1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Definitions for the 'struct sk_buff' memory handlers.
4 *
5 * Authors:
6 * Alan Cox, <gw4pts@gw4pts.ampr.org>
7 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 */
9
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
41 #include <linux/netfilter/nf_conntrack_common.h>
42 #endif
43
44 /* The interface for checksum offload between the stack and networking drivers
45 * is as follows...
46 *
47 * A. IP checksum related features
48 *
49 * Drivers advertise checksum offload capabilities in the features of a device.
50 * From the stack's point of view these are capabilities offered by the driver.
51 * A driver typically only advertises features that it is capable of offloading
52 * to its device.
53 *
54 * The checksum related features are:
55 *
56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
57 * IP (one's complement) checksum for any combination
58 * of protocols or protocol layering. The checksum is
59 * computed and set in a packet per the CHECKSUM_PARTIAL
60 * interface (see below).
61 *
62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63 * TCP or UDP packets over IPv4. These are specifically
64 * unencapsulated packets of the form IPv4|TCP or
65 * IPv4|UDP where the Protocol field in the IPv4 header
66 * is TCP or UDP. The IPv4 header may contain IP options.
67 * This feature cannot be set in features for a device
68 * with NETIF_F_HW_CSUM also set. This feature is being
69 * DEPRECATED (see below).
70 *
71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72 * TCP or UDP packets over IPv6. These are specifically
73 * unencapsulated packets of the form IPv6|TCP or
74 * IPv6|UDP where the Next Header field in the IPv6
75 * header is either TCP or UDP. IPv6 extension headers
76 * are not supported with this feature. This feature
77 * cannot be set in features for a device with
78 * NETIF_F_HW_CSUM also set. This feature is being
79 * DEPRECATED (see below).
80 *
81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82 * This flag is only used to disable the RX checksum
83 * feature for a device. The stack will accept receive
84 * checksum indication in packets received on a device
85 * regardless of whether NETIF_F_RXCSUM is set.
86 *
87 * B. Checksumming of received packets by device. Indication of checksum
88 * verification is set in skb->ip_summed. Possible values are:
89 *
90 * CHECKSUM_NONE:
91 *
92 * Device did not checksum this packet e.g. due to lack of capabilities.
93 * The packet contains full (though not verified) checksum in packet but
94 * not in skb->csum. Thus, skb->csum is undefined in this case.
95 *
96 * CHECKSUM_UNNECESSARY:
97 *
98 * The hardware you're dealing with doesn't calculate the full checksum
99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101 * if their checksums are okay. skb->csum is still undefined in this case
102 * though. A driver or device must never modify the checksum field in the
103 * packet even if checksum is verified.
104 *
105 * CHECKSUM_UNNECESSARY is applicable to following protocols:
106 * TCP: IPv6 and IPv4.
107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108 * zero UDP checksum for either IPv4 or IPv6, the networking stack
109 * may perform further validation in this case.
110 * GRE: only if the checksum is present in the header.
111 * SCTP: indicates the CRC in SCTP header has been validated.
112 * FCOE: indicates the CRC in FC frame has been validated.
113 *
114 * skb->csum_level indicates the number of consecutive checksums found in
115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117 * and a device is able to verify the checksums for UDP (possibly zero),
118 * GRE (checksum flag is set) and TCP, skb->csum_level would be set to
119 * two. If the device were only able to verify the UDP checksum and not
120 * GRE, either because it doesn't support GRE checksum or because GRE
121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122 * not considered in this case).
123 *
124 * CHECKSUM_COMPLETE:
125 *
126 * This is the most generic way. The device supplied checksum of the _whole_
127 * packet as seen by netif_rx() and fills in skb->csum. This means the
128 * hardware doesn't need to parse L3/L4 headers to implement this.
129 *
130 * Notes:
131 * - Even if device supports only some protocols, but is able to produce
132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134 *
135 * CHECKSUM_PARTIAL:
136 *
137 * A checksum is set up to be offloaded to a device as described in the
138 * output description for CHECKSUM_PARTIAL. This may occur on a packet
139 * received directly from another Linux OS, e.g., a virtualized Linux kernel
140 * on the same host, or it may be set in the input path in GRO or remote
141 * checksum offload. For the purposes of checksum verification, the checksum
142 * referred to by skb->csum_start + skb->csum_offset and any preceding
143 * checksums in the packet are considered verified. Any checksums in the
144 * packet that are after the checksum being offloaded are not considered to
145 * be verified.
146 *
147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148 * in the skb->ip_summed for a packet. Values are:
149 *
150 * CHECKSUM_PARTIAL:
151 *
152 * The driver is required to checksum the packet as seen by hard_start_xmit()
153 * from skb->csum_start up to the end, and to record/write the checksum at
154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
155 * csum_start and csum_offset values are valid values given the length and
156 * offset of the packet, but it should not attempt to validate that the
157 * checksum refers to a legitimate transport layer checksum -- it is the
158 * purview of the stack to validate that csum_start and csum_offset are set
159 * correctly.
160 *
161 * When the stack requests checksum offload for a packet, the driver MUST
162 * ensure that the checksum is set correctly. A driver can either offload the
163 * checksum calculation to the device, or call skb_checksum_help (in the case
164 * that the device does not support offload for a particular checksum).
165 *
166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168 * checksum offload capability.
169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170 * on network device checksumming capabilities: if a packet does not match
171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
172 * csum_not_inet, see item D.) is called to resolve the checksum.
173 *
174 * CHECKSUM_NONE:
175 *
176 * The skb was already checksummed by the protocol, or a checksum is not
177 * required.
178 *
179 * CHECKSUM_UNNECESSARY:
180 *
181 * This has the same meaning as CHECKSUM_NONE for checksum offload on
182 * output.
183 *
184 * CHECKSUM_COMPLETE:
185 * Not used in checksum output. If a driver observes a packet with this value
186 * set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
187 *
188 * D. Non-IP checksum (CRC) offloads
189 *
190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191 * offloading the SCTP CRC in a packet. To perform this offload the stack
192 * will set csum_start and csum_offset accordingly, set ip_summed to
193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195 * A driver that supports both IP checksum offload and SCTP CRC32c offload
196 * must verify which offload is configured for a packet by testing the
197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199 *
200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201 * offloading the FCOE CRC in a packet. To perform this offload the stack
202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203 * accordingly. Note that there is no indication in the skbuff that the
204 * CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
205 * both IP checksum offload and FCOE CRC offload must verify which offload
206 * is configured for a packet, presumably by inspecting packet headers.
207 *
208 * E. Checksumming on output with GSO.
209 *
210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213 * part of the GSO operation is implied. If a checksum is being offloaded
214 * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
215 * csum_offset are set to refer to the outermost checksum being offloaded
216 * (two offloaded checksums are possible with UDP encapsulation).
217 */
218
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE 0
221 #define CHECKSUM_UNNECESSARY 1
222 #define CHECKSUM_COMPLETE 2
223 #define CHECKSUM_PARTIAL 3
224
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL 3
227
228 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X) \
230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
235
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) + \
238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240
241 struct ahash_request;
242 struct net_device;
243 struct scatterlist;
244 struct pipe_inode_info;
245 struct iov_iter;
246 struct napi_struct;
247 struct bpf_prog;
248 union bpf_attr;
249 struct skb_ext;
250
251 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
252 struct nf_bridge_info {
253 enum {
254 BRNF_PROTO_UNCHANGED,
255 BRNF_PROTO_8021Q,
256 BRNF_PROTO_PPPOE
257 } orig_proto:8;
258 u8 pkt_otherhost:1;
259 u8 in_prerouting:1;
260 u8 bridged_dnat:1;
261 u8 sabotage_in_done:1;
262 __u16 frag_max_size;
263 struct net_device *physindev;
264
265 /* always valid & non-NULL from FORWARD on, for physdev match */
266 struct net_device *physoutdev;
267 union {
268 /* prerouting: detect dnat in orig/reply direction */
269 __be32 ipv4_daddr;
270 struct in6_addr ipv6_daddr;
271
272 /* after prerouting + nat detected: store original source
273 * mac since neigh resolution overwrites it, only used while
274 * skb is out in neigh layer.
275 */
276 char neigh_header[8];
277 };
278 };
279 #endif
280
281 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
282 /* Chain in tc_skb_ext will be used to share the tc chain with
283 * ovs recirc_id. It will be set to the current chain by tc
284 * and read by ovs to recirc_id.
285 */
286 struct tc_skb_ext {
287 __u32 chain;
288 __u16 mru;
289 };
290 #endif
291
292 struct sk_buff_head {
293 /* These two members must be first. */
294 struct sk_buff *next;
295 struct sk_buff *prev;
296
297 __u32 qlen;
298 spinlock_t lock;
299 };
300
301 struct sk_buff;
302
303 /* To allow 64K frame to be packed as single skb without frag_list we
304 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
305 * buffers which do not start on a page boundary.
306 *
307 * Since GRO uses frags we allocate at least 16 regardless of page
308 * size.
309 */
310 #if (65536/PAGE_SIZE + 1) < 16
311 #define MAX_SKB_FRAGS 16UL
312 #else
313 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
314 #endif
315 extern int sysctl_max_skb_frags;
316
317 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
318 * segment using its current segmentation instead.
319 */
320 #define GSO_BY_FRAGS 0xFFFF
321
322 typedef struct bio_vec skb_frag_t;
323
324 /**
325 * skb_frag_size() - Returns the size of a skb fragment
326 * @frag: skb fragment
327 */
skb_frag_size(const skb_frag_t * frag)328 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
329 {
330 return frag->bv_len;
331 }
332
333 /**
334 * skb_frag_size_set() - Sets the size of a skb fragment
335 * @frag: skb fragment
336 * @size: size of fragment
337 */
skb_frag_size_set(skb_frag_t * frag,unsigned int size)338 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
339 {
340 frag->bv_len = size;
341 }
342
343 /**
344 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
345 * @frag: skb fragment
346 * @delta: value to add
347 */
skb_frag_size_add(skb_frag_t * frag,int delta)348 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
349 {
350 frag->bv_len += delta;
351 }
352
353 /**
354 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
355 * @frag: skb fragment
356 * @delta: value to subtract
357 */
skb_frag_size_sub(skb_frag_t * frag,int delta)358 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
359 {
360 frag->bv_len -= delta;
361 }
362
363 /**
364 * skb_frag_must_loop - Test if %p is a high memory page
365 * @p: fragment's page
366 */
skb_frag_must_loop(struct page * p)367 static inline bool skb_frag_must_loop(struct page *p)
368 {
369 #if defined(CONFIG_HIGHMEM)
370 if (PageHighMem(p))
371 return true;
372 #endif
373 return false;
374 }
375
376 /**
377 * skb_frag_foreach_page - loop over pages in a fragment
378 *
379 * @f: skb frag to operate on
380 * @f_off: offset from start of f->bv_page
381 * @f_len: length from f_off to loop over
382 * @p: (temp var) current page
383 * @p_off: (temp var) offset from start of current page,
384 * non-zero only on first page.
385 * @p_len: (temp var) length in current page,
386 * < PAGE_SIZE only on first and last page.
387 * @copied: (temp var) length so far, excluding current p_len.
388 *
389 * A fragment can hold a compound page, in which case per-page
390 * operations, notably kmap_atomic, must be called for each
391 * regular page.
392 */
393 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
394 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
395 p_off = (f_off) & (PAGE_SIZE - 1), \
396 p_len = skb_frag_must_loop(p) ? \
397 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
398 copied = 0; \
399 copied < f_len; \
400 copied += p_len, p++, p_off = 0, \
401 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
402
403 #define HAVE_HW_TIME_STAMP
404
405 /**
406 * struct skb_shared_hwtstamps - hardware time stamps
407 * @hwtstamp: hardware time stamp transformed into duration
408 * since arbitrary point in time
409 *
410 * Software time stamps generated by ktime_get_real() are stored in
411 * skb->tstamp.
412 *
413 * hwtstamps can only be compared against other hwtstamps from
414 * the same device.
415 *
416 * This structure is attached to packets as part of the
417 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
418 */
419 struct skb_shared_hwtstamps {
420 ktime_t hwtstamp;
421 };
422
423 /* Definitions for tx_flags in struct skb_shared_info */
424 enum {
425 /* generate hardware time stamp */
426 SKBTX_HW_TSTAMP = 1 << 0,
427
428 /* generate software time stamp when queueing packet to NIC */
429 SKBTX_SW_TSTAMP = 1 << 1,
430
431 /* device driver is going to provide hardware time stamp */
432 SKBTX_IN_PROGRESS = 1 << 2,
433
434 /* device driver supports TX zero-copy buffers */
435 SKBTX_DEV_ZEROCOPY = 1 << 3,
436
437 /* generate wifi status information (where possible) */
438 SKBTX_WIFI_STATUS = 1 << 4,
439
440 /* This indicates at least one fragment might be overwritten
441 * (as in vmsplice(), sendfile() ...)
442 * If we need to compute a TX checksum, we'll need to copy
443 * all frags to avoid possible bad checksum
444 */
445 SKBTX_SHARED_FRAG = 1 << 5,
446
447 /* generate software time stamp when entering packet scheduling */
448 SKBTX_SCHED_TSTAMP = 1 << 6,
449 };
450
451 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
452 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
453 SKBTX_SCHED_TSTAMP)
454 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
455
456 /*
457 * The callback notifies userspace to release buffers when skb DMA is done in
458 * lower device, the skb last reference should be 0 when calling this.
459 * The zerocopy_success argument is true if zero copy transmit occurred,
460 * false on data copy or out of memory error caused by data copy attempt.
461 * The ctx field is used to track device context.
462 * The desc field is used to track userspace buffer index.
463 */
464 struct ubuf_info {
465 void (*callback)(struct ubuf_info *, bool zerocopy_success);
466 union {
467 struct {
468 unsigned long desc;
469 void *ctx;
470 };
471 struct {
472 u32 id;
473 u16 len;
474 u16 zerocopy:1;
475 u32 bytelen;
476 };
477 };
478 refcount_t refcnt;
479
480 struct mmpin {
481 struct user_struct *user;
482 unsigned int num_pg;
483 } mmp;
484 };
485
486 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
487
488 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
489 void mm_unaccount_pinned_pages(struct mmpin *mmp);
490
491 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
492 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
493 struct ubuf_info *uarg);
494
sock_zerocopy_get(struct ubuf_info * uarg)495 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
496 {
497 refcount_inc(&uarg->refcnt);
498 }
499
500 void sock_zerocopy_put(struct ubuf_info *uarg);
501 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
502
503 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
504
505 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
506 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
507 struct msghdr *msg, int len,
508 struct ubuf_info *uarg);
509
510 /* This data is invariant across clones and lives at
511 * the end of the header data, ie. at skb->end.
512 */
513 struct skb_shared_info {
514 __u8 __unused;
515 __u8 meta_len;
516 __u8 nr_frags;
517 __u8 tx_flags;
518 unsigned short gso_size;
519 /* Warning: this field is not always filled in (UFO)! */
520 unsigned short gso_segs;
521 struct sk_buff *frag_list;
522 struct skb_shared_hwtstamps hwtstamps;
523 unsigned int gso_type;
524 u32 tskey;
525
526 /*
527 * Warning : all fields before dataref are cleared in __alloc_skb()
528 */
529 atomic_t dataref;
530
531 /* Intermediate layers must ensure that destructor_arg
532 * remains valid until skb destructor */
533 void * destructor_arg;
534
535 /* must be last field, see pskb_expand_head() */
536 skb_frag_t frags[MAX_SKB_FRAGS];
537 };
538
539 /* We divide dataref into two halves. The higher 16 bits hold references
540 * to the payload part of skb->data. The lower 16 bits hold references to
541 * the entire skb->data. A clone of a headerless skb holds the length of
542 * the header in skb->hdr_len.
543 *
544 * All users must obey the rule that the skb->data reference count must be
545 * greater than or equal to the payload reference count.
546 *
547 * Holding a reference to the payload part means that the user does not
548 * care about modifications to the header part of skb->data.
