• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
3 
4 #include <linux/acpi.h>
5 #include <linux/delay.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/pm_runtime.h>
8 #include <linux/soundwire/sdw_registers.h>
9 #include <linux/soundwire/sdw.h>
10 #include "bus.h"
11 #include "sysfs_local.h"
12 
13 static DEFINE_IDA(sdw_ida);
14 
sdw_get_id(struct sdw_bus * bus)15 static int sdw_get_id(struct sdw_bus *bus)
16 {
17 	int rc = ida_alloc(&sdw_ida, GFP_KERNEL);
18 
19 	if (rc < 0)
20 		return rc;
21 
22 	bus->id = rc;
23 	return 0;
24 }
25 
26 /**
27  * sdw_bus_master_add() - add a bus Master instance
28  * @bus: bus instance
29  * @parent: parent device
30  * @fwnode: firmware node handle
31  *
32  * Initializes the bus instance, read properties and create child
33  * devices.
34  */
sdw_bus_master_add(struct sdw_bus * bus,struct device * parent,struct fwnode_handle * fwnode)35 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent,
36 		       struct fwnode_handle *fwnode)
37 {
38 	struct sdw_master_prop *prop = NULL;
39 	int ret;
40 
41 	if (!parent) {
42 		pr_err("SoundWire parent device is not set\n");
43 		return -ENODEV;
44 	}
45 
46 	ret = sdw_get_id(bus);
47 	if (ret) {
48 		dev_err(parent, "Failed to get bus id\n");
49 		return ret;
50 	}
51 
52 	ret = sdw_master_device_add(bus, parent, fwnode);
53 	if (ret) {
54 		dev_err(parent, "Failed to add master device at link %d\n",
55 			bus->link_id);
56 		return ret;
57 	}
58 
59 	if (!bus->ops) {
60 		dev_err(bus->dev, "SoundWire Bus ops are not set\n");
61 		return -EINVAL;
62 	}
63 
64 	if (!bus->compute_params) {
65 		dev_err(bus->dev,
66 			"Bandwidth allocation not configured, compute_params no set\n");
67 		return -EINVAL;
68 	}
69 
70 	mutex_init(&bus->msg_lock);
71 	mutex_init(&bus->bus_lock);
72 	INIT_LIST_HEAD(&bus->slaves);
73 	INIT_LIST_HEAD(&bus->m_rt_list);
74 
75 	/*
76 	 * Initialize multi_link flag
77 	 * TODO: populate this flag by reading property from FW node
78 	 */
79 	bus->multi_link = false;
80 	if (bus->ops->read_prop) {
81 		ret = bus->ops->read_prop(bus);
82 		if (ret < 0) {
83 			dev_err(bus->dev,
84 				"Bus read properties failed:%d\n", ret);
85 			return ret;
86 		}
87 	}
88 
89 	sdw_bus_debugfs_init(bus);
90 
91 	/*
92 	 * Device numbers in SoundWire are 0 through 15. Enumeration device
93 	 * number (0), Broadcast device number (15), Group numbers (12 and
94 	 * 13) and Master device number (14) are not used for assignment so
95 	 * mask these and other higher bits.
96 	 */
97 
98 	/* Set higher order bits */
99 	*bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM);
100 
101 	/* Set enumuration device number and broadcast device number */
102 	set_bit(SDW_ENUM_DEV_NUM, bus->assigned);
103 	set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned);
104 
105 	/* Set group device numbers and master device number */
106 	set_bit(SDW_GROUP12_DEV_NUM, bus->assigned);
107 	set_bit(SDW_GROUP13_DEV_NUM, bus->assigned);
108 	set_bit(SDW_MASTER_DEV_NUM, bus->assigned);
109 
110 	/*
111 	 * SDW is an enumerable bus, but devices can be powered off. So,
112 	 * they won't be able to report as present.
113 	 *
114 	 * Create Slave devices based on Slaves described in
115 	 * the respective firmware (ACPI/DT)
116 	 */
117 	if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev))
118 		ret = sdw_acpi_find_slaves(bus);
119 	else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node)
120 		ret = sdw_of_find_slaves(bus);
121 	else
122 		ret = -ENOTSUPP; /* No ACPI/DT so error out */
123 
124 	if (ret) {
125 		dev_err(bus->dev, "Finding slaves failed:%d\n", ret);
126 		return ret;
127 	}
128 
129 	/*
130 	 * Initialize clock values based on Master properties. The max
131 	 * frequency is read from max_clk_freq property. Current assumption
132 	 * is that the bus will start at highest clock frequency when
133 	 * powered on.
134 	 *
135 	 * Default active bank will be 0 as out of reset the Slaves have
136 	 * to start with bank 0 (Table 40 of Spec)
137 	 */
138 	prop = &bus->prop;
139 	bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR;
140 	bus->params.curr_dr_freq = bus->params.max_dr_freq;
141 	bus->params.curr_bank = SDW_BANK0;
142 	bus->params.next_bank = SDW_BANK1;
143 
144 	return 0;
145 }
146 EXPORT_SYMBOL(sdw_bus_master_add);
147 
sdw_delete_slave(struct device * dev,void * data)148 static int sdw_delete_slave(struct device *dev, void *data)
149 {
150 	struct sdw_slave *slave = dev_to_sdw_dev(dev);
151 	struct sdw_bus *bus = slave->bus;
152 
153 	pm_runtime_disable(dev);
154 
155 	sdw_slave_debugfs_exit(slave);
156 
157 	mutex_lock(&bus->bus_lock);
158 
159 	if (slave->dev_num) /* clear dev_num if assigned */
160 		clear_bit(slave->dev_num, bus->assigned);
161 
162 	list_del_init(&slave->node);
163 	mutex_unlock(&bus->bus_lock);
164 
165 	device_unregister(dev);
166 	return 0;
167 }
168 
169 /**
170  * sdw_bus_master_delete() - delete the bus master instance
171  * @bus: bus to be deleted
172  *
173  * Remove the instance, delete the child devices.
