1 //===- LiveRangeCalc.h - Calculate live ranges ------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The LiveRangeCalc class can be used to compute live ranges from scratch. It 10 // caches information about values in the CFG to speed up repeated operations 11 // on the same live range. The cache can be shared by non-overlapping live 12 // ranges. SplitKit uses that when computing the live range of split products. 13 // 14 // A low-level interface is available to clients that know where a variable is 15 // live, but don't know which value it has as every point. LiveRangeCalc will 16 // propagate values down the dominator tree, and even insert PHI-defs where 17 // needed. SplitKit uses this faster interface when possible. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #ifndef LLVM_LIB_CODEGEN_LIVERANGECALC_H 22 #define LLVM_LIB_CODEGEN_LIVERANGECALC_H 23 24 #include "llvm/ADT/ArrayRef.h" 25 #include "llvm/ADT/BitVector.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/IndexedMap.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/CodeGen/LiveInterval.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/SlotIndexes.h" 32 #include "llvm/MC/LaneBitmask.h" 33 #include <utility> 34 35 namespace llvm { 36 37 template <class NodeT> class DomTreeNodeBase; 38 class MachineDominatorTree; 39 class MachineFunction; 40 class MachineRegisterInfo; 41 42 using MachineDomTreeNode = DomTreeNodeBase<MachineBasicBlock>; 43 44 class LiveRangeCalc { 45 const MachineFunction *MF = nullptr; 46 const MachineRegisterInfo *MRI = nullptr; 47 SlotIndexes *Indexes = nullptr; 48 MachineDominatorTree *DomTree = nullptr; 49 VNInfo::Allocator *Alloc = nullptr; 50 51 /// LiveOutPair - A value and the block that defined it. The domtree node is 52 /// redundant, it can be computed as: MDT[Indexes.getMBBFromIndex(VNI->def)]. 53 using LiveOutPair = std::pair<VNInfo *, MachineDomTreeNode *>; 54 55 /// LiveOutMap - Map basic blocks to the value leaving the block. 56 using LiveOutMap = IndexedMap<LiveOutPair, MBB2NumberFunctor>; 57 58 /// Bit vector of active entries in LiveOut, also used as a visited set by 59 /// findReachingDefs. One entry per basic block, indexed by block number. 60 /// This is kept as a separate bit vector because it can be cleared quickly 61 /// when switching live ranges. 62 BitVector Seen; 63 64 /// Map LiveRange to sets of blocks (represented by bit vectors) that 65 /// in the live range are defined on entry and undefined on entry. 66 /// A block is defined on entry if there is a path from at least one of 67 /// the defs in the live range to the entry of the block, and conversely, 68 /// a block is undefined on entry, if there is no such path (i.e. no 69 /// definition reaches the entry of the block). A single LiveRangeCalc 70 /// object is used to track live-out information for multiple registers 71 /// in live range splitting (which is ok, since the live ranges of these 72 /// registers do not overlap), but the defined/undefined information must 73 /// be kept separate for each individual range. 74 /// By convention, EntryInfoMap[&LR] = { Defined, Undefined }. 75 using EntryInfoMap = DenseMap<LiveRange *, std::pair<BitVector, BitVector>>; 76 EntryInfoMap EntryInfos; 77 78 /// Map each basic block where a live range is live out to the live-out value 79 /// and its defining block. 80 /// 81 /// For every basic block, MBB, one of these conditions shall be true: 82 /// 83 /// 1. !Seen.count(MBB->getNumber()) 84 /// Blocks without a Seen bit are ignored. 85 /// 2. LiveOut[MBB].second.getNode() == MBB 86 /// The live-out value is defined in MBB. 87 /// 3. forall P in preds(MBB): LiveOut[P] == LiveOut[MBB] 88 /// The live-out value passses through MBB. All predecessors must carry 89 /// the same value. 90 /// 91 /// The domtree node may be null, it can be computed. 92 /// 93 /// The map can be shared by multiple live ranges as long as no two are 94 /// live-out of the same block. 95 LiveOutMap Map; 96 97 /// LiveInBlock - Information about a basic block where a live range is known 98 /// to be live-in, but the value has not yet been determined. 99 struct LiveInBlock { 100 // The live range set that is live-in to this block. The algorithms can 101 // handle multiple non-overlapping live ranges simultaneously. 102 LiveRange &LR; 103 104 // DomNode - Dominator tree node for the block. 