549 */
550 #define SKB_DATAREF_SHIFT 16
551 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
552
553
554 enum {
555 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
556 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
557 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
558 };
559
560 enum {
561 SKB_GSO_TCPV4 = 1 << 0,
562
563 /* This indicates the skb is from an untrusted source. */
564 SKB_GSO_DODGY = 1 << 1,
565
566 /* This indicates the tcp segment has CWR set. */
567 SKB_GSO_TCP_ECN = 1 << 2,
568
569 SKB_GSO_TCP_FIXEDID = 1 << 3,
570
571 SKB_GSO_TCPV6 = 1 << 4,
572
573 SKB_GSO_FCOE = 1 << 5,
574
575 SKB_GSO_GRE = 1 << 6,
576
577 SKB_GSO_GRE_CSUM = 1 << 7,
578
579 SKB_GSO_IPXIP4 = 1 << 8,
580
581 SKB_GSO_IPXIP6 = 1 << 9,
582
583 SKB_GSO_UDP_TUNNEL = 1 << 10,
584
585 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
586
587 SKB_GSO_PARTIAL = 1 << 12,
588
589 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
590
591 SKB_GSO_SCTP = 1 << 14,
592
593 SKB_GSO_ESP = 1 << 15,
594
595 SKB_GSO_UDP = 1 << 16,
596
597 SKB_GSO_UDP_L4 = 1 << 17,
598
599 SKB_GSO_FRAGLIST = 1 << 18,
600 };
601
602 #if BITS_PER_LONG > 32
603 #define NET_SKBUFF_DATA_USES_OFFSET 1
604 #endif
605
606 #ifdef NET_SKBUFF_DATA_USES_OFFSET
607 typedef unsigned int sk_buff_data_t;
608 #else
609 typedef unsigned char *sk_buff_data_t;
610 #endif
611
612 /**
613 * struct sk_buff - socket buffer
614 * @next: Next buffer in list
615 * @prev: Previous buffer in list
616 * @tstamp: Time we arrived/left
617 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
618 * for retransmit timer
619 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
620 * @list: queue head
621 * @sk: Socket we are owned by
622 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
623 * fragmentation management
624 * @dev: Device we arrived on/are leaving by
625 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
626 * @cb: Control buffer. Free for use by every layer. Put private vars here
627 * @_skb_refdst: destination entry (with norefcount bit)
628 * @sp: the security path, used for xfrm
629 * @len: Length of actual data
630 * @data_len: Data length
631 * @mac_len: Length of link layer header
632 * @hdr_len: writable header length of cloned skb
633 * @csum: Checksum (must include start/offset pair)
634 * @csum_start: Offset from skb->head where checksumming should start
635 * @csum_offset: Offset from csum_start where checksum should be stored
636 * @priority: Packet queueing priority
637 * @ignore_df: allow local fragmentation
638 * @cloned: Head may be cloned (check refcnt to be sure)
639 * @ip_summed: Driver fed us an IP checksum
640 * @nohdr: Payload reference only, must not modify header
641 * @pkt_type: Packet class
642 * @fclone: skbuff clone status
643 * @ipvs_property: skbuff is owned by ipvs
644 * @inner_protocol_type: whether the inner protocol is
645 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
646 * @remcsum_offload: remote checksum offload is enabled
647 * @offload_fwd_mark: Packet was L2-forwarded in hardware
648 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
649 * @tc_skip_classify: do not classify packet. set by IFB device
650 * @tc_at_ingress: used within tc_classify to distinguish in/egress
651 * @redirected: packet was redirected by packet classifier
652 * @from_ingress: packet was redirected from the ingress path
653 * @peeked: this packet has been seen already, so stats have been
654 * done for it, don't do them again
655 * @nf_trace: netfilter packet trace flag
656 * @protocol: Packet protocol from driver
657 * @destructor: Destruct function
658 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
659 * @_nfct: Associated connection, if any (with nfctinfo bits)
660 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
661 * @skb_iif: ifindex of device we arrived on
662 * @tc_index: Traffic control index
663 * @hash: the packet hash
664 * @queue_mapping: Queue mapping for multiqueue devices
665 * @head_frag: skb was allocated from page fragments,
666 * not allocated by kmalloc() or vmalloc().
667 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
668 * @active_extensions: active extensions (skb_ext_id types)
669 * @ndisc_nodetype: router type (from link layer)
670 * @ooo_okay: allow the mapping of a socket to a queue to be changed
671 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
672 * ports.
673 * @sw_hash: indicates hash was computed in software stack
674 * @wifi_acked_valid: wifi_acked was set
675 * @wifi_acked: whether frame was acked on wifi or not
676 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
677 * @encapsulation: indicates the inner headers in the skbuff are valid
678 * @encap_hdr_csum: software checksum is needed
679 * @csum_valid: checksum is already valid
680 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
681 * @csum_complete_sw: checksum was completed by software
682 * @csum_level: indicates the number of consecutive checksums found in
683 * the packet minus one that have been verified as
684 * CHECKSUM_UNNECESSARY (max 3)
685 * @scm_io_uring: SKB holds io_uring registered files
686 * @dst_pending_confirm: need to confirm neighbour
687 * @decrypted: Decrypted SKB
688 * @napi_id: id of the NAPI struct this skb came from
689 * @sender_cpu: (aka @napi_id) source CPU in XPS
690 * @secmark: security marking
691 * @mark: Generic packet mark
692 * @reserved_tailroom: (aka @mark) number of bytes of free space available
693 * at the tail of an sk_buff
694 * @vlan_present: VLAN tag is present
695 * @vlan_proto: vlan encapsulation protocol
696 * @vlan_tci: vlan tag control information
697 * @inner_protocol: Protocol (encapsulation)
698 * @inner_ipproto: (aka @inner_protocol) stores ipproto when
699 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
700 * @inner_transport_header: Inner transport layer header (encapsulation)
701 * @inner_network_header: Network layer header (encapsulation)
702 * @inner_mac_header: Link layer header (encapsulation)
703 * @transport_header: Transport layer header
704 * @network_header: Network layer header
705 * @mac_header: Link layer header
706 * @kcov_handle: KCOV remote handle for remote coverage collection
707 * @tail: Tail pointer
708 * @end: End pointer
709 * @head: Head of buffer
710 * @data: Data head pointer
711 * @truesize: Buffer size
712 * @users: User count - see {datagram,tcp}.c
713 * @extensions: allocated extensions, valid if active_extensions is nonzero
714 */
715
716 struct sk_buff {
717 union {
718 struct {
719 /* These two members must be first. */
720 struct sk_buff *next;
721 struct sk_buff *prev;
722
723 union {
724 struct net_device *dev;
725 /* Some protocols might use this space to store information,
726 * while device pointer would be NULL.
727 * UDP receive path is one user.
728 */
729 unsigned long dev_scratch;
730 };
731 };
732 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
733 struct list_head list;
734 };
735
736 union {
737 struct sock *sk;
738 int ip_defrag_offset;
739 };
740
741 union {
742 ktime_t tstamp;
743 u64 skb_mstamp_ns; /* earliest departure time */
744 };
745 /*
746 * This is the control buffer. It is free to use for every
747 * layer. Please put your private variables there. If you
748 * want to keep them across layers you have to do a skb_clone()
749 * first. This is owned by whoever has the skb queued ATM.
750 */
751 char cb[48] __aligned(8);
752
753 union {
754 struct {
755 unsigned long _skb_refdst;
756 void (*destructor)(struct sk_buff *skb);
757 };
758 struct list_head tcp_tsorted_anchor;
759 };
760
761 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
762 unsigned long _nfct;
763 #endif
764 unsigned int len,
765 data_len;
766 __u16 mac_len,
767 hdr_len;
768
769 /* Following fields are _not_ copied in __copy_skb_header()
770 * Note that queue_mapping is here mostly to fill a hole.
771 */
772 __u16 queue_mapping;
773
774 /* if you move cloned around you also must adapt those constants */
775 #ifdef __BIG_ENDIAN_BITFIELD
776 #define CLONED_MASK (1 << 7)
777 #else
778 #define CLONED_MASK 1
779 #endif
780 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
781
782 /* private: */
783 __u8 __cloned_offset[0];
784 /* public: */
785 __u8 cloned:1,
786 nohdr:1,
787 fclone:2,
788 peeked:1,
789 head_frag:1,
790 pfmemalloc:1;
791 #ifdef CONFIG_SKB_EXTENSIONS
792 __u8 active_extensions;
793 #endif
794 /* fields enclosed in headers_start/headers_end are copied
795 * using a single memcpy() in __copy_skb_header()
796 */
797 /* private: */
798 __u32 headers_start[0];
799 /* public: */
800
801 /* if you move pkt_type around you also must adapt those constants */
802 #ifdef __BIG_ENDIAN_BITFIELD
803 #define PKT_TYPE_MAX (7 << 5)
804 #else
805 #define PKT_TYPE_MAX 7
806 #endif
807 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
808
809 /* private: */
810 __u8 __pkt_type_offset[0];
811 /* public: */
812 __u8 pkt_type:3;
813 __u8 ignore_df:1;
814 __u8 nf_trace:1;
815 __u8 ip_summed:2;
816 __u8 ooo_okay:1;
817
818 __u8 l4_hash:1;
819 __u8 sw_hash:1;
820 __u8 wifi_acked_valid:1;
821 __u8 wifi_acked:1;
822 __u8 no_fcs:1;
823 /* Indicates the inner headers are valid in the skbuff. */
824 __u8 encapsulation:1;
825 __u8 encap_hdr_csum:1;
826 __u8 csum_valid:1;
827
828 #ifdef __BIG_ENDIAN_BITFIELD
829 #define PKT_VLAN_PRESENT_BIT 7
830 #else
831 #define PKT_VLAN_PRESENT_BIT 0
832 #endif
833 #define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset)
834 /* private: */
835 __u8 __pkt_vlan_present_offset[0];
836 /* public: */
837 __u8 vlan_present:1;
838 __u8 csum_complete_sw:1;
839 __u8 csum_level:2;
840 __u8 csum_not_inet:1;
841 __u8 dst_pending_confirm:1;
842 #ifdef CONFIG_IPV6_NDISC_NODETYPE
843 __u8 ndisc_nodetype:2;
844 #endif
845
846 __u8 ipvs_property:1;
847 __u8 inner_protocol_type:1;
848 __u8 remcsum_offload:1;
849 #ifdef CONFIG_NET_SWITCHDEV
850 __u8 offload_fwd_mark:1;
851 __u8 offload_l3_fwd_mark:1;
852 #endif
853 #ifdef CONFIG_NET_CLS_ACT
854 __u8 tc_skip_classify:1;
855 __u8 tc_at_ingress:1;
856 #endif
857 #ifdef CONFIG_NET_REDIRECT
858 __u8 redirected:1;
859 __u8 from_ingress:1;
860 #endif
861 #ifdef CONFIG_TLS_DEVICE
862 __u8 decrypted:1;
863 #endif
864 __u8 scm_io_uring:1;
865
866 #ifdef CONFIG_NET_SCHED
867 __u16 tc_index; /* traffic control index */
868 #endif
869
870 union {
871 __wsum csum;
872 struct {
873 __u16 csum_start;
874 __u16 csum_offset;
875 };
876 };
877 __u32 priority;
878 int skb_iif;
879 __u32 hash;
880 __be16 vlan_proto;
881 __u16 vlan_tci;
882 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
883 union {
884 unsigned int napi_id;
885 unsigned int sender_cpu;
886 };
887 #endif
888 #ifdef CONFIG_NETWORK_SECMARK
889 __u32 secmark;
890 #endif
891
892 union {
893 __u32 mark;
894 __u32 reserved_tailroom;
895 };
896
897 union {
898 __be16 inner_protocol;
899 __u8 inner_ipproto;
900 };
901
902 __u16 inner_transport_header;
903 __u16 inner_network_header;
904 __u16 inner_mac_header;
905
906 __be16 protocol;
907 __u16 transport_header;
908 __u16 network_header;
909 __u16 mac_header;
910
911 #ifdef CONFIG_KCOV
912 u64 kcov_handle;
913 #endif
914
915 /* private: */
916 __u32 headers_end[0];
917 /* public: */
918
919 /* These elements must be at the end, see alloc_skb() for details. */
920 sk_buff_data_t tail;
921 sk_buff_data_t end;
922 unsigned char *head,
923 *data;
924 unsigned int truesize;
925 refcount_t users;
926
927 #ifdef CONFIG_SKB_EXTENSIONS
928 /* only useable after checking ->active_extensions != 0 */
929 struct skb_ext *extensions;
930 #endif
931 };
932
933 #ifdef __KERNEL__
934 /*
935 * Handling routines are only of interest to the kernel
936 */
937
938 #define SKB_ALLOC_FCLONE 0x01
939 #define SKB_ALLOC_RX 0x02
940 #define SKB_ALLOC_NAPI 0x04
941
942 /**
943 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
944 * @skb: buffer
945 */
skb_pfmemalloc(const struct sk_buff * skb)946 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
947 {
948 return unlikely(skb->pfmemalloc);
949 }
950
951 /*
952 * skb might have a dst pointer attached, refcounted or not.
953 * _skb_refdst low order bit is set if refcount was _not_ taken
954 */
955 #define SKB_DST_NOREF 1UL
956 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
957
958 /**
959 * skb_dst - returns skb dst_entry
960 * @skb: buffer
961 *
962 * Returns skb dst_entry, regardless of reference taken or not.
963 */
skb_dst(const struct sk_buff * skb)964 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
965 {
966 /* If refdst was not refcounted, check we still are in a
967 * rcu_read_lock section
968 */
969 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
970 !rcu_read_lock_held() &&
971 !rcu_read_lock_bh_held());
972 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
973 }
974
975 /**
976 * skb_dst_set - sets skb dst
977 * @skb: buffer
978 * @dst: dst entry
979 *
980 * Sets skb dst, assuming a reference was taken on dst and should
981 * be released by skb_dst_drop()
982 */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)983 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
984 {
985 skb->_skb_refdst = (unsigned long)dst;
986 }
987
988 /**
989 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
990 * @skb: buffer
991 * @dst: dst entry
992 *
993 * Sets skb dst, assuming a reference was not taken on dst.
994 * If dst entry is cached, we do not take reference and dst_release
995 * will be avoided by refdst_drop. If dst entry is not cached, we take
996 * reference, so that last dst_release can destroy the dst immediately.
997 */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)998 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
999 {
1000 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1001 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1002 }
1003
1004 /**
1005 * skb_dst_is_noref - Test if skb dst isn't refcounted
1006 * @skb: buffer
1007 */
skb_dst_is_noref(const struct sk_buff * skb)1008 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1009 {
1010 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1011 }
1012
1013 /**
1014 * skb_rtable - Returns the skb &rtable
1015 * @skb: buffer
1016 */
skb_rtable(const struct sk_buff * skb)1017 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1018 {
1019 return (struct rtable *)skb_dst(skb);
1020 }
1021
1022 /* For mangling skb->pkt_type from user space side from applications
1023 * such as nft, tc, etc, we only allow a conservative subset of
1024 * possible pkt_types to be set.
1025 */
skb_pkt_type_ok(u32 ptype)1026 static inline bool skb_pkt_type_ok(u32 ptype)
1027 {
1028 return ptype <= PACKET_OTHERHOST;
1029 }
1030
1031 /**
1032 * skb_napi_id - Returns the skb's NAPI id
1033 * @skb: buffer
1034 */
skb_napi_id(const struct sk_buff * skb)1035 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1036 {
1037 #ifdef CONFIG_NET_RX_BUSY_POLL
1038 return skb->napi_id;
1039 #else
1040 return 0;
1041 #endif
1042 }
1043
1044 /**
1045 * skb_unref - decrement the skb's reference count
1046 * @skb: buffer
1047 *
1048 * Returns true if we can free the skb.
1049 */
skb_unref(struct sk_buff * skb)1050 static inline bool skb_unref(struct sk_buff *skb)
1051 {
1052 if (unlikely(!skb))
1053 return false;
1054 if (likely(refcount_read(&skb->users) == 1))
1055 smp_rmb();
1056 else if (likely(!refcount_dec_and_test(&skb->users)))
1057 return false;
1058
1059 return true;
1060 }
1061
1062 void skb_release_head_state(struct sk_buff *skb);
1063 void kfree_skb(struct sk_buff *skb);
1064 void kfree_skb_list(struct sk_buff *segs);
1065 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1066 void skb_tx_error(struct sk_buff *skb);
1067
1068 #ifdef CONFIG_TRACEPOINTS
1069 void consume_skb(struct sk_buff *skb);
1070 #else
consume_skb(struct sk_buff * skb)1071 static inline void consume_skb(struct sk_buff *skb)
1072 {
1073 return kfree_skb(skb);
1074 }
1075 #endif
1076
1077 void __consume_stateless_skb(struct sk_buff *skb);
1078 void __kfree_skb(struct sk_buff *skb);
1079 extern struct kmem_cache *skbuff_head_cache;
1080
1081 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1082 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1083 bool *fragstolen, int *delta_truesize);
1084
1085 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1086 int node);
1087 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1088 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1089 struct sk_buff *build_skb_around(struct sk_buff *skb,
1090 void *data, unsigned int frag_size);
1091
1092 /**
1093 * alloc_skb - allocate a network buffer
1094 * @size: size to allocate
1095 * @priority: allocation mask
1096 *
1097 * This function is a convenient wrapper around __alloc_skb().
1098 */
alloc_skb(unsigned int size,gfp_t priority)1099 static inline struct sk_buff *alloc_skb(unsigned int size,
1100 gfp_t priority)
1101 {
1102 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1103 }
1104
1105 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1106 unsigned long data_len,
1107 int max_page_order,
1108 int *errcode,
1109 gfp_t gfp_mask);
1110 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1111
1112 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1113 struct sk_buff_fclones {
1114 struct sk_buff skb1;
1115
1116 struct sk_buff skb2;
1117
1118 refcount_t fclone_ref;
1119 };
1120
1121 /**
1122 * skb_fclone_busy - check if fclone is busy
1123 * @sk: socket
1124 * @skb: buffer
1125 *
1126 * Returns true if skb is a fast clone, and its clone is not freed.
1127 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1128 * so we also check that this didnt happen.
1129 */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1130 static inline bool skb_fclone_busy(const struct sock *sk,
1131 const struct sk_buff *skb)
1132 {
1133 const struct sk_buff_fclones *fclones;
1134
1135 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1136
1137 return skb->fclone == SKB_FCLONE_ORIG &&
1138 refcount_read(&fclones->fclone_ref) > 1 &&
1139 fclones->skb2.sk == sk;
1140 }
1141
1142 /**
1143 * alloc_skb_fclone - allocate a network buffer from fclone cache
1144 * @size: size to allocate
1145 * @priority: allocation mask
1146 *
1147 * This function is a convenient wrapper around __alloc_skb().