174  */
sdw_bus_master_delete(struct sdw_bus * bus)175 void sdw_bus_master_delete(struct sdw_bus *bus)
176 {
177 	device_for_each_child(bus->dev, NULL, sdw_delete_slave);
178 	sdw_master_device_del(bus);
179 
180 	sdw_bus_debugfs_exit(bus);
181 	ida_free(&sdw_ida, bus->id);
182 }
183 EXPORT_SYMBOL(sdw_bus_master_delete);
184 
185 /*
186  * SDW IO Calls
187  */
188 
find_response_code(enum sdw_command_response resp)189 static inline int find_response_code(enum sdw_command_response resp)
190 {
191 	switch (resp) {
192 	case SDW_CMD_OK:
193 		return 0;
194 
195 	case SDW_CMD_IGNORED:
196 		return -ENODATA;
197 
198 	case SDW_CMD_TIMEOUT:
199 		return -ETIMEDOUT;
200 
201 	default:
202 		return -EIO;
203 	}
204 }
205 
do_transfer(struct sdw_bus * bus,struct sdw_msg * msg)206 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
207 {
208 	int retry = bus->prop.err_threshold;
209 	enum sdw_command_response resp;
210 	int ret = 0, i;
211 
212 	for (i = 0; i <= retry; i++) {
213 		resp = bus->ops->xfer_msg(bus, msg);
214 		ret = find_response_code(resp);
215 
216 		/* if cmd is ok or ignored return */
217 		if (ret == 0 || ret == -ENODATA)
218 			return ret;
219 	}
220 
221 	return ret;
222 }
223 
do_transfer_defer(struct sdw_bus * bus,struct sdw_msg * msg,struct sdw_defer * defer)224 static inline int do_transfer_defer(struct sdw_bus *bus,
225 				    struct sdw_msg *msg,
226 				    struct sdw_defer *defer)
227 {
228 	int retry = bus->prop.err_threshold;
229 	enum sdw_command_response resp;
230 	int ret = 0, i;
231 
232 	defer->msg = msg;
233 	defer->length = msg->len;
234 	init_completion(&defer->complete);
235 
236 	for (i = 0; i <= retry; i++) {
237 		resp = bus->ops->xfer_msg_defer(bus, msg, defer);
238 		ret = find_response_code(resp);
239 		/* if cmd is ok or ignored return */
240 		if (ret == 0 || ret == -ENODATA)
241 			return ret;
242 	}
243 
244 	return ret;
245 }
246 
sdw_reset_page(struct sdw_bus * bus,u16 dev_num)247 static int sdw_reset_page(struct sdw_bus *bus, u16 dev_num)
248 {
249 	int retry = bus->prop.err_threshold;
250 	enum sdw_command_response resp;
251 	int ret = 0, i;
252 
253 	for (i = 0; i <= retry; i++) {
254 		resp = bus->ops->reset_page_addr(bus, dev_num);
255 		ret = find_response_code(resp);
256 		/* if cmd is ok or ignored return */
257 		if (ret == 0 || ret == -ENODATA)
258 			return ret;
259 	}
260 
261 	return ret;
262 }
263 
sdw_transfer_unlocked(struct sdw_bus * bus,struct sdw_msg * msg)264 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg)
265 {
266 	int ret;
267 
268 	ret = do_transfer(bus, msg);
269 	if (ret != 0 && ret != -ENODATA)
270 		dev_err(bus->dev, "trf on Slave %d failed:%d\n",
271 			msg->dev_num, ret);
272 
273 	if (msg->page)
274 		sdw_reset_page(bus, msg->dev_num);
275 
276 	return ret;
277 }
278 
279 /**
280  * sdw_transfer() - Synchronous transfer message to a SDW Slave device
281  * @bus: SDW bus
282  * @msg: SDW message to be xfered
283  */
sdw_transfer(struct sdw_bus * bus,struct sdw_msg * msg)284 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
285 {
286 	int ret;
287 
288 	mutex_lock(&bus->msg_lock);
289 
290 	ret = sdw_transfer_unlocked(bus, msg);
291 
292 	mutex_unlock(&bus->msg_lock);
293 
294 	return ret;
295 }
296 
297 /**
298  * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
299  * @bus: SDW bus
300  * @msg: SDW message to be xfered
301  * @defer: Defer block for signal completion
302  *
303  * Caller needs to hold the msg_lock lock while calling this
304  */
sdw_transfer_defer(struct sdw_bus * bus,struct sdw_msg * msg,struct sdw_defer * defer)305 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg,
306 		       struct sdw_defer *defer)
307 {
308 	int ret;
309 
310 	if (!bus->ops->xfer_msg_defer)
311 		return -ENOTSUPP;
312 
313 	ret = do_transfer_defer(bus, msg, defer);
314 	if (ret != 0 && ret != -ENODATA)
315 		dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n",
316 			msg->dev_num, ret);
317 
318 	if (msg->page)
319 		sdw_reset_page(bus, msg->dev_num);
320 
321 	return ret;
322 }
323 
sdw_fill_msg(struct sdw_msg * msg,struct sdw_slave * slave,u32 addr,size_t count,u16 dev_num,u8 flags,u8 * buf)324 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave,
325 		 u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf)
326 {
327 	memset(msg, 0, sizeof(*msg));
328 	msg->addr = addr; /* addr is 16 bit and truncated here */
329 	msg->len = count;
330 	msg->dev_num = dev_num;
331 	msg->flags = flags;
332 	msg->buf = buf;
333 
334 	if (addr < SDW_REG_NO_PAGE) /* no paging area */
335 		return 0;
336 
337 	if (addr >= SDW_REG_MAX) { /* illegal addr */
338 		pr_err("SDW: Invalid address %x passed\n", addr);
339 		return -EINVAL;
340 	}
341 
342 	if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */
343 		if (slave && !slave->prop.paging_support)
344 			return 0;
345 		/* no need for else as that will fall-through to paging */
346 	}
347 
348 	/* paging mandatory */
349 	if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) {
350 		pr_err("SDW: Invalid device for paging :%d\n", dev_num);
351 		return -EINVAL;
352 	}
353 
354 	if (!slave) {
355 		pr_err("SDW: No slave for paging addr\n");
356 		return -EINVAL;
357 	}
358 
359 	if (!slave->prop.paging_support) {
360 		dev_err(&slave->dev,
361 			"address %x needs paging but no support\n", addr);
362 		return -EINVAL;
363 	}
364 
365 	msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr);
366 	msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr);
367 	msg->addr |= BIT(15);
368 	msg->page = true;
369 
370 	return 0;
371 }
372 
373 /*
374  * Read/Write IO functions.
375  * no_pm versions can only be called by the bus, e.g. while enumerating or
376  * handling suspend-resume sequences.
377  * all clients need to use the pm versions
378  */
379 
380 static int
sdw_nread_no_pm(struct sdw_slave * slave,u32 addr,size_t count,u8 * val)381 sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
382 {
383 	struct sdw_msg msg;
384 	int ret;
385 
386 	ret = sdw_fill_msg(&msg, slave, addr, count,
387 			   slave->dev_num, SDW_MSG_FLAG_READ, val);
388 	if (ret < 0)
389 		return ret;
390 
391 	return sdw_transfer(slave->bus, &msg);
392 }
393 
394 static int
sdw_nwrite_no_pm(struct sdw_slave * slave,u32 addr,size_t count,u8 * val)395 sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
396 {
397 	struct sdw_msg msg;
398 	int ret;
399 
400 	ret = sdw_fill_msg(&msg, slave, addr, count,
401 			   slave->dev_num, SDW_MSG_FLAG_WRITE, val);
402 	if (ret < 0)
403 		return ret;
404 
405 	return sdw_transfer(slave->bus, &msg);
406 }
407 
sdw_write_no_pm(struct sdw_slave * slave,u32 addr,u8 value)408 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value)
409 {
410 	return sdw_nwrite_no_pm(slave, addr, 1, &value);
411 }
412 EXPORT_SYMBOL(sdw_write_no_pm);
413 
414 static int
sdw_bread_no_pm(struct sdw_bus * bus,u16 dev_num,u32 addr)415 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr)
416 {
417 	struct sdw_msg msg;
418 	u8 buf;
419 	int ret;
420 
421 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
422 			   SDW_MSG_FLAG_READ, &buf);
423 	if (ret)
424 		return ret;
425 
426 	ret = sdw_transfer(bus, &msg);
427 	if (ret < 0)
428 		return ret;
429 
430 	return buf;
431 }
432 
433 static int
sdw_bwrite_no_pm(struct sdw_bus * bus,u16 dev_num,u32 addr,u8 value)434 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
435 {
436 	struct sdw_msg msg;
437 	int ret;
438 
439 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
440 			   SDW_MSG_FLAG_WRITE, &value);
441 	if (ret)
442 		return ret;
443 
444 	return sdw_transfer(bus, &msg);
445 }
446 
sdw_bread_no_pm_unlocked(struct sdw_bus * bus,u16 dev_num,u32 addr)447 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr)
448 {
449 	struct sdw_msg msg;
450 	u8 buf;
451 	int ret;
452 
