1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1999 Eric Youngdale
4 * Copyright (C) 2014 Christoph Hellwig
5 *
6 * SCSI queueing library.
7 * Initial versions: Eric Youngdale (eric@andante.org).
8 * Based upon conversations with large numbers
9 * of people at Linux Expo.
10 */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36
37 #include <trace/events/scsi.h>
38
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42
43 /*
44 * Size of integrity metadata is usually small, 1 inline sg should
45 * cover normal cases.
46 */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define SCSI_INLINE_PROT_SG_CNT 0
49 #define SCSI_INLINE_SG_CNT 0
50 #else
51 #define SCSI_INLINE_PROT_SG_CNT 1
52 #define SCSI_INLINE_SG_CNT 2
53 #endif
54
55 static struct kmem_cache *scsi_sense_cache;
56 static struct kmem_cache *scsi_sense_isadma_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
61 static inline struct kmem_cache *
scsi_select_sense_cache(bool unchecked_isa_dma)62 scsi_select_sense_cache(bool unchecked_isa_dma)
63 {
64 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
65 }
66
scsi_free_sense_buffer(bool unchecked_isa_dma,unsigned char * sense_buffer)67 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
68 unsigned char *sense_buffer)
69 {
70 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
71 sense_buffer);
72 }
73
scsi_alloc_sense_buffer(bool unchecked_isa_dma,gfp_t gfp_mask,int numa_node)74 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
75 gfp_t gfp_mask, int numa_node)
76 {
77 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
78 gfp_mask, numa_node);
79 }
80
scsi_init_sense_cache(struct Scsi_Host * shost)81 int scsi_init_sense_cache(struct Scsi_Host *shost)
82 {
83 struct kmem_cache *cache;
84 int ret = 0;
85
86 mutex_lock(&scsi_sense_cache_mutex);
87 cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
88 if (cache)
89 goto exit;
90
91 if (shost->unchecked_isa_dma) {
92 scsi_sense_isadma_cache =
93 kmem_cache_create("scsi_sense_cache(DMA)",
94 SCSI_SENSE_BUFFERSIZE, 0,
95 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
96 if (!scsi_sense_isadma_cache)
97 ret = -ENOMEM;
98 } else {
99 scsi_sense_cache =
100 kmem_cache_create_usercopy("scsi_sense_cache",
101 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
102 0, SCSI_SENSE_BUFFERSIZE, NULL);
103 if (!scsi_sense_cache)
104 ret = -ENOMEM;
105 }
106 exit:
107 mutex_unlock(&scsi_sense_cache_mutex);
108 return ret;
109 }
110
111 /*
112 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
113 * not change behaviour from the previous unplug mechanism, experimentation
114 * may prove this needs changing.
115 */
116 #define SCSI_QUEUE_DELAY 3
117
118 static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)119 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
120 {
121 struct Scsi_Host *host = cmd->device->host;
122 struct scsi_device *device = cmd->device;
123 struct scsi_target *starget = scsi_target(device);
124
125 /*
126 * Set the appropriate busy bit for the device/host.
127 *
128 * If the host/device isn't busy, assume that something actually
129 * completed, and that we should be able to queue a command now.
130 *
131 * Note that the prior mid-layer assumption that any host could
132 * always queue at least one command is now broken. The mid-layer
133 * will implement a user specifiable stall (see
134 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
135 * if a command is requeued with no other commands outstanding
136 * either for the device or for the host.
137 */
138 switch (reason) {
139 case SCSI_MLQUEUE_HOST_BUSY:
140 atomic_set(&host->host_blocked, host->max_host_blocked);
141 break;
142 case SCSI_MLQUEUE_DEVICE_BUSY:
143 case SCSI_MLQUEUE_EH_RETRY:
144 atomic_set(&device->device_blocked,
145 device->max_device_blocked);
146 break;
147 case SCSI_MLQUEUE_TARGET_BUSY:
148 atomic_set(&starget->target_blocked,
149 starget->max_target_blocked);
150 break;
151 }
152 }
153
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd)154 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
155 {
156 if (cmd->request->rq_flags & RQF_DONTPREP) {
157 cmd->request->rq_flags &= ~RQF_DONTPREP;
158 scsi_mq_uninit_cmd(cmd);
159 } else {
160 WARN_ON_ONCE(true);
161 }
162 blk_mq_requeue_request(cmd->request, true);
163 }
164
165 /**
166 * __scsi_queue_insert - private queue insertion
167 * @cmd: The SCSI command being requeued
168 * @reason: The reason for the requeue
169 * @unbusy: Whether the queue should be unbusied
170 *
171 * This is a private queue insertion. The public interface
172 * scsi_queue_insert() always assumes the queue should be unbusied
173 * because it's always called before the completion. This function is
174 * for a requeue after completion, which should only occur in this
175 * file.
176 */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,bool unbusy)177 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
178 {
179 struct scsi_device *device = cmd->device;
180
181 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
182 "Inserting command %p into mlqueue\n", cmd));
183
184 scsi_set_blocked(cmd, reason);
185
186 /*
187 * Decrement the counters, since these commands are no longer
188 * active on the host/device.
189 */
190 if (unbusy)
191 scsi_device_unbusy(device, cmd);
192
193 /*
194 * Requeue this command. It will go before all other commands
195 * that are already in the queue. Schedule requeue work under
196 * lock such that the kblockd_schedule_work() call happens
197 * before blk_cleanup_queue() finishes.
198 */
199 cmd->result = 0;
200
201 blk_mq_requeue_request(cmd->request, true);
202 }
203
204 /**
205 * scsi_queue_insert - Reinsert a command in the queue.
206 * @cmd: command that we are adding to queue.
207 * @reason: why we are inserting command to queue.
208 *
209 * We do this for one of two cases. Either the host is busy and it cannot accept
210 * any more commands for the time being, or the device returned QUEUE_FULL and
211 * can accept no more commands.
212 *
213 * Context: This could be called either from an interrupt context or a normal
214 * process context.
215 */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)216 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
217 {
218 __scsi_queue_insert(cmd, reason, true);
219 }
220
221
222 /**
223 * __scsi_execute - insert request and wait for the result
224 * @sdev: scsi device
225 * @cmd: scsi command
226 * @data_direction: data direction
227 * @buffer: data buffer
228 * @bufflen: len of buffer
229 * @sense: optional sense buffer
230 * @sshdr: optional decoded sense header
231 * @timeout: request timeout in seconds
232 * @retries: number of times to retry request
233 * @flags: flags for ->cmd_flags
234 * @rq_flags: flags for ->rq_flags
235 * @resid: optional residual length
236 *
237 * Returns the scsi_cmnd result field if a command was executed, or a negative
238 * Linux error code if we didn't get that far.
239 */
__scsi_execute(struct scsi_device * sdev,const unsigned char * cmd,int data_direction,void * buffer,unsigned bufflen,unsigned char * sense,struct scsi_sense_hdr * sshdr,int timeout,int retries,u64 flags,req_flags_t rq_flags,int * resid)240 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
241 int data_direction, void *buffer, unsigned bufflen,
242 unsigned char *sense, struct scsi_sense_hdr *sshdr,
243 int timeout, int retries, u64 flags, req_flags_t rq_flags,
244 int *resid)
245 {
246 struct request *req;
247 struct scsi_request *rq;
248 int ret = DRIVER_ERROR << 24;
249
250 req = blk_get_request(sdev->request_queue,
251 data_direction == DMA_TO_DEVICE ?
252 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN,
253 rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
254 if (IS_ERR(req))
255 return ret;
256 rq = scsi_req(req);
257
258 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
259 buffer, bufflen, GFP_NOIO))
260 goto out;
261
262 rq->cmd_len = COMMAND_SIZE(cmd[0]);
263 memcpy(rq->cmd, cmd, rq->cmd_len);
264 rq->retries = retries;
265 req->timeout = timeout;
266 req->cmd_flags |= flags;
267 req->rq_flags |= rq_flags | RQF_QUIET;
268
269 /*
270 * head injection *required* here otherwise quiesce won't work
271 */
272 blk_execute_rq(req->q, NULL, req, 1);
273
274 /*
275 * Some devices (USB mass-storage in particular) may transfer
276 * garbage data together with a residue indicating that the data
277 * is invalid. Prevent the garbage from being misinterpreted
278 * and prevent security leaks by zeroing out the excess data.
279 */
280 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
281 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
282
283 if (resid)
284 *resid = rq->resid_len;
285 if (sense && rq->sense_len)
286 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
287 if (sshdr)
288 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
289 ret = rq->result;
290 out:
291 blk_put_request(req);
292
293 return ret;
294 }
295 EXPORT_SYMBOL(__scsi_execute);
296
297 /*
298 * Wake up the error handler if necessary. Avoid as follows that the error
299 * handler is not woken up if host in-flight requests number ==
300 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
301 * with an RCU read lock in this function to ensure that this function in
302 * its entirety either finishes before scsi_eh_scmd_add() increases the
303 * host_failed counter or that it notices the shost state change made by
304 * scsi_eh_scmd_add().
305 */
scsi_dec_host_busy(struct Scsi_Host * shost,struct scsi_cmnd * cmd)306 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
307 {
308 unsigned long flags;
309
310 rcu_read_lock();
311 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
312 if (unlikely(scsi_host_in_recovery(shost))) {
313 spin_lock_irqsave(shost->host_lock, flags);
314 if (shost->host_failed || shost->host_eh_scheduled)
315 scsi_eh_wakeup(shost, scsi_host_busy(shost));
316 spin_unlock_irqrestore(shost->host_lock, flags);
317 }
318 rcu_read_unlock();
319 }
320
scsi_device_unbusy(struct scsi_device * sdev,struct scsi_cmnd * cmd)321 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
322 {
323 struct Scsi_Host *shost = sdev->host;
324 struct scsi_target *starget = scsi_target(sdev);
325
326 scsi_dec_host_busy(shost, cmd);
327
328 if (starget->can_queue > 0)
329 atomic_dec(&starget->target_busy);
330
331 atomic_dec(&sdev->device_busy);
332 }
333
scsi_kick_queue(struct request_queue * q)334 static void scsi_kick_queue(struct request_queue *q)
335 {
336 blk_mq_run_hw_queues(q, false);
337 }
338
339 /*
340 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
341 * and call blk_run_queue for all the scsi_devices on the target -
342 * including current_sdev first.
343 *
344 * Called with *no* scsi locks held.
345 */
scsi_single_lun_run(struct scsi_device * current_sdev)346 static void scsi_single_lun_run(struct scsi_device *current_sdev)
347 {
348 struct Scsi_Host *shost = current_sdev->host;
349 struct scsi_device *sdev, *tmp;
350 struct scsi_target *starget = scsi_target(current_sdev);
351 unsigned long flags;
352
353 spin_lock_irqsave(shost->host_lock, flags);
354 starget->starget_sdev_user = NULL;
355 spin_unlock_irqrestore(shost->host_lock, flags);
356
357 /*
358 * Call blk_run_queue for all LUNs on the target, starting with
359 * current_sdev. We race with others (to set starget_sdev_user),
360 * but in most cases, we will be first. Ideally, each LU on the
361 * target would get some limited time or requests on the target.
362 */
363 scsi_kick_queue(current_sdev->request_queue);
364
365 spin_lock_irqsave(shost->host_lock, flags);
366 if (starget->starget_sdev_user)
367 goto out;
368 list_for_each_entry_safe(sdev, tmp, &starget->devices,
369 same_target_siblings) {
370 if (sdev == current_sdev)
371 continue;
372 if (scsi_device_get(sdev))
373 continue;
374
375 spin_unlock_irqrestore(shost->host_lock, flags);
376 scsi_kick_queue(sdev->request_queue);
377 spin_lock_irqsave(shost->host_lock, flags);
378
379 scsi_device_put(sdev);
380 }
381 out:
382 spin_unlock_irqrestore(shost->host_lock, flags);
383 }
384
scsi_device_is_busy(struct scsi_device * sdev)385 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
386 {
387 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
388 return true;
389 if (atomic_read(&sdev->device_blocked) > 0)
390 return true;
391 return false;
392 }
393
scsi_target_is_busy(struct scsi_target * starget)394 static inline bool scsi_target_is_busy(struct scsi_target *starget)
395 {
396 if (starget->can_queue > 0) {
397 if (atomic_read(&starget->target_busy) >= starget->can_queue)
398 return true;
399 if (atomic_read(&starget->target_blocked) > 0)
400 return true;
401 }
402 return false;
403 }
404
scsi_host_is_busy(struct Scsi_Host * shost)405 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
406 {
407 if (atomic_read(&shost->host_blocked) > 0)
408 return true;
409 if (shost->host_self_blocked)
410 return true;
411 return false;
412 }
413
scsi_starved_list_run(struct Scsi_Host * shost)414 static void scsi_starved_list_run(struct Scsi_Host *shost)
415 {
416 LIST_HEAD(starved_list);
417 struct scsi_device *sdev;
418 unsigned long flags;
419
420 spin_lock_irqsave(shost->host_lock, flags);
421 list_splice_init(&shost->starved_list, &starved_list);
422
423 while (!list_empty(&starved_list)) {
424 struct request_queue *slq;
425
426 /*
427 * As long as shost is accepting commands and we have
428 * starved queues, call blk_run_queue. scsi_request_fn
429 * drops the queue_lock and can add us back to the
430 * starved_list.
