1 #ifndef _HFI1_SDMA_H
2 #define _HFI1_SDMA_H
3 /*
4 * Copyright(c) 2015 - 2018 Intel Corporation.
5 *
6 * This file is provided under a dual BSD/GPLv2 license. When using or
7 * redistributing this file, you may do so under either license.
8 *
9 * GPL LICENSE SUMMARY
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of version 2 of the GNU General Public License as
13 * published by the Free Software Foundation.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * BSD LICENSE
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 *
26 * - Redistributions of source code must retain the above copyright
27 * notice, this list of conditions and the following disclaimer.
28 * - Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in
30 * the documentation and/or other materials provided with the
31 * distribution.
32 * - Neither the name of Intel Corporation nor the names of its
33 * contributors may be used to endorse or promote products derived
34 * from this software without specific prior written permission.
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
37 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
38 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
39 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
40 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
42 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
43 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
44 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
45 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
46 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
47 *
48 */
49
50 #include <linux/types.h>
51 #include <linux/list.h>
52 #include <asm/byteorder.h>
53 #include <linux/workqueue.h>
54 #include <linux/rculist.h>
55
56 #include "hfi.h"
57 #include "verbs.h"
58 #include "sdma_txreq.h"
59
60 /* Hardware limit */
61 #define MAX_DESC 64
62 /* Hardware limit for SDMA packet size */
63 #define MAX_SDMA_PKT_SIZE ((16 * 1024) - 1)
64
65 #define SDMA_MAP_NONE 0
66 #define SDMA_MAP_SINGLE 1
67 #define SDMA_MAP_PAGE 2
68
69 #define SDMA_AHG_VALUE_MASK 0xffff
70 #define SDMA_AHG_VALUE_SHIFT 0
71 #define SDMA_AHG_INDEX_MASK 0xf
72 #define SDMA_AHG_INDEX_SHIFT 16
73 #define SDMA_AHG_FIELD_LEN_MASK 0xf
74 #define SDMA_AHG_FIELD_LEN_SHIFT 20
75 #define SDMA_AHG_FIELD_START_MASK 0x1f
76 #define SDMA_AHG_FIELD_START_SHIFT 24
77 #define SDMA_AHG_UPDATE_ENABLE_MASK 0x1
78 #define SDMA_AHG_UPDATE_ENABLE_SHIFT 31
79
80 /* AHG modes */
81
82 /*
83 * Be aware the ordering and values
84 * for SDMA_AHG_APPLY_UPDATE[123]
85 * are assumed in generating a skip
86 * count in submit_tx() in sdma.c
87 */
88 #define SDMA_AHG_NO_AHG 0
89 #define SDMA_AHG_COPY 1
90 #define SDMA_AHG_APPLY_UPDATE1 2
91 #define SDMA_AHG_APPLY_UPDATE2 3
92 #define SDMA_AHG_APPLY_UPDATE3 4
93
94 /*
95 * Bits defined in the send DMA descriptor.
96 */
97 #define SDMA_DESC0_FIRST_DESC_FLAG BIT_ULL(63)
98 #define SDMA_DESC0_LAST_DESC_FLAG BIT_ULL(62)
99 #define SDMA_DESC0_BYTE_COUNT_SHIFT 48
100 #define SDMA_DESC0_BYTE_COUNT_WIDTH 14
101 #define SDMA_DESC0_BYTE_COUNT_MASK \
102 ((1ULL << SDMA_DESC0_BYTE_COUNT_WIDTH) - 1)
103 #define SDMA_DESC0_BYTE_COUNT_SMASK \
104 (SDMA_DESC0_BYTE_COUNT_MASK << SDMA_DESC0_BYTE_COUNT_SHIFT)
105 #define SDMA_DESC0_PHY_ADDR_SHIFT 0
106 #define SDMA_DESC0_PHY_ADDR_WIDTH 48
107 #define SDMA_DESC0_PHY_ADDR_MASK \
108 ((1ULL << SDMA_DESC0_PHY_ADDR_WIDTH) - 1)
109 #define SDMA_DESC0_PHY_ADDR_SMASK \
110 (SDMA_DESC0_PHY_ADDR_MASK << SDMA_DESC0_PHY_ADDR_SHIFT)
111
112 #define SDMA_DESC1_HEADER_UPDATE1_SHIFT 32
113 #define SDMA_DESC1_HEADER_UPDATE1_WIDTH 32
114 #define SDMA_DESC1_HEADER_UPDATE1_MASK \
115 ((1ULL << SDMA_DESC1_HEADER_UPDATE1_WIDTH) - 1)
116 #define SDMA_DESC1_HEADER_UPDATE1_SMASK \
117 (SDMA_DESC1_HEADER_UPDATE1_MASK << SDMA_DESC1_HEADER_UPDATE1_SHIFT)
118 #define SDMA_DESC1_HEADER_MODE_SHIFT 13
119 #define SDMA_DESC1_HEADER_MODE_WIDTH 3
120 #define SDMA_DESC1_HEADER_MODE_MASK \
121 ((1ULL << SDMA_DESC1_HEADER_MODE_WIDTH) - 1)
122 #define SDMA_DESC1_HEADER_MODE_SMASK \
123 (SDMA_DESC1_HEADER_MODE_MASK << SDMA_DESC1_HEADER_MODE_SHIFT)
124 #define SDMA_DESC1_HEADER_INDEX_SHIFT 8