453 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
454 			   SDW_MSG_FLAG_READ, &buf);
455 	if (ret)
456 		return ret;
457 
458 	ret = sdw_transfer_unlocked(bus, &msg);
459 	if (ret < 0)
460 		return ret;
461 
462 	return buf;
463 }
464 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked);
465 
sdw_bwrite_no_pm_unlocked(struct sdw_bus * bus,u16 dev_num,u32 addr,u8 value)466 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
467 {
468 	struct sdw_msg msg;
469 	int ret;
470 
471 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
472 			   SDW_MSG_FLAG_WRITE, &value);
473 	if (ret)
474 		return ret;
475 
476 	return sdw_transfer_unlocked(bus, &msg);
477 }
478 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked);
479 
sdw_read_no_pm(struct sdw_slave * slave,u32 addr)480 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr)
481 {
482 	u8 buf;
483 	int ret;
484 
485 	ret = sdw_nread_no_pm(slave, addr, 1, &buf);
486 	if (ret < 0)
487 		return ret;
488 	else
489 		return buf;
490 }
491 EXPORT_SYMBOL(sdw_read_no_pm);
492 
sdw_update_no_pm(struct sdw_slave * slave,u32 addr,u8 mask,u8 val)493 static int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
494 {
495 	int tmp;
496 
497 	tmp = sdw_read_no_pm(slave, addr);
498 	if (tmp < 0)
499 		return tmp;
500 
501 	tmp = (tmp & ~mask) | val;
502 	return sdw_write_no_pm(slave, addr, tmp);
503 }
504 
505 /**
506  * sdw_nread() - Read "n" contiguous SDW Slave registers
507  * @slave: SDW Slave
508  * @addr: Register address
509  * @count: length
510  * @val: Buffer for values to be read
511  */
sdw_nread(struct sdw_slave * slave,u32 addr,size_t count,u8 * val)512 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
513 {
514 	int ret;
515 
516 	ret = pm_runtime_get_sync(&slave->dev);
517 	if (ret < 0 && ret != -EACCES) {
518 		pm_runtime_put_noidle(&slave->dev);
519 		return ret;
520 	}
521 
522 	ret = sdw_nread_no_pm(slave, addr, count, val);
523 
524 	pm_runtime_mark_last_busy(&slave->dev);
525 	pm_runtime_put(&slave->dev);
526 
527 	return ret;
528 }
529 EXPORT_SYMBOL(sdw_nread);
530 
531 /**
532  * sdw_nwrite() - Write "n" contiguous SDW Slave registers
533  * @slave: SDW Slave
534  * @addr: Register address
535  * @count: length
536  * @val: Buffer for values to be read
537  */
sdw_nwrite(struct sdw_slave * slave,u32 addr,size_t count,u8 * val)538 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
539 {
540 	int ret;
541 
542 	ret = pm_runtime_get_sync(&slave->dev);
543 	if (ret < 0 && ret != -EACCES) {
544 		pm_runtime_put_noidle(&slave->dev);
545 		return ret;
546 	}
547 
548 	ret = sdw_nwrite_no_pm(slave, addr, count, val);
549 
550 	pm_runtime_mark_last_busy(&slave->dev);
551 	pm_runtime_put(&slave->dev);
552 
553 	return ret;
554 }
555 EXPORT_SYMBOL(sdw_nwrite);
556 
557 /**
558  * sdw_read() - Read a SDW Slave register
559  * @slave: SDW Slave
560  * @addr: Register address
561  */
sdw_read(struct sdw_slave * slave,u32 addr)562 int sdw_read(struct sdw_slave *slave, u32 addr)
563 {
564 	u8 buf;
565 	int ret;
566 
567 	ret = sdw_nread(slave, addr, 1, &buf);
568 	if (ret < 0)
569 		return ret;
570 
571 	return buf;
572 }
573 EXPORT_SYMBOL(sdw_read);
574 
575 /**
576  * sdw_write() - Write a SDW Slave register
577  * @slave: SDW Slave
578  * @addr: Register address
579  * @value: Register value
580  */
sdw_write(struct sdw_slave * slave,u32 addr,u8 value)581 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value)
582 {
583 	return sdw_nwrite(slave, addr, 1, &value);
584 }
585 EXPORT_SYMBOL(sdw_write);
586 
587 /*
588  * SDW alert handling
589  */
590 
591 /* called with bus_lock held */
sdw_get_slave(struct sdw_bus * bus,int i)592 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i)
593 {
594 	struct sdw_slave *slave = NULL;
595 
596 	list_for_each_entry(slave, &bus->slaves, node) {
597 		if (slave->dev_num == i)
598 			return slave;
599 	}
600 
601 	return NULL;
602 }
603 
sdw_compare_devid(struct sdw_slave * slave,struct sdw_slave_id id)604 static int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id)
605 {
606 	if (slave->id.mfg_id != id.mfg_id ||
607 	    slave->id.part_id != id.part_id ||
608 	    slave->id.class_id != id.class_id ||
609 	    (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID &&
610 	     slave->id.unique_id != id.unique_id))
611 		return -ENODEV;
612 
613 	return 0;
614 }
615 
616 /* called with bus_lock held */
sdw_get_device_num(struct sdw_slave * slave)617 static int sdw_get_device_num(struct sdw_slave *slave)
618 {
619 	int bit;
620 
621 	bit = find_first_zero_bit(slave->bus->assigned, SDW_MAX_DEVICES);
622 	if (bit == SDW_MAX_DEVICES) {
623 		bit = -ENODEV;
624 		goto err;
625 	}
626 
627 	/*
628 	 * Do not update dev_num in Slave data structure here,
629 	 * Update once program dev_num is successful
630 	 */
631 	set_bit(bit, slave->bus->assigned);
632 
633 err:
634 	return bit;
635 }
636 
sdw_assign_device_num(struct sdw_slave * slave)637 static int sdw_assign_device_num(struct sdw_slave *slave)
638 {
639 	int ret, dev_num;
640 	bool new_device = false;
641 
642 	/* check first if device number is assigned, if so reuse that */
643 	if (!slave->dev_num) {
644 		if (!slave->dev_num_sticky) {
645 			mutex_lock(&slave->bus->bus_lock);
646 			dev_num = sdw_get_device_num(slave);
647 			mutex_unlock(&slave->bus->bus_lock);
648 			if (dev_num < 0) {
649 				dev_err(slave->bus->dev, "Get dev_num failed: %d\n",
650 					dev_num);
651 				return dev_num;
652 			}
653 			slave->dev_num = dev_num;
654 			slave->dev_num_sticky = dev_num;
655 			new_device = true;
656 		} else {
657 			slave->dev_num = slave->dev_num_sticky;
658 		}
659 	}
660 
661 	if (!new_device)
662 		dev_dbg(slave->bus->dev,
663 			"Slave already registered, reusing dev_num:%d\n",
664 			slave->dev_num);
665 
666 	/* Clear the slave->dev_num to transfer message on device 0 */
667 	dev_num = slave->dev_num;
668 	slave->dev_num = 0;
669 
670 	ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num);
671 	if (ret < 0) {
672 		dev_err(&slave->dev, "Program device_num %d failed: %d\n",
673 			dev_num, ret);
674 		return ret;
675 	}
676 
677 	/* After xfer of msg, restore dev_num */
678 	slave->dev_num = slave->dev_num_sticky;
679 
680 	return 0;
681 }
682 
sdw_extract_slave_id(struct sdw_bus * bus,u64 addr,struct sdw_slave_id * id)683 void sdw_extract_slave_id(struct sdw_bus *bus,
684 			  u64 addr, struct sdw_slave_id *id)
685 {
686 	dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr);
687 
688 	id->sdw_version = SDW_VERSION(addr);
689 	id->unique_id = SDW_UNIQUE_ID(addr);
690 	id->mfg_id = SDW_MFG_ID(addr);
691 	id->part_id = SDW_PART_ID(addr);
692 	id->class_id = SDW_CLASS_ID(addr);
693 
694 	dev_dbg(bus->dev,
695 		"SDW Slave class_id %x, part_id %x, mfg_id %x, unique_id %x, version %x\n",
696 				id->class_id, id->part_id, id->mfg_id,
697 				id->unique_id, id->sdw_version);
698 }
699 
sdw_program_device_num(struct sdw_bus * bus)700 static int sdw_program_device_num(struct sdw_bus *bus)
701 {
702 	u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0};
703 	struct sdw_slave *slave, *_s;
704 	struct sdw_slave_id id;
705 	struct sdw_msg msg;
706 	bool found;
707 	int count = 0, ret;
708 	u64 addr;
709 
710 	/* No Slave, so use raw xfer api */
711 	ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0,
712 			   SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf);
713 	if (ret < 0)
714 		return ret;
715 
716 	do {
717 		ret = sdw_transfer(bus, &msg);
718 		if (ret == -ENODATA) { /* end of device id reads */
719 			dev_dbg(bus->dev, "No more devices to enumerate\n");
720 			ret = 0;
721 			break;
722 		}
723 		if (ret < 0) {
724 			dev_err(bus->dev, "DEVID read fail:%d\n", ret);
725 			break;
726 		}
727 
728 		/*
729 		 * Construct the addr and extract. Cast the higher shift
730 		 * bits to avoid truncation due to size limit.