431 *
432 * host_lock protects the starved_list and starved_entry.
433 * scsi_request_fn must get the host_lock before checking
434 * or modifying starved_list or starved_entry.
435 */
436 if (scsi_host_is_busy(shost))
437 break;
438
439 sdev = list_entry(starved_list.next,
440 struct scsi_device, starved_entry);
441 list_del_init(&sdev->starved_entry);
442 if (scsi_target_is_busy(scsi_target(sdev))) {
443 list_move_tail(&sdev->starved_entry,
444 &shost->starved_list);
445 continue;
446 }
447
448 /*
449 * Once we drop the host lock, a racing scsi_remove_device()
450 * call may remove the sdev from the starved list and destroy
451 * it and the queue. Mitigate by taking a reference to the
452 * queue and never touching the sdev again after we drop the
453 * host lock. Note: if __scsi_remove_device() invokes
454 * blk_cleanup_queue() before the queue is run from this
455 * function then blk_run_queue() will return immediately since
456 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
457 */
458 slq = sdev->request_queue;
459 if (!blk_get_queue(slq))
460 continue;
461 spin_unlock_irqrestore(shost->host_lock, flags);
462
463 scsi_kick_queue(slq);
464 blk_put_queue(slq);
465
466 spin_lock_irqsave(shost->host_lock, flags);
467 }
468 /* put any unprocessed entries back */
469 list_splice(&starved_list, &shost->starved_list);
470 spin_unlock_irqrestore(shost->host_lock, flags);
471 }
472
473 /**
474 * scsi_run_queue - Select a proper request queue to serve next.
475 * @q: last request's queue
476 *
477 * The previous command was completely finished, start a new one if possible.
478 */
scsi_run_queue(struct request_queue * q)479 static void scsi_run_queue(struct request_queue *q)
480 {
481 struct scsi_device *sdev = q->queuedata;
482
483 if (scsi_target(sdev)->single_lun)
484 scsi_single_lun_run(sdev);
485 if (!list_empty(&sdev->host->starved_list))
486 scsi_starved_list_run(sdev->host);
487
488 blk_mq_run_hw_queues(q, false);
489 }
490
scsi_requeue_run_queue(struct work_struct * work)491 void scsi_requeue_run_queue(struct work_struct *work)
492 {
493 struct scsi_device *sdev;
494 struct request_queue *q;
495
496 sdev = container_of(work, struct scsi_device, requeue_work);
497 q = sdev->request_queue;
498 scsi_run_queue(q);
499 }
500
scsi_run_host_queues(struct Scsi_Host * shost)501 void scsi_run_host_queues(struct Scsi_Host *shost)
502 {
503 struct scsi_device *sdev;
504
505 shost_for_each_device(sdev, shost)
506 scsi_run_queue(sdev->request_queue);
507 }
508
scsi_uninit_cmd(struct scsi_cmnd * cmd)509 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
510 {
511 if (!blk_rq_is_passthrough(cmd->request)) {
512 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
513
514 if (drv->uninit_command)
515 drv->uninit_command(cmd);
516 }
517 }
518
scsi_free_sgtables(struct scsi_cmnd * cmd)519 void scsi_free_sgtables(struct scsi_cmnd *cmd)
520 {
521 if (cmd->sdb.table.nents)
522 sg_free_table_chained(&cmd->sdb.table,
523 SCSI_INLINE_SG_CNT);
524 if (scsi_prot_sg_count(cmd))
525 sg_free_table_chained(&cmd->prot_sdb->table,
526 SCSI_INLINE_PROT_SG_CNT);
527 }
528 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
529
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)530 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
531 {
532 scsi_free_sgtables(cmd);
533 scsi_uninit_cmd(cmd);
534 }
535
scsi_run_queue_async(struct scsi_device * sdev)536 static void scsi_run_queue_async(struct scsi_device *sdev)
537 {
538 if (scsi_target(sdev)->single_lun ||
539 !list_empty(&sdev->host->starved_list)) {
540 kblockd_schedule_work(&sdev->requeue_work);
541 } else {
542 /*
543 * smp_mb() present in sbitmap_queue_clear() or implied in
544 * .end_io is for ordering writing .device_busy in
545 * scsi_device_unbusy() and reading sdev->restarts.
546 */
547 int old = atomic_read(&sdev->restarts);
548
549 /*
550 * ->restarts has to be kept as non-zero if new budget
551 * contention occurs.
552 *
553 * No need to run queue when either another re-run
554 * queue wins in updating ->restarts or a new budget
555 * contention occurs.
556 */
557 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
558 blk_mq_run_hw_queues(sdev->request_queue, true);
559 }
560 }
561
562 /* Returns false when no more bytes to process, true if there are more */
scsi_end_request(struct request * req,blk_status_t error,unsigned int bytes)563 static bool scsi_end_request(struct request *req, blk_status_t error,
564 unsigned int bytes)
565 {
566 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
567 struct scsi_device *sdev = cmd->device;
568 struct request_queue *q = sdev->request_queue;
569
570 if (blk_update_request(req, error, bytes))
571 return true;
572
573 if (blk_queue_add_random(q))
574 add_disk_randomness(req->rq_disk);
575
576 if (!blk_rq_is_scsi(req)) {
577 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
578 cmd->flags &= ~SCMD_INITIALIZED;
579 }
580
581 /*
582 * Calling rcu_barrier() is not necessary here because the
583 * SCSI error handler guarantees that the function called by
584 * call_rcu() has been called before scsi_end_request() is
585 * called.
586 */
587 destroy_rcu_head(&cmd->rcu);
588
589 /*
590 * In the MQ case the command gets freed by __blk_mq_end_request,
591 * so we have to do all cleanup that depends on it earlier.
592 *
593 * We also can't kick the queues from irq context, so we
594 * will have to defer it to a workqueue.
595 */
596 scsi_mq_uninit_cmd(cmd);
597
598 /*
599 * queue is still alive, so grab the ref for preventing it
600 * from being cleaned up during running queue.
601 */
602 percpu_ref_get(&q->q_usage_counter);
603
604 __blk_mq_end_request(req, error);
605
606 scsi_run_queue_async(sdev);
607
608 percpu_ref_put(&q->q_usage_counter);
609 return false;
610 }
611
612 /**
613 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
614 * @cmd: SCSI command
615 * @result: scsi error code
616 *
617 * Translate a SCSI result code into a blk_status_t value. May reset the host
618 * byte of @cmd->result.
619 */
scsi_result_to_blk_status(struct scsi_cmnd * cmd,int result)620 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
621 {
622 switch (host_byte(result)) {
623 case DID_OK:
624 /*
625 * Also check the other bytes than the status byte in result
626 * to handle the case when a SCSI LLD sets result to
627 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
628 */
629 if (scsi_status_is_good(result) && (result & ~0xff) == 0)
630 return BLK_STS_OK;
631 return BLK_STS_IOERR;
632 case DID_TRANSPORT_FAILFAST:
633 return BLK_STS_TRANSPORT;
634 case DID_TARGET_FAILURE:
635 set_host_byte(cmd, DID_OK);
636 return BLK_STS_TARGET;
637 case DID_NEXUS_FAILURE:
638 set_host_byte(cmd, DID_OK);
639 return BLK_STS_NEXUS;
640 case DID_ALLOC_FAILURE:
641 set_host_byte(cmd, DID_OK);
642 return BLK_STS_NOSPC;
643 case DID_MEDIUM_ERROR:
644 set_host_byte(cmd, DID_OK);
645 return BLK_STS_MEDIUM;
646 default:
647 return BLK_STS_IOERR;
648 }
649 }
650
651 /* Helper for scsi_io_completion() when "reprep" action required. */
scsi_io_completion_reprep(struct scsi_cmnd * cmd,struct request_queue * q)652 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
653 struct request_queue *q)
654 {
655 /* A new command will be prepared and issued. */
656 scsi_mq_requeue_cmd(cmd);
657 }
658
scsi_cmd_runtime_exceeced(struct scsi_cmnd * cmd)659 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
660 {
661 struct request *req = cmd->request;
662 unsigned long wait_for;
663
664 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
665 return false;
666
667 wait_for = (cmd->allowed + 1) * req->timeout;
668 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
669 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
670 wait_for/HZ);
671 return true;
672 }
673 return false;
674 }
675
676 /* Helper for scsi_io_completion() when special action required. */
scsi_io_completion_action(struct scsi_cmnd * cmd,int result)677 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
678 {
679 struct request_queue *q = cmd->device->request_queue;
680 struct request *req = cmd->request;
681 int level = 0;
682 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
683 ACTION_DELAYED_RETRY} action;
684 struct scsi_sense_hdr sshdr;
685 bool sense_valid;
686 bool sense_current = true; /* false implies "deferred sense" */
687 blk_status_t blk_stat;
688
689 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
690 if (sense_valid)
691 sense_current = !scsi_sense_is_deferred(&sshdr);
692
693 blk_stat = scsi_result_to_blk_status(cmd, result);
694
695 if (host_byte(result) == DID_RESET) {
696 /* Third party bus reset or reset for error recovery
697 * reasons. Just retry the command and see what
698 * happens.
699 */
700 action = ACTION_RETRY;
701 } else if (sense_valid && sense_current) {
702 switch (sshdr.sense_key) {
703 case UNIT_ATTENTION:
704 if (cmd->device->removable) {
705 /* Detected disc change. Set a bit
706 * and quietly refuse further access.
707 */
708 cmd->device->changed = 1;
709 action = ACTION_FAIL;
710 } else {
711 /* Must have been a power glitch, or a
712 * bus reset. Could not have been a
713 * media change, so we just retry the
714 * command and see what happens.
715 */
716 action = ACTION_RETRY;
717 }
718 break;
719 case ILLEGAL_REQUEST:
720 /* If we had an ILLEGAL REQUEST returned, then
721 * we may have performed an unsupported
722 * command. The only thing this should be
723 * would be a ten byte read where only a six
724 * byte read was supported. Also, on a system
725 * where READ CAPACITY failed, we may have
726 * read past the end of the disk.
727 */
728 if ((cmd->device->use_10_for_rw &&
729 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
730 (cmd->cmnd[0] == READ_10 ||
731 cmd->cmnd[0] == WRITE_10)) {
732 /* This will issue a new 6-byte command. */
733 cmd->device->use_10_for_rw = 0;
734 action = ACTION_REPREP;
735 } else if (sshdr.asc == 0x10) /* DIX */ {
736 action = ACTION_FAIL;
737 blk_stat = BLK_STS_PROTECTION;
738 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
739 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
740 action = ACTION_FAIL;
741 blk_stat = BLK_STS_TARGET;
742 } else
743 action = ACTION_FAIL;
744 break;
745 case ABORTED_COMMAND:
746 action = ACTION_FAIL;
747 if (sshdr.asc == 0x10) /* DIF */
748 blk_stat = BLK_STS_PROTECTION;
749 break;
750 case NOT_READY:
751 /* If the device is in the process of becoming
752 * ready, or has a temporary blockage, retry.
753 */
754 if (sshdr.asc == 0x04) {
755 switch (sshdr.ascq) {
756 case 0x01: /* becoming ready */
757 case 0x04: /* format in progress */
758 case 0x05: /* rebuild in progress */
759 case 0x06: /* recalculation in progress */
760 case 0x07: /* operation in progress */
761 case 0x08: /* Long write in progress */
762 case 0x09: /* self test in progress */
763 case 0x11: /* notify (enable spinup) required */
764 case 0x14: /* space allocation in progress */
765 case 0x1a: /* start stop unit in progress */
766 case 0x1b: /* sanitize in progress */
767 case 0x1d: /* configuration in progress */
768 case 0x24: /* depopulation in progress */
769 action = ACTION_DELAYED_RETRY;
770 break;
771 default:
772 action = ACTION_FAIL;
773 break;
774 }
775 } else
776 action = ACTION_FAIL;
777 break;
778 case VOLUME_OVERFLOW:
779 /* See SSC3rXX or current. */
780 action = ACTION_FAIL;
781 break;
782 case DATA_PROTECT:
783 action = ACTION_FAIL;
784 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
785 (sshdr.asc == 0x55 &&
786 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
787 /* Insufficient zone resources */
788 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
789 }
790 break;
791 default:
792 action = ACTION_FAIL;
793 break;
794 }
795 } else
796 action = ACTION_FAIL;
797
798 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
799 action = ACTION_FAIL;
800
801 switch (action) {
802 case ACTION_FAIL:
803 /* Give up and fail the remainder of the request */
804 if (!(req->rq_flags & RQF_QUIET)) {
805 static DEFINE_RATELIMIT_STATE(_rs,
806 DEFAULT_RATELIMIT_INTERVAL,
807 DEFAULT_RATELIMIT_BURST);
808
809 if (unlikely(scsi_logging_level))
810 level =
811 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
812 SCSI_LOG_MLCOMPLETE_BITS);
813
814 /*
815 * if logging is enabled the failure will be printed
816 * in scsi_log_completion(), so avoid duplicate messages
817 */
818 if (!level && __ratelimit(&_rs)) {
819 scsi_print_result(cmd, NULL, FAILED);
820 if (driver_byte(result) == DRIVER_SENSE)
821 scsi_print_sense(cmd);
822 scsi_print_command(cmd);
823 }
824 }
825 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
826 return;
827 fallthrough;
828 case ACTION_REPREP:
829 scsi_io_completion_reprep(cmd, q);
830 break;
831 case ACTION_RETRY:
832 /* Retry the same command immediately */
833 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
834 break;
835 case ACTION_DELAYED_RETRY:
836 /* Retry the same command after a delay */
837 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
838 break;
839 }
840 }
841
842 /*
843 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
844 * new result that may suppress further error checking. Also modifies
845 * *blk_statp in some cases.
