescing out more than one MOV at
3155 * a time.
3156 */
3157 if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
3158 inst->src[0], inst->size_read(0)))
3159 break;
3160
3161 /* SEND instructions can't have MRF as a destination. */
3162 if (scan_inst->mlen)
3163 break;
3164
3165 if (devinfo->ver == 6) {
3166 /* gfx6 math instructions must have the destination be
3167 * GRF, so no compute-to-MRF for them.
3168 */
3169 if (scan_inst->is_math()) {
3170 break;
3171 }
3172 }
3173
3174 /* Clear the bits for any registers this instruction overwrites. */
3175 regs_left &= ~mask_relative_to(
3176 inst->src[0], scan_inst->dst, scan_inst->size_written);
3177 if (!regs_left)
3178 break;
3179 }
3180
3181 /* We don't handle control flow here. Most computation of
3182 * values that end up in MRFs are shortly before the MRF
3183 * write anyway.
3184 */
3185 if (block->start() == scan_inst)
3186 break;
3187
3188 /* You can't read from an MRF, so if someone else reads our
3189 * MRF's source GRF that we wanted to rewrite, that stops us.
3190 */
3191 bool interfered = false;
3192 for (int i = 0; i < scan_inst->sources; i++) {
3193 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
3194 inst->src[0], inst->size_read(0))) {
3195 interfered = true;
3196 }
3197 }
3198 if (interfered)
3199 break;
3200
3201 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3202 inst->dst, inst->size_written)) {
3203 /* If somebody else writes our MRF here, we can't
3204 * compute-to-MRF before that.
3205 */
3206 break;
3207 }
3208
3209 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
3210 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
3211 inst->dst, inst->size_written)) {
3212 /* Found a SEND instruction, which means that there are
3213 * live values in MRFs from base_mrf to base_mrf +
3214 * scan_inst->mlen - 1. Don't go pushing our MRF write up
3215 * above it.
3216 */
3217 break;
3218 }
3219 }
3220
3221 if (regs_left)
3222 continue;
3223
3224 /* Found all generating instructions of our MRF's source value, so it
3225 * should be safe to rewrite them to point to the MRF directly.
3226 */
3227 regs_left = (1 << regs_read(inst, 0)) - 1;
3228
3229 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3230 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3231 inst->src[0], inst->size_read(0))) {
3232 /* Clear the bits for any registers this instruction overwrites. */
3233 regs_left &= ~mask_relative_to(
3234 inst->src[0], scan_inst->dst, scan_inst->size_written);
3235
3236 const unsigned rel_offset = reg_offset(scan_inst->dst) -
3237 reg_offset(inst->src[0]);
3238
3239 if (inst->dst.nr & BRW_MRF_COMPR4) {
3240 /* Apply the same address transformation done by the hardware
3241 * for COMPR4 MRF writes.
3242 */
3243 assert(rel_offset < 2 * REG_SIZE);
3244 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
3245
3246 /* Clear the COMPR4 bit if the generating instruction is not
3247 * compressed.
3248 */
3249 if (scan_inst->size_written < 2 * REG_SIZE)
3250 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
3251
3252 } else {
3253 /* Calculate the MRF number the result of this instruction is
3254 * ultimately written to.
3255 */
3256 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
3257 }
3258
3259 scan_inst->dst.file = MRF;
3260 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
3261 scan_inst->saturate |= inst->saturate;
3262 if (!regs_left)
3263 break;
3264 }
3265 }
3266
3267 assert(!regs_left);
3268 inst->remove(block);
3269 progress = true;
3270 }
3271
3272 if (progress)
3273 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3274
3275 return progress;
3276 }
3277
3278 /**
3279 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
3280 * flow. We could probably do better here with some form of divergence
3281 * analysis.
3282 */
3283 bool
eliminate_find_live_channel()3284 fs_visitor::eliminate_find_live_channel()
3285 {
3286 bool progress = false;
3287 unsigned depth = 0;
3288
3289 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
3290 /* The optimization below assumes that channel zero is live on thread
3291 * dispatch, which may not be the case if the fixed function dispatches
3292 * threads sparsely.
3293 */
3294 return false;
3295 }
3296
3297 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3298 switch (inst->opcode) {
3299 case BRW_OPCODE_IF:
3300 case BRW_OPCODE_DO:
3301 depth++;
3302 break;
3303
3304 case BRW_OPCODE_ENDIF:
3305 case BRW_OPCODE_WHILE:
3306 depth--;
3307 break;
3308
3309 case BRW_OPCODE_HALT:
3310 /* This can potentially make control flow non-uniform until the end
3311 * of the program.
3312 */
3313 goto out;
3314
3315 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
3316 if (depth == 0) {
3317 inst->opcode = BRW_OPCODE_MOV;
3318 inst->src[0] = brw_imm_ud(0u);
3319 inst->sources = 1;
3320 inst->force_writemask_all = true;
3321 progress = true;
3322 }
3323 break;
3324
3325 default:
3326 break;
3327 }
3328 }
3329
3330 out:
3331 if (progress)
3332 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
3333
3334 return progress;
3335 }
3336
3337 /**
3338 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
3339 * instructions to FS_OPCODE_REP_FB_WRITE.
3340 */
3341 void
emit_repclear_shader()3342 fs_visitor::emit_repclear_shader()
3343 {
3344 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3345 int base_mrf = 0;
3346 int color_mrf = base_mrf + 2;
3347 fs_inst *mov;
3348
3349 if (uniforms > 0) {
3350 mov = bld.exec_all().group(4, 0)
3351 .MOV(brw_message_reg(color_mrf),
3352 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
3353 } else {
3354 struct brw_reg reg =
3355 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_UD,
3356 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
3357 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
3358
3359 mov = bld.exec_all().group(4, 0)
3360 .MOV(brw_uvec_mrf(4, color_mrf, 0), fs_reg(reg));
3361 }
3362
3363 fs_inst *write = NULL;
3364 if (key->nr_color_regions == 1) {
3365 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3366 write->saturate = key->clamp_fragment_color;
3367 write->base_mrf = color_mrf;
3368 write->target = 0;
3369 write->header_size = 0;
3370 write->mlen = 1;
3371 } else {
3372 assume(key->nr_color_regions > 0);
3373
3374 struct brw_reg header =
3375 retype(brw_message_reg(base_mrf), BRW_REGISTER_TYPE_UD);
3376 bld.exec_all().group(16, 0)
3377 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3378
3379 for (int i = 0; i < key->nr_color_regions; ++i) {
3380 if (i > 0) {
3381 bld.exec_all().group(1, 0)
3382 .MOV(component(header, 2), brw_imm_ud(i));
3383 }
3384
3385 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3386 write->saturate = key->clamp_fragment_color;
3387 write->base_mrf = base_mrf;
3388 write->target = i;
3389 write->header_size = 2;
3390 write->mlen = 3;
3391 }
3392 }
3393 write->eot = true;
3394 write->last_rt = true;
3395
3396 calculate_cfg();
3397
3398 assign_constant_locations();
3399 assign_curb_setup();
3400
3401 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
3402 if (uniforms > 0) {
3403 assert(mov->src[0].file == FIXED_GRF);
3404 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
3405 }
3406
3407 lower_scoreboard();
3408 }
3409
3410 /**
3411 * Walks through basic blocks, looking for repeated MRF writes and
3412 * removing the later ones.
3413 */
3414 bool
remove_duplicate_mrf_writes()3415 fs_visitor::remove_duplicate_mrf_writes()
3416 {
3417 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->ver)];
3418 bool progress = false;
3419
3420 /* Need to update the MRF tracking for compressed instructions. */
3421 if (dispatch_width >= 16)
3422 return false;
3423
3424 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3425
3426 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3427 if (inst->is_control_flow()) {
3428 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3429 }
3430
3431 if (inst->opcode == BRW_OPCODE_MOV &&
3432 inst->dst.file == MRF) {
3433 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
3434 if (prev_inst && prev_inst->opcode == BRW_OPCODE_MOV &&
3435 inst->dst.equals(prev_inst->dst) &&
3436 inst->src[0].equals(prev_inst->src[0]) &&
3437 inst->saturate == prev_inst->saturate &&
3438 inst->predicate == prev_inst->predicate &&
3439 inst->conditional_mod == prev_inst->conditional_mod &&
3440 inst->exec_size == prev_inst->exec_size) {
3441 inst->remove(block);
3442 progress = true;
3443 continue;
3444 }
3445 }
3446
3447 /* Clear out the last-write records for MRFs that were overwritten. */
3448 if (inst->dst.file == MRF) {
3449 last_mrf_move[inst->dst.nr] = NULL;
3450 }
3451
3452 if (inst->mlen > 0 && inst->base_mrf != -1) {
3453 /* Found a SEND instruction, which will include two or fewer
3454 * implied MRF writes. We could do better here.
3455 */
3456 for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
3457 last_mrf_move[inst->base_mrf + i] = NULL;
3458 }
3459 }
3460
3461 /* Clear out any MRF move records whose sources got overwritten. */
3462 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
3463 if (last_mrf_move[i] &&
3464 regions_overlap(inst->dst, inst->size_written,
3465 last_mrf_move[i]->src[0],
3466 last_mrf_move[i]->size_read(0))) {
3467 last_mrf_move[i] = NULL;
3468 }
3469 }
3470
3471 if (inst->opcode == BRW_OPCODE_MOV &&
3472 inst->dst.file == MRF &&
3473 inst->src[0].file != ARF &&
3474 !inst->is_partial_write()) {
3475 last_mrf_move[inst->dst.nr] = inst;
3476 }
3477 }
3478
3479 if (progress)
3480 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3481
3482 return progress;
3483 }
3484
3485 /**
3486 * Rounding modes for conversion instructions are included for each
3487 * conversion, but right now it is a state. So once it is set,
3488 * we don't need to call it again for subsequent calls.
3489 *
3490 * This is useful for vector/matrices conversions, as setting the
3491 * mode once is enough for the full vector/matrix
3492 */
3493 bool
remove_extra_rounding_modes()3494 fs_visitor::remove_extra_rounding_modes()
3495 {
3496 bool progress = false;
3497 unsigned execution_mode = this->nir->info.float_controls_execution_mode;
3498
3499 brw_rnd_mode base_mode = BRW_RND_MODE_UNSPECIFIED;
3500 if ((FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 |
3501 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32 |
3502 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64) &
3503 execution_mode)
3504 base_mode = BRW_RND_MODE_RTNE;
3505 if ((FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 |
3506 FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 |
3507 FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64) &
3508 execution_mode)
3509 base_mode = BRW_RND_MODE_RTZ;
3510
3511 foreach_block (block, cfg) {
3512 brw_rnd_mode prev_mode = base_mode;
3513
3514 foreach_inst_in_block_safe (fs_inst, inst, block) {
3515 if (inst->opcode == SHADER_OPCODE_RND_MODE) {
3516 assert(inst->src[0].file == BRW_IMMEDIATE_VALUE);
3517 const brw_rnd_mode mode = (brw_rnd_mode) inst->src[0].d;
3518 if (mode == prev_mode) {
3519 inst->remove(block);
3520 progress = true;
3521 } else {
3522 prev_mode = mode;
3523 }
3524 }
3525 }
3526 }
3527
3528 if (progress)
3529 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3530
3531 return progress;
3532 }
3533
3534 static void
clear_deps_for_inst_src(fs_inst * inst,bool * deps,int first_grf,int grf_len)3535 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3536 {
3537 /* Clear the flag for registers that actually got read (as expected). */
3538 for (int i = 0; i < inst->sources; i++) {
3539 int grf;
3540 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3541 grf = inst->src[i].nr;
3542 } else {
3543 continue;
3544 }
3545
3546 if (grf >= first_grf &&
3547 grf < first_grf + grf_len) {
3548 deps[grf - first_grf] = false;
3549 if (inst->exec_size == 16)
3550 deps[grf - first_grf + 1] = false;
3551 }
3552 }
3553 }
3554
3555 /**
3556 * Implements this workaround for the original 965:
3557 *
3558 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3559 * check for post destination dependencies on this instruction, software
3560 * must ensure that there is no destination hazard for the case of ‘write
3561 * followed by a posted write’ shown in the following example.
3562 *
3563 * 1. mov r3 0
3564 * 2. send r3.xy <rest of send instruction>
3565 * 3. mov r2 r3
3566 *
3567 * Due to no post-destination dependency check on the ‘send’, the above
3568 * code sequence could have two instructions (1 and 2) in flight at the
3569 * same time that both consider ‘r3’ as the target of their final writes.
3570 */
3571 void
insert_gfx4_pre_send_dependency_workarounds(bblock_t * block,fs_inst * inst)3572 fs_visitor::insert_gfx4_pre_send_dependency_workarounds(bblock_t *block,
3573 fs_inst *inst)
3574 {
3575 int write_len = regs_written(inst);
3576 int first_write_grf = inst->dst.nr;
3577 bool needs_dep[BRW_MAX_MRF(devinfo->ver)];
3578 assert(write_len < (int)sizeof(needs_dep) - 1);
3579
3580 memset(needs_dep, false, sizeof(needs_dep));
3581 memset(needs_dep, true, write_len);
3582
3583 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3584
3585 /* Walk backwards looking for writes to registers we're writing which
3586 * aren't read since being written. If we hit the start of the program,
3587 * we assume that there are no outstanding dependencies on entry to the
3588 * program.
3589 */
3590 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3591 /* If we hit control flow, assume that there *are* outstanding
3592 * dependencies, and force their cleanup before our instruction.
3593 */
3594 if (block->start() == scan_inst && block->num != 0) {
3595 for (int i = 0; i < write_len; i++) {
3596 if (needs_dep[i])
3597 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3598 first_write_grf + i);
3599 }
3600 return;
3601 }
3602
3603 /* We insert our reads as late as possible on the assumption that any
3604 * instruction but a MOV that might have left us an outstanding
3605 * dependency has more latency than a MOV.
3606 */
3607 if (scan_inst->dst.file == VGRF) {
3608 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3609 int reg = scan_inst->dst.nr + i;
3610
3611 if (reg >= first_write_grf &&
3612 reg < first_write_grf + write_len &&
3613 needs_dep[reg - first_write_grf]) {
3614 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3615 needs_dep[reg - first_write_grf] = false;
3616 if (scan_inst->exec_size == 16)
3617 needs_dep[reg - first_write_grf + 1] = false;
3618 }
3619 }
3620 }
3621
3622 /* Clear the flag for registers that actually got read (as expected). */
3623 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3624
3625 /* Continue the loop only if we haven't resolved all the dependencies */
3626 int i;
3627 for (i = 0; i < write_len; i++) {
3628 if (needs_dep[i])
3629 break;
3630 }
3631 if (i == write_len)
3632 return;
3633 }
3634 }
3635
3636 /**
3637 * Implements this workaround for the original 965:
3638 *
3639 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3640 * used as a destination register until after it has been sourced by an
3641 * instruction with a different destination register.
3642 */
3643 void
insert_gfx4_post_send_dependency_workarounds(bblock_t * block,fs_inst * inst)3644 fs_visitor::insert_gfx4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3645 {
3646 int write_len = regs_written(inst);
3647 unsigned first_write_grf = inst->dst.nr;
3648 bool needs_dep[BRW_MAX_MRF(devinfo->ver)];
3649 assert(write_len < (int)sizeof(needs_dep) - 1);
3650
3651 memset(needs_dep, false, sizeof(needs_dep));
3652 memset(needs_dep, true, write_len);
3653 /* Walk forwards looking for writes to registers we're writing which aren't
3654 * read before being written.
3655 */
3656 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3657 /* If we hit control flow, force resolve all remaining dependencies. */
3658 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3659 for (int i = 0; i < write_len; i++) {
3660 if (needs_dep[i])
3661 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3662 first_write_grf + i);
3663 }
3664 return;
3665 }
3666
3667 /* Clear the flag for registers that actually got read (as expected). */
3668 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3669
3670 /* We insert our reads as late as possible since they're reading the
3671 * result of a SEND, which has massive latency.
3672 */
3673 if (scan_inst->dst.file == VGRF &&
3674 scan_inst->dst.nr >= first_write_grf &&
3675 scan_inst->dst.nr < first_write_grf + write_len &&
3676 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3677 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3678 scan_inst->dst.nr);
3679 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3680 }
3681
3682 /* Continue the loop only if we haven't resolved all the dependencies */
3683 int i;
3684 for (i = 0; i < write_len; i++) {
3685 if (needs_dep[i])
3686 break;
3687 }
3688 if (i == write_len)
3689 return;
3690 }
3691 }
3692
3693 void
insert_gfx4_send_dependency_workarounds()3694 fs_visitor::insert_gfx4_send_dependency_workarounds()
3695 {
3696 if (devinfo->ver != 4 || devinfo->platform == INTEL_PLATFORM_G4X)
3697 return;
3698
3699 bool progress = false;
3700
3701 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3702 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3703 insert_gfx4_pre_send_dependency_workarounds(block, inst);
3704 insert_gfx4_post_send_dependency_workarounds(block, inst);
3705 progress = true;
3706 }
3707 }
3708
3709 if (progress)
3710 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3711 }
3712
3713 /**
3714 * Turns the generic expression-style uniform pull constant load instruction
3715 * into a hardware-specific series of instructions for loading a pull
3716 * constant.
3717 *
3718 * The expression style allows the CSE pass before this to optimize out
3719 * repeated loads from the same offset, and gives the pre-register-allocation
3720 * scheduling full flexibility, while the conversion to native instructions
3721 * allows the post-register-allocation scheduler the best information
3722 * possible.
3723 *
3724 * Note that execution masking for setting up pull constant loads is special:
3725 * the channels that need to be written are unrelated to the current execution
3726 * mask, since a later instruction will use one of the result channels as a
3727 * source operand for all 8 or 16 of its channels.
3728 */
3729 void
lower_uniform_pull_constant_loads()3730 fs_visitor::lower_uniform_pull_constant_loads()
3731 {
3732 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3733 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3734 continue;
3735
3736 const fs_reg& surface = inst->src[0];
3737 const fs_reg& offset_B = inst->src[1];
3738 assert(offset_B.file == IMM);
3739
3740 if (devinfo->has_lsc) {
3741 const fs_builder ubld =
3742 fs_builder(this, block, inst).group(8, 0).exec_all();
3743
3744 const fs_reg payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
3745 ubld.MOV(payload, offset_B);
3746
3747 inst->sfid = GFX12_SFID_UGM;
3748 inst->desc = lsc_msg_desc(devinfo, LSC_OP_LOAD,
3749 1 /* simd_size */,
3750 LSC_ADDR_SURFTYPE_BTI,
3751 LSC_ADDR_SIZE_A32,
3752 1 /* num_coordinates */,
3753 LSC_DATA_SIZE_D32,
3754 inst->size_written / 4,
3755 true /* transpose */,
3756 LSC_CACHE_LOAD_L1STATE_L3MOCS,
3757 true /* has_dest */);
3758
3759 fs_reg ex_desc;
3760 if (surface.file == IMM) {
3761 ex_desc = brw_imm_ud(lsc_bti_ex_desc(devinfo, surface.ud));
3762 } else {
3763 /* We only need the first component for the payload so we can use
3764 * one of the other components for the extended descriptor
3765 */
3766 ex_desc = component(payload, 1);
3767 ubld.group(1, 0).SHL(ex_desc, surface, brw_imm_ud(24));
3768 }
3769
3770 /* Update the original instruction. */
3771 inst->opcode = SHADER_OPCODE_SEND;
3772 inst->mlen = lsc_msg_desc_src0_len(devinfo, inst->desc);
3773 inst->ex_mlen = 0;
3774 inst->header_size = 0;
3775 inst->send_has_side_effects = false;
3776 inst->send_is_volatile = true;
3777 inst->exec_size = 1;
3778
3779 /* Finally, the payload */
3780 inst->resize_sources(3);
3781 inst->src[0] = brw_imm_ud(0); /* desc */
3782 inst->src[1] = ex_desc;
3783 inst->src[2] = payload;
3784
3785 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
3786 } else if (devinfo->ver >= 7) {
3787 const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3788 const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3789
3790 ubld.group(8, 0).MOV(payload,
3791 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3792 ubld.group(1, 0).MOV(component(payload, 2),
3793 brw_imm_ud(offset_B.ud / 16));
3794
3795 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GFX7;
3796 inst->src[1] = payload;
3797 inst->header_size = 1;
3798 inst->mlen = 1;
3799
3800 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
3801 } else {
3802 /* Before register allocation, we didn't tell the scheduler about the
3803 * MRF we use. We know it's safe to use this MRF because nothing
3804 * else does except for register spill/unspill, which generates and
3805 * uses its MRF within a single IR instruction.
3806 */
3807 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->ver) + 1;
3808 inst->mlen = 1;
3809 }
3810 }
3811 }
3812
3813 bool
lower_load_payload()3814 fs_visitor::lower_load_payload()
3815 {
3816 bool progress = false;
3817
3818 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3819 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3820 continue;
3821
3822 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3823 assert(inst->saturate == false);
3824 fs_reg dst = inst->dst;
3825
3826 /* Get rid of COMPR4. We'll add it back in if we need it */
3827 if (dst.file == MRF)
3828 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3829
3830 const fs_builder ibld(this, block, inst);
3831 const fs_builder ubld = ibld.exec_all();
3832
3833 for (uint8_t i = 0; i < inst->header_size;) {
3834 /* Number of header GRFs to initialize at once with a single MOV
3835 * instruction.
3836 */
3837 const unsigned n =
3838 (i + 1 < inst->header_size && inst->src[i].stride == 1 &&
3839 inst->src[i + 1].equals(byte_offset(inst->src[i], REG_SIZE))) ?
3840 2 : 1;
3841
3842 if (inst->src[i].file != BAD_FILE)
3843 ubld.group(8 * n, 0).MOV(retype(dst, BRW_REGISTER_TYPE_UD),
3844 retype(inst->src[i], BRW_REGISTER_TYPE_UD));
3845
3846 dst = byte_offset(dst, n * REG_SIZE);
3847 i += n;
3848 }
3849
3850 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3851 inst->exec_size > 8) {
3852 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3853 * a straightforward copy. Instead, the result of the
3854 * LOAD_PAYLOAD is treated as interleaved and the first four
3855 * non-header sources are unpacked as:
3856 *
3857 * m + 0: r0
3858 * m + 1: g0
3859 * m + 2: b0
3860 * m + 3: a0
3861 * m + 4: r1
3862 * m + 5: g1
3863 * m + 6: b1
3864 * m + 7: a1
3865 *
3866 * This is used for gen <= 5 fb writes.
3867 */
3868 assert(inst->exec_size == 16);
3869 assert(inst->header_size + 4 <= inst->sources);
3870 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3871 if (inst->src[i].file != BAD_FILE) {
3872 if (devinfo->has_compr4) {
3873 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3874 compr4_dst.nr |= BRW_MRF_COMPR4;
3875 ibld.MOV(compr4_dst, inst->src[i]);
3876 } else {
3877 /* Platform doesn't have COMPR4. We have to fake it */
3878 fs_reg mov_dst = retype(dst, inst->src[i].type);
3879 ibld.quarter(0).MOV(mov_dst, quarter(inst->src[i], 0));
3880 mov_dst.nr += 4;
3881 ibld.quarter(1).MOV(mov_dst, quarter(inst->src[i], 1));
3882 }
3883 }
3884
3885 dst.nr++;
3886 }
3887
3888 /* The loop above only ever incremented us through the first set
3889 * of 4 registers. However, thanks to the magic of COMPR4, we
3890 * actually wrote to the first 8 registers, so we need to take
3891 * that into account now.