105 // Cleared when the final value has been determined and LI has been updated. 106 MachineDomTreeNode *DomNode; 107 108 // Position in block where the live-in range ends, or SlotIndex() if the 109 // range passes through the block. When the final value has been 110 // determined, the range from the block start to Kill will be added to LI. 111 SlotIndex Kill; 112 113 // Live-in value filled in by updateSSA once it is known. 114 VNInfo *Value = nullptr; 115 LiveInBlockLiveInBlock116 LiveInBlock(LiveRange &LR, MachineDomTreeNode *node, SlotIndex kill) 117 : LR(LR), DomNode(node), Kill(kill) {} 118 }; 119 120 /// LiveIn - Work list of blocks where the live-in value has yet to be 121 /// determined. This list is typically computed by findReachingDefs() and 122 /// used as a work list by updateSSA(). The low-level interface may also be 123 /// used to add entries directly. 124 SmallVector<LiveInBlock, 16> LiveIn; 125 126 /// Check if the entry to block @p MBB can be reached by any of the defs 127 /// in @p LR. Return true if none of the defs reach the entry to @p MBB. 128 bool isDefOnEntry(LiveRange &LR, ArrayRef<SlotIndex> Undefs, 129 MachineBasicBlock &MBB, BitVector &DefOnEntry, 130 BitVector &UndefOnEntry); 131 132 /// Find the set of defs that can reach @p Kill. @p Kill must belong to 133 /// @p UseMBB. 134 /// 135 /// If exactly one def can reach @p UseMBB, and the def dominates @p Kill, 136 /// all paths from the def to @p UseMBB are added to @p LR, and the function 137 /// returns true. 138 /// 139 /// If multiple values can reach @p UseMBB, the blocks that need @p LR to be 140 /// live in are added to the LiveIn array, and the function returns false. 141 /// 142 /// The array @p Undef provides the locations where the range @p LR becomes 143 /// undefined by <def,read-undef> operands on other subranges. If @p Undef 144 /// is non-empty and @p Kill is jointly dominated only by the entries of 145 /// @p Undef, the function returns false. 146 /// 147 /// PhysReg, when set, is used to verify live-in lists on basic blocks. 148 bool findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB, SlotIndex Use, 149 unsigned PhysReg, ArrayRef<SlotIndex> Undefs); 150 151 /// updateSSA - Compute the values that will be live in to all requested 152 /// blocks in LiveIn. Create PHI-def values as required to preserve SSA form. 153 /// 154 /// Every live-in block must be jointly dominated by the added live-out 155 /// blocks. No values are read from the live ranges. 156 void updateSSA(); 157 158 /// Transfer information from the LiveIn vector to the live ranges and update 159 /// the given @p LiveOuts. 160 void updateFromLiveIns(); 161 162 /// Extend the live range of @p LR to reach all uses of Reg. 163 /// 164 /// If @p LR is a main range, or if @p LI is null, then all uses must be 165 /// jointly dominated by the definitions from @p LR. If @p LR is a subrange 166 /// of the live interval @p LI, corresponding to lane mask @p LaneMask, 167 /// all uses must be jointly dominated by the definitions from @p LR 168 /// together with definitions of other lanes where @p LR becomes undefined 169 /// (via <def,read-undef> operands). 170 /// If @p LR is a main range, the @p LaneMask should be set to ~0, i.e. 171 /// LaneBitmask::getAll(). 172 void extendToUses(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask, 173 LiveInterval *LI = nullptr); 174 175 /// Reset Map and Seen fields. 176 void resetLiveOutMap(); 177 178 public: 179 LiveRangeCalc() = default; 180 181 //===--------------------------------------------------------------------===// 182 // High-level interface. 183 //===--------------------------------------------------------------------===// 184 // 185 // Calculate live ranges from scratch. 186 // 187 188 /// reset - Prepare caches for a new set of non-overlapping live ranges. The 189 /// caches must be reset before attempting calculations with a live range 190 /// that may overlap a previously computed live range, and before the first 191 /// live range in a function. If live ranges are not known to be 192 /// non-overlapping, call reset before each. 193 void reset(const MachineFunction *mf, SlotIndexes *SI, 194 MachineDominatorTree *MDT, VNInfo::Allocator *VNIA); 195 196 //===--------------------------------------------------------------------===// 197 // Mid-level interface. 198 //===--------------------------------------------------------------------===// 199 // 200 // Modify existing live ranges. 