1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Deadline Scheduling Class (SCHED_DEADLINE)
4 *
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 *
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
12 *
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14 * Juri Lelli <juri.lelli@gmail.com>,
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
17 */
18 #include "sched.h"
19 #include "pelt.h"
20 #include "walt.h"
21
22 struct dl_bandwidth def_dl_bandwidth;
23
dl_task_of(struct sched_dl_entity * dl_se)24 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
25 {
26 return container_of(dl_se, struct task_struct, dl);
27 }
28
rq_of_dl_rq(struct dl_rq * dl_rq)29 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
30 {
31 return container_of(dl_rq, struct rq, dl);
32 }
33
dl_rq_of_se(struct sched_dl_entity * dl_se)34 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
35 {
36 struct task_struct *p = dl_task_of(dl_se);
37 struct rq *rq = task_rq(p);
38
39 return &rq->dl;
40 }
41
on_dl_rq(struct sched_dl_entity * dl_se)42 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
43 {
44 return !RB_EMPTY_NODE(&dl_se->rb_node);
45 }
46
47 #ifdef CONFIG_RT_MUTEXES
pi_of(struct sched_dl_entity * dl_se)48 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
49 {
50 return dl_se->pi_se;
51 }
52
is_dl_boosted(struct sched_dl_entity * dl_se)53 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
54 {
55 return pi_of(dl_se) != dl_se;
56 }
57 #else
pi_of(struct sched_dl_entity * dl_se)58 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
59 {
60 return dl_se;
61 }
62
is_dl_boosted(struct sched_dl_entity * dl_se)63 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
64 {
65 return false;
66 }
67 #endif
68
69 #ifdef CONFIG_SMP
dl_bw_of(int i)70 static inline struct dl_bw *dl_bw_of(int i)
71 {
72 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
73 "sched RCU must be held");
74 return &cpu_rq(i)->rd->dl_bw;
75 }
76
dl_bw_cpus(int i)77 static inline int dl_bw_cpus(int i)
78 {
79 struct root_domain *rd = cpu_rq(i)->rd;
80 int cpus;
81
82 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
83 "sched RCU must be held");
84
85 if (cpumask_subset(rd->span, cpu_active_mask))
86 return cpumask_weight(rd->span);
87
88 cpus = 0;
89
90 for_each_cpu_and(i, rd->span, cpu_active_mask)
91 cpus++;
92
93 return cpus;
94 }
95
__dl_bw_capacity(int i)96 static inline unsigned long __dl_bw_capacity(int i)
97 {
98 struct root_domain *rd = cpu_rq(i)->rd;
99 unsigned long cap = 0;
100
101 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
102 "sched RCU must be held");
103
104 for_each_cpu_and(i, rd->span, cpu_active_mask)
105 cap += capacity_orig_of(i);
106
107 return cap;
108 }
109
110 /*
111 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
112 * of the CPU the task is running on rather rd's \Sum CPU capacity.
113 */
dl_bw_capacity(int i)114 static inline unsigned long dl_bw_capacity(int i)
115 {
116 if (!static_branch_unlikely(&sched_asym_cpucapacity) &&
117 capacity_orig_of(i) == SCHED_CAPACITY_SCALE) {
118 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
119 } else {
120 return __dl_bw_capacity(i);
121 }
122 }
123 #else
dl_bw_of(int i)124 static inline struct dl_bw *dl_bw_of(int i)
125 {
126 return &cpu_rq(i)->dl.dl_bw;
127 }
128
dl_bw_cpus(int i)129 static inline int dl_bw_cpus(int i)
130 {
131 return 1;
132 }
133
dl_bw_capacity(int i)134 static inline unsigned long dl_bw_capacity(int i)
135 {
136 return SCHED_CAPACITY_SCALE;
137 }
138 #endif
139
140 static inline
__add_running_bw(u64 dl_bw,struct dl_rq * dl_rq)141 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
142 {
143 u64 old = dl_rq->running_bw;
144
145 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
146 dl_rq->running_bw += dl_bw;
147 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
148 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
149 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
150 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
151 }
152
153 static inline
__sub_running_bw(u64 dl_bw,struct dl_rq * dl_rq)154 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
155 {
156 u64 old = dl_rq->running_bw;
157
158 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
159 dl_rq->running_bw -= dl_bw;
160 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
161 if (dl_rq->running_bw > old)
162 dl_rq->running_bw = 0;
163 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
164 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
165 }
166
167 static inline
__add_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)168 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
169 {
170 u64 old = dl_rq->this_bw;
171
172 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
173 dl_rq->this_bw += dl_bw;
174 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
175 }
176
177 static inline
__sub_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)178 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
179 {
180 u64 old = dl_rq->this_bw;
181
182 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
183 dl_rq->this_bw -= dl_bw;
184 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
185 if (dl_rq->this_bw > old)
186 dl_rq->this_bw = 0;
187 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
188 }
189
190 static inline
add_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)191 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
192 {
193 if (!dl_entity_is_special(dl_se))
194 __add_rq_bw(dl_se->dl_bw, dl_rq);
195 }
196
197 static inline
sub_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)198 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
199 {
200 if (!dl_entity_is_special(dl_se))
201 __sub_rq_bw(dl_se->dl_bw, dl_rq);
202 }
203
204 static inline
add_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)205 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
206 {
207 if (!dl_entity_is_special(dl_se))
208 __add_running_bw(dl_se->dl_bw, dl_rq);
209 }
210
211 static inline
sub_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)212 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
213 {
214 if (!dl_entity_is_special(dl_se))
215 __sub_running_bw(dl_se->dl_bw, dl_rq);
216 }
217
dl_change_utilization(struct task_struct * p,u64 new_bw)218 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
219 {
220 struct rq *rq;
221
222 BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
223
224 if (task_on_rq_queued(p))
225 return;
226
227 rq = task_rq(p);
228 if (p->dl.dl_non_contending) {
229 sub_running_bw(&p->dl, &rq->dl);
230 p->dl.dl_non_contending = 0;
231 /*
232 * If the timer handler is currently running and the
233 * timer cannot be cancelled, inactive_task_timer()
234 * will see that dl_not_contending is not set, and
235 * will not touch the rq's active utilization,
236 * so we are still safe.
237 */
238 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
239 put_task_struct(p);
240 }
241 __sub_rq_bw(p->dl.dl_bw, &rq->dl);
242 __add_rq_bw(new_bw, &rq->dl);
243 }
244
245 /*
246 * The utilization of a task cannot be immediately removed from
247 * the rq active utilization (running_bw) when the task blocks.
248 * Instead, we have to wait for the so called "0-lag time".
249 *
250 * If a task blocks before the "0-lag time", a timer (the inactive
251 * timer) is armed, and running_bw is decreased when the timer
252 * fires.
253 *
254 * If the task wakes up again before the inactive timer fires,
255 * the timer is cancelled, whereas if the task wakes up after the
256 * inactive timer fired (and running_bw has been decreased) the
257 * task's utilization has to be added to running_bw again.
258 * A flag in the deadline scheduling entity (dl_non_contending)
259 * is used to avoid race conditions between the inactive timer handler
260 * and task wakeups.
261 *
262 * The following diagram shows how running_bw is updated. A task is
263 * "ACTIVE" when its utilization contributes to running_bw; an
264 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
265 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
266 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
267 * time already passed, which does not contribute to running_bw anymore.
268 * +------------------+
269 * wakeup | ACTIVE |
270 * +------------------>+ contending |
271 * | add_running_bw | |
272 * | +----+------+------+
273 * | | ^
274 * | dequeue | |
275 * +--------+-------+ | |
276 * | | t >= 0-lag | | wakeup
277 * | INACTIVE |<---------------+ |
278 * | | sub_running_bw | |
279 * +--------+-------+ | |
280 * ^ | |
281 * | t < 0-lag | |
282 * | | |
283 * | V |
284 * | +----+------+------+
285 * | sub_running_bw | ACTIVE |
286 * +-------------------+ |
287 * inactive timer | non contending |
288 * fired +------------------+
289 *
290 * The task_non_contending() function is invoked when a task
291 * blocks, and checks if the 0-lag time already passed or
292 * not (in the first case, it directly updates running_bw;
293 * in the second case, it arms the inactive timer).
294 *
295 * The task_contending() function is invoked when a task wakes
296 * up, and checks if the task is still in the "ACTIVE non contending"
297 * state or not (in the second case, it updates running_bw).
298 */
task_non_contending(struct task_struct * p)299 static void task_non_contending(struct task_struct *p)
300 {
301 struct sched_dl_entity *dl_se = &p->dl;
302 struct hrtimer *timer = &dl_se->inactive_timer;
303 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
304 struct rq *rq = rq_of_dl_rq(dl_rq);
305 s64 zerolag_time;
306
307 /*
308 * If this is a non-deadline task that has been boosted,
309 * do nothing
310 */
311 if (dl_se->dl_runtime == 0)
312 return;
313
314 if (dl_entity_is_special(dl_se))
315 return;
316
317 WARN_ON(dl_se->dl_non_contending);
318
319 zerolag_time = dl_se->deadline -
320 div64_long((dl_se->runtime * dl_se->dl_period),
321 dl_se->dl_runtime);
322
323 /*
324 * Using relative times instead of the absolute "0-lag time"
325 * allows to simplify the code
326 */
327 zerolag_time -= rq_clock(rq);
328
329 /*
330 * If the "0-lag time" already passed, decrease the active
331 * utilization now, instead of starting a timer
332 */
333 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
334 if (dl_task(p))
335 sub_running_bw(dl_se, dl_rq);
336 if (!dl_task(p) || p->state == TASK_DEAD) {
337 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
338
339 if (p->state == TASK_DEAD)
340 sub_rq_bw(&p->dl, &rq->dl);
341 raw_spin_lock(&dl_b->lock);
342 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
343 __dl_clear_params(p);
344 raw_spin_unlock(&dl_b->lock);
345 }
346
347 return;
348 }
349
350 dl_se->dl_non_contending = 1;
351 get_task_struct(p);
352 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
353 }
354
task_contending(struct sched_dl_entity * dl_se,int flags)355 static void task_contending(struct sched_dl_entity *dl_se, int flags)
356 {
357 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
358
359 /*
360 * If this is a non-deadline task that has been boosted,
361 * do nothing
362 */
363 if (dl_se->dl_runtime == 0)
364 return;
365
366 if (flags & ENQUEUE_MIGRATED)
367 add_rq_bw(dl_se, dl_rq);
368
369 if (dl_se->dl_non_contending) {
370 dl_se->dl_non_contending = 0;
371 /*
372 * If the timer handler is currently running and the
373 * timer cannot be cancelled, inactive_task_timer()
374 * will see that dl_not_contending is not set, and
375 * will not touch the rq's active utilization,
376 * so we are still safe.
377 */
378 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
379 put_task_struct(dl_task_of(dl_se));
380 } else {
381 /*
382 * Since "dl_non_contending" is not set, the
383 * task's utilization has already been removed from
384 * active utilization (either when the task blocked,
385 * when the "inactive timer" fired).
386 * So, add it back.