846 */
scsi_io_completion_nz_result(struct scsi_cmnd * cmd,int result,blk_status_t * blk_statp)847 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
848 blk_status_t *blk_statp)
849 {
850 bool sense_valid;
851 bool sense_current = true; /* false implies "deferred sense" */
852 struct request *req = cmd->request;
853 struct scsi_sense_hdr sshdr;
854
855 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
856 if (sense_valid)
857 sense_current = !scsi_sense_is_deferred(&sshdr);
858
859 if (blk_rq_is_passthrough(req)) {
860 if (sense_valid) {
861 /*
862 * SG_IO wants current and deferred errors
863 */
864 scsi_req(req)->sense_len =
865 min(8 + cmd->sense_buffer[7],
866 SCSI_SENSE_BUFFERSIZE);
867 }
868 if (sense_current)
869 *blk_statp = scsi_result_to_blk_status(cmd, result);
870 } else if (blk_rq_bytes(req) == 0 && sense_current) {
871 /*
872 * Flush commands do not transfers any data, and thus cannot use
873 * good_bytes != blk_rq_bytes(req) as the signal for an error.
874 * This sets *blk_statp explicitly for the problem case.
875 */
876 *blk_statp = scsi_result_to_blk_status(cmd, result);
877 }
878 /*
879 * Recovered errors need reporting, but they're always treated as
880 * success, so fiddle the result code here. For passthrough requests
881 * we already took a copy of the original into sreq->result which
882 * is what gets returned to the user
883 */
884 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
885 bool do_print = true;
886 /*
887 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
888 * skip print since caller wants ATA registers. Only occurs
889 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
890 */
891 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
892 do_print = false;
893 else if (req->rq_flags & RQF_QUIET)
894 do_print = false;
895 if (do_print)
896 scsi_print_sense(cmd);
897 result = 0;
898 /* for passthrough, *blk_statp may be set */
899 *blk_statp = BLK_STS_OK;
900 }
901 /*
902 * Another corner case: the SCSI status byte is non-zero but 'good'.
903 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
904 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
905 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
906 * intermediate statuses (both obsolete in SAM-4) as good.
907 */
908 if (status_byte(result) && scsi_status_is_good(result)) {
909 result = 0;
910 *blk_statp = BLK_STS_OK;
911 }
912 return result;
913 }
914
915 /**
916 * scsi_io_completion - Completion processing for SCSI commands.
917 * @cmd: command that is finished.
918 * @good_bytes: number of processed bytes.
919 *
920 * We will finish off the specified number of sectors. If we are done, the
921 * command block will be released and the queue function will be goosed. If we
922 * are not done then we have to figure out what to do next:
923 *
924 * a) We can call scsi_io_completion_reprep(). The request will be
925 * unprepared and put back on the queue. Then a new command will
926 * be created for it. This should be used if we made forward
927 * progress, or if we want to switch from READ(10) to READ(6) for
928 * example.
929 *
930 * b) We can call scsi_io_completion_action(). The request will be
931 * put back on the queue and retried using the same command as
932 * before, possibly after a delay.
933 *
934 * c) We can call scsi_end_request() with blk_stat other than
935 * BLK_STS_OK, to fail the remainder of the request.
936 */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)937 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
938 {
939 int result = cmd->result;
940 struct request_queue *q = cmd->device->request_queue;
941 struct request *req = cmd->request;
942 blk_status_t blk_stat = BLK_STS_OK;
943
944 if (unlikely(result)) /* a nz result may or may not be an error */
945 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
946
947 if (unlikely(blk_rq_is_passthrough(req))) {
948 /*
949 * scsi_result_to_blk_status may have reset the host_byte
950 */
951 scsi_req(req)->result = cmd->result;
952 }
953
954 /*
955 * Next deal with any sectors which we were able to correctly
956 * handle.
957 */
958 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
959 "%u sectors total, %d bytes done.\n",
960 blk_rq_sectors(req), good_bytes));
961
962 /*
963 * Failed, zero length commands always need to drop down
964 * to retry code. Fast path should return in this block.
965 */
966 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
967 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
968 return; /* no bytes remaining */
969 }
970
971 /* Kill remainder if no retries. */
972 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
973 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
974 WARN_ONCE(true,
975 "Bytes remaining after failed, no-retry command");
976 return;
977 }
978
979 /*
980 * If there had been no error, but we have leftover bytes in the
981 * requeues just queue the command up again.
982 */
983 if (likely(result == 0))
984 scsi_io_completion_reprep(cmd, q);
985 else
986 scsi_io_completion_action(cmd, result);
987 }
988
scsi_cmd_needs_dma_drain(struct scsi_device * sdev,struct request * rq)989 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
990 struct request *rq)
991 {
992 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
993 !op_is_write(req_op(rq)) &&
994 sdev->host->hostt->dma_need_drain(rq);
995 }
996
997 /**
998 * scsi_alloc_sgtables - allocate S/G tables for a command
999 * @cmd: command descriptor we wish to initialize
1000 *
1001 * Returns:
1002 * * BLK_STS_OK - on success
1003 * * BLK_STS_RESOURCE - if the failure is retryable
1004 * * BLK_STS_IOERR - if the failure is fatal
1005 */
scsi_alloc_sgtables(struct scsi_cmnd * cmd)1006 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1007 {
1008 struct scsi_device *sdev = cmd->device;
1009 struct request *rq = cmd->request;
1010 unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1011 struct scatterlist *last_sg = NULL;
1012 blk_status_t ret;
1013 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1014 int count;
1015
1016 if (WARN_ON_ONCE(!nr_segs))
1017 return BLK_STS_IOERR;
1018
1019 /*
1020 * Make sure there is space for the drain. The driver must adjust
1021 * max_hw_segments to be prepared for this.
1022 */
1023 if (need_drain)
1024 nr_segs++;
1025
1026 /*
1027 * If sg table allocation fails, requeue request later.
1028 */
1029 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1030 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1031 return BLK_STS_RESOURCE;
1032
1033 /*
1034 * Next, walk the list, and fill in the addresses and sizes of
1035 * each segment.
1036 */
1037 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1038
1039 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1040 unsigned int pad_len =
1041 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1042
1043 last_sg->length += pad_len;
1044 cmd->extra_len += pad_len;
1045 }
1046
1047 if (need_drain) {
1048 sg_unmark_end(last_sg);
1049 last_sg = sg_next(last_sg);
1050 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1051 sg_mark_end(last_sg);
1052
1053 cmd->extra_len += sdev->dma_drain_len;
1054 count++;
1055 }
1056
1057 BUG_ON(count > cmd->sdb.table.nents);
1058 cmd->sdb.table.nents = count;
1059 cmd->sdb.length = blk_rq_payload_bytes(rq);
1060
1061 if (blk_integrity_rq(rq)) {
1062 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1063 int ivecs;
1064
1065 if (WARN_ON_ONCE(!prot_sdb)) {
1066 /*
1067 * This can happen if someone (e.g. multipath)
1068 * queues a command to a device on an adapter
1069 * that does not support DIX.
1070 */
1071 ret = BLK_STS_IOERR;
1072 goto out_free_sgtables;
1073 }
1074
1075 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1076
1077 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1078 prot_sdb->table.sgl,
1079 SCSI_INLINE_PROT_SG_CNT)) {
1080 ret = BLK_STS_RESOURCE;
1081 goto out_free_sgtables;
1082 }
1083
1084 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1085 prot_sdb->table.sgl);
1086 BUG_ON(count > ivecs);
1087 BUG_ON(count > queue_max_integrity_segments(rq->q));
1088
1089 cmd->prot_sdb = prot_sdb;
1090 cmd->prot_sdb->table.nents = count;
1091 }
1092
1093 return BLK_STS_OK;
1094 out_free_sgtables:
1095 scsi_free_sgtables(cmd);
1096 return ret;
1097 }
1098 EXPORT_SYMBOL(scsi_alloc_sgtables);
1099
1100 /**
1101 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1102 * @rq: Request associated with the SCSI command to be initialized.
1103 *
1104 * This function initializes the members of struct scsi_cmnd that must be
1105 * initialized before request processing starts and that won't be
1106 * reinitialized if a SCSI command is requeued.
1107 *
1108 * Called from inside blk_get_request() for pass-through requests and from
1109 * inside scsi_init_command() for filesystem requests.
1110 */
scsi_initialize_rq(struct request * rq)1111 static void scsi_initialize_rq(struct request *rq)
1112 {
1113 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1114
1115 scsi_req_init(&cmd->req);
1116 init_rcu_head(&cmd->rcu);
1117 cmd->jiffies_at_alloc = jiffies;
1118 cmd->retries = 0;
1119 }
1120
1121 /*
1122 * Only called when the request isn't completed by SCSI, and not freed by
1123 * SCSI
1124 */
scsi_cleanup_rq(struct request * rq)1125 static void scsi_cleanup_rq(struct request *rq)
1126 {
1127 if (rq->rq_flags & RQF_DONTPREP) {
1128 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1129 rq->rq_flags &= ~RQF_DONTPREP;
1130 }
1131 }
1132
1133 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
scsi_init_command(struct scsi_device * dev,struct scsi_cmnd * cmd)1134 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1135 {
1136 void *buf = cmd->sense_buffer;
1137 void *prot = cmd->prot_sdb;
1138 struct request *rq = blk_mq_rq_from_pdu(cmd);
1139 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1140 unsigned long jiffies_at_alloc;
1141 int retries, to_clear;
1142 bool in_flight;
1143
1144 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1145 flags |= SCMD_INITIALIZED;
1146 scsi_initialize_rq(rq);
1147 }
1148
1149 jiffies_at_alloc = cmd->jiffies_at_alloc;
1150 retries = cmd->retries;
1151 in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1152 /*
1153 * Zero out the cmd, except for the embedded scsi_request. Only clear
1154 * the driver-private command data if the LLD does not supply a
1155 * function to initialize that data.
1156 */
1157 to_clear = sizeof(*cmd) - sizeof(cmd->req);
1158 if (!dev->host->hostt->init_cmd_priv)
1159 to_clear += dev->host->hostt->cmd_size;
1160 memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1161
1162 cmd->device = dev;
1163 cmd->sense_buffer = buf;
1164 cmd->prot_sdb = prot;
1165 cmd->flags = flags;
1166 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1167 cmd->jiffies_at_alloc = jiffies_at_alloc;
1168 cmd->retries = retries;
1169 if (in_flight)
1170 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1171
1172 }
1173
scsi_setup_scsi_cmnd(struct scsi_device * sdev,struct request * req)1174 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1175 struct request *req)
1176 {
1177 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1178
1179 /*
1180 * Passthrough requests may transfer data, in which case they must
1181 * a bio attached to them. Or they might contain a SCSI command
1182 * that does not transfer data, in which case they may optionally
1183 * submit a request without an attached bio.
1184 */
1185 if (req->bio) {
1186 blk_status_t ret = scsi_alloc_sgtables(cmd);
1187 if (unlikely(ret != BLK_STS_OK))
1188 return ret;
1189 } else {
1190 BUG_ON(blk_rq_bytes(req));
1191
1192 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1193 }
1194
1195 cmd->cmd_len = scsi_req(req)->cmd_len;
1196 cmd->cmnd = scsi_req(req)->cmd;
1197 cmd->transfersize = blk_rq_bytes(req);
1198 cmd->allowed = scsi_req(req)->retries;
1199 return BLK_STS_OK;
1200 }
1201
1202 static blk_status_t
scsi_device_state_check(struct scsi_device * sdev,struct request * req)1203 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1204 {
1205 switch (sdev->sdev_state) {
1206 case SDEV_CREATED:
1207 return BLK_STS_OK;
1208 case SDEV_OFFLINE:
1209 case SDEV_TRANSPORT_OFFLINE:
1210 /*
1211 * If the device is offline we refuse to process any
1212 * commands. The device must be brought online
1213 * before trying any recovery commands.