1148 */
alloc_skb_fclone(unsigned int size,gfp_t priority)1149 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1150 gfp_t priority)
1151 {
1152 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1153 }
1154
1155 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1156 void skb_headers_offset_update(struct sk_buff *skb, int off);
1157 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1158 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1159 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1160 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1161 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1162 gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1163 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1164 gfp_t gfp_mask)
1165 {
1166 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1167 }
1168
1169 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1170 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1171 unsigned int headroom);
1172 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1173 int newtailroom, gfp_t priority);
1174 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1175 int offset, int len);
1176 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1177 int offset, int len);
1178 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1179 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1180
1181 /**
1182 * skb_pad - zero pad the tail of an skb
1183 * @skb: buffer to pad
1184 * @pad: space to pad
1185 *
1186 * Ensure that a buffer is followed by a padding area that is zero
1187 * filled. Used by network drivers which may DMA or transfer data
1188 * beyond the buffer end onto the wire.
1189 *
1190 * May return error in out of memory cases. The skb is freed on error.
1191 */
skb_pad(struct sk_buff * skb,int pad)1192 static inline int skb_pad(struct sk_buff *skb, int pad)
1193 {
1194 return __skb_pad(skb, pad, true);
1195 }
1196 #define dev_kfree_skb(a) consume_skb(a)
1197
1198 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1199 int offset, size_t size);
1200
1201 struct skb_seq_state {
1202 __u32 lower_offset;
1203 __u32 upper_offset;
1204 __u32 frag_idx;
1205 __u32 stepped_offset;
1206 struct sk_buff *root_skb;
1207 struct sk_buff *cur_skb;
1208 __u8 *frag_data;
1209 };
1210
1211 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1212 unsigned int to, struct skb_seq_state *st);
1213 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1214 struct skb_seq_state *st);
1215 void skb_abort_seq_read(struct skb_seq_state *st);
1216
1217 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1218 unsigned int to, struct ts_config *config);
1219
1220 /*
1221 * Packet hash types specify the type of hash in skb_set_hash.
1222 *
1223 * Hash types refer to the protocol layer addresses which are used to
1224 * construct a packet's hash. The hashes are used to differentiate or identify
1225 * flows of the protocol layer for the hash type. Hash types are either
1226 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1227 *
1228 * Properties of hashes:
1229 *
1230 * 1) Two packets in different flows have different hash values
1231 * 2) Two packets in the same flow should have the same hash value
1232 *
1233 * A hash at a higher layer is considered to be more specific. A driver should
1234 * set the most specific hash possible.
1235 *
1236 * A driver cannot indicate a more specific hash than the layer at which a hash
1237 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1238 *
1239 * A driver may indicate a hash level which is less specific than the
1240 * actual layer the hash was computed on. For instance, a hash computed
1241 * at L4 may be considered an L3 hash. This should only be done if the
1242 * driver can't unambiguously determine that the HW computed the hash at
1243 * the higher layer. Note that the "should" in the second property above
1244 * permits this.
1245 */
1246 enum pkt_hash_types {
1247 PKT_HASH_TYPE_NONE, /* Undefined type */
1248 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1249 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1250 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1251 };
1252
skb_clear_hash(struct sk_buff * skb)1253 static inline void skb_clear_hash(struct sk_buff *skb)
1254 {
1255 skb->hash = 0;
1256 skb->sw_hash = 0;
1257 skb->l4_hash = 0;
1258 }
1259
skb_clear_hash_if_not_l4(struct sk_buff * skb)1260 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1261 {
1262 if (!skb->l4_hash)
1263 skb_clear_hash(skb);
1264 }
1265
1266 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1267 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1268 {
1269 skb->l4_hash = is_l4;
1270 skb->sw_hash = is_sw;
1271 skb->hash = hash;
1272 }
1273
1274 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1275 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1276 {
1277 /* Used by drivers to set hash from HW */
1278 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1279 }
1280
1281 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1282 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1283 {
1284 __skb_set_hash(skb, hash, true, is_l4);
1285 }
1286
1287 void __skb_get_hash(struct sk_buff *skb);
1288 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1289 u32 skb_get_poff(const struct sk_buff *skb);
1290 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1291 const struct flow_keys_basic *keys, int hlen);
1292 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1293 void *data, int hlen_proto);
1294
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1295 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1296 int thoff, u8 ip_proto)
1297 {
1298 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1299 }
1300
1301 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1302 const struct flow_dissector_key *key,
1303 unsigned int key_count);
1304
1305 struct bpf_flow_dissector;
1306 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1307 __be16 proto, int nhoff, int hlen, unsigned int flags);
1308
1309 bool __skb_flow_dissect(const struct net *net,
1310 const struct sk_buff *skb,
1311 struct flow_dissector *flow_dissector,
1312 void *target_container,
1313 void *data, __be16 proto, int nhoff, int hlen,
1314 unsigned int flags);
1315
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1316 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1317 struct flow_dissector *flow_dissector,
1318 void *target_container, unsigned int flags)
1319 {
1320 return __skb_flow_dissect(NULL, skb, flow_dissector,
1321 target_container, NULL, 0, 0, 0, flags);
1322 }
1323
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1324 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1325 struct flow_keys *flow,
1326 unsigned int flags)
1327 {
1328 memset(flow, 0, sizeof(*flow));
1329 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1330 flow, NULL, 0, 0, 0, flags);
1331 }
1332
1333 static inline bool
skb_flow_dissect_flow_keys_basic(const struct net * net,const struct sk_buff * skb,struct flow_keys_basic * flow,void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1334 skb_flow_dissect_flow_keys_basic(const struct net *net,
1335 const struct sk_buff *skb,
1336 struct flow_keys_basic *flow, void *data,
1337 __be16 proto, int nhoff, int hlen,
1338 unsigned int flags)
1339 {
1340 memset(flow, 0, sizeof(*flow));
1341 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1342 data, proto, nhoff, hlen, flags);
1343 }
1344
1345 void skb_flow_dissect_meta(const struct sk_buff *skb,
1346 struct flow_dissector *flow_dissector,
1347 void *target_container);
1348
1349 /* Gets a skb connection tracking info, ctinfo map should be a
1350 * map of mapsize to translate enum ip_conntrack_info states
1351 * to user states.
1352 */
1353 void
1354 skb_flow_dissect_ct(const struct sk_buff *skb,
1355 struct flow_dissector *flow_dissector,
1356 void *target_container,
1357 u16 *ctinfo_map,
1358 size_t mapsize);
1359 void
1360 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1361 struct flow_dissector *flow_dissector,
1362 void *target_container);
1363
1364 void skb_flow_dissect_hash(const struct sk_buff *skb,
1365 struct flow_dissector *flow_dissector,
1366 void *target_container);
1367
skb_get_hash(struct sk_buff * skb)1368 static inline __u32 skb_get_hash(struct sk_buff *skb)
1369 {
1370 if (!skb->l4_hash && !skb->sw_hash)
1371 __skb_get_hash(skb);
1372
1373 return skb->hash;
1374 }
1375
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1376 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1377 {
1378 if (!skb->l4_hash && !skb->sw_hash) {
1379 struct flow_keys keys;
1380 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1381
1382 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1383 }
1384
1385 return skb->hash;
1386 }
1387
1388 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1389 const siphash_key_t *perturb);
1390
skb_get_hash_raw(const struct sk_buff * skb)1391 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1392 {
1393 return skb->hash;
1394 }
1395
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1396 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1397 {
1398 to->hash = from->hash;
1399 to->sw_hash = from->sw_hash;
1400 to->l4_hash = from->l4_hash;
1401 };
1402
skb_copy_decrypted(struct sk_buff * to,const struct sk_buff * from)1403 static inline void skb_copy_decrypted(struct sk_buff *to,
1404 const struct sk_buff *from)
1405 {
1406 #ifdef CONFIG_TLS_DEVICE
1407 to->decrypted = from->decrypted;
1408 #endif
1409 }
1410
1411 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1412 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1413 {
1414 return skb->head + skb->end;
1415 }
1416
skb_end_offset(const struct sk_buff * skb)1417 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1418 {
1419 return skb->end;
1420 }
1421 #else
skb_end_pointer(const struct sk_buff * skb)1422 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1423 {
1424 return skb->end;
1425 }
1426
skb_end_offset(const struct sk_buff * skb)1427 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1428 {
1429 return skb->end - skb->head;
1430 }
1431 #endif
1432
1433 /* Internal */
1434 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1435
skb_hwtstamps(struct sk_buff * skb)1436 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1437 {
1438 return &skb_shinfo(skb)->hwtstamps;
1439 }
1440
skb_zcopy(struct sk_buff * skb)1441 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1442 {
1443 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1444
1445 return is_zcopy ? skb_uarg(skb) : NULL;
1446 }
1447
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg,bool * have_ref)1448 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1449 bool *have_ref)
1450 {
1451 if (skb && uarg && !skb_zcopy(skb)) {
1452 if (unlikely(have_ref && *have_ref))
1453 *have_ref = false;
1454 else
1455 sock_zerocopy_get(uarg);
1456 skb_shinfo(skb)->destructor_arg = uarg;
1457 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1458 }
1459 }
1460
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1461 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1462 {
1463 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1464 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1465 }
1466
skb_zcopy_is_nouarg(struct sk_buff * skb)1467 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1468 {
1469 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1470 }
1471
skb_zcopy_get_nouarg(struct sk_buff * skb)1472 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1473 {
1474 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1475 }
1476
1477 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy)1478 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1479 {
1480 struct ubuf_info *uarg = skb_zcopy(skb);
1481
1482 if (uarg) {
1483 if (skb_zcopy_is_nouarg(skb)) {
1484 /* no notification callback */
1485 } else if (uarg->callback == sock_zerocopy_callback) {
1486 uarg->zerocopy = uarg->zerocopy && zerocopy;
1487 sock_zerocopy_put(uarg);
1488 } else {
1489 uarg->callback(uarg, zerocopy);
1490 }
1491
1492 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1493 }
1494 }
1495
1496 /* Abort a zerocopy operation and revert zckey on error in send syscall */
skb_zcopy_abort(struct sk_buff * skb)1497 static inline void skb_zcopy_abort(struct sk_buff *skb)
1498 {
1499 struct ubuf_info *uarg = skb_zcopy(skb);
1500
1501 if (uarg) {
1502 sock_zerocopy_put_abort(uarg, false);
1503 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1504 }
1505 }
1506
skb_mark_not_on_list(struct sk_buff * skb)1507 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1508 {
1509 skb->next = NULL;
1510 }
1511
1512 /* Iterate through singly-linked GSO fragments of an skb. */
1513 #define skb_list_walk_safe(first, skb, next_skb) \
1514 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \
1515 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1516
skb_list_del_init(struct sk_buff * skb)1517 static inline void skb_list_del_init(struct sk_buff *skb)
1518 {
1519 __list_del_entry(&skb->list);
1520 skb_mark_not_on_list(skb);
1521 }
1522
1523 /**
1524 * skb_queue_empty - check if a queue is empty
1525 * @list: queue head
1526 *
1527 * Returns true if the queue is empty, false otherwise.
1528 */
skb_queue_empty(const struct sk_buff_head * list)1529 static inline int skb_queue_empty(const struct sk_buff_head *list)
1530 {
1531 return list->next == (const struct sk_buff *) list;
1532 }
1533
1534 /**
1535 * skb_queue_empty_lockless - check if a queue is empty
1536 * @list: queue head
1537 *
1538 * Returns true if the queue is empty, false otherwise.
1539 * This variant can be used in lockless contexts.
1540 */
skb_queue_empty_lockless(const struct sk_buff_head * list)1541 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1542 {
1543 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1544 }
1545
1546
1547 /**
1548 * skb_queue_is_last - check if skb is the last entry in the queue
1549 * @list: queue head
1550 * @skb: buffer
1551 *
1552 * Returns true if @skb is the last buffer on the list.
1553 */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1554 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1555 const struct sk_buff *skb)
1556 {
1557 return skb->next == (const struct sk_buff *) list;
1558 }
1559
1560 /**
1561 * skb_queue_is_first - check if skb is the first entry in the queue
1562 * @list: queue head
1563 * @skb: buffer
1564 *
1565 * Returns true if @skb is the first buffer on the list.
1566 */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1567 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1568 const struct sk_buff *skb)
1569 {
1570 return skb->prev == (const struct sk_buff *) list;
1571 }
1572
1573 /**
1574 * skb_queue_next - return the next packet in the queue
1575 * @list: queue head
1576 * @skb: current buffer
1577 *
1578 * Return the next packet in @list after @skb. It is only valid to
1579 * call this if skb_queue_is_last() evaluates to false.
1580 */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1581 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1582 const struct sk_buff *skb)
1583 {
1584 /* This BUG_ON may seem severe, but if we just return then we
1585 * are going to dereference garbage.
1586 */
1587 BUG_ON(skb_queue_is_last(list, skb));
1588 return skb->next;
1589 }
1590
1591 /**
1592 * skb_queue_prev - return the prev packet in the queue
1593 * @list: queue head
1594 * @skb: current buffer
1595 *
1596 * Return the prev packet in @list before @skb. It is only valid to
1597 * call this if skb_queue_is_first() evaluates to false.
1598 */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1599 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1600 const struct sk_buff *skb)
1601 {
1602 /* This BUG_ON may seem severe, but if we just return then we
1603 * are going to dereference garbage.
1604 */
1605 BUG_ON(skb_queue_is_first(list, skb));
1606 return skb->prev;
1607 }
1608
1609 /**
1610 * skb_get - reference buffer
1611 * @skb: buffer to reference
1612 *
1613 * Makes another reference to a socket buffer and returns a pointer
1614 * to the buffer.
1615 */
skb_get(struct sk_buff * skb)1616 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1617 {
1618 refcount_inc(&skb->users);
1619 return skb;
1620 }
1621
1622 /*
1623 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1624 */
1625
1626 /**
1627 * skb_cloned - is the buffer a clone
1628 * @skb: buffer to check
1629 *
1630 * Returns true if the buffer was generated with skb_clone() and is
1631 * one of multiple shared copies of the buffer. Cloned buffers are
1632 * shared data so must not be written to under normal circumstances.
1633 */
skb_cloned(const struct sk_buff * skb)1634 static inline int skb_cloned(const struct sk_buff *skb)
1635 {
1636 return skb->cloned &&
1637 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1638 }
1639
skb_unclone(struct sk_buff * skb,gfp_t pri)1640 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1641 {
1642 might_sleep_if(gfpflags_allow_blocking(pri));
1643
1644 if (skb_cloned(skb))
1645 return pskb_expand_head(skb, 0, 0, pri);
1646
1647 return 0;
1648 }
1649
1650 /**
1651 * skb_header_cloned - is the header a clone
1652 * @skb: buffer to check
1653 *
1654 * Returns true if modifying the header part of the buffer requires
1655 * the data to be copied.
1656 */
skb_header_cloned(const struct sk_buff * skb)1657 static inline int skb_header_cloned(const struct sk_buff *skb)
1658 {
1659 int dataref;
1660
1661 if (!skb->cloned)
1662 return 0;
1663
1664 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1665 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1666 return dataref != 1;
1667 }
1668
skb_header_unclone(struct sk_buff * skb,gfp_t pri)1669 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1670 {
1671 might_sleep_if(gfpflags_allow_blocking(pri));
1672
1673 if (skb_header_cloned(skb))
1674 return pskb_expand_head(skb, 0, 0, pri);
1675
1676 return 0;
1677 }
1678
1679 /**
1680 * __skb_header_release - release reference to header
1681 * @skb: buffer to operate on
1682 */
__skb_header_release(struct sk_buff * skb)1683 static inline void __skb_header_release(struct sk_buff *skb)
1684 {
1685 skb->nohdr = 1;
1686 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1687 }
1688
1689
1690 /**
1691 * skb_shared - is the buffer shared
1692 * @skb: buffer to check
1693 *
1694 * Returns true if more than one person has a reference to this
1695 * buffer.
1696 */
skb_shared(const struct sk_buff * skb)1697 static inline int skb_shared(const struct sk_buff *skb)
1698 {
1699 return refcount_read(&skb->users) != 1;
1700 }
1701
1702 /**
1703 * skb_share_check - check if buffer is shared and if so clone it
1704 * @skb: buffer to check
1705 * @pri: priority for memory allocation
1706 *
1707 * If the buffer is shared the buffer is cloned and the old copy
1708 * drops a reference. A new clone with a single reference is returned.
1709 * If the buffer is not shared the original buffer is returned. When
1710 * being called from interrupt status or with spinlocks held pri must
1711 * be GFP_ATOMIC.
1712 *
1713 * NULL is returned on a memory allocation failure.
1714 */
skb_share_check(struct sk_buff * skb,gfp_t pri)1715 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1716 {
1717 might_sleep_if(gfpflags_allow_blocking(pri));
1718 if (skb_shared(skb)) {
1719 struct sk_buff *nskb = skb_clone(skb, pri);
1720
1721 if (likely(nskb))
1722 consume_skb(skb);
1723 else
1724 kfree_skb(skb);
1725 skb = nskb;
1726 }
1727 return skb;
1728 }
1729
1730 /*
1731 * Copy shared buffers into a new sk_buff. We effectively do COW on
1732 * packets to handle cases where we have a local reader and forward
1733 * and a couple of other messy ones. The normal one is tcpdumping
1734 * a packet thats being forwarded.
1735 */
1736
1737 /**
1738 * skb_unshare - make a copy of a shared buffer
1739 * @skb: buffer to check
1740 * @pri: priority for memory allocation
1741 *
1742 * If the socket buffer is a clone then this function creates a new
1743 * copy of the data, drops a reference count on the old copy and returns
1744 * the new copy with the reference count at 1. If the buffer is not a clone
1745 * the original buffer is returned. When called with a spinlock held or
1746 * from interrupt state @pri must be %GFP_ATOMIC
1747 *
1748 * %NULL is returned on a memory allocation failure.