387 */
388 add_running_bw(dl_se, dl_rq);
389 }
390 }
391
is_leftmost(struct task_struct * p,struct dl_rq * dl_rq)392 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
393 {
394 struct sched_dl_entity *dl_se = &p->dl;
395
396 return dl_rq->root.rb_leftmost == &dl_se->rb_node;
397 }
398
399 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
400
init_dl_bandwidth(struct dl_bandwidth * dl_b,u64 period,u64 runtime)401 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
402 {
403 raw_spin_lock_init(&dl_b->dl_runtime_lock);
404 dl_b->dl_period = period;
405 dl_b->dl_runtime = runtime;
406 }
407
init_dl_bw(struct dl_bw * dl_b)408 void init_dl_bw(struct dl_bw *dl_b)
409 {
410 raw_spin_lock_init(&dl_b->lock);
411 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
412 if (global_rt_runtime() == RUNTIME_INF)
413 dl_b->bw = -1;
414 else
415 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
416 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
417 dl_b->total_bw = 0;
418 }
419
init_dl_rq(struct dl_rq * dl_rq)420 void init_dl_rq(struct dl_rq *dl_rq)
421 {
422 dl_rq->root = RB_ROOT_CACHED;
423
424 #ifdef CONFIG_SMP
425 /* zero means no -deadline tasks */
426 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
427
428 dl_rq->dl_nr_migratory = 0;
429 dl_rq->overloaded = 0;
430 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
431 #else
432 init_dl_bw(&dl_rq->dl_bw);
433 #endif
434
435 dl_rq->running_bw = 0;
436 dl_rq->this_bw = 0;
437 init_dl_rq_bw_ratio(dl_rq);
438 }
439
440 #ifdef CONFIG_SMP
441
dl_overloaded(struct rq * rq)442 static inline int dl_overloaded(struct rq *rq)
443 {
444 return atomic_read(&rq->rd->dlo_count);
445 }
446
dl_set_overload(struct rq * rq)447 static inline void dl_set_overload(struct rq *rq)
448 {
449 if (!rq->online)
450 return;
451
452 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
453 /*
454 * Must be visible before the overload count is
455 * set (as in sched_rt.c).
456 *
457 * Matched by the barrier in pull_dl_task().
458 */
459 smp_wmb();
460 atomic_inc(&rq->rd->dlo_count);
461 }
462
dl_clear_overload(struct rq * rq)463 static inline void dl_clear_overload(struct rq *rq)
464 {
465 if (!rq->online)
466 return;
467
468 atomic_dec(&rq->rd->dlo_count);
469 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
470 }
471
update_dl_migration(struct dl_rq * dl_rq)472 static void update_dl_migration(struct dl_rq *dl_rq)
473 {
474 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
475 if (!dl_rq->overloaded) {
476 dl_set_overload(rq_of_dl_rq(dl_rq));
477 dl_rq->overloaded = 1;
478 }
479 } else if (dl_rq->overloaded) {
480 dl_clear_overload(rq_of_dl_rq(dl_rq));
481 dl_rq->overloaded = 0;
482 }
483 }
484
inc_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)485 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
486 {
487 struct task_struct *p = dl_task_of(dl_se);
488
489 if (p->nr_cpus_allowed > 1)
490 dl_rq->dl_nr_migratory++;
491
492 update_dl_migration(dl_rq);
493 }
494
dec_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)495 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
496 {
497 struct task_struct *p = dl_task_of(dl_se);
498
499 if (p->nr_cpus_allowed > 1)
500 dl_rq->dl_nr_migratory--;
501
502 update_dl_migration(dl_rq);
503 }
504
505 /*
506 * The list of pushable -deadline task is not a plist, like in
507 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
508 */
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)509 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
510 {
511 struct dl_rq *dl_rq = &rq->dl;
512 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
513 struct rb_node *parent = NULL;
514 struct task_struct *entry;
515 bool leftmost = true;
516
517 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
518
519 while (*link) {
520 parent = *link;
521 entry = rb_entry(parent, struct task_struct,
522 pushable_dl_tasks);
523 if (dl_entity_preempt(&p->dl, &entry->dl))
524 link = &parent->rb_left;
525 else {
526 link = &parent->rb_right;
527 leftmost = false;
528 }
529 }
530
531 if (leftmost)
532 dl_rq->earliest_dl.next = p->dl.deadline;
533
534 rb_link_node(&p->pushable_dl_tasks, parent, link);
535 rb_insert_color_cached(&p->pushable_dl_tasks,
536 &dl_rq->pushable_dl_tasks_root, leftmost);
537 }
538
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)539 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
540 {
541 struct dl_rq *dl_rq = &rq->dl;
542
543 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
544 return;
545
546 if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
547 struct rb_node *next_node;
548
549 next_node = rb_next(&p->pushable_dl_tasks);
550 if (next_node) {
551 dl_rq->earliest_dl.next = rb_entry(next_node,
552 struct task_struct, pushable_dl_tasks)->dl.deadline;
553 }
554 }
555
556 rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
557 RB_CLEAR_NODE(&p->pushable_dl_tasks);
558 }
559
has_pushable_dl_tasks(struct rq * rq)560 static inline int has_pushable_dl_tasks(struct rq *rq)
561 {
562 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
563 }
564
565 static int push_dl_task(struct rq *rq);
566
need_pull_dl_task(struct rq * rq,struct task_struct * prev)567 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
568 {
569 return dl_task(prev);
570 }
571
572 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
573 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
574
575 static void push_dl_tasks(struct rq *);
576 static void pull_dl_task(struct rq *);
577
deadline_queue_push_tasks(struct rq * rq)578 static inline void deadline_queue_push_tasks(struct rq *rq)
579 {
580 if (!has_pushable_dl_tasks(rq))
581 return;
582
583 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
584 }
585
deadline_queue_pull_task(struct rq * rq)586 static inline void deadline_queue_pull_task(struct rq *rq)
587 {
588 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
589 }
590
591 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
592
dl_task_offline_migration(struct rq * rq,struct task_struct * p)593 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
594 {
595 struct rq *later_rq = NULL;
596 struct dl_bw *dl_b;
597
598 later_rq = find_lock_later_rq(p, rq);
599 if (!later_rq) {
600 int cpu;
601
602 /*
603 * If we cannot preempt any rq, fall back to pick any
604 * online CPU:
605 */
606 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
607 if (cpu >= nr_cpu_ids) {
608 /*
609 * Failed to find any suitable CPU.
610 * The task will never come back!
611 */
612 BUG_ON(dl_bandwidth_enabled());
613
614 /*
615 * If admission control is disabled we
616 * try a little harder to let the task
617 * run.
618 */
619 cpu = cpumask_any(cpu_active_mask);
620 }
621 later_rq = cpu_rq(cpu);
622 double_lock_balance(rq, later_rq);
623 }
624
625 if (p->dl.dl_non_contending || p->dl.dl_throttled) {
626 /*
627 * Inactive timer is armed (or callback is running, but
628 * waiting for us to release rq locks). In any case, when it
629 * will fire (or continue), it will see running_bw of this
630 * task migrated to later_rq (and correctly handle it).
631 */
632 sub_running_bw(&p->dl, &rq->dl);
633 sub_rq_bw(&p->dl, &rq->dl);
634
635 add_rq_bw(&p->dl, &later_rq->dl);
636 add_running_bw(&p->dl, &later_rq->dl);
637 } else {
638 sub_rq_bw(&p->dl, &rq->dl);
639 add_rq_bw(&p->dl, &later_rq->dl);
640 }
641
642 /*
643 * And we finally need to fixup root_domain(s) bandwidth accounting,
644 * since p is still hanging out in the old (now moved to default) root
645 * domain.
646 */
647 dl_b = &rq->rd->dl_bw;
648 raw_spin_lock(&dl_b->lock);
649 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
650 raw_spin_unlock(&dl_b->lock);
651
652 dl_b = &later_rq->rd->dl_bw;
653 raw_spin_lock(&dl_b->lock);
654 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
655 raw_spin_unlock(&dl_b->lock);
656
657 set_task_cpu(p, later_rq->cpu);
658 double_unlock_balance(later_rq, rq);
659
660 return later_rq;
661 }
662
663 #else
664
665 static inline
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)666 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
667 {
668 }
669
670 static inline
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)671 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
672 {
673 }
674
675 static inline
inc_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)676 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
677 {
678 }
679
680 static inline
dec_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)681 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
682 {
683 }
684
need_pull_dl_task(struct rq * rq,struct task_struct * prev)685 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
686 {
687 return false;
688 }
689
pull_dl_task(struct rq * rq)690 static inline void pull_dl_task(struct rq *rq)
691 {
692 }
693
deadline_queue_push_tasks(struct rq * rq)694 static inline void deadline_queue_push_tasks(struct rq *rq)
695 {
696 }
697
deadline_queue_pull_task(struct rq * rq)698 static inline void deadline_queue_pull_task(struct rq *rq)
699 {
700 }
701 #endif /* CONFIG_SMP */
702
703 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
704 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
705 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
706
707 /*
708 * We are being explicitly informed that a new instance is starting,
709 * and this means that:
710 * - the absolute deadline of the entity has to be placed at
711 * current time + relative deadline;
712 * - the runtime of the entity has to be set to the maximum value.
713 *
714 * The capability of specifying such event is useful whenever a -deadline
715 * entity wants to (try to!) synchronize its behaviour with the scheduler's
716 * one, and to (try to!) reconcile itself with its own scheduling
717 * parameters.
718 */
setup_new_dl_entity(struct sched_dl_entity * dl_se)719 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
720 {
721 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
722 struct rq *rq = rq_of_dl_rq(dl_rq);
723
724 WARN_ON(is_dl_boosted(dl_se));
725 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
726
727 /*
728 * We are racing with the deadline timer. So, do nothing because
729 * the deadline timer handler will take care of properly recharging
730 * the runtime and postponing the deadline
731 */
732 if (dl_se->dl_throttled)
733 return;
734
735 /*
736 * We use the regular wall clock time to set deadlines in the
737 * future; in fact, we must consider execution overheads (time
738 * spent on hardirq context, etc.).
739 */
740 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
741 dl_se->runtime = dl_se->dl_runtime;
742 }
743
744 /*
745 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
746 * possibility of a entity lasting more than what it declared, and thus
747 * exhausting its runtime.
748 *
749 * Here we are interested in making runtime overrun possible, but we do
750 * not want a entity which is misbehaving to affect the scheduling of all
751 * other entities.
752 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
753 * is used, in order to confine each entity within its own bandwidth.
754 *
755 * This function deals exactly with that, and ensures that when the runtime
756 * of a entity is replenished, its deadline is also postponed. That ensures
757 * the overrunning entity can't interfere with other entity in the system and
758 * can't make them miss their deadlines. Reasons why this kind of overruns
759 * could happen are, typically, a entity voluntarily trying to overcome its
760 * runtime, or it just underestimated it during sched_setattr().
761 */
replenish_dl_entity(struct sched_dl_entity * dl_se)762 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
763 {
764 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
765 struct rq *rq = rq_of_dl_rq(dl_rq);
766
767 BUG_ON(pi_of(dl_se)->dl_runtime <= 0);
768
769 /*
770 * This could be the case for a !-dl task that is boosted.
771 * Just go with full inherited parameters.
772 */
773 if (dl_se->dl_deadline == 0) {
774 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
775 dl_se->runtime = pi_of(dl_se)->dl_runtime;
776 }
777
778 if (dl_se->dl_yielded && dl_se->runtime > 0)
779 dl_se->runtime = 0;
780
781 /*
782 * We keep moving the deadline away until we get some
783 * available runtime for the entity. This ensures correct
784 * handling of situations where the runtime overrun is
785 * arbitrary large.
786 */
787 while (dl_se->runtime <= 0) {
788 dl_se->deadline += pi_of(dl_se)->dl_period;
789 dl_se->runtime += pi_of(dl_se)->dl_runtime;
790 }
791
792 /*
793 * At this point, the deadline really should be "in
794 * the future" with respect to rq->clock. If it's
795 * not, we are, for some reason, lagging too much!