731 		 */
732 		addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) |
733 			((u64)buf[2] << 24) | ((u64)buf[1] << 32) |
734 			((u64)buf[0] << 40);
735 
736 		sdw_extract_slave_id(bus, addr, &id);
737 
738 		found = false;
739 		/* Now compare with entries */
740 		list_for_each_entry_safe(slave, _s, &bus->slaves, node) {
741 			if (sdw_compare_devid(slave, id) == 0) {
742 				found = true;
743 
744 				/*
745 				 * Assign a new dev_num to this Slave and
746 				 * not mark it present. It will be marked
747 				 * present after it reports ATTACHED on new
748 				 * dev_num
749 				 */
750 				ret = sdw_assign_device_num(slave);
751 				if (ret) {
752 					dev_err(slave->bus->dev,
753 						"Assign dev_num failed:%d\n",
754 						ret);
755 					return ret;
756 				}
757 
758 				break;
759 			}
760 		}
761 
762 		if (!found) {
763 			/* TODO: Park this device in Group 13 */
764 
765 			/*
766 			 * add Slave device even if there is no platform
767 			 * firmware description. There will be no driver probe
768 			 * but the user/integration will be able to see the
769 			 * device, enumeration status and device number in sysfs
770 			 */
771 			sdw_slave_add(bus, &id, NULL);
772 
773 			dev_err(bus->dev, "Slave Entry not found\n");
774 		}
775 
776 		count++;
777 
778 		/*
779 		 * Check till error out or retry (count) exhausts.
780 		 * Device can drop off and rejoin during enumeration
781 		 * so count till twice the bound.
782 		 */
783 
784 	} while (ret == 0 && count < (SDW_MAX_DEVICES * 2));
785 
786 	return ret;
787 }
788 
sdw_modify_slave_status(struct sdw_slave * slave,enum sdw_slave_status status)789 static void sdw_modify_slave_status(struct sdw_slave *slave,
790 				    enum sdw_slave_status status)
791 {
792 	mutex_lock(&slave->bus->bus_lock);
793 
794 	dev_vdbg(&slave->dev,
795 		 "%s: changing status slave %d status %d new status %d\n",
796 		 __func__, slave->dev_num, slave->status, status);
797 
798 	if (status == SDW_SLAVE_UNATTACHED) {
799 		dev_dbg(&slave->dev,
800 			"%s: initializing completion for Slave %d\n",
801 			__func__, slave->dev_num);
802 
803 		init_completion(&slave->enumeration_complete);
804 		init_completion(&slave->initialization_complete);
805 
806 	} else if ((status == SDW_SLAVE_ATTACHED) &&
807 		   (slave->status == SDW_SLAVE_UNATTACHED)) {
808 		dev_dbg(&slave->dev,
809 			"%s: signaling completion for Slave %d\n",
810 			__func__, slave->dev_num);
811 
812 		complete(&slave->enumeration_complete);
813 	}
814 	slave->status = status;
815 	mutex_unlock(&slave->bus->bus_lock);
816 }
817 
sdw_get_clk_stop_mode(struct sdw_slave * slave)818 static enum sdw_clk_stop_mode sdw_get_clk_stop_mode(struct sdw_slave *slave)
819 {
820 	enum sdw_clk_stop_mode mode;
821 
822 	/*
823 	 * Query for clock stop mode if Slave implements
824 	 * ops->get_clk_stop_mode, else read from property.
825 	 */
826 	if (slave->ops && slave->ops->get_clk_stop_mode) {
827 		mode = slave->ops->get_clk_stop_mode(slave);
828 	} else {
829 		if (slave->prop.clk_stop_mode1)
830 			mode = SDW_CLK_STOP_MODE1;
831 		else
832 			mode = SDW_CLK_STOP_MODE0;
833 	}
834 
835 	return mode;
836 }
837 
sdw_slave_clk_stop_callback(struct sdw_slave * slave,enum sdw_clk_stop_mode mode,enum sdw_clk_stop_type type)838 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave,
839 				       enum sdw_clk_stop_mode mode,
840 				       enum sdw_clk_stop_type type)
841 {
842 	int ret;
843 
844 	if (slave->ops && slave->ops->clk_stop) {
845 		ret = slave->ops->clk_stop(slave, mode, type);
846 		if (ret < 0) {
847 			dev_err(&slave->dev,
848 				"Clk Stop type =%d failed: %d\n", type, ret);
849 			return ret;
850 		}
851 	}
852 
853 	return 0;
854 }
855 
sdw_slave_clk_stop_prepare(struct sdw_slave * slave,enum sdw_clk_stop_mode mode,bool prepare)856 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave,
857 				      enum sdw_clk_stop_mode mode,
858 				      bool prepare)
859 {
860 	bool wake_en;
861 	u32 val = 0;
862 	int ret;
863 
864 	wake_en = slave->prop.wake_capable;
865 
866 	if (prepare) {
867 		val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP;
868 
869 		if (mode == SDW_CLK_STOP_MODE1)
870 			val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1;
871 
872 		if (wake_en)
873 			val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN;
874 	} else {
875 		val = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL);
876 
877 		val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP);
878 	}
879 
880 	ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val);
881 
882 	if (ret != 0)
883 		dev_err(&slave->dev,
884 			"Clock Stop prepare failed for slave: %d", ret);
885 
886 	return ret;
887 }
888 
sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus * bus,u16 dev_num)889 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num)
890 {
891 	int retry = bus->clk_stop_timeout;
892 	int val;
893 
894 	do {
895 		val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT) &
896 			SDW_SCP_STAT_CLK_STP_NF;
897 		if (!val) {
898 			dev_info(bus->dev, "clock stop prep/de-prep done slave:%d",
899 				 dev_num);
900 			return 0;
901 		}
902 
903 		usleep_range(1000, 1500);
904 		retry--;
905 	} while (retry);
906 
907 	dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d",
908 		dev_num);
909 
910 	return -ETIMEDOUT;
911 }
912 
913 /**
914  * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
915  *
916  * @bus: SDW bus instance
917  *
918  * Query Slave for clock stop mode and prepare for that mode.
919  */
sdw_bus_prep_clk_stop(struct sdw_bus * bus)920 int sdw_bus_prep_clk_stop(struct sdw_bus *bus)
921 {
922 	enum sdw_clk_stop_mode slave_mode;
923 	bool simple_clk_stop = true;
924 	struct sdw_slave *slave;
925 	bool is_slave = false;
926 	int ret = 0;
927 
928 	/*
929 	 * In order to save on transition time, prepare
930 	 * each Slave and then wait for all Slave(s) to be
931 	 * prepared for clock stop.