125 #define SDMA_DESC1_HEADER_INDEX_WIDTH 5
126 #define SDMA_DESC1_HEADER_INDEX_MASK \
127 ((1ULL << SDMA_DESC1_HEADER_INDEX_WIDTH) - 1)
128 #define SDMA_DESC1_HEADER_INDEX_SMASK \
129 (SDMA_DESC1_HEADER_INDEX_MASK << SDMA_DESC1_HEADER_INDEX_SHIFT)
130 #define SDMA_DESC1_HEADER_DWS_SHIFT 4
131 #define SDMA_DESC1_HEADER_DWS_WIDTH 4
132 #define SDMA_DESC1_HEADER_DWS_MASK \
133 ((1ULL << SDMA_DESC1_HEADER_DWS_WIDTH) - 1)
134 #define SDMA_DESC1_HEADER_DWS_SMASK \
135 (SDMA_DESC1_HEADER_DWS_MASK << SDMA_DESC1_HEADER_DWS_SHIFT)
136 #define SDMA_DESC1_GENERATION_SHIFT 2
137 #define SDMA_DESC1_GENERATION_WIDTH 2
138 #define SDMA_DESC1_GENERATION_MASK \
139 ((1ULL << SDMA_DESC1_GENERATION_WIDTH) - 1)
140 #define SDMA_DESC1_GENERATION_SMASK \
141 (SDMA_DESC1_GENERATION_MASK << SDMA_DESC1_GENERATION_SHIFT)
142 #define SDMA_DESC1_INT_REQ_FLAG BIT_ULL(1)
143 #define SDMA_DESC1_HEAD_TO_HOST_FLAG BIT_ULL(0)
144
145 enum sdma_states {
146 sdma_state_s00_hw_down,
147 sdma_state_s10_hw_start_up_halt_wait,
148 sdma_state_s15_hw_start_up_clean_wait,
149 sdma_state_s20_idle,
150 sdma_state_s30_sw_clean_up_wait,
151 sdma_state_s40_hw_clean_up_wait,
152 sdma_state_s50_hw_halt_wait,
153 sdma_state_s60_idle_halt_wait,
154 sdma_state_s80_hw_freeze,
155 sdma_state_s82_freeze_sw_clean,
156 sdma_state_s99_running,
157 };
158
159 enum sdma_events {
160 sdma_event_e00_go_hw_down,
161 sdma_event_e10_go_hw_start,
162 sdma_event_e15_hw_halt_done,
163 sdma_event_e25_hw_clean_up_done,
164 sdma_event_e30_go_running,
165 sdma_event_e40_sw_cleaned,
166 sdma_event_e50_hw_cleaned,
167 sdma_event_e60_hw_halted,
168 sdma_event_e70_go_idle,
169 sdma_event_e80_hw_freeze,
170 sdma_event_e81_hw_frozen,
171 sdma_event_e82_hw_unfreeze,
172 sdma_event_e85_link_down,
173 sdma_event_e90_sw_halted,
174 };
175
176 struct sdma_set_state_action {
177 unsigned op_enable:1;
178 unsigned op_intenable:1;
179 unsigned op_halt:1;
180 unsigned op_cleanup:1;
181 unsigned go_s99_running_tofalse:1;
182 unsigned go_s99_running_totrue:1;
183 };
184
185 struct sdma_state {
186 struct kref kref;
187 struct completion comp;
188 enum sdma_states current_state;
189 unsigned current_op;
190 unsigned go_s99_running;
191 /* debugging/development */
192 enum sdma_states previous_state;
193 unsigned previous_op;
194 enum sdma_events last_event;
195 };
196
197 /**
198 * DOC: sdma exported routines
199 *
200 * These sdma routines fit into three categories:
201 * - The SDMA API for building and submitting packets
202 * to the ring
203 *
204 * - Initialization and tear down routines to buildup
205 * and tear down SDMA
206 *
207 * - ISR entrances to handle interrupts, state changes
208 * and errors
209 */
210
211 /**
212 * DOC: sdma PSM/verbs API
213 *
214 * The sdma API is designed to be used by both PSM
215 * and verbs to supply packets to the SDMA ring.
216 *
217 * The usage of the API is as follows:
218 *
219 * Embed a struct iowait in the QP or
220 * PQ. The iowait should be initialized with a
221 * call to iowait_init().
222 *
223 * The user of the API should create an allocation method
224 * for their version of the txreq. slabs, pre-allocated lists,
225 * and dma pools can be used. Once the user's overload of
226 * the sdma_txreq has been allocated, the sdma_txreq member
227 * must be initialized with sdma_txinit() or sdma_txinit_ahg().
228 *
229 * The txreq must be declared with the sdma_txreq first.
230 *
231 * The tx request, once initialized, is manipulated with calls to
232 * sdma_txadd_daddr(), sdma_txadd_page(), or sdma_txadd_kvaddr()
233 * for each disjoint memory location. It is the user's responsibility
234 * to understand the packet boundaries and page boundaries to do the
235 * appropriate number of sdma_txadd_* calls.. The user
236 * must be prepared to deal with failures from these routines due to
237 * either memory allocation or dma_mapping failures.
238 *
239 * The mapping specifics for each memory location are recorded
240 * in the tx. Memory locations added with sdma_txadd_page()
241 * and sdma_txadd_kvaddr() are automatically mapped when added
242 * to the tx and nmapped as part of the progress processing in the
243 * SDMA interrupt handling.