796 * Anyway, after having warn userspace abut that,
797 * we still try to keep the things running by
798 * resetting the deadline and the budget of the
799 * entity.
800 */
801 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
802 printk_deferred_once("sched: DL replenish lagged too much\n");
803 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
804 dl_se->runtime = pi_of(dl_se)->dl_runtime;
805 }
806
807 if (dl_se->dl_yielded)
808 dl_se->dl_yielded = 0;
809 if (dl_se->dl_throttled)
810 dl_se->dl_throttled = 0;
811 }
812
813 /*
814 * Here we check if --at time t-- an entity (which is probably being
815 * [re]activated or, in general, enqueued) can use its remaining runtime
816 * and its current deadline _without_ exceeding the bandwidth it is
817 * assigned (function returns true if it can't). We are in fact applying
818 * one of the CBS rules: when a task wakes up, if the residual runtime
819 * over residual deadline fits within the allocated bandwidth, then we
820 * can keep the current (absolute) deadline and residual budget without
821 * disrupting the schedulability of the system. Otherwise, we should
822 * refill the runtime and set the deadline a period in the future,
823 * because keeping the current (absolute) deadline of the task would
824 * result in breaking guarantees promised to other tasks (refer to
825 * Documentation/scheduler/sched-deadline.rst for more information).
826 *
827 * This function returns true if:
828 *
829 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
830 *
831 * IOW we can't recycle current parameters.
832 *
833 * Notice that the bandwidth check is done against the deadline. For
834 * task with deadline equal to period this is the same of using
835 * dl_period instead of dl_deadline in the equation above.
836 */
dl_entity_overflow(struct sched_dl_entity * dl_se,u64 t)837 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
838 {
839 u64 left, right;
840
841 /*
842 * left and right are the two sides of the equation above,
843 * after a bit of shuffling to use multiplications instead
844 * of divisions.
845 *
846 * Note that none of the time values involved in the two
847 * multiplications are absolute: dl_deadline and dl_runtime
848 * are the relative deadline and the maximum runtime of each
849 * instance, runtime is the runtime left for the last instance
850 * and (deadline - t), since t is rq->clock, is the time left
851 * to the (absolute) deadline. Even if overflowing the u64 type
852 * is very unlikely to occur in both cases, here we scale down
853 * as we want to avoid that risk at all. Scaling down by 10
854 * means that we reduce granularity to 1us. We are fine with it,
855 * since this is only a true/false check and, anyway, thinking
856 * of anything below microseconds resolution is actually fiction
857 * (but still we want to give the user that illusion >;).
858 */
859 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
860 right = ((dl_se->deadline - t) >> DL_SCALE) *
861 (pi_of(dl_se)->dl_runtime >> DL_SCALE);
862
863 return dl_time_before(right, left);
864 }
865
866 /*
867 * Revised wakeup rule [1]: For self-suspending tasks, rather then
868 * re-initializing task's runtime and deadline, the revised wakeup
869 * rule adjusts the task's runtime to avoid the task to overrun its
870 * density.
871 *
872 * Reasoning: a task may overrun the density if:
873 * runtime / (deadline - t) > dl_runtime / dl_deadline
874 *
875 * Therefore, runtime can be adjusted to:
876 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
877 *
878 * In such way that runtime will be equal to the maximum density
879 * the task can use without breaking any rule.
880 *
881 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
882 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
883 */
884 static void
update_dl_revised_wakeup(struct sched_dl_entity * dl_se,struct rq * rq)885 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
886 {
887 u64 laxity = dl_se->deadline - rq_clock(rq);
888
889 /*
890 * If the task has deadline < period, and the deadline is in the past,
891 * it should already be throttled before this check.
892 *
893 * See update_dl_entity() comments for further details.
894 */
895 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
896
897 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
898 }
899
900 /*
901 * Regarding the deadline, a task with implicit deadline has a relative
902 * deadline == relative period. A task with constrained deadline has a
903 * relative deadline <= relative period.
904 *
905 * We support constrained deadline tasks. However, there are some restrictions
906 * applied only for tasks which do not have an implicit deadline. See
907 * update_dl_entity() to know more about such restrictions.
908 *
909 * The dl_is_implicit() returns true if the task has an implicit deadline.
910 */
dl_is_implicit(struct sched_dl_entity * dl_se)911 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
912 {
913 return dl_se->dl_deadline == dl_se->dl_period;
914 }
915
916 /*
917 * When a deadline entity is placed in the runqueue, its runtime and deadline
918 * might need to be updated. This is done by a CBS wake up rule. There are two
919 * different rules: 1) the original CBS; and 2) the Revisited CBS.
920 *
921 * When the task is starting a new period, the Original CBS is used. In this
922 * case, the runtime is replenished and a new absolute deadline is set.
923 *
924 * When a task is queued before the begin of the next period, using the
925 * remaining runtime and deadline could make the entity to overflow, see
926 * dl_entity_overflow() to find more about runtime overflow. When such case
927 * is detected, the runtime and deadline need to be updated.
928 *
929 * If the task has an implicit deadline, i.e., deadline == period, the Original
930 * CBS is applied. the runtime is replenished and a new absolute deadline is
931 * set, as in the previous cases.
932 *
933 * However, the Original CBS does not work properly for tasks with
934 * deadline < period, which are said to have a constrained deadline. By
935 * applying the Original CBS, a constrained deadline task would be able to run
936 * runtime/deadline in a period. With deadline < period, the task would
937 * overrun the runtime/period allowed bandwidth, breaking the admission test.
938 *
939 * In order to prevent this misbehave, the Revisited CBS is used for
940 * constrained deadline tasks when a runtime overflow is detected. In the
941 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
942 * the remaining runtime of the task is reduced to avoid runtime overflow.
943 * Please refer to the comments update_dl_revised_wakeup() function to find
944 * more about the Revised CBS rule.
945 */
update_dl_entity(struct sched_dl_entity * dl_se)946 static void update_dl_entity(struct sched_dl_entity *dl_se)
947 {
948 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
949 struct rq *rq = rq_of_dl_rq(dl_rq);
950
951 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
952 dl_entity_overflow(dl_se, rq_clock(rq))) {
953
954 if (unlikely(!dl_is_implicit(dl_se) &&
955 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
956 !is_dl_boosted(dl_se))) {
957 update_dl_revised_wakeup(dl_se, rq);
958 return;
959 }
960
961 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
962 dl_se->runtime = pi_of(dl_se)->dl_runtime;
963 }
964 }
965
dl_next_period(struct sched_dl_entity * dl_se)966 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
967 {
968 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
969 }
970
971 /*
972 * If the entity depleted all its runtime, and if we want it to sleep
973 * while waiting for some new execution time to become available, we
974 * set the bandwidth replenishment timer to the replenishment instant
975 * and try to activate it.
976 *
977 * Notice that it is important for the caller to know if the timer
978 * actually started or not (i.e., the replenishment instant is in
979 * the future or in the past).
980 */
start_dl_timer(struct task_struct * p)981 static int start_dl_timer(struct task_struct *p)
982 {
983 struct sched_dl_entity *dl_se = &p->dl;
984 struct hrtimer *timer = &dl_se->dl_timer;
985 struct rq *rq = task_rq(p);
986 ktime_t now, act;
987 s64 delta;
988
989 lockdep_assert_held(&rq->lock);
990
991 /*
992 * We want the timer to fire at the deadline, but considering
993 * that it is actually coming from rq->clock and not from
994 * hrtimer's time base reading.
995 */
996 act = ns_to_ktime(dl_next_period(dl_se));
997 now = hrtimer_cb_get_time(timer);
998 delta = ktime_to_ns(now) - rq_clock(rq);
999 act = ktime_add_ns(act, delta);
1000
1001 /*
1002 * If the expiry time already passed, e.g., because the value
1003 * chosen as the deadline is too small, don't even try to
1004 * start the timer in the past!
1005 */
1006 if (ktime_us_delta(act, now) < 0)
1007 return 0;
1008
1009 /*
1010 * !enqueued will guarantee another callback; even if one is already in
1011 * progress. This ensures a balanced {get,put}_task_struct().
1012 *
1013 * The race against __run_timer() clearing the enqueued state is
1014 * harmless because we're holding task_rq()->lock, therefore the timer
1015 * expiring after we've done the check will wait on its task_rq_lock()
1016 * and observe our state.
1017 */
1018 if (!hrtimer_is_queued(timer)) {
1019 get_task_struct(p);
1020 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1021 }
1022
1023 return 1;
1024 }
1025
1026 /*
1027 * This is the bandwidth enforcement timer callback. If here, we know
1028 * a task is not on its dl_rq, since the fact that the timer was running
1029 * means the task is throttled and needs a runtime replenishment.
1030 *
1031 * However, what we actually do depends on the fact the task is active,
1032 * (it is on its rq) or has been removed from there by a call to
1033 * dequeue_task_dl(). In the former case we must issue the runtime
1034 * replenishment and add the task back to the dl_rq; in the latter, we just
1035 * do nothing but clearing dl_throttled, so that runtime and deadline
1036 * updating (and the queueing back to dl_rq) will be done by the
1037 * next call to enqueue_task_dl().
1038 */
dl_task_timer(struct hrtimer * timer)1039 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1040 {
1041 struct sched_dl_entity *dl_se = container_of(timer,
1042 struct sched_dl_entity,
1043 dl_timer);
1044 struct task_struct *p = dl_task_of(dl_se);
1045 struct rq_flags rf;
1046 struct rq *rq;
1047
1048 rq = task_rq_lock(p, &rf);
1049
1050 /*
1051 * The task might have changed its scheduling policy to something
1052 * different than SCHED_DEADLINE (through switched_from_dl()).
1053 */
1054 if (!dl_task(p))
1055 goto unlock;
1056
1057 /*
1058 * The task might have been boosted by someone else and might be in the
1059 * boosting/deboosting path, its not throttled.
1060 */
1061 if (is_dl_boosted(dl_se))
1062 goto unlock;
1063
1064 /*
1065 * Spurious timer due to start_dl_timer() race; or we already received
1066 * a replenishment from rt_mutex_setprio().
1067 */
1068 if (!dl_se->dl_throttled)
1069 goto unlock;
1070
1071 sched_clock_tick();
1072 update_rq_clock(rq);
1073
1074 /*
1075 * If the throttle happened during sched-out; like:
1076 *
1077 * schedule()
1078 * deactivate_task()
1079 * dequeue_task_dl()
1080 * update_curr_dl()
1081 * start_dl_timer()
1082 * __dequeue_task_dl()
1083 * prev->on_rq = 0;
1084 *
1085 * We can be both throttled and !queued. Replenish the counter
1086 * but do not enqueue -- wait for our wakeup to do that.
1087 */
1088 if (!task_on_rq_queued(p)) {
1089 replenish_dl_entity(dl_se);
1090 goto unlock;
1091 }
1092
1093 #ifdef CONFIG_SMP
1094 if (unlikely(!rq->online)) {
1095 /*
1096 * If the runqueue is no longer available, migrate the
1097 * task elsewhere. This necessarily changes rq.
1098 */
1099 lockdep_unpin_lock(&rq->lock, rf.cookie);
1100 rq = dl_task_offline_migration(rq, p);
1101 rf.cookie = lockdep_pin_lock(&rq->lock);
1102 update_rq_clock(rq);
1103
1104 /*
1105 * Now that the task has been migrated to the new RQ and we
1106 * have that locked, proceed as normal and enqueue the task
1107 * there.
1108 */
1109 }
1110 #endif
1111
1112 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1113 if (dl_task(rq->curr))
1114 check_preempt_curr_dl(rq, p, 0);
1115 else
1116 resched_curr(rq);
1117
1118 #ifdef CONFIG_SMP
1119 /*
1120 * Queueing this task back might have overloaded rq, check if we need
1121 * to kick someone away.