3892 */
3893 dst.nr += 4;
3894
3895 /* The COMPR4 code took care of the first 4 sources. We'll let
3896 * the regular path handle any remaining sources. Yes, we are
3897 * modifying the instruction but we're about to delete it so
3898 * this really doesn't hurt anything.
3899 */
3900 inst->header_size += 4;
3901 }
3902
3903 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3904 dst.type = inst->src[i].type;
3905 if (inst->src[i].file != BAD_FILE) {
3906 ibld.MOV(dst, inst->src[i]);
3907 }
3908 dst = offset(dst, ibld, 1);
3909 }
3910
3911 inst->remove(block);
3912 progress = true;
3913 }
3914
3915 if (progress)
3916 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3917
3918 return progress;
3919 }
3920
3921 void
lower_mul_dword_inst(fs_inst * inst,bblock_t * block)3922 fs_visitor::lower_mul_dword_inst(fs_inst *inst, bblock_t *block)
3923 {
3924 const fs_builder ibld(this, block, inst);
3925
3926 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3927 if (inst->src[1].file == IMM &&
3928 (( ud && inst->src[1].ud <= UINT16_MAX) ||
3929 (!ud && inst->src[1].d <= INT16_MAX && inst->src[1].d >= INT16_MIN))) {
3930 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3931 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3932 * src1 are used.
3933 *
3934 * If multiplying by an immediate value that fits in 16-bits, do a
3935 * single MUL instruction with that value in the proper location.
3936 */
3937 if (devinfo->ver < 7) {
3938 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8), inst->dst.type);
3939 ibld.MOV(imm, inst->src[1]);
3940 ibld.MUL(inst->dst, imm, inst->src[0]);
3941 } else {
3942 ibld.MUL(inst->dst, inst->src[0],
3943 ud ? brw_imm_uw(inst->src[1].ud)
3944 : brw_imm_w(inst->src[1].d));
3945 }
3946 } else {
3947 /* Gen < 8 (and some Gfx8+ low-power parts like Cherryview) cannot
3948 * do 32-bit integer multiplication in one instruction, but instead
3949 * must do a sequence (which actually calculates a 64-bit result):
3950 *
3951 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3952 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3953 * mov(8) g2<1>D acc0<8,8,1>D
3954 *
3955 * But on Gen > 6, the ability to use second accumulator register
3956 * (acc1) for non-float data types was removed, preventing a simple
3957 * implementation in SIMD16. A 16-channel result can be calculated by
3958 * executing the three instructions twice in SIMD8, once with quarter
3959 * control of 1Q for the first eight channels and again with 2Q for
3960 * the second eight channels.
3961 *
3962 * Which accumulator register is implicitly accessed (by AccWrEnable
3963 * for instance) is determined by the quarter control. Unfortunately
3964 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3965 * implicit accumulator access by an instruction with 2Q will access
3966 * acc1 regardless of whether the data type is usable in acc1.
3967 *
3968 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3969 * integer data types.
3970 *
3971 * Since we only want the low 32-bits of the result, we can do two
3972 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3973 * adjust the high result and add them (like the mach is doing):
3974 *
3975 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3976 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3977 * shl(8) g9<1>D g8<8,8,1>D 16D
3978 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3979 *
3980 * We avoid the shl instruction by realizing that we only want to add
3981 * the low 16-bits of the "high" result to the high 16-bits of the
3982 * "low" result and using proper regioning on the add:
3983 *
3984 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3985 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3986 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3987 *
3988 * Since it does not use the (single) accumulator register, we can
3989 * schedule multi-component multiplications much better.
3990 */
3991
3992 bool needs_mov = false;
3993 fs_reg orig_dst = inst->dst;
3994
3995 /* Get a new VGRF for the "low" 32x16-bit multiplication result if
3996 * reusing the original destination is impossible due to hardware
3997 * restrictions, source/destination overlap, or it being the null
3998 * register.
3999 */
4000 fs_reg low = inst->dst;
4001 if (orig_dst.is_null() || orig_dst.file == MRF ||
4002 regions_overlap(inst->dst, inst->size_written,
4003 inst->src[0], inst->size_read(0)) ||
4004 regions_overlap(inst->dst, inst->size_written,
4005 inst->src[1], inst->size_read(1)) ||
4006 inst->dst.stride >= 4) {
4007 needs_mov = true;
4008 low = fs_reg(VGRF, alloc.allocate(regs_written(inst)),
4009 inst->dst.type);
4010 }
4011
4012 /* Get a new VGRF but keep the same stride as inst->dst */
4013 fs_reg high(VGRF, alloc.allocate(regs_written(inst)), inst->dst.type);
4014 high.stride = inst->dst.stride;
4015 high.offset = inst->dst.offset % REG_SIZE;
4016
4017 if (devinfo->ver >= 7) {
4018 /* From Wa_1604601757:
4019 *
4020 * "When multiplying a DW and any lower precision integer, source modifier
4021 * is not supported."
4022 *
4023 * An unsupported negate modifier on src[1] would ordinarily be
4024 * lowered by the subsequent lower_regioning pass. In this case that
4025 * pass would spawn another dword multiply. Instead, lower the
4026 * modifier first.
4027 */
4028 const bool source_mods_unsupported = (devinfo->ver >= 12);
4029
4030 if (inst->src[1].abs || (inst->src[1].negate &&
4031 source_mods_unsupported))
4032 lower_src_modifiers(this, block, inst, 1);
4033
4034 if (inst->src[1].file == IMM) {
4035 ibld.MUL(low, inst->src[0],
4036 brw_imm_uw(inst->src[1].ud & 0xffff));
4037 ibld.MUL(high, inst->src[0],
4038 brw_imm_uw(inst->src[1].ud >> 16));
4039 } else {
4040 ibld.MUL(low, inst->src[0],
4041 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
4042 ibld.MUL(high, inst->src[0],
4043 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
4044 }
4045 } else {
4046 if (inst->src[0].abs)
4047 lower_src_modifiers(this, block, inst, 0);
4048
4049 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
4050 inst->src[1]);
4051 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
4052 inst->src[1]);
4053 }
4054
4055 ibld.ADD(subscript(low, BRW_REGISTER_TYPE_UW, 1),
4056 subscript(low, BRW_REGISTER_TYPE_UW, 1),
4057 subscript(high, BRW_REGISTER_TYPE_UW, 0));
4058
4059 if (needs_mov || inst->conditional_mod)
4060 set_condmod(inst->conditional_mod, ibld.MOV(orig_dst, low));
4061 }
4062 }
4063
4064 void
lower_mul_qword_inst(fs_inst * inst,bblock_t * block)4065 fs_visitor::lower_mul_qword_inst(fs_inst *inst, bblock_t *block)
4066 {
4067 const fs_builder ibld(this, block, inst);
4068
4069 /* Considering two 64-bit integers ab and cd where each letter ab
4070 * corresponds to 32 bits, we get a 128-bit result WXYZ. We * cd
4071 * only need to provide the YZ part of the result. -------
4072 * BD
4073 * Only BD needs to be 64 bits. For AD and BC we only care + AD
4074 * about the lower 32 bits (since they are part of the upper + BC
4075 * 32 bits of our result). AC is not needed since it starts + AC
4076 * on the 65th bit of the result. -------
4077 * WXYZ
4078 */
4079 unsigned int q_regs = regs_written(inst);
4080 unsigned int d_regs = (q_regs + 1) / 2;
4081
4082 fs_reg bd(VGRF, alloc.allocate(q_regs), BRW_REGISTER_TYPE_UQ);
4083 fs_reg ad(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4084 fs_reg bc(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4085
4086 /* Here we need the full 64 bit result for 32b * 32b. */
4087 if (devinfo->has_integer_dword_mul) {
4088 ibld.MUL(bd, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4089 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4090 } else {
4091 fs_reg bd_high(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4092 fs_reg bd_low(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
4093 fs_reg acc = retype(brw_acc_reg(inst->exec_size), BRW_REGISTER_TYPE_UD);
4094
4095 fs_inst *mul = ibld.MUL(acc,
4096 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4097 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
4098 mul->writes_accumulator = true;
4099
4100 ibld.MACH(bd_high, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4101 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4102 ibld.MOV(bd_low, acc);
4103
4104 ibld.MOV(subscript(bd, BRW_REGISTER_TYPE_UD, 0), bd_low);
4105 ibld.MOV(subscript(bd, BRW_REGISTER_TYPE_UD, 1), bd_high);
4106 }
4107
4108 ibld.MUL(ad, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1),
4109 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4110 ibld.MUL(bc, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4111 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 1));
4112
4113 ibld.ADD(ad, ad, bc);
4114 ibld.ADD(subscript(bd, BRW_REGISTER_TYPE_UD, 1),
4115 subscript(bd, BRW_REGISTER_TYPE_UD, 1), ad);
4116
4117 if (devinfo->has_64bit_int) {
4118 ibld.MOV(inst->dst, bd);
4119 } else {
4120 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
4121 subscript(bd, BRW_REGISTER_TYPE_UD, 0));
4122 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
4123 subscript(bd, BRW_REGISTER_TYPE_UD, 1));
4124 }
4125 }
4126
4127 void
lower_mulh_inst(fs_inst * inst,bblock_t * block)4128 fs_visitor::lower_mulh_inst(fs_inst *inst, bblock_t *block)
4129 {
4130 const fs_builder ibld(this, block, inst);
4131
4132 /* According to the BDW+ BSpec page for the "Multiply Accumulate
4133 * High" instruction:
4134 *
4135 * "An added preliminary mov is required for source modification on
4136 * src1:
4137 * mov (8) r3.0<1>:d -r3<8;8,1>:d
4138 * mul (8) acc0:d r2.0<8;8,1>:d r3.0<16;8,2>:uw
4139 * mach (8) r5.0<1>:d r2.0<8;8,1>:d r3.0<8;8,1>:d"
4140 */
4141 if (devinfo->ver >= 8 && (inst->src[1].negate || inst->src[1].abs))
4142 lower_src_modifiers(this, block, inst, 1);
4143
4144 /* Should have been lowered to 8-wide. */
4145 assert(inst->exec_size <= get_lowered_simd_width(compiler, inst));
4146 const fs_reg acc = retype(brw_acc_reg(inst->exec_size), inst->dst.type);
4147 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
4148 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
4149
4150 if (devinfo->ver >= 8) {
4151 /* Until Gfx8, integer multiplies read 32-bits from one source,
4152 * and 16-bits from the other, and relying on the MACH instruction
4153 * to generate the high bits of the result.
4154 *
4155 * On Gfx8, the multiply instruction does a full 32x32-bit
4156 * multiply, but in order to do a 64-bit multiply we can simulate
4157 * the previous behavior and then use a MACH instruction.
4158 */
4159 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
4160 mul->src[1].type == BRW_REGISTER_TYPE_UD);
4161 mul->src[1].type = BRW_REGISTER_TYPE_UW;
4162 mul->src[1].stride *= 2;
4163
4164 if (mul->src[1].file == IMM) {
4165 mul->src[1] = brw_imm_uw(mul->src[1].ud);
4166 }
4167 } else if (devinfo->verx10 == 70 &&
4168 inst->group > 0) {
4169 /* Among other things the quarter control bits influence which
4170 * accumulator register is used by the hardware for instructions
4171 * that access the accumulator implicitly (e.g. MACH). A
4172 * second-half instruction would normally map to acc1, which
4173 * doesn't exist on Gfx7 and up (the hardware does emulate it for
4174 * floating-point instructions *only* by taking advantage of the
4175 * extra precision of acc0 not normally used for floating point
4176 * arithmetic).
4177 *
4178 * HSW and up are careful enough not to try to access an
4179 * accumulator register that doesn't exist, but on earlier Gfx7
4180 * hardware we need to make sure that the quarter control bits are
4181 * zero to avoid non-deterministic behaviour and emit an extra MOV
4182 * to get the result masked correctly according to the current
4183 * channel enables.
4184 */
4185 mach->group = 0;
4186 mach->force_writemask_all = true;
4187 mach->dst = ibld.vgrf(inst->dst.type);
4188 ibld.MOV(inst->dst, mach->dst);
4189 }
4190 }
4191
4192 bool
lower_integer_multiplication()4193 fs_visitor::lower_integer_multiplication()
4194 {
4195 bool progress = false;
4196
4197 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4198 if (inst->opcode == BRW_OPCODE_MUL) {
4199 /* If the instruction is already in a form that does not need lowering,
4200 * return early.
4201 */
4202 if (devinfo->ver >= 7) {
4203 if (type_sz(inst->src[1].type) < 4 && type_sz(inst->src[0].type) <= 4)
4204 continue;
4205 } else {
4206 if (type_sz(inst->src[0].type) < 4 && type_sz(inst->src[1].type) <= 4)
4207 continue;
4208 }
4209
4210 if ((inst->dst.type == BRW_REGISTER_TYPE_Q ||
4211 inst->dst.type == BRW_REGISTER_TYPE_UQ) &&
4212 (inst->src[0].type == BRW_REGISTER_TYPE_Q ||
4213 inst->src[0].type == BRW_REGISTER_TYPE_UQ) &&
4214 (inst->src[1].type == BRW_REGISTER_TYPE_Q ||
4215 inst->src[1].type == BRW_REGISTER_TYPE_UQ)) {
4216 lower_mul_qword_inst(inst, block);
4217 inst->remove(block);
4218 progress = true;
4219 } else if (!inst->dst.is_accumulator() &&
4220 (inst->dst.type == BRW_REGISTER_TYPE_D ||
4221 inst->dst.type == BRW_REGISTER_TYPE_UD) &&
4222 (!devinfo->has_integer_dword_mul ||
4223 devinfo->verx10 >= 125)) {
4224 lower_mul_dword_inst(inst, block);
4225 inst->remove(block);
4226 progress = true;
4227 }
4228 } else if (inst->opcode == SHADER_OPCODE_MULH) {
4229 lower_mulh_inst(inst, block);
4230 inst->remove(block);
4231 progress = true;
4232 }
4233
4234 }
4235
4236 if (progress)
4237 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
4238
4239 return progress;
4240 }
4241
4242 bool
lower_minmax()4243 fs_visitor::lower_minmax()
4244 {
4245 assert(devinfo->ver < 6);
4246
4247 bool progress = false;
4248
4249 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4250 const fs_builder ibld(this, block, inst);
4251
4252 if (inst->opcode == BRW_OPCODE_SEL &&
4253 inst->predicate == BRW_PREDICATE_NONE) {
4254 /* If src1 is an immediate value that is not NaN, then it can't be
4255 * NaN. In that case, emit CMP because it is much better for cmod
4256 * propagation. Likewise if src1 is not float. Gfx4 and Gfx5 don't
4257 * support HF or DF, so it is not necessary to check for those.
4258 */
4259 if (inst->src[1].type != BRW_REGISTER_TYPE_F ||
4260 (inst->src[1].file == IMM && !isnan(inst->src[1].f))) {
4261 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
4262 inst->conditional_mod);
4263 } else {
4264 ibld.CMPN(ibld.null_reg_d(), inst->src[0], inst->src[1],
4265 inst->conditional_mod);
4266 }
4267 inst->predicate = BRW_PREDICATE_NORMAL;
4268 inst->conditional_mod = BRW_CONDITIONAL_NONE;
4269
4270 progress = true;
4271 }
4272 }
4273
4274 if (progress)
4275 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
4276
4277 return progress;
4278 }
4279
4280 bool
lower_sub_sat()4281 fs_visitor::lower_sub_sat()
4282 {
4283 bool progress = false;
4284
4285 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4286 const fs_builder ibld(this, block, inst);
4287
4288 if (inst->opcode == SHADER_OPCODE_USUB_SAT ||
4289 inst->opcode == SHADER_OPCODE_ISUB_SAT) {
4290 /* The fundamental problem is the hardware performs source negation
4291 * at the bit width of the source. If the source is 0x80000000D, the
4292 * negation is 0x80000000D. As a result, subtractSaturate(0,
4293 * 0x80000000) will produce 0x80000000 instead of 0x7fffffff. There
4294 * are at least three ways to resolve this:
4295 *
4296 * 1. Use the accumulator for the negated source. The accumulator is
4297 * 33 bits, so our source 0x80000000 is sign-extended to
4298 * 0x1800000000. The negation of which is 0x080000000. This
4299 * doesn't help for 64-bit integers (which are already bigger than
4300 * 33 bits). There are also only 8 accumulators, so SIMD16 or
4301 * SIMD32 instructions would have to be split into multiple SIMD8
4302 * instructions.
4303 *
4304 * 2. Use slightly different math. For any n-bit value x, we know (x
4305 * >> 1) != -(x >> 1). We can use this fact to only do
4306 * subtractions involving (x >> 1). subtractSaturate(a, b) ==
4307 * subtractSaturate(subtractSaturate(a, (b >> 1)), b - (b >> 1)).
4308 *
4309 * 3. For unsigned sources, it is sufficient to replace the
4310 * subtractSaturate with (a > b) ? a - b : 0.
4311 *
4312 * It may also be possible to use the SUBB instruction. This
4313 * implicitly writes the accumulator, so it could only be used in the
4314 * same situations as #1 above. It is further limited by only
4315 * allowing UD sources.
4316 */
4317 if (inst->exec_size == 8 && inst->src[0].type != BRW_REGISTER_TYPE_Q &&
4318 inst->src[0].type != BRW_REGISTER_TYPE_UQ) {
4319 fs_reg acc(ARF, BRW_ARF_ACCUMULATOR, inst->src[1].type);
4320
4321 ibld.MOV(acc, inst->src[1]);
4322 fs_inst *add = ibld.ADD(inst->dst, acc, inst->src[0]);
4323 add->saturate = true;
4324 add->src[0].negate = true;
4325 } else if (inst->opcode == SHADER_OPCODE_ISUB_SAT) {
4326 /* tmp = src1 >> 1;
4327 * dst = add.sat(add.sat(src0, -tmp), -(src1 - tmp));
4328 */
4329 fs_reg tmp1 = ibld.vgrf(inst->src[0].type);
4330 fs_reg tmp2 = ibld.vgrf(inst->src[0].type);
4331 fs_reg tmp3 = ibld.vgrf(inst->src[0].type);
4332 fs_inst *add;
4333
4334 ibld.SHR(tmp1, inst->src[1], brw_imm_d(1));
4335
4336 add = ibld.ADD(tmp2, inst->src[1], tmp1);
4337 add->src[1].negate = true;
4338
4339 add = ibld.ADD(tmp3, inst->src[0], tmp1);
4340 add->src[1].negate = true;
4341 add->saturate = true;
4342
4343 add = ibld.ADD(inst->dst, tmp3, tmp2);
4344 add->src[1].negate = true;
4345 add->saturate = true;
4346 } else {
4347 /* a > b ? a - b : 0 */
4348 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
4349 BRW_CONDITIONAL_G);
4350
4351 fs_inst *add = ibld.ADD(inst->dst, inst->src[0], inst->src[1]);
4352 add->src[1].negate = !add->src[1].negate;
4353
4354 ibld.SEL(inst->dst, inst->dst, brw_imm_ud(0))
4355 ->predicate = BRW_PREDICATE_NORMAL;
4356 }
4357
4358 inst->remove(block);
4359 progress = true;
4360 }
4361 }
4362
4363 if (progress)
4364 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
4365
4366 return progress;
4367 }
4368
4369 /**
4370 * Get the mask of SIMD channels enabled during dispatch and not yet disabled
4371 * by discard. Due to the layout of the sample mask in the fragment shader
4372 * thread payload, \p bld is required to have a dispatch_width() not greater
4373 * than 16 for fragment shaders.
4374 */
4375 fs_reg
brw_sample_mask_reg(const fs_builder & bld)4376 brw_sample_mask_reg(const fs_builder &bld)
4377 {
4378 const fs_visitor *v = static_cast<const fs_visitor *>(bld.shader);
4379
4380 if (v->stage != MESA_SHADER_FRAGMENT) {
4381 return brw_imm_ud(0xffffffff);
4382 } else if (brw_wm_prog_data(v->stage_prog_data)->uses_kill) {
4383 assert(bld.dispatch_width() <= 16);
4384 return brw_flag_subreg(sample_mask_flag_subreg(v) + bld.group() / 16);
4385 } else {
4386 assert(v->devinfo->ver >= 6 && bld.dispatch_width() <= 16);
4387 return retype(brw_vec1_grf((bld.group() >= 16 ? 2 : 1), 7),
4388 BRW_REGISTER_TYPE_UW);
4389 }
4390 }
4391
4392 uint32_t
brw_fb_write_msg_control(const fs_inst * inst,const struct brw_wm_prog_data * prog_data)4393 brw_fb_write_msg_control(const fs_inst *inst,
4394 const struct brw_wm_prog_data *prog_data)
4395 {
4396 uint32_t mctl;
4397
4398 if (inst->opcode == FS_OPCODE_REP_FB_WRITE) {
4399 assert(inst->group == 0 && inst->exec_size == 16);
4400 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
4401 } else if (prog_data->dual_src_blend) {
4402 assert(inst->exec_size == 8);
4403
4404 if (inst->group % 16 == 0)
4405 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01;
4406 else if (inst->group % 16 == 8)
4407 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23;
4408 else
4409 unreachable("Invalid dual-source FB write instruction group");
4410 } else {
4411 assert(inst->group == 0 || (inst->group == 16 && inst->exec_size == 16));
4412
4413 if (inst->exec_size == 16)
4414 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
4415 else if (inst->exec_size == 8)
4416 mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01;
4417 else
4418 unreachable("Invalid FB write execution size");
4419 }
4420
4421 return mctl;
4422 }
4423
4424 /**
4425 * Predicate the specified instruction on the sample mask.
4426 */
4427 void
brw_emit_predicate_on_sample_mask(const fs_builder & bld,fs_inst * inst)4428 brw_emit_predicate_on_sample_mask(const fs_builder &bld, fs_inst *inst)
4429 {
4430 assert(bld.shader->stage == MESA_SHADER_FRAGMENT &&
4431 bld.group() == inst->group &&
4432 bld.dispatch_width() == inst->exec_size);
4433
4434 const fs_visitor *v = static_cast<const fs_visitor *>(bld.shader);
4435 const fs_reg sample_mask = brw_sample_mask_reg(bld);
4436 const unsigned subreg = sample_mask_flag_subreg(v);
4437
4438 if (brw_wm_prog_data(v->stage_prog_data)->uses_kill) {
4439 assert(sample_mask.file == ARF &&
4440 sample_mask.nr == brw_flag_subreg(subreg).nr &&
4441 sample_mask.subnr == brw_flag_subreg(
4442 subreg + inst->group / 16).subnr);
4443 } else {
4444 bld.group(1, 0).exec_all()
4445 .MOV(brw_flag_subreg(subreg + inst->group / 16), sample_mask);
4446 }
4447
4448 if (inst->predicate) {
4449 assert(inst->predicate == BRW_PREDICATE_NORMAL);
4450 assert(!inst->predicate_inverse);
4451 assert(inst->flag_subreg == 0);
4452 /* Combine the sample mask with the existing predicate by using a
4453 * vertical predication mode.