201 // 202 203 /// Extend the live range of @p LR to reach @p Use. 204 /// 205 /// The existing values in @p LR must be live so they jointly dominate @p Use. 206 /// If @p Use is not dominated by a single existing value, PHI-defs are 207 /// inserted as required to preserve SSA form. 208 /// 209 /// PhysReg, when set, is used to verify live-in lists on basic blocks. 210 void extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg, 211 ArrayRef<SlotIndex> Undefs); 212 213 /// createDeadDefs - Create a dead def in LI for every def operand of Reg. 214 /// Each instruction defining Reg gets a new VNInfo with a corresponding 215 /// minimal live range. 216 void createDeadDefs(LiveRange &LR, unsigned Reg); 217 218 /// Extend the live range of @p LR to reach all uses of Reg. 219 /// 220 /// All uses must be jointly dominated by existing liveness. PHI-defs are 221 /// inserted as needed to preserve SSA form. extendToUses(LiveRange & LR,unsigned PhysReg)222 void extendToUses(LiveRange &LR, unsigned PhysReg) { 223 extendToUses(LR, PhysReg, LaneBitmask::getAll()); 224 } 225 226 /// Calculates liveness for the register specified in live interval @p LI. 227 /// Creates subregister live ranges as needed if subreg liveness tracking is 228 /// enabled. 229 void calculate(LiveInterval &LI, bool TrackSubRegs); 230 231 /// For live interval \p LI with correct SubRanges construct matching 232 /// information for the main live range. Expects the main live range to not 233 /// have any segments or value numbers. 234 void constructMainRangeFromSubranges(LiveInterval &LI); 235 236 //===--------------------------------------------------------------------===// 237 // Low-level interface. 238 //===--------------------------------------------------------------------===// 239 // 240 // These functions can be used to compute live ranges where the live-in and 241 // live-out blocks are already known, but the SSA value in each block is 242 // unknown. 243 // 244 // After calling reset(), add known live-out values and known live-in blocks. 245 // Then call calculateValues() to compute the actual value that is 246 // live-in to each block, and add liveness to the live ranges. 247 // 248 249 /// setLiveOutValue - Indicate that VNI is live out from MBB. The 250 /// calculateValues() function will not add liveness for MBB, the caller 251 /// should take care of that. 252 /// 253 /// VNI may be null only if MBB is a live-through block also passed to 254 /// addLiveInBlock(). setLiveOutValue(MachineBasicBlock * MBB,VNInfo * VNI)255 void setLiveOutValue(MachineBasicBlock *MBB, VNInfo *VNI) { 256 Seen.set(MBB->getNumber()); 257 Map[MBB] = LiveOutPair(VNI, nullptr); 258 } 259 260 /// addLiveInBlock - Add a block with an unknown live-in value. This 261 /// function can only be called once per basic block. Once the live-in value 262 /// has been determined, calculateValues() will add liveness to LI. 263 /// 264 /// @param LR The live range that is live-in to the block. 265 /// @param DomNode The domtree node for the block. 266 /// @param Kill Index in block where LI is killed. If the value is 267 /// live-through, set Kill = SLotIndex() and also call 268 /// setLiveOutValue(MBB, 0). 269 void addLiveInBlock(LiveRange &LR, MachineDomTreeNode *DomNode, 270 SlotIndex Kill = SlotIndex()) { 271 LiveIn.push_back(LiveInBlock(LR, DomNode, Kill)); 272 } 273 274 /// calculateValues - Calculate the value that will be live-in to each block 275 /// added with addLiveInBlock. Add PHI-def values as needed to preserve SSA 276 /// form. Add liveness to all live-in blocks up to the Kill point, or the 277 /// whole block for live-through blocks. 278 /// 279 /// Every predecessor of a live-in block must have been given a value with 280 /// setLiveOutValue, the value may be null for live-trough blocks. 281 void calculateValues(); 282 283 /// A diagnostic function to check if the end of the block @p MBB is 284 /// jointly dominated by the blocks corresponding to the slot indices 285 /// in @p Defs. This function is mainly for use in self-verification 286 /// checks. 287 LLVM_ATTRIBUTE_UNUSED 288 static bool isJointlyDominated(const MachineBasicBlock *MBB, 289 ArrayRef<SlotIndex> Defs, 290 const SlotIndexes &Indexes); 291 }; 292 293 } // end namespace llvm 294 295 #endif // LLVM_LIB_CODEGEN_LIVERANGECALC_H 296