1122 */
1123 if (has_pushable_dl_tasks(rq)) {
1124 /*
1125 * Nothing relies on rq->lock after this, so its safe to drop
1126 * rq->lock.
1127 */
1128 rq_unpin_lock(rq, &rf);
1129 push_dl_task(rq);
1130 rq_repin_lock(rq, &rf);
1131 }
1132 #endif
1133
1134 unlock:
1135 task_rq_unlock(rq, p, &rf);
1136
1137 /*
1138 * This can free the task_struct, including this hrtimer, do not touch
1139 * anything related to that after this.
1140 */
1141 put_task_struct(p);
1142
1143 return HRTIMER_NORESTART;
1144 }
1145
init_dl_task_timer(struct sched_dl_entity * dl_se)1146 void init_dl_task_timer(struct sched_dl_entity *dl_se)
1147 {
1148 struct hrtimer *timer = &dl_se->dl_timer;
1149
1150 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1151 timer->function = dl_task_timer;
1152 }
1153
1154 /*
1155 * During the activation, CBS checks if it can reuse the current task's
1156 * runtime and period. If the deadline of the task is in the past, CBS
1157 * cannot use the runtime, and so it replenishes the task. This rule
1158 * works fine for implicit deadline tasks (deadline == period), and the
1159 * CBS was designed for implicit deadline tasks. However, a task with
1160 * constrained deadline (deadline < period) might be awakened after the
1161 * deadline, but before the next period. In this case, replenishing the
1162 * task would allow it to run for runtime / deadline. As in this case
1163 * deadline < period, CBS enables a task to run for more than the
1164 * runtime / period. In a very loaded system, this can cause a domino
1165 * effect, making other tasks miss their deadlines.
1166 *
1167 * To avoid this problem, in the activation of a constrained deadline
1168 * task after the deadline but before the next period, throttle the
1169 * task and set the replenishing timer to the begin of the next period,
1170 * unless it is boosted.
1171 */
dl_check_constrained_dl(struct sched_dl_entity * dl_se)1172 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1173 {
1174 struct task_struct *p = dl_task_of(dl_se);
1175 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1176
1177 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1178 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1179 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p)))
1180 return;
1181 dl_se->dl_throttled = 1;
1182 if (dl_se->runtime > 0)
1183 dl_se->runtime = 0;
1184 }
1185 }
1186
1187 static
dl_runtime_exceeded(struct sched_dl_entity * dl_se)1188 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1189 {
1190 return (dl_se->runtime <= 0);
1191 }
1192
1193 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1194
1195 /*
1196 * This function implements the GRUB accounting rule:
1197 * according to the GRUB reclaiming algorithm, the runtime is
1198 * not decreased as "dq = -dt", but as
1199 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1200 * where u is the utilization of the task, Umax is the maximum reclaimable
1201 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1202 * as the difference between the "total runqueue utilization" and the
1203 * runqueue active utilization, and Uextra is the (per runqueue) extra
1204 * reclaimable utilization.
1205 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1206 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1207 * BW_SHIFT.
1208 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1209 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1210 * Since delta is a 64 bit variable, to have an overflow its value
1211 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1212 * So, overflow is not an issue here.
1213 */
grub_reclaim(u64 delta,struct rq * rq,struct sched_dl_entity * dl_se)1214 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1215 {
1216 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1217 u64 u_act;
1218 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1219
1220 /*
1221 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1222 * we compare u_inact + rq->dl.extra_bw with
1223 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1224 * u_inact + rq->dl.extra_bw can be larger than
1225 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1226 * leading to wrong results)
1227 */
1228 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1229 u_act = u_act_min;
1230 else
1231 u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1232
1233 return (delta * u_act) >> BW_SHIFT;
1234 }
1235
1236 /*
1237 * Update the current task's runtime statistics (provided it is still
1238 * a -deadline task and has not been removed from the dl_rq).
1239 */
update_curr_dl(struct rq * rq)1240 static void update_curr_dl(struct rq *rq)
1241 {
1242 struct task_struct *curr = rq->curr;
1243 struct sched_dl_entity *dl_se = &curr->dl;
1244 u64 delta_exec, scaled_delta_exec;
1245 int cpu = cpu_of(rq);
1246 u64 now;
1247
1248 if (!dl_task(curr) || !on_dl_rq(dl_se))
1249 return;
1250
1251 /*
1252 * Consumed budget is computed considering the time as
1253 * observed by schedulable tasks (excluding time spent
1254 * in hardirq context, etc.). Deadlines are instead
1255 * computed using hard walltime. This seems to be the more
1256 * natural solution, but the full ramifications of this
1257 * approach need further study.
1258 */
1259 now = rq_clock_task(rq);
1260 delta_exec = now - curr->se.exec_start;
1261 if (unlikely((s64)delta_exec <= 0)) {
1262 if (unlikely(dl_se->dl_yielded))
1263 goto throttle;
1264 return;
1265 }
1266
1267 schedstat_set(curr->se.statistics.exec_max,
1268 max(curr->se.statistics.exec_max, delta_exec));
1269
1270 curr->se.sum_exec_runtime += delta_exec;
1271 account_group_exec_runtime(curr, delta_exec);
1272
1273 curr->se.exec_start = now;
1274 cgroup_account_cputime(curr, delta_exec);
1275
1276 if (dl_entity_is_special(dl_se))
1277 return;
1278
1279 /*
1280 * For tasks that participate in GRUB, we implement GRUB-PA: the
1281 * spare reclaimed bandwidth is used to clock down frequency.
1282 *
1283 * For the others, we still need to scale reservation parameters
1284 * according to current frequency and CPU maximum capacity.
1285 */
1286 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1287 scaled_delta_exec = grub_reclaim(delta_exec,
1288 rq,
1289 &curr->dl);
1290 } else {
1291 unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1292 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1293
1294 scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1295 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1296 }
1297
1298 dl_se->runtime -= scaled_delta_exec;
1299
1300 throttle:
1301 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1302 dl_se->dl_throttled = 1;
1303
1304 /* If requested, inform the user about runtime overruns. */
1305 if (dl_runtime_exceeded(dl_se) &&
1306 (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1307 dl_se->dl_overrun = 1;
1308
1309 __dequeue_task_dl(rq, curr, 0);
1310 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr)))
1311 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1312
1313 if (!is_leftmost(curr, &rq->dl))
1314 resched_curr(rq);
1315 }
1316
1317 /*
1318 * Because -- for now -- we share the rt bandwidth, we need to
1319 * account our runtime there too, otherwise actual rt tasks
1320 * would be able to exceed the shared quota.
1321 *
1322 * Account to the root rt group for now.
1323 *
1324 * The solution we're working towards is having the RT groups scheduled
1325 * using deadline servers -- however there's a few nasties to figure
1326 * out before that can happen.
1327 */
1328 if (rt_bandwidth_enabled()) {
1329 struct rt_rq *rt_rq = &rq->rt;
1330
1331 raw_spin_lock(&rt_rq->rt_runtime_lock);
1332 /*
1333 * We'll let actual RT tasks worry about the overflow here, we
1334 * have our own CBS to keep us inline; only account when RT
1335 * bandwidth is relevant.
1336 */
1337 if (sched_rt_bandwidth_account(rt_rq))
1338 rt_rq->rt_time += delta_exec;
1339 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1340 }
1341 }
1342
inactive_task_timer(struct hrtimer * timer)1343 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1344 {
1345 struct sched_dl_entity *dl_se = container_of(timer,
1346 struct sched_dl_entity,
1347 inactive_timer);
1348 struct task_struct *p = dl_task_of(dl_se);
1349 struct rq_flags rf;
1350 struct rq *rq;
1351
1352 rq = task_rq_lock(p, &rf);
1353
1354 sched_clock_tick();
1355 update_rq_clock(rq);
1356
1357 if (!dl_task(p) || p->state == TASK_DEAD) {
1358 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1359
1360 if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1361 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1362 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1363 dl_se->dl_non_contending = 0;
1364 }
1365
1366 raw_spin_lock(&dl_b->lock);
1367 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1368 raw_spin_unlock(&dl_b->lock);
1369 __dl_clear_params(p);
1370
1371 goto unlock;
1372 }
1373 if (dl_se->dl_non_contending == 0)
1374 goto unlock;
1375
1376 sub_running_bw(dl_se, &rq->dl);
1377 dl_se->dl_non_contending = 0;
1378 unlock:
1379 task_rq_unlock(rq, p, &rf);
1380 put_task_struct(p);
1381
1382 return HRTIMER_NORESTART;
1383 }
1384
init_dl_inactive_task_timer(struct sched_dl_entity * dl_se)1385 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1386 {
1387 struct hrtimer *timer = &dl_se->inactive_timer;
1388
1389 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1390 timer->function = inactive_task_timer;
1391 }
1392
1393 #ifdef CONFIG_SMP
1394
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1395 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1396 {
1397 struct rq *rq = rq_of_dl_rq(dl_rq);
1398
1399 if (dl_rq->earliest_dl.curr == 0 ||
1400 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1401 dl_rq->earliest_dl.curr = deadline;
1402 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1403 }
1404 }
1405
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1406 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1407 {
1408 struct rq *rq = rq_of_dl_rq(dl_rq);
1409
1410 /*
1411 * Since we may have removed our earliest (and/or next earliest)
1412 * task we must recompute them.
1413 */
1414 if (!dl_rq->dl_nr_running) {
1415 dl_rq->earliest_dl.curr = 0;
1416 dl_rq->earliest_dl.next = 0;
1417 cpudl_clear(&rq->rd->cpudl, rq->cpu);
1418 } else {
1419 struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1420 struct sched_dl_entity *entry;
1421
1422 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1423 dl_rq->earliest_dl.curr = entry->deadline;
1424 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1425 }
1426 }
1427
1428 #else
1429
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1430 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1431 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1432
1433 #endif /* CONFIG_SMP */
1434
1435 static inline
inc_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1436 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1437 {
1438 int prio = dl_task_of(dl_se)->prio;
1439 u64 deadline = dl_se->deadline;
1440
1441 WARN_ON(!dl_prio(prio));
1442 dl_rq->dl_nr_running++;
1443 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1444 walt_inc_cumulative_runnable_avg(rq_of_dl_rq(dl_rq), dl_task_of(dl_se));
1445
1446 inc_dl_deadline(dl_rq, deadline);
1447 inc_dl_migration(dl_se, dl_rq);
1448 }
1449
1450 static inline
dec_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1451 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1452 {
1453 int prio = dl_task_of(dl_se)->prio;
1454
1455 WARN_ON(!dl_prio(prio));
1456 WARN_ON(!dl_rq->dl_nr_running);
1457 dl_rq->dl_nr_running--;
1458 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1459 walt_dec_cumulative_runnable_avg(rq_of_dl_rq(dl_rq), dl_task_of(dl_se));
1460
1461 dec_dl_deadline(dl_rq, dl_se->deadline);
1462 dec_dl_migration(dl_se, dl_rq);
1463 }
1464
__enqueue_dl_entity(struct sched_dl_entity * dl_se)1465 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1466 {
1467 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1468 struct rb_node **link = &dl_rq->root.rb_root.rb_node;
1469 struct rb_node *parent = NULL;
1470 struct sched_dl_entity *entry;
1471 int leftmost = 1;
1472
1473 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1474
1475 while (*link) {
1476 parent = *link;
1477 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1478 if (dl_time_before(dl_se->deadline, entry->deadline))
1479 link = &parent->rb_left;
1480 else {
1481 link = &parent->rb_right;
1482 leftmost = 0;
1483 }
1484 }
1485
1486 rb_link_node(&dl_se->rb_node, parent, link);
1487 rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
1488
1489 inc_dl_tasks(dl_se, dl_rq);
1490 }
1491
__dequeue_dl_entity(struct sched_dl_entity * dl_se)1492 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1493 {
1494 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1495
1496 if (RB_EMPTY_NODE(&dl_se->rb_node))
1497 return;
1498
1499 rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1500 RB_CLEAR_NODE(&dl_se->rb_node);
1501
1502 dec_dl_tasks(dl_se, dl_rq);
1503 }
1504
1505 static void
enqueue_dl_entity(struct sched_dl_entity * dl_se,int flags)1506 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1507 {
1508 BUG_ON(on_dl_rq(dl_se));
1509
1510 /*
1511 * If this is a wakeup or a new instance, the scheduling
1512 * parameters of the task might need updating. Otherwise,
1513 * we want a replenishment of its runtime.