932 	 */
933 	list_for_each_entry(slave, &bus->slaves, node) {
934 		if (!slave->dev_num)
935 			continue;
936 
937 		if (slave->status != SDW_SLAVE_ATTACHED &&
938 		    slave->status != SDW_SLAVE_ALERT)
939 			continue;
940 
941 		/* Identify if Slave(s) are available on Bus */
942 		is_slave = true;
943 
944 		slave_mode = sdw_get_clk_stop_mode(slave);
945 		slave->curr_clk_stop_mode = slave_mode;
946 
947 		ret = sdw_slave_clk_stop_callback(slave, slave_mode,
948 						  SDW_CLK_PRE_PREPARE);
949 		if (ret < 0) {
950 			dev_err(&slave->dev,
951 				"pre-prepare failed:%d", ret);
952 			return ret;
953 		}
954 
955 		ret = sdw_slave_clk_stop_prepare(slave,
956 						 slave_mode, true);
957 		if (ret < 0) {
958 			dev_err(&slave->dev,
959 				"pre-prepare failed:%d", ret);
960 			return ret;
961 		}
962 
963 		if (slave_mode == SDW_CLK_STOP_MODE1)
964 			simple_clk_stop = false;
965 	}
966 
967 	if (is_slave && !simple_clk_stop) {
968 		ret = sdw_bus_wait_for_clk_prep_deprep(bus,
969 						       SDW_BROADCAST_DEV_NUM);
970 		if (ret < 0)
971 			return ret;
972 	}
973 
974 	/* Don't need to inform slaves if there is no slave attached */
975 	if (!is_slave)
976 		return ret;
977 
978 	/* Inform slaves that prep is done */
979 	list_for_each_entry(slave, &bus->slaves, node) {
980 		if (!slave->dev_num)
981 			continue;
982 
983 		if (slave->status != SDW_SLAVE_ATTACHED &&
984 		    slave->status != SDW_SLAVE_ALERT)
985 			continue;
986 
987 		slave_mode = slave->curr_clk_stop_mode;
988 
989 		if (slave_mode == SDW_CLK_STOP_MODE1) {
990 			ret = sdw_slave_clk_stop_callback(slave,
991 							  slave_mode,
992 							  SDW_CLK_POST_PREPARE);
993 
994 			if (ret < 0) {
995 				dev_err(&slave->dev,
996 					"post-prepare failed:%d", ret);
997 			}
998 		}
999 	}
1000 
1001 	return ret;
1002 }
1003 EXPORT_SYMBOL(sdw_bus_prep_clk_stop);
1004 
1005 /**
1006  * sdw_bus_clk_stop: stop bus clock
1007  *
1008  * @bus: SDW bus instance
1009  *
1010  * After preparing the Slaves for clock stop, stop the clock by broadcasting
1011  * write to SCP_CTRL register.
1012  */
sdw_bus_clk_stop(struct sdw_bus * bus)1013 int sdw_bus_clk_stop(struct sdw_bus *bus)
1014 {
1015 	int ret;
1016 
1017 	/*
1018 	 * broadcast clock stop now, attached Slaves will ACK this,
1019 	 * unattached will ignore
1020 	 */
1021 	ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM,
1022 			       SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW);
1023 	if (ret < 0) {
1024 		if (ret == -ENODATA)
1025 			dev_dbg(bus->dev,
1026 				"ClockStopNow Broadcast msg ignored %d", ret);
1027 		else
1028 			dev_err(bus->dev,
1029 				"ClockStopNow Broadcast msg failed %d", ret);
1030 		return ret;
1031 	}
1032 
1033 	return 0;
1034 }
1035 EXPORT_SYMBOL(sdw_bus_clk_stop);
1036 
1037 /**
1038  * sdw_bus_exit_clk_stop: Exit clock stop mode
1039  *
1040  * @bus: SDW bus instance
1041  *
1042  * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
1043  * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
1044  * back.
1045  */
sdw_bus_exit_clk_stop(struct sdw_bus * bus)1046 int sdw_bus_exit_clk_stop(struct sdw_bus *bus)
1047 {
1048 	enum sdw_clk_stop_mode mode;
1049 	bool simple_clk_stop = true;
1050 	struct sdw_slave *slave;
1051 	bool is_slave = false;
1052 	int ret;
1053 
1054 	/*
1055 	 * In order to save on transition time, de-prepare
1056 	 * each Slave and then wait for all Slave(s) to be
1057 	 * de-prepared after clock resume.
1058 	 */
1059 	list_for_each_entry(slave, &bus->slaves, node) {
1060 		if (!slave->dev_num)
1061 			continue;
1062 
1063 		if (slave->status != SDW_SLAVE_ATTACHED &&
1064 		    slave->status != SDW_SLAVE_ALERT)
1065 			continue;
1066 
1067 		/* Identify if Slave(s) are available on Bus */
1068 		is_slave = true;
1069 
1070 		mode = slave->curr_clk_stop_mode;
1071 
1072 		if (mode == SDW_CLK_STOP_MODE1) {
1073 			simple_clk_stop = false;
1074 			continue;
1075 		}
1076 
1077 		ret = sdw_slave_clk_stop_callback(slave, mode,
1078 						  SDW_CLK_PRE_DEPREPARE);
1079 		if (ret < 0)
1080 			dev_warn(&slave->dev,
1081 				 "clk stop deprep failed:%d", ret);
1082 
1083 		ret = sdw_slave_clk_stop_prepare(slave, mode,
1084 						 false);
1085 
1086 		if (ret < 0)
1087 			dev_warn(&slave->dev,
1088 				 "clk stop deprep failed:%d", ret);
1089 	}
1090 
1091 	if (is_slave && !simple_clk_stop)
1092 		sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM);
1093 
1094 	/*
1095 	 * Don't need to call slave callback function if there is no slave
1096 	 * attached
1097 	 */
1098 	if (!is_slave)
1099 		return 0;
1100 
1101 	list_for_each_entry(slave, &bus->slaves, node) {
1102 		if (!slave->dev_num)
1103 			continue;
1104 
1105 		if (slave->status != SDW_SLAVE_ATTACHED &&
1106 		    slave->status != SDW_SLAVE_ALERT)
1107 			continue;
1108 
1109 		mode = slave->curr_clk_stop_mode;
1110 		sdw_slave_clk_stop_callback(slave, mode,
1111 					    SDW_CLK_POST_DEPREPARE);
1112 	}
1113 
1114 	return 0;
1115 }
1116 EXPORT_SYMBOL(sdw_bus_exit_clk_stop);
1117 
sdw_configure_dpn_intr(struct sdw_slave * slave,int port,bool enable,int mask)1118 int sdw_configure_dpn_intr(struct sdw_slave *slave,
1119 			   int port, bool enable, int mask)
1120 {
1121 	u32 addr;
1122 	int ret;
1123 	u8 val = 0;
1124 
1125 	if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) {
1126 		dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n",
1127 			enable ? "on" : "off");
1128 		mask |= SDW_DPN_INT_TEST_FAIL;
1129 	}
1130 
1131 	addr = SDW_DPN_INTMASK(port);
1132 
1133 	/* Set/Clear port ready interrupt mask */
1134 	if (enable) {
1135 		val |= mask;
1136 		val |= SDW_DPN_INT_PORT_READY;
1137 	} else {
1138 		val &= ~(mask);
1139 		val &= ~SDW_DPN_INT_PORT_READY;
1140 	}
1141 
1142 	ret = sdw_update(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val);
1143 	if (ret < 0)
1144 		dev_err(slave->bus->dev,
1145 			"SDW_DPN_INTMASK write failed:%d\n", val);
1146 
1147 	return ret;
1148 }
1149 
sdw_slave_set_frequency(struct sdw_slave * slave)1150 static int sdw_slave_set_frequency(struct sdw_slave *slave)
1151 {
1152 	u32 mclk_freq = slave->bus->prop.mclk_freq;
1153 	u32 curr_freq = slave->bus->params.curr_dr_freq >> 1;
1154 	unsigned int scale;
1155 	u8 scale_index;
1156 	u8 base;
1157 	int ret;
1158 
1159 	/*
1160 	 * frequency base and scale registers are required for SDCA
1161 	 * devices. They may also be used for 1.2+/non-SDCA devices,
1162 	 * but we will need a DisCo property to cover this case
1163 	 */
1164 	if (!slave->id.class_id)
1165 		return 0;
1166 
1167 	if (!mclk_freq) {
1168 		dev_err(&slave->dev,
1169 			"no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
1170 		return -EINVAL;
1171 	}
1172 
1173 	/*
1174 	 * map base frequency using Table 89 of SoundWire 1.2 spec.