244 *
245 * sdma_txadd_daddr() is used to add an dma_addr_t memory to the
246 * tx. An example of a use case would be a pre-allocated
247 * set of headers allocated via dma_pool_alloc() or
248 * dma_alloc_coherent(). For these memory locations, it
249 * is the responsibility of the user to handle that unmapping.
250 * (This would usually be at an unload or job termination.)
251 *
252 * The routine sdma_send_txreq() is used to submit
253 * a tx to the ring after the appropriate number of
254 * sdma_txadd_* have been done.
255 *
256 * If it is desired to send a burst of sdma_txreqs, sdma_send_txlist()
257 * can be used to submit a list of packets.
258 *
259 * The user is free to use the link overhead in the struct sdma_txreq as
260 * long as the tx isn't in flight.
261 *
262 * The extreme degenerate case of the number of descriptors
263 * exceeding the ring size is automatically handled as
264 * memory locations are added. An overflow of the descriptor
265 * array that is part of the sdma_txreq is also automatically
266 * handled.
267 *
268 */
269
270 /**
271 * DOC: Infrastructure calls
272 *
273 * sdma_init() is used to initialize data structures and
274 * CSRs for the desired number of SDMA engines.
275 *
276 * sdma_start() is used to kick the SDMA engines initialized
277 * with sdma_init(). Interrupts must be enabled at this
278 * point since aspects of the state machine are interrupt
279 * driven.
280 *
281 * sdma_engine_error() and sdma_engine_interrupt() are
282 * entrances for interrupts.
283 *
284 * sdma_map_init() is for the management of the mapping
285 * table when the number of vls is changed.
286 *
287 */
288
289 /*
290 * struct hw_sdma_desc - raw 128 bit SDMA descriptor
291 *
292 * This is the raw descriptor in the SDMA ring
293 */
294 struct hw_sdma_desc {
295 /* private: don't use directly */
296 __le64 qw[2];
297 };
298
299 /**
300 * struct sdma_engine - Data pertaining to each SDMA engine.
301 * @dd: a back-pointer to the device data
302 * @ppd: per port back-pointer
303 * @imask: mask for irq manipulation
304 * @idle_mask: mask for determining if an interrupt is due to sdma_idle
305 *
306 * This structure has the state for each sdma_engine.
307 *
308 * Accessing to non public fields are not supported
309 * since the private members are subject to change.
310 */
311 struct sdma_engine {
312 /* read mostly */
313 struct hfi1_devdata *dd;
314 struct hfi1_pportdata *ppd;
315 /* private: */
316 void __iomem *tail_csr;
317 u64 imask; /* clear interrupt mask */
318 u64 idle_mask;
319 u64 progress_mask;
320 u64 int_mask;
321 /* private: */
322 volatile __le64 *head_dma; /* DMA'ed by chip */
323 /* private: */
324 dma_addr_t head_phys;
325 /* private: */
326 struct hw_sdma_desc *descq;
327 /* private: */
328 unsigned descq_full_count;
329 struct sdma_txreq **tx_ring;
330 /* private: */
331 dma_addr_t descq_phys;
332 /* private */
333 u32 sdma_mask;
334 /* private */
335 struct sdma_state state;
336 /* private */
337 int cpu;
338 /* private: */
339 u8 sdma_shift;
340 /* private: */
341 u8 this_idx; /* zero relative engine */
342 /* protect changes to senddmactrl shadow */
343 spinlock_t senddmactrl_lock;
344 /* private: */
345 u64 p_senddmactrl; /* shadow per-engine SendDmaCtrl */
346
347 /* read/write using tail_lock */
348 spinlock_t tail_lock ____cacheline_aligned_in_smp;
349 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
350 /* private: */
351 u64 tail_sn;
352 #endif
353 /* private: */
354 u32 descq_tail;
355 /* private: */
356 unsigned long ahg_bits;
357 /* private: */
358 u16 desc_avail;
359 /* private: */
360 u16 tx_tail;
361 /* private: */
362 u16 descq_cnt;
363
364 /* read/write using head_lock */
365 /* private: */
366 seqlock_t head_lock ____cacheline_aligned_in_smp;
367 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
368 /* private: */
369 u64 head_sn;
370 #endif
371 /* private: */
372 u32 descq_head;
373 /* private: */
374 u16 tx_head;
375 /* private: */
376 u64 last_status;
377 /* private */
378 u64 err_cnt;
379 /* private */
380 u64 sdma_int_cnt;
381 u64 idle_int_cnt;
382 u64 progress_int_cnt;
383
384 /* private: */
385 seqlock_t waitlock;
386 struct list_head dmawait;
387
388 /* CONFIG SDMA for now, just blindly duplicate */
389 /* private: */
390 struct tasklet_struct sdma_hw_clean_up_task
391 ____cacheline_aligned_in_smp;
392
393 /* private: */
394 struct tasklet_struct sdma_sw_clean_up_task
395 ____cacheline_aligned_in_smp;
396 /* private: */
397 struct work_struct err_halt_worker;
398 /* private */
399 struct timer_list err_progress_check_timer;
400 u32 progress_check_head;
401 /* private: */
402 struct work_struct flush_worker;
403 /* protect flush list */
404 spinlock_t flushlist_lock;
405 /* private: */
406 struct list_head flushlist;
407 struct cpumask cpu_mask;
408 struct kobject kobj;
409 u32 msix_intr;
410 };
411
412 int sdma_init(struct hfi1_devdata *dd, u8 port);
413 void sdma_start(struct hfi1_devdata *dd);
414 void sdma_exit(struct hfi1_devdata *dd);
415 void sdma_clean(struct hfi1_devdata *dd, size_t num_engines);
416 void sdma_all_running(struct hfi1_devdata *dd);
417 void sdma_all_idle(struct hfi1_devdata *dd);
418 void sdma_freeze_notify(struct hfi1_devdata *dd, int go_idle);
419 void sdma_freeze(struct hfi1_devdata *dd);
420 void sdma_unfreeze(struct hfi1_devdata *dd);
421 void sdma_wait(struct hfi1_devdata *dd);
422
423 /**
424 * sdma_empty() - idle engine test
425 * @engine: sdma engine
426 *
427 * Currently used by verbs as a latency optimization.