1514 */
1515 if (flags & ENQUEUE_WAKEUP) {
1516 task_contending(dl_se, flags);
1517 update_dl_entity(dl_se);
1518 } else if (flags & ENQUEUE_REPLENISH) {
1519 replenish_dl_entity(dl_se);
1520 } else if ((flags & ENQUEUE_RESTORE) &&
1521 dl_time_before(dl_se->deadline,
1522 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1523 setup_new_dl_entity(dl_se);
1524 }
1525
1526 __enqueue_dl_entity(dl_se);
1527 }
1528
dequeue_dl_entity(struct sched_dl_entity * dl_se)1529 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1530 {
1531 __dequeue_dl_entity(dl_se);
1532 }
1533
enqueue_task_dl(struct rq * rq,struct task_struct * p,int flags)1534 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1535 {
1536 if (is_dl_boosted(&p->dl)) {
1537 /*
1538 * Because of delays in the detection of the overrun of a
1539 * thread's runtime, it might be the case that a thread
1540 * goes to sleep in a rt mutex with negative runtime. As
1541 * a consequence, the thread will be throttled.
1542 *
1543 * While waiting for the mutex, this thread can also be
1544 * boosted via PI, resulting in a thread that is throttled
1545 * and boosted at the same time.
1546 *
1547 * In this case, the boost overrides the throttle.
1548 */
1549 if (p->dl.dl_throttled) {
1550 /*
1551 * The replenish timer needs to be canceled. No
1552 * problem if it fires concurrently: boosted threads
1553 * are ignored in dl_task_timer().
1554 */
1555 hrtimer_try_to_cancel(&p->dl.dl_timer);
1556 p->dl.dl_throttled = 0;
1557 }
1558 } else if (!dl_prio(p->normal_prio)) {
1559 /*
1560 * Special case in which we have a !SCHED_DEADLINE task that is going
1561 * to be deboosted, but exceeds its runtime while doing so. No point in
1562 * replenishing it, as it's going to return back to its original
1563 * scheduling class after this. If it has been throttled, we need to
1564 * clear the flag, otherwise the task may wake up as throttled after
1565 * being boosted again with no means to replenish the runtime and clear
1566 * the throttle.
1567 */
1568 p->dl.dl_throttled = 0;
1569 if (!(flags & ENQUEUE_REPLENISH))
1570 printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
1571 task_pid_nr(p));
1572
1573 return;
1574 }
1575
1576 /*
1577 * Check if a constrained deadline task was activated
1578 * after the deadline but before the next period.
1579 * If that is the case, the task will be throttled and
1580 * the replenishment timer will be set to the next period.
1581 */
1582 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1583 dl_check_constrained_dl(&p->dl);
1584
1585 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1586 add_rq_bw(&p->dl, &rq->dl);
1587 add_running_bw(&p->dl, &rq->dl);
1588 }
1589
1590 /*
1591 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1592 * its budget it needs a replenishment and, since it now is on
1593 * its rq, the bandwidth timer callback (which clearly has not
1594 * run yet) will take care of this.
1595 * However, the active utilization does not depend on the fact
1596 * that the task is on the runqueue or not (but depends on the
1597 * task's state - in GRUB parlance, "inactive" vs "active contending").
1598 * In other words, even if a task is throttled its utilization must
1599 * be counted in the active utilization; hence, we need to call
1600 * add_running_bw().
1601 */
1602 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1603 if (flags & ENQUEUE_WAKEUP)
1604 task_contending(&p->dl, flags);
1605
1606 return;
1607 }
1608
1609 enqueue_dl_entity(&p->dl, flags);
1610
1611 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1612 enqueue_pushable_dl_task(rq, p);
1613 }
1614
__dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)1615 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1616 {
1617 dequeue_dl_entity(&p->dl);
1618 dequeue_pushable_dl_task(rq, p);
1619 }
1620
dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)1621 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1622 {
1623 update_curr_dl(rq);
1624 __dequeue_task_dl(rq, p, flags);
1625
1626 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1627 sub_running_bw(&p->dl, &rq->dl);
1628 sub_rq_bw(&p->dl, &rq->dl);
1629 }
1630
1631 /*
1632 * This check allows to start the inactive timer (or to immediately
1633 * decrease the active utilization, if needed) in two cases:
1634 * when the task blocks and when it is terminating
1635 * (p->state == TASK_DEAD). We can handle the two cases in the same
1636 * way, because from GRUB's point of view the same thing is happening
1637 * (the task moves from "active contending" to "active non contending"
1638 * or "inactive")
1639 */
1640 if (flags & DEQUEUE_SLEEP)
1641 task_non_contending(p);
1642 }
1643
1644 /*
1645 * Yield task semantic for -deadline tasks is:
1646 *
1647 * get off from the CPU until our next instance, with
1648 * a new runtime. This is of little use now, since we
1649 * don't have a bandwidth reclaiming mechanism. Anyway,
1650 * bandwidth reclaiming is planned for the future, and
1651 * yield_task_dl will indicate that some spare budget
1652 * is available for other task instances to use it.
1653 */
yield_task_dl(struct rq * rq)1654 static void yield_task_dl(struct rq *rq)
1655 {
1656 /*
1657 * We make the task go to sleep until its current deadline by
1658 * forcing its runtime to zero. This way, update_curr_dl() stops
1659 * it and the bandwidth timer will wake it up and will give it
1660 * new scheduling parameters (thanks to dl_yielded=1).
1661 */
1662 rq->curr->dl.dl_yielded = 1;
1663
1664 update_rq_clock(rq);
1665 update_curr_dl(rq);
1666 /*
1667 * Tell update_rq_clock() that we've just updated,
1668 * so we don't do microscopic update in schedule()
1669 * and double the fastpath cost.
1670 */
1671 rq_clock_skip_update(rq);
1672 }
1673
1674 #ifdef CONFIG_SMP
1675
1676 static int find_later_rq(struct task_struct *task);
1677
1678 static int
select_task_rq_dl(struct task_struct * p,int cpu,int sd_flag,int flags)1679 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1680 {
1681 struct task_struct *curr;
1682 bool select_rq;
1683 struct rq *rq;
1684
1685 if (sd_flag != SD_BALANCE_WAKE)
1686 goto out;
1687
1688 rq = cpu_rq(cpu);
1689
1690 rcu_read_lock();
1691 curr = READ_ONCE(rq->curr); /* unlocked access */
1692
1693 /*
1694 * If we are dealing with a -deadline task, we must
1695 * decide where to wake it up.
1696 * If it has a later deadline and the current task
1697 * on this rq can't move (provided the waking task
1698 * can!) we prefer to send it somewhere else. On the
1699 * other hand, if it has a shorter deadline, we
1700 * try to make it stay here, it might be important.
1701 */
1702 select_rq = unlikely(dl_task(curr)) &&
1703 (curr->nr_cpus_allowed < 2 ||
1704 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1705 p->nr_cpus_allowed > 1;
1706
1707 /*
1708 * Take the capacity of the CPU into account to
1709 * ensure it fits the requirement of the task.
1710 */
1711 if (static_branch_unlikely(&sched_asym_cpucapacity))
1712 select_rq |= !dl_task_fits_capacity(p, cpu);
1713
1714 if (select_rq) {
1715 int target = find_later_rq(p);
1716
1717 if (target != -1 &&
1718 (dl_time_before(p->dl.deadline,
1719 cpu_rq(target)->dl.earliest_dl.curr) ||
1720 (cpu_rq(target)->dl.dl_nr_running == 0)))
1721 cpu = target;
1722 }
1723 rcu_read_unlock();
1724
1725 out:
1726 return cpu;
1727 }
1728
migrate_task_rq_dl(struct task_struct * p,int new_cpu __maybe_unused)1729 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1730 {
1731 struct rq *rq;
1732
1733 if (p->state != TASK_WAKING)
1734 return;
1735
1736 rq = task_rq(p);
1737 /*
1738 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1739 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1740 * rq->lock is not... So, lock it
1741 */
1742 raw_spin_lock(&rq->lock);
1743 if (p->dl.dl_non_contending) {
1744 update_rq_clock(rq);
1745 sub_running_bw(&p->dl, &rq->dl);
1746 p->dl.dl_non_contending = 0;
1747 /*
1748 * If the timer handler is currently running and the
1749 * timer cannot be cancelled, inactive_task_timer()
1750 * will see that dl_not_contending is not set, and
1751 * will not touch the rq's active utilization,
1752 * so we are still safe.
1753 */
1754 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1755 put_task_struct(p);
1756 }
1757 sub_rq_bw(&p->dl, &rq->dl);
1758 raw_spin_unlock(&rq->lock);
1759 }
1760
check_preempt_equal_dl(struct rq * rq,struct task_struct * p)1761 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1762 {
1763 /*
1764 * Current can't be migrated, useless to reschedule,
1765 * let's hope p can move out.
1766 */
1767 if (rq->curr->nr_cpus_allowed == 1 ||
1768 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1769 return;
1770
1771 /*
1772 * p is migratable, so let's not schedule it and
1773 * see if it is pushed or pulled somewhere else.
1774 */
1775 if (p->nr_cpus_allowed != 1 &&
1776 cpudl_find(&rq->rd->cpudl, p, NULL))
1777 return;
1778
1779 resched_curr(rq);
1780 }
1781
balance_dl(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1782 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1783 {
1784 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1785 /*
1786 * This is OK, because current is on_cpu, which avoids it being
1787 * picked for load-balance and preemption/IRQs are still
1788 * disabled avoiding further scheduler activity on it and we've
1789 * not yet started the picking loop.
1790 */
1791 rq_unpin_lock(rq, rf);
1792 pull_dl_task(rq);
1793 rq_repin_lock(rq, rf);
1794 }
1795
1796 return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1797 }
1798 #endif /* CONFIG_SMP */
1799
1800 /*
1801 * Only called when both the current and waking task are -deadline
1802 * tasks.
1803 */
check_preempt_curr_dl(struct rq * rq,struct task_struct * p,int flags)1804 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1805 int flags)
1806 {
1807 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1808 resched_curr(rq);
1809 return;
1810 }
1811
1812 #ifdef CONFIG_SMP
1813 /*
1814 * In the unlikely case current and p have the same deadline
1815 * let us try to decide what's the best thing to do...