4454 */
4455 inst->predicate = BRW_PREDICATE_ALIGN1_ALLV;
4456 } else {
4457 inst->flag_subreg = subreg;
4458 inst->predicate = BRW_PREDICATE_NORMAL;
4459 inst->predicate_inverse = false;
4460 }
4461 }
4462
4463 void
emit_is_helper_invocation(fs_reg result)4464 fs_visitor::emit_is_helper_invocation(fs_reg result)
4465 {
4466 /* Unlike the regular gl_HelperInvocation, that is defined at dispatch,
4467 * the helperInvocationEXT() (aka SpvOpIsHelperInvocationEXT) takes into
4468 * consideration demoted invocations.
4469 */
4470 result.type = BRW_REGISTER_TYPE_UD;
4471
4472 bld.MOV(result, brw_imm_ud(0));
4473
4474 /* See brw_sample_mask_reg() for why we split SIMD32 into SIMD16 here. */
4475 unsigned width = bld.dispatch_width();
4476 for (unsigned i = 0; i < DIV_ROUND_UP(width, 16); i++) {
4477 const fs_builder b = bld.group(MIN2(width, 16), i);
4478
4479 fs_inst *mov = b.MOV(offset(result, b, i), brw_imm_ud(~0));
4480
4481 /* The at() ensures that any code emitted to get the predicate happens
4482 * before the mov right above. This is not an issue elsewhere because
4483 * lowering code already set up the builder this way.
4484 */
4485 brw_emit_predicate_on_sample_mask(b.at(NULL, mov), mov);
4486 mov->predicate_inverse = true;
4487 }
4488 }
4489
4490 static bool
is_mixed_float_with_fp32_dst(const fs_inst * inst)4491 is_mixed_float_with_fp32_dst(const fs_inst *inst)
4492 {
4493 /* This opcode sometimes uses :W type on the source even if the operand is
4494 * a :HF, because in gfx7 there is no support for :HF, and thus it uses :W.
4495 */
4496 if (inst->opcode == BRW_OPCODE_F16TO32)
4497 return true;
4498
4499 if (inst->dst.type != BRW_REGISTER_TYPE_F)
4500 return false;
4501
4502 for (int i = 0; i < inst->sources; i++) {
4503 if (inst->src[i].type == BRW_REGISTER_TYPE_HF)
4504 return true;
4505 }
4506
4507 return false;
4508 }
4509
4510 static bool
is_mixed_float_with_packed_fp16_dst(const fs_inst * inst)4511 is_mixed_float_with_packed_fp16_dst(const fs_inst *inst)
4512 {
4513 /* This opcode sometimes uses :W type on the destination even if the
4514 * destination is a :HF, because in gfx7 there is no support for :HF, and
4515 * thus it uses :W.
4516 */
4517 if (inst->opcode == BRW_OPCODE_F32TO16 &&
4518 inst->dst.stride == 1)
4519 return true;
4520
4521 if (inst->dst.type != BRW_REGISTER_TYPE_HF ||
4522 inst->dst.stride != 1)
4523 return false;
4524
4525 for (int i = 0; i < inst->sources; i++) {
4526 if (inst->src[i].type == BRW_REGISTER_TYPE_F)
4527 return true;
4528 }
4529
4530 return false;
4531 }
4532
4533 /**
4534 * Get the closest allowed SIMD width for instruction \p inst accounting for
4535 * some common regioning and execution control restrictions that apply to FPU
4536 * instructions. These restrictions don't necessarily have any relevance to
4537 * instructions not executed by the FPU pipeline like extended math, control
4538 * flow or send message instructions.
4539 *
4540 * For virtual opcodes it's really up to the instruction -- In some cases
4541 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
4542 * instructions) it may simplify virtual instruction lowering if we can
4543 * enforce FPU-like regioning restrictions already on the virtual instruction,
4544 * in other cases (e.g. virtual send-like instructions) this may be
4545 * excessively restrictive.
4546 */
4547 static unsigned
get_fpu_lowered_simd_width(const struct brw_compiler * compiler,const fs_inst * inst)4548 get_fpu_lowered_simd_width(const struct brw_compiler *compiler,
4549 const fs_inst *inst)
4550 {
4551 const struct intel_device_info *devinfo = compiler->devinfo;
4552
4553 /* Maximum execution size representable in the instruction controls. */
4554 unsigned max_width = MIN2(32, inst->exec_size);
4555
4556 /* According to the PRMs:
4557 * "A. In Direct Addressing mode, a source cannot span more than 2
4558 * adjacent GRF registers.
4559 * B. A destination cannot span more than 2 adjacent GRF registers."
4560 *
4561 * Look for the source or destination with the largest register region
4562 * which is the one that is going to limit the overall execution size of
4563 * the instruction due to this rule.
4564 */
4565 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4566
4567 for (unsigned i = 0; i < inst->sources; i++)
4568 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
4569
4570 /* Calculate the maximum execution size of the instruction based on the
4571 * factor by which it goes over the hardware limit of 2 GRFs.
4572 */
4573 if (reg_count > 2)
4574 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
4575
4576 /* According to the IVB PRMs:
4577 * "When destination spans two registers, the source MUST span two
4578 * registers. The exception to the above rule:
4579 *
4580 * - When source is scalar, the source registers are not incremented.
4581 * - When source is packed integer Word and destination is packed
4582 * integer DWord, the source register is not incremented but the
4583 * source sub register is incremented."
4584 *
4585 * The hardware specs from Gfx4 to Gfx7.5 mention similar regioning
4586 * restrictions. The code below intentionally doesn't check whether the
4587 * destination type is integer because empirically the hardware doesn't
4588 * seem to care what the actual type is as long as it's dword-aligned.
4589 */
4590 if (devinfo->ver < 8) {
4591 for (unsigned i = 0; i < inst->sources; i++) {
4592 /* IVB implements DF scalars as <0;2,1> regions. */
4593 const bool is_scalar_exception = is_uniform(inst->src[i]) &&
4594 (devinfo->platform == INTEL_PLATFORM_HSW || type_sz(inst->src[i].type) != 8);
4595 const bool is_packed_word_exception =
4596 type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
4597 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1;
4598
4599 /* We check size_read(i) against size_written instead of REG_SIZE
4600 * because we want to properly handle SIMD32. In SIMD32, you can end
4601 * up with writes to 4 registers and a source that reads 2 registers
4602 * and we may still need to lower all the way to SIMD8 in that case.
4603 */
4604 if (inst->size_written > REG_SIZE &&
4605 inst->size_read(i) != 0 &&
4606 inst->size_read(i) < inst->size_written &&
4607 !is_scalar_exception && !is_packed_word_exception) {
4608 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4609 max_width = MIN2(max_width, inst->exec_size / reg_count);
4610 }
4611 }
4612 }
4613
4614 if (devinfo->ver < 6) {
4615 /* From the G45 PRM, Volume 4 Page 361:
4616 *
4617 * "Operand Alignment Rule: With the exceptions listed below, a
4618 * source/destination operand in general should be aligned to even
4619 * 256-bit physical register with a region size equal to two 256-bit
4620 * physical registers."
4621 *
4622 * Normally we enforce this by allocating virtual registers to the
4623 * even-aligned class. But we need to handle payload registers.
4624 */
4625 for (unsigned i = 0; i < inst->sources; i++) {
4626 if (inst->src[i].file == FIXED_GRF && (inst->src[i].nr & 1) &&
4627 inst->size_read(i) > REG_SIZE) {
4628 max_width = MIN2(max_width, 8);
4629 }
4630 }
4631 }
4632
4633 /* From the IVB PRMs:
4634 * "When an instruction is SIMD32, the low 16 bits of the execution mask
4635 * are applied for both halves of the SIMD32 instruction. If different
4636 * execution mask channels are required, split the instruction into two
4637 * SIMD16 instructions."
4638 *
4639 * There is similar text in the HSW PRMs. Gfx4-6 don't even implement
4640 * 32-wide control flow support in hardware and will behave similarly.
4641 */
4642 if (devinfo->ver < 8 && !inst->force_writemask_all)
4643 max_width = MIN2(max_width, 16);
4644
4645 /* From the IVB PRMs (applies to HSW too):
4646 * "Instructions with condition modifiers must not use SIMD32."
4647 *
4648 * From the BDW PRMs (applies to later hardware too):
4649 * "Ternary instruction with condition modifiers must not use SIMD32."
4650 */
4651 if (inst->conditional_mod && (devinfo->ver < 8 || inst->is_3src(compiler)))
4652 max_width = MIN2(max_width, 16);
4653
4654 /* From the IVB PRMs (applies to other devices that don't have the
4655 * intel_device_info::supports_simd16_3src flag set):
4656 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
4657 * SIMD8 is not allowed for DF operations."
4658 */
4659 if (inst->is_3src(compiler) && !devinfo->supports_simd16_3src)
4660 max_width = MIN2(max_width, inst->exec_size / reg_count);
4661
4662 /* Pre-Gfx8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
4663 * the 8-bit quarter of the execution mask signals specified in the
4664 * instruction control fields) for the second compressed half of any
4665 * single-precision instruction (for double-precision instructions
4666 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
4667 * the EU will apply the wrong execution controls for the second
4668 * sequential GRF write if the number of channels per GRF is not exactly
4669 * eight in single-precision mode (or four in double-float mode).
4670 *
4671 * In this situation we calculate the maximum size of the split
4672 * instructions so they only ever write to a single register.
4673 */
4674 if (devinfo->ver < 8 && inst->size_written > REG_SIZE &&
4675 !inst->force_writemask_all) {
4676 const unsigned channels_per_grf = inst->exec_size /
4677 DIV_ROUND_UP(inst->size_written, REG_SIZE);
4678 const unsigned exec_type_size = get_exec_type_size(inst);
4679 assert(exec_type_size);
4680
4681 /* The hardware shifts exactly 8 channels per compressed half of the
4682 * instruction in single-precision mode and exactly 4 in double-precision.
4683 */
4684 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
4685 max_width = MIN2(max_width, channels_per_grf);
4686
4687 /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT
4688 * because HW applies the same channel enable signals to both halves of
4689 * the compressed instruction which will be just wrong under
4690 * non-uniform control flow.
4691 */
4692 if (devinfo->verx10 == 70 &&
4693 (exec_type_size == 8 || type_sz(inst->dst.type) == 8))
4694 max_width = MIN2(max_width, 4);
4695 }
4696
4697 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
4698 * Float Operations:
4699 *
4700 * "No SIMD16 in mixed mode when destination is f32. Instruction
4701 * execution size must be no more than 8."
4702 *
4703 * FIXME: the simulator doesn't seem to complain if we don't do this and
4704 * empirical testing with existing CTS tests show that they pass just fine
4705 * without implementing this, however, since our interpretation of the PRM
4706 * is that conversion MOVs between HF and F are still mixed-float
4707 * instructions (and therefore subject to this restriction) we decided to
4708 * split them to be safe. Might be useful to do additional investigation to
4709 * lift the restriction if we can ensure that it is safe though, since these
4710 * conversions are common when half-float types are involved since many
4711 * instructions do not support HF types and conversions from/to F are
4712 * required.
4713 */
4714 if (is_mixed_float_with_fp32_dst(inst))
4715 max_width = MIN2(max_width, 8);
4716
4717 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
4718 * Float Operations:
4719 *
4720 * "No SIMD16 in mixed mode when destination is packed f16 for both
4721 * Align1 and Align16."
4722 */
4723 if (is_mixed_float_with_packed_fp16_dst(inst))
4724 max_width = MIN2(max_width, 8);
4725
4726 /* Only power-of-two execution sizes are representable in the instruction
4727 * control fields.
4728 */
4729 return 1 << util_logbase2(max_width);
4730 }
4731
4732 /**
4733 * Get the maximum allowed SIMD width for instruction \p inst accounting for
4734 * various payload size restrictions that apply to sampler message
4735 * instructions.
4736 *
4737 * This is only intended to provide a maximum theoretical bound for the
4738 * execution size of the message based on the number of argument components
4739 * alone, which in most cases will determine whether the SIMD8 or SIMD16
4740 * variant of the message can be used, though some messages may have
4741 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
4742 * the message length to determine the exact SIMD width and argument count,
4743 * which makes a number of sampler message combinations impossible to
4744 * represent).
4745 */
4746 static unsigned
get_sampler_lowered_simd_width(const struct intel_device_info * devinfo,const fs_inst * inst)4747 get_sampler_lowered_simd_width(const struct intel_device_info *devinfo,
4748 const fs_inst *inst)
4749 {
4750 /* If we have a min_lod parameter on anything other than a simple sample
4751 * message, it will push it over 5 arguments and we have to fall back to
4752 * SIMD8.
4753 */
4754 if (inst->opcode != SHADER_OPCODE_TEX &&
4755 inst->components_read(TEX_LOGICAL_SRC_MIN_LOD))
4756 return 8;
4757
4758 /* Calculate the number of coordinate components that have to be present
4759 * assuming that additional arguments follow the texel coordinates in the
4760 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
4761 * need to pad to four or three components depending on the message,
4762 * pre-ILK we need to pad to at most three components.
4763 */
4764 const unsigned req_coord_components =
4765 (devinfo->ver >= 7 ||
4766 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
4767 (devinfo->ver >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
4768 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
4769 3;
4770
4771 /* On Gfx9+ the LOD argument is for free if we're able to use the LZ
4772 * variant of the TXL or TXF message.
4773 */
4774 const bool implicit_lod = devinfo->ver >= 9 &&
4775 (inst->opcode == SHADER_OPCODE_TXL ||
4776 inst->opcode == SHADER_OPCODE_TXF) &&
4777 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
4778
4779 /* Calculate the total number of argument components that need to be passed
4780 * to the sampler unit.
4781 */
4782 const unsigned num_payload_components =
4783 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
4784 req_coord_components) +
4785 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
4786 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
4787 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
4788 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
4789 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
4790 inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
4791 inst->components_read(TEX_LOGICAL_SRC_MCS);
4792
4793 /* SIMD16 messages with more than five arguments exceed the maximum message
4794 * size supported by the sampler, regardless of whether a header is
4795 * provided or not.
4796 */
4797 return MIN2(inst->exec_size,
4798 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
4799 }
4800
4801 /**
4802 * Get the closest native SIMD width supported by the hardware for instruction
4803 * \p inst. The instruction will be left untouched by
4804 * fs_visitor::lower_simd_width() if the returned value is equal to the
4805 * original execution size.
4806 */
4807 static unsigned
get_lowered_simd_width(const struct brw_compiler * compiler,const fs_inst * inst)4808 get_lowered_simd_width(const struct brw_compiler *compiler,
4809 const fs_inst *inst)
4810 {
4811 const struct intel_device_info *devinfo = compiler->devinfo;
4812
4813 switch (inst->opcode) {
4814 case BRW_OPCODE_MOV:
4815 case BRW_OPCODE_SEL:
4816 case BRW_OPCODE_NOT:
4817 case BRW_OPCODE_AND:
4818 case BRW_OPCODE_OR:
4819 case BRW_OPCODE_XOR:
4820 case BRW_OPCODE_SHR:
4821 case BRW_OPCODE_SHL:
4822 case BRW_OPCODE_ASR:
4823 case BRW_OPCODE_ROR:
4824 case BRW_OPCODE_ROL:
4825 case BRW_OPCODE_CMPN:
4826 case BRW_OPCODE_CSEL:
4827 case BRW_OPCODE_F32TO16:
4828 case BRW_OPCODE_F16TO32:
4829 case BRW_OPCODE_BFREV:
4830 case BRW_OPCODE_BFE:
4831 case BRW_OPCODE_ADD:
4832 case BRW_OPCODE_MUL:
4833 case BRW_OPCODE_AVG:
4834 case BRW_OPCODE_FRC:
4835 case BRW_OPCODE_RNDU:
4836 case BRW_OPCODE_RNDD:
4837 case BRW_OPCODE_RNDE:
4838 case BRW_OPCODE_RNDZ:
4839 case BRW_OPCODE_LZD:
4840 case BRW_OPCODE_FBH:
4841 case BRW_OPCODE_FBL:
4842 case BRW_OPCODE_CBIT:
4843 case BRW_OPCODE_SAD2:
4844 case BRW_OPCODE_MAD:
4845 case BRW_OPCODE_LRP:
4846 case BRW_OPCODE_ADD3:
4847 case FS_OPCODE_PACK:
4848 case SHADER_OPCODE_SEL_EXEC:
4849 case SHADER_OPCODE_CLUSTER_BROADCAST:
4850 case SHADER_OPCODE_MOV_RELOC_IMM:
4851 return get_fpu_lowered_simd_width(compiler, inst);
4852
4853 case BRW_OPCODE_CMP: {
4854 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
4855 * when the destination is a GRF the dependency-clear bit on the flag
4856 * register is cleared early.
4857 *
4858 * Suggested workarounds are to disable coissuing CMP instructions
4859 * or to split CMP(16) instructions into two CMP(8) instructions.
4860 *
4861 * We choose to split into CMP(8) instructions since disabling
4862 * coissuing would affect CMP instructions not otherwise affected by
4863 * the errata.
4864 */
4865 const unsigned max_width = (devinfo->verx10 == 70 &&
4866 !inst->dst.is_null() ? 8 : ~0);
4867 return MIN2(max_width, get_fpu_lowered_simd_width(compiler, inst));
4868 }
4869 case BRW_OPCODE_BFI1:
4870 case BRW_OPCODE_BFI2:
4871 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
4872 * should
4873 * "Force BFI instructions to be executed always in SIMD8."
4874 */
4875 return MIN2(devinfo->platform == INTEL_PLATFORM_HSW ? 8 : ~0u,
4876 get_fpu_lowered_simd_width(compiler, inst));
4877
4878 case BRW_OPCODE_IF:
4879 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
4880 return inst->exec_size;
4881
4882 case SHADER_OPCODE_RCP:
4883 case SHADER_OPCODE_RSQ:
4884 case SHADER_OPCODE_SQRT:
4885 case SHADER_OPCODE_EXP2:
4886 case SHADER_OPCODE_LOG2:
4887 case SHADER_OPCODE_SIN:
4888 case SHADER_OPCODE_COS: {
4889 /* Unary extended math instructions are limited to SIMD8 on Gfx4 and
4890 * Gfx6. Extended Math Function is limited to SIMD8 with half-float.
4891 */
4892 if (devinfo->ver == 6 || devinfo->verx10 == 40)
4893 return MIN2(8, inst->exec_size);
4894 if (inst->dst.type == BRW_REGISTER_TYPE_HF)
4895 return MIN2(8, inst->exec_size);
4896 return MIN2(16, inst->exec_size);
4897 }
4898
4899 case SHADER_OPCODE_POW: {
4900 /* SIMD16 is only allowed on Gfx7+. Extended Math Function is limited
4901 * to SIMD8 with half-float
4902 */
4903 if (devinfo->ver < 7)
4904 return MIN2(8, inst->exec_size);
4905 if (inst->dst.type == BRW_REGISTER_TYPE_HF)
4906 return MIN2(8, inst->exec_size);
4907 return MIN2(16, inst->exec_size);
4908 }
4909
4910 case SHADER_OPCODE_USUB_SAT:
4911 case SHADER_OPCODE_ISUB_SAT:
4912 return get_fpu_lowered_simd_width(compiler, inst);
4913
4914 case SHADER_OPCODE_INT_QUOTIENT:
4915 case SHADER_OPCODE_INT_REMAINDER:
4916 /* Integer division is limited to SIMD8 on all generations. */
4917 return MIN2(8, inst->exec_size);
4918
4919 case FS_OPCODE_LINTERP:
4920 case SHADER_OPCODE_GET_BUFFER_SIZE:
4921 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
4922 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
4923 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
4924 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
4925 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
4926 return MIN2(16, inst->exec_size);
4927
4928 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4929 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
4930 * message used to implement varying pull constant loads, so expand it
4931 * to SIMD16. An alternative with longer message payload length but
4932 * shorter return payload would be to use the SIMD8 sampler message that
4933 * takes (header, u, v, r) as parameters instead of (header, u).
4934 */
4935 return (devinfo->ver == 4 ? 16 : MIN2(16, inst->exec_size));
4936
4937 case FS_OPCODE_DDX_COARSE:
4938 case FS_OPCODE_DDX_FINE:
4939 case FS_OPCODE_DDY_COARSE:
4940 case FS_OPCODE_DDY_FINE:
4941 /* The implementation of this virtual opcode may require emitting
4942 * compressed Align16 instructions, which are severely limited on some
4943 * generations.
4944 *
4945 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
4946 * Region Restrictions):
4947 *
4948 * "In Align16 access mode, SIMD16 is not allowed for DW operations
4949 * and SIMD8 is not allowed for DF operations."
4950 *
4951 * In this context, "DW operations" means "operations acting on 32-bit
4952 * values", so it includes operations on floats.
4953 *
4954 * Gfx4 has a similar restriction. From the i965 PRM, section 11.5.3
4955 * (Instruction Compression -> Rules and Restrictions):
4956 *
4957 * "A compressed instruction must be in Align1 access mode. Align16
4958 * mode instructions cannot be compressed."
4959 *
4960 * Similar text exists in the g45 PRM.
4961 *
4962 * Empirically, compressed align16 instructions using odd register
4963 * numbers don't appear to work on Sandybridge either.
4964 */
4965 return (devinfo->ver == 4 || devinfo->ver == 6 ||
4966 (devinfo->verx10 == 70) ?
4967 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
4968
4969 case SHADER_OPCODE_MULH:
4970 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4971 * is 8-wide on Gfx7+.
4972 */
4973 return (devinfo->ver >= 7 ? 8 :
4974 get_fpu_lowered_simd_width(compiler, inst));
4975
4976 case FS_OPCODE_FB_WRITE_LOGICAL:
4977 /* Gfx6 doesn't support SIMD16 depth writes but we cannot handle them
4978 * here.
4979 */
4980 assert(devinfo->ver != 6 ||
4981 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4982 inst->exec_size == 8);
4983 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4984 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4985 8 : MIN2(16, inst->exec_size));
4986
4987 case FS_OPCODE_FB_READ_LOGICAL:
4988 return MIN2(16, inst->exec_size);
4989
4990 case SHADER_OPCODE_TEX_LOGICAL:
4991 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4992 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4993 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4994 case SHADER_OPCODE_LOD_LOGICAL:
4995 case SHADER_OPCODE_TG4_LOGICAL:
4996 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4997 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4998 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4999 return get_sampler_lowered_simd_width(devinfo, inst);
5000
5001 /* On gfx12 parameters are fixed to 16-bit values and therefore they all
5002 * always fit regardless of the execution size.
5003 */
5004 case SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL:
5005 return MIN2(16, inst->exec_size);
5006
5007 case SHADER_OPCODE_TXD_LOGICAL:
5008 /* TXD is unsupported in SIMD16 mode. */
5009 return 8;
5010
5011 case SHADER_OPCODE_TXL_LOGICAL:
5012 case FS_OPCODE_TXB_LOGICAL:
5013 /* Only one execution size is representable pre-ILK depending on whether
5014 * the shadow reference argument is present.