428 *
429 * Return:
430 * 1 - empty, 0 - non-empty
431 */
sdma_empty(struct sdma_engine * sde)432 static inline int sdma_empty(struct sdma_engine *sde)
433 {
434 return sde->descq_tail == sde->descq_head;
435 }
436
sdma_descq_freecnt(struct sdma_engine * sde)437 static inline u16 sdma_descq_freecnt(struct sdma_engine *sde)
438 {
439 return sde->descq_cnt -
440 (sde->descq_tail -
441 READ_ONCE(sde->descq_head)) - 1;
442 }
443
sdma_descq_inprocess(struct sdma_engine * sde)444 static inline u16 sdma_descq_inprocess(struct sdma_engine *sde)
445 {
446 return sde->descq_cnt - sdma_descq_freecnt(sde);
447 }
448
449 /*
450 * Either head_lock or tail lock required to see
451 * a steady state.
452 */
__sdma_running(struct sdma_engine * engine)453 static inline int __sdma_running(struct sdma_engine *engine)
454 {
455 return engine->state.current_state == sdma_state_s99_running;
456 }
457
458 /**
459 * sdma_running() - state suitability test
460 * @engine: sdma engine
461 *
462 * sdma_running probes the internal state to determine if it is suitable
463 * for submitting packets.
464 *
465 * Return:
466 * 1 - ok to submit, 0 - not ok to submit
467 *
468 */
sdma_running(struct sdma_engine * engine)469 static inline int sdma_running(struct sdma_engine *engine)
470 {
471 unsigned long flags;
472 int ret;
473
474 spin_lock_irqsave(&engine->tail_lock, flags);
475 ret = __sdma_running(engine);
476 spin_unlock_irqrestore(&engine->tail_lock, flags);
477 return ret;
478 }
479
480 void _sdma_txreq_ahgadd(
481 struct sdma_txreq *tx,
482 u8 num_ahg,
483 u8 ahg_entry,
484 u32 *ahg,
485 u8 ahg_hlen);
486
487 /**
488 * sdma_txinit_ahg() - initialize an sdma_txreq struct with AHG
489 * @tx: tx request to initialize
490 * @flags: flags to key last descriptor additions
491 * @tlen: total packet length (pbc + headers + data)
492 * @ahg_entry: ahg entry to use (0 - 31)
493 * @num_ahg: ahg descriptor for first descriptor (0 - 9)
494 * @ahg: array of AHG descriptors (up to 9 entries)
495 * @ahg_hlen: number of bytes from ASIC entry to use
496 * @cb: callback
497 *
498 * The allocation of the sdma_txreq and it enclosing structure is user
499 * dependent. This routine must be called to initialize the user independent
500 * fields.
501 *
502 * The currently supported flags are SDMA_TXREQ_F_URGENT,
503 * SDMA_TXREQ_F_AHG_COPY, and SDMA_TXREQ_F_USE_AHG.
504 *
505 * SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the
506 * completion is desired as soon as possible.
507 *
508 * SDMA_TXREQ_F_AHG_COPY causes the header in the first descriptor to be
509 * copied to chip entry. SDMA_TXREQ_F_USE_AHG causes the code to add in
510 * the AHG descriptors into the first 1 to 3 descriptors.
511 *
512 * Completions of submitted requests can be gotten on selected
513 * txreqs by giving a completion routine callback to sdma_txinit() or
514 * sdma_txinit_ahg(). The environment in which the callback runs
515 * can be from an ISR, a tasklet, or a thread, so no sleeping
516 * kernel routines can be used. Aspects of the sdma ring may
517 * be locked so care should be taken with locking.
518 *
519 * The callback pointer can be NULL to avoid any callback for the packet
520 * being submitted. The callback will be provided this tx, a status, and a flag.
521 *
522 * The status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR,
523 * SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN.
524 *
525 * The flag, if the is the iowait had been used, indicates the iowait
526 * sdma_busy count has reached zero.
527 *
528 * user data portion of tlen should be precise. The sdma_txadd_* entrances
529 * will pad with a descriptor references 1 - 3 bytes when the number of bytes
530 * specified in tlen have been supplied to the sdma_txreq.
531 *
532 * ahg_hlen is used to determine the number of on-chip entry bytes to
533 * use as the header. This is for cases where the stored header is
534 * larger than the header to be used in a packet. This is typical
535 * for verbs where an RDMA_WRITE_FIRST is larger than the packet in
536 * and RDMA_WRITE_MIDDLE.