1816 */
1817 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1818 !test_tsk_need_resched(rq->curr))
1819 check_preempt_equal_dl(rq, p);
1820 #endif /* CONFIG_SMP */
1821 }
1822
1823 #ifdef CONFIG_SCHED_HRTICK
start_hrtick_dl(struct rq * rq,struct task_struct * p)1824 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1825 {
1826 hrtick_start(rq, p->dl.runtime);
1827 }
1828 #else /* !CONFIG_SCHED_HRTICK */
start_hrtick_dl(struct rq * rq,struct task_struct * p)1829 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1830 {
1831 }
1832 #endif
1833
set_next_task_dl(struct rq * rq,struct task_struct * p,bool first)1834 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
1835 {
1836 p->se.exec_start = rq_clock_task(rq);
1837
1838 /* You can't push away the running task */
1839 dequeue_pushable_dl_task(rq, p);
1840
1841 if (!first)
1842 return;
1843
1844 if (hrtick_enabled(rq))
1845 start_hrtick_dl(rq, p);
1846
1847 if (rq->curr->sched_class != &dl_sched_class)
1848 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1849
1850 deadline_queue_push_tasks(rq);
1851 }
1852
pick_next_dl_entity(struct dl_rq * dl_rq)1853 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
1854 {
1855 struct rb_node *left = rb_first_cached(&dl_rq->root);
1856
1857 if (!left)
1858 return NULL;
1859
1860 return rb_entry(left, struct sched_dl_entity, rb_node);
1861 }
1862
pick_next_task_dl(struct rq * rq)1863 static struct task_struct *pick_next_task_dl(struct rq *rq)
1864 {
1865 struct sched_dl_entity *dl_se;
1866 struct dl_rq *dl_rq = &rq->dl;
1867 struct task_struct *p;
1868
1869 if (!sched_dl_runnable(rq))
1870 return NULL;
1871
1872 dl_se = pick_next_dl_entity(dl_rq);
1873 BUG_ON(!dl_se);
1874 p = dl_task_of(dl_se);
1875 set_next_task_dl(rq, p, true);
1876 return p;
1877 }
1878
put_prev_task_dl(struct rq * rq,struct task_struct * p)1879 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1880 {
1881 update_curr_dl(rq);
1882
1883 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1884 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1885 enqueue_pushable_dl_task(rq, p);
1886 }
1887
1888 /*
1889 * scheduler tick hitting a task of our scheduling class.
1890 *
1891 * NOTE: This function can be called remotely by the tick offload that
1892 * goes along full dynticks. Therefore no local assumption can be made
1893 * and everything must be accessed through the @rq and @curr passed in
1894 * parameters.
1895 */
task_tick_dl(struct rq * rq,struct task_struct * p,int queued)1896 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1897 {
1898 update_curr_dl(rq);
1899
1900 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1901 /*
1902 * Even when we have runtime, update_curr_dl() might have resulted in us
1903 * not being the leftmost task anymore. In that case NEED_RESCHED will
1904 * be set and schedule() will start a new hrtick for the next task.
1905 */
1906 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1907 is_leftmost(p, &rq->dl))
1908 start_hrtick_dl(rq, p);
1909 }
1910
task_fork_dl(struct task_struct * p)1911 static void task_fork_dl(struct task_struct *p)
1912 {
1913 /*
1914 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1915 * sched_fork()
1916 */
1917 }
1918
1919 #ifdef CONFIG_SMP
1920
1921 /* Only try algorithms three times */
1922 #define DL_MAX_TRIES 3
1923
pick_dl_task(struct rq * rq,struct task_struct * p,int cpu)1924 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1925 {
1926 if (!task_running(rq, p) &&
1927 cpumask_test_cpu(cpu, p->cpus_ptr))
1928 return 1;
1929 return 0;
1930 }
1931
1932 /*
1933 * Return the earliest pushable rq's task, which is suitable to be executed
1934 * on the CPU, NULL otherwise:
1935 */
pick_earliest_pushable_dl_task(struct rq * rq,int cpu)1936 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1937 {
1938 struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1939 struct task_struct *p = NULL;
1940
1941 if (!has_pushable_dl_tasks(rq))
1942 return NULL;
1943
1944 next_node:
1945 if (next_node) {
1946 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1947
1948 if (pick_dl_task(rq, p, cpu))
1949 return p;
1950
1951 next_node = rb_next(next_node);
1952 goto next_node;
1953 }
1954
1955 return NULL;
1956 }
1957
1958 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1959
find_later_rq(struct task_struct * task)1960 static int find_later_rq(struct task_struct *task)
1961 {
1962 struct sched_domain *sd;
1963 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1964 int this_cpu = smp_processor_id();
1965 int cpu = task_cpu(task);
1966
1967 /* Make sure the mask is initialized first */
1968 if (unlikely(!later_mask))
1969 return -1;
1970
1971 if (task->nr_cpus_allowed == 1)
1972 return -1;
1973
1974 /*
1975 * We have to consider system topology and task affinity
1976 * first, then we can look for a suitable CPU.
1977 */
1978 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1979 return -1;
1980
1981 /*
1982 * If we are here, some targets have been found, including
1983 * the most suitable which is, among the runqueues where the
1984 * current tasks have later deadlines than the task's one, the
1985 * rq with the latest possible one.
1986 *
1987 * Now we check how well this matches with task's
1988 * affinity and system topology.
1989 *
1990 * The last CPU where the task run is our first
1991 * guess, since it is most likely cache-hot there.
1992 */
1993 if (cpumask_test_cpu(cpu, later_mask))
1994 return cpu;
1995 /*
1996 * Check if this_cpu is to be skipped (i.e., it is
1997 * not in the mask) or not.
1998 */
1999 if (!cpumask_test_cpu(this_cpu, later_mask))
2000 this_cpu = -1;
2001
2002 rcu_read_lock();
2003 for_each_domain(cpu, sd) {
2004 if (sd->flags & SD_WAKE_AFFINE) {
2005 int best_cpu;
2006
2007 /*
2008 * If possible, preempting this_cpu is
2009 * cheaper than migrating.
2010 */
2011 if (this_cpu != -1 &&
2012 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2013 rcu_read_unlock();
2014 return this_cpu;
2015 }
2016
2017 best_cpu = cpumask_first_and(later_mask,
2018 sched_domain_span(sd));
2019 /*
2020 * Last chance: if a CPU being in both later_mask
2021 * and current sd span is valid, that becomes our
2022 * choice. Of course, the latest possible CPU is
2023 * already under consideration through later_mask.
2024 */
2025 if (best_cpu < nr_cpu_ids) {
2026 rcu_read_unlock();
2027 return best_cpu;
2028 }
2029 }
2030 }
2031 rcu_read_unlock();
2032
2033 /*
2034 * At this point, all our guesses failed, we just return
2035 * 'something', and let the caller sort the things out.
2036 */
2037 if (this_cpu != -1)
2038 return this_cpu;
2039
2040 cpu = cpumask_any(later_mask);
2041 if (cpu < nr_cpu_ids)
2042 return cpu;
2043
2044 return -1;
2045 }
2046
pick_next_pushable_dl_task(struct rq * rq)2047 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2048 {
2049 struct task_struct *p;
2050
2051 if (!has_pushable_dl_tasks(rq))
2052 return NULL;
2053
2054 p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2055 struct task_struct, pushable_dl_tasks);
2056
2057 BUG_ON(rq->cpu != task_cpu(p));
2058 BUG_ON(task_current(rq, p));
2059 BUG_ON(p->nr_cpus_allowed <= 1);
2060
2061 BUG_ON(!task_on_rq_queued(p));
2062 BUG_ON(!dl_task(p));
2063
2064 return p;
2065 }
2066
2067 /* Locks the rq it finds */
find_lock_later_rq(struct task_struct * task,struct rq * rq)2068 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2069 {
2070 struct rq *later_rq = NULL;
2071 int tries;
2072 int cpu;
2073
2074 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2075 cpu = find_later_rq(task);
2076
2077 if ((cpu == -1) || (cpu == rq->cpu))
2078 break;
2079
2080 later_rq = cpu_rq(cpu);
2081
2082 if (later_rq->dl.dl_nr_running &&
2083 !dl_time_before(task->dl.deadline,
2084 later_rq->dl.earliest_dl.curr)) {
2085 /*
2086 * Target rq has tasks of equal or earlier deadline,
2087 * retrying does not release any lock and is unlikely
2088 * to yield a different result.
2089 */
2090 later_rq = NULL;
2091 break;
2092 }
2093
2094 /* Retry if something changed. */
2095 if (double_lock_balance(rq, later_rq)) {
2096 struct task_struct *next_task;
2097 /*
2098 * We had to unlock the run queue. In
2099 * the mean time, task could have
2100 * migrated already or had its affinity changed.
2101 * Also make sure that it wasn't scheduled on its rq.
2102 */
2103 next_task = pick_next_pushable_dl_task(rq);
2104 if (unlikely(next_task != task ||
2105 !cpumask_test_cpu(later_rq->cpu, task->cpus_ptr))) {
2106 double_unlock_balance(rq, later_rq);
2107 later_rq = NULL;
2108 break;
2109 }
2110 }
2111
2112 /*
2113 * If the rq we found has no -deadline task, or
2114 * its earliest one has a later deadline than our
2115 * task, the rq is a good one.
2116 */
2117 if (!later_rq->dl.dl_nr_running ||
2118 dl_time_before(task->dl.deadline,
2119 later_rq->dl.earliest_dl.curr))
2120 break;
2121
2122 /* Otherwise we try again. */
2123 double_unlock_balance(rq, later_rq);
2124 later_rq = NULL;
2125 }
2126
2127 return later_rq;
2128 }
2129
2130 /*
2131 * See if the non running -deadline tasks on this rq
2132 * can be sent to some other CPU where they can preempt
2133 * and start executing.
2134 */
push_dl_task(struct rq * rq)2135 static int push_dl_task(struct rq *rq)
2136 {
2137 struct task_struct *next_task;
2138 struct rq *later_rq;
2139 int ret = 0;
2140
2141 if (!rq->dl.overloaded)
2142 return 0;
2143
2144 next_task = pick_next_pushable_dl_task(rq);
2145 if (!next_task)
2146 return 0;
2147
2148 retry:
2149 if (WARN_ON(next_task == rq->curr))
2150 return 0;
2151
2152 /*
2153 * If next_task preempts rq->curr, and rq->curr
2154 * can move away, it makes sense to just reschedule
2155 * without going further in pushing next_task.
2156 */
2157 if (dl_task(rq->curr) &&
2158 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2159 rq->curr->nr_cpus_allowed > 1) {
2160 resched_curr(rq);
2161 return 0;
2162 }
2163
2164 /* We might release rq lock */
2165 get_task_struct(next_task);
2166
2167 /* Will lock the rq it'll find */
2168 later_rq = find_lock_later_rq(next_task, rq);
2169 if (!later_rq) {
2170 struct task_struct *task;
2171
2172 /*
2173 * We must check all this again, since
2174 * find_lock_later_rq releases rq->lock and it is
2175 * then possible that next_task has migrated.
2176 */
2177 task = pick_next_pushable_dl_task(rq);
2178 if (task == next_task) {
2179 /*
2180 * The task is still there. We don't try
2181 * again, some other CPU will pull it when ready.
2182 */
2183 goto out;
2184 }
2185
2186 if (!task)
2187 /* No more tasks */
2188 goto out;
2189
2190 put_task_struct(next_task);
2191 next_task = task;
2192 goto retry;
2193 }
2194
2195 deactivate_task(rq, next_task, 0);
2196 set_task_cpu(next_task, later_rq->cpu);
2197
2198 /*
2199 * Update the later_rq clock here, because the clock is used
2200 * by the cpufreq_update_util() inside __add_running_bw().