1214 */
1215 if (!sdev->offline_already) {
1216 sdev->offline_already = true;
1217 sdev_printk(KERN_ERR, sdev,
1218 "rejecting I/O to offline device\n");
1219 }
1220 return BLK_STS_IOERR;
1221 case SDEV_DEL:
1222 /*
1223 * If the device is fully deleted, we refuse to
1224 * process any commands as well.
1225 */
1226 sdev_printk(KERN_ERR, sdev,
1227 "rejecting I/O to dead device\n");
1228 return BLK_STS_IOERR;
1229 case SDEV_BLOCK:
1230 case SDEV_CREATED_BLOCK:
1231 return BLK_STS_RESOURCE;
1232 case SDEV_QUIESCE:
1233 /*
1234 * If the device is blocked we only accept power management
1235 * commands.
1236 */
1237 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1238 return BLK_STS_RESOURCE;
1239 return BLK_STS_OK;
1240 default:
1241 /*
1242 * For any other not fully online state we only allow
1243 * power management commands.
1244 */
1245 if (req && !(req->rq_flags & RQF_PM))
1246 return BLK_STS_IOERR;
1247 return BLK_STS_OK;
1248 }
1249 }
1250
1251 /*
1252 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1253 * return 0.
1254 *
1255 * Called with the queue_lock held.
1256 */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1257 static inline int scsi_dev_queue_ready(struct request_queue *q,
1258 struct scsi_device *sdev)
1259 {
1260 unsigned int busy;
1261
1262 busy = atomic_inc_return(&sdev->device_busy) - 1;
1263 if (atomic_read(&sdev->device_blocked)) {
1264 if (busy)
1265 goto out_dec;
1266
1267 /*
1268 * unblock after device_blocked iterates to zero
1269 */
1270 if (atomic_dec_return(&sdev->device_blocked) > 0)
1271 goto out_dec;
1272 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1273 "unblocking device at zero depth\n"));
1274 }
1275
1276 if (busy >= sdev->queue_depth)
1277 goto out_dec;
1278
1279 return 1;
1280 out_dec:
1281 atomic_dec(&sdev->device_busy);
1282 return 0;
1283 }
1284
1285 /*
1286 * scsi_target_queue_ready: checks if there we can send commands to target
1287 * @sdev: scsi device on starget to check.
1288 */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1289 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1290 struct scsi_device *sdev)
1291 {
1292 struct scsi_target *starget = scsi_target(sdev);
1293 unsigned int busy;
1294
1295 if (starget->single_lun) {
1296 spin_lock_irq(shost->host_lock);
1297 if (starget->starget_sdev_user &&
1298 starget->starget_sdev_user != sdev) {
1299 spin_unlock_irq(shost->host_lock);
1300 return 0;
1301 }
1302 starget->starget_sdev_user = sdev;
1303 spin_unlock_irq(shost->host_lock);
1304 }
1305
1306 if (starget->can_queue <= 0)
1307 return 1;
1308
1309 busy = atomic_inc_return(&starget->target_busy) - 1;
1310 if (atomic_read(&starget->target_blocked) > 0) {
1311 if (busy)
1312 goto starved;
1313
1314 /*
1315 * unblock after target_blocked iterates to zero
1316 */
1317 if (atomic_dec_return(&starget->target_blocked) > 0)
1318 goto out_dec;
1319
1320 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1321 "unblocking target at zero depth\n"));
1322 }
1323
1324 if (busy >= starget->can_queue)
1325 goto starved;
1326
1327 return 1;
1328
1329 starved:
1330 spin_lock_irq(shost->host_lock);
1331 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1332 spin_unlock_irq(shost->host_lock);
1333 out_dec:
1334 if (starget->can_queue > 0)
1335 atomic_dec(&starget->target_busy);
1336 return 0;
1337 }
1338
1339 /*
1340 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1341 * return 0. We must end up running the queue again whenever 0 is
1342 * returned, else IO can hang.
1343 */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev,struct scsi_cmnd * cmd)1344 static inline int scsi_host_queue_ready(struct request_queue *q,
1345 struct Scsi_Host *shost,
1346 struct scsi_device *sdev,
1347 struct scsi_cmnd *cmd)
1348 {
1349 if (scsi_host_in_recovery(shost))
1350 return 0;
1351
1352 if (atomic_read(&shost->host_blocked) > 0) {
1353 if (scsi_host_busy(shost) > 0)
1354 goto starved;
1355
1356 /*
1357 * unblock after host_blocked iterates to zero
1358 */
1359 if (atomic_dec_return(&shost->host_blocked) > 0)
1360 goto out_dec;
1361
1362 SCSI_LOG_MLQUEUE(3,
1363 shost_printk(KERN_INFO, shost,
1364 "unblocking host at zero depth\n"));
1365 }
1366
1367 if (shost->host_self_blocked)
1368 goto starved;
1369
1370 /* We're OK to process the command, so we can't be starved */
1371 if (!list_empty(&sdev->starved_entry)) {
1372 spin_lock_irq(shost->host_lock);
1373 if (!list_empty(&sdev->starved_entry))
1374 list_del_init(&sdev->starved_entry);
1375 spin_unlock_irq(shost->host_lock);
1376 }
1377
1378 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1379
1380 return 1;
1381
1382 starved:
1383 spin_lock_irq(shost->host_lock);
1384 if (list_empty(&sdev->starved_entry))
1385 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1386 spin_unlock_irq(shost->host_lock);
1387 out_dec:
1388 scsi_dec_host_busy(shost, cmd);
1389 return 0;
1390 }
1391
1392 /*
1393 * Busy state exporting function for request stacking drivers.
1394 *
1395 * For efficiency, no lock is taken to check the busy state of
1396 * shost/starget/sdev, since the returned value is not guaranteed and
1397 * may be changed after request stacking drivers call the function,
1398 * regardless of taking lock or not.
1399 *
1400 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1401 * needs to return 'not busy'. Otherwise, request stacking drivers
1402 * may hold requests forever.
1403 */
scsi_mq_lld_busy(struct request_queue * q)1404 static bool scsi_mq_lld_busy(struct request_queue *q)
1405 {
1406 struct scsi_device *sdev = q->queuedata;
1407 struct Scsi_Host *shost;
1408
1409 if (blk_queue_dying(q))
1410 return false;
1411
1412 shost = sdev->host;
1413
1414 /*
1415 * Ignore host/starget busy state.
1416 * Since block layer does not have a concept of fairness across
1417 * multiple queues, congestion of host/starget needs to be handled
1418 * in SCSI layer.
1419 */
1420 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1421 return true;
1422
1423 return false;
1424 }
1425
scsi_softirq_done(struct request * rq)1426 static void scsi_softirq_done(struct request *rq)
1427 {
1428 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1429 int disposition;
1430
1431 INIT_LIST_HEAD(&cmd->eh_entry);
1432
1433 atomic_inc(&cmd->device->iodone_cnt);
1434 if (cmd->result)
1435 atomic_inc(&cmd->device->ioerr_cnt);
1436
1437 disposition = scsi_decide_disposition(cmd);
1438 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1439 disposition = SUCCESS;
1440
1441 scsi_log_completion(cmd, disposition);
1442
1443 switch (disposition) {
1444 case SUCCESS:
1445 scsi_finish_command(cmd);
1446 break;
1447 case NEEDS_RETRY:
1448 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1449 break;
1450 case ADD_TO_MLQUEUE:
1451 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1452 break;
1453 default:
1454 scsi_eh_scmd_add(cmd);
1455 break;
1456 }
1457 }
1458
1459 /**
1460 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1461 * @cmd: command block we are dispatching.
1462 *
1463 * Return: nonzero return request was rejected and device's queue needs to be
1464 * plugged.
1465 */
scsi_dispatch_cmd(struct scsi_cmnd * cmd)1466 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1467 {
1468 struct Scsi_Host *host = cmd->device->host;
1469 int rtn = 0;
1470
1471 atomic_inc(&cmd->device->iorequest_cnt);
1472
1473 /* check if the device is still usable */
1474 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1475 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1476 * returns an immediate error upwards, and signals
1477 * that the device is no longer present */
1478 cmd->result = DID_NO_CONNECT << 16;
1479 goto done;
1480 }
1481
1482 /* Check to see if the scsi lld made this device blocked. */
1483 if (unlikely(scsi_device_blocked(cmd->device))) {
1484 /*
1485 * in blocked state, the command is just put back on
1486 * the device queue. The suspend state has already
1487 * blocked the queue so future requests should not
1488 * occur until the device transitions out of the
1489 * suspend state.
1490 */
1491 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1492 "queuecommand : device blocked\n"));
1493 atomic_dec(&cmd->device->iorequest_cnt);
1494 return SCSI_MLQUEUE_DEVICE_BUSY;
1495 }
1496
1497 /* Store the LUN value in cmnd, if needed. */
1498 if (cmd->device->lun_in_cdb)
1499 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1500 (cmd->device->lun << 5 & 0xe0);
1501
1502 scsi_log_send(cmd);
1503
1504 /*
1505 * Before we queue this command, check if the command
1506 * length exceeds what the host adapter can handle.
1507 */
1508 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1509 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1510 "queuecommand : command too long. "
1511 "cdb_size=%d host->max_cmd_len=%d\n",
1512 cmd->cmd_len, cmd->device->host->max_cmd_len));
1513 cmd->result = (DID_ABORT << 16);
1514 goto done;
1515 }
1516
1517 if (unlikely(host->shost_state == SHOST_DEL)) {
1518 cmd->result = (DID_NO_CONNECT << 16);
1519 goto done;
1520
1521 }
1522
1523 trace_scsi_dispatch_cmd_start(cmd);
1524 rtn = host->hostt->queuecommand(host, cmd);
1525 if (rtn) {
1526 atomic_dec(&cmd->device->iorequest_cnt);
1527 trace_scsi_dispatch_cmd_error(cmd, rtn);
1528 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1529 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1530 rtn = SCSI_MLQUEUE_HOST_BUSY;
1531
1532 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1533 "queuecommand : request rejected\n"));
1534 }
1535
1536 return rtn;
1537 done:
1538 cmd->scsi_done(cmd);
1539 return 0;
1540 }
1541
1542 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
scsi_mq_inline_sgl_size(struct Scsi_Host * shost)1543 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1544 {
1545 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1546 sizeof(struct scatterlist);
1547 }
1548
scsi_prepare_cmd(struct request * req)1549 static blk_status_t scsi_prepare_cmd(struct request *req)
1550 {
1551 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1552 struct scsi_device *sdev = req->q->queuedata;
1553 struct Scsi_Host *shost = sdev->host;
1554 struct scatterlist *sg;
1555
1556 scsi_init_command(sdev, cmd);
1557
1558 cmd->request = req;
1559 cmd->tag = req->tag;
1560 cmd->prot_op = SCSI_PROT_NORMAL;
1561 if (blk_rq_bytes(req))
1562 cmd->sc_data_direction = rq_dma_dir(req);
1563 else
1564 cmd->sc_data_direction = DMA_NONE;
1565
1566 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1567 cmd->sdb.table.sgl = sg;
1568
1569 if (scsi_host_get_prot(shost)) {
1570 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1571
1572 cmd->prot_sdb->table.sgl =
1573 (struct scatterlist *)(cmd->prot_sdb + 1);
1574 }
1575
1576 /*
1577 * Special handling for passthrough commands, which don't go to the ULP
1578 * at all:
1579 */
1580 if (blk_rq_is_scsi(req))
1581 return scsi_setup_scsi_cmnd(sdev, req);
1582
1583 if (sdev->handler && sdev->handler->prep_fn) {
1584 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1585
1586 if (ret != BLK_STS_OK)
1587 return ret;
1588 }
1589
1590 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1591 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1592 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1593 }
1594
scsi_mq_done(struct scsi_cmnd * cmd)1595 static void scsi_mq_done(struct scsi_cmnd *cmd)
1596 {
1597 if (unlikely(blk_should_fake_timeout(cmd->request->q)))
1598 return;
1599 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1600 return;
1601 trace_scsi_dispatch_cmd_done(cmd);
1602 blk_mq_complete_request(cmd->request);
1603 }
1604
scsi_mq_put_budget(struct request_queue * q)1605 static void scsi_mq_put_budget(struct request_queue *q)
1606 {
1607 struct scsi_device *sdev = q->queuedata;
1608
1609 atomic_dec(&sdev->device_busy);
1610 }
1611
scsi_mq_get_budget(struct request_queue * q)1612 static bool scsi_mq_get_budget(struct request_queue *q)
1613 {
1614 struct scsi_device *sdev = q->queuedata;
1615
1616 if (scsi_dev_queue_ready(q, sdev))
1617 return true;
1618
1619 atomic_inc(&sdev->restarts);
1620
1621 /*
1622 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1623 * .restarts must be incremented before .device_busy is read because the
1624 * code in scsi_run_queue_async() depends on the order of these operations.