537 *
538 */
sdma_txinit_ahg(struct sdma_txreq * tx,u16 flags,u16 tlen,u8 ahg_entry,u8 num_ahg,u32 * ahg,u8 ahg_hlen,void (* cb)(struct sdma_txreq *,int))539 static inline int sdma_txinit_ahg(
540 struct sdma_txreq *tx,
541 u16 flags,
542 u16 tlen,
543 u8 ahg_entry,
544 u8 num_ahg,
545 u32 *ahg,
546 u8 ahg_hlen,
547 void (*cb)(struct sdma_txreq *, int))
548 {
549 if (tlen == 0)
550 return -ENODATA;
551 if (tlen > MAX_SDMA_PKT_SIZE)
552 return -EMSGSIZE;
553 tx->desc_limit = ARRAY_SIZE(tx->descs);
554 tx->descp = &tx->descs[0];
555 INIT_LIST_HEAD(&tx->list);
556 tx->num_desc = 0;
557 tx->flags = flags;
558 tx->complete = cb;
559 tx->coalesce_buf = NULL;
560 tx->wait = NULL;
561 tx->packet_len = tlen;
562 tx->tlen = tx->packet_len;
563 tx->descs[0].qw[0] = SDMA_DESC0_FIRST_DESC_FLAG;
564 tx->descs[0].qw[1] = 0;
565 if (flags & SDMA_TXREQ_F_AHG_COPY)
566 tx->descs[0].qw[1] |=
567 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
568 << SDMA_DESC1_HEADER_INDEX_SHIFT) |
569 (((u64)SDMA_AHG_COPY & SDMA_DESC1_HEADER_MODE_MASK)
570 << SDMA_DESC1_HEADER_MODE_SHIFT);
571 else if (flags & SDMA_TXREQ_F_USE_AHG && num_ahg)
572 _sdma_txreq_ahgadd(tx, num_ahg, ahg_entry, ahg, ahg_hlen);
573 return 0;
574 }
575
576 /**
577 * sdma_txinit() - initialize an sdma_txreq struct (no AHG)
578 * @tx: tx request to initialize
579 * @flags: flags to key last descriptor additions
580 * @tlen: total packet length (pbc + headers + data)
581 * @cb: callback pointer
582 *
583 * The allocation of the sdma_txreq and it enclosing structure is user
584 * dependent. This routine must be called to initialize the user
585 * independent fields.
586 *
587 * The currently supported flags is SDMA_TXREQ_F_URGENT.
588 *
589 * SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the
590 * completion is desired as soon as possible.
591 *
592 * Completions of submitted requests can be gotten on selected
593 * txreqs by giving a completion routine callback to sdma_txinit() or
594 * sdma_txinit_ahg(). The environment in which the callback runs
595 * can be from an ISR, a tasklet, or a thread, so no sleeping
596 * kernel routines can be used. The head size of the sdma ring may
597 * be locked so care should be taken with locking.
598 *
599 * The callback pointer can be NULL to avoid any callback for the packet
600 * being submitted.
601 *
602 * The callback, if non-NULL, will be provided this tx and a status. The
603 * status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR,
604 * SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN.
605 *
606 */
sdma_txinit(struct sdma_txreq * tx,u16 flags,u16 tlen,void (* cb)(struct sdma_txreq *,int))607 static inline int sdma_txinit(
608 struct sdma_txreq *tx,
609 u16 flags,
610 u16 tlen,
611 void (*cb)(struct sdma_txreq *, int))
612 {
613 return sdma_txinit_ahg(tx, flags, tlen, 0, 0, NULL, 0, cb);
614 }
615
616 /* helpers - don't use */
sdma_mapping_type(struct sdma_desc * d)617 static inline int sdma_mapping_type(struct sdma_desc *d)
618 {
619 return (d->qw[1] & SDMA_DESC1_GENERATION_SMASK)
620 >> SDMA_DESC1_GENERATION_SHIFT;
621 }
622
sdma_mapping_len(struct sdma_desc * d)623 static inline size_t sdma_mapping_len(struct sdma_desc *d)
624 {
625 return (d->qw[0] & SDMA_DESC0_BYTE_COUNT_SMASK)
626 >> SDMA_DESC0_BYTE_COUNT_SHIFT;
627 }
628
sdma_mapping_addr(struct sdma_desc * d)629 static inline dma_addr_t sdma_mapping_addr(struct sdma_desc *d)
630 {
631 return (d->qw[0] & SDMA_DESC0_PHY_ADDR_SMASK)
632 >> SDMA_DESC0_PHY_ADDR_SHIFT;
633 }
634
make_tx_sdma_desc(struct sdma_txreq * tx,int type,void * pinning_ctx,dma_addr_t addr,size_t len)635 static inline void make_tx_sdma_desc(
636 struct sdma_txreq *tx,
637 int type,
638 void *pinning_ctx,
639 dma_addr_t addr,
640 size_t len)
641 {
642 struct sdma_desc *desc = &tx->descp[tx->num_desc];
643
644 if (!tx->num_desc) {
645 /* qw[0] zero; qw[1] first, ahg mode already in from init */
646 desc->qw[1] |= ((u64)type & SDMA_DESC1_GENERATION_MASK)
647 << SDMA_DESC1_GENERATION_SHIFT;
648 } else {
649 desc->qw[0] = 0;
650 desc->qw[1] = ((u64)type & SDMA_DESC1_GENERATION_MASK)
651 << SDMA_DESC1_GENERATION_SHIFT;
652 }
653 desc->qw[0] |= (((u64)addr & SDMA_DESC0_PHY_ADDR_MASK)
654 << SDMA_DESC0_PHY_ADDR_SHIFT) |
655 (((u64)len & SDMA_DESC0_BYTE_COUNT_MASK)
656 << SDMA_DESC0_BYTE_COUNT_SHIFT);
657 desc->pinning_ctx = pinning_ctx;
658 }
659
660 /* helper to extend txreq */
661 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