1175 	 * The order of the tests just follows the specification, this
1176 	 * is not a selection between possible values or a search for
1177 	 * the best value but just a mapping.  Only one case per platform
1178 	 * is relevant.
1179 	 * Some BIOS have inconsistent values for mclk_freq but a
1180 	 * correct root so we force the mclk_freq to avoid variations.
1181 	 */
1182 	if (!(19200000 % mclk_freq)) {
1183 		mclk_freq = 19200000;
1184 		base = SDW_SCP_BASE_CLOCK_19200000_HZ;
1185 	} else if (!(24000000 % mclk_freq)) {
1186 		mclk_freq = 24000000;
1187 		base = SDW_SCP_BASE_CLOCK_24000000_HZ;
1188 	} else if (!(24576000 % mclk_freq)) {
1189 		mclk_freq = 24576000;
1190 		base = SDW_SCP_BASE_CLOCK_24576000_HZ;
1191 	} else if (!(22579200 % mclk_freq)) {
1192 		mclk_freq = 22579200;
1193 		base = SDW_SCP_BASE_CLOCK_22579200_HZ;
1194 	} else if (!(32000000 % mclk_freq)) {
1195 		mclk_freq = 32000000;
1196 		base = SDW_SCP_BASE_CLOCK_32000000_HZ;
1197 	} else {
1198 		dev_err(&slave->dev,
1199 			"Unsupported clock base, mclk %d\n",
1200 			mclk_freq);
1201 		return -EINVAL;
1202 	}
1203 
1204 	if (mclk_freq % curr_freq) {
1205 		dev_err(&slave->dev,
1206 			"mclk %d is not multiple of bus curr_freq %d\n",
1207 			mclk_freq, curr_freq);
1208 		return -EINVAL;
1209 	}
1210 
1211 	scale = mclk_freq / curr_freq;
1212 
1213 	/*
1214 	 * map scale to Table 90 of SoundWire 1.2 spec - and check
1215 	 * that the scale is a power of two and maximum 64
1216 	 */
1217 	scale_index = ilog2(scale);
1218 
1219 	if (BIT(scale_index) != scale || scale_index > 6) {
1220 		dev_err(&slave->dev,
1221 			"No match found for scale %d, bus mclk %d curr_freq %d\n",
1222 			scale, mclk_freq, curr_freq);
1223 		return -EINVAL;
1224 	}
1225 	scale_index++;
1226 
1227 	ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base);
1228 	if (ret < 0) {
1229 		dev_err(&slave->dev,
1230 			"SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret);
1231 		return ret;
1232 	}
1233 
1234 	/* initialize scale for both banks */
1235 	ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index);
1236 	if (ret < 0) {
1237 		dev_err(&slave->dev,
1238 			"SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret);
1239 		return ret;
1240 	}
1241 	ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index);
1242 	if (ret < 0)
1243 		dev_err(&slave->dev,
1244 			"SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret);
1245 
1246 	dev_dbg(&slave->dev,
1247 		"Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
1248 		base, scale_index, mclk_freq, curr_freq);
1249 
1250 	return ret;
1251 }
1252 
sdw_initialize_slave(struct sdw_slave * slave)1253 static int sdw_initialize_slave(struct sdw_slave *slave)
1254 {
1255 	struct sdw_slave_prop *prop = &slave->prop;
1256 	int ret;
1257 	u8 val;
1258 
1259 	ret = sdw_slave_set_frequency(slave);
1260 	if (ret < 0)
1261 		return ret;
1262 
1263 	/*
1264 	 * Set SCP_INT1_MASK register, typically bus clash and
1265 	 * implementation-defined interrupt mask. The Parity detection
1266 	 * may not always be correct on startup so its use is
1267 	 * device-dependent, it might e.g. only be enabled in
1268 	 * steady-state after a couple of frames.
1269 	 */
1270 	val = slave->prop.scp_int1_mask;
1271 
1272 	/* Enable SCP interrupts */
1273 	ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val);
1274 	if (ret < 0) {
1275 		dev_err(slave->bus->dev,
1276 			"SDW_SCP_INTMASK1 write failed:%d\n", ret);
1277 		return ret;
1278 	}
1279 
1280 	/* No need to continue if DP0 is not present */
1281 	if (!slave->prop.dp0_prop)
1282 		return 0;
1283 
1284 	/* Enable DP0 interrupts */
1285 	val = prop->dp0_prop->imp_def_interrupts;
1286 	val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE;
1287 
1288 	ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val);
1289 	if (ret < 0)
1290 		dev_err(slave->bus->dev,
1291 			"SDW_DP0_INTMASK read failed:%d\n", ret);
1292 	return ret;
1293 }
1294 
sdw_handle_dp0_interrupt(struct sdw_slave * slave,u8 * slave_status)1295 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status)
1296 {
1297 	u8 clear = 0, impl_int_mask;
1298 	int status, status2, ret, count = 0;
1299 
1300 	status = sdw_read(slave, SDW_DP0_INT);
1301 	if (status < 0) {
1302 		dev_err(slave->bus->dev,
1303 			"SDW_DP0_INT read failed:%d\n", status);
1304 		return status;
1305 	}
1306 
1307 	do {
1308 		if (status & SDW_DP0_INT_TEST_FAIL) {
1309 			dev_err(&slave->dev, "Test fail for port 0\n");
1310 			clear |= SDW_DP0_INT_TEST_FAIL;
1311 		}
1312 
1313 		/*
1314 		 * Assumption: PORT_READY interrupt will be received only for
1315 		 * ports implementing Channel Prepare state machine (CP_SM)
1316 		 */
1317 
1318 		if (status & SDW_DP0_INT_PORT_READY) {
1319 			complete(&slave->port_ready[0]);
1320 			clear |= SDW_DP0_INT_PORT_READY;
1321 		}
1322 
1323 		if (status & SDW_DP0_INT_BRA_FAILURE) {
1324 			dev_err(&slave->dev, "BRA failed\n");
1325 			clear |= SDW_DP0_INT_BRA_FAILURE;
1326 		}
1327 
1328 		impl_int_mask = SDW_DP0_INT_IMPDEF1 |
1329 			SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3;
1330 
1331 		if (status & impl_int_mask) {
1332 			clear |= impl_int_mask;
1333 			*slave_status = clear;
1334 		}
1335 
1336 		/* clear the interrupt */
1337 		ret = sdw_write(slave, SDW_DP0_INT, clear);
1338 		if (ret < 0) {
1339 			dev_err(slave->bus->dev,
1340 				"SDW_DP0_INT write failed:%d\n", ret);
1341 			return ret;
1342 		}
1343 
1344 		/* Read DP0 interrupt again */
1345 		status2 = sdw_read(slave, SDW_DP0_INT);
1346 		if (status2 < 0) {
1347 			dev_err(slave->bus->dev,
1348 				"SDW_DP0_INT read failed:%d\n", status2);
1349 			return status2;
1350 		}
1351 		status &= status2;
1352 
1353 		count++;
1354 
1355 		/* we can get alerts while processing so keep retrying */
1356 	} while (status != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1357 
1358 	if (count == SDW_READ_INTR_CLEAR_RETRY)
1359 		dev_warn(slave->bus->dev, "Reached MAX_RETRY on DP0 read\n");
1360 
1361 	return ret;
1362 }
1363 
sdw_handle_port_interrupt(struct sdw_slave * slave,int port,u8 * slave_status)1364 static int sdw_handle_port_interrupt(struct sdw_slave *slave,
1365 				     int port, u8 *slave_status)
1366 {
1367 	u8 clear = 0, impl_int_mask;
1368 	int status, status2, ret, count = 0;
1369 	u32 addr;
1370 
1371 	if (port == 0)
1372 		return sdw_handle_dp0_interrupt(slave, slave_status);
1373 
1374 	addr = SDW_DPN_INT(port);
1375 	status = sdw_read(slave, addr);
1376 	if (status < 0) {
1377 		dev_err(slave->bus->dev,
1378 			"SDW_DPN_INT read failed:%d\n", status);
1379 
1380 		return status;
1381 	}
1382 
1383 	do {
1384 		if (status & SDW_DPN_INT_TEST_FAIL) {
1385 			dev_err(&slave->dev, "Test fail for port:%d\n", port);
1386 			clear |= SDW_DPN_INT_TEST_FAIL;
1387 		}
1388 
1389 		/*
1390 		 * Assumption: PORT_READY interrupt will be received only
1391 		 * for ports implementing CP_SM.