1749 */
skb_unshare(struct sk_buff * skb,gfp_t pri)1750 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1751 gfp_t pri)
1752 {
1753 might_sleep_if(gfpflags_allow_blocking(pri));
1754 if (skb_cloned(skb)) {
1755 struct sk_buff *nskb = skb_copy(skb, pri);
1756
1757 /* Free our shared copy */
1758 if (likely(nskb))
1759 consume_skb(skb);
1760 else
1761 kfree_skb(skb);
1762 skb = nskb;
1763 }
1764 return skb;
1765 }
1766
1767 /**
1768 * skb_peek - peek at the head of an &sk_buff_head
1769 * @list_: list to peek at
1770 *
1771 * Peek an &sk_buff. Unlike most other operations you _MUST_
1772 * be careful with this one. A peek leaves the buffer on the
1773 * list and someone else may run off with it. You must hold
1774 * the appropriate locks or have a private queue to do this.
1775 *
1776 * Returns %NULL for an empty list or a pointer to the head element.
1777 * The reference count is not incremented and the reference is therefore
1778 * volatile. Use with caution.
1779 */
skb_peek(const struct sk_buff_head * list_)1780 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1781 {
1782 struct sk_buff *skb = list_->next;
1783
1784 if (skb == (struct sk_buff *)list_)
1785 skb = NULL;
1786 return skb;
1787 }
1788
1789 /**
1790 * __skb_peek - peek at the head of a non-empty &sk_buff_head
1791 * @list_: list to peek at
1792 *
1793 * Like skb_peek(), but the caller knows that the list is not empty.
1794 */
__skb_peek(const struct sk_buff_head * list_)1795 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1796 {
1797 return list_->next;
1798 }
1799
1800 /**
1801 * skb_peek_next - peek skb following the given one from a queue
1802 * @skb: skb to start from
1803 * @list_: list to peek at
1804 *
1805 * Returns %NULL when the end of the list is met or a pointer to the
1806 * next element. The reference count is not incremented and the
1807 * reference is therefore volatile. Use with caution.
1808 */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)1809 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1810 const struct sk_buff_head *list_)
1811 {
1812 struct sk_buff *next = skb->next;
1813
1814 if (next == (struct sk_buff *)list_)
1815 next = NULL;
1816 return next;
1817 }
1818
1819 /**
1820 * skb_peek_tail - peek at the tail of an &sk_buff_head
1821 * @list_: list to peek at
1822 *
1823 * Peek an &sk_buff. Unlike most other operations you _MUST_
1824 * be careful with this one. A peek leaves the buffer on the
1825 * list and someone else may run off with it. You must hold
1826 * the appropriate locks or have a private queue to do this.
1827 *
1828 * Returns %NULL for an empty list or a pointer to the tail element.
1829 * The reference count is not incremented and the reference is therefore
1830 * volatile. Use with caution.
1831 */
skb_peek_tail(const struct sk_buff_head * list_)1832 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1833 {
1834 struct sk_buff *skb = READ_ONCE(list_->prev);
1835
1836 if (skb == (struct sk_buff *)list_)
1837 skb = NULL;
1838 return skb;
1839
1840 }
1841
1842 /**
1843 * skb_queue_len - get queue length
1844 * @list_: list to measure
1845 *
1846 * Return the length of an &sk_buff queue.
1847 */
skb_queue_len(const struct sk_buff_head * list_)1848 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1849 {
1850 return list_->qlen;
1851 }
1852
1853 /**
1854 * skb_queue_len_lockless - get queue length
1855 * @list_: list to measure
1856 *
1857 * Return the length of an &sk_buff queue.
1858 * This variant can be used in lockless contexts.
1859 */
skb_queue_len_lockless(const struct sk_buff_head * list_)1860 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1861 {
1862 return READ_ONCE(list_->qlen);
1863 }
1864
1865 /**
1866 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1867 * @list: queue to initialize
1868 *
1869 * This initializes only the list and queue length aspects of
1870 * an sk_buff_head object. This allows to initialize the list
1871 * aspects of an sk_buff_head without reinitializing things like
1872 * the spinlock. It can also be used for on-stack sk_buff_head
1873 * objects where the spinlock is known to not be used.
1874 */
__skb_queue_head_init(struct sk_buff_head * list)1875 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1876 {
1877 list->prev = list->next = (struct sk_buff *)list;
1878 list->qlen = 0;
1879 }
1880
1881 /*
1882 * This function creates a split out lock class for each invocation;
1883 * this is needed for now since a whole lot of users of the skb-queue
1884 * infrastructure in drivers have different locking usage (in hardirq)
1885 * than the networking core (in softirq only). In the long run either the
1886 * network layer or drivers should need annotation to consolidate the
1887 * main types of usage into 3 classes.
1888 */
skb_queue_head_init(struct sk_buff_head * list)1889 static inline void skb_queue_head_init(struct sk_buff_head *list)
1890 {
1891 spin_lock_init(&list->lock);
1892 __skb_queue_head_init(list);
1893 }
1894
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)1895 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1896 struct lock_class_key *class)
1897 {
1898 skb_queue_head_init(list);
1899 lockdep_set_class(&list->lock, class);
1900 }
1901
1902 /*
1903 * Insert an sk_buff on a list.
1904 *
1905 * The "__skb_xxxx()" functions are the non-atomic ones that
1906 * can only be called with interrupts disabled.
1907 */
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)1908 static inline void __skb_insert(struct sk_buff *newsk,
1909 struct sk_buff *prev, struct sk_buff *next,
1910 struct sk_buff_head *list)
1911 {
1912 /* See skb_queue_empty_lockless() and skb_peek_tail()
1913 * for the opposite READ_ONCE()
1914 */
1915 WRITE_ONCE(newsk->next, next);
1916 WRITE_ONCE(newsk->prev, prev);
1917 WRITE_ONCE(next->prev, newsk);
1918 WRITE_ONCE(prev->next, newsk);
1919 WRITE_ONCE(list->qlen, list->qlen + 1);
1920 }
1921
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)1922 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1923 struct sk_buff *prev,
1924 struct sk_buff *next)
1925 {
1926 struct sk_buff *first = list->next;
1927 struct sk_buff *last = list->prev;
1928
1929 WRITE_ONCE(first->prev, prev);
1930 WRITE_ONCE(prev->next, first);
1931
1932 WRITE_ONCE(last->next, next);
1933 WRITE_ONCE(next->prev, last);
1934 }
1935
1936 /**
1937 * skb_queue_splice - join two skb lists, this is designed for stacks
1938 * @list: the new list to add
1939 * @head: the place to add it in the first list
1940 */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)1941 static inline void skb_queue_splice(const struct sk_buff_head *list,
1942 struct sk_buff_head *head)
1943 {
1944 if (!skb_queue_empty(list)) {
1945 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1946 head->qlen += list->qlen;
1947 }
1948 }
1949
1950 /**
1951 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1952 * @list: the new list to add
1953 * @head: the place to add it in the first list
1954 *
1955 * The list at @list is reinitialised
1956 */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)1957 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1958 struct sk_buff_head *head)
1959 {
1960 if (!skb_queue_empty(list)) {
1961 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1962 head->qlen += list->qlen;
1963 __skb_queue_head_init(list);
1964 }
1965 }
1966
1967 /**
1968 * skb_queue_splice_tail - join two skb lists, each list being a queue
1969 * @list: the new list to add
1970 * @head: the place to add it in the first list
1971 */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)1972 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1973 struct sk_buff_head *head)
1974 {
1975 if (!skb_queue_empty(list)) {
1976 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1977 head->qlen += list->qlen;
1978 }
1979 }
1980
1981 /**
1982 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1983 * @list: the new list to add
1984 * @head: the place to add it in the first list
1985 *
1986 * Each of the lists is a queue.
1987 * The list at @list is reinitialised
1988 */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)1989 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1990 struct sk_buff_head *head)
1991 {
1992 if (!skb_queue_empty(list)) {
1993 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1994 head->qlen += list->qlen;
1995 __skb_queue_head_init(list);
1996 }
1997 }
1998
1999 /**
2000 * __skb_queue_after - queue a buffer at the list head
2001 * @list: list to use
2002 * @prev: place after this buffer
2003 * @newsk: buffer to queue
2004 *
2005 * Queue a buffer int the middle of a list. This function takes no locks
2006 * and you must therefore hold required locks before calling it.
2007 *
2008 * A buffer cannot be placed on two lists at the same time.
2009 */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)2010 static inline void __skb_queue_after(struct sk_buff_head *list,
2011 struct sk_buff *prev,
2012 struct sk_buff *newsk)
2013 {
2014 __skb_insert(newsk, prev, prev->next, list);
2015 }
2016
2017 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2018 struct sk_buff_head *list);
2019
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)2020 static inline void __skb_queue_before(struct sk_buff_head *list,
2021 struct sk_buff *next,
2022 struct sk_buff *newsk)
2023 {
2024 __skb_insert(newsk, next->prev, next, list);
2025 }
2026
2027 /**
2028 * __skb_queue_head - queue a buffer at the list head
2029 * @list: list to use
2030 * @newsk: buffer to queue
2031 *
2032 * Queue a buffer at the start of a list. This function takes no locks
2033 * and you must therefore hold required locks before calling it.
2034 *
2035 * A buffer cannot be placed on two lists at the same time.
2036 */
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2037 static inline void __skb_queue_head(struct sk_buff_head *list,
2038 struct sk_buff *newsk)
2039 {
2040 __skb_queue_after(list, (struct sk_buff *)list, newsk);
2041 }
2042 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2043
2044 /**
2045 * __skb_queue_tail - queue a buffer at the list tail
2046 * @list: list to use
2047 * @newsk: buffer to queue
2048 *
2049 * Queue a buffer at the end of a list. This function takes no locks
2050 * and you must therefore hold required locks before calling it.
2051 *
2052 * A buffer cannot be placed on two lists at the same time.
2053 */
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2054 static inline void __skb_queue_tail(struct sk_buff_head *list,
2055 struct sk_buff *newsk)
2056 {
2057 __skb_queue_before(list, (struct sk_buff *)list, newsk);
2058 }
2059 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2060
2061 /*
2062 * remove sk_buff from list. _Must_ be called atomically, and with
2063 * the list known..
2064 */
2065 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2066 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2067 {
2068 struct sk_buff *next, *prev;
2069
2070 WRITE_ONCE(list->qlen, list->qlen - 1);
2071 next = skb->next;
2072 prev = skb->prev;
2073 skb->next = skb->prev = NULL;
2074 WRITE_ONCE(next->prev, prev);
2075 WRITE_ONCE(prev->next, next);
2076 }
2077
2078 /**
2079 * __skb_dequeue - remove from the head of the queue
2080 * @list: list to dequeue from
2081 *
2082 * Remove the head of the list. This function does not take any locks
2083 * so must be used with appropriate locks held only. The head item is
2084 * returned or %NULL if the list is empty.
2085 */
__skb_dequeue(struct sk_buff_head * list)2086 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2087 {
2088 struct sk_buff *skb = skb_peek(list);
2089 if (skb)
2090 __skb_unlink(skb, list);
2091 return skb;
2092 }
2093 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2094
2095 /**
2096 * __skb_dequeue_tail - remove from the tail of the queue
2097 * @list: list to dequeue from
2098 *
2099 * Remove the tail of the list. This function does not take any locks
2100 * so must be used with appropriate locks held only. The tail item is
2101 * returned or %NULL if the list is empty.
2102 */
__skb_dequeue_tail(struct sk_buff_head * list)2103 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2104 {
2105 struct sk_buff *skb = skb_peek_tail(list);
2106 if (skb)
2107 __skb_unlink(skb, list);
2108 return skb;
2109 }
2110 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2111
2112
skb_is_nonlinear(const struct sk_buff * skb)2113 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2114 {
2115 return skb->data_len;
2116 }
2117
skb_headlen(const struct sk_buff * skb)2118 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2119 {
2120 return skb->len - skb->data_len;
2121 }
2122
__skb_pagelen(const struct sk_buff * skb)2123 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2124 {
2125 unsigned int i, len = 0;
2126
2127 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2128 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2129 return len;
2130 }
2131
skb_pagelen(const struct sk_buff * skb)2132 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2133 {
2134 return skb_headlen(skb) + __skb_pagelen(skb);
2135 }
2136
2137 /**
2138 * __skb_fill_page_desc - initialise a paged fragment in an skb
2139 * @skb: buffer containing fragment to be initialised
2140 * @i: paged fragment index to initialise
2141 * @page: the page to use for this fragment
2142 * @off: the offset to the data with @page
2143 * @size: the length of the data
2144 *
2145 * Initialises the @i'th fragment of @skb to point to &size bytes at
2146 * offset @off within @page.
2147 *
2148 * Does not take any additional reference on the fragment.
2149 */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2150 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2151 struct page *page, int off, int size)
2152 {
2153 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2154
2155 /*
2156 * Propagate page pfmemalloc to the skb if we can. The problem is
2157 * that not all callers have unique ownership of the page but rely
2158 * on page_is_pfmemalloc doing the right thing(tm).
2159 */
2160 frag->bv_page = page;
2161 frag->bv_offset = off;
2162 skb_frag_size_set(frag, size);
2163
2164 page = compound_head(page);
2165 if (page_is_pfmemalloc(page))
2166 skb->pfmemalloc = true;
2167 }
2168
2169 /**
2170 * skb_fill_page_desc - initialise a paged fragment in an skb
2171 * @skb: buffer containing fragment to be initialised
2172 * @i: paged fragment index to initialise
2173 * @page: the page to use for this fragment
2174 * @off: the offset to the data with @page
2175 * @size: the length of the data
2176 *
2177 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2178 * @skb to point to @size bytes at offset @off within @page. In
2179 * addition updates @skb such that @i is the last fragment.
2180 *
2181 * Does not take any additional reference on the fragment.
2182 */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2183 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2184 struct page *page, int off, int size)
2185 {
2186 __skb_fill_page_desc(skb, i, page, off, size);
2187 skb_shinfo(skb)->nr_frags = i + 1;
2188 }
2189
2190 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2191 int size, unsigned int truesize);
2192
2193 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2194 unsigned int truesize);
2195
2196 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2197
2198 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2199 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2200 {
2201 return skb->head + skb->tail;
2202 }
2203
skb_reset_tail_pointer(struct sk_buff * skb)2204 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2205 {
2206 skb->tail = skb->data - skb->head;
2207 }
2208
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2209 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2210 {
2211 skb_reset_tail_pointer(skb);
2212 skb->tail += offset;
2213 }
2214
2215 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2216 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2217 {
2218 return skb->tail;
2219 }
2220
skb_reset_tail_pointer(struct sk_buff * skb)2221 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2222 {
2223 skb->tail = skb->data;
2224 }
2225
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2226 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2227 {
2228 skb->tail = skb->data + offset;
2229 }
2230
2231 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2232
skb_assert_len(struct sk_buff * skb)2233 static inline void skb_assert_len(struct sk_buff *skb)
2234 {
2235 #ifdef CONFIG_DEBUG_NET
2236 if (WARN_ONCE(!skb->len, "%s\n", __func__))
2237 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2238 #endif /* CONFIG_DEBUG_NET */
2239 }
2240
2241 /*
2242 * Add data to an sk_buff
2243 */
2244 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2245 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2246 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2247 {
2248 void *tmp = skb_tail_pointer(skb);
2249 SKB_LINEAR_ASSERT(skb);
2250 skb->tail += len;
2251 skb->len += len;
2252 return tmp;
2253 }
2254
__skb_put_zero(struct sk_buff * skb,unsigned int len)2255 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2256 {
2257 void *tmp = __skb_put(skb, len);
2258
2259 memset(tmp, 0, len);
2260 return tmp;
2261 }
2262
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2263 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2264 unsigned int len)
2265 {
2266 void *tmp = __skb_put(skb, len);
2267
2268 memcpy(tmp, data, len);
2269 return tmp;
2270 }
2271
__skb_put_u8(struct sk_buff * skb,u8 val)2272 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2273 {
2274 *(u8 *)__skb_put(skb, 1) = val;
2275 }
2276
skb_put_zero(struct sk_buff * skb,unsigned int len)2277 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2278 {
2279 void *tmp = skb_put(skb, len);
2280
2281 memset(tmp, 0, len);
2282
2283 return tmp;
2284 }
2285
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2286 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2287 unsigned int len)
2288 {
2289 void *tmp = skb_put(skb, len);
2290
2291 memcpy(tmp, data, len);
2292
2293 return tmp;
2294 }
2295
skb_put_u8(struct sk_buff * skb,u8 val)2296 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2297 {
2298 *(u8 *)skb_put(skb, 1) = val;
2299 }
2300
2301 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2302 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2303 {
2304 skb->data -= len;
2305 skb->len += len;
2306 return skb->data;
2307 }
2308
2309 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2310 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2311 {
2312 skb->len -= len;
2313 BUG_ON(skb->len < skb->data_len);
2314 return skb->data += len;
2315 }
2316
skb_pull_inline(struct sk_buff * skb,unsigned int len)2317 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2318 {
2319 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2320 }
2321
2322 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2323
__pskb_pull(struct sk_buff * skb,unsigned int len)2324 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2325 {
2326 if (len > skb_headlen(skb) &&
2327 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2328 return NULL;
2329 skb->len -= len;
2330 return skb->data += len;
2331 }
2332
pskb_pull(struct sk_buff * skb,unsigned int len)2333 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2334 {
2335 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2336 }
2337
pskb_may_pull(struct sk_buff * skb,unsigned int len)2338 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2339 {
2340 if (likely(len <= skb_headlen(skb)))
2341 return true;
2342 if (unlikely(len > skb->len))
2343 return false;
2344 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2345 }
2346
2347 void skb_condense(struct sk_buff *skb);
2348
2349 /**
2350 * skb_headroom - bytes at buffer head
2351 * @skb: buffer to check
2352 *
2353 * Return the number of bytes of free space at the head of an &sk_buff.