1625 */
1626 smp_mb__after_atomic();
1627
1628 /*
1629 * If all in-flight requests originated from this LUN are completed
1630 * before reading .device_busy, sdev->device_busy will be observed as
1631 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1632 * soon. Otherwise, completion of one of these requests will observe
1633 * the .restarts flag, and the request queue will be run for handling
1634 * this request, see scsi_end_request().
1635 */
1636 if (unlikely(atomic_read(&sdev->device_busy) == 0 &&
1637 !scsi_device_blocked(sdev)))
1638 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1639 return false;
1640 }
1641
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1642 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1643 const struct blk_mq_queue_data *bd)
1644 {
1645 struct request *req = bd->rq;
1646 struct request_queue *q = req->q;
1647 struct scsi_device *sdev = q->queuedata;
1648 struct Scsi_Host *shost = sdev->host;
1649 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1650 blk_status_t ret;
1651 int reason;
1652
1653 /*
1654 * If the device is not in running state we will reject some or all
1655 * commands.
1656 */
1657 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1658 ret = scsi_device_state_check(sdev, req);
1659 if (ret != BLK_STS_OK)
1660 goto out_put_budget;
1661 }
1662
1663 ret = BLK_STS_RESOURCE;
1664 if (!scsi_target_queue_ready(shost, sdev))
1665 goto out_put_budget;
1666 if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1667 goto out_dec_target_busy;
1668
1669 if (!(req->rq_flags & RQF_DONTPREP)) {
1670 ret = scsi_prepare_cmd(req);
1671 if (ret != BLK_STS_OK)
1672 goto out_dec_host_busy;
1673 req->rq_flags |= RQF_DONTPREP;
1674 } else {
1675 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1676 }
1677
1678 cmd->flags &= SCMD_PRESERVED_FLAGS;
1679 if (sdev->simple_tags)
1680 cmd->flags |= SCMD_TAGGED;
1681 if (bd->last)
1682 cmd->flags |= SCMD_LAST;
1683
1684 scsi_set_resid(cmd, 0);
1685 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1686 cmd->scsi_done = scsi_mq_done;
1687
1688 blk_mq_start_request(req);
1689 reason = scsi_dispatch_cmd(cmd);
1690 if (reason) {
1691 scsi_set_blocked(cmd, reason);
1692 ret = BLK_STS_RESOURCE;
1693 goto out_dec_host_busy;
1694 }
1695
1696 return BLK_STS_OK;
1697
1698 out_dec_host_busy:
1699 scsi_dec_host_busy(shost, cmd);
1700 out_dec_target_busy:
1701 if (scsi_target(sdev)->can_queue > 0)
1702 atomic_dec(&scsi_target(sdev)->target_busy);
1703 out_put_budget:
1704 scsi_mq_put_budget(q);
1705 switch (ret) {
1706 case BLK_STS_OK:
1707 break;
1708 case BLK_STS_RESOURCE:
1709 case BLK_STS_ZONE_RESOURCE:
1710 if (scsi_device_blocked(sdev))
1711 ret = BLK_STS_DEV_RESOURCE;
1712 break;
1713 default:
1714 if (unlikely(!scsi_device_online(sdev)))
1715 scsi_req(req)->result = DID_NO_CONNECT << 16;
1716 else
1717 scsi_req(req)->result = DID_ERROR << 16;
1718 /*
1719 * Make sure to release all allocated resources when
1720 * we hit an error, as we will never see this command
1721 * again.
1722 */
1723 if (req->rq_flags & RQF_DONTPREP)
1724 scsi_mq_uninit_cmd(cmd);
1725 scsi_run_queue_async(sdev);
1726 break;
1727 }
1728 return ret;
1729 }
1730
scsi_timeout(struct request * req,bool reserved)1731 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1732 bool reserved)
1733 {
1734 if (reserved)
1735 return BLK_EH_RESET_TIMER;
1736 return scsi_times_out(req);
1737 }
1738
scsi_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)1739 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1740 unsigned int hctx_idx, unsigned int numa_node)
1741 {
1742 struct Scsi_Host *shost = set->driver_data;
1743 const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1744 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1745 struct scatterlist *sg;
1746 int ret = 0;
1747
1748 if (unchecked_isa_dma)
1749 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1750 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1751 GFP_KERNEL, numa_node);
1752 if (!cmd->sense_buffer)
1753 return -ENOMEM;
1754 cmd->req.sense = cmd->sense_buffer;
1755
1756 if (scsi_host_get_prot(shost)) {
1757 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1758 shost->hostt->cmd_size;
1759 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1760 }
1761
1762 if (shost->hostt->init_cmd_priv) {
1763 ret = shost->hostt->init_cmd_priv(shost, cmd);
1764 if (ret < 0)
1765 scsi_free_sense_buffer(unchecked_isa_dma,
1766 cmd->sense_buffer);
1767 }
1768
1769 return ret;
1770 }
1771
scsi_mq_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1772 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1773 unsigned int hctx_idx)
1774 {
1775 struct Scsi_Host *shost = set->driver_data;
1776 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1777
1778 if (shost->hostt->exit_cmd_priv)
1779 shost->hostt->exit_cmd_priv(shost, cmd);
1780 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1781 cmd->sense_buffer);
1782 }
1783
scsi_map_queues(struct blk_mq_tag_set * set)1784 static int scsi_map_queues(struct blk_mq_tag_set *set)
1785 {
1786 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1787
1788 if (shost->hostt->map_queues)
1789 return shost->hostt->map_queues(shost);
1790 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1791 }
1792
__scsi_init_queue(struct Scsi_Host * shost,struct request_queue * q)1793 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1794 {
1795 struct device *dev = shost->dma_dev;
1796
1797 /*
1798 * this limit is imposed by hardware restrictions
1799 */
1800 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1801 SG_MAX_SEGMENTS));
1802
1803 if (scsi_host_prot_dma(shost)) {
1804 shost->sg_prot_tablesize =
1805 min_not_zero(shost->sg_prot_tablesize,
1806 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1807 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1808 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1809 }
1810
1811 if (dev->dma_mask) {
1812 shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1813 dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1814 }
1815 blk_queue_max_hw_sectors(q, shost->max_sectors);
1816 if (shost->unchecked_isa_dma)
1817 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1818 blk_queue_segment_boundary(q, shost->dma_boundary);
1819 dma_set_seg_boundary(dev, shost->dma_boundary);
1820
1821 blk_queue_max_segment_size(q, shost->max_segment_size);
1822 blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1823 dma_set_max_seg_size(dev, queue_max_segment_size(q));
1824
1825 /*
1826 * Set a reasonable default alignment: The larger of 32-byte (dword),
1827 * which is a common minimum for HBAs, and the minimum DMA alignment,
1828 * which is set by the platform.
1829 *
1830 * Devices that require a bigger alignment can increase it later.
1831 */
1832 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1833 }
1834 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1835
1836 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1837 .get_budget = scsi_mq_get_budget,
1838 .put_budget = scsi_mq_put_budget,
1839 .queue_rq = scsi_queue_rq,
1840 .complete = scsi_softirq_done,
1841 .timeout = scsi_timeout,
1842 #ifdef CONFIG_BLK_DEBUG_FS
1843 .show_rq = scsi_show_rq,
1844 #endif
1845 .init_request = scsi_mq_init_request,
1846 .exit_request = scsi_mq_exit_request,
1847 .initialize_rq_fn = scsi_initialize_rq,
1848 .cleanup_rq = scsi_cleanup_rq,
1849 .busy = scsi_mq_lld_busy,
1850 .map_queues = scsi_map_queues,
1851 };
1852
1853
scsi_commit_rqs(struct blk_mq_hw_ctx * hctx)1854 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1855 {
1856 struct request_queue *q = hctx->queue;
1857 struct scsi_device *sdev = q->queuedata;
1858 struct Scsi_Host *shost = sdev->host;
1859
1860 shost->hostt->commit_rqs(shost, hctx->queue_num);
1861 }
1862
1863 static const struct blk_mq_ops scsi_mq_ops = {
1864 .get_budget = scsi_mq_get_budget,
1865 .put_budget = scsi_mq_put_budget,
1866 .queue_rq = scsi_queue_rq,
1867 .commit_rqs = scsi_commit_rqs,
1868 .complete = scsi_softirq_done,
1869 .timeout = scsi_timeout,
1870 #ifdef CONFIG_BLK_DEBUG_FS
1871 .show_rq = scsi_show_rq,
1872 #endif
1873 .init_request = scsi_mq_init_request,
1874 .exit_request = scsi_mq_exit_request,
1875 .initialize_rq_fn = scsi_initialize_rq,
1876 .cleanup_rq = scsi_cleanup_rq,
1877 .busy = scsi_mq_lld_busy,
1878 .map_queues = scsi_map_queues,
1879 };
1880
scsi_mq_alloc_queue(struct scsi_device * sdev)1881 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1882 {
1883 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1884 if (IS_ERR(sdev->request_queue))
1885 return NULL;
1886
1887 sdev->request_queue->queuedata = sdev;
1888 __scsi_init_queue(sdev->host, sdev->request_queue);
1889 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1890 return sdev->request_queue;
1891 }
1892
scsi_mq_setup_tags(struct Scsi_Host * shost)1893 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1894 {
1895 unsigned int cmd_size, sgl_size;
1896 struct blk_mq_tag_set *tag_set = &shost->tag_set;
1897
1898 sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1899 scsi_mq_inline_sgl_size(shost));
1900 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1901 if (scsi_host_get_prot(shost))
1902 cmd_size += sizeof(struct scsi_data_buffer) +
1903 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1904
1905 memset(tag_set, 0, sizeof(*tag_set));
1906 if (shost->hostt->commit_rqs)
1907 tag_set->ops = &scsi_mq_ops;
1908 else
1909 tag_set->ops = &scsi_mq_ops_no_commit;
1910 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1911 tag_set->queue_depth = shost->can_queue;
1912 tag_set->cmd_size = cmd_size;
1913 tag_set->numa_node = NUMA_NO_NODE;
1914 tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1915 tag_set->flags |=
1916 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1917 tag_set->driver_data = shost;
1918 if (shost->host_tagset)
1919 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1920
1921 return blk_mq_alloc_tag_set(tag_set);
1922 }
1923
scsi_mq_destroy_tags(struct Scsi_Host * shost)1924 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1925 {
1926 blk_mq_free_tag_set(&shost->tag_set);
1927 }
1928
1929 /**
1930 * scsi_device_from_queue - return sdev associated with a request_queue
1931 * @q: The request queue to return the sdev from
1932 *
1933 * Return the sdev associated with a request queue or NULL if the
1934 * request_queue does not reference a SCSI device.
1935 */
scsi_device_from_queue(struct request_queue * q)1936 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1937 {
1938 struct scsi_device *sdev = NULL;
1939
1940 if (q->mq_ops == &scsi_mq_ops_no_commit ||
1941 q->mq_ops == &scsi_mq_ops)
1942 sdev = q->queuedata;
1943 if (!sdev || !get_device(&sdev->sdev_gendev))
1944 sdev = NULL;
1945
1946 return sdev;
1947 }
1948
1949 /**
1950 * scsi_block_requests - Utility function used by low-level drivers to prevent
1951 * further commands from being queued to the device.
1952 * @shost: host in question
1953 *
1954 * There is no timer nor any other means by which the requests get unblocked
1955 * other than the low-level driver calling scsi_unblock_requests().
1956 */
scsi_block_requests(struct Scsi_Host * shost)1957 void scsi_block_requests(struct Scsi_Host *shost)
1958 {
1959 shost->host_self_blocked = 1;
1960 }
1961 EXPORT_SYMBOL(scsi_block_requests);
1962
1963 /**
1964 * scsi_unblock_requests - Utility function used by low-level drivers to allow
1965 * further commands to be queued to the device.
1966 * @shost: host in question
1967 *
1968 * There is no timer nor any other means by which the requests get unblocked
1969 * other than the low-level driver calling scsi_unblock_requests(). This is done
1970 * as an API function so that changes to the internals of the scsi mid-layer
1971 * won't require wholesale changes to drivers that use this feature.
1972 */
scsi_unblock_requests(struct Scsi_Host * shost)1973 void scsi_unblock_requests(struct Scsi_Host *shost)
1974 {
1975 shost->host_self_blocked = 0;
1976 scsi_run_host_queues(shost);
1977 }
1978 EXPORT_SYMBOL(scsi_unblock_requests);
1979
scsi_exit_queue(void)1980 void scsi_exit_queue(void)
1981 {
1982 kmem_cache_destroy(scsi_sense_cache);
1983 kmem_cache_destroy(scsi_sense_isadma_cache);
1984 }
1985
1986 /**
1987 * scsi_mode_select - issue a mode select
1988 * @sdev: SCSI device to be queried
1989 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1990 * @sp: Save page bit (0 == don't save, 1 == save)
1991 * @modepage: mode page being requested
1992 * @buffer: request buffer (may not be smaller than eight bytes)
1993 * @len: length of request buffer.