5015 */
5016 if (devinfo->ver == 4)
5017 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
5018 else
5019 return get_sampler_lowered_simd_width(devinfo, inst);
5020
5021 case SHADER_OPCODE_TXF_LOGICAL:
5022 case SHADER_OPCODE_TXS_LOGICAL:
5023 /* Gfx4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
5024 * messages. Use SIMD16 instead.
5025 */
5026 if (devinfo->ver == 4)
5027 return 16;
5028 else
5029 return get_sampler_lowered_simd_width(devinfo, inst);
5030
5031 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5032 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5033 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5034 return 8;
5035
5036 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5037 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5038 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5039 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5040 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5041 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5042 case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
5043 case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
5044 return MIN2(16, inst->exec_size);
5045
5046 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
5047 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
5048 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
5049 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
5050 return devinfo->ver <= 8 ? 8 : MIN2(16, inst->exec_size);
5051
5052 case SHADER_OPCODE_A64_OWORD_BLOCK_READ_LOGICAL:
5053 case SHADER_OPCODE_A64_UNALIGNED_OWORD_BLOCK_READ_LOGICAL:
5054 case SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL:
5055 assert(inst->exec_size <= 16);
5056 return inst->exec_size;
5057
5058 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
5059 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT16_LOGICAL:
5060 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
5061 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT16_LOGICAL:
5062 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT32_LOGICAL:
5063 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT64_LOGICAL:
5064 return 8;
5065
5066 case SHADER_OPCODE_URB_READ_LOGICAL:
5067 case SHADER_OPCODE_URB_WRITE_LOGICAL:
5068 return MIN2(8, inst->exec_size);
5069
5070 case SHADER_OPCODE_QUAD_SWIZZLE: {
5071 const unsigned swiz = inst->src[1].ud;
5072 return (is_uniform(inst->src[0]) ?
5073 get_fpu_lowered_simd_width(compiler, inst) :
5074 devinfo->ver < 11 && type_sz(inst->src[0].type) == 4 ? 8 :
5075 swiz == BRW_SWIZZLE_XYXY || swiz == BRW_SWIZZLE_ZWZW ? 4 :
5076 get_fpu_lowered_simd_width(compiler, inst));
5077 }
5078 case SHADER_OPCODE_MOV_INDIRECT: {
5079 /* From IVB and HSW PRMs:
5080 *
5081 * "2.When the destination requires two registers and the sources are
5082 * indirect, the sources must use 1x1 regioning mode.
5083 *
5084 * In case of DF instructions in HSW/IVB, the exec_size is limited by
5085 * the EU decompression logic not handling VxH indirect addressing
5086 * correctly.
5087 */
5088 const unsigned max_size = (devinfo->ver >= 8 ? 2 : 1) * REG_SIZE;
5089 /* Prior to Broadwell, we only have 8 address subregisters. */
5090 return MIN3(devinfo->ver >= 8 ? 16 : 8,
5091 max_size / (inst->dst.stride * type_sz(inst->dst.type)),
5092 inst->exec_size);
5093 }
5094
5095 case SHADER_OPCODE_LOAD_PAYLOAD: {
5096 const unsigned reg_count =
5097 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
5098
5099 if (reg_count > 2) {
5100 /* Only LOAD_PAYLOAD instructions with per-channel destination region
5101 * can be easily lowered (which excludes headers and heterogeneous
5102 * types).
5103 */
5104 assert(!inst->header_size);
5105 for (unsigned i = 0; i < inst->sources; i++)
5106 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
5107 inst->src[i].file == BAD_FILE);
5108
5109 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
5110 } else {
5111 return inst->exec_size;
5112 }
5113 }
5114 default:
5115 return inst->exec_size;
5116 }
5117 }
5118
5119 /**
5120 * Return true if splitting out the group of channels of instruction \p inst
5121 * given by lbld.group() requires allocating a temporary for the i-th source
5122 * of the lowered instruction.
5123 */
5124 static inline bool
needs_src_copy(const fs_builder & lbld,const fs_inst * inst,unsigned i)5125 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
5126 {
5127 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
5128 (inst->components_read(i) == 1 &&
5129 lbld.dispatch_width() <= inst->exec_size)) ||
5130 (inst->flags_written(lbld.shader->devinfo) &
5131 flag_mask(inst->src[i], type_sz(inst->src[i].type)));
5132 }
5133
5134 /**
5135 * Extract the data that would be consumed by the channel group given by
5136 * lbld.group() from the i-th source region of instruction \p inst and return
5137 * it as result in packed form.
5138 */
5139 static fs_reg
emit_unzip(const fs_builder & lbld,fs_inst * inst,unsigned i)5140 emit_unzip(const fs_builder &lbld, fs_inst *inst, unsigned i)
5141 {
5142 assert(lbld.group() >= inst->group);
5143
5144 /* Specified channel group from the source region. */
5145 const fs_reg src = horiz_offset(inst->src[i], lbld.group() - inst->group);
5146
5147 if (needs_src_copy(lbld, inst, i)) {
5148 /* Builder of the right width to perform the copy avoiding uninitialized
5149 * data if the lowered execution size is greater than the original
5150 * execution size of the instruction.
5151 */
5152 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5153 inst->exec_size), 0);
5154 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
5155
5156 for (unsigned k = 0; k < inst->components_read(i); ++k)
5157 cbld.MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
5158
5159 return tmp;
5160
5161 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
5162 /* The source is invariant for all dispatch_width-wide groups of the
5163 * original region.
5164 */
5165 return inst->src[i];
5166
5167 } else {
5168 /* We can just point the lowered instruction at the right channel group
5169 * from the original region.
5170 */
5171 return src;
5172 }
5173 }
5174
5175 /**
5176 * Return true if splitting out the group of channels of instruction \p inst
5177 * given by lbld.group() requires allocating a temporary for the destination
5178 * of the lowered instruction and copying the data back to the original
5179 * destination region.
5180 */
5181 static inline bool
needs_dst_copy(const fs_builder & lbld,const fs_inst * inst)5182 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
5183 {
5184 /* If the instruction writes more than one component we'll have to shuffle
5185 * the results of multiple lowered instructions in order to make sure that
5186 * they end up arranged correctly in the original destination region.
5187 */
5188 if (inst->size_written > inst->dst.component_size(inst->exec_size))
5189 return true;
5190
5191 /* If the lowered execution size is larger than the original the result of
5192 * the instruction won't fit in the original destination, so we'll have to
5193 * allocate a temporary in any case.
5194 */
5195 if (lbld.dispatch_width() > inst->exec_size)
5196 return true;
5197
5198 for (unsigned i = 0; i < inst->sources; i++) {
5199 /* If we already made a copy of the source for other reasons there won't
5200 * be any overlap with the destination.
5201 */
5202 if (needs_src_copy(lbld, inst, i))
5203 continue;
5204
5205 /* In order to keep the logic simple we emit a copy whenever the
5206 * destination region doesn't exactly match an overlapping source, which
5207 * may point at the source and destination not being aligned group by
5208 * group which could cause one of the lowered instructions to overwrite
5209 * the data read from the same source by other lowered instructions.
5210 */
5211 if (regions_overlap(inst->dst, inst->size_written,
5212 inst->src[i], inst->size_read(i)) &&
5213 !inst->dst.equals(inst->src[i]))
5214 return true;
5215 }
5216
5217 return false;
5218 }
5219
5220 /**
5221 * Insert data from a packed temporary into the channel group given by
5222 * lbld.group() of the destination region of instruction \p inst and return
5223 * the temporary as result. Any copy instructions that are required for
5224 * unzipping the previous value (in the case of partial writes) will be
5225 * inserted using \p lbld_before and any copy instructions required for
5226 * zipping up the destination of \p inst will be inserted using \p lbld_after.
5227 */
5228 static fs_reg
emit_zip(const fs_builder & lbld_before,const fs_builder & lbld_after,fs_inst * inst)5229 emit_zip(const fs_builder &lbld_before, const fs_builder &lbld_after,
5230 fs_inst *inst)
5231 {
5232 assert(lbld_before.dispatch_width() == lbld_after.dispatch_width());
5233 assert(lbld_before.group() == lbld_after.group());
5234 assert(lbld_after.group() >= inst->group);
5235
5236 /* Specified channel group from the destination region. */
5237 const fs_reg dst = horiz_offset(inst->dst, lbld_after.group() - inst->group);
5238 const unsigned dst_size = inst->size_written /
5239 inst->dst.component_size(inst->exec_size);
5240
5241 if (needs_dst_copy(lbld_after, inst)) {
5242 const fs_reg tmp = lbld_after.vgrf(inst->dst.type, dst_size);
5243
5244 if (inst->predicate) {
5245 /* Handle predication by copying the original contents of
5246 * the destination into the temporary before emitting the
5247 * lowered instruction.
5248 */
5249 const fs_builder gbld_before =
5250 lbld_before.group(MIN2(lbld_before.dispatch_width(),
5251 inst->exec_size), 0);
5252 for (unsigned k = 0; k < dst_size; ++k) {
5253 gbld_before.MOV(offset(tmp, lbld_before, k),
5254 offset(dst, inst->exec_size, k));
5255 }
5256 }
5257
5258 const fs_builder gbld_after =
5259 lbld_after.group(MIN2(lbld_after.dispatch_width(),
5260 inst->exec_size), 0);
5261 for (unsigned k = 0; k < dst_size; ++k) {
5262 /* Use a builder of the right width to perform the copy avoiding
5263 * uninitialized data if the lowered execution size is greater than
5264 * the original execution size of the instruction.
5265 */
5266 gbld_after.MOV(offset(dst, inst->exec_size, k),
5267 offset(tmp, lbld_after, k));
5268 }
5269
5270 return tmp;
5271
5272 } else {
5273 /* No need to allocate a temporary for the lowered instruction, just
5274 * take the right group of channels from the original region.
5275 */
5276 return dst;
5277 }
5278 }
5279
5280 bool
lower_simd_width()5281 fs_visitor::lower_simd_width()
5282 {
5283 bool progress = false;
5284
5285 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5286 const unsigned lower_width = get_lowered_simd_width(compiler, inst);
5287
5288 if (lower_width != inst->exec_size) {
5289 /* Builder matching the original instruction. We may also need to
5290 * emit an instruction of width larger than the original, set the
5291 * execution size of the builder to the highest of both for now so
5292 * we're sure that both cases can be handled.
5293 */
5294 const unsigned max_width = MAX2(inst->exec_size, lower_width);
5295 const fs_builder ibld = bld.at(block, inst)
5296 .exec_all(inst->force_writemask_all)
5297 .group(max_width, inst->group / max_width);
5298
5299 /* Split the copies in chunks of the execution width of either the
5300 * original or the lowered instruction, whichever is lower.
5301 */
5302 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
5303 const unsigned dst_size = inst->size_written /
5304 inst->dst.component_size(inst->exec_size);
5305
5306 assert(!inst->writes_accumulator && !inst->mlen);
5307
5308 /* Inserting the zip, unzip, and duplicated instructions in all of
5309 * the right spots is somewhat tricky. All of the unzip and any
5310 * instructions from the zip which unzip the destination prior to
5311 * writing need to happen before all of the per-group instructions
5312 * and the zip instructions need to happen after. In order to sort
5313 * this all out, we insert the unzip instructions before \p inst,
5314 * insert the per-group instructions after \p inst (i.e. before
5315 * inst->next), and insert the zip instructions before the
5316 * instruction after \p inst. Since we are inserting instructions
5317 * after \p inst, inst->next is a moving target and we need to save
5318 * it off here so that we insert the zip instructions in the right
5319 * place.
5320 *
5321 * Since we're inserting split instructions after after_inst, the
5322 * instructions will end up in the reverse order that we insert them.
5323 * However, certain render target writes require that the low group
5324 * instructions come before the high group. From the Ivy Bridge PRM
5325 * Vol. 4, Pt. 1, Section 3.9.11:
5326 *
5327 * "If multiple SIMD8 Dual Source messages are delivered by the
5328 * pixel shader thread, each SIMD8_DUALSRC_LO message must be
5329 * issued before the SIMD8_DUALSRC_HI message with the same Slot
5330 * Group Select setting."
5331 *
5332 * And, from Section 3.9.11.1 of the same PRM:
5333 *
5334 * "When SIMD32 or SIMD16 PS threads send render target writes
5335 * with multiple SIMD8 and SIMD16 messages, the following must
5336 * hold:
5337 *
5338 * All the slots (as described above) must have a corresponding
5339 * render target write irrespective of the slot's validity. A slot
5340 * is considered valid when at least one sample is enabled. For
5341 * example, a SIMD16 PS thread must send two SIMD8 render target
5342 * writes to cover all the slots.
5343 *
5344 * PS thread must send SIMD render target write messages with
5345 * increasing slot numbers. For example, SIMD16 thread has
5346 * Slot[15:0] and if two SIMD8 render target writes are used, the
5347 * first SIMD8 render target write must send Slot[7:0] and the
5348 * next one must send Slot[15:8]."
5349 *
5350 * In order to make low group instructions come before high group
5351 * instructions (this is required for some render target writes), we
5352 * split from the highest group to lowest.
5353 */
5354 exec_node *const after_inst = inst->next;
5355 for (int i = n - 1; i >= 0; i--) {
5356 /* Emit a copy of the original instruction with the lowered width.
5357 * If the EOT flag was set throw it away except for the last
5358 * instruction to avoid killing the thread prematurely.
5359 */
5360 fs_inst split_inst = *inst;
5361 split_inst.exec_size = lower_width;
5362 split_inst.eot = inst->eot && i == int(n - 1);
5363
5364 /* Select the correct channel enables for the i-th group, then
5365 * transform the sources and destination and emit the lowered
5366 * instruction.
5367 */
5368 const fs_builder lbld = ibld.group(lower_width, i);
5369
5370 for (unsigned j = 0; j < inst->sources; j++)
5371 split_inst.src[j] = emit_unzip(lbld.at(block, inst), inst, j);
5372
5373 split_inst.dst = emit_zip(lbld.at(block, inst),
5374 lbld.at(block, after_inst), inst);
5375 split_inst.size_written =
5376 split_inst.dst.component_size(lower_width) * dst_size;
5377
5378 lbld.at(block, inst->next).emit(split_inst);
5379 }
5380
5381 inst->remove(block);
5382 progress = true;
5383 }
5384 }
5385
5386 if (progress)
5387 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
5388
5389 return progress;
5390 }
5391
5392 /**
5393 * Transform barycentric vectors into the interleaved form expected by the PLN
5394 * instruction and returned by the Gfx7+ PI shared function.
5395 *
5396 * For channels 0-15 in SIMD16 mode they are expected to be laid out as
5397 * follows in the register file:
5398 *
5399 * rN+0: X[0-7]
5400 * rN+1: Y[0-7]
5401 * rN+2: X[8-15]
5402 * rN+3: Y[8-15]
5403 *
5404 * There is no need to handle SIMD32 here -- This is expected to be run after
5405 * SIMD lowering, since SIMD lowering relies on vectors having the standard
5406 * component layout.
5407 */
5408 bool
lower_barycentrics()5409 fs_visitor::lower_barycentrics()
5410 {
5411 const bool has_interleaved_layout = devinfo->has_pln || devinfo->ver >= 7;
5412 bool progress = false;
5413
5414 if (stage != MESA_SHADER_FRAGMENT || !has_interleaved_layout)
5415 return false;
5416
5417 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5418 if (inst->exec_size < 16)
5419 continue;
5420
5421 const fs_builder ibld(this, block, inst);
5422 const fs_builder ubld = ibld.exec_all().group(8, 0);
5423
5424 switch (inst->opcode) {
5425 case FS_OPCODE_LINTERP : {
5426 assert(inst->exec_size == 16);
5427 const fs_reg tmp = ibld.vgrf(inst->src[0].type, 2);
5428 fs_reg srcs[4];
5429
5430 for (unsigned i = 0; i < ARRAY_SIZE(srcs); i++)
5431 srcs[i] = horiz_offset(offset(inst->src[0], ibld, i % 2),
5432 8 * (i / 2));
5433
5434 ubld.LOAD_PAYLOAD(tmp, srcs, ARRAY_SIZE(srcs), ARRAY_SIZE(srcs));
5435
5436 inst->src[0] = tmp;
5437 progress = true;
5438 break;
5439 }
5440 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
5441 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
5442 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: {
5443 assert(inst->exec_size == 16);
5444 const fs_reg tmp = ibld.vgrf(inst->dst.type, 2);
5445
5446 for (unsigned i = 0; i < 2; i++) {
5447 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
5448 fs_inst *mov = ibld.at(block, inst->next).group(8, g)
5449 .MOV(horiz_offset(offset(inst->dst, ibld, i),
5450 8 * g),
5451 offset(tmp, ubld, 2 * g + i));
5452 mov->predicate = inst->predicate;
5453 mov->predicate_inverse = inst->predicate_inverse;
5454 mov->flag_subreg = inst->flag_subreg;
5455 }
5456 }
5457
5458 inst->dst = tmp;
5459 progress = true;
5460 break;
5461 }
5462 default:
5463 break;
5464 }
5465 }
5466
5467 if (progress)
5468 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
5469
5470 return progress;
5471 }
5472
5473 /**
5474 * Lower a derivative instruction as the floating-point difference of two
5475 * swizzles of the source, specified as \p swz0 and \p swz1.
5476 */
5477 static bool
lower_derivative(fs_visitor * v,bblock_t * block,fs_inst * inst,unsigned swz0,unsigned swz1)5478 lower_derivative(fs_visitor *v, bblock_t *block, fs_inst *inst,
5479 unsigned swz0, unsigned swz1)
5480 {
5481 const fs_builder ibld(v, block, inst);
5482 const fs_reg tmp0 = ibld.vgrf(inst->src[0].type);
5483 const fs_reg tmp1 = ibld.vgrf(inst->src[0].type);
5484
5485 ibld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp0, inst->src[0], brw_imm_ud(swz0));
5486 ibld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp1, inst->src[0], brw_imm_ud(swz1));
5487
5488 inst->resize_sources(2);
5489 inst->src[0] = negate(tmp0);
5490 inst->src[1] = tmp1;
5491 inst->opcode = BRW_OPCODE_ADD;
5492
5493 return true;
5494 }
5495
5496 /**
5497 * Lower derivative instructions on platforms where codegen cannot implement
5498 * them efficiently (i.e. XeHP).
5499 */
5500 bool
lower_derivatives()5501 fs_visitor::lower_derivatives()
5502 {
5503 bool progress = false;
5504
5505 if (devinfo->verx10 < 125)
5506 return false;
5507
5508 foreach_block_and_inst(block, fs_inst, inst, cfg) {
5509 if (inst->opcode == FS_OPCODE_DDX_COARSE)
5510 progress |= lower_derivative(this, block, inst,
5511 BRW_SWIZZLE_XXXX, BRW_SWIZZLE_YYYY);
5512
5513 else if (inst->opcode == FS_OPCODE_DDX_FINE)
5514 progress |= lower_derivative(this, block, inst,
5515 BRW_SWIZZLE_XXZZ, BRW_SWIZZLE_YYWW);
5516
5517 else if (inst->opcode == FS_OPCODE_DDY_COARSE)
5518 progress |= lower_derivative(this, block, inst,
5519 BRW_SWIZZLE_XXXX, BRW_SWIZZLE_ZZZZ);
5520
5521 else if (inst->opcode == FS_OPCODE_DDY_FINE)
5522 progress |= lower_derivative(this, block, inst,
5523 BRW_SWIZZLE_XYXY, BRW_SWIZZLE_ZWZW);
5524 }
5525
5526 if (progress)
5527 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
5528
5529 return progress;
5530 }
5531
5532 bool
lower_find_live_channel()5533 fs_visitor::lower_find_live_channel()
5534 {
5535 bool progress = false;
5536
5537 if (devinfo->ver < 8)
5538 return false;
5539
5540 bool packed_dispatch =
5541 brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data);
5542 bool vmask =
5543 stage == MESA_SHADER_FRAGMENT &&
5544 brw_wm_prog_data(stage_prog_data)->uses_vmask;
5545
5546 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5547 if (inst->opcode != SHADER_OPCODE_FIND_LIVE_CHANNEL &&
5548 inst->opcode != SHADER_OPCODE_FIND_LAST_LIVE_CHANNEL)
5549 continue;
5550
5551 bool first = inst->opcode == SHADER_OPCODE_FIND_LIVE_CHANNEL;
5552
5553 /* Getting the first active channel index is easy on Gfx8: Just find
5554 * the first bit set in the execution mask. The register exists on
5555 * HSW already but it reads back as all ones when the current
5556 * instruction has execution masking disabled, so it's kind of
5557 * useless there.
5558 */
5559 fs_reg exec_mask(retype(brw_mask_reg(0), BRW_REGISTER_TYPE_UD));
5560
5561 const fs_builder ubld = bld.at(block, inst).exec_all().group(1, 0);
5562
5563 /* ce0 doesn't consider the thread dispatch mask (DMask or VMask),
5564 * so combine the execution and dispatch masks to obtain the true mask.
5565 *
5566 * If we're looking for the first live channel, and we have packed
5567 * dispatch, we can skip this step, as we know all dispatched channels
5568 * will appear at the front of the mask.
5569 */
5570 if (!(first && packed_dispatch)) {
5571 fs_reg mask = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5572 ubld.emit(SHADER_OPCODE_READ_SR_REG, mask, brw_imm_ud(vmask ? 3 : 2));
5573
5574 /* Quarter control has the effect of magically shifting the value of
5575 * ce0 so you'll get the first/last active channel relative to the
5576 * specified quarter control as result.