2354 */
skb_headroom(const struct sk_buff * skb)2355 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2356 {
2357 return skb->data - skb->head;
2358 }
2359
2360 /**
2361 * skb_tailroom - bytes at buffer end
2362 * @skb: buffer to check
2363 *
2364 * Return the number of bytes of free space at the tail of an sk_buff
2365 */
skb_tailroom(const struct sk_buff * skb)2366 static inline int skb_tailroom(const struct sk_buff *skb)
2367 {
2368 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2369 }
2370
2371 /**
2372 * skb_availroom - bytes at buffer end
2373 * @skb: buffer to check
2374 *
2375 * Return the number of bytes of free space at the tail of an sk_buff
2376 * allocated by sk_stream_alloc()
2377 */
skb_availroom(const struct sk_buff * skb)2378 static inline int skb_availroom(const struct sk_buff *skb)
2379 {
2380 if (skb_is_nonlinear(skb))
2381 return 0;
2382
2383 return skb->end - skb->tail - skb->reserved_tailroom;
2384 }
2385
2386 /**
2387 * skb_reserve - adjust headroom
2388 * @skb: buffer to alter
2389 * @len: bytes to move
2390 *
2391 * Increase the headroom of an empty &sk_buff by reducing the tail
2392 * room. This is only allowed for an empty buffer.
2393 */
skb_reserve(struct sk_buff * skb,int len)2394 static inline void skb_reserve(struct sk_buff *skb, int len)
2395 {
2396 skb->data += len;
2397 skb->tail += len;
2398 }
2399
2400 /**
2401 * skb_tailroom_reserve - adjust reserved_tailroom
2402 * @skb: buffer to alter
2403 * @mtu: maximum amount of headlen permitted
2404 * @needed_tailroom: minimum amount of reserved_tailroom
2405 *
2406 * Set reserved_tailroom so that headlen can be as large as possible but
2407 * not larger than mtu and tailroom cannot be smaller than
2408 * needed_tailroom.
2409 * The required headroom should already have been reserved before using
2410 * this function.
2411 */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2412 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2413 unsigned int needed_tailroom)
2414 {
2415 SKB_LINEAR_ASSERT(skb);
2416 if (mtu < skb_tailroom(skb) - needed_tailroom)
2417 /* use at most mtu */
2418 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2419 else
2420 /* use up to all available space */
2421 skb->reserved_tailroom = needed_tailroom;
2422 }
2423
2424 #define ENCAP_TYPE_ETHER 0
2425 #define ENCAP_TYPE_IPPROTO 1
2426
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2427 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2428 __be16 protocol)
2429 {
2430 skb->inner_protocol = protocol;
2431 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2432 }
2433
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2434 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2435 __u8 ipproto)
2436 {
2437 skb->inner_ipproto = ipproto;
2438 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2439 }
2440
skb_reset_inner_headers(struct sk_buff * skb)2441 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2442 {
2443 skb->inner_mac_header = skb->mac_header;
2444 skb->inner_network_header = skb->network_header;
2445 skb->inner_transport_header = skb->transport_header;
2446 }
2447
skb_reset_mac_len(struct sk_buff * skb)2448 static inline void skb_reset_mac_len(struct sk_buff *skb)
2449 {
2450 skb->mac_len = skb->network_header - skb->mac_header;
2451 }
2452
skb_inner_transport_header(const struct sk_buff * skb)2453 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2454 *skb)
2455 {
2456 return skb->head + skb->inner_transport_header;
2457 }
2458
skb_inner_transport_offset(const struct sk_buff * skb)2459 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2460 {
2461 return skb_inner_transport_header(skb) - skb->data;
2462 }
2463
skb_reset_inner_transport_header(struct sk_buff * skb)2464 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2465 {
2466 skb->inner_transport_header = skb->data - skb->head;
2467 }
2468
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2469 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2470 const int offset)
2471 {
2472 skb_reset_inner_transport_header(skb);
2473 skb->inner_transport_header += offset;
2474 }
2475
skb_inner_network_header(const struct sk_buff * skb)2476 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2477 {
2478 return skb->head + skb->inner_network_header;
2479 }
2480
skb_reset_inner_network_header(struct sk_buff * skb)2481 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2482 {
2483 skb->inner_network_header = skb->data - skb->head;
2484 }
2485
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2486 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2487 const int offset)
2488 {
2489 skb_reset_inner_network_header(skb);
2490 skb->inner_network_header += offset;
2491 }
2492
skb_inner_mac_header(const struct sk_buff * skb)2493 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2494 {
2495 return skb->head + skb->inner_mac_header;
2496 }
2497
skb_reset_inner_mac_header(struct sk_buff * skb)2498 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2499 {
2500 skb->inner_mac_header = skb->data - skb->head;
2501 }
2502
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2503 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2504 const int offset)
2505 {
2506 skb_reset_inner_mac_header(skb);
2507 skb->inner_mac_header += offset;
2508 }
skb_transport_header_was_set(const struct sk_buff * skb)2509 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2510 {
2511 return skb->transport_header != (typeof(skb->transport_header))~0U;
2512 }
2513
skb_transport_header(const struct sk_buff * skb)2514 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2515 {
2516 return skb->head + skb->transport_header;
2517 }
2518
skb_reset_transport_header(struct sk_buff * skb)2519 static inline void skb_reset_transport_header(struct sk_buff *skb)
2520 {
2521 skb->transport_header = skb->data - skb->head;
2522 }
2523
skb_set_transport_header(struct sk_buff * skb,const int offset)2524 static inline void skb_set_transport_header(struct sk_buff *skb,
2525 const int offset)
2526 {
2527 skb_reset_transport_header(skb);
2528 skb->transport_header += offset;
2529 }
2530
skb_network_header(const struct sk_buff * skb)2531 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2532 {
2533 return skb->head + skb->network_header;
2534 }
2535
skb_reset_network_header(struct sk_buff * skb)2536 static inline void skb_reset_network_header(struct sk_buff *skb)
2537 {
2538 skb->network_header = skb->data - skb->head;
2539 }
2540
skb_set_network_header(struct sk_buff * skb,const int offset)2541 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2542 {
2543 skb_reset_network_header(skb);
2544 skb->network_header += offset;
2545 }
2546
skb_mac_header(const struct sk_buff * skb)2547 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2548 {
2549 return skb->head + skb->mac_header;
2550 }
2551
skb_mac_offset(const struct sk_buff * skb)2552 static inline int skb_mac_offset(const struct sk_buff *skb)
2553 {
2554 return skb_mac_header(skb) - skb->data;
2555 }
2556
skb_mac_header_len(const struct sk_buff * skb)2557 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2558 {
2559 return skb->network_header - skb->mac_header;
2560 }
2561
skb_mac_header_was_set(const struct sk_buff * skb)2562 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2563 {
2564 return skb->mac_header != (typeof(skb->mac_header))~0U;
2565 }
2566
skb_unset_mac_header(struct sk_buff * skb)2567 static inline void skb_unset_mac_header(struct sk_buff *skb)
2568 {
2569 skb->mac_header = (typeof(skb->mac_header))~0U;
2570 }
2571
skb_reset_mac_header(struct sk_buff * skb)2572 static inline void skb_reset_mac_header(struct sk_buff *skb)
2573 {
2574 skb->mac_header = skb->data - skb->head;
2575 }
2576
skb_set_mac_header(struct sk_buff * skb,const int offset)2577 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2578 {
2579 skb_reset_mac_header(skb);
2580 skb->mac_header += offset;
2581 }
2582
skb_pop_mac_header(struct sk_buff * skb)2583 static inline void skb_pop_mac_header(struct sk_buff *skb)
2584 {
2585 skb->mac_header = skb->network_header;
2586 }
2587
skb_probe_transport_header(struct sk_buff * skb)2588 static inline void skb_probe_transport_header(struct sk_buff *skb)
2589 {
2590 struct flow_keys_basic keys;
2591
2592 if (skb_transport_header_was_set(skb))
2593 return;
2594
2595 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2596 NULL, 0, 0, 0, 0))
2597 skb_set_transport_header(skb, keys.control.thoff);
2598 }
2599
skb_mac_header_rebuild(struct sk_buff * skb)2600 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2601 {
2602 if (skb_mac_header_was_set(skb)) {
2603 const unsigned char *old_mac = skb_mac_header(skb);
2604
2605 skb_set_mac_header(skb, -skb->mac_len);
2606 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2607 }
2608 }
2609
skb_checksum_start_offset(const struct sk_buff * skb)2610 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2611 {
2612 return skb->csum_start - skb_headroom(skb);
2613 }
2614
skb_checksum_start(const struct sk_buff * skb)2615 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2616 {
2617 return skb->head + skb->csum_start;
2618 }
2619
skb_transport_offset(const struct sk_buff * skb)2620 static inline int skb_transport_offset(const struct sk_buff *skb)
2621 {
2622 return skb_transport_header(skb) - skb->data;
2623 }
2624
skb_network_header_len(const struct sk_buff * skb)2625 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2626 {
2627 return skb->transport_header - skb->network_header;
2628 }
2629
skb_inner_network_header_len(const struct sk_buff * skb)2630 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2631 {
2632 return skb->inner_transport_header - skb->inner_network_header;
2633 }
2634
skb_network_offset(const struct sk_buff * skb)2635 static inline int skb_network_offset(const struct sk_buff *skb)
2636 {
2637 return skb_network_header(skb) - skb->data;
2638 }
2639
skb_inner_network_offset(const struct sk_buff * skb)2640 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2641 {
2642 return skb_inner_network_header(skb) - skb->data;
2643 }
2644
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)2645 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2646 {
2647 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2648 }
2649
2650 /*
2651 * CPUs often take a performance hit when accessing unaligned memory
2652 * locations. The actual performance hit varies, it can be small if the
2653 * hardware handles it or large if we have to take an exception and fix it
2654 * in software.
2655 *
2656 * Since an ethernet header is 14 bytes network drivers often end up with
2657 * the IP header at an unaligned offset. The IP header can be aligned by
2658 * shifting the start of the packet by 2 bytes. Drivers should do this
2659 * with:
2660 *
2661 * skb_reserve(skb, NET_IP_ALIGN);
2662 *
2663 * The downside to this alignment of the IP header is that the DMA is now
2664 * unaligned. On some architectures the cost of an unaligned DMA is high
2665 * and this cost outweighs the gains made by aligning the IP header.
2666 *
2667 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2668 * to be overridden.
2669 */
2670 #ifndef NET_IP_ALIGN
2671 #define NET_IP_ALIGN 2
2672 #endif
2673
2674 /*
2675 * The networking layer reserves some headroom in skb data (via
2676 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2677 * the header has to grow. In the default case, if the header has to grow
2678 * 32 bytes or less we avoid the reallocation.
2679 *
2680 * Unfortunately this headroom changes the DMA alignment of the resulting
2681 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2682 * on some architectures. An architecture can override this value,
2683 * perhaps setting it to a cacheline in size (since that will maintain
2684 * cacheline alignment of the DMA). It must be a power of 2.
2685 *
2686 * Various parts of the networking layer expect at least 32 bytes of
2687 * headroom, you should not reduce this.
2688 *
2689 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2690 * to reduce average number of cache lines per packet.
2691 * get_rps_cpu() for example only access one 64 bytes aligned block :
2692 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2693 */
2694 #ifndef NET_SKB_PAD
2695 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2696 #endif
2697
2698 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2699
__skb_set_length(struct sk_buff * skb,unsigned int len)2700 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2701 {
2702 if (WARN_ON(skb_is_nonlinear(skb)))
2703 return;
2704 skb->len = len;
2705 skb_set_tail_pointer(skb, len);
2706 }
2707
__skb_trim(struct sk_buff * skb,unsigned int len)2708 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2709 {
2710 __skb_set_length(skb, len);
2711 }
2712
2713 void skb_trim(struct sk_buff *skb, unsigned int len);
2714
__pskb_trim(struct sk_buff * skb,unsigned int len)2715 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2716 {
2717 if (skb->data_len)
2718 return ___pskb_trim(skb, len);
2719 __skb_trim(skb, len);
2720 return 0;
2721 }
2722
pskb_trim(struct sk_buff * skb,unsigned int len)2723 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2724 {
2725 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2726 }
2727
2728 /**
2729 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2730 * @skb: buffer to alter
2731 * @len: new length
2732 *
2733 * This is identical to pskb_trim except that the caller knows that
2734 * the skb is not cloned so we should never get an error due to out-
2735 * of-memory.
2736 */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)2737 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2738 {
2739 int err = pskb_trim(skb, len);
2740 BUG_ON(err);
2741 }
2742
__skb_grow(struct sk_buff * skb,unsigned int len)2743 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2744 {
2745 unsigned int diff = len - skb->len;
2746
2747 if (skb_tailroom(skb) < diff) {
2748 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2749 GFP_ATOMIC);
2750 if (ret)
2751 return ret;
2752 }
2753 __skb_set_length(skb, len);
2754 return 0;
2755 }
2756
2757 /**
2758 * skb_orphan - orphan a buffer
2759 * @skb: buffer to orphan
2760 *
2761 * If a buffer currently has an owner then we call the owner's
2762 * destructor function and make the @skb unowned. The buffer continues
2763 * to exist but is no longer charged to its former owner.
2764 */
skb_orphan(struct sk_buff * skb)2765 static inline void skb_orphan(struct sk_buff *skb)
2766 {
2767 if (skb->destructor) {
2768 skb->destructor(skb);
2769 skb->destructor = NULL;
2770 skb->sk = NULL;
2771 } else {
2772 BUG_ON(skb->sk);
2773 }
2774 }
2775
2776 /**
2777 * skb_orphan_frags - orphan the frags contained in a buffer
2778 * @skb: buffer to orphan frags from
2779 * @gfp_mask: allocation mask for replacement pages
2780 *
2781 * For each frag in the SKB which needs a destructor (i.e. has an
2782 * owner) create a copy of that frag and release the original
2783 * page by calling the destructor.
2784 */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)2785 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2786 {
2787 if (likely(!skb_zcopy(skb)))
2788 return 0;
2789 if (!skb_zcopy_is_nouarg(skb) &&
2790 skb_uarg(skb)->callback == sock_zerocopy_callback)
2791 return 0;
2792 return skb_copy_ubufs(skb, gfp_mask);
2793 }
2794
2795 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)2796 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2797 {
2798 if (likely(!skb_zcopy(skb)))
2799 return 0;
2800 return skb_copy_ubufs(skb, gfp_mask);
2801 }
2802
2803 /**
2804 * __skb_queue_purge - empty a list
2805 * @list: list to empty
2806 *
2807 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2808 * the list and one reference dropped. This function does not take the
2809 * list lock and the caller must hold the relevant locks to use it.
2810 */
__skb_queue_purge(struct sk_buff_head * list)2811 static inline void __skb_queue_purge(struct sk_buff_head *list)
2812 {
2813 struct sk_buff *skb;
2814 while ((skb = __skb_dequeue(list)) != NULL)
2815 kfree_skb(skb);
2816 }
2817 void skb_queue_purge(struct sk_buff_head *list);
2818
2819 unsigned int skb_rbtree_purge(struct rb_root *root);
2820
2821 void *netdev_alloc_frag(unsigned int fragsz);
2822
2823 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2824 gfp_t gfp_mask);
2825
2826 /**
2827 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2828 * @dev: network device to receive on
2829 * @length: length to allocate
2830 *
2831 * Allocate a new &sk_buff and assign it a usage count of one. The
2832 * buffer has unspecified headroom built in. Users should allocate
2833 * the headroom they think they need without accounting for the
2834 * built in space. The built in space is used for optimisations.
2835 *
2836 * %NULL is returned if there is no free memory. Although this function
2837 * allocates memory it can be called from an interrupt.
2838 */
netdev_alloc_skb(struct net_device * dev,unsigned int length)2839 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2840 unsigned int length)
2841 {
2842 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2843 }
2844
2845 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)2846 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2847 gfp_t gfp_mask)
2848 {
2849 return __netdev_alloc_skb(NULL, length, gfp_mask);
2850 }
2851
2852 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)2853 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2854 {
2855 return netdev_alloc_skb(NULL, length);
2856 }
2857
2858
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)2859 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2860 unsigned int length, gfp_t gfp)
2861 {
2862 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2863
2864 if (NET_IP_ALIGN && skb)
2865 skb_reserve(skb, NET_IP_ALIGN);
2866 return skb;
2867 }
2868
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)2869 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2870 unsigned int length)
2871 {
2872 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2873 }
2874
skb_free_frag(void * addr)2875 static inline void skb_free_frag(void *addr)
2876 {
2877 page_frag_free(addr);
2878 }
2879
2880 void *napi_alloc_frag(unsigned int fragsz);
2881 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2882 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)2883 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2884 unsigned int length)
2885 {
2886 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2887 }
2888 void napi_consume_skb(struct sk_buff *skb, int budget);
2889
2890 void __kfree_skb_flush(void);
2891 void __kfree_skb_defer(struct sk_buff *skb);
2892
2893 /**
2894 * __dev_alloc_pages - allocate page for network Rx
2895 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2896 * @order: size of the allocation
2897 *
2898 * Allocate a new page.