662 int type, void *kvaddr, struct page *page,
663 unsigned long offset, u16 len);
664 int _pad_sdma_tx_descs(struct hfi1_devdata *, struct sdma_txreq *);
665 void __sdma_txclean(struct hfi1_devdata *, struct sdma_txreq *);
666
sdma_txclean(struct hfi1_devdata * dd,struct sdma_txreq * tx)667 static inline void sdma_txclean(struct hfi1_devdata *dd, struct sdma_txreq *tx)
668 {
669 if (tx->num_desc)
670 __sdma_txclean(dd, tx);
671 }
672
673 /* helpers used by public routines */
_sdma_close_tx(struct hfi1_devdata * dd,struct sdma_txreq * tx)674 static inline void _sdma_close_tx(struct hfi1_devdata *dd,
675 struct sdma_txreq *tx)
676 {
677 tx->descp[tx->num_desc].qw[0] |=
678 SDMA_DESC0_LAST_DESC_FLAG;
679 tx->descp[tx->num_desc].qw[1] |=
680 dd->default_desc1;
681 if (tx->flags & SDMA_TXREQ_F_URGENT)
682 tx->descp[tx->num_desc].qw[1] |=
683 (SDMA_DESC1_HEAD_TO_HOST_FLAG |
684 SDMA_DESC1_INT_REQ_FLAG);
685 }
686
_sdma_txadd_daddr(struct hfi1_devdata * dd,int type,void * pinning_ctx,struct sdma_txreq * tx,dma_addr_t addr,u16 len)687 static inline int _sdma_txadd_daddr(
688 struct hfi1_devdata *dd,
689 int type,
690 void *pinning_ctx,
691 struct sdma_txreq *tx,
692 dma_addr_t addr,
693 u16 len)
694 {
695 int rval = 0;
696
697 make_tx_sdma_desc(
698 tx,
699 type,
700 pinning_ctx,
701 addr, len);
702 WARN_ON(len > tx->tlen);
703 tx->tlen -= len;
704 /* special cases for last */
705 if (!tx->tlen) {
706 if (tx->packet_len & (sizeof(u32) - 1)) {
707 rval = _pad_sdma_tx_descs(dd, tx);
708 if (rval)
709 return rval;
710 } else {
711 _sdma_close_tx(dd, tx);
712 }
713 }
714 tx->num_desc++;
715 return rval;
716 }
717
718 /**
719 * sdma_txadd_page() - add a page to the sdma_txreq
720 * @dd: the device to use for mapping
721 * @pinning_ctx: context to be released at descriptor retirement
722 * @tx: tx request to which the page is added
723 * @page: page to map
724 * @offset: offset within the page
725 * @len: length in bytes
726 *
727 * This is used to add a page/offset/length descriptor.
728 *
729 * The mapping/unmapping of the page/offset/len is automatically handled.
730 *
731 * Return:
732 * 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't
733 * extend/coalesce descriptor array
734 */
sdma_txadd_page(struct hfi1_devdata * dd,void * pinning_ctx,struct sdma_txreq * tx,struct page * page,unsigned long offset,u16 len)735 static inline int sdma_txadd_page(
736 struct hfi1_devdata *dd,
737 void *pinning_ctx,
738 struct sdma_txreq *tx,
739 struct page *page,
740 unsigned long offset,
741 u16 len)
742 {
743 dma_addr_t addr;
744 int rval;
745
746 if ((unlikely(tx->num_desc == tx->desc_limit))) {
747 rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_PAGE,
748 NULL, page, offset, len);
749 if (rval <= 0)
750 return rval;
751 }
752
753 addr = dma_map_page(
754 &dd->pcidev->dev,
755 page,
756 offset,
757 len,
758 DMA_TO_DEVICE);
759
760 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
761 __sdma_txclean(dd, tx);
762 return -ENOSPC;
763 }
764
765 return _sdma_txadd_daddr(dd, SDMA_MAP_PAGE, pinning_ctx, tx, addr, len);
766 }
767
768 /**
769 * sdma_txadd_daddr() - add a dma address to the sdma_txreq
770 * @dd: the device to use for mapping
771 * @tx: sdma_txreq to which the page is added
772 * @addr: dma address mapped by caller
773 * @len: length in bytes
774 *
775 * This is used to add a descriptor for memory that is already dma mapped.
776 *
777 * In this case, there is no unmapping as part of the progress processing for
778 * this memory location.
779 *
780 * Return:
781 * 0 - success, -ENOMEM - couldn't extend descriptor array
782 */
783
sdma_txadd_daddr(struct hfi1_devdata * dd,struct sdma_txreq * tx,dma_addr_t addr,u16 len)784 static inline int sdma_txadd_daddr(
785 struct hfi1_devdata *dd,
786 struct sdma_txreq *tx,
787 dma_addr_t addr,
788 u16 len)
789 {
790 int rval;
791
792 if ((unlikely(tx->num_desc == tx->desc_limit))) {
793 rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_NONE,
794 NULL, NULL, 0, 0);
795 if (rval <= 0)
796 return rval;
797 }
798
799 return _sdma_txadd_daddr(dd, SDMA_MAP_NONE, NULL, tx,
800 addr, len);
801 }
802
803 /**
804 * sdma_txadd_kvaddr() - add a kernel virtual address to sdma_txreq
805 * @dd: the device to use for mapping
806 * @tx: sdma_txreq to which the page is added
807 * @kvaddr: the kernel virtual address
808 * @len: length in bytes
809 *
810 * This is used to add a descriptor referenced by the indicated kvaddr and
811 * len.