5577 */
5578 if (inst->group > 0)
5579 ubld.SHR(mask, mask, brw_imm_ud(ALIGN(inst->group, 8)));
5580
5581 ubld.AND(mask, exec_mask, mask);
5582 exec_mask = mask;
5583 }
5584
5585 if (first) {
5586 ubld.FBL(inst->dst, exec_mask);
5587 } else {
5588 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 1);
5589 ubld.LZD(tmp, exec_mask);
5590 ubld.ADD(inst->dst, negate(tmp), brw_imm_uw(31));
5591 }
5592
5593 inst->remove(block);
5594 progress = true;
5595 }
5596
5597 if (progress)
5598 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
5599
5600 return progress;
5601 }
5602
5603 void
dump_instructions() const5604 fs_visitor::dump_instructions() const
5605 {
5606 dump_instructions(NULL);
5607 }
5608
5609 void
dump_instructions(const char * name) const5610 fs_visitor::dump_instructions(const char *name) const
5611 {
5612 FILE *file = stderr;
5613 if (name && geteuid() != 0) {
5614 file = fopen(name, "w");
5615 if (!file)
5616 file = stderr;
5617 }
5618
5619 if (cfg) {
5620 const register_pressure &rp = regpressure_analysis.require();
5621 unsigned ip = 0, max_pressure = 0;
5622 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
5623 max_pressure = MAX2(max_pressure, rp.regs_live_at_ip[ip]);
5624 fprintf(file, "{%3d} %4d: ", rp.regs_live_at_ip[ip], ip);
5625 dump_instruction(inst, file);
5626 ip++;
5627 }
5628 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
5629 } else {
5630 int ip = 0;
5631 foreach_in_list(backend_instruction, inst, &instructions) {
5632 fprintf(file, "%4d: ", ip++);
5633 dump_instruction(inst, file);
5634 }
5635 }
5636
5637 if (file != stderr) {
5638 fclose(file);
5639 }
5640 }
5641
5642 void
dump_instruction(const backend_instruction * be_inst) const5643 fs_visitor::dump_instruction(const backend_instruction *be_inst) const
5644 {
5645 dump_instruction(be_inst, stderr);
5646 }
5647
5648 void
dump_instruction(const backend_instruction * be_inst,FILE * file) const5649 fs_visitor::dump_instruction(const backend_instruction *be_inst, FILE *file) const
5650 {
5651 const fs_inst *inst = (const fs_inst *)be_inst;
5652
5653 if (inst->predicate) {
5654 fprintf(file, "(%cf%d.%d) ",
5655 inst->predicate_inverse ? '-' : '+',
5656 inst->flag_subreg / 2,
5657 inst->flag_subreg % 2);
5658 }
5659
5660 fprintf(file, "%s", brw_instruction_name(&compiler->isa, inst->opcode));
5661 if (inst->saturate)
5662 fprintf(file, ".sat");
5663 if (inst->conditional_mod) {
5664 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
5665 if (!inst->predicate &&
5666 (devinfo->ver < 5 || (inst->opcode != BRW_OPCODE_SEL &&
5667 inst->opcode != BRW_OPCODE_CSEL &&
5668 inst->opcode != BRW_OPCODE_IF &&
5669 inst->opcode != BRW_OPCODE_WHILE))) {
5670 fprintf(file, ".f%d.%d", inst->flag_subreg / 2,
5671 inst->flag_subreg % 2);
5672 }
5673 }
5674 fprintf(file, "(%d) ", inst->exec_size);
5675
5676 if (inst->mlen) {
5677 fprintf(file, "(mlen: %d) ", inst->mlen);
5678 }
5679
5680 if (inst->ex_mlen) {
5681 fprintf(file, "(ex_mlen: %d) ", inst->ex_mlen);
5682 }
5683
5684 if (inst->eot) {
5685 fprintf(file, "(EOT) ");
5686 }
5687
5688 switch (inst->dst.file) {
5689 case VGRF:
5690 fprintf(file, "vgrf%d", inst->dst.nr);
5691 break;
5692 case FIXED_GRF:
5693 fprintf(file, "g%d", inst->dst.nr);
5694 break;
5695 case MRF:
5696 fprintf(file, "m%d", inst->dst.nr);
5697 break;
5698 case BAD_FILE:
5699 fprintf(file, "(null)");
5700 break;
5701 case UNIFORM:
5702 fprintf(file, "***u%d***", inst->dst.nr);
5703 break;
5704 case ATTR:
5705 fprintf(file, "***attr%d***", inst->dst.nr);
5706 break;
5707 case ARF:
5708 switch (inst->dst.nr) {
5709 case BRW_ARF_NULL:
5710 fprintf(file, "null");
5711 break;
5712 case BRW_ARF_ADDRESS:
5713 fprintf(file, "a0.%d", inst->dst.subnr);
5714 break;
5715 case BRW_ARF_ACCUMULATOR:
5716 fprintf(file, "acc%d", inst->dst.subnr);
5717 break;
5718 case BRW_ARF_FLAG:
5719 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5720 break;
5721 default:
5722 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5723 break;
5724 }
5725 break;
5726 case IMM:
5727 unreachable("not reached");
5728 }
5729
5730 if (inst->dst.offset ||
5731 (inst->dst.file == VGRF &&
5732 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
5733 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
5734 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
5735 inst->dst.offset % reg_size);
5736 }
5737
5738 if (inst->dst.stride != 1)
5739 fprintf(file, "<%u>", inst->dst.stride);
5740 fprintf(file, ":%s, ", brw_reg_type_to_letters(inst->dst.type));
5741
5742 for (int i = 0; i < inst->sources; i++) {
5743 if (inst->src[i].negate)
5744 fprintf(file, "-");
5745 if (inst->src[i].abs)
5746 fprintf(file, "|");
5747 switch (inst->src[i].file) {
5748 case VGRF:
5749 fprintf(file, "vgrf%d", inst->src[i].nr);
5750 break;
5751 case FIXED_GRF:
5752 fprintf(file, "g%d", inst->src[i].nr);
5753 break;
5754 case MRF:
5755 fprintf(file, "***m%d***", inst->src[i].nr);
5756 break;
5757 case ATTR:
5758 fprintf(file, "attr%d", inst->src[i].nr);
5759 break;
5760 case UNIFORM:
5761 fprintf(file, "u%d", inst->src[i].nr);
5762 break;
5763 case BAD_FILE:
5764 fprintf(file, "(null)");
5765 break;
5766 case IMM:
5767 switch (inst->src[i].type) {
5768 case BRW_REGISTER_TYPE_HF:
5769 fprintf(file, "%-ghf", _mesa_half_to_float(inst->src[i].ud & 0xffff));
5770 break;
5771 case BRW_REGISTER_TYPE_F:
5772 fprintf(file, "%-gf", inst->src[i].f);
5773 break;
5774 case BRW_REGISTER_TYPE_DF:
5775 fprintf(file, "%fdf", inst->src[i].df);
5776 break;
5777 case BRW_REGISTER_TYPE_W:
5778 case BRW_REGISTER_TYPE_D:
5779 fprintf(file, "%dd", inst->src[i].d);
5780 break;
5781 case BRW_REGISTER_TYPE_UW:
5782 case BRW_REGISTER_TYPE_UD:
5783 fprintf(file, "%uu", inst->src[i].ud);
5784 break;
5785 case BRW_REGISTER_TYPE_Q:
5786 fprintf(file, "%" PRId64 "q", inst->src[i].d64);
5787 break;
5788 case BRW_REGISTER_TYPE_UQ:
5789 fprintf(file, "%" PRIu64 "uq", inst->src[i].u64);
5790 break;
5791 case BRW_REGISTER_TYPE_VF:
5792 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
5793 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
5794 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
5795 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
5796 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
5797 break;
5798 case BRW_REGISTER_TYPE_V:
5799 case BRW_REGISTER_TYPE_UV:
5800 fprintf(file, "%08x%s", inst->src[i].ud,
5801 inst->src[i].type == BRW_REGISTER_TYPE_V ? "V" : "UV");
5802 break;
5803 default:
5804 fprintf(file, "???");
5805 break;
5806 }
5807 break;
5808 case ARF:
5809 switch (inst->src[i].nr) {
5810 case BRW_ARF_NULL:
5811 fprintf(file, "null");
5812 break;
5813 case BRW_ARF_ADDRESS:
5814 fprintf(file, "a0.%d", inst->src[i].subnr);
5815 break;
5816 case BRW_ARF_ACCUMULATOR:
5817 fprintf(file, "acc%d", inst->src[i].subnr);
5818 break;
5819 case BRW_ARF_FLAG:
5820 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5821 break;
5822 default:
5823 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5824 break;
5825 }
5826 break;
5827 }
5828
5829 if (inst->src[i].offset ||
5830 (inst->src[i].file == VGRF &&
5831 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
5832 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
5833 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
5834 inst->src[i].offset % reg_size);
5835 }
5836
5837 if (inst->src[i].abs)
5838 fprintf(file, "|");
5839
5840 if (inst->src[i].file != IMM) {
5841 unsigned stride;
5842 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
5843 unsigned hstride = inst->src[i].hstride;
5844 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
5845 } else {
5846 stride = inst->src[i].stride;
5847 }
5848 if (stride != 1)
5849 fprintf(file, "<%u>", stride);
5850
5851 fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
5852 }
5853
5854 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
5855 fprintf(file, ", ");
5856 }
5857
5858 fprintf(file, " ");
5859
5860 if (inst->force_writemask_all)
5861 fprintf(file, "NoMask ");
5862
5863 if (inst->exec_size != dispatch_width)
5864 fprintf(file, "group%d ", inst->group);
5865
5866 fprintf(file, "\n");
5867 }
5868
5869 void
setup_fs_payload_gfx6()5870 fs_visitor::setup_fs_payload_gfx6()
5871 {
5872 assert(stage == MESA_SHADER_FRAGMENT);
5873 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
5874 const unsigned payload_width = MIN2(16, dispatch_width);
5875 assert(dispatch_width % payload_width == 0);
5876 assert(devinfo->ver >= 6);
5877
5878 /* R0: PS thread payload header. */
5879 payload.num_regs++;
5880
5881 for (unsigned j = 0; j < dispatch_width / payload_width; j++) {
5882 /* R1: masks, pixel X/Y coordinates. */
5883 payload.subspan_coord_reg[j] = payload.num_regs++;
5884 }
5885
5886 for (unsigned j = 0; j < dispatch_width / payload_width; j++) {
5887 /* R3-26: barycentric interpolation coordinates. These appear in the
5888 * same order that they appear in the brw_barycentric_mode enum. Each
5889 * set of coordinates occupies 2 registers if dispatch width == 8 and 4
5890 * registers if dispatch width == 16. Coordinates only appear if they
5891 * were enabled using the "Barycentric Interpolation Mode" bits in
5892 * WM_STATE.
5893 */
5894 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
5895 if (prog_data->barycentric_interp_modes & (1 << i)) {
5896 payload.barycentric_coord_reg[i][j] = payload.num_regs;
5897 payload.num_regs += payload_width / 4;
5898 }
5899 }
5900
5901 /* R27-28: interpolated depth if uses source depth */
5902 if (prog_data->uses_src_depth) {
5903 payload.source_depth_reg[j] = payload.num_regs;
5904 payload.num_regs += payload_width / 8;
5905 }
5906
5907 /* R29-30: interpolated W set if GFX6_WM_USES_SOURCE_W. */
5908 if (prog_data->uses_src_w) {
5909 payload.source_w_reg[j] = payload.num_regs;
5910 payload.num_regs += payload_width / 8;
5911 }
5912
5913 /* R31: MSAA position offsets. */
5914 if (prog_data->uses_pos_offset) {
5915 payload.sample_pos_reg[j] = payload.num_regs;
5916 payload.num_regs++;
5917 }
5918
5919 /* R32-33: MSAA input coverage mask */
5920 if (prog_data->uses_sample_mask) {
5921 assert(devinfo->ver >= 7);
5922 payload.sample_mask_in_reg[j] = payload.num_regs;
5923 payload.num_regs += payload_width / 8;
5924 }
5925
5926 /* R66: Source Depth and/or W Attribute Vertex Deltas */
5927 if (prog_data->uses_depth_w_coefficients) {
5928 payload.depth_w_coef_reg[j] = payload.num_regs;
5929 payload.num_regs++;
5930 }
5931 }
5932
5933 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5934 source_depth_to_render_target = true;
5935 }
5936 }
5937
5938 void
setup_vs_payload()5939 fs_visitor::setup_vs_payload()
5940 {
5941 /* R0: thread header, R1: urb handles */
5942 payload.num_regs = 2;
5943 }
5944
5945 void
setup_gs_payload()5946 fs_visitor::setup_gs_payload()
5947 {
5948 assert(stage == MESA_SHADER_GEOMETRY);
5949
5950 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
5951 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
5952
5953 /* R0: thread header, R1: output URB handles */
5954 payload.num_regs = 2;
5955
5956 if (gs_prog_data->include_primitive_id) {
5957 /* R2: Primitive ID 0..7 */
5958 payload.num_regs++;
5959 }
5960
5961 /* Always enable VUE handles so we can safely use pull model if needed.
5962 *
5963 * The push model for a GS uses a ton of register space even for trivial
5964 * scenarios with just a few inputs, so just make things easier and a bit
5965 * safer by always having pull model available.
5966 */
5967 gs_prog_data->base.include_vue_handles = true;
5968
5969 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5970 payload.num_regs += nir->info.gs.vertices_in;
5971
5972 /* Use a maximum of 24 registers for push-model inputs. */
5973 const unsigned max_push_components = 24;
5974
5975 /* If pushing our inputs would take too many registers, reduce the URB read
5976 * length (which is in HWords, or 8 registers), and resort to pulling.
5977 *
5978 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5979 * have to multiply by VerticesIn to obtain the total storage requirement.
5980 */
5981 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
5982 max_push_components) {
5983 vue_prog_data->urb_read_length =
5984 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
5985 }
5986 }
5987
5988 void
setup_cs_payload()5989 fs_visitor::setup_cs_payload()
5990 {
5991 assert(devinfo->ver >= 7);
5992 /* TODO: Fill out uses_btd_stack_ids automatically */
5993 payload.num_regs = 1 + brw_cs_prog_data(prog_data)->uses_btd_stack_ids;
5994 }
5995
register_pressure(const fs_visitor * v)5996 brw::register_pressure::register_pressure(const fs_visitor *v)
5997 {
5998 const fs_live_variables &live = v->live_analysis.require();
5999 const unsigned num_instructions = v->cfg->num_blocks ?
6000 v->cfg->blocks[v->cfg->num_blocks - 1]->end_ip + 1 : 0;
6001
6002 regs_live_at_ip = new unsigned[num_instructions]();
6003
6004 for (unsigned reg = 0; reg < v->alloc.count; reg++) {
6005 for (int ip = live.vgrf_start[reg]; ip <= live.vgrf_end[reg]; ip++)
6006 regs_live_at_ip[ip] += v->alloc.sizes[reg];
6007 }
6008 }
6009
~register_pressure()6010 brw::register_pressure::~register_pressure()
6011 {
6012 delete[] regs_live_at_ip;
6013 }
6014
6015 void
invalidate_analysis(brw::analysis_dependency_class c)6016 fs_visitor::invalidate_analysis(brw::analysis_dependency_class c)
6017 {
6018 backend_shader::invalidate_analysis(c);
6019 live_analysis.invalidate(c);
6020 regpressure_analysis.invalidate(c);
6021 }
6022
6023 void
optimize()6024 fs_visitor::optimize()
6025 {
6026 /* Start by validating the shader we currently have. */
6027 validate();
6028
6029 /* bld is the common builder object pointing at the end of the program we
6030 * used to translate it into i965 IR. For the optimization and lowering
6031 * passes coming next, any code added after the end of the program without
6032 * having explicitly called fs_builder::at() clearly points at a mistake.
6033 * Ideally optimization passes wouldn't be part of the visitor so they
6034 * wouldn't have access to bld at all, but they do, so just in case some
6035 * pass forgets to ask for a location explicitly set it to NULL here to
6036 * make it trip. The dispatch width is initialized to a bogus value to
6037 * make sure that optimizations set the execution controls explicitly to
6038 * match the code they are manipulating instead of relying on the defaults.
6039 */
6040 bld = fs_builder(this, 64);
6041
6042 assign_constant_locations();
6043 lower_constant_loads();
6044
6045 validate();
6046
6047 #define OPT(pass, args...) ({ \
6048 pass_num++; \
6049 bool this_progress = pass(args); \
6050 \
6051 if (INTEL_DEBUG(DEBUG_OPTIMIZER) && this_progress) { \
6052 char filename[64]; \
6053 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
6054 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
6055 \
6056 backend_shader::dump_instructions(filename); \
6057 } \
6058 \
6059 validate(); \
6060 \
6061 progress = progress || this_progress; \
6062 this_progress; \
6063 })
6064
6065 if (INTEL_DEBUG(DEBUG_OPTIMIZER)) {
6066 char filename[64];
6067 snprintf(filename, 64, "%s%d-%s-00-00-start",
6068 stage_abbrev, dispatch_width, nir->info.name);
6069
6070 backend_shader::dump_instructions(filename);
6071 }
6072
6073 bool progress = false;
6074 int iteration = 0;
6075 int pass_num = 0;
6076
6077 OPT(split_virtual_grfs);
6078
6079 /* Before anything else, eliminate dead code. The results of some NIR
6080 * instructions may effectively be calculated twice. Once when the
6081 * instruction is encountered, and again when the user of that result is
6082 * encountered. Wipe those away before algebraic optimizations and
6083 * especially copy propagation can mix things up.
6084 */
6085 OPT(dead_code_eliminate);
6086
6087 OPT(remove_extra_rounding_modes);
6088
6089 do {
6090 progress = false;
6091 pass_num = 0;
6092 iteration++;
6093
6094 OPT(remove_duplicate_mrf_writes);
6095
6096 OPT(opt_algebraic);
6097 OPT(opt_cse);
6098 OPT(opt_copy_propagation);
6099 OPT(opt_predicated_break, this);
6100 OPT(opt_cmod_propagation);
6101 OPT(dead_code_eliminate);
6102 OPT(opt_peephole_sel);
6103 OPT(dead_control_flow_eliminate, this);
6104 OPT(opt_register_renaming);
6105 OPT(opt_saturate_propagation);
6106 OPT(register_coalesce);
6107 OPT(compute_to_mrf);
6108 OPT(eliminate_find_live_channel);
6109
6110 OPT(compact_virtual_grfs);
6111 } while (progress);
6112
6113 progress = false;
6114 pass_num = 0;
6115
6116 if (OPT(lower_pack)) {
6117 OPT(register_coalesce);
6118 OPT(dead_code_eliminate);
6119 }
6120
6121 OPT(lower_simd_width);
6122 OPT(lower_barycentrics);
6123 OPT(lower_logical_sends);
6124
6125 /* After logical SEND lowering. */
6126 OPT(opt_copy_propagation);
6127 OPT(opt_split_sends);
6128 OPT(fixup_nomask_control_flow);
6129
6130 if (progress) {
6131 OPT(opt_copy_propagation);
6132 /* Only run after logical send lowering because it's easier to implement
6133 * in terms of physical sends.
6134 */
6135 if (OPT(opt_zero_samples))
6136 OPT(opt_copy_propagation);
6137 /* Run after logical send lowering to give it a chance to CSE the
6138 * LOAD_PAYLOAD instructions created to construct the payloads of
6139 * e.g. texturing messages in cases where it wasn't possible to CSE the
6140 * whole logical instruction.
6141 */
6142 OPT(opt_cse);
6143 OPT(register_coalesce);
6144 OPT(compute_to_mrf);
6145 OPT(dead_code_eliminate);
6146 OPT(remove_duplicate_mrf_writes);
6147 OPT(opt_peephole_sel);
6148 }
6149
6150 OPT(opt_redundant_halt);
6151
6152 if (OPT(lower_load_payload)) {
6153 OPT(split_virtual_grfs);
6154
6155 /* Lower 64 bit MOVs generated by payload lowering. */
6156 if (!devinfo->has_64bit_float || !devinfo->has_64bit_int)
6157 OPT(opt_algebraic);
6158
6159 OPT(register_coalesce);
6160 OPT(lower_simd_width);
6161 OPT(compute_to_mrf);
6162 OPT(dead_code_eliminate);
6163 }
6164
6165 OPT(opt_combine_constants);
6166 if (OPT(lower_integer_multiplication)) {
6167 /* If lower_integer_multiplication made progress, it may have produced
6168 * some 32x32-bit MULs in the process of lowering 64-bit MULs. Run it
6169 * one more time to clean those up if they exist.
6170 */
6171 OPT(lower_integer_multiplication);
6172 }
6173 OPT(lower_sub_sat);
6174
6175 if (devinfo->ver <= 5 && OPT(lower_minmax)) {
6176 OPT(opt_cmod_propagation);
6177 OPT(opt_cse);
6178 OPT(opt_copy_propagation);
6179 OPT(dead_code_eliminate);
6180 }
6181
6182 progress = false;
6183 OPT(lower_derivatives);
6184 OPT(lower_regioning);
6185 if (progress) {
6186 OPT(opt_copy_propagation);
6187 OPT(dead_code_eliminate);
6188 OPT(lower_simd_width);
6189 }
6190
6191 OPT(fixup_sends_duplicate_payload);
6192
6193 lower_uniform_pull_constant_loads();
6194
6195 lower_find_live_channel();
6196
6197 validate();
6198 }
6199
6200 /**
6201 * From the Skylake PRM Vol. 2a docs for sends:
6202 *
6203 * "It is required that the second block of GRFs does not overlap with the
6204 * first block."
6205 *
6206 * There are plenty of cases where we may accidentally violate this due to
6207 * having, for instance, both sources be the constant 0. This little pass
6208 * just adds a new vgrf for the second payload and copies it over.
6209 */
6210 bool
fixup_sends_duplicate_payload()6211 fs_visitor::fixup_sends_duplicate_payload()
6212 {
6213 bool progress = false;
6214
6215 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
6216 if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 &&
6217 regions_overlap(inst->src[2], inst->mlen * REG_SIZE,
6218 inst->src[3], inst->ex_mlen * REG_SIZE)) {
6219 fs_reg tmp = fs_reg(VGRF, alloc.allocate(inst->ex_mlen),
6220 BRW_REGISTER_TYPE_UD);
6221 /* Sadly, we've lost all notion of channels and bit sizes at this
6222 * point. Just WE_all it.
6223 */
6224 const fs_builder ibld = bld.at(block, inst).exec_all().group(16, 0);
6225 fs_reg copy_src = retype(inst->src[3], BRW_REGISTER_TYPE_UD);
6226 fs_reg copy_dst = tmp;
6227 for (unsigned i = 0; i < inst->ex_mlen; i += 2) {
6228 if (inst->ex_mlen == i + 1) {
6229 /* Only one register left; do SIMD8 */
6230 ibld.group(8, 0).MOV(copy_dst, copy_src);
6231 } else {
6232 ibld.MOV(copy_dst, copy_src);
6233 }
6234 copy_src = offset(copy_src, ibld, 1);
6235 copy_dst = offset(copy_dst, ibld, 1);
6236 }
6237 inst->src[3] = tmp;
6238 progress = true;
6239 }
6240 }
6241
6242 if (progress)
6243 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
6244
6245 return progress;
6246 }
6247
6248 /**
6249 * Three source instruction must have a GRF/MRF destination register.
6250 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
6251 */
6252 void
fixup_3src_null_dest()6253 fs_visitor::fixup_3src_null_dest()
6254 {
6255 bool progress = false;
6256
6257 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
6258 if (inst->is_3src(compiler) && inst->dst.is_null()) {
6259 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
6260 inst->dst.type);
6261 progress = true;
6262 }
6263 }
6264
6265 if (progress)
6266 invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL |
6267 DEPENDENCY_VARIABLES);
6268 }
6269
6270 static bool
needs_dummy_fence(const intel_device_info * devinfo,fs_inst * inst)6271 needs_dummy_fence(const intel_device_info *devinfo, fs_inst *inst)
6272 {
6273 /* This workaround is about making sure that any instruction writing
6274 * through UGM has completed before we hit EOT.
6275 *
6276 * The workaround talks about UGM writes or atomic message but what is
6277 * important is anything that hasn't completed. Usually any SEND
6278 * instruction that has a destination register will be read by something
6279 * else so we don't need to care about those as they will be synchronized
6280 * by other parts of the shader or optimized away. What is left are
6281 * instructions that don't have a destination register.
6282 */
6283 if (inst->sfid != GFX12_SFID_UGM)
6284 return false;
6285
6286 return inst->dst.file == BAD_FILE;
6287 }
6288
6289 /* Wa_22013689345
6290 *
6291 * We need to emit UGM fence message before EOT, if shader has any UGM write
6292 * or atomic message.