2201 */
2202 update_rq_clock(later_rq);
2203 activate_task(later_rq, next_task, ENQUEUE_NOCLOCK);
2204 ret = 1;
2205
2206 resched_curr(later_rq);
2207
2208 double_unlock_balance(rq, later_rq);
2209
2210 out:
2211 put_task_struct(next_task);
2212
2213 return ret;
2214 }
2215
push_dl_tasks(struct rq * rq)2216 static void push_dl_tasks(struct rq *rq)
2217 {
2218 /* push_dl_task() will return true if it moved a -deadline task */
2219 while (push_dl_task(rq))
2220 ;
2221 }
2222
pull_dl_task(struct rq * this_rq)2223 static void pull_dl_task(struct rq *this_rq)
2224 {
2225 int this_cpu = this_rq->cpu, cpu;
2226 struct task_struct *p;
2227 bool resched = false;
2228 struct rq *src_rq;
2229 u64 dmin = LONG_MAX;
2230
2231 if (likely(!dl_overloaded(this_rq)))
2232 return;
2233
2234 /*
2235 * Match the barrier from dl_set_overloaded; this guarantees that if we
2236 * see overloaded we must also see the dlo_mask bit.
2237 */
2238 smp_rmb();
2239
2240 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2241 if (this_cpu == cpu)
2242 continue;
2243
2244 src_rq = cpu_rq(cpu);
2245
2246 /*
2247 * It looks racy, abd it is! However, as in sched_rt.c,
2248 * we are fine with this.
2249 */
2250 if (this_rq->dl.dl_nr_running &&
2251 dl_time_before(this_rq->dl.earliest_dl.curr,
2252 src_rq->dl.earliest_dl.next))
2253 continue;
2254
2255 /* Might drop this_rq->lock */
2256 double_lock_balance(this_rq, src_rq);
2257
2258 /*
2259 * If there are no more pullable tasks on the
2260 * rq, we're done with it.
2261 */
2262 if (src_rq->dl.dl_nr_running <= 1)
2263 goto skip;
2264
2265 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2266
2267 /*
2268 * We found a task to be pulled if:
2269 * - it preempts our current (if there's one),
2270 * - it will preempt the last one we pulled (if any).
2271 */
2272 if (p && dl_time_before(p->dl.deadline, dmin) &&
2273 (!this_rq->dl.dl_nr_running ||
2274 dl_time_before(p->dl.deadline,
2275 this_rq->dl.earliest_dl.curr))) {
2276 WARN_ON(p == src_rq->curr);
2277 WARN_ON(!task_on_rq_queued(p));
2278
2279 /*
2280 * Then we pull iff p has actually an earlier
2281 * deadline than the current task of its runqueue.
2282 */
2283 if (dl_time_before(p->dl.deadline,
2284 src_rq->curr->dl.deadline))
2285 goto skip;
2286
2287 resched = true;
2288
2289 deactivate_task(src_rq, p, 0);
2290 set_task_cpu(p, this_cpu);
2291 activate_task(this_rq, p, 0);
2292 dmin = p->dl.deadline;
2293
2294 /* Is there any other task even earlier? */
2295 }
2296 skip:
2297 double_unlock_balance(this_rq, src_rq);
2298 }
2299
2300 if (resched)
2301 resched_curr(this_rq);
2302 }
2303
2304 /*
2305 * Since the task is not running and a reschedule is not going to happen
2306 * anytime soon on its runqueue, we try pushing it away now.
2307 */
task_woken_dl(struct rq * rq,struct task_struct * p)2308 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2309 {
2310 if (!task_running(rq, p) &&
2311 !test_tsk_need_resched(rq->curr) &&
2312 p->nr_cpus_allowed > 1 &&
2313 dl_task(rq->curr) &&
2314 (rq->curr->nr_cpus_allowed < 2 ||
2315 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2316 push_dl_tasks(rq);
2317 }
2318 }
2319
set_cpus_allowed_dl(struct task_struct * p,const struct cpumask * new_mask)2320 static void set_cpus_allowed_dl(struct task_struct *p,
2321 const struct cpumask *new_mask)
2322 {
2323 struct root_domain *src_rd;
2324 struct rq *rq;
2325
2326 BUG_ON(!dl_task(p));
2327
2328 rq = task_rq(p);
2329 src_rd = rq->rd;
2330 /*
2331 * Migrating a SCHED_DEADLINE task between exclusive
2332 * cpusets (different root_domains) entails a bandwidth
2333 * update. We already made space for us in the destination
2334 * domain (see cpuset_can_attach()).
2335 */
2336 if (!cpumask_intersects(src_rd->span, new_mask)) {
2337 struct dl_bw *src_dl_b;
2338
2339 src_dl_b = dl_bw_of(cpu_of(rq));
2340 /*
2341 * We now free resources of the root_domain we are migrating
2342 * off. In the worst case, sched_setattr() may temporary fail
2343 * until we complete the update.
2344 */
2345 raw_spin_lock(&src_dl_b->lock);
2346 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2347 raw_spin_unlock(&src_dl_b->lock);
2348 }
2349
2350 set_cpus_allowed_common(p, new_mask);
2351 }
2352
2353 /* Assumes rq->lock is held */
rq_online_dl(struct rq * rq)2354 static void rq_online_dl(struct rq *rq)
2355 {
2356 if (rq->dl.overloaded)
2357 dl_set_overload(rq);
2358
2359 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2360 if (rq->dl.dl_nr_running > 0)
2361 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2362 }
2363
2364 /* Assumes rq->lock is held */
rq_offline_dl(struct rq * rq)2365 static void rq_offline_dl(struct rq *rq)
2366 {
2367 if (rq->dl.overloaded)
2368 dl_clear_overload(rq);
2369
2370 cpudl_clear(&rq->rd->cpudl, rq->cpu);
2371 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2372 }
2373
init_sched_dl_class(void)2374 void __init init_sched_dl_class(void)
2375 {
2376 unsigned int i;
2377
2378 for_each_possible_cpu(i)
2379 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2380 GFP_KERNEL, cpu_to_node(i));
2381 }
2382
dl_add_task_root_domain(struct task_struct * p)2383 void dl_add_task_root_domain(struct task_struct *p)
2384 {
2385 struct rq_flags rf;
2386 struct rq *rq;
2387 struct dl_bw *dl_b;
2388
2389 rq = task_rq_lock(p, &rf);
2390 if (!dl_task(p))
2391 goto unlock;
2392
2393 dl_b = &rq->rd->dl_bw;
2394 raw_spin_lock(&dl_b->lock);
2395
2396 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2397
2398 raw_spin_unlock(&dl_b->lock);
2399
2400 unlock:
2401 task_rq_unlock(rq, p, &rf);
2402 }
2403
dl_clear_root_domain(struct root_domain * rd)2404 void dl_clear_root_domain(struct root_domain *rd)
2405 {
2406 unsigned long flags;
2407
2408 raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2409 rd->dl_bw.total_bw = 0;
2410 raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2411 }
2412
2413 #endif /* CONFIG_SMP */
2414
switched_from_dl(struct rq * rq,struct task_struct * p)2415 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2416 {
2417 /*
2418 * task_non_contending() can start the "inactive timer" (if the 0-lag
2419 * time is in the future). If the task switches back to dl before
2420 * the "inactive timer" fires, it can continue to consume its current
2421 * runtime using its current deadline. If it stays outside of
2422 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2423 * will reset the task parameters.
2424 */
2425 if (task_on_rq_queued(p) && p->dl.dl_runtime)
2426 task_non_contending(p);
2427
2428 if (!task_on_rq_queued(p)) {
2429 /*
2430 * Inactive timer is armed. However, p is leaving DEADLINE and
2431 * might migrate away from this rq while continuing to run on
2432 * some other class. We need to remove its contribution from
2433 * this rq running_bw now, or sub_rq_bw (below) will complain.
2434 */
2435 if (p->dl.dl_non_contending)
2436 sub_running_bw(&p->dl, &rq->dl);
2437 sub_rq_bw(&p->dl, &rq->dl);
2438 }
2439
2440 /*
2441 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2442 * at the 0-lag time, because the task could have been migrated
2443 * while SCHED_OTHER in the meanwhile.
2444 */
2445 if (p->dl.dl_non_contending)
2446 p->dl.dl_non_contending = 0;
2447
2448 /*
2449 * Since this might be the only -deadline task on the rq,
2450 * this is the right place to try to pull some other one
2451 * from an overloaded CPU, if any.
2452 */
2453 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2454 return;
2455
2456 deadline_queue_pull_task(rq);
2457 }
2458
2459 /*
2460 * When switching to -deadline, we may overload the rq, then
2461 * we try to push someone off, if possible.
2462 */
switched_to_dl(struct rq * rq,struct task_struct * p)2463 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2464 {
2465 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2466 put_task_struct(p);
2467
2468 /* If p is not queued we will update its parameters at next wakeup. */
2469 if (!task_on_rq_queued(p)) {
2470 add_rq_bw(&p->dl, &rq->dl);
2471
2472 return;
2473 }
2474
2475 if (rq->curr != p) {
2476 #ifdef CONFIG_SMP
2477 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2478 deadline_queue_push_tasks(rq);
2479 #endif
2480 if (dl_task(rq->curr))
2481 check_preempt_curr_dl(rq, p, 0);
2482 else
2483 resched_curr(rq);
2484 } else {
2485 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2486 }
2487 }
2488
2489 /*
2490 * If the scheduling parameters of a -deadline task changed,
2491 * a push or pull operation might be needed.
2492 */
prio_changed_dl(struct rq * rq,struct task_struct * p,int oldprio)2493 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2494 int oldprio)
2495 {
2496 if (task_on_rq_queued(p) || rq->curr == p) {
2497 #ifdef CONFIG_SMP
2498 /*
2499 * This might be too much, but unfortunately
2500 * we don't have the old deadline value, and
2501 * we can't argue if the task is increasing
2502 * or lowering its prio, so...
2503 */
2504 if (!rq->dl.overloaded)
2505 deadline_queue_pull_task(rq);
2506
2507 /*
2508 * If we now have a earlier deadline task than p,
2509 * then reschedule, provided p is still on this
2510 * runqueue.
2511 */
2512 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2513 resched_curr(rq);
2514 #else
2515 /*
2516 * Again, we don't know if p has a earlier
2517 * or later deadline, so let's blindly set a
2518 * (maybe not needed) rescheduling point.
2519 */
2520 resched_curr(rq);
2521 #endif /* CONFIG_SMP */
2522 }
2523 }
2524
2525 const struct sched_class dl_sched_class
2526 __section("__dl_sched_class") = {
2527 .enqueue_task = enqueue_task_dl,
2528 .dequeue_task = dequeue_task_dl,
2529 .yield_task = yield_task_dl,
2530
2531 .check_preempt_curr = check_preempt_curr_dl,
2532
2533 .pick_next_task = pick_next_task_dl,
2534 .put_prev_task = put_prev_task_dl,
2535 .set_next_task = set_next_task_dl,
2536
2537 #ifdef CONFIG_SMP
2538 .balance = balance_dl,
2539 .select_task_rq = select_task_rq_dl,
2540 .migrate_task_rq = migrate_task_rq_dl,
2541 .set_cpus_allowed = set_cpus_allowed_dl,
2542 .rq_online = rq_online_dl,
2543 .rq_offline = rq_offline_dl,
2544 .task_woken = task_woken_dl,
2545 #endif
2546
2547 .task_tick = task_tick_dl,
2548 .task_fork = task_fork_dl,
2549
2550 .prio_changed = prio_changed_dl,
2551 .switched_from = switched_from_dl,
2552 .switched_to = switched_to_dl,
2553
2554 .update_curr = update_curr_dl,
2555 #ifdef CONFIG_SCHED_WALT
2556 .fixup_walt_sched_stats = fixup_walt_sched_stats_common,
2557 #endif
2558 };
2559
sched_dl_global_validate(void)2560 int sched_dl_global_validate(void)
2561 {
2562 u64 runtime = global_rt_runtime();
2563 u64 period = global_rt_period();
2564 u64 new_bw = to_ratio(period, runtime);
2565 struct dl_bw *dl_b;
2566 int cpu, cpus, ret = 0;
2567 unsigned long flags;
2568
2569 /*
2570 * Here we want to check the bandwidth not being set to some
2571 * value smaller than the currently allocated bandwidth in
2572 * any of the root_domains.