1392 		 */
1393 		if (status & SDW_DPN_INT_PORT_READY) {
1394 			complete(&slave->port_ready[port]);
1395 			clear |= SDW_DPN_INT_PORT_READY;
1396 		}
1397 
1398 		impl_int_mask = SDW_DPN_INT_IMPDEF1 |
1399 			SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3;
1400 
1401 		if (status & impl_int_mask) {
1402 			clear |= impl_int_mask;
1403 			*slave_status = clear;
1404 		}
1405 
1406 		/* clear the interrupt */
1407 		ret = sdw_write(slave, addr, clear);
1408 		if (ret < 0) {
1409 			dev_err(slave->bus->dev,
1410 				"SDW_DPN_INT write failed:%d\n", ret);
1411 			return ret;
1412 		}
1413 
1414 		/* Read DPN interrupt again */
1415 		status2 = sdw_read(slave, addr);
1416 		if (status2 < 0) {
1417 			dev_err(slave->bus->dev,
1418 				"SDW_DPN_INT read failed:%d\n", status2);
1419 			return status2;
1420 		}
1421 		status &= status2;
1422 
1423 		count++;
1424 
1425 		/* we can get alerts while processing so keep retrying */
1426 	} while (status != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1427 
1428 	if (count == SDW_READ_INTR_CLEAR_RETRY)
1429 		dev_warn(slave->bus->dev, "Reached MAX_RETRY on port read");
1430 
1431 	return ret;
1432 }
1433 
sdw_handle_slave_alerts(struct sdw_slave * slave)1434 static int sdw_handle_slave_alerts(struct sdw_slave *slave)
1435 {
1436 	struct sdw_slave_intr_status slave_intr;
1437 	u8 clear = 0, bit, port_status[15] = {0};
1438 	int port_num, stat, ret, count = 0;
1439 	unsigned long port;
1440 	bool slave_notify = false;
1441 	u8 buf, buf2[2], _buf, _buf2[2];
1442 	bool parity_check;
1443 	bool parity_quirk;
1444 
1445 	sdw_modify_slave_status(slave, SDW_SLAVE_ALERT);
1446 
1447 	ret = pm_runtime_get_sync(&slave->dev);
1448 	if (ret < 0 && ret != -EACCES) {
1449 		dev_err(&slave->dev, "Failed to resume device: %d\n", ret);
1450 		pm_runtime_put_noidle(&slave->dev);
1451 		return ret;
1452 	}
1453 
1454 	/* Read Intstat 1, Intstat 2 and Intstat 3 registers */
1455 	ret = sdw_read(slave, SDW_SCP_INT1);
1456 	if (ret < 0) {
1457 		dev_err(slave->bus->dev,
1458 			"SDW_SCP_INT1 read failed:%d\n", ret);
1459 		goto io_err;
1460 	}
1461 	buf = ret;
1462 
1463 	ret = sdw_nread(slave, SDW_SCP_INTSTAT2, 2, buf2);
1464 	if (ret < 0) {
1465 		dev_err(slave->bus->dev,
1466 			"SDW_SCP_INT2/3 read failed:%d\n", ret);
1467 		goto io_err;
1468 	}
1469 
1470 	do {
1471 		/*
1472 		 * Check parity, bus clash and Slave (impl defined)
1473 		 * interrupt
1474 		 */
1475 		if (buf & SDW_SCP_INT1_PARITY) {
1476 			parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY;
1477 			parity_quirk = !slave->first_interrupt_done &&
1478 				(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY);
1479 
1480 			if (parity_check && !parity_quirk)
1481 				dev_err(&slave->dev, "Parity error detected\n");
1482 			clear |= SDW_SCP_INT1_PARITY;
1483 		}
1484 
1485 		if (buf & SDW_SCP_INT1_BUS_CLASH) {
1486 			if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH)
1487 				dev_err(&slave->dev, "Bus clash detected\n");
1488 			clear |= SDW_SCP_INT1_BUS_CLASH;
1489 		}
1490 
1491 		/*
1492 		 * When bus clash or parity errors are detected, such errors
1493 		 * are unlikely to be recoverable errors.
1494 		 * TODO: In such scenario, reset bus. Make this configurable
1495 		 * via sysfs property with bus reset being the default.
1496 		 */
1497 
1498 		if (buf & SDW_SCP_INT1_IMPL_DEF) {
1499 			if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) {
1500 				dev_dbg(&slave->dev, "Slave impl defined interrupt\n");
1501 				slave_notify = true;
1502 			}
1503 			clear |= SDW_SCP_INT1_IMPL_DEF;
1504 		}
1505 
1506 		/* Check port 0 - 3 interrupts */
1507 		port = buf & SDW_SCP_INT1_PORT0_3;
1508 
1509 		/* To get port number corresponding to bits, shift it */
1510 		port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port);
1511 		for_each_set_bit(bit, &port, 8) {
1512 			sdw_handle_port_interrupt(slave, bit,
1513 						  &port_status[bit]);
1514 		}
1515 
1516 		/* Check if cascade 2 interrupt is present */
1517 		if (buf & SDW_SCP_INT1_SCP2_CASCADE) {
1518 			port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10;
1519 			for_each_set_bit(bit, &port, 8) {
1520 				/* scp2 ports start from 4 */
1521 				port_num = bit + 3;
1522 				sdw_handle_port_interrupt(slave,
1523 						port_num,
1524 						&port_status[port_num]);
1525 			}
1526 		}
1527 
1528 		/* now check last cascade */
1529 		if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) {
1530 			port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14;
1531 			for_each_set_bit(bit, &port, 8) {
1532 				/* scp3 ports start from 11 */
1533 				port_num = bit + 10;
1534 				sdw_handle_port_interrupt(slave,
1535 						port_num,
1536 						&port_status[port_num]);
1537 			}
1538 		}
1539 
1540 		/* Update the Slave driver */
1541 		if (slave_notify && slave->ops &&
1542 		    slave->ops->interrupt_callback) {
1543 			slave_intr.control_port = clear;
1544 			memcpy(slave_intr.port, &port_status,
1545 			       sizeof(slave_intr.port));
1546 
1547 			slave->ops->interrupt_callback(slave, &slave_intr);
1548 		}
1549 
1550 		/* Ack interrupt */
1551 		ret = sdw_write(slave, SDW_SCP_INT1, clear);
1552 		if (ret < 0) {
1553 			dev_err(slave->bus->dev,
1554 				"SDW_SCP_INT1 write failed:%d\n", ret);
1555 			goto io_err;
1556 		}
1557 
1558 		/* at this point all initial interrupt sources were handled */
1559 		slave->first_interrupt_done = true;
1560 
1561 		/*
1562 		 * Read status again to ensure no new interrupts arrived
1563 		 * while servicing interrupts.