812 *
813 * The mapping/unmapping of the kvaddr and len is automatically handled.
814 *
815 * Return:
816 * 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't extend/coalesce
817 * descriptor array
818 */
sdma_txadd_kvaddr(struct hfi1_devdata * dd,struct sdma_txreq * tx,void * kvaddr,u16 len)819 static inline int sdma_txadd_kvaddr(
820 struct hfi1_devdata *dd,
821 struct sdma_txreq *tx,
822 void *kvaddr,
823 u16 len)
824 {
825 dma_addr_t addr;
826 int rval;
827
828 if ((unlikely(tx->num_desc == tx->desc_limit))) {
829 rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_SINGLE,
830 kvaddr, NULL, 0, len);
831 if (rval <= 0)
832 return rval;
833 }
834
835 addr = dma_map_single(
836 &dd->pcidev->dev,
837 kvaddr,
838 len,
839 DMA_TO_DEVICE);
840
841 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
842 __sdma_txclean(dd, tx);
843 return -ENOSPC;
844 }
845
846 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, NULL, tx, addr, len);
847 }
848
849 struct iowait_work;
850
851 int sdma_send_txreq(struct sdma_engine *sde,
852 struct iowait_work *wait,
853 struct sdma_txreq *tx,
854 bool pkts_sent);
855 int sdma_send_txlist(struct sdma_engine *sde,
856 struct iowait_work *wait,
857 struct list_head *tx_list,
858 u16 *count_out);
859
860 int sdma_ahg_alloc(struct sdma_engine *sde);
861 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index);
862
863 /**
864 * sdma_build_ahg - build ahg descriptor
865 * @data
866 * @dwindex
867 * @startbit
868 * @bits
869 *
870 * Build and return a 32 bit descriptor.
871 */
sdma_build_ahg_descriptor(u16 data,u8 dwindex,u8 startbit,u8 bits)872 static inline u32 sdma_build_ahg_descriptor(
873 u16 data,
874 u8 dwindex,
875 u8 startbit,
876 u8 bits)
877 {
878 return (u32)(1UL << SDMA_AHG_UPDATE_ENABLE_SHIFT |
879 ((startbit & SDMA_AHG_FIELD_START_MASK) <<
880 SDMA_AHG_FIELD_START_SHIFT) |
881 ((bits & SDMA_AHG_FIELD_LEN_MASK) <<
882 SDMA_AHG_FIELD_LEN_SHIFT) |
883 ((dwindex & SDMA_AHG_INDEX_MASK) <<
884 SDMA_AHG_INDEX_SHIFT) |
885 ((data & SDMA_AHG_VALUE_MASK) <<
886 SDMA_AHG_VALUE_SHIFT));
887 }
888
889 /**
890 * sdma_progress - use seq number of detect head progress
891 * @sde: sdma_engine to check
892 * @seq: base seq count
893 * @tx: txreq for which we need to check descriptor availability
894 *
895 * This is used in the appropriate spot in the sleep routine
896 * to check for potential ring progress. This routine gets the
897 * seqcount before queuing the iowait structure for progress.
898 *
899 * If the seqcount indicates that progress needs to be checked,
900 * re-submission is detected by checking whether the descriptor
901 * queue has enough descriptor for the txreq.
902 */
sdma_progress(struct sdma_engine * sde,unsigned seq,struct sdma_txreq * tx)903 static inline unsigned sdma_progress(struct sdma_engine *sde, unsigned seq,
904 struct sdma_txreq *tx)
905 {
906 if (read_seqretry(&sde->head_lock, seq)) {
907 sde->desc_avail = sdma_descq_freecnt(sde);
908 if (tx->num_desc > sde->desc_avail)
909 return 0;
910 return 1;
911 }
912 return 0;
913 }
914
915 /**
916 * sdma_iowait_schedule() - initialize wait structure
917 * @sde: sdma_engine to schedule
918 * @wait: wait struct to schedule
919 *
920 * This function initializes the iowait
921 * structure embedded in the QP or PQ.
922 *
923 */
sdma_iowait_schedule(struct sdma_engine * sde,struct iowait * wait)924 static inline void sdma_iowait_schedule(
925 struct sdma_engine *sde,
926 struct iowait *wait)
927 {
928 struct hfi1_pportdata *ppd = sde->dd->pport;
929
930 iowait_schedule(wait, ppd->hfi1_wq, sde->cpu);
931 }
932
933 /* for use by interrupt handling */
934 void sdma_engine_error(struct sdma_engine *sde, u64 status);
935 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status);
936
937 /*
938 *
939 * The diagram below details the relationship of the mapping structures
940 *
941 * Since the mapping now allows for non-uniform engines per vl, the
942 * number of engines for a vl is either the vl_engines[vl] or
943 * a computation based on num_sdma/num_vls:
944 *
945 * For example:
946 * nactual = vl_engines ? vl_engines[vl] : num_sdma/num_vls
947 *
948 * n = roundup to next highest power of 2 using nactual
949 *
950 * In the case where there are num_sdma/num_vls doesn't divide
951 * evenly, the extras are added from the last vl downward.