2573 *
2574 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2575 * cycling on root_domains... Discussion on different/better
2576 * solutions is welcome!
2577 */
2578 for_each_possible_cpu(cpu) {
2579 rcu_read_lock_sched();
2580 dl_b = dl_bw_of(cpu);
2581 cpus = dl_bw_cpus(cpu);
2582
2583 raw_spin_lock_irqsave(&dl_b->lock, flags);
2584 if (new_bw * cpus < dl_b->total_bw)
2585 ret = -EBUSY;
2586 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2587
2588 rcu_read_unlock_sched();
2589
2590 if (ret)
2591 break;
2592 }
2593
2594 return ret;
2595 }
2596
init_dl_rq_bw_ratio(struct dl_rq * dl_rq)2597 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2598 {
2599 if (global_rt_runtime() == RUNTIME_INF) {
2600 dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2601 dl_rq->extra_bw = 1 << BW_SHIFT;
2602 } else {
2603 dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2604 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2605 dl_rq->extra_bw = to_ratio(global_rt_period(),
2606 global_rt_runtime());
2607 }
2608 }
2609
sched_dl_do_global(void)2610 void sched_dl_do_global(void)
2611 {
2612 u64 new_bw = -1;
2613 struct dl_bw *dl_b;
2614 int cpu;
2615 unsigned long flags;
2616
2617 def_dl_bandwidth.dl_period = global_rt_period();
2618 def_dl_bandwidth.dl_runtime = global_rt_runtime();
2619
2620 if (global_rt_runtime() != RUNTIME_INF)
2621 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2622
2623 /*
2624 * FIXME: As above...
2625 */
2626 for_each_possible_cpu(cpu) {
2627 rcu_read_lock_sched();
2628 dl_b = dl_bw_of(cpu);
2629
2630 raw_spin_lock_irqsave(&dl_b->lock, flags);
2631 dl_b->bw = new_bw;
2632 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2633
2634 rcu_read_unlock_sched();
2635 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2636 }
2637 }
2638
2639 /*
2640 * We must be sure that accepting a new task (or allowing changing the
2641 * parameters of an existing one) is consistent with the bandwidth
2642 * constraints. If yes, this function also accordingly updates the currently
2643 * allocated bandwidth to reflect the new situation.
2644 *
2645 * This function is called while holding p's rq->lock.
2646 */
sched_dl_overflow(struct task_struct * p,int policy,const struct sched_attr * attr)2647 int sched_dl_overflow(struct task_struct *p, int policy,
2648 const struct sched_attr *attr)
2649 {
2650 u64 period = attr->sched_period ?: attr->sched_deadline;
2651 u64 runtime = attr->sched_runtime;
2652 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2653 int cpus, err = -1, cpu = task_cpu(p);
2654 struct dl_bw *dl_b = dl_bw_of(cpu);
2655 unsigned long cap;
2656
2657 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2658 return 0;
2659
2660 /* !deadline task may carry old deadline bandwidth */
2661 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2662 return 0;
2663
2664 /*
2665 * Either if a task, enters, leave, or stays -deadline but changes
2666 * its parameters, we may need to update accordingly the total
2667 * allocated bandwidth of the container.
2668 */
2669 raw_spin_lock(&dl_b->lock);
2670 cpus = dl_bw_cpus(cpu);
2671 cap = dl_bw_capacity(cpu);
2672
2673 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2674 !__dl_overflow(dl_b, cap, 0, new_bw)) {
2675 if (hrtimer_active(&p->dl.inactive_timer))
2676 __dl_sub(dl_b, p->dl.dl_bw, cpus);
2677 __dl_add(dl_b, new_bw, cpus);
2678 err = 0;
2679 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2680 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2681 /*
2682 * XXX this is slightly incorrect: when the task
2683 * utilization decreases, we should delay the total
2684 * utilization change until the task's 0-lag point.
2685 * But this would require to set the task's "inactive
2686 * timer" when the task is not inactive.
2687 */
2688 __dl_sub(dl_b, p->dl.dl_bw, cpus);
2689 __dl_add(dl_b, new_bw, cpus);
2690 dl_change_utilization(p, new_bw);
2691 err = 0;
2692 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2693 /*
2694 * Do not decrease the total deadline utilization here,
2695 * switched_from_dl() will take care to do it at the correct
2696 * (0-lag) time.
2697 */
2698 err = 0;
2699 }
2700 raw_spin_unlock(&dl_b->lock);
2701
2702 return err;
2703 }
2704
2705 /*
2706 * This function initializes the sched_dl_entity of a newly becoming
2707 * SCHED_DEADLINE task.
2708 *
2709 * Only the static values are considered here, the actual runtime and the
2710 * absolute deadline will be properly calculated when the task is enqueued
2711 * for the first time with its new policy.
2712 */
__setparam_dl(struct task_struct * p,const struct sched_attr * attr)2713 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2714 {
2715 struct sched_dl_entity *dl_se = &p->dl;
2716
2717 dl_se->dl_runtime = attr->sched_runtime;
2718 dl_se->dl_deadline = attr->sched_deadline;
2719 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2720 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
2721 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2722 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2723 }
2724
__getparam_dl(struct task_struct * p,struct sched_attr * attr)2725 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2726 {
2727 struct sched_dl_entity *dl_se = &p->dl;
2728
2729 attr->sched_priority = p->rt_priority;
2730 attr->sched_runtime = dl_se->dl_runtime;
2731 attr->sched_deadline = dl_se->dl_deadline;
2732 attr->sched_period = dl_se->dl_period;
2733 attr->sched_flags &= ~SCHED_DL_FLAGS;
2734 attr->sched_flags |= dl_se->flags;
2735 }
2736
2737 /*
2738 * Default limits for DL period; on the top end we guard against small util
2739 * tasks still getting rediculous long effective runtimes, on the bottom end we
2740 * guard against timer DoS.
2741 */
2742 unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
2743 unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */
2744
2745 /*
2746 * This function validates the new parameters of a -deadline task.
2747 * We ask for the deadline not being zero, and greater or equal
2748 * than the runtime, as well as the period of being zero or
2749 * greater than deadline. Furthermore, we have to be sure that
2750 * user parameters are above the internal resolution of 1us (we
2751 * check sched_runtime only since it is always the smaller one) and
2752 * below 2^63 ns (we have to check both sched_deadline and
2753 * sched_period, as the latter can be zero).
2754 */
__checkparam_dl(const struct sched_attr * attr)2755 bool __checkparam_dl(const struct sched_attr *attr)
2756 {
2757 u64 period, max, min;
2758
2759 /* special dl tasks don't actually use any parameter */
2760 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2761 return true;
2762
2763 /* deadline != 0 */
2764 if (attr->sched_deadline == 0)
2765 return false;
2766
2767 /*
2768 * Since we truncate DL_SCALE bits, make sure we're at least
2769 * that big.
2770 */
2771 if (attr->sched_runtime < (1ULL << DL_SCALE))
2772 return false;
2773
2774 /*
2775 * Since we use the MSB for wrap-around and sign issues, make
2776 * sure it's not set (mind that period can be equal to zero).
2777 */
2778 if (attr->sched_deadline & (1ULL << 63) ||
2779 attr->sched_period & (1ULL << 63))
2780 return false;
2781
2782 period = attr->sched_period;
2783 if (!period)
2784 period = attr->sched_deadline;
2785
2786 /* runtime <= deadline <= period (if period != 0) */
2787 if (period < attr->sched_deadline ||
2788 attr->sched_deadline < attr->sched_runtime)
2789 return false;
2790
2791 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
2792 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
2793
2794 if (period < min || period > max)
2795 return false;
2796
2797 return true;
2798 }
2799
2800 /*
2801 * This function clears the sched_dl_entity static params.
2802 */
__dl_clear_params(struct task_struct * p)2803 void __dl_clear_params(struct task_struct *p)
2804 {
2805 struct sched_dl_entity *dl_se = &p->dl;
2806
2807 dl_se->dl_runtime = 0;
2808 dl_se->dl_deadline = 0;
2809 dl_se->dl_period = 0;
2810 dl_se->flags = 0;
2811 dl_se->dl_bw = 0;
2812 dl_se->dl_density = 0;
2813
2814 dl_se->dl_throttled = 0;
2815 dl_se->dl_yielded = 0;
2816 dl_se->dl_non_contending = 0;
2817 dl_se->dl_overrun = 0;
2818
2819 #ifdef CONFIG_RT_MUTEXES
2820 dl_se->pi_se = dl_se;
2821 #endif
2822 }
2823
dl_param_changed(struct task_struct * p,const struct sched_attr * attr)2824 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2825 {
2826 struct sched_dl_entity *dl_se = &p->dl;
2827
2828 if (dl_se->dl_runtime != attr->sched_runtime ||
2829 dl_se->dl_deadline != attr->sched_deadline ||
2830 dl_se->dl_period != attr->sched_period ||
2831 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
2832 return true;
2833
2834 return false;
2835 }
2836
2837 #ifdef CONFIG_SMP
dl_cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)2838 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2839 const struct cpumask *trial)
2840 {
2841 int ret = 1, trial_cpus;
2842 struct dl_bw *cur_dl_b;
2843 unsigned long flags;
2844
2845 rcu_read_lock_sched();
2846 cur_dl_b = dl_bw_of(cpumask_any(cur));
2847 trial_cpus = cpumask_weight(trial);
2848
2849 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2850 if (cur_dl_b->bw != -1 &&
2851 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2852 ret = 0;
2853 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2854 rcu_read_unlock_sched();
2855
2856 return ret;
2857 }
2858
dl_cpu_busy(int cpu,struct task_struct * p)2859 int dl_cpu_busy(int cpu, struct task_struct *p)
2860 {
2861 unsigned long flags, cap;
2862 struct dl_bw *dl_b;
2863 bool overflow;
2864
2865 rcu_read_lock_sched();
2866 dl_b = dl_bw_of(cpu);
2867 raw_spin_lock_irqsave(&dl_b->lock, flags);
2868 cap = dl_bw_capacity(cpu);
2869 overflow = __dl_overflow(dl_b, cap, 0, p ? p->dl.dl_bw : 0);
2870
2871 if (!overflow && p) {
2872 /*
2873 * We reserve space for this task in the destination
2874 * root_domain, as we can't fail after this point.
2875 * We will free resources in the source root_domain
2876 * later on (see set_cpus_allowed_dl()).
2877 */
2878 __dl_add(dl_b, p->dl.dl_bw, dl_bw_cpus(cpu));
2879 }
2880
2881 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2882 rcu_read_unlock_sched();
2883
2884 return overflow ? -EBUSY : 0;
2885 }
2886 #endif
2887
2888 #ifdef CONFIG_SCHED_DEBUG
print_dl_stats(struct seq_file * m,int cpu)2889 void print_dl_stats(struct seq_file *m, int cpu)
2890 {
2891 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2892 }
2893 #endif /* CONFIG_SCHED_DEBUG */
2894