1564 		 */
1565 		ret = sdw_read(slave, SDW_SCP_INT1);
1566 		if (ret < 0) {
1567 			dev_err(slave->bus->dev,
1568 				"SDW_SCP_INT1 read failed:%d\n", ret);
1569 			goto io_err;
1570 		}
1571 		_buf = ret;
1572 
1573 		ret = sdw_nread(slave, SDW_SCP_INTSTAT2, 2, _buf2);
1574 		if (ret < 0) {
1575 			dev_err(slave->bus->dev,
1576 				"SDW_SCP_INT2/3 read failed:%d\n", ret);
1577 			goto io_err;
1578 		}
1579 
1580 		/* Make sure no interrupts are pending */
1581 		buf &= _buf;
1582 		buf2[0] &= _buf2[0];
1583 		buf2[1] &= _buf2[1];
1584 		stat = buf || buf2[0] || buf2[1];
1585 
1586 		/*
1587 		 * Exit loop if Slave is continuously in ALERT state even
1588 		 * after servicing the interrupt multiple times.
1589 		 */
1590 		count++;
1591 
1592 		/* we can get alerts while processing so keep retrying */
1593 	} while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1594 
1595 	if (count == SDW_READ_INTR_CLEAR_RETRY)
1596 		dev_warn(slave->bus->dev, "Reached MAX_RETRY on alert read\n");
1597 
1598 io_err:
1599 	pm_runtime_mark_last_busy(&slave->dev);
1600 	pm_runtime_put_autosuspend(&slave->dev);
1601 
1602 	return ret;
1603 }
1604 
sdw_update_slave_status(struct sdw_slave * slave,enum sdw_slave_status status)1605 static int sdw_update_slave_status(struct sdw_slave *slave,
1606 				   enum sdw_slave_status status)
1607 {
1608 	unsigned long time;
1609 
1610 	if (!slave->probed) {
1611 		/*
1612 		 * the slave status update is typically handled in an
1613 		 * interrupt thread, which can race with the driver
1614 		 * probe, e.g. when a module needs to be loaded.
1615 		 *
1616 		 * make sure the probe is complete before updating
1617 		 * status.
1618 		 */
1619 		time = wait_for_completion_timeout(&slave->probe_complete,
1620 				msecs_to_jiffies(DEFAULT_PROBE_TIMEOUT));
1621 		if (!time) {
1622 			dev_err(&slave->dev, "Probe not complete, timed out\n");
1623 			return -ETIMEDOUT;
1624 		}
1625 	}
1626 
1627 	if (!slave->ops || !slave->ops->update_status)
1628 		return 0;
1629 
1630 	return slave->ops->update_status(slave, status);
1631 }
1632 
1633 /**
1634  * sdw_handle_slave_status() - Handle Slave status
1635  * @bus: SDW bus instance
1636  * @status: Status for all Slave(s)
1637  */
sdw_handle_slave_status(struct sdw_bus * bus,enum sdw_slave_status status[])1638 int sdw_handle_slave_status(struct sdw_bus *bus,
1639 			    enum sdw_slave_status status[])
1640 {
1641 	enum sdw_slave_status prev_status;
1642 	struct sdw_slave *slave;
1643 	bool attached_initializing;
1644 	int i, ret = 0;
1645 
1646 	/* first check if any Slaves fell off the bus */
1647 	for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1648 		mutex_lock(&bus->bus_lock);
1649 		if (test_bit(i, bus->assigned) == false) {
1650 			mutex_unlock(&bus->bus_lock);
1651 			continue;
1652 		}
1653 		mutex_unlock(&bus->bus_lock);
1654 
1655 		slave = sdw_get_slave(bus, i);
1656 		if (!slave)
1657 			continue;
1658 
1659 		if (status[i] == SDW_SLAVE_UNATTACHED &&
1660 		    slave->status != SDW_SLAVE_UNATTACHED)
1661 			sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1662 	}
1663 
1664 	if (status[0] == SDW_SLAVE_ATTACHED) {
1665 		dev_dbg(bus->dev, "Slave attached, programming device number\n");
1666 		ret = sdw_program_device_num(bus);
1667 		if (ret)
1668 			dev_err(bus->dev, "Slave attach failed: %d\n", ret);
1669 		/*
1670 		 * programming a device number will have side effects,
1671 		 * so we deal with other devices at a later time
1672 		 */
1673 		return ret;
1674 	}
1675 
1676 	/* Continue to check other slave statuses */
1677 	for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1678 		mutex_lock(&bus->bus_lock);
1679 		if (test_bit(i, bus->assigned) == false) {
1680 			mutex_unlock(&bus->bus_lock);
1681 			continue;
1682 		}
1683 		mutex_unlock(&bus->bus_lock);
1684 
1685 		slave = sdw_get_slave(bus, i);
1686 		if (!slave)
1687 			continue;
1688 
1689 		attached_initializing = false;
1690 
1691 		switch (status[i]) {
1692 		case SDW_SLAVE_UNATTACHED:
1693 			if (slave->status == SDW_SLAVE_UNATTACHED)
1694 				break;
1695 
1696 			sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1697 			break;
1698 
1699 		case SDW_SLAVE_ALERT:
1700 			ret = sdw_handle_slave_alerts(slave);
1701 			if (ret)
1702 				dev_err(bus->dev,
1703 					"Slave %d alert handling failed: %d\n",
1704 					i, ret);
1705 			break;
1706 
1707 		case SDW_SLAVE_ATTACHED:
1708 			if (slave->status == SDW_SLAVE_ATTACHED)
1709 				break;
1710 
1711 			prev_status = slave->status;
1712 			sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED);
1713 
1714 			if (prev_status == SDW_SLAVE_ALERT)
1715 				break;
1716 
1717 			attached_initializing = true;
1718 
1719 			ret = sdw_initialize_slave(slave);
1720 			if (ret)
1721 				dev_err(bus->dev,
1722 					"Slave %d initialization failed: %d\n",
1723 					i, ret);
1724 
1725 			break;
1726 
1727 		default:
1728 			dev_err(bus->dev, "Invalid slave %d status:%d\n",
1729 				i, status[i]);
1730 			break;
1731 		}
1732 
1733 		ret = sdw_update_slave_status(slave, status[i]);
1734 		if (ret)
1735 			dev_err(slave->bus->dev,
1736 				"Update Slave status failed:%d\n", ret);
1737 		if (attached_initializing)
1738 			complete(&slave->initialization_complete);
1739 	}
1740 
1741 	return ret;
1742 }
1743 EXPORT_SYMBOL(sdw_handle_slave_status);
1744 
sdw_clear_slave_status(struct sdw_bus * bus,u32 request)1745 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request)
1746 {
1747 	struct sdw_slave *slave;
1748 	int i;
1749 
1750 	/* Check all non-zero devices */
1751 	for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1752 		mutex_lock(&bus->bus_lock);
1753 		if (test_bit(i, bus->assigned) == false) {
1754 			mutex_unlock(&bus->bus_lock);
1755 			continue;
1756 		}
1757 		mutex_unlock(&bus->bus_lock);
1758 
1759 		slave = sdw_get_slave(bus, i);
1760 		if (!slave)
1761 			continue;
1762 
1763 		if (slave->status != SDW_SLAVE_UNATTACHED) {
1764 			sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1765 			slave->first_interrupt_done = false;
1766 		}
1767 
1768 		/* keep track of request, used in pm_runtime resume */
1769 		slave->unattach_request = request;
1770 	}
1771 }
1772 EXPORT_SYMBOL(sdw_clear_slave_status);
1773