2899 *
2900 * %NULL is returned if there is no free memory.
2901 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)2902 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2903 unsigned int order)
2904 {
2905 /* This piece of code contains several assumptions.
2906 * 1. This is for device Rx, therefor a cold page is preferred.
2907 * 2. The expectation is the user wants a compound page.
2908 * 3. If requesting a order 0 page it will not be compound
2909 * due to the check to see if order has a value in prep_new_page
2910 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2911 * code in gfp_to_alloc_flags that should be enforcing this.
2912 */
2913 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2914
2915 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2916 }
2917
dev_alloc_pages(unsigned int order)2918 static inline struct page *dev_alloc_pages(unsigned int order)
2919 {
2920 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2921 }
2922
2923 /**
2924 * __dev_alloc_page - allocate a page for network Rx
2925 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2926 *
2927 * Allocate a new page.
2928 *
2929 * %NULL is returned if there is no free memory.
2930 */
__dev_alloc_page(gfp_t gfp_mask)2931 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2932 {
2933 return __dev_alloc_pages(gfp_mask, 0);
2934 }
2935
dev_alloc_page(void)2936 static inline struct page *dev_alloc_page(void)
2937 {
2938 return dev_alloc_pages(0);
2939 }
2940
2941 /**
2942 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2943 * @page: The page that was allocated from skb_alloc_page
2944 * @skb: The skb that may need pfmemalloc set
2945 */
skb_propagate_pfmemalloc(struct page * page,struct sk_buff * skb)2946 static inline void skb_propagate_pfmemalloc(struct page *page,
2947 struct sk_buff *skb)
2948 {
2949 if (page_is_pfmemalloc(page))
2950 skb->pfmemalloc = true;
2951 }
2952
2953 /**
2954 * skb_frag_off() - Returns the offset of a skb fragment
2955 * @frag: the paged fragment
2956 */
skb_frag_off(const skb_frag_t * frag)2957 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
2958 {
2959 return frag->bv_offset;
2960 }
2961
2962 /**
2963 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
2964 * @frag: skb fragment
2965 * @delta: value to add
2966 */
skb_frag_off_add(skb_frag_t * frag,int delta)2967 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
2968 {
2969 frag->bv_offset += delta;
2970 }
2971
2972 /**
2973 * skb_frag_off_set() - Sets the offset of a skb fragment
2974 * @frag: skb fragment
2975 * @offset: offset of fragment
2976 */
skb_frag_off_set(skb_frag_t * frag,unsigned int offset)2977 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
2978 {
2979 frag->bv_offset = offset;
2980 }
2981
2982 /**
2983 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
2984 * @fragto: skb fragment where offset is set
2985 * @fragfrom: skb fragment offset is copied from
2986 */
skb_frag_off_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)2987 static inline void skb_frag_off_copy(skb_frag_t *fragto,
2988 const skb_frag_t *fragfrom)
2989 {
2990 fragto->bv_offset = fragfrom->bv_offset;
2991 }
2992
2993 /**
2994 * skb_frag_page - retrieve the page referred to by a paged fragment
2995 * @frag: the paged fragment
2996 *
2997 * Returns the &struct page associated with @frag.
2998 */
skb_frag_page(const skb_frag_t * frag)2999 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3000 {
3001 return frag->bv_page;
3002 }
3003
3004 /**
3005 * __skb_frag_ref - take an addition reference on a paged fragment.
3006 * @frag: the paged fragment
3007 *
3008 * Takes an additional reference on the paged fragment @frag.
3009 */
__skb_frag_ref(skb_frag_t * frag)3010 static inline void __skb_frag_ref(skb_frag_t *frag)
3011 {
3012 get_page(skb_frag_page(frag));
3013 }
3014
3015 /**
3016 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3017 * @skb: the buffer
3018 * @f: the fragment offset.
3019 *
3020 * Takes an additional reference on the @f'th paged fragment of @skb.
3021 */
skb_frag_ref(struct sk_buff * skb,int f)3022 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3023 {
3024 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3025 }
3026
3027 /**
3028 * __skb_frag_unref - release a reference on a paged fragment.
3029 * @frag: the paged fragment
3030 *
3031 * Releases a reference on the paged fragment @frag.
3032 */
__skb_frag_unref(skb_frag_t * frag)3033 static inline void __skb_frag_unref(skb_frag_t *frag)
3034 {
3035 put_page(skb_frag_page(frag));
3036 }
3037
3038 /**
3039 * skb_frag_unref - release a reference on a paged fragment of an skb.
3040 * @skb: the buffer
3041 * @f: the fragment offset
3042 *
3043 * Releases a reference on the @f'th paged fragment of @skb.
3044 */
skb_frag_unref(struct sk_buff * skb,int f)3045 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3046 {
3047 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
3048 }
3049
3050 /**
3051 * skb_frag_address - gets the address of the data contained in a paged fragment
3052 * @frag: the paged fragment buffer
3053 *
3054 * Returns the address of the data within @frag. The page must already
3055 * be mapped.
3056 */
skb_frag_address(const skb_frag_t * frag)3057 static inline void *skb_frag_address(const skb_frag_t *frag)
3058 {
3059 return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3060 }
3061
3062 /**
3063 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3064 * @frag: the paged fragment buffer
3065 *
3066 * Returns the address of the data within @frag. Checks that the page
3067 * is mapped and returns %NULL otherwise.
3068 */
skb_frag_address_safe(const skb_frag_t * frag)3069 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3070 {
3071 void *ptr = page_address(skb_frag_page(frag));
3072 if (unlikely(!ptr))
3073 return NULL;
3074
3075 return ptr + skb_frag_off(frag);
3076 }
3077
3078 /**
3079 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3080 * @fragto: skb fragment where page is set
3081 * @fragfrom: skb fragment page is copied from
3082 */
skb_frag_page_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3083 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3084 const skb_frag_t *fragfrom)
3085 {
3086 fragto->bv_page = fragfrom->bv_page;
3087 }
3088
3089 /**
3090 * __skb_frag_set_page - sets the page contained in a paged fragment
3091 * @frag: the paged fragment
3092 * @page: the page to set
3093 *
3094 * Sets the fragment @frag to contain @page.
3095 */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)3096 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3097 {
3098 frag->bv_page = page;
3099 }
3100
3101 /**
3102 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3103 * @skb: the buffer
3104 * @f: the fragment offset
3105 * @page: the page to set
3106 *
3107 * Sets the @f'th fragment of @skb to contain @page.
3108 */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)3109 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3110 struct page *page)
3111 {
3112 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3113 }
3114
3115 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3116
3117 /**
3118 * skb_frag_dma_map - maps a paged fragment via the DMA API
3119 * @dev: the device to map the fragment to
3120 * @frag: the paged fragment to map
3121 * @offset: the offset within the fragment (starting at the
3122 * fragment's own offset)
3123 * @size: the number of bytes to map
3124 * @dir: the direction of the mapping (``PCI_DMA_*``)
3125 *
3126 * Maps the page associated with @frag to @device.
3127 */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)3128 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3129 const skb_frag_t *frag,
3130 size_t offset, size_t size,
3131 enum dma_data_direction dir)
3132 {
3133 return dma_map_page(dev, skb_frag_page(frag),
3134 skb_frag_off(frag) + offset, size, dir);
3135 }
3136
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)3137 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3138 gfp_t gfp_mask)
3139 {
3140 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3141 }
3142
3143
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)3144 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3145 gfp_t gfp_mask)
3146 {
3147 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3148 }
3149
3150
3151 /**
3152 * skb_clone_writable - is the header of a clone writable
3153 * @skb: buffer to check
3154 * @len: length up to which to write
3155 *
3156 * Returns true if modifying the header part of the cloned buffer
3157 * does not requires the data to be copied.
3158 */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)3159 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3160 {
3161 return !skb_header_cloned(skb) &&
3162 skb_headroom(skb) + len <= skb->hdr_len;
3163 }
3164
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)3165 static inline int skb_try_make_writable(struct sk_buff *skb,
3166 unsigned int write_len)
3167 {
3168 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3169 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3170 }
3171
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)3172 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3173 int cloned)
3174 {
3175 int delta = 0;
3176
3177 if (headroom > skb_headroom(skb))
3178 delta = headroom - skb_headroom(skb);
3179
3180 if (delta || cloned)
3181 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3182 GFP_ATOMIC);
3183 return 0;
3184 }
3185
3186 /**
3187 * skb_cow - copy header of skb when it is required
3188 * @skb: buffer to cow
3189 * @headroom: needed headroom
3190 *
3191 * If the skb passed lacks sufficient headroom or its data part
3192 * is shared, data is reallocated. If reallocation fails, an error
3193 * is returned and original skb is not changed.
3194 *
3195 * The result is skb with writable area skb->head...skb->tail
3196 * and at least @headroom of space at head.
3197 */
skb_cow(struct sk_buff * skb,unsigned int headroom)3198 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3199 {
3200 return __skb_cow(skb, headroom, skb_cloned(skb));
3201 }
3202
3203 /**
3204 * skb_cow_head - skb_cow but only making the head writable
3205 * @skb: buffer to cow
3206 * @headroom: needed headroom
3207 *
3208 * This function is identical to skb_cow except that we replace the
3209 * skb_cloned check by skb_header_cloned. It should be used when
3210 * you only need to push on some header and do not need to modify
3211 * the data.
3212 */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)3213 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3214 {
3215 return __skb_cow(skb, headroom, skb_header_cloned(skb));
3216 }
3217
3218 /**
3219 * skb_padto - pad an skbuff up to a minimal size
3220 * @skb: buffer to pad
3221 * @len: minimal length
3222 *
3223 * Pads up a buffer to ensure the trailing bytes exist and are
3224 * blanked. If the buffer already contains sufficient data it
3225 * is untouched. Otherwise it is extended. Returns zero on
3226 * success. The skb is freed on error.
3227 */
skb_padto(struct sk_buff * skb,unsigned int len)3228 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3229 {
3230 unsigned int size = skb->len;
3231 if (likely(size >= len))
3232 return 0;
3233 return skb_pad(skb, len - size);
3234 }
3235
3236 /**
3237 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
3238 * @skb: buffer to pad
3239 * @len: minimal length
3240 * @free_on_error: free buffer on error
3241 *
3242 * Pads up a buffer to ensure the trailing bytes exist and are
3243 * blanked. If the buffer already contains sufficient data it
3244 * is untouched. Otherwise it is extended. Returns zero on
3245 * success. The skb is freed on error if @free_on_error is true.
3246 */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3247 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3248 unsigned int len,
3249 bool free_on_error)
3250 {
3251 unsigned int size = skb->len;
3252
3253 if (unlikely(size < len)) {
3254 len -= size;
3255 if (__skb_pad(skb, len, free_on_error))
3256 return -ENOMEM;
3257 __skb_put(skb, len);
3258 }
3259 return 0;
3260 }
3261
3262 /**
3263 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3264 * @skb: buffer to pad
3265 * @len: minimal length
3266 *
3267 * Pads up a buffer to ensure the trailing bytes exist and are
3268 * blanked. If the buffer already contains sufficient data it
3269 * is untouched. Otherwise it is extended. Returns zero on
3270 * success. The skb is freed on error.
3271 */
skb_put_padto(struct sk_buff * skb,unsigned int len)3272 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3273 {
3274 return __skb_put_padto(skb, len, true);
3275 }
3276
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)3277 static inline int skb_add_data(struct sk_buff *skb,
3278 struct iov_iter *from, int copy)
3279 {
3280 const int off = skb->len;
3281
3282 if (skb->ip_summed == CHECKSUM_NONE) {
3283 __wsum csum = 0;
3284 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3285 &csum, from)) {
3286 skb->csum = csum_block_add(skb->csum, csum, off);
3287 return 0;
3288 }
3289 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3290 return 0;
3291
3292 __skb_trim(skb, off);
3293 return -EFAULT;
3294 }
3295
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3296 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3297 const struct page *page, int off)
3298 {
3299 if (skb_zcopy(skb))
3300 return false;
3301 if (i) {
3302 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3303
3304 return page == skb_frag_page(frag) &&
3305 off == skb_frag_off(frag) + skb_frag_size(frag);
3306 }
3307 return false;
3308 }
3309
__skb_linearize(struct sk_buff * skb)3310 static inline int __skb_linearize(struct sk_buff *skb)
3311 {
3312 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3313 }
3314
3315 /**
3316 * skb_linearize - convert paged skb to linear one
3317 * @skb: buffer to linarize
3318 *
3319 * If there is no free memory -ENOMEM is returned, otherwise zero
3320 * is returned and the old skb data released.
3321 */
skb_linearize(struct sk_buff * skb)3322 static inline int skb_linearize(struct sk_buff *skb)
3323 {
3324 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3325 }
3326
3327 /**
3328 * skb_has_shared_frag - can any frag be overwritten
3329 * @skb: buffer to test
3330 *
3331 * Return true if the skb has at least one frag that might be modified
3332 * by an external entity (as in vmsplice()/sendfile())
3333 */
skb_has_shared_frag(const struct sk_buff * skb)3334 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3335 {
3336 return skb_is_nonlinear(skb) &&
3337 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3338 }
3339
3340 /**
3341 * skb_linearize_cow - make sure skb is linear and writable
3342 * @skb: buffer to process
3343 *
3344 * If there is no free memory -ENOMEM is returned, otherwise zero
3345 * is returned and the old skb data released.
3346 */
skb_linearize_cow(struct sk_buff * skb)3347 static inline int skb_linearize_cow(struct sk_buff *skb)
3348 {
3349 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3350 __skb_linearize(skb) : 0;
3351 }
3352
3353 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3354 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3355 unsigned int off)
3356 {
3357 if (skb->ip_summed == CHECKSUM_COMPLETE)
3358 skb->csum = csum_block_sub(skb->csum,
3359 csum_partial(start, len, 0), off);
3360 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3361 skb_checksum_start_offset(skb) < 0)
3362 skb->ip_summed = CHECKSUM_NONE;
3363 }
3364
3365 /**
3366 * skb_postpull_rcsum - update checksum for received skb after pull
3367 * @skb: buffer to update
3368 * @start: start of data before pull
3369 * @len: length of data pulled
3370 *
3371 * After doing a pull on a received packet, you need to call this to
3372 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3373 * CHECKSUM_NONE so that it can be recomputed from scratch.
3374 */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3375 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3376 const void *start, unsigned int len)
3377 {
3378 __skb_postpull_rcsum(skb, start, len, 0);
3379 }
3380
3381 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3382 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3383 unsigned int off)
3384 {
3385 if (skb->ip_summed == CHECKSUM_COMPLETE)
3386 skb->csum = csum_block_add(skb->csum,
3387 csum_partial(start, len, 0), off);
3388 }
3389
3390 /**
3391 * skb_postpush_rcsum - update checksum for received skb after push
3392 * @skb: buffer to update
3393 * @start: start of data after push
3394 * @len: length of data pushed
3395 *
3396 * After doing a push on a received packet, you need to call this to
3397 * update the CHECKSUM_COMPLETE checksum.
3398 */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3399 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3400 const void *start, unsigned int len)
3401 {
3402 __skb_postpush_rcsum(skb, start, len, 0);
3403 }
3404
3405 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3406
3407 /**
3408 * skb_push_rcsum - push skb and update receive checksum
3409 * @skb: buffer to update
3410 * @len: length of data pulled
3411 *
3412 * This function performs an skb_push on the packet and updates
3413 * the CHECKSUM_COMPLETE checksum. It should be used on
3414 * receive path processing instead of skb_push unless you know
3415 * that the checksum difference is zero (e.g., a valid IP header)
3416 * or you are setting ip_summed to CHECKSUM_NONE.
3417 */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3418 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3419 {
3420 skb_push(skb, len);
3421 skb_postpush_rcsum(skb, skb->data, len);
3422 return skb->data;
3423 }
3424
3425 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3426 /**
3427 * pskb_trim_rcsum - trim received skb and update checksum
3428 * @skb: buffer to trim
3429 * @len: new length
3430 *
3431 * This is exactly the same as pskb_trim except that it ensures the
3432 * checksum of received packets are still valid after the operation.
3433 * It can change skb pointers.