1994 * @timeout: command timeout
1995 * @retries: number of retries before failing
1996 * @data: returns a structure abstracting the mode header data
1997 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1998 * must be SCSI_SENSE_BUFFERSIZE big.
1999 *
2000 * Returns zero if successful; negative error number or scsi
2001 * status on error
2002 *
2003 */
2004 int
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2005 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2006 unsigned char *buffer, int len, int timeout, int retries,
2007 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2008 {
2009 unsigned char cmd[10];
2010 unsigned char *real_buffer;
2011 int ret;
2012
2013 memset(cmd, 0, sizeof(cmd));
2014 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2015
2016 if (sdev->use_10_for_ms) {
2017 if (len > 65535)
2018 return -EINVAL;
2019 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2020 if (!real_buffer)
2021 return -ENOMEM;
2022 memcpy(real_buffer + 8, buffer, len);
2023 len += 8;
2024 real_buffer[0] = 0;
2025 real_buffer[1] = 0;
2026 real_buffer[2] = data->medium_type;
2027 real_buffer[3] = data->device_specific;
2028 real_buffer[4] = data->longlba ? 0x01 : 0;
2029 real_buffer[5] = 0;
2030 real_buffer[6] = data->block_descriptor_length >> 8;
2031 real_buffer[7] = data->block_descriptor_length;
2032
2033 cmd[0] = MODE_SELECT_10;
2034 cmd[7] = len >> 8;
2035 cmd[8] = len;
2036 } else {
2037 if (len > 255 || data->block_descriptor_length > 255 ||
2038 data->longlba)
2039 return -EINVAL;
2040
2041 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2042 if (!real_buffer)
2043 return -ENOMEM;
2044 memcpy(real_buffer + 4, buffer, len);
2045 len += 4;
2046 real_buffer[0] = 0;
2047 real_buffer[1] = data->medium_type;
2048 real_buffer[2] = data->device_specific;
2049 real_buffer[3] = data->block_descriptor_length;
2050
2051 cmd[0] = MODE_SELECT;
2052 cmd[4] = len;
2053 }
2054
2055 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2056 sshdr, timeout, retries, NULL);
2057 kfree(real_buffer);
2058 return ret;
2059 }
2060 EXPORT_SYMBOL_GPL(scsi_mode_select);
2061
2062 /**
2063 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2064 * @sdev: SCSI device to be queried
2065 * @dbd: set if mode sense will allow block descriptors to be returned
2066 * @modepage: mode page being requested
2067 * @buffer: request buffer (may not be smaller than eight bytes)
2068 * @len: length of request buffer.
2069 * @timeout: command timeout
2070 * @retries: number of retries before failing
2071 * @data: returns a structure abstracting the mode header data
2072 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2073 * must be SCSI_SENSE_BUFFERSIZE big.
2074 *
2075 * Returns zero if successful, or a negative error number on failure
2076 */
2077 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2078 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2079 unsigned char *buffer, int len, int timeout, int retries,
2080 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2081 {
2082 unsigned char cmd[12];
2083 int use_10_for_ms;
2084 int header_length;
2085 int result, retry_count = retries;
2086 struct scsi_sense_hdr my_sshdr;
2087
2088 memset(data, 0, sizeof(*data));
2089 memset(&cmd[0], 0, 12);
2090
2091 dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2092 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2093 cmd[2] = modepage;
2094
2095 /* caller might not be interested in sense, but we need it */
2096 if (!sshdr)
2097 sshdr = &my_sshdr;
2098
2099 retry:
2100 use_10_for_ms = sdev->use_10_for_ms;
2101
2102 if (use_10_for_ms) {
2103 if (len < 8)
2104 len = 8;
2105
2106 cmd[0] = MODE_SENSE_10;
2107 cmd[8] = len;
2108 header_length = 8;
2109 } else {
2110 if (len < 4)
2111 len = 4;
2112
2113 cmd[0] = MODE_SENSE;
2114 cmd[4] = len;
2115 header_length = 4;
2116 }
2117
2118 memset(buffer, 0, len);
2119
2120 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2121 sshdr, timeout, retries, NULL);
2122 if (result < 0)
2123 return result;
2124
2125 /* This code looks awful: what it's doing is making sure an
2126 * ILLEGAL REQUEST sense return identifies the actual command
2127 * byte as the problem. MODE_SENSE commands can return
2128 * ILLEGAL REQUEST if the code page isn't supported */
2129
2130 if (use_10_for_ms && !scsi_status_is_good(result) &&
2131 driver_byte(result) == DRIVER_SENSE) {
2132 if (scsi_sense_valid(sshdr)) {
2133 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2134 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2135 /*
2136 * Invalid command operation code
2137 */
2138 sdev->use_10_for_ms = 0;
2139 goto retry;
2140 }
2141 }
2142 }
2143
2144 if (scsi_status_is_good(result)) {
2145 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2146 (modepage == 6 || modepage == 8))) {
2147 /* Initio breakage? */
2148 header_length = 0;
2149 data->length = 13;
2150 data->medium_type = 0;
2151 data->device_specific = 0;
2152 data->longlba = 0;
2153 data->block_descriptor_length = 0;
2154 } else if (use_10_for_ms) {
2155 data->length = buffer[0]*256 + buffer[1] + 2;
2156 data->medium_type = buffer[2];
2157 data->device_specific = buffer[3];
2158 data->longlba = buffer[4] & 0x01;
2159 data->block_descriptor_length = buffer[6]*256
2160 + buffer[7];
2161 } else {
2162 data->length = buffer[0] + 1;
2163 data->medium_type = buffer[1];
2164 data->device_specific = buffer[2];
2165 data->block_descriptor_length = buffer[3];
2166 }
2167 data->header_length = header_length;
2168 result = 0;
2169 } else if ((status_byte(result) == CHECK_CONDITION) &&
2170 scsi_sense_valid(sshdr) &&
2171 sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2172 retry_count--;
2173 goto retry;
2174 }
2175 if (result > 0)
2176 result = -EIO;
2177 return result;
2178 }
2179 EXPORT_SYMBOL(scsi_mode_sense);
2180
2181 /**
2182 * scsi_test_unit_ready - test if unit is ready
2183 * @sdev: scsi device to change the state of.
2184 * @timeout: command timeout
2185 * @retries: number of retries before failing
2186 * @sshdr: outpout pointer for decoded sense information.
2187 *
2188 * Returns zero if unsuccessful or an error if TUR failed. For
2189 * removable media, UNIT_ATTENTION sets ->changed flag.
2190 **/
2191 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr)2192 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2193 struct scsi_sense_hdr *sshdr)
2194 {
2195 char cmd[] = {
2196 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2197 };
2198 int result;
2199
2200 /* try to eat the UNIT_ATTENTION if there are enough retries */
2201 do {
2202 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2203 timeout, 1, NULL);
2204 if (sdev->removable && scsi_sense_valid(sshdr) &&
2205 sshdr->sense_key == UNIT_ATTENTION)
2206 sdev->changed = 1;
2207 } while (scsi_sense_valid(sshdr) &&
2208 sshdr->sense_key == UNIT_ATTENTION && --retries);
2209
2210 return result;
2211 }
2212 EXPORT_SYMBOL(scsi_test_unit_ready);
2213
2214 /**
2215 * scsi_device_set_state - Take the given device through the device state model.
2216 * @sdev: scsi device to change the state of.
2217 * @state: state to change to.
2218 *
2219 * Returns zero if successful or an error if the requested
2220 * transition is illegal.
2221 */
2222 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2223 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2224 {
2225 enum scsi_device_state oldstate = sdev->sdev_state;
2226
2227 if (state == oldstate)
2228 return 0;
2229
2230 switch (state) {
2231 case SDEV_CREATED:
2232 switch (oldstate) {
2233 case SDEV_CREATED_BLOCK:
2234 break;
2235 default:
2236 goto illegal;
2237 }
2238 break;
2239
2240 case SDEV_RUNNING:
2241 switch (oldstate) {
2242 case SDEV_CREATED:
2243 case SDEV_OFFLINE:
2244 case SDEV_TRANSPORT_OFFLINE:
2245 case SDEV_QUIESCE:
2246 case SDEV_BLOCK:
2247 break;
2248 default:
2249 goto illegal;
2250 }
2251 break;
2252
2253 case SDEV_QUIESCE:
2254 switch (oldstate) {
2255 case SDEV_RUNNING:
2256 case SDEV_OFFLINE:
2257 case SDEV_TRANSPORT_OFFLINE:
2258 break;
2259 default:
2260 goto illegal;
2261 }
2262 break;
2263
2264 case SDEV_OFFLINE:
2265 case SDEV_TRANSPORT_OFFLINE:
2266 switch (oldstate) {
2267 case SDEV_CREATED:
2268 case SDEV_RUNNING:
2269 case SDEV_QUIESCE:
2270 case SDEV_BLOCK:
2271 break;
2272 default:
2273 goto illegal;
2274 }
2275 break;
2276
2277 case SDEV_BLOCK:
2278 switch (oldstate) {
2279 case SDEV_RUNNING:
2280 case SDEV_CREATED_BLOCK:
2281 case SDEV_QUIESCE:
2282 case SDEV_OFFLINE:
2283 break;
2284 default:
2285 goto illegal;
2286 }
2287 break;
2288
2289 case SDEV_CREATED_BLOCK:
2290 switch (oldstate) {
2291 case SDEV_CREATED:
2292 break;
2293 default:
2294 goto illegal;
2295 }
2296 break;
2297
2298 case SDEV_CANCEL:
2299 switch (oldstate) {
2300 case SDEV_CREATED:
2301 case SDEV_RUNNING:
2302 case SDEV_QUIESCE:
2303 case SDEV_OFFLINE:
2304 case SDEV_TRANSPORT_OFFLINE:
2305 break;
2306 default:
2307 goto illegal;
2308 }
2309 break;
2310
2311 case SDEV_DEL:
2312 switch (oldstate) {
2313 case SDEV_CREATED:
2314 case SDEV_RUNNING:
2315 case SDEV_OFFLINE:
2316 case SDEV_TRANSPORT_OFFLINE:
2317 case SDEV_CANCEL:
2318 case SDEV_BLOCK:
2319 case SDEV_CREATED_BLOCK:
2320 break;
2321 default:
2322 goto illegal;
2323 }
2324 break;
2325
2326 }
2327 sdev->offline_already = false;
2328 sdev->sdev_state = state;
2329 return 0;
2330
2331 illegal:
2332 SCSI_LOG_ERROR_RECOVERY(1,
2333 sdev_printk(KERN_ERR, sdev,
2334 "Illegal state transition %s->%s",
2335 scsi_device_state_name(oldstate),
2336 scsi_device_state_name(state))
2337 );
2338 return -EINVAL;
2339 }
2340 EXPORT_SYMBOL(scsi_device_set_state);
2341
2342 /**
2343 * sdev_evt_emit - emit a single SCSI device uevent
2344 * @sdev: associated SCSI device
2345 * @evt: event to emit
2346 *
2347 * Send a single uevent (scsi_event) to the associated scsi_device.
2348 */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2349 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2350 {
2351 int idx = 0;
2352 char *envp[3];
2353
2354 switch (evt->evt_type) {
2355 case SDEV_EVT_MEDIA_CHANGE:
2356 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2357 break;
2358 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2359 scsi_rescan_device(&sdev->sdev_gendev);
2360 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2361 break;
2362 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2363 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2364 break;
2365 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2366 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2367 break;
2368 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2369 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2370 break;
2371 case SDEV_EVT_LUN_CHANGE_REPORTED:
2372 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2373 break;
2374 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2375 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2376 break;
2377 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2378 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2379 break;
2380 default:
2381 /* do nothing */
2382 break;
2383 }
2384
2385 envp[idx++] = NULL;
2386
2387 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2388 }
2389
2390 /**
2391 * sdev_evt_thread - send a uevent for each scsi event
2392 * @work: work struct for scsi_device
2393 *
2394 * Dispatch queued events to their associated scsi_device kobjects
2395 * as uevents.
2396 */
scsi_evt_thread(struct work_struct * work)2397 void scsi_evt_thread(struct work_struct *work)
2398 {
2399 struct scsi_device *sdev;
2400 enum scsi_device_event evt_type;
2401 LIST_HEAD(event_list);
2402
2403 sdev = container_of(work, struct scsi_device, event_work);
2404
2405 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2406 if (test_and_clear_bit(evt_type, sdev->pending_events))
2407 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2408
2409 while (1) {
2410 struct scsi_event *evt;
2411 struct list_head *this, *tmp;
2412 unsigned long flags;
2413
2414 spin_lock_irqsave(&sdev->list_lock, flags);
2415 list_splice_init(&sdev->event_list, &event_list);
2416 spin_unlock_irqrestore(&sdev->list_lock, flags);
2417
2418 if (list_empty(&event_list))
2419 break;
2420
2421 list_for_each_safe(this, tmp, &event_list) {
2422 evt = list_entry(this, struct scsi_event, node);
2423 list_del(&evt->node);
2424 scsi_evt_emit(sdev, evt);
2425 kfree(evt);
2426 }
2427 }
2428 }
2429
2430 /**
2431 * sdev_evt_send - send asserted event to uevent thread
2432 * @sdev: scsi_device event occurred on
2433 * @evt: event to send
2434 *
2435 * Assert scsi device event asynchronously.