6293 *
6294 * TODO/FINISHME: According to Curro we could avoid the fence in some cases.
6295 * We probably need a better criteria in needs_dummy_fence().
6296 */
6297 void
emit_dummy_memory_fence_before_eot()6298 fs_visitor::emit_dummy_memory_fence_before_eot()
6299 {
6300 bool progress = false;
6301 bool has_ugm_write_or_atomic = false;
6302
6303 if (!intel_device_info_is_dg2(devinfo))
6304 return;
6305
6306 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
6307 if (!inst->eot) {
6308 if (needs_dummy_fence(devinfo, inst))
6309 has_ugm_write_or_atomic = true;
6310 continue;
6311 }
6312
6313 if (!has_ugm_write_or_atomic)
6314 break;
6315
6316 const fs_builder ibld(this, block, inst);
6317 const fs_builder ubld = ibld.exec_all().group(1, 0);
6318
6319 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
6320 fs_inst *dummy_fence = ubld.emit(SHADER_OPCODE_MEMORY_FENCE,
6321 dst, brw_vec8_grf(0, 0),
6322 /* commit enable */ brw_imm_ud(1),
6323 /* bti */ brw_imm_ud(0));
6324 dummy_fence->sfid = GFX12_SFID_UGM;
6325 dummy_fence->desc = lsc_fence_msg_desc(devinfo, LSC_FENCE_TILE,
6326 LSC_FLUSH_TYPE_NONE_6, false);
6327 ubld.emit(FS_OPCODE_SCHEDULING_FENCE, ubld.null_reg_ud(), dst);
6328 progress = true;
6329 /* TODO: remove this break if we ever have shader with multiple EOT. */
6330 break;
6331 }
6332
6333 if (progress) {
6334 invalidate_analysis(DEPENDENCY_INSTRUCTIONS |
6335 DEPENDENCY_VARIABLES);
6336 }
6337 }
6338
6339 /**
6340 * Find the first instruction in the program that might start a region of
6341 * divergent control flow due to a HALT jump. There is no
6342 * find_halt_control_flow_region_end(), the region of divergence extends until
6343 * the only SHADER_OPCODE_HALT_TARGET in the program.
6344 */
6345 static const fs_inst *
find_halt_control_flow_region_start(const fs_visitor * v)6346 find_halt_control_flow_region_start(const fs_visitor *v)
6347 {
6348 foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
6349 if (inst->opcode == BRW_OPCODE_HALT ||
6350 inst->opcode == SHADER_OPCODE_HALT_TARGET)
6351 return inst;
6352 }
6353
6354 return NULL;
6355 }
6356
6357 /**
6358 * Work around the Gfx12 hardware bug filed as Wa_1407528679. EU fusion
6359 * can cause a BB to be executed with all channels disabled, which will lead
6360 * to the execution of any NoMask instructions in it, even though any
6361 * execution-masked instructions will be correctly shot down. This may break
6362 * assumptions of some NoMask SEND messages whose descriptor depends on data
6363 * generated by live invocations of the shader.
6364 *
6365 * This avoids the problem by predicating certain instructions on an ANY
6366 * horizontal predicate that makes sure that their execution is omitted when
6367 * all channels of the program are disabled.
6368 */
6369 bool
fixup_nomask_control_flow()6370 fs_visitor::fixup_nomask_control_flow()
6371 {
6372 if (devinfo->ver != 12)
6373 return false;
6374
6375 const brw_predicate pred = dispatch_width > 16 ? BRW_PREDICATE_ALIGN1_ANY32H :
6376 dispatch_width > 8 ? BRW_PREDICATE_ALIGN1_ANY16H :
6377 BRW_PREDICATE_ALIGN1_ANY8H;
6378 const fs_inst *halt_start = find_halt_control_flow_region_start(this);
6379 unsigned depth = 0;
6380 bool progress = false;
6381
6382 const fs_live_variables &live_vars = live_analysis.require();
6383
6384 /* Scan the program backwards in order to be able to easily determine
6385 * whether the flag register is live at any point.
6386 */
6387 foreach_block_reverse_safe(block, cfg) {
6388 BITSET_WORD flag_liveout = live_vars.block_data[block->num]
6389 .flag_liveout[0];
6390 STATIC_ASSERT(ARRAY_SIZE(live_vars.block_data[0].flag_liveout) == 1);
6391
6392 foreach_inst_in_block_reverse_safe(fs_inst, inst, block) {
6393 if (!inst->predicate && inst->exec_size >= 8)
6394 flag_liveout &= ~inst->flags_written(devinfo);
6395
6396 switch (inst->opcode) {
6397 case BRW_OPCODE_DO:
6398 case BRW_OPCODE_IF:
6399 /* Note that this doesn't handle BRW_OPCODE_HALT since only
6400 * the first one in the program closes the region of divergent
6401 * control flow due to any HALT instructions -- Instead this is
6402 * handled with the halt_start check below.
6403 */
6404 depth--;
6405 break;
6406
6407 case BRW_OPCODE_WHILE:
6408 case BRW_OPCODE_ENDIF:
6409 case SHADER_OPCODE_HALT_TARGET:
6410 depth++;
6411 break;
6412
6413 default:
6414 /* Note that the vast majority of NoMask SEND instructions in the
6415 * program are harmless while executed in a block with all
6416 * channels disabled, since any instructions with side effects we
6417 * could hit here should be execution-masked.
6418 *
6419 * The main concern is NoMask SEND instructions where the message
6420 * descriptor or header depends on data generated by live
6421 * invocations of the shader (RESINFO and
6422 * FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD with a dynamically
6423 * computed surface index seem to be the only examples right now
6424 * where this could easily lead to GPU hangs). Unfortunately we
6425 * have no straightforward way to detect that currently, so just
6426 * predicate any NoMask SEND instructions we find under control
6427 * flow.
6428 *
6429 * If this proves to have a measurable performance impact it can
6430 * be easily extended with a whitelist of messages we know we can
6431 * safely omit the predication for.
6432 */
6433 if (depth && inst->force_writemask_all &&
6434 is_send(inst) && !inst->predicate) {
6435 /* We need to load the execution mask into the flag register by
6436 * using a builder with channel group matching the whole shader
6437 * (rather than the default which is derived from the original
6438 * instruction), in order to avoid getting a right-shifted
6439 * value.
6440 */
6441 const fs_builder ubld = fs_builder(this, block, inst)
6442 .exec_all().group(dispatch_width, 0);
6443 const fs_reg flag = retype(brw_flag_reg(0, 0),
6444 BRW_REGISTER_TYPE_UD);
6445
6446 /* Due to the lack of flag register allocation we need to save
6447 * and restore the flag register if it's live.
6448 */
6449 const bool save_flag = flag_liveout &
6450 flag_mask(flag, dispatch_width / 8);
6451 const fs_reg tmp = ubld.group(1, 0).vgrf(flag.type);
6452
6453 if (save_flag)
6454 ubld.group(1, 0).MOV(tmp, flag);
6455
6456 ubld.emit(FS_OPCODE_LOAD_LIVE_CHANNELS);
6457
6458 set_predicate(pred, inst);
6459 inst->flag_subreg = 0;
6460
6461 if (save_flag)
6462 ubld.group(1, 0).at(block, inst->next).MOV(flag, tmp);
6463
6464 progress = true;
6465 }
6466 break;
6467 }
6468
6469 if (inst == halt_start)
6470 depth--;
6471
6472 flag_liveout |= inst->flags_read(devinfo);
6473 }
6474 }
6475
6476 if (progress)
6477 invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
6478
6479 return progress;
6480 }
6481
6482 void
allocate_registers(bool allow_spilling)6483 fs_visitor::allocate_registers(bool allow_spilling)
6484 {
6485 bool allocated;
6486
6487 static const enum instruction_scheduler_mode pre_modes[] = {
6488 SCHEDULE_PRE,
6489 SCHEDULE_PRE_NON_LIFO,
6490 SCHEDULE_NONE,
6491 SCHEDULE_PRE_LIFO,
6492 };
6493
6494 static const char *scheduler_mode_name[] = {
6495 "top-down",
6496 "non-lifo",
6497 "none",
6498 "lifo"
6499 };
6500
6501 bool spill_all = allow_spilling && INTEL_DEBUG(DEBUG_SPILL_FS);
6502
6503 /* Before we schedule anything, stash off the instruction order as an array
6504 * of fs_inst *. This way, we can reset it between scheduling passes to
6505 * prevent dependencies between the different scheduling modes.
6506 */
6507 int num_insts = cfg->last_block()->end_ip + 1;
6508 fs_inst **inst_arr = ralloc_array(mem_ctx, fs_inst *, num_insts);
6509
6510 int ip = 0;
6511 foreach_block_and_inst(block, fs_inst, inst, cfg) {
6512 assert(ip >= block->start_ip && ip <= block->end_ip);
6513 inst_arr[ip++] = inst;
6514 }
6515 assert(ip == num_insts);
6516
6517 /* Try each scheduling heuristic to see if it can successfully register
6518 * allocate without spilling. They should be ordered by decreasing
6519 * performance but increasing likelihood of allocating.
6520 */
6521 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
6522 if (i > 0) {
6523 /* Unless we're the first pass, reset back to the original order */
6524 ip = 0;
6525 foreach_block (block, cfg) {
6526 block->instructions.make_empty();
6527
6528 assert(ip == block->start_ip);
6529 for (; ip <= block->end_ip; ip++)
6530 block->instructions.push_tail(inst_arr[ip]);
6531 }
6532 assert(ip == num_insts);
6533
6534 invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
6535 }
6536
6537 if (pre_modes[i] != SCHEDULE_NONE)
6538 schedule_instructions(pre_modes[i]);
6539 this->shader_stats.scheduler_mode = scheduler_mode_name[i];
6540
6541 if (0) {
6542 assign_regs_trivial();
6543 allocated = true;
6544 break;
6545 }
6546
6547 bool can_spill = allow_spilling &&
6548 (i == ARRAY_SIZE(pre_modes) - 1);
6549
6550 /* We should only spill registers on the last scheduling. */
6551 assert(!spilled_any_registers);
6552
6553 allocated = assign_regs(can_spill, spill_all);
6554 if (allocated)
6555 break;
6556 }
6557
6558 if (!allocated) {
6559 fail("Failure to register allocate. Reduce number of "
6560 "live scalar values to avoid this.");
6561 } else if (spilled_any_registers) {
6562 brw_shader_perf_log(compiler, log_data,
6563 "%s shader triggered register spilling. "
6564 "Try reducing the number of live scalar "
6565 "values to improve performance.\n",
6566 stage_name);
6567 }
6568
6569 /* This must come after all optimization and register allocation, since
6570 * it inserts dead code that happens to have side effects, and it does
6571 * so based on the actual physical registers in use.
6572 */
6573 insert_gfx4_send_dependency_workarounds();
6574
6575 if (failed)
6576 return;
6577
6578 opt_bank_conflicts();
6579
6580 schedule_instructions(SCHEDULE_POST);
6581
6582 if (last_scratch > 0) {
6583 ASSERTED unsigned max_scratch_size = 2 * 1024 * 1024;
6584
6585 /* Take the max of any previously compiled variant of the shader. In the
6586 * case of bindless shaders with return parts, this will also take the
6587 * max of all parts.
6588 */
6589 prog_data->total_scratch = MAX2(brw_get_scratch_size(last_scratch),
6590 prog_data->total_scratch);
6591
6592 if (gl_shader_stage_is_compute(stage)) {
6593 if (devinfo->platform == INTEL_PLATFORM_HSW) {
6594 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
6595 * field documentation, Haswell supports a minimum of 2kB of
6596 * scratch space for compute shaders, unlike every other stage
6597 * and platform.
6598 */
6599 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
6600 } else if (devinfo->ver <= 7) {
6601 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
6602 * field documentation, platforms prior to Haswell measure scratch
6603 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
6604 */
6605 prog_data->total_scratch = ALIGN(last_scratch, 1024);
6606 max_scratch_size = 12 * 1024;
6607 }
6608 }
6609
6610 /* We currently only support up to 2MB of scratch space. If we
6611 * need to support more eventually, the documentation suggests
6612 * that we could allocate a larger buffer, and partition it out
6613 * ourselves. We'd just have to undo the hardware's address
6614 * calculation by subtracting (FFTID * Per Thread Scratch Space)
6615 * and then add FFTID * (Larger Per Thread Scratch Space).
6616 *
6617 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
6618 * Thread Group Tracking > Local Memory/Scratch Space.
6619 */
6620 assert(prog_data->total_scratch < max_scratch_size);
6621 }
6622
6623 lower_scoreboard();
6624 }
6625
6626 bool
run_vs()6627 fs_visitor::run_vs()
6628 {
6629 assert(stage == MESA_SHADER_VERTEX);
6630
6631 setup_vs_payload();
6632
6633 emit_nir_code();
6634
6635 if (failed)
6636 return false;
6637
6638 emit_urb_writes();
6639
6640 calculate_cfg();
6641
6642 optimize();
6643
6644 assign_curb_setup();
6645 assign_vs_urb_setup();
6646
6647 fixup_3src_null_dest();
6648 emit_dummy_memory_fence_before_eot();
6649 allocate_registers(true /* allow_spilling */);
6650
6651 return !failed;
6652 }
6653
6654 void
set_tcs_invocation_id()6655 fs_visitor::set_tcs_invocation_id()
6656 {
6657 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
6658 struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
6659
6660 const bool dg2_plus =
6661 devinfo->ver > 12 || intel_device_info_is_dg2(devinfo);
6662 const unsigned instance_id_mask =
6663 dg2_plus ? INTEL_MASK(7, 0) :
6664 (devinfo->ver >= 11) ? INTEL_MASK(22, 16) : INTEL_MASK(23, 17);
6665 const unsigned instance_id_shift =
6666 dg2_plus ? 0 : (devinfo->ver >= 11) ? 16 : 17;
6667
6668 /* Get instance number from g0.2 bits:
6669 * * 7:0 on DG2+
6670 * * 22:16 on gfx11+
6671 * * 23:17 otherwise
6672 */
6673 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
6674 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
6675 brw_imm_ud(instance_id_mask));
6676
6677 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
6678
6679 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH) {
6680 /* gl_InvocationID is just the thread number */
6681 bld.SHR(invocation_id, t, brw_imm_ud(instance_id_shift));
6682 return;
6683 }
6684
6685 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH);
6686
6687 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
6688 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
6689 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
6690 bld.MOV(channels_ud, channels_uw);
6691
6692 if (tcs_prog_data->instances == 1) {
6693 invocation_id = channels_ud;
6694 } else {
6695 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
6696 bld.SHR(instance_times_8, t, brw_imm_ud(instance_id_shift - 3));
6697 bld.ADD(invocation_id, instance_times_8, channels_ud);
6698 }
6699 }
6700
6701 bool
run_tcs()6702 fs_visitor::run_tcs()
6703 {
6704 assert(stage == MESA_SHADER_TESS_CTRL);
6705
6706 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
6707 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
6708 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
6709
6710 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH ||
6711 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
6712
6713 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH) {
6714 /* r1-r4 contain the ICP handles. */
6715 payload.num_regs = 5;
6716 } else {
6717 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
6718 assert(tcs_key->input_vertices > 0);
6719 /* r1 contains output handles, r2 may contain primitive ID, then the
6720 * ICP handles occupy the next 1-32 registers.
6721 */
6722 payload.num_regs = 2 + tcs_prog_data->include_primitive_id +
6723 tcs_key->input_vertices;
6724 }
6725
6726 /* Initialize gl_InvocationID */
6727 set_tcs_invocation_id();
6728
6729 const bool fix_dispatch_mask =
6730 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH &&
6731 (nir->info.tess.tcs_vertices_out % 8) != 0;
6732
6733 /* Fix the disptach mask */
6734 if (fix_dispatch_mask) {
6735 bld.CMP(bld.null_reg_ud(), invocation_id,
6736 brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L);
6737 bld.IF(BRW_PREDICATE_NORMAL);
6738 }
6739
6740 emit_nir_code();
6741
6742 if (fix_dispatch_mask) {
6743 bld.emit(BRW_OPCODE_ENDIF);
6744 }
6745
6746 /* Emit EOT write; set TR DS Cache bit */
6747 fs_reg srcs[URB_LOGICAL_NUM_SRCS];
6748 srcs[URB_LOGICAL_SRC_HANDLE] = get_tcs_output_urb_handle();
6749 srcs[URB_LOGICAL_SRC_CHANNEL_MASK] = brw_imm_ud(WRITEMASK_X << 16);
6750 srcs[URB_LOGICAL_SRC_DATA] = brw_imm_ud(0);
6751 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL,
6752 reg_undef, srcs, ARRAY_SIZE(srcs));
6753 inst->mlen = 3;
6754 inst->eot = true;
6755
6756 if (failed)
6757 return false;
6758
6759 calculate_cfg();
6760
6761 optimize();
6762
6763 assign_curb_setup();
6764 assign_tcs_urb_setup();
6765
6766 fixup_3src_null_dest();
6767 emit_dummy_memory_fence_before_eot();
6768 allocate_registers(true /* allow_spilling */);
6769
6770 return !failed;
6771 }
6772
6773 bool
run_tes()6774 fs_visitor::run_tes()
6775 {
6776 assert(stage == MESA_SHADER_TESS_EVAL);
6777
6778 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
6779 payload.num_regs = 5;
6780
6781 emit_nir_code();
6782
6783 if (failed)
6784 return false;
6785
6786 emit_urb_writes();
6787
6788 calculate_cfg();
6789
6790 optimize();
6791
6792 assign_curb_setup();
6793 assign_tes_urb_setup();
6794
6795 fixup_3src_null_dest();
6796 emit_dummy_memory_fence_before_eot();
6797 allocate_registers(true /* allow_spilling */);
6798
6799 return !failed;
6800 }
6801
6802 bool
run_gs()6803 fs_visitor::run_gs()
6804 {
6805 assert(stage == MESA_SHADER_GEOMETRY);
6806
6807 setup_gs_payload();
6808
6809 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
6810
6811 if (gs_compile->control_data_header_size_bits > 0) {
6812 /* Create a VGRF to store accumulated control data bits. */
6813 this->control_data_bits = vgrf(glsl_type::uint_type);
6814
6815 /* If we're outputting more than 32 control data bits, then EmitVertex()
6816 * will set control_data_bits to 0 after emitting the first vertex.
6817 * Otherwise, we need to initialize it to 0 here.
6818 */
6819 if (gs_compile->control_data_header_size_bits <= 32) {
6820 const fs_builder abld = bld.annotate("initialize control data bits");
6821 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
6822 }
6823 }
6824
6825 emit_nir_code();
6826
6827 emit_gs_thread_end();
6828
6829 if (failed)
6830 return false;
6831
6832 calculate_cfg();
6833
6834 optimize();
6835
6836 assign_curb_setup();
6837 assign_gs_urb_setup();
6838
6839 fixup_3src_null_dest();
6840 emit_dummy_memory_fence_before_eot();
6841 allocate_registers(true /* allow_spilling */);
6842
6843 return !failed;
6844 }
6845
6846 /* From the SKL PRM, Volume 16, Workarounds:
6847 *
6848 * 0877 3D Pixel Shader Hang possible when pixel shader dispatched with
6849 * only header phases (R0-R2)
6850 *
6851 * WA: Enable a non-header phase (e.g. push constant) when dispatch would
6852 * have been header only.
6853 *
6854 * Instead of enabling push constants one can alternatively enable one of the
6855 * inputs. Here one simply chooses "layer" which shouldn't impose much
6856 * overhead.
6857 */
6858 static void
gfx9_ps_header_only_workaround(struct brw_wm_prog_data * wm_prog_data)6859 gfx9_ps_header_only_workaround(struct brw_wm_prog_data *wm_prog_data)
6860 {
6861 if (wm_prog_data->num_varying_inputs)
6862 return;
6863
6864 if (wm_prog_data->base.curb_read_length)
6865 return;
6866
6867 wm_prog_data->urb_setup[VARYING_SLOT_LAYER] = 0;
6868 wm_prog_data->num_varying_inputs = 1;
6869
6870 brw_compute_urb_setup_index(wm_prog_data);
6871 }
6872
6873 bool
run_fs(bool allow_spilling,bool do_rep_send)6874 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
6875 {
6876 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
6877 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
6878
6879 assert(stage == MESA_SHADER_FRAGMENT);
6880
6881 if (devinfo->ver >= 6)
6882 setup_fs_payload_gfx6();
6883 else
6884 setup_fs_payload_gfx4();
6885
6886 if (0) {
6887 emit_dummy_fs();
6888 } else if (do_rep_send) {
6889 assert(dispatch_width == 16);
6890 emit_repclear_shader();
6891 } else {
6892 if (nir->info.inputs_read > 0 ||
6893 BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FRAG_COORD) ||
6894 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
6895 if (devinfo->ver < 6)
6896 emit_interpolation_setup_gfx4();
6897 else
6898 emit_interpolation_setup_gfx6();
6899 }
6900
6901 /* We handle discards by keeping track of the still-live pixels in f0.1.
6902 * Initialize it with the dispatched pixels.
6903 */
6904 if (wm_prog_data->uses_kill) {
6905 const unsigned lower_width = MIN2(dispatch_width, 16);
6906 for (unsigned i = 0; i < dispatch_width / lower_width; i++) {
6907 const fs_reg dispatch_mask =
6908 devinfo->ver >= 6 ? brw_vec1_grf((i ? 2 : 1), 7) :
6909 brw_vec1_grf(0, 0);
6910 bld.exec_all().group(1, 0)
6911 .MOV(brw_sample_mask_reg(bld.group(lower_width, i)),
6912 retype(dispatch_mask, BRW_REGISTER_TYPE_UW));
6913 }
6914 }
6915
6916 if (nir->info.writes_memory)
6917 wm_prog_data->has_side_effects = true;
6918
6919 emit_nir_code();
6920
6921 if (failed)
6922 return false;
6923
6924 if (wm_key->emit_alpha_test)
6925 emit_alpha_test();
6926
6927 emit_fb_writes();
6928
6929 calculate_cfg();
6930
6931 optimize();
6932
6933 assign_curb_setup();
6934
6935 if (devinfo->ver == 9)
6936 gfx9_ps_header_only_workaround(wm_prog_data);
6937
6938 assign_urb_setup();
6939
6940 fixup_3src_null_dest();
6941 emit_dummy_memory_fence_before_eot();
6942
6943 allocate_registers(allow_spilling);
6944 }
6945
6946 return !failed;
6947 }
6948
6949 bool
run_cs(bool allow_spilling)6950 fs_visitor::run_cs(bool allow_spilling)
6951 {
6952 assert(gl_shader_stage_is_compute(stage));
6953
6954 setup_cs_payload();
6955
6956 if (devinfo->platform == INTEL_PLATFORM_HSW && prog_data->total_shared > 0) {
6957 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
6958 const fs_builder abld = bld.exec_all().group(1, 0);
6959 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
6960 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
6961 }
6962
6963 emit_nir_code();
6964
6965 if (failed)
6966 return false;
6967
6968 emit_cs_terminate();
6969
6970 calculate_cfg();
6971
6972 optimize();
6973
6974 assign_curb_setup();
6975
6976 fixup_3src_null_dest();
6977 emit_dummy_memory_fence_before_eot();
6978 allocate_registers(allow_spilling);
6979
6980 return !failed;
6981 }
6982
6983 bool
run_bs(bool allow_spilling)6984 fs_visitor::run_bs(bool allow_spilling)
6985 {
6986 assert(stage >= MESA_SHADER_RAYGEN && stage <= MESA_SHADER_CALLABLE);
6987
6988 /* R0: thread header, R1: stack IDs, R2: argument addresses */
6989 payload.num_regs = 3;
6990
6991 emit_nir_code();
6992
6993 if (failed)
6994 return false;
6995
6996 /* TODO(RT): Perhaps rename this? */
6997 emit_cs_terminate();
6998
6999 calculate_cfg();
7000
7001 optimize();
7002
7003 assign_curb_setup();
7004
7005 fixup_3src_null_dest();
7006 emit_dummy_memory_fence_before_eot();
7007 allocate_registers(allow_spilling);
7008
7009 return !failed;
7010 }
7011
7012 bool
run_task(bool allow_spilling)7013 fs_visitor::run_task(bool allow_spilling)
7014 {
7015 assert(stage == MESA_SHADER_TASK);
7016
7017 /* Task Shader Payloads (SIMD8 and SIMD16)
7018 *
7019 * R0: Header
7020 * R1: Local_ID.X[0-7 or 0-15]
7021 * R2: Inline Parameter
7022 *
7023 * Task Shader Payloads (SIMD32)
7024 *
7025 * R0: Header
7026 * R1: Local_ID.X[0-15]
7027 * R2: Local_ID.X[16-31]
7028 * R3: Inline Parameter
7029 *
7030 * Local_ID.X values are 16 bits.