3434 */
3435
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3436 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3437 {
3438 if (likely(len >= skb->len))
3439 return 0;
3440 return pskb_trim_rcsum_slow(skb, len);
3441 }
3442
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3443 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3444 {
3445 if (skb->ip_summed == CHECKSUM_COMPLETE)
3446 skb->ip_summed = CHECKSUM_NONE;
3447 __skb_trim(skb, len);
3448 return 0;
3449 }
3450
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3451 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3452 {
3453 if (skb->ip_summed == CHECKSUM_COMPLETE)
3454 skb->ip_summed = CHECKSUM_NONE;
3455 return __skb_grow(skb, len);
3456 }
3457
3458 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3459 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3460 #define skb_rb_last(root) rb_to_skb(rb_last(root))
3461 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3462 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3463
3464 #define skb_queue_walk(queue, skb) \
3465 for (skb = (queue)->next; \
3466 skb != (struct sk_buff *)(queue); \
3467 skb = skb->next)
3468
3469 #define skb_queue_walk_safe(queue, skb, tmp) \
3470 for (skb = (queue)->next, tmp = skb->next; \
3471 skb != (struct sk_buff *)(queue); \
3472 skb = tmp, tmp = skb->next)
3473
3474 #define skb_queue_walk_from(queue, skb) \
3475 for (; skb != (struct sk_buff *)(queue); \
3476 skb = skb->next)
3477
3478 #define skb_rbtree_walk(skb, root) \
3479 for (skb = skb_rb_first(root); skb != NULL; \
3480 skb = skb_rb_next(skb))
3481
3482 #define skb_rbtree_walk_from(skb) \
3483 for (; skb != NULL; \
3484 skb = skb_rb_next(skb))
3485
3486 #define skb_rbtree_walk_from_safe(skb, tmp) \
3487 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3488 skb = tmp)
3489
3490 #define skb_queue_walk_from_safe(queue, skb, tmp) \
3491 for (tmp = skb->next; \
3492 skb != (struct sk_buff *)(queue); \
3493 skb = tmp, tmp = skb->next)
3494
3495 #define skb_queue_reverse_walk(queue, skb) \
3496 for (skb = (queue)->prev; \
3497 skb != (struct sk_buff *)(queue); \
3498 skb = skb->prev)
3499
3500 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3501 for (skb = (queue)->prev, tmp = skb->prev; \
3502 skb != (struct sk_buff *)(queue); \
3503 skb = tmp, tmp = skb->prev)
3504
3505 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3506 for (tmp = skb->prev; \
3507 skb != (struct sk_buff *)(queue); \
3508 skb = tmp, tmp = skb->prev)
3509
skb_has_frag_list(const struct sk_buff * skb)3510 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3511 {
3512 return skb_shinfo(skb)->frag_list != NULL;
3513 }
3514
skb_frag_list_init(struct sk_buff * skb)3515 static inline void skb_frag_list_init(struct sk_buff *skb)
3516 {
3517 skb_shinfo(skb)->frag_list = NULL;
3518 }
3519
3520 #define skb_walk_frags(skb, iter) \
3521 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3522
3523
3524 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3525 int *err, long *timeo_p,
3526 const struct sk_buff *skb);
3527 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3528 struct sk_buff_head *queue,
3529 unsigned int flags,
3530 int *off, int *err,
3531 struct sk_buff **last);
3532 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3533 struct sk_buff_head *queue,
3534 unsigned int flags, int *off, int *err,
3535 struct sk_buff **last);
3536 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3537 struct sk_buff_head *sk_queue,
3538 unsigned int flags, int *off, int *err);
3539 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3540 int *err);
3541 __poll_t datagram_poll(struct file *file, struct socket *sock,
3542 struct poll_table_struct *wait);
3543 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3544 struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)3545 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3546 struct msghdr *msg, int size)
3547 {
3548 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3549 }
3550 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3551 struct msghdr *msg);
3552 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3553 struct iov_iter *to, int len,
3554 struct ahash_request *hash);
3555 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3556 struct iov_iter *from, int len);
3557 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3558 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3559 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
skb_free_datagram_locked(struct sock * sk,struct sk_buff * skb)3560 static inline void skb_free_datagram_locked(struct sock *sk,
3561 struct sk_buff *skb)
3562 {
3563 __skb_free_datagram_locked(sk, skb, 0);
3564 }
3565 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3566 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3567 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3568 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3569 int len);
3570 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3571 struct pipe_inode_info *pipe, unsigned int len,
3572 unsigned int flags);
3573 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3574 int len);
3575 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3576 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3577 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3578 int len, int hlen);
3579 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3580 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3581 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3582 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3583 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3584 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3585 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3586 unsigned int offset);
3587 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3588 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3589 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3590 int skb_vlan_pop(struct sk_buff *skb);
3591 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3592 int skb_eth_pop(struct sk_buff *skb);
3593 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3594 const unsigned char *src);
3595 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3596 int mac_len, bool ethernet);
3597 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3598 bool ethernet);
3599 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3600 int skb_mpls_dec_ttl(struct sk_buff *skb);
3601 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3602 gfp_t gfp);
3603
memcpy_from_msg(void * data,struct msghdr * msg,int len)3604 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3605 {
3606 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3607 }
3608
memcpy_to_msg(struct msghdr * msg,void * data,int len)3609 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3610 {
3611 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3612 }
3613
3614 struct skb_checksum_ops {
3615 __wsum (*update)(const void *mem, int len, __wsum wsum);
3616 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3617 };
3618
3619 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3620
3621 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3622 __wsum csum, const struct skb_checksum_ops *ops);
3623 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3624 __wsum csum);
3625
3626 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * data,int hlen,void * buffer)3627 __skb_header_pointer(const struct sk_buff *skb, int offset,
3628 int len, void *data, int hlen, void *buffer)
3629 {
3630 if (hlen - offset >= len)
3631 return data + offset;
3632
3633 if (!skb ||
3634 skb_copy_bits(skb, offset, buffer, len) < 0)
3635 return NULL;
3636
3637 return buffer;
3638 }
3639
3640 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)3641 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3642 {
3643 return __skb_header_pointer(skb, offset, len, skb->data,
3644 skb_headlen(skb), buffer);
3645 }
3646
3647 /**
3648 * skb_needs_linearize - check if we need to linearize a given skb
3649 * depending on the given device features.
3650 * @skb: socket buffer to check
3651 * @features: net device features
3652 *
3653 * Returns true if either:
3654 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3655 * 2. skb is fragmented and the device does not support SG.
3656 */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)3657 static inline bool skb_needs_linearize(struct sk_buff *skb,
3658 netdev_features_t features)
3659 {
3660 return skb_is_nonlinear(skb) &&
3661 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3662 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3663 }
3664
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)3665 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3666 void *to,
3667 const unsigned int len)
3668 {
3669 memcpy(to, skb->data, len);
3670 }
3671
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)3672 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3673 const int offset, void *to,
3674 const unsigned int len)
3675 {
3676 memcpy(to, skb->data + offset, len);
3677 }
3678
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)3679 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3680 const void *from,
3681 const unsigned int len)
3682 {
3683 memcpy(skb->data, from, len);
3684 }
3685
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)3686 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3687 const int offset,
3688 const void *from,
3689 const unsigned int len)
3690 {
3691 memcpy(skb->data + offset, from, len);
3692 }
3693
3694 void skb_init(void);
3695
skb_get_ktime(const struct sk_buff * skb)3696 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3697 {
3698 return skb->tstamp;
3699 }
3700
3701 /**
3702 * skb_get_timestamp - get timestamp from a skb
3703 * @skb: skb to get stamp from
3704 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
3705 *
3706 * Timestamps are stored in the skb as offsets to a base timestamp.
3707 * This function converts the offset back to a struct timeval and stores
3708 * it in stamp.
3709 */
skb_get_timestamp(const struct sk_buff * skb,struct __kernel_old_timeval * stamp)3710 static inline void skb_get_timestamp(const struct sk_buff *skb,
3711 struct __kernel_old_timeval *stamp)
3712 {
3713 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
3714 }
3715
skb_get_new_timestamp(const struct sk_buff * skb,struct __kernel_sock_timeval * stamp)3716 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3717 struct __kernel_sock_timeval *stamp)
3718 {
3719 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3720
3721 stamp->tv_sec = ts.tv_sec;
3722 stamp->tv_usec = ts.tv_nsec / 1000;
3723 }
3724
skb_get_timestampns(const struct sk_buff * skb,struct __kernel_old_timespec * stamp)3725 static inline void skb_get_timestampns(const struct sk_buff *skb,
3726 struct __kernel_old_timespec *stamp)
3727 {
3728 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3729
3730 stamp->tv_sec = ts.tv_sec;
3731 stamp->tv_nsec = ts.tv_nsec;
3732 }
3733
skb_get_new_timestampns(const struct sk_buff * skb,struct __kernel_timespec * stamp)3734 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3735 struct __kernel_timespec *stamp)
3736 {
3737 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3738
3739 stamp->tv_sec = ts.tv_sec;
3740 stamp->tv_nsec = ts.tv_nsec;
3741 }
3742
__net_timestamp(struct sk_buff * skb)3743 static inline void __net_timestamp(struct sk_buff *skb)
3744 {
3745 skb->tstamp = ktime_get_real();
3746 }
3747
net_timedelta(ktime_t t)3748 static inline ktime_t net_timedelta(ktime_t t)
3749 {
3750 return ktime_sub(ktime_get_real(), t);
3751 }
3752
net_invalid_timestamp(void)3753 static inline ktime_t net_invalid_timestamp(void)
3754 {
3755 return 0;
3756 }
3757
skb_metadata_len(const struct sk_buff * skb)3758 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3759 {
3760 return skb_shinfo(skb)->meta_len;
3761 }
3762
skb_metadata_end(const struct sk_buff * skb)3763 static inline void *skb_metadata_end(const struct sk_buff *skb)
3764 {
3765 return skb_mac_header(skb);
3766 }
3767
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)3768 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3769 const struct sk_buff *skb_b,
3770 u8 meta_len)
3771 {
3772 const void *a = skb_metadata_end(skb_a);
3773 const void *b = skb_metadata_end(skb_b);
3774 /* Using more efficient varaiant than plain call to memcmp(). */
3775 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3776 u64 diffs = 0;
3777
3778 switch (meta_len) {
3779 #define __it(x, op) (x -= sizeof(u##op))
3780 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3781 case 32: diffs |= __it_diff(a, b, 64);
3782 fallthrough;
3783 case 24: diffs |= __it_diff(a, b, 64);
3784 fallthrough;
3785 case 16: diffs |= __it_diff(a, b, 64);
3786 fallthrough;
3787 case 8: diffs |= __it_diff(a, b, 64);
3788 break;
3789 case 28: diffs |= __it_diff(a, b, 64);
3790 fallthrough;
3791 case 20: diffs |= __it_diff(a, b, 64);
3792 fallthrough;
3793 case 12: diffs |= __it_diff(a, b, 64);
3794 fallthrough;
3795 case 4: diffs |= __it_diff(a, b, 32);
3796 break;
3797 }
3798 return diffs;
3799 #else
3800 return memcmp(a - meta_len, b - meta_len, meta_len);
3801 #endif
3802 }
3803
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)3804 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3805 const struct sk_buff *skb_b)
3806 {
3807 u8 len_a = skb_metadata_len(skb_a);
3808 u8 len_b = skb_metadata_len(skb_b);
3809
3810 if (!(len_a | len_b))
3811 return false;
3812
3813 return len_a != len_b ?
3814 true : __skb_metadata_differs(skb_a, skb_b, len_a);
3815 }
3816
skb_metadata_set(struct sk_buff * skb,u8 meta_len)3817 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3818 {
3819 skb_shinfo(skb)->meta_len = meta_len;
3820 }
3821
skb_metadata_clear(struct sk_buff * skb)3822 static inline void skb_metadata_clear(struct sk_buff *skb)
3823 {
3824 skb_metadata_set(skb, 0);
3825 }
3826
3827 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3828
3829 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3830
3831 void skb_clone_tx_timestamp(struct sk_buff *skb);
3832 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3833
3834 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3835
skb_clone_tx_timestamp(struct sk_buff * skb)3836 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3837 {
3838 }
3839
skb_defer_rx_timestamp(struct sk_buff * skb)3840 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3841 {
3842 return false;
3843 }
3844
3845 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3846
3847 /**
3848 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3849 *
3850 * PHY drivers may accept clones of transmitted packets for
3851 * timestamping via their phy_driver.txtstamp method. These drivers
3852 * must call this function to return the skb back to the stack with a
3853 * timestamp.
3854 *
3855 * @skb: clone of the original outgoing packet
3856 * @hwtstamps: hardware time stamps
3857 *
3858 */
3859 void skb_complete_tx_timestamp(struct sk_buff *skb,
3860 struct skb_shared_hwtstamps *hwtstamps);
3861
3862 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3863 struct skb_shared_hwtstamps *hwtstamps,
3864 struct sock *sk, int tstype);
3865
3866 /**
3867 * skb_tstamp_tx - queue clone of skb with send time stamps
3868 * @orig_skb: the original outgoing packet
3869 * @hwtstamps: hardware time stamps, may be NULL if not available
3870 *
3871 * If the skb has a socket associated, then this function clones the
3872 * skb (thus sharing the actual data and optional structures), stores
3873 * the optional hardware time stamping information (if non NULL) or
3874 * generates a software time stamp (otherwise), then queues the clone
3875 * to the error queue of the socket. Errors are silently ignored.
3876 */
3877 void skb_tstamp_tx(struct sk_buff *orig_skb,
3878 struct skb_shared_hwtstamps *hwtstamps);
3879
3880 /**
3881 * skb_tx_timestamp() - Driver hook for transmit timestamping
3882 *
3883 * Ethernet MAC Drivers should call this function in their hard_xmit()
3884 * function immediately before giving the sk_buff to the MAC hardware.
3885 *
3886 * Specifically, one should make absolutely sure that this function is
3887 * called before TX completion of this packet can trigger. Otherwise
3888 * the packet could potentially already be freed.
3889 *
3890 * @skb: A socket buffer.
3891 */
skb_tx_timestamp(struct sk_buff * skb)3892 static inline void skb_tx_timestamp(struct sk_buff *skb)
3893 {
3894 skb_clone_tx_timestamp(skb);
3895 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3896 skb_tstamp_tx(skb, NULL);
3897 }
3898
3899 /**
3900 * skb_complete_wifi_ack - deliver skb with wifi status
3901 *
3902 * @skb: the original outgoing packet
3903 * @acked: ack status
3904 *
3905 */
3906 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3907
3908 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3909 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3910
skb_csum_unnecessary(const struct sk_buff * skb)3911 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3912 {
3913 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3914 skb->csum_valid ||
3915 (skb->ip_summed == CHECKSUM_PARTIAL &&
3916 skb_checksum_start_offset(skb) >= 0));
3917 }
3918
3919 /**
3920 * skb_checksum_complete - Calculate checksum of an entire packet
3921 * @skb: packet to process
3922 *
3923 * This function calculates the checksum over the entire packet plus
3924 * the value of skb->csum. The latter can be used to supply the
3925 * checksum of a pseudo header as used by TCP/UDP. It returns the
3926 * checksum.
3927 *
3928 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3929 * this function can be used to verify that checksum on received
3930 * packets. In that case the function should return zero if the
3931 * checksum is correct. In particular, this function will return zero
3932 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3933 * hardware has already verified the correctness of the checksum.
3934 */
skb_checksum_complete(struct sk_buff * skb)3935 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3936 {
3937 return skb_csum_unnecessary(skb) ?
3938 0 : __skb_checksum_complete(skb);
3939 }
3940
__skb_decr_checksum_unnecessary(struct sk_buff * skb)3941 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3942 {
3943 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3944 if (skb->csum_level == 0)
3945 skb->ip_summed = CHECKSUM_NONE;
3946 else
3947 skb->csum_level--;
3948 }
3949 }
3950
__skb_incr_checksum_unnecessary(struct sk_buff * skb)3951 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3952 {
3953 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3954 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3955 skb->csum_level++;
3956 } else if (skb->ip_summed == CHECKSUM_NONE) {
3957 skb->ip_summed = CHECKSUM_UNNECESSARY;
3958 skb->csum_level = 0;
3959 }
3960 }
3961
__skb_reset_checksum_unnecessary(struct sk_buff * skb)3962 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
3963 {
3964 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3965 skb->ip_summed = CHECKSUM_NONE;
3966 skb->csum_level = 0;
3967 }
3968 }
3969
3970 /* Check if we need to perform checksum complete validation.
3971 *
3972 * Returns true if checksum complete is needed, false otherwise
3973 * (either checksum is unnecessary or zero checksum is allowed).
3974 */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)3975 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3976 bool zero_okay,
3977 __sum16 check)
3978 {
3979 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3980 skb->csum_valid = 1;
3981 __skb_decr_checksum_unnecessary(skb);
3982 return false;
3983 }
3984
3985 return true;
3986 }
3987
3988 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3989 * in checksum_init.
3990 */
3991 #define CHECKSUM_BREAK 76
3992
3993 /* Unset checksum-complete
3994 *
3995 * Unset checksum complete can be done when packet is being modified
3996 * (uncompressed for instance) and checksum-complete value is
3997 * invalidated.
3998 */
skb_checksum_complete_unset(struct sk_buff * skb)3999 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4000 {
4001 if (skb->ip_summed == CHECKSUM_COMPLETE)
4002 skb->ip_summed = CHECKSUM_NONE;
4003 }
4004
4005 /* Validate (init) checksum based on checksum complete.
4006 *
4007 * Return values:
4008 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
4009 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4010 * checksum is stored in skb->csum for use in __skb_checksum_complete
4011 * non-zero: value of invalid checksum
4012 *
4013 */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)4014 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4015 bool complete,
4016 __wsum psum)
4017 {
4018 if (skb->ip_summed == CHECKSUM_COMPLETE) {
4019 if (!csum_fold(csum_add(psum, skb->csum))) {
4020 skb->csum_valid = 1;
4021 return 0;
4022 }
4023 }
4024
4025 skb->csum = psum;
4026
4027 if (complete || skb->len <= CHECKSUM_BREAK) {
4028 __sum16 csum;
4029
4030 csum = __skb_checksum_complete(skb);
4031 skb->csum_valid = !csum;
4032 return csum;
4033 }
4034
4035 return 0;
4036 }
4037
null_compute_pseudo(struct sk_buff * skb,int proto)4038 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4039 {
4040 return 0;
4041 }
4042
4043 /* Perform checksum validate (init). Note that this is a macro since we only
4044 * want to calculate the pseudo header which is an input function if necessary.
4045 * First we try to validate without any computation (checksum unnecessary) and
4046 * then calculate based on checksum complete calling the function to compute
4047 * pseudo header.