2436 */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2437 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2438 {
2439 unsigned long flags;
2440
2441 #if 0
2442 /* FIXME: currently this check eliminates all media change events
2443 * for polled devices. Need to update to discriminate between AN
2444 * and polled events */
2445 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2446 kfree(evt);
2447 return;
2448 }
2449 #endif
2450
2451 spin_lock_irqsave(&sdev->list_lock, flags);
2452 list_add_tail(&evt->node, &sdev->event_list);
2453 schedule_work(&sdev->event_work);
2454 spin_unlock_irqrestore(&sdev->list_lock, flags);
2455 }
2456 EXPORT_SYMBOL_GPL(sdev_evt_send);
2457
2458 /**
2459 * sdev_evt_alloc - allocate a new scsi event
2460 * @evt_type: type of event to allocate
2461 * @gfpflags: GFP flags for allocation
2462 *
2463 * Allocates and returns a new scsi_event.
2464 */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2465 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2466 gfp_t gfpflags)
2467 {
2468 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2469 if (!evt)
2470 return NULL;
2471
2472 evt->evt_type = evt_type;
2473 INIT_LIST_HEAD(&evt->node);
2474
2475 /* evt_type-specific initialization, if any */
2476 switch (evt_type) {
2477 case SDEV_EVT_MEDIA_CHANGE:
2478 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2479 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2480 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2481 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2482 case SDEV_EVT_LUN_CHANGE_REPORTED:
2483 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2484 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2485 default:
2486 /* do nothing */
2487 break;
2488 }
2489
2490 return evt;
2491 }
2492 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2493
2494 /**
2495 * sdev_evt_send_simple - send asserted event to uevent thread
2496 * @sdev: scsi_device event occurred on
2497 * @evt_type: type of event to send
2498 * @gfpflags: GFP flags for allocation
2499 *
2500 * Assert scsi device event asynchronously, given an event type.
2501 */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2502 void sdev_evt_send_simple(struct scsi_device *sdev,
2503 enum scsi_device_event evt_type, gfp_t gfpflags)
2504 {
2505 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2506 if (!evt) {
2507 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2508 evt_type);
2509 return;
2510 }
2511
2512 sdev_evt_send(sdev, evt);
2513 }
2514 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2515
2516 /**
2517 * scsi_device_quiesce - Block all commands except power management.
2518 * @sdev: scsi device to quiesce.
2519 *
2520 * This works by trying to transition to the SDEV_QUIESCE state
2521 * (which must be a legal transition). When the device is in this
2522 * state, only power management requests will be accepted, all others will
2523 * be deferred.
2524 *
2525 * Must be called with user context, may sleep.
2526 *
2527 * Returns zero if unsuccessful or an error if not.
2528 */
2529 int
scsi_device_quiesce(struct scsi_device * sdev)2530 scsi_device_quiesce(struct scsi_device *sdev)
2531 {
2532 struct request_queue *q = sdev->request_queue;
2533 int err;
2534
2535 /*
2536 * It is allowed to call scsi_device_quiesce() multiple times from
2537 * the same context but concurrent scsi_device_quiesce() calls are
2538 * not allowed.
2539 */
2540 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2541
2542 if (sdev->quiesced_by == current)
2543 return 0;
2544
2545 blk_set_pm_only(q);
2546
2547 blk_mq_freeze_queue(q);
2548 /*
2549 * Ensure that the effect of blk_set_pm_only() will be visible
2550 * for percpu_ref_tryget() callers that occur after the queue
2551 * unfreeze even if the queue was already frozen before this function
2552 * was called. See also https://lwn.net/Articles/573497/.
2553 */
2554 synchronize_rcu();
2555 blk_mq_unfreeze_queue(q);
2556
2557 mutex_lock(&sdev->state_mutex);
2558 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2559 if (err == 0)
2560 sdev->quiesced_by = current;
2561 else
2562 blk_clear_pm_only(q);
2563 mutex_unlock(&sdev->state_mutex);
2564
2565 return err;
2566 }
2567 EXPORT_SYMBOL(scsi_device_quiesce);
2568
2569 /**
2570 * scsi_device_resume - Restart user issued commands to a quiesced device.
2571 * @sdev: scsi device to resume.
2572 *
2573 * Moves the device from quiesced back to running and restarts the
2574 * queues.
2575 *
2576 * Must be called with user context, may sleep.
2577 */
scsi_device_resume(struct scsi_device * sdev)2578 void scsi_device_resume(struct scsi_device *sdev)
2579 {
2580 /* check if the device state was mutated prior to resume, and if
2581 * so assume the state is being managed elsewhere (for example
2582 * device deleted during suspend)
2583 */
2584 mutex_lock(&sdev->state_mutex);
2585 if (sdev->sdev_state == SDEV_QUIESCE)
2586 scsi_device_set_state(sdev, SDEV_RUNNING);
2587 if (sdev->quiesced_by) {
2588 sdev->quiesced_by = NULL;
2589 blk_clear_pm_only(sdev->request_queue);
2590 }
2591 mutex_unlock(&sdev->state_mutex);
2592 }
2593 EXPORT_SYMBOL(scsi_device_resume);
2594
2595 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2596 device_quiesce_fn(struct scsi_device *sdev, void *data)
2597 {
2598 scsi_device_quiesce(sdev);
2599 }
2600
2601 void
scsi_target_quiesce(struct scsi_target * starget)2602 scsi_target_quiesce(struct scsi_target *starget)
2603 {
2604 starget_for_each_device(starget, NULL, device_quiesce_fn);
2605 }
2606 EXPORT_SYMBOL(scsi_target_quiesce);
2607
2608 static void
device_resume_fn(struct scsi_device * sdev,void * data)2609 device_resume_fn(struct scsi_device *sdev, void *data)
2610 {
2611 scsi_device_resume(sdev);
2612 }
2613
2614 void
scsi_target_resume(struct scsi_target * starget)2615 scsi_target_resume(struct scsi_target *starget)
2616 {
2617 starget_for_each_device(starget, NULL, device_resume_fn);
2618 }
2619 EXPORT_SYMBOL(scsi_target_resume);
2620
__scsi_internal_device_block_nowait(struct scsi_device * sdev)2621 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2622 {
2623 if (scsi_device_set_state(sdev, SDEV_BLOCK))
2624 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2625
2626 return 0;
2627 }
2628
2629 static DEFINE_SPINLOCK(sdev_queue_stop_lock);
2630
scsi_start_queue(struct scsi_device * sdev)2631 void scsi_start_queue(struct scsi_device *sdev)
2632 {
2633 bool need_start;
2634 unsigned long flags;
2635
2636 spin_lock_irqsave(&sdev_queue_stop_lock, flags);
2637 need_start = sdev->queue_stopped;
2638 sdev->queue_stopped = 0;
2639 spin_unlock_irqrestore(&sdev_queue_stop_lock, flags);
2640
2641 if (need_start)
2642 blk_mq_unquiesce_queue(sdev->request_queue);
2643 }
2644
scsi_stop_queue(struct scsi_device * sdev,bool nowait)2645 static void scsi_stop_queue(struct scsi_device *sdev, bool nowait)
2646 {
2647 bool need_stop;
2648 unsigned long flags;
2649
2650 spin_lock_irqsave(&sdev_queue_stop_lock, flags);
2651 need_stop = !sdev->queue_stopped;
2652 sdev->queue_stopped = 1;
2653 spin_unlock_irqrestore(&sdev_queue_stop_lock, flags);
2654
2655 if (need_stop) {
2656 if (nowait)
2657 blk_mq_quiesce_queue_nowait(sdev->request_queue);
2658 else
2659 blk_mq_quiesce_queue(sdev->request_queue);
2660 }
2661 }
2662
2663 /**
2664 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2665 * @sdev: device to block
2666 *
2667 * Pause SCSI command processing on the specified device. Does not sleep.
2668 *
2669 * Returns zero if successful or a negative error code upon failure.
2670 *
2671 * Notes:
2672 * This routine transitions the device to the SDEV_BLOCK state (which must be
2673 * a legal transition). When the device is in this state, command processing
2674 * is paused until the device leaves the SDEV_BLOCK state. See also
2675 * scsi_internal_device_unblock_nowait().
2676 */
scsi_internal_device_block_nowait(struct scsi_device * sdev)2677 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2678 {
2679 int ret = __scsi_internal_device_block_nowait(sdev);
2680
2681 /*
2682 * The device has transitioned to SDEV_BLOCK. Stop the
2683 * block layer from calling the midlayer with this device's
2684 * request queue.
2685 */
2686 if (!ret)
2687 scsi_stop_queue(sdev, true);
2688 return ret;
2689 }
2690 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2691
2692 /**
2693 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2694 * @sdev: device to block
2695 *
2696 * Pause SCSI command processing on the specified device and wait until all
2697 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2698 *
2699 * Returns zero if successful or a negative error code upon failure.
2700 *
2701 * Note:
2702 * This routine transitions the device to the SDEV_BLOCK state (which must be
2703 * a legal transition). When the device is in this state, command processing
2704 * is paused until the device leaves the SDEV_BLOCK state. See also
2705 * scsi_internal_device_unblock().
2706 */
scsi_internal_device_block(struct scsi_device * sdev)2707 static int scsi_internal_device_block(struct scsi_device *sdev)
2708 {
2709 int err;
2710
2711 mutex_lock(&sdev->state_mutex);
2712 err = __scsi_internal_device_block_nowait(sdev);
2713 if (err == 0)
2714 scsi_stop_queue(sdev, false);
2715 mutex_unlock(&sdev->state_mutex);
2716
2717 return err;
2718 }
2719
2720 /**
2721 * scsi_internal_device_unblock_nowait - resume a device after a block request
2722 * @sdev: device to resume
2723 * @new_state: state to set the device to after unblocking
2724 *
2725 * Restart the device queue for a previously suspended SCSI device. Does not
2726 * sleep.
2727 *
2728 * Returns zero if successful or a negative error code upon failure.
2729 *
2730 * Notes:
2731 * This routine transitions the device to the SDEV_RUNNING state or to one of
2732 * the offline states (which must be a legal transition) allowing the midlayer
2733 * to goose the queue for this device.
2734 */
scsi_internal_device_unblock_nowait(struct scsi_device * sdev,enum scsi_device_state new_state)2735 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2736 enum scsi_device_state new_state)
2737 {
2738 switch (new_state) {
2739 case SDEV_RUNNING:
2740 case SDEV_TRANSPORT_OFFLINE:
2741 break;
2742 default:
2743 return -EINVAL;
2744 }
2745
2746 /*
2747 * Try to transition the scsi device to SDEV_RUNNING or one of the
2748 * offlined states and goose the device queue if successful.
2749 */
2750 switch (sdev->sdev_state) {
2751 case SDEV_BLOCK:
2752 case SDEV_TRANSPORT_OFFLINE:
2753 sdev->sdev_state = new_state;
2754 break;
2755 case SDEV_CREATED_BLOCK:
2756 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2757 new_state == SDEV_OFFLINE)
2758 sdev->sdev_state = new_state;
2759 else
2760 sdev->sdev_state = SDEV_CREATED;
2761 break;
2762 case SDEV_CANCEL:
2763 case SDEV_OFFLINE:
2764 break;
2765 default:
2766 return -EINVAL;
2767 }
2768 scsi_start_queue(sdev);
2769
2770 return 0;
2771 }
2772 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2773
2774 /**
2775 * scsi_internal_device_unblock - resume a device after a block request
2776 * @sdev: device to resume
2777 * @new_state: state to set the device to after unblocking
2778 *
2779 * Restart the device queue for a previously suspended SCSI device. May sleep.
2780 *
2781 * Returns zero if successful or a negative error code upon failure.
2782 *
2783 * Notes:
2784 * This routine transitions the device to the SDEV_RUNNING state or to one of
2785 * the offline states (which must be a legal transition) allowing the midlayer
2786 * to goose the queue for this device.