7031 *
7032 * Inline parameter is optional but always present since we use it to pass
7033 * the address to descriptors.
7034 */
7035 payload.num_regs = dispatch_width == 32 ? 4 : 3;
7036
7037 emit_nir_code();
7038
7039 if (failed)
7040 return false;
7041
7042 emit_urb_fence();
7043
7044 emit_cs_terminate();
7045
7046 calculate_cfg();
7047
7048 optimize();
7049
7050 assign_curb_setup();
7051
7052 fixup_3src_null_dest();
7053 emit_dummy_memory_fence_before_eot();
7054 allocate_registers(allow_spilling);
7055
7056 return !failed;
7057 }
7058
7059 bool
run_mesh(bool allow_spilling)7060 fs_visitor::run_mesh(bool allow_spilling)
7061 {
7062 assert(stage == MESA_SHADER_MESH);
7063
7064 /* Mesh Shader Payloads (SIMD8 and SIMD16)
7065 *
7066 * R0: Header
7067 * R1: Local_ID.X[0-7 or 0-15]
7068 * R2: Inline Parameter
7069 *
7070 * Mesh Shader Payloads (SIMD32)
7071 *
7072 * R0: Header
7073 * R1: Local_ID.X[0-15]
7074 * R2: Local_ID.X[16-31]
7075 * R3: Inline Parameter
7076 *
7077 * Local_ID.X values are 16 bits.
7078 *
7079 * Inline parameter is optional but always present since we use it to pass
7080 * the address to descriptors.
7081 */
7082 payload.num_regs = dispatch_width == 32 ? 4 : 3;
7083
7084 emit_nir_code();
7085
7086 if (failed)
7087 return false;
7088
7089 emit_urb_fence();
7090
7091 emit_cs_terminate();
7092
7093 calculate_cfg();
7094
7095 optimize();
7096
7097 assign_curb_setup();
7098
7099 fixup_3src_null_dest();
7100 emit_dummy_memory_fence_before_eot();
7101 allocate_registers(allow_spilling);
7102
7103 return !failed;
7104 }
7105
7106 static bool
is_used_in_not_interp_frag_coord(nir_ssa_def * def)7107 is_used_in_not_interp_frag_coord(nir_ssa_def *def)
7108 {
7109 nir_foreach_use(src, def) {
7110 if (src->parent_instr->type != nir_instr_type_intrinsic)
7111 return true;
7112
7113 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(src->parent_instr);
7114 if (intrin->intrinsic != nir_intrinsic_load_frag_coord)
7115 return true;
7116 }
7117
7118 nir_foreach_if_use(src, def)
7119 return true;
7120
7121 return false;
7122 }
7123
7124 /**
7125 * Return a bitfield where bit n is set if barycentric interpolation mode n
7126 * (see enum brw_barycentric_mode) is needed by the fragment shader.
7127 *
7128 * We examine the load_barycentric intrinsics rather than looking at input
7129 * variables so that we catch interpolateAtCentroid() messages too, which
7130 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
7131 */
7132 static unsigned
brw_compute_barycentric_interp_modes(const struct intel_device_info * devinfo,const nir_shader * shader)7133 brw_compute_barycentric_interp_modes(const struct intel_device_info *devinfo,
7134 const nir_shader *shader)
7135 {
7136 unsigned barycentric_interp_modes = 0;
7137
7138 nir_foreach_function(f, shader) {
7139 if (!f->impl)
7140 continue;
7141
7142 nir_foreach_block(block, f->impl) {
7143 nir_foreach_instr(instr, block) {
7144 if (instr->type != nir_instr_type_intrinsic)
7145 continue;
7146
7147 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
7148 switch (intrin->intrinsic) {
7149 case nir_intrinsic_load_barycentric_pixel:
7150 case nir_intrinsic_load_barycentric_centroid:
7151 case nir_intrinsic_load_barycentric_sample:
7152 break;
7153 default:
7154 continue;
7155 }
7156
7157 /* Ignore WPOS; it doesn't require interpolation. */
7158 assert(intrin->dest.is_ssa);
7159 if (!is_used_in_not_interp_frag_coord(&intrin->dest.ssa))
7160 continue;
7161
7162 nir_intrinsic_op bary_op = intrin->intrinsic;
7163 enum brw_barycentric_mode bary =
7164 brw_barycentric_mode(intrin);
7165
7166 barycentric_interp_modes |= 1 << bary;
7167
7168 if (devinfo->needs_unlit_centroid_workaround &&
7169 bary_op == nir_intrinsic_load_barycentric_centroid)
7170 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
7171 }
7172 }
7173 }
7174
7175 return barycentric_interp_modes;
7176 }
7177
7178 static void
brw_compute_flat_inputs(struct brw_wm_prog_data * prog_data,const nir_shader * shader)7179 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
7180 const nir_shader *shader)
7181 {
7182 prog_data->flat_inputs = 0;
7183
7184 nir_foreach_shader_in_variable(var, shader) {
7185 /* flat shading */
7186 if (var->data.interpolation != INTERP_MODE_FLAT)
7187 continue;
7188
7189 if (var->data.per_primitive)
7190 continue;
7191
7192 unsigned slots = glsl_count_attribute_slots(var->type, false);
7193 for (unsigned s = 0; s < slots; s++) {
7194 int input_index = prog_data->urb_setup[var->data.location + s];
7195
7196 if (input_index >= 0)
7197 prog_data->flat_inputs |= 1 << input_index;
7198 }
7199 }
7200 }
7201
7202 static uint8_t
computed_depth_mode(const nir_shader * shader)7203 computed_depth_mode(const nir_shader *shader)
7204 {
7205 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
7206 switch (shader->info.fs.depth_layout) {
7207 case FRAG_DEPTH_LAYOUT_NONE:
7208 case FRAG_DEPTH_LAYOUT_ANY:
7209 return BRW_PSCDEPTH_ON;
7210 case FRAG_DEPTH_LAYOUT_GREATER:
7211 return BRW_PSCDEPTH_ON_GE;
7212 case FRAG_DEPTH_LAYOUT_LESS:
7213 return BRW_PSCDEPTH_ON_LE;
7214 case FRAG_DEPTH_LAYOUT_UNCHANGED:
7215 return BRW_PSCDEPTH_OFF;
7216 }
7217 }
7218 return BRW_PSCDEPTH_OFF;
7219 }
7220
7221 /**
7222 * Move load_interpolated_input with simple (payload-based) barycentric modes
7223 * to the top of the program so we don't emit multiple PLNs for the same input.
7224 *
7225 * This works around CSE not being able to handle non-dominating cases
7226 * such as:
7227 *
7228 * if (...) {
7229 * interpolate input
7230 * } else {
7231 * interpolate the same exact input
7232 * }
7233 *
7234 * This should be replaced by global value numbering someday.
7235 */
7236 bool
brw_nir_move_interpolation_to_top(nir_shader * nir)7237 brw_nir_move_interpolation_to_top(nir_shader *nir)
7238 {
7239 bool progress = false;
7240
7241 nir_foreach_function(f, nir) {
7242 if (!f->impl)
7243 continue;
7244
7245 nir_block *top = nir_start_block(f->impl);
7246 exec_node *cursor_node = NULL;
7247
7248 nir_foreach_block(block, f->impl) {
7249 if (block == top)
7250 continue;
7251
7252 nir_foreach_instr_safe(instr, block) {
7253 if (instr->type != nir_instr_type_intrinsic)
7254 continue;
7255
7256 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
7257 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
7258 continue;
7259 nir_intrinsic_instr *bary_intrinsic =
7260 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
7261 nir_intrinsic_op op = bary_intrinsic->intrinsic;
7262
7263 /* Leave interpolateAtSample/Offset() where they are. */
7264 if (op == nir_intrinsic_load_barycentric_at_sample ||
7265 op == nir_intrinsic_load_barycentric_at_offset)
7266 continue;
7267
7268 nir_instr *move[3] = {
7269 &bary_intrinsic->instr,
7270 intrin->src[1].ssa->parent_instr,
7271 instr
7272 };
7273
7274 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
7275 if (move[i]->block != top) {
7276 move[i]->block = top;
7277 exec_node_remove(&move[i]->node);
7278 if (cursor_node) {
7279 exec_node_insert_after(cursor_node, &move[i]->node);
7280 } else {
7281 exec_list_push_head(&top->instr_list, &move[i]->node);
7282 }
7283 cursor_node = &move[i]->node;
7284 progress = true;
7285 }
7286 }
7287 }
7288 }
7289 nir_metadata_preserve(f->impl, nir_metadata_block_index |
7290 nir_metadata_dominance);
7291 }
7292
7293 return progress;
7294 }
7295
7296 static void
brw_nir_populate_wm_prog_data(const nir_shader * shader,const struct intel_device_info * devinfo,const struct brw_wm_prog_key * key,struct brw_wm_prog_data * prog_data,const struct brw_mue_map * mue_map)7297 brw_nir_populate_wm_prog_data(const nir_shader *shader,
7298 const struct intel_device_info *devinfo,
7299 const struct brw_wm_prog_key *key,
7300 struct brw_wm_prog_data *prog_data,
7301 const struct brw_mue_map *mue_map)
7302 {
7303 /* key->alpha_test_func means simulating alpha testing via discards,
7304 * so the shader definitely kills pixels.
7305 */
7306 prog_data->uses_kill = shader->info.fs.uses_discard ||
7307 shader->info.fs.uses_demote ||
7308 key->emit_alpha_test;
7309 prog_data->uses_omask = !key->ignore_sample_mask_out &&
7310 (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK));
7311 prog_data->color_outputs_written = key->color_outputs_valid;
7312 prog_data->computed_depth_mode = computed_depth_mode(shader);
7313 prog_data->computed_stencil =
7314 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
7315
7316 prog_data->persample_dispatch =
7317 key->multisample_fbo &&
7318 (key->persample_interp ||
7319 shader->info.fs.uses_sample_shading);
7320
7321 if (devinfo->ver >= 6) {
7322 prog_data->uses_sample_mask =
7323 BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_SAMPLE_MASK_IN);
7324
7325 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
7326 *
7327 * "MSDISPMODE_PERSAMPLE is required in order to select
7328 * POSOFFSET_SAMPLE"
7329 *
7330 * So we can only really get sample positions if we are doing real
7331 * per-sample dispatch. If we need gl_SamplePosition and we don't have
7332 * persample dispatch, we hard-code it to 0.5.
7333 */
7334 prog_data->uses_pos_offset = prog_data->persample_dispatch &&
7335 (BITSET_TEST(shader->info.system_values_read,
7336 SYSTEM_VALUE_SAMPLE_POS) ||
7337 BITSET_TEST(shader->info.system_values_read,
7338 SYSTEM_VALUE_SAMPLE_POS_OR_CENTER));
7339 }
7340
7341 prog_data->has_render_target_reads = shader->info.outputs_read != 0ull;
7342
7343 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
7344 prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage;
7345 prog_data->inner_coverage = shader->info.fs.inner_coverage;
7346
7347 prog_data->barycentric_interp_modes =
7348 brw_compute_barycentric_interp_modes(devinfo, shader);
7349 prog_data->uses_nonperspective_interp_modes |=
7350 (prog_data->barycentric_interp_modes &
7351 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS) != 0;
7352
7353 /* You can't be coarse and per-sample */
7354 assert(!key->coarse_pixel || !key->persample_interp);
7355 prog_data->per_coarse_pixel_dispatch =
7356 key->coarse_pixel &&
7357 !shader->info.fs.uses_sample_shading &&
7358 !prog_data->uses_omask &&
7359 !prog_data->uses_sample_mask &&
7360 (prog_data->computed_depth_mode == BRW_PSCDEPTH_OFF) &&
7361 !prog_data->computed_stencil;
7362
7363 /* We choose to always enable VMask prior to XeHP, as it would cause
7364 * us to lose out on the eliminate_find_live_channel() optimization.
7365 */
7366 prog_data->uses_vmask = devinfo->verx10 < 125 ||
7367 shader->info.fs.needs_quad_helper_invocations ||
7368 shader->info.fs.needs_all_helper_invocations ||
7369 prog_data->per_coarse_pixel_dispatch;
7370
7371 prog_data->uses_src_w =
7372 BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_FRAG_COORD);
7373 prog_data->uses_src_depth =
7374 BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_FRAG_COORD) &&
7375 !prog_data->per_coarse_pixel_dispatch;
7376 prog_data->uses_depth_w_coefficients =
7377 BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_FRAG_COORD) &&
7378 prog_data->per_coarse_pixel_dispatch;
7379
7380 calculate_urb_setup(devinfo, key, prog_data, shader, mue_map);
7381 brw_compute_flat_inputs(prog_data, shader);
7382 }
7383
7384 /**
7385 * Pre-gfx6, the register file of the EUs was shared between threads,
7386 * and each thread used some subset allocated on a 16-register block
7387 * granularity. The unit states wanted these block counts.
7388 */
7389 static inline int
brw_register_blocks(int reg_count)7390 brw_register_blocks(int reg_count)
7391 {
7392 return ALIGN(reg_count, 16) / 16 - 1;
7393 }
7394
7395 const unsigned *
brw_compile_fs(const struct brw_compiler * compiler,void * mem_ctx,struct brw_compile_fs_params * params)7396 brw_compile_fs(const struct brw_compiler *compiler,
7397 void *mem_ctx,
7398 struct brw_compile_fs_params *params)
7399 {
7400 struct nir_shader *nir = params->nir;
7401 const struct brw_wm_prog_key *key = params->key;
7402 struct brw_wm_prog_data *prog_data = params->prog_data;
7403 bool allow_spilling = params->allow_spilling;
7404 const bool debug_enabled =
7405 INTEL_DEBUG(params->debug_flag ? params->debug_flag : DEBUG_WM);
7406
7407 prog_data->base.stage = MESA_SHADER_FRAGMENT;
7408 prog_data->base.ray_queries = nir->info.ray_queries;
7409 prog_data->base.total_scratch = 0;
7410
7411 const struct intel_device_info *devinfo = compiler->devinfo;
7412 const unsigned max_subgroup_size = compiler->devinfo->ver >= 6 ? 32 : 16;
7413
7414 brw_nir_apply_key(nir, compiler, &key->base, max_subgroup_size, true);
7415 brw_nir_lower_fs_inputs(nir, devinfo, key);
7416 brw_nir_lower_fs_outputs(nir);
7417
7418 if (devinfo->ver < 6)
7419 brw_setup_vue_interpolation(params->vue_map, nir, prog_data);
7420
7421 /* From the SKL PRM, Volume 7, "Alpha Coverage":
7422 * "If Pixel Shader outputs oMask, AlphaToCoverage is disabled in
7423 * hardware, regardless of the state setting for this feature."
7424 */
7425 if (devinfo->ver > 6 && key->alpha_to_coverage) {
7426 /* Run constant fold optimization in order to get the correct source
7427 * offset to determine render target 0 store instruction in
7428 * emit_alpha_to_coverage pass.
7429 */
7430 NIR_PASS_V(nir, nir_opt_constant_folding);
7431 NIR_PASS_V(nir, brw_nir_lower_alpha_to_coverage);
7432 }
7433
7434 NIR_PASS_V(nir, brw_nir_move_interpolation_to_top);
7435 brw_postprocess_nir(nir, compiler, true, debug_enabled,
7436 key->base.robust_buffer_access);
7437
7438 brw_nir_populate_wm_prog_data(nir, compiler->devinfo, key, prog_data,
7439 params->mue_map);
7440
7441 fs_visitor *v8 = NULL, *v16 = NULL, *v32 = NULL;
7442 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL, *simd32_cfg = NULL;
7443 float throughput = 0;
7444 bool has_spilled = false;
7445
7446 v8 = new fs_visitor(compiler, params->log_data, mem_ctx, &key->base,
7447 &prog_data->base, nir, 8,
7448 debug_enabled);
7449 if (!v8->run_fs(allow_spilling, false /* do_rep_send */)) {
7450 params->error_str = ralloc_strdup(mem_ctx, v8->fail_msg);
7451 delete v8;
7452 return NULL;
7453 } else if (!INTEL_DEBUG(DEBUG_NO8)) {
7454 simd8_cfg = v8->cfg;
7455 prog_data->base.dispatch_grf_start_reg = v8->payload.num_regs;
7456 prog_data->reg_blocks_8 = brw_register_blocks(v8->grf_used);
7457 const performance &perf = v8->performance_analysis.require();
7458 throughput = MAX2(throughput, perf.throughput);
7459 has_spilled = v8->spilled_any_registers;
7460 allow_spilling = false;
7461 }
7462
7463 /* Limit dispatch width to simd8 with dual source blending on gfx8.
7464 * See: https://gitlab.freedesktop.org/mesa/mesa/-/issues/1917
7465 */
7466 if (devinfo->ver == 8 && prog_data->dual_src_blend &&
7467 !INTEL_DEBUG(DEBUG_NO8)) {
7468 assert(!params->use_rep_send);
7469 v8->limit_dispatch_width(8, "gfx8 workaround: "
7470 "using SIMD8 when dual src blending.\n");
7471 }
7472
7473 if (key->coarse_pixel) {
7474 if (prog_data->dual_src_blend) {
7475 v8->limit_dispatch_width(8, "SIMD16 coarse pixel shading cannot"
7476 " use SIMD8 messages.\n");
7477 }
7478 v8->limit_dispatch_width(16, "SIMD32 not supported with coarse"
7479 " pixel shading.\n");
7480 }
7481
7482 if (nir->info.ray_queries > 0)
7483 v8->limit_dispatch_width(16, "SIMD32 with ray queries.\n");
7484
7485 if (!has_spilled &&
7486 v8->max_dispatch_width >= 16 &&
7487 (!INTEL_DEBUG(DEBUG_NO16) || params->use_rep_send)) {
7488 /* Try a SIMD16 compile */
7489 v16 = new fs_visitor(compiler, params->log_data, mem_ctx, &key->base,
7490 &prog_data->base, nir, 16,
7491 debug_enabled);
7492 v16->import_uniforms(v8);
7493 if (!v16->run_fs(allow_spilling, params->use_rep_send)) {
7494 brw_shader_perf_log(compiler, params->log_data,
7495 "SIMD16 shader failed to compile: %s\n",
7496 v16->fail_msg);
7497 } else {
7498 simd16_cfg = v16->cfg;
7499 prog_data->dispatch_grf_start_reg_16 = v16->payload.num_regs;
7500 prog_data->reg_blocks_16 = brw_register_blocks(v16->grf_used);
7501 const performance &perf = v16->performance_analysis.require();
7502 throughput = MAX2(throughput, perf.throughput);
7503 has_spilled = v16->spilled_any_registers;
7504 allow_spilling = false;
7505 }
7506 }
7507
7508 const bool simd16_failed = v16 && !simd16_cfg;
7509
7510 /* Currently, the compiler only supports SIMD32 on SNB+ */
7511 if (!has_spilled &&
7512 v8->max_dispatch_width >= 32 && !params->use_rep_send &&
7513 devinfo->ver >= 6 && !simd16_failed &&
7514 !INTEL_DEBUG(DEBUG_NO32)) {
7515 /* Try a SIMD32 compile */
7516 v32 = new fs_visitor(compiler, params->log_data, mem_ctx, &key->base,
7517 &prog_data->base, nir, 32,
7518 debug_enabled);
7519 v32->import_uniforms(v8);
7520 if (!v32->run_fs(allow_spilling, false)) {
7521 brw_shader_perf_log(compiler, params->log_data,
7522 "SIMD32 shader failed to compile: %s\n",
7523 v32->fail_msg);
7524 } else {
7525 const performance &perf = v32->performance_analysis.require();
7526
7527 if (!INTEL_DEBUG(DEBUG_DO32) && throughput >= perf.throughput) {
7528 brw_shader_perf_log(compiler, params->log_data,
7529 "SIMD32 shader inefficient\n");
7530 } else {
7531 simd32_cfg = v32->cfg;
7532 prog_data->dispatch_grf_start_reg_32 = v32->payload.num_regs;
7533 prog_data->reg_blocks_32 = brw_register_blocks(v32->grf_used);
7534 throughput = MAX2(throughput, perf.throughput);
7535 }
7536 }
7537 }
7538
7539 /* When the caller requests a repclear shader, they want SIMD16-only */
7540 if (params->use_rep_send)
7541 simd8_cfg = NULL;
7542
7543 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
7544 * at the top to select the shader. We've never implemented that.
7545 * Instead, we just give them exactly one shader and we pick the widest one
7546 * available.
7547 */
7548 if (compiler->devinfo->ver < 5) {
7549 if (simd32_cfg || simd16_cfg)
7550 simd8_cfg = NULL;
7551 if (simd32_cfg)
7552 simd16_cfg = NULL;
7553 }
7554
7555 /* If computed depth is enabled SNB only allows SIMD8. */
7556 if (compiler->devinfo->ver == 6 &&
7557 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF)
7558 assert(simd16_cfg == NULL && simd32_cfg == NULL);
7559
7560 if (compiler->devinfo->ver <= 5 && !simd8_cfg) {
7561 /* Iron lake and earlier only have one Dispatch GRF start field. Make
7562 * the data available in the base prog data struct for convenience.
7563 */
7564 if (simd16_cfg) {
7565 prog_data->base.dispatch_grf_start_reg =
7566 prog_data->dispatch_grf_start_reg_16;
7567 } else if (simd32_cfg) {
7568 prog_data->base.dispatch_grf_start_reg =
7569 prog_data->dispatch_grf_start_reg_32;
7570 }
7571 }
7572
7573 if (prog_data->persample_dispatch) {
7574 /* Starting with SandyBridge (where we first get MSAA), the different
7575 * pixel dispatch combinations are grouped into classifications A
7576 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On most hardware
7577 * generations, the only configurations supporting persample dispatch
7578 * are those in which only one dispatch width is enabled.