4048 *
4049 * Return values:
4050 * 0: checksum is validated or try to in skb_checksum_complete
4051 * non-zero: value of invalid checksum
4052 */
4053 #define __skb_checksum_validate(skb, proto, complete, \
4054 zero_okay, check, compute_pseudo) \
4055 ({ \
4056 __sum16 __ret = 0; \
4057 skb->csum_valid = 0; \
4058 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
4059 __ret = __skb_checksum_validate_complete(skb, \
4060 complete, compute_pseudo(skb, proto)); \
4061 __ret; \
4062 })
4063
4064 #define skb_checksum_init(skb, proto, compute_pseudo) \
4065 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4066
4067 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4068 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4069
4070 #define skb_checksum_validate(skb, proto, compute_pseudo) \
4071 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4072
4073 #define skb_checksum_validate_zero_check(skb, proto, check, \
4074 compute_pseudo) \
4075 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4076
4077 #define skb_checksum_simple_validate(skb) \
4078 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4079
__skb_checksum_convert_check(struct sk_buff * skb)4080 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4081 {
4082 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4083 }
4084
__skb_checksum_convert(struct sk_buff * skb,__wsum pseudo)4085 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4086 {
4087 skb->csum = ~pseudo;
4088 skb->ip_summed = CHECKSUM_COMPLETE;
4089 }
4090
4091 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \
4092 do { \
4093 if (__skb_checksum_convert_check(skb)) \
4094 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4095 } while (0)
4096
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)4097 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4098 u16 start, u16 offset)
4099 {
4100 skb->ip_summed = CHECKSUM_PARTIAL;
4101 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4102 skb->csum_offset = offset - start;
4103 }
4104
4105 /* Update skbuf and packet to reflect the remote checksum offload operation.
4106 * When called, ptr indicates the starting point for skb->csum when
4107 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4108 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4109 */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)4110 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4111 int start, int offset, bool nopartial)
4112 {
4113 __wsum delta;
4114
4115 if (!nopartial) {
4116 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4117 return;
4118 }
4119
4120 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4121 __skb_checksum_complete(skb);
4122 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4123 }
4124
4125 delta = remcsum_adjust(ptr, skb->csum, start, offset);
4126
4127 /* Adjust skb->csum since we changed the packet */
4128 skb->csum = csum_add(skb->csum, delta);
4129 }
4130
skb_nfct(const struct sk_buff * skb)4131 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4132 {
4133 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4134 return (void *)(skb->_nfct & NFCT_PTRMASK);
4135 #else
4136 return NULL;
4137 #endif
4138 }
4139
skb_get_nfct(const struct sk_buff * skb)4140 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4141 {
4142 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4143 return skb->_nfct;
4144 #else
4145 return 0UL;
4146 #endif
4147 }
4148
skb_set_nfct(struct sk_buff * skb,unsigned long nfct)4149 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4150 {
4151 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4152 skb->_nfct = nfct;
4153 #endif
4154 }
4155
4156 #ifdef CONFIG_SKB_EXTENSIONS
4157 enum skb_ext_id {
4158 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4159 SKB_EXT_BRIDGE_NF,
4160 #endif
4161 #ifdef CONFIG_XFRM
4162 SKB_EXT_SEC_PATH,
4163 #endif
4164 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4165 TC_SKB_EXT,
4166 #endif
4167 #if IS_ENABLED(CONFIG_MPTCP)
4168 SKB_EXT_MPTCP,
4169 #endif
4170 SKB_EXT_NUM, /* must be last */
4171 };
4172
4173 /**
4174 * struct skb_ext - sk_buff extensions
4175 * @refcnt: 1 on allocation, deallocated on 0
4176 * @offset: offset to add to @data to obtain extension address
4177 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4178 * @data: start of extension data, variable sized
4179 *
4180 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4181 * to use 'u8' types while allowing up to 2kb worth of extension data.
4182 */
4183 struct skb_ext {
4184 refcount_t refcnt;
4185 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4186 u8 chunks; /* same */
4187 char data[] __aligned(8);
4188 };
4189
4190 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4191 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4192 struct skb_ext *ext);
4193 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4194 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4195 void __skb_ext_put(struct skb_ext *ext);
4196
skb_ext_put(struct sk_buff * skb)4197 static inline void skb_ext_put(struct sk_buff *skb)
4198 {
4199 if (skb->active_extensions)
4200 __skb_ext_put(skb->extensions);
4201 }
4202
__skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4203 static inline void __skb_ext_copy(struct sk_buff *dst,
4204 const struct sk_buff *src)
4205 {
4206 dst->active_extensions = src->active_extensions;
4207
4208 if (src->active_extensions) {
4209 struct skb_ext *ext = src->extensions;
4210
4211 refcount_inc(&ext->refcnt);
4212 dst->extensions = ext;
4213 }
4214 }
4215
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4216 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4217 {
4218 skb_ext_put(dst);
4219 __skb_ext_copy(dst, src);
4220 }
4221
__skb_ext_exist(const struct skb_ext * ext,enum skb_ext_id i)4222 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4223 {
4224 return !!ext->offset[i];
4225 }
4226
skb_ext_exist(const struct sk_buff * skb,enum skb_ext_id id)4227 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4228 {
4229 return skb->active_extensions & (1 << id);
4230 }
4231
skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)4232 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4233 {
4234 if (skb_ext_exist(skb, id))
4235 __skb_ext_del(skb, id);
4236 }
4237
skb_ext_find(const struct sk_buff * skb,enum skb_ext_id id)4238 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4239 {
4240 if (skb_ext_exist(skb, id)) {
4241 struct skb_ext *ext = skb->extensions;
4242
4243 return (void *)ext + (ext->offset[id] << 3);
4244 }
4245
4246 return NULL;
4247 }
4248
skb_ext_reset(struct sk_buff * skb)4249 static inline void skb_ext_reset(struct sk_buff *skb)
4250 {
4251 if (unlikely(skb->active_extensions)) {
4252 __skb_ext_put(skb->extensions);
4253 skb->active_extensions = 0;
4254 }
4255 }
4256
skb_has_extensions(struct sk_buff * skb)4257 static inline bool skb_has_extensions(struct sk_buff *skb)
4258 {
4259 return unlikely(skb->active_extensions);
4260 }
4261 #else
skb_ext_put(struct sk_buff * skb)4262 static inline void skb_ext_put(struct sk_buff *skb) {}
skb_ext_reset(struct sk_buff * skb)4263 static inline void skb_ext_reset(struct sk_buff *skb) {}
skb_ext_del(struct sk_buff * skb,int unused)4264 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
__skb_ext_copy(struct sk_buff * d,const struct sk_buff * s)4265 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * s)4266 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
skb_has_extensions(struct sk_buff * skb)4267 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4268 #endif /* CONFIG_SKB_EXTENSIONS */
4269
nf_reset_ct(struct sk_buff * skb)4270 static inline void nf_reset_ct(struct sk_buff *skb)
4271 {
4272 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4273 nf_conntrack_put(skb_nfct(skb));
4274 skb->_nfct = 0;
4275 #endif
4276 }
4277
nf_reset_trace(struct sk_buff * skb)4278 static inline void nf_reset_trace(struct sk_buff *skb)
4279 {
4280 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4281 skb->nf_trace = 0;
4282 #endif
4283 }
4284
ipvs_reset(struct sk_buff * skb)4285 static inline void ipvs_reset(struct sk_buff *skb)
4286 {
4287 #if IS_ENABLED(CONFIG_IP_VS)
4288 skb->ipvs_property = 0;
4289 #endif
4290 }
4291
4292 /* Note: This doesn't put any conntrack info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)4293 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4294 bool copy)
4295 {
4296 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4297 dst->_nfct = src->_nfct;
4298 nf_conntrack_get(skb_nfct(src));
4299 #endif
4300 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4301 if (copy)
4302 dst->nf_trace = src->nf_trace;
4303 #endif
4304 }
4305
nf_copy(struct sk_buff * dst,const struct sk_buff * src)4306 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4307 {
4308 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4309 nf_conntrack_put(skb_nfct(dst));
4310 #endif
4311 __nf_copy(dst, src, true);
4312 }
4313
4314 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4315 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4316 {
4317 to->secmark = from->secmark;
4318 }
4319
skb_init_secmark(struct sk_buff * skb)4320 static inline void skb_init_secmark(struct sk_buff *skb)
4321 {
4322 skb->secmark = 0;
4323 }
4324 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4325 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4326 { }
4327
skb_init_secmark(struct sk_buff * skb)4328 static inline void skb_init_secmark(struct sk_buff *skb)
4329 { }
4330 #endif
4331
secpath_exists(const struct sk_buff * skb)4332 static inline int secpath_exists(const struct sk_buff *skb)
4333 {
4334 #ifdef CONFIG_XFRM
4335 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4336 #else
4337 return 0;
4338 #endif
4339 }
4340
skb_irq_freeable(const struct sk_buff * skb)4341 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4342 {
4343 return !skb->destructor &&
4344 !secpath_exists(skb) &&
4345 !skb_nfct(skb) &&
4346 !skb->_skb_refdst &&
4347 !skb_has_frag_list(skb);
4348 }
4349
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)4350 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4351 {
4352 skb->queue_mapping = queue_mapping;
4353 }
4354
skb_get_queue_mapping(const struct sk_buff * skb)4355 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4356 {
4357 return skb->queue_mapping;
4358 }
4359
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)4360 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4361 {
4362 to->queue_mapping = from->queue_mapping;
4363 }
4364
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)4365 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4366 {
4367 skb->queue_mapping = rx_queue + 1;
4368 }
4369
skb_get_rx_queue(const struct sk_buff * skb)4370 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4371 {
4372 return skb->queue_mapping - 1;
4373 }
4374
skb_rx_queue_recorded(const struct sk_buff * skb)4375 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4376 {
4377 return skb->queue_mapping != 0;
4378 }
4379
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)4380 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4381 {
4382 skb->dst_pending_confirm = val;
4383 }
4384
skb_get_dst_pending_confirm(const struct sk_buff * skb)4385 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4386 {
4387 return skb->dst_pending_confirm != 0;
4388 }
4389
skb_sec_path(const struct sk_buff * skb)4390 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4391 {
4392 #ifdef CONFIG_XFRM
4393 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4394 #else
4395 return NULL;
4396 #endif
4397 }
4398
4399 /* Keeps track of mac header offset relative to skb->head.
4400 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4401 * For non-tunnel skb it points to skb_mac_header() and for
4402 * tunnel skb it points to outer mac header.
4403 * Keeps track of level of encapsulation of network headers.
4404 */
4405 struct skb_gso_cb {
4406 union {
4407 int mac_offset;
4408 int data_offset;
4409 };
4410 int encap_level;
4411 __wsum csum;
4412 __u16 csum_start;
4413 };
4414 #define SKB_GSO_CB_OFFSET 32
4415 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4416
skb_tnl_header_len(const struct sk_buff * inner_skb)4417 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4418 {
4419 return (skb_mac_header(inner_skb) - inner_skb->head) -
4420 SKB_GSO_CB(inner_skb)->mac_offset;
4421 }
4422
gso_pskb_expand_head(struct sk_buff * skb,int extra)4423 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4424 {
4425 int new_headroom, headroom;
4426 int ret;
4427
4428 headroom = skb_headroom(skb);
4429 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4430 if (ret)
4431 return ret;
4432
4433 new_headroom = skb_headroom(skb);
4434 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4435 return 0;
4436 }
4437
gso_reset_checksum(struct sk_buff * skb,__wsum res)4438 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4439 {
4440 /* Do not update partial checksums if remote checksum is enabled. */
4441 if (skb->remcsum_offload)
4442 return;
4443
4444 SKB_GSO_CB(skb)->csum = res;
4445 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4446 }
4447
4448 /* Compute the checksum for a gso segment. First compute the checksum value
4449 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4450 * then add in skb->csum (checksum from csum_start to end of packet).
4451 * skb->csum and csum_start are then updated to reflect the checksum of the
4452 * resultant packet starting from the transport header-- the resultant checksum
4453 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4454 * header.
4455 */
gso_make_checksum(struct sk_buff * skb,__wsum res)4456 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4457 {
4458 unsigned char *csum_start = skb_transport_header(skb);
4459 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4460 __wsum partial = SKB_GSO_CB(skb)->csum;
4461
4462 SKB_GSO_CB(skb)->csum = res;
4463 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4464
4465 return csum_fold(csum_partial(csum_start, plen, partial));
4466 }
4467
skb_is_gso(const struct sk_buff * skb)4468 static inline bool skb_is_gso(const struct sk_buff *skb)
4469 {
4470 return skb_shinfo(skb)->gso_size;
4471 }
4472
4473 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)4474 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4475 {
4476 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4477 }
4478
4479 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)4480 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4481 {
4482 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4483 }
4484
4485 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)4486 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4487 {
4488 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4489 }
4490
skb_gso_reset(struct sk_buff * skb)4491 static inline void skb_gso_reset(struct sk_buff *skb)
4492 {
4493 skb_shinfo(skb)->gso_size = 0;
4494 skb_shinfo(skb)->gso_segs = 0;
4495 skb_shinfo(skb)->gso_type = 0;
4496 }
4497
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)4498 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4499 u16 increment)
4500 {
4501 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4502 return;
4503 shinfo->gso_size += increment;
4504 }
4505
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)4506 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4507 u16 decrement)
4508 {
4509 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4510 return;
4511 shinfo->gso_size -= decrement;
4512 }
4513
4514 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4515
skb_warn_if_lro(const struct sk_buff * skb)4516 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4517 {
4518 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4519 * wanted then gso_type will be set. */
4520 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4521
4522 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4523 unlikely(shinfo->gso_type == 0)) {
4524 __skb_warn_lro_forwarding(skb);
4525 return true;
4526 }
4527 return false;
4528 }
4529
skb_forward_csum(struct sk_buff * skb)4530 static inline void skb_forward_csum(struct sk_buff *skb)
4531 {
4532 /* Unfortunately we don't support this one. Any brave souls? */
4533 if (skb->ip_summed == CHECKSUM_COMPLETE)
4534 skb->ip_summed = CHECKSUM_NONE;
4535 }
4536
4537 /**
4538 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4539 * @skb: skb to check
4540 *
4541 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4542 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4543 * use this helper, to document places where we make this assertion.
4544 */
skb_checksum_none_assert(const struct sk_buff * skb)4545 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4546 {
4547 #ifdef DEBUG
4548 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4549 #endif
4550 }
4551
4552 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4553
4554 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4555 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4556 unsigned int transport_len,
4557 __sum16(*skb_chkf)(struct sk_buff *skb));
4558
4559 /**
4560 * skb_head_is_locked - Determine if the skb->head is locked down
4561 * @skb: skb to check
4562 *
4563 * The head on skbs build around a head frag can be removed if they are
4564 * not cloned. This function returns true if the skb head is locked down
4565 * due to either being allocated via kmalloc, or by being a clone with
4566 * multiple references to the head.
4567 */
skb_head_is_locked(const struct sk_buff * skb)4568 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4569 {
4570 return !skb->head_frag || skb_cloned(skb);
4571 }
4572
4573 /* Local Checksum Offload.
4574 * Compute outer checksum based on the assumption that the
4575 * inner checksum will be offloaded later.
4576 * See Documentation/networking/checksum-offloads.rst for
4577 * explanation of how this works.
4578 * Fill in outer checksum adjustment (e.g. with sum of outer
4579 * pseudo-header) before calling.
4580 * Also ensure that inner checksum is in linear data area.
4581 */
lco_csum(struct sk_buff * skb)4582 static inline __wsum lco_csum(struct sk_buff *skb)
4583 {
4584 unsigned char *csum_start = skb_checksum_start(skb);
4585 unsigned char *l4_hdr = skb_transport_header(skb);
4586 __wsum partial;
4587
4588 /* Start with complement of inner checksum adjustment */
4589 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4590 skb->csum_offset));
4591
4592 /* Add in checksum of our headers (incl. outer checksum
4593 * adjustment filled in by caller) and return result.
4594 */
4595 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4596 }
4597
skb_is_redirected(const struct sk_buff * skb)4598 static inline bool skb_is_redirected(const struct sk_buff *skb)
4599 {
4600 #ifdef CONFIG_NET_REDIRECT
4601 return skb->redirected;
4602 #else
4603 return false;
4604 #endif
4605 }
4606
skb_set_redirected(struct sk_buff * skb,bool from_ingress)4607 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4608 {
4609 #ifdef CONFIG_NET_REDIRECT
4610 skb->redirected = 1;
4611 skb->from_ingress = from_ingress;
4612 if (skb->from_ingress)
4613 skb->tstamp = 0;
4614 #endif
4615 }
4616
skb_reset_redirect(struct sk_buff * skb)4617 static inline void skb_reset_redirect(struct sk_buff *skb)
4618 {
4619 #ifdef CONFIG_NET_REDIRECT
4620 skb->redirected = 0;
4621 #endif
4622 }
4623
skb_csum_is_sctp(struct sk_buff * skb)4624 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
4625 {
4626 return skb->csum_not_inet;
4627 }
4628
skb_set_kcov_handle(struct sk_buff * skb,const u64 kcov_handle)4629 static inline void skb_set_kcov_handle(struct sk_buff *skb,
4630 const u64 kcov_handle)
4631 {
4632 #ifdef CONFIG_KCOV
4633 skb->kcov_handle = kcov_handle;
4634 #endif
4635 }
4636
skb_get_kcov_handle(struct sk_buff * skb)4637 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4638 {
4639 #ifdef CONFIG_KCOV
4640 return skb->kcov_handle;
4641 #else
4642 return 0;
4643 #endif
4644 }
4645
4646 #endif /* __KERNEL__ */
4647 #endif /* _LINUX_SKBUFF_H */
4648