952 *
953 * For the case where n > nactual, the engines are assigned
954 * in a round robin fashion wrapping back to the first engine
955 * for a particular vl.
956 *
957 * dd->sdma_map
958 * | sdma_map_elem[0]
959 * | +--------------------+
960 * v | mask |
961 * sdma_vl_map |--------------------|
962 * +--------------------------+ | sde[0] -> eng 1 |
963 * | list (RCU) | |--------------------|
964 * |--------------------------| ->| sde[1] -> eng 2 |
965 * | mask | --/ |--------------------|
966 * |--------------------------| -/ | * |
967 * | actual_vls (max 8) | -/ |--------------------|
968 * |--------------------------| --/ | sde[n-1] -> eng n |
969 * | vls (max 8) | -/ +--------------------+
970 * |--------------------------| --/
971 * | map[0] |-/
972 * |--------------------------| +---------------------+
973 * | map[1] |--- | mask |
974 * |--------------------------| \---- |---------------------|
975 * | * | \-- | sde[0] -> eng 1+n |
976 * | * | \---- |---------------------|
977 * | * | \->| sde[1] -> eng 2+n |
978 * |--------------------------| |---------------------|
979 * | map[vls - 1] |- | * |
980 * +--------------------------+ \- |---------------------|
981 * \- | sde[m-1] -> eng m+n |
982 * \ +---------------------+
983 * \-
984 * \
985 * \- +----------------------+
986 * \- | mask |
987 * \ |----------------------|
988 * \- | sde[0] -> eng 1+m+n |
989 * \- |----------------------|
990 * >| sde[1] -> eng 2+m+n |
991 * |----------------------|
992 * | * |
993 * |----------------------|
994 * | sde[o-1] -> eng o+m+n|
995 * +----------------------+
996 *
997 */
998
999 /**
1000 * struct sdma_map_elem - mapping for a vl
1001 * @mask - selector mask
1002 * @sde - array of engines for this vl
1003 *
1004 * The mask is used to "mod" the selector
1005 * to produce index into the trailing
1006 * array of sdes.
1007 */
1008 struct sdma_map_elem {
1009 u32 mask;
1010 struct sdma_engine *sde[];
1011 };
1012
1013 /**
1014 * struct sdma_map_el - mapping for a vl
1015 * @engine_to_vl - map of an engine to a vl
1016 * @list - rcu head for free callback
1017 * @mask - vl mask to "mod" the vl to produce an index to map array
1018 * @actual_vls - number of vls
1019 * @vls - number of vls rounded to next power of 2
1020 * @map - array of sdma_map_elem entries
1021 *
1022 * This is the parent mapping structure. The trailing
1023 * members of the struct point to sdma_map_elem entries, which
1024 * in turn point to an array of sde's for that vl.
1025 */
1026 struct sdma_vl_map {
1027 s8 engine_to_vl[TXE_NUM_SDMA_ENGINES];
1028 struct rcu_head list;
1029 u32 mask;
1030 u8 actual_vls;
1031 u8 vls;
1032 struct sdma_map_elem *map[];
1033 };
1034
1035 int sdma_map_init(
1036 struct hfi1_devdata *dd,
1037 u8 port,
1038 u8 num_vls,
1039 u8 *vl_engines);
1040
1041 /* slow path */
1042 void _sdma_engine_progress_schedule(struct sdma_engine *sde);
1043
1044 /**
1045 * sdma_engine_progress_schedule() - schedule progress on engine
1046 * @sde: sdma_engine to schedule progress
1047 *
1048 * This is the fast path.
1049 *
1050 */
sdma_engine_progress_schedule(struct sdma_engine * sde)1051 static inline void sdma_engine_progress_schedule(
1052 struct sdma_engine *sde)
1053 {
1054 if (!sde || sdma_descq_inprocess(sde) < (sde->descq_cnt / 8))
1055 return;
1056 _sdma_engine_progress_schedule(sde);
1057 }
1058
1059 struct sdma_engine *sdma_select_engine_sc(
1060 struct hfi1_devdata *dd,
1061 u32 selector,
1062 u8 sc5);
1063
1064 struct sdma_engine *sdma_select_engine_vl(
1065 struct hfi1_devdata *dd,
1066 u32 selector,
1067 u8 vl);
1068
1069 struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
1070 u32 selector, u8 vl);
1071 ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf);
1072 ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
1073 size_t count);
1074 int sdma_engine_get_vl(struct sdma_engine *sde);
1075 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *);
1076 void sdma_seqfile_dump_cpu_list(struct seq_file *s, struct hfi1_devdata *dd,
1077 unsigned long cpuid);
1078
1079 #ifdef CONFIG_SDMA_VERBOSITY
1080 void sdma_dumpstate(struct sdma_engine *);
1081 #endif
slashstrip(char * s)1082 static inline char *slashstrip(char *s)
1083 {
1084 char *r = s;
1085
1086 while (*s)
1087 if (*s++ == '/')
1088 r = s;
1089 return r;
1090 }
1091
1092 u16 sdma_get_descq_cnt(void);
1093
1094 extern uint mod_num_sdma;
1095
1096 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid);
1097
1098 void system_descriptor_complete(struct hfi1_devdata *dd, struct sdma_desc *descp);
1099 #endif
1100