2787 */
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)2788 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2789 enum scsi_device_state new_state)
2790 {
2791 int ret;
2792
2793 mutex_lock(&sdev->state_mutex);
2794 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2795 mutex_unlock(&sdev->state_mutex);
2796
2797 return ret;
2798 }
2799
2800 static void
device_block(struct scsi_device * sdev,void * data)2801 device_block(struct scsi_device *sdev, void *data)
2802 {
2803 int ret;
2804
2805 ret = scsi_internal_device_block(sdev);
2806
2807 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2808 dev_name(&sdev->sdev_gendev), ret);
2809 }
2810
2811 static int
target_block(struct device * dev,void * data)2812 target_block(struct device *dev, void *data)
2813 {
2814 if (scsi_is_target_device(dev))
2815 starget_for_each_device(to_scsi_target(dev), NULL,
2816 device_block);
2817 return 0;
2818 }
2819
2820 void
scsi_target_block(struct device * dev)2821 scsi_target_block(struct device *dev)
2822 {
2823 if (scsi_is_target_device(dev))
2824 starget_for_each_device(to_scsi_target(dev), NULL,
2825 device_block);
2826 else
2827 device_for_each_child(dev, NULL, target_block);
2828 }
2829 EXPORT_SYMBOL_GPL(scsi_target_block);
2830
2831 static void
device_unblock(struct scsi_device * sdev,void * data)2832 device_unblock(struct scsi_device *sdev, void *data)
2833 {
2834 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2835 }
2836
2837 static int
target_unblock(struct device * dev,void * data)2838 target_unblock(struct device *dev, void *data)
2839 {
2840 if (scsi_is_target_device(dev))
2841 starget_for_each_device(to_scsi_target(dev), data,
2842 device_unblock);
2843 return 0;
2844 }
2845
2846 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)2847 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2848 {
2849 if (scsi_is_target_device(dev))
2850 starget_for_each_device(to_scsi_target(dev), &new_state,
2851 device_unblock);
2852 else
2853 device_for_each_child(dev, &new_state, target_unblock);
2854 }
2855 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2856
2857 int
scsi_host_block(struct Scsi_Host * shost)2858 scsi_host_block(struct Scsi_Host *shost)
2859 {
2860 struct scsi_device *sdev;
2861 int ret = 0;
2862
2863 /*
2864 * Call scsi_internal_device_block_nowait so we can avoid
2865 * calling synchronize_rcu() for each LUN.
2866 */
2867 shost_for_each_device(sdev, shost) {
2868 mutex_lock(&sdev->state_mutex);
2869 ret = scsi_internal_device_block_nowait(sdev);
2870 mutex_unlock(&sdev->state_mutex);
2871 if (ret) {
2872 scsi_device_put(sdev);
2873 break;
2874 }
2875 }
2876
2877 /*
2878 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2879 * calling synchronize_rcu() once is enough.
2880 */
2881 WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2882
2883 if (!ret)
2884 synchronize_rcu();
2885
2886 return ret;
2887 }
2888 EXPORT_SYMBOL_GPL(scsi_host_block);
2889
2890 int
scsi_host_unblock(struct Scsi_Host * shost,int new_state)2891 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2892 {
2893 struct scsi_device *sdev;
2894 int ret = 0;
2895
2896 shost_for_each_device(sdev, shost) {
2897 ret = scsi_internal_device_unblock(sdev, new_state);
2898 if (ret) {
2899 scsi_device_put(sdev);
2900 break;
2901 }
2902 }
2903 return ret;
2904 }
2905 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2906
2907 /**
2908 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2909 * @sgl: scatter-gather list
2910 * @sg_count: number of segments in sg
2911 * @offset: offset in bytes into sg, on return offset into the mapped area
2912 * @len: bytes to map, on return number of bytes mapped
2913 *
2914 * Returns virtual address of the start of the mapped page
2915 */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)2916 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2917 size_t *offset, size_t *len)
2918 {
2919 int i;
2920 size_t sg_len = 0, len_complete = 0;
2921 struct scatterlist *sg;
2922 struct page *page;
2923
2924 WARN_ON(!irqs_disabled());
2925
2926 for_each_sg(sgl, sg, sg_count, i) {
2927 len_complete = sg_len; /* Complete sg-entries */
2928 sg_len += sg->length;
2929 if (sg_len > *offset)
2930 break;
2931 }
2932
2933 if (unlikely(i == sg_count)) {
2934 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2935 "elements %d\n",
2936 __func__, sg_len, *offset, sg_count);
2937 WARN_ON(1);
2938 return NULL;
2939 }
2940
2941 /* Offset starting from the beginning of first page in this sg-entry */
2942 *offset = *offset - len_complete + sg->offset;
2943
2944 /* Assumption: contiguous pages can be accessed as "page + i" */
2945 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2946 *offset &= ~PAGE_MASK;
2947
2948 /* Bytes in this sg-entry from *offset to the end of the page */
2949 sg_len = PAGE_SIZE - *offset;
2950 if (*len > sg_len)
2951 *len = sg_len;
2952
2953 return kmap_atomic(page);
2954 }
2955 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2956
2957 /**
2958 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2959 * @virt: virtual address to be unmapped
2960 */
scsi_kunmap_atomic_sg(void * virt)2961 void scsi_kunmap_atomic_sg(void *virt)
2962 {
2963 kunmap_atomic(virt);
2964 }
2965 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2966
sdev_disable_disk_events(struct scsi_device * sdev)2967 void sdev_disable_disk_events(struct scsi_device *sdev)
2968 {
2969 atomic_inc(&sdev->disk_events_disable_depth);
2970 }
2971 EXPORT_SYMBOL(sdev_disable_disk_events);
2972
sdev_enable_disk_events(struct scsi_device * sdev)2973 void sdev_enable_disk_events(struct scsi_device *sdev)
2974 {
2975 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2976 return;
2977 atomic_dec(&sdev->disk_events_disable_depth);
2978 }
2979 EXPORT_SYMBOL(sdev_enable_disk_events);
2980
designator_prio(const unsigned char * d)2981 static unsigned char designator_prio(const unsigned char *d)
2982 {
2983 if (d[1] & 0x30)
2984 /* not associated with LUN */
2985 return 0;
2986
2987 if (d[3] == 0)
2988 /* invalid length */
2989 return 0;
2990
2991 /*
2992 * Order of preference for lun descriptor:
2993 * - SCSI name string
2994 * - NAA IEEE Registered Extended
2995 * - EUI-64 based 16-byte
2996 * - EUI-64 based 12-byte
2997 * - NAA IEEE Registered
2998 * - NAA IEEE Extended
2999 * - EUI-64 based 8-byte
3000 * - SCSI name string (truncated)
3001 * - T10 Vendor ID
3002 * as longer descriptors reduce the likelyhood
3003 * of identification clashes.
3004 */
3005
3006 switch (d[1] & 0xf) {
3007 case 8:
3008 /* SCSI name string, variable-length UTF-8 */
3009 return 9;
3010 case 3:
3011 switch (d[4] >> 4) {
3012 case 6:
3013 /* NAA registered extended */
3014 return 8;
3015 case 5:
3016 /* NAA registered */
3017 return 5;
3018 case 4:
3019 /* NAA extended */
3020 return 4;
3021 case 3:
3022 /* NAA locally assigned */
3023 return 1;
3024 default:
3025 break;
3026 }
3027 break;
3028 case 2:
3029 switch (d[3]) {
3030 case 16:
3031 /* EUI64-based, 16 byte */
3032 return 7;
3033 case 12:
3034 /* EUI64-based, 12 byte */
3035 return 6;
3036 case 8:
3037 /* EUI64-based, 8 byte */
3038 return 3;
3039 default:
3040 break;
3041 }
3042 break;
3043 case 1:
3044 /* T10 vendor ID */
3045 return 1;
3046 default:
3047 break;
3048 }
3049
3050 return 0;
3051 }
3052
3053 /**
3054 * scsi_vpd_lun_id - return a unique device identification
3055 * @sdev: SCSI device
3056 * @id: buffer for the identification
3057 * @id_len: length of the buffer
3058 *
3059 * Copies a unique device identification into @id based
3060 * on the information in the VPD page 0x83 of the device.
3061 * The string will be formatted as a SCSI name string.
3062 *
3063 * Returns the length of the identification or error on failure.
3064 * If the identifier is longer than the supplied buffer the actual
3065 * identifier length is returned and the buffer is not zero-padded.
3066 */
scsi_vpd_lun_id(struct scsi_device * sdev,char * id,size_t id_len)3067 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3068 {
3069 u8 cur_id_prio = 0;
3070 u8 cur_id_size = 0;
3071 const unsigned char *d, *cur_id_str;
3072 const struct scsi_vpd *vpd_pg83;
3073 int id_size = -EINVAL;
3074
3075 rcu_read_lock();
3076 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3077 if (!vpd_pg83) {
3078 rcu_read_unlock();
3079 return -ENXIO;
3080 }
3081
3082 /* The id string must be at least 20 bytes + terminating NULL byte */
3083 if (id_len < 21) {
3084 rcu_read_unlock();
3085 return -EINVAL;
3086 }
3087
3088 memset(id, 0, id_len);
3089 d = vpd_pg83->data + 4;
3090 while (d < vpd_pg83->data + vpd_pg83->len) {
3091 u8 prio = designator_prio(d);
3092
3093 if (prio == 0 || cur_id_prio > prio)
3094 goto next_desig;
3095
3096 switch (d[1] & 0xf) {
3097 case 0x1:
3098 /* T10 Vendor ID */
3099 if (cur_id_size > d[3])
3100 break;
3101 cur_id_prio = prio;
3102 cur_id_size = d[3];
3103 if (cur_id_size + 4 > id_len)
3104 cur_id_size = id_len - 4;
3105 cur_id_str = d + 4;
3106 id_size = snprintf(id, id_len, "t10.%*pE",
3107 cur_id_size, cur_id_str);
3108 break;
3109 case 0x2:
3110 /* EUI-64 */
3111 cur_id_prio = prio;
3112 cur_id_size = d[3];
3113 cur_id_str = d + 4;
3114 switch (cur_id_size) {
3115 case 8:
3116 id_size = snprintf(id, id_len,
3117 "eui.%8phN",
3118 cur_id_str);
3119 break;
3120 case 12:
3121 id_size = snprintf(id, id_len,
3122 "eui.%12phN",
3123 cur_id_str);
3124 break;
3125 case 16:
3126 id_size = snprintf(id, id_len,
3127 "eui.%16phN",
3128 cur_id_str);
3129 break;
3130 default:
3131 break;
3132 }
3133 break;
3134 case 0x3:
3135 /* NAA */
3136 cur_id_prio = prio;
3137 cur_id_size = d[3];
3138 cur_id_str = d + 4;
3139 switch (cur_id_size) {
3140 case 8:
3141 id_size = snprintf(id, id_len,
3142 "naa.%8phN",
3143 cur_id_str);
3144 break;
3145 case 16:
3146 id_size = snprintf(id, id_len,
3147 "naa.%16phN",
3148 cur_id_str);
3149 break;
3150 default:
3151 break;
3152 }
3153 break;
3154 case 0x8:
3155 /* SCSI name string */
3156 if (cur_id_size > d[3])
3157 break;
3158 /* Prefer others for truncated descriptor */
3159 if (d[3] > id_len) {
3160 prio = 2;
3161 if (cur_id_prio > prio)
3162 break;
3163 }
3164 cur_id_prio = prio;
3165 cur_id_size = id_size = d[3];
3166 cur_id_str = d + 4;
3167 if (cur_id_size >= id_len)
3168 cur_id_size = id_len - 1;
3169 memcpy(id, cur_id_str, cur_id_size);
3170 break;
3171 default:
3172 break;
3173 }
3174 next_desig:
3175 d += d[3] + 4;
3176 }
3177 rcu_read_unlock();
3178
3179 return id_size;
3180 }
3181 EXPORT_SYMBOL(scsi_vpd_lun_id);
3182
3183 /*
3184 * scsi_vpd_tpg_id - return a target port group identifier
3185 * @sdev: SCSI device
3186 *
3187 * Returns the Target Port Group identifier from the information
3188 * froom VPD page 0x83 of the device.
3189 *
3190 * Returns the identifier or error on failure.
3191 */
scsi_vpd_tpg_id(struct scsi_device * sdev,int * rel_id)3192 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3193 {
3194 const unsigned char *d;
3195 const struct scsi_vpd *vpd_pg83;
3196 int group_id = -EAGAIN, rel_port = -1;
3197
3198 rcu_read_lock();
3199 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3200 if (!vpd_pg83) {
3201 rcu_read_unlock();
3202 return -ENXIO;
3203 }
3204
3205 d = vpd_pg83->data + 4;
3206 while (d < vpd_pg83->data + vpd_pg83->len) {
3207 switch (d[1] & 0xf) {
3208 case 0x4:
3209 /* Relative target port */
3210 rel_port = get_unaligned_be16(&d[6]);
3211 break;
3212 case 0x5:
3213 /* Target port group */
3214 group_id = get_unaligned_be16(&d[6]);
3215 break;
3216 default:
3217 break;
3218 }
3219 d += d[3] + 4;
3220 }
3221 rcu_read_unlock();
3222
3223 if (group_id >= 0 && rel_id && rel_port != -1)
3224 *rel_id = rel_port;
3225
3226 return group_id;
3227 }
3228 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3229