7579 *
7580 * The Gfx12 hardware spec has a similar dispatch grouping table, but
7581 * the following conflicting restriction applies (from the page on
7582 * "Structure_3DSTATE_PS_BODY"), so we need to keep the SIMD16 shader:
7583 *
7584 * "SIMD32 may only be enabled if SIMD16 or (dual)SIMD8 is also
7585 * enabled."
7586 */
7587 if (simd32_cfg || simd16_cfg)
7588 simd8_cfg = NULL;
7589 if (simd32_cfg && devinfo->ver < 12)
7590 simd16_cfg = NULL;
7591 }
7592
7593 fs_generator g(compiler, params->log_data, mem_ctx, &prog_data->base,
7594 v8->runtime_check_aads_emit, MESA_SHADER_FRAGMENT);
7595
7596 if (unlikely(debug_enabled)) {
7597 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
7598 nir->info.label ?
7599 nir->info.label : "unnamed",
7600 nir->info.name));
7601 }
7602
7603 struct brw_compile_stats *stats = params->stats;
7604
7605 if (simd8_cfg) {
7606 prog_data->dispatch_8 = true;
7607 g.generate_code(simd8_cfg, 8, v8->shader_stats,
7608 v8->performance_analysis.require(), stats);
7609 stats = stats ? stats + 1 : NULL;
7610 }
7611
7612 if (simd16_cfg) {
7613 prog_data->dispatch_16 = true;
7614 prog_data->prog_offset_16 = g.generate_code(
7615 simd16_cfg, 16, v16->shader_stats,
7616 v16->performance_analysis.require(), stats);
7617 stats = stats ? stats + 1 : NULL;
7618 }
7619
7620 if (simd32_cfg) {
7621 prog_data->dispatch_32 = true;
7622 prog_data->prog_offset_32 = g.generate_code(
7623 simd32_cfg, 32, v32->shader_stats,
7624 v32->performance_analysis.require(), stats);
7625 stats = stats ? stats + 1 : NULL;
7626 }
7627
7628 g.add_const_data(nir->constant_data, nir->constant_data_size);
7629
7630 delete v8;
7631 delete v16;
7632 delete v32;
7633
7634 return g.get_assembly();
7635 }
7636
7637 fs_reg
emit_work_group_id_setup()7638 fs_visitor::emit_work_group_id_setup()
7639 {
7640 assert(gl_shader_stage_uses_workgroup(stage));
7641
7642 fs_reg id = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
7643
7644 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
7645 bld.MOV(id, r0_1);
7646
7647 if (gl_shader_stage_is_compute(stage)) {
7648 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
7649 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
7650 bld.MOV(offset(id, bld, 1), r0_6);
7651 bld.MOV(offset(id, bld, 2), r0_7);
7652 } else {
7653 /* Task/Mesh have a single Workgroup ID dimension in the HW. */
7654 bld.MOV(offset(id, bld, 1), brw_imm_ud(0));
7655 bld.MOV(offset(id, bld, 2), brw_imm_ud(0));
7656 }
7657
7658 return id;
7659 }
7660
7661 unsigned
brw_cs_push_const_total_size(const struct brw_cs_prog_data * cs_prog_data,unsigned threads)7662 brw_cs_push_const_total_size(const struct brw_cs_prog_data *cs_prog_data,
7663 unsigned threads)
7664 {
7665 assert(cs_prog_data->push.per_thread.size % REG_SIZE == 0);
7666 assert(cs_prog_data->push.cross_thread.size % REG_SIZE == 0);
7667 return cs_prog_data->push.per_thread.size * threads +
7668 cs_prog_data->push.cross_thread.size;
7669 }
7670
7671 static void
fill_push_const_block_info(struct brw_push_const_block * block,unsigned dwords)7672 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
7673 {
7674 block->dwords = dwords;
7675 block->regs = DIV_ROUND_UP(dwords, 8);
7676 block->size = block->regs * 32;
7677 }
7678
7679 static void
cs_fill_push_const_info(const struct intel_device_info * devinfo,struct brw_cs_prog_data * cs_prog_data)7680 cs_fill_push_const_info(const struct intel_device_info *devinfo,
7681 struct brw_cs_prog_data *cs_prog_data)
7682 {
7683 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
7684 int subgroup_id_index = get_subgroup_id_param_index(devinfo, prog_data);
7685 bool cross_thread_supported = devinfo->verx10 >= 75;
7686
7687 /* The thread ID should be stored in the last param dword */
7688 assert(subgroup_id_index == -1 ||
7689 subgroup_id_index == (int)prog_data->nr_params - 1);
7690
7691 unsigned cross_thread_dwords, per_thread_dwords;
7692 if (!cross_thread_supported) {
7693 cross_thread_dwords = 0u;
7694 per_thread_dwords = prog_data->nr_params;
7695 } else if (subgroup_id_index >= 0) {
7696 /* Fill all but the last register with cross-thread payload */
7697 cross_thread_dwords = 8 * (subgroup_id_index / 8);
7698 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
7699 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
7700 } else {
7701 /* Fill all data using cross-thread payload */
7702 cross_thread_dwords = prog_data->nr_params;
7703 per_thread_dwords = 0u;
7704 }
7705
7706 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
7707 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
7708
7709 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
7710 cs_prog_data->push.per_thread.size == 0);
7711 assert(cs_prog_data->push.cross_thread.dwords +
7712 cs_prog_data->push.per_thread.dwords ==
7713 prog_data->nr_params);
7714 }
7715
7716 static bool
filter_simd(const nir_instr * instr,const void *)7717 filter_simd(const nir_instr *instr, const void * /* options */)
7718 {
7719 if (instr->type != nir_instr_type_intrinsic)
7720 return false;
7721
7722 switch (nir_instr_as_intrinsic(instr)->intrinsic) {
7723 case nir_intrinsic_load_simd_width_intel:
7724 case nir_intrinsic_load_subgroup_id:
7725 return true;
7726
7727 default:
7728 return false;
7729 }
7730 }
7731
7732 static nir_ssa_def *
lower_simd(nir_builder * b,nir_instr * instr,void * options)7733 lower_simd(nir_builder *b, nir_instr *instr, void *options)
7734 {
7735 uintptr_t simd_width = (uintptr_t)options;
7736
7737 switch (nir_instr_as_intrinsic(instr)->intrinsic) {
7738 case nir_intrinsic_load_simd_width_intel:
7739 return nir_imm_int(b, simd_width);
7740
7741 case nir_intrinsic_load_subgroup_id:
7742 /* If the whole workgroup fits in one thread, we can lower subgroup_id
7743 * to a constant zero.
7744 */
7745 if (!b->shader->info.workgroup_size_variable) {
7746 unsigned local_workgroup_size = b->shader->info.workgroup_size[0] *
7747 b->shader->info.workgroup_size[1] *
7748 b->shader->info.workgroup_size[2];
7749 if (local_workgroup_size <= simd_width)
7750 return nir_imm_int(b, 0);
7751 }
7752 return NULL;
7753
7754 default:
7755 return NULL;
7756 }
7757 }
7758
7759 bool
brw_nir_lower_simd(nir_shader * nir,unsigned dispatch_width)7760 brw_nir_lower_simd(nir_shader *nir, unsigned dispatch_width)
7761 {
7762 return nir_shader_lower_instructions(nir, filter_simd, lower_simd,
7763 (void *)(uintptr_t)dispatch_width);
7764 }
7765
7766 const unsigned *
brw_compile_cs(const struct brw_compiler * compiler,void * mem_ctx,struct brw_compile_cs_params * params)7767 brw_compile_cs(const struct brw_compiler *compiler,
7768 void *mem_ctx,
7769 struct brw_compile_cs_params *params)
7770 {
7771 const nir_shader *nir = params->nir;
7772 const struct brw_cs_prog_key *key = params->key;
7773 struct brw_cs_prog_data *prog_data = params->prog_data;
7774
7775 const bool debug_enabled =
7776 INTEL_DEBUG(params->debug_flag ? params->debug_flag : DEBUG_CS);
7777
7778 prog_data->base.stage = MESA_SHADER_COMPUTE;
7779 prog_data->base.total_shared = nir->info.shared_size;
7780 prog_data->base.ray_queries = nir->info.ray_queries;
7781 prog_data->base.total_scratch = 0;
7782
7783 if (!nir->info.workgroup_size_variable) {
7784 prog_data->local_size[0] = nir->info.workgroup_size[0];
7785 prog_data->local_size[1] = nir->info.workgroup_size[1];
7786 prog_data->local_size[2] = nir->info.workgroup_size[2];
7787 }
7788
7789 const unsigned required_dispatch_width =
7790 brw_required_dispatch_width(&nir->info);
7791
7792 fs_visitor *v[3] = {0};
7793 const char *error[3] = {0};
7794
7795 for (unsigned simd = 0; simd < 3; simd++) {
7796 if (!brw_simd_should_compile(mem_ctx, simd, compiler->devinfo, prog_data,
7797 required_dispatch_width, &error[simd]))
7798 continue;
7799
7800 const unsigned dispatch_width = 8u << simd;
7801
7802 nir_shader *shader = nir_shader_clone(mem_ctx, nir);
7803 brw_nir_apply_key(shader, compiler, &key->base,
7804 dispatch_width, true /* is_scalar */);
7805
7806 NIR_PASS(_, shader, brw_nir_lower_simd, dispatch_width);
7807
7808 /* Clean up after the local index and ID calculations. */
7809 NIR_PASS(_, shader, nir_opt_constant_folding);
7810 NIR_PASS(_, shader, nir_opt_dce);
7811
7812 brw_postprocess_nir(shader, compiler, true, debug_enabled,
7813 key->base.robust_buffer_access);
7814
7815 v[simd] = new fs_visitor(compiler, params->log_data, mem_ctx, &key->base,
7816 &prog_data->base, shader, dispatch_width,
7817 debug_enabled);
7818
7819 if (prog_data->prog_mask) {
7820 unsigned first = ffs(prog_data->prog_mask) - 1;
7821 v[simd]->import_uniforms(v[first]);
7822 }
7823
7824 const bool allow_spilling = !prog_data->prog_mask ||
7825 nir->info.workgroup_size_variable;
7826
7827 if (v[simd]->run_cs(allow_spilling)) {
7828 /* We should always be able to do SIMD32 for compute shaders. */
7829 assert(v[simd]->max_dispatch_width >= 32);
7830
7831 cs_fill_push_const_info(compiler->devinfo, prog_data);
7832
7833 brw_simd_mark_compiled(simd, prog_data, v[simd]->spilled_any_registers);
7834 } else {
7835 error[simd] = ralloc_strdup(mem_ctx, v[simd]->fail_msg);
7836 if (simd > 0) {
7837 brw_shader_perf_log(compiler, params->log_data,
7838 "SIMD%u shader failed to compile: %s\n",
7839 dispatch_width, v[simd]->fail_msg);
7840 }
7841 }
7842 }
7843
7844 const int selected_simd = brw_simd_select(prog_data);
7845 if (selected_simd < 0) {
7846 params->error_str = ralloc_asprintf(mem_ctx, "Can't compile shader: %s, %s and %s.\n",
7847 error[0], error[1], error[2]);;
7848 return NULL;
7849 }
7850
7851 assert(selected_simd < 3);
7852 fs_visitor *selected = v[selected_simd];
7853
7854 if (!nir->info.workgroup_size_variable)
7855 prog_data->prog_mask = 1 << selected_simd;
7856
7857 const unsigned *ret = NULL;
7858
7859 fs_generator g(compiler, params->log_data, mem_ctx, &prog_data->base,
7860 selected->runtime_check_aads_emit, MESA_SHADER_COMPUTE);
7861 if (unlikely(debug_enabled)) {
7862 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
7863 nir->info.label ?
7864 nir->info.label : "unnamed",
7865 nir->info.name);
7866 g.enable_debug(name);
7867 }
7868
7869 struct brw_compile_stats *stats = params->stats;
7870 for (unsigned simd = 0; simd < 3; simd++) {
7871 if (prog_data->prog_mask & (1u << simd)) {
7872 assert(v[simd]);
7873 prog_data->prog_offset[simd] =
7874 g.generate_code(v[simd]->cfg, 8u << simd, v[simd]->shader_stats,
7875 v[simd]->performance_analysis.require(), stats);
7876 stats = stats ? stats + 1 : NULL;
7877 }
7878 }
7879
7880 g.add_const_data(nir->constant_data, nir->constant_data_size);
7881
7882 ret = g.get_assembly();
7883
7884 delete v[0];
7885 delete v[1];
7886 delete v[2];
7887
7888 return ret;
7889 }
7890
7891 struct brw_cs_dispatch_info
brw_cs_get_dispatch_info(const struct intel_device_info * devinfo,const struct brw_cs_prog_data * prog_data,const unsigned * override_local_size)7892 brw_cs_get_dispatch_info(const struct intel_device_info *devinfo,
7893 const struct brw_cs_prog_data *prog_data,
7894 const unsigned *override_local_size)
7895 {
7896 struct brw_cs_dispatch_info info = {};
7897
7898 const unsigned *sizes =
7899 override_local_size ? override_local_size :
7900 prog_data->local_size;
7901
7902 const int simd =
7903 override_local_size ? brw_simd_select_for_workgroup_size(devinfo, prog_data, sizes) :
7904 brw_simd_select(prog_data);
7905 assert(simd >= 0 && simd < 3);
7906
7907 info.group_size = sizes[0] * sizes[1] * sizes[2];
7908 info.simd_size = 8u << simd;
7909 info.threads = DIV_ROUND_UP(info.group_size, info.simd_size);
7910
7911 const uint32_t remainder = info.group_size & (info.simd_size - 1);
7912 if (remainder > 0)
7913 info.right_mask = ~0u >> (32 - remainder);
7914 else
7915 info.right_mask = ~0u >> (32 - info.simd_size);
7916
7917 return info;
7918 }
7919
7920 static uint8_t
compile_single_bs(const struct brw_compiler * compiler,void * log_data,void * mem_ctx,const struct brw_bs_prog_key * key,struct brw_bs_prog_data * prog_data,nir_shader * shader,fs_generator * g,struct brw_compile_stats * stats,int * prog_offset,char ** error_str)7921 compile_single_bs(const struct brw_compiler *compiler, void *log_data,
7922 void *mem_ctx,
7923 const struct brw_bs_prog_key *key,
7924 struct brw_bs_prog_data *prog_data,
7925 nir_shader *shader,
7926 fs_generator *g,
7927 struct brw_compile_stats *stats,
7928 int *prog_offset,
7929 char **error_str)
7930 {
7931 const bool debug_enabled = INTEL_DEBUG(DEBUG_RT);
7932
7933 prog_data->base.stage = shader->info.stage;
7934 prog_data->max_stack_size = MAX2(prog_data->max_stack_size,
7935 shader->scratch_size);
7936
7937 const unsigned max_dispatch_width = 16;
7938 brw_nir_apply_key(shader, compiler, &key->base, max_dispatch_width, true);
7939 brw_postprocess_nir(shader, compiler, true, debug_enabled,
7940 key->base.robust_buffer_access);
7941
7942 fs_visitor *v = NULL, *v8 = NULL, *v16 = NULL;
7943 bool has_spilled = false;
7944
7945 uint8_t simd_size = 0;
7946 if (!INTEL_DEBUG(DEBUG_NO8)) {
7947 v8 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
7948 &prog_data->base, shader,
7949 8, debug_enabled);
7950 const bool allow_spilling = true;
7951 if (!v8->run_bs(allow_spilling)) {
7952 if (error_str)
7953 *error_str = ralloc_strdup(mem_ctx, v8->fail_msg);
7954 delete v8;
7955 return 0;
7956 } else {
7957 v = v8;
7958 simd_size = 8;
7959 if (v8->spilled_any_registers)
7960 has_spilled = true;
7961 }
7962 }
7963
7964 if (!has_spilled && !INTEL_DEBUG(DEBUG_NO16)) {
7965 v16 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
7966 &prog_data->base, shader,
7967 16, debug_enabled);
7968 const bool allow_spilling = (v == NULL);
7969 if (!v16->run_bs(allow_spilling)) {
7970 brw_shader_perf_log(compiler, log_data,
7971 "SIMD16 shader failed to compile: %s\n",
7972 v16->fail_msg);
7973 if (v == NULL) {
7974 assert(v8 == NULL);
7975 if (error_str) {
7976 *error_str = ralloc_asprintf(
7977 mem_ctx, "SIMD8 disabled and couldn't generate SIMD16: %s",
7978 v16->fail_msg);
7979 }
7980 delete v16;
7981 return 0;
7982 }
7983 } else {
7984 v = v16;
7985 simd_size = 16;
7986 if (v16->spilled_any_registers)
7987 has_spilled = true;
7988 }
7989 }
7990
7991 if (unlikely(v == NULL)) {
7992 assert(INTEL_DEBUG(DEBUG_NO8 | DEBUG_NO16));
7993 if (error_str) {
7994 *error_str = ralloc_strdup(mem_ctx,
7995 "Cannot satisfy INTEL_DEBUG flags SIMD restrictions");
7996 }
7997 return false;
7998 }
7999
8000 assert(v);
8001
8002 int offset = g->generate_code(v->cfg, simd_size, v->shader_stats,
8003 v->performance_analysis.require(), stats);
8004 if (prog_offset)
8005 *prog_offset = offset;
8006 else
8007 assert(offset == 0);
8008
8009 delete v8;
8010 delete v16;
8011
8012 return simd_size;
8013 }
8014
8015 uint64_t
brw_bsr(const struct intel_device_info * devinfo,uint32_t offset,uint8_t simd_size,uint8_t local_arg_offset)8016 brw_bsr(const struct intel_device_info *devinfo,
8017 uint32_t offset, uint8_t simd_size, uint8_t local_arg_offset)
8018 {
8019 assert(offset % 64 == 0);
8020 assert(simd_size == 8 || simd_size == 16);
8021 assert(local_arg_offset % 8 == 0);
8022
8023 return offset |
8024 SET_BITS(simd_size == 8, 4, 4) |
8025 SET_BITS(local_arg_offset / 8, 2, 0);
8026 }
8027
8028 const unsigned *
brw_compile_bs(const struct brw_compiler * compiler,void * mem_ctx,struct brw_compile_bs_params * params)8029 brw_compile_bs(const struct brw_compiler *compiler,
8030 void *mem_ctx,
8031 struct brw_compile_bs_params *params)
8032 {
8033 nir_shader *shader = params->nir;
8034 struct brw_bs_prog_data *prog_data = params->prog_data;
8035 unsigned num_resume_shaders = params->num_resume_shaders;
8036 nir_shader **resume_shaders = params->resume_shaders;
8037 const bool debug_enabled = INTEL_DEBUG(DEBUG_RT);
8038
8039 prog_data->base.stage = shader->info.stage;
8040 prog_data->base.ray_queries = shader->info.ray_queries;
8041 prog_data->base.total_scratch = 0;
8042
8043 prog_data->max_stack_size = 0;
8044
8045 fs_generator g(compiler, params->log_data, mem_ctx, &prog_data->base,
8046 false, shader->info.stage);
8047 if (unlikely(debug_enabled)) {
8048 char *name = ralloc_asprintf(mem_ctx, "%s %s shader %s",
8049 shader->info.label ?
8050 shader->info.label : "unnamed",
8051 gl_shader_stage_name(shader->info.stage),
8052 shader->info.name);
8053 g.enable_debug(name);
8054 }
8055
8056 prog_data->simd_size =
8057 compile_single_bs(compiler, params->log_data, mem_ctx,
8058 params->key, prog_data,
8059 shader, &g, params->stats, NULL, ¶ms->error_str);
8060 if (prog_data->simd_size == 0)
8061 return NULL;
8062
8063 uint64_t *resume_sbt = ralloc_array(mem_ctx, uint64_t, num_resume_shaders);
8064 for (unsigned i = 0; i < num_resume_shaders; i++) {
8065 if (INTEL_DEBUG(DEBUG_RT)) {
8066 char *name = ralloc_asprintf(mem_ctx, "%s %s resume(%u) shader %s",
8067 shader->info.label ?
8068 shader->info.label : "unnamed",
8069 gl_shader_stage_name(shader->info.stage),
8070 i, shader->info.name);
8071 g.enable_debug(name);
8072 }
8073
8074 /* TODO: Figure out shader stats etc. for resume shaders */
8075 int offset = 0;
8076 uint8_t simd_size =
8077 compile_single_bs(compiler, params->log_data, mem_ctx, params->key,
8078 prog_data, resume_shaders[i], &g, NULL, &offset,
8079 ¶ms->error_str);
8080 if (simd_size == 0)
8081 return NULL;
8082
8083 assert(offset > 0);
8084 resume_sbt[i] = brw_bsr(compiler->devinfo, offset, simd_size, 0);
8085 }
8086
8087 /* We only have one constant data so we want to make sure they're all the
8088 * same.
8089 */
8090 for (unsigned i = 0; i < num_resume_shaders; i++) {
8091 assert(resume_shaders[i]->constant_data_size ==
8092 shader->constant_data_size);
8093 assert(memcmp(resume_shaders[i]->constant_data,
8094 shader->constant_data,
8095 shader->constant_data_size) == 0);
8096 }
8097
8098 g.add_const_data(shader->constant_data, shader->constant_data_size);
8099 g.add_resume_sbt(num_resume_shaders, resume_sbt);
8100
8101 return g.get_assembly();
8102 }
8103
8104 /**
8105 * Test the dispatch mask packing assumptions of
8106 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
8107 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
8108 * executed with an unexpected dispatch mask.
8109 */
8110 static UNUSED void
brw_fs_test_dispatch_packing(const fs_builder & bld)8111 brw_fs_test_dispatch_packing(const fs_builder &bld)
8112 {
8113 const gl_shader_stage stage = bld.shader->stage;
8114 const bool uses_vmask =
8115 stage == MESA_SHADER_FRAGMENT &&
8116 brw_wm_prog_data(bld.shader->stage_prog_data)->uses_vmask;
8117
8118 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
8119 bld.shader->stage_prog_data)) {
8120 const fs_builder ubld = bld.exec_all().group(1, 0);
8121 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
8122 const fs_reg mask = uses_vmask ? brw_vmask_reg() : brw_dmask_reg();
8123
8124 ubld.ADD(tmp, mask, brw_imm_ud(1));
8125 ubld.AND(tmp, mask, tmp);
8126
8127 /* This will loop forever if the dispatch mask doesn't have the expected
8128 * form '2^n-1', in which case tmp will be non-zero.
8129 */
8130 bld.emit(BRW_OPCODE_DO);
8131 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
8132 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
8133 }
8134 }
8135
8136 unsigned
workgroup_size() const8137 fs_visitor::workgroup_size() const
8138 {
8139 assert(gl_shader_stage_uses_workgroup(stage));
8140 const struct brw_cs_prog_data *cs = brw_cs_prog_data(prog_data);
8141 return cs->local_size[0] * cs->local_size[1] * cs->local_size[2];
8142 }
8143