1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SplitAnalysis class as well as mutator functions for
10 // live range splitting.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SplitKit.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveInterval.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/LiveRangeCalc.h"
25 #include "llvm/CodeGen/LiveRangeEdit.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/SlotIndexes.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetOpcodes.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/CodeGen/VirtRegMap.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/MC/LaneBitmask.h"
44 #include "llvm/Support/Allocator.h"
45 #include "llvm/Support/BlockFrequency.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <iterator>
53 #include <limits>
54 #include <tuple>
55 #include <utility>
56
57 using namespace llvm;
58
59 #define DEBUG_TYPE "regalloc"
60
61 STATISTIC(NumFinished, "Number of splits finished");
62 STATISTIC(NumSimple, "Number of splits that were simple");
63 STATISTIC(NumCopies, "Number of copies inserted for splitting");
64 STATISTIC(NumRemats, "Number of rematerialized defs for splitting");
65 STATISTIC(NumRepairs, "Number of invalid live ranges repaired");
66
67 //===----------------------------------------------------------------------===//
68 // Last Insert Point Analysis
69 //===----------------------------------------------------------------------===//
70
InsertPointAnalysis(const LiveIntervals & lis,unsigned BBNum)71 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
72 unsigned BBNum)
73 : LIS(lis), LastInsertPoint(BBNum) {}
74
75 SlotIndex
computeLastInsertPoint(const LiveInterval & CurLI,const MachineBasicBlock & MBB)76 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
77 const MachineBasicBlock &MBB) {
78 unsigned Num = MBB.getNumber();
79 std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
80 SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
81
82 SmallVector<const MachineBasicBlock *, 1> EHPadSuccessors;
83 for (const MachineBasicBlock *SMBB : MBB.successors())
84 if (SMBB->isEHPad())
85 EHPadSuccessors.push_back(SMBB);
86
87 // Compute insert points on the first call. The pair is independent of the
88 // current live interval.
89 if (!LIP.first.isValid()) {
90 MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
91 if (FirstTerm == MBB.end())
92 LIP.first = MBBEnd;
93 else
94 LIP.first = LIS.getInstructionIndex(*FirstTerm);
95
96 // If there is a landing pad successor, also find the call instruction.
97 if (EHPadSuccessors.empty())
98 return LIP.first;
99 // There may not be a call instruction (?) in which case we ignore LPad.
100 LIP.second = LIP.first;
101 for (MachineBasicBlock::const_iterator I = MBB.end(), E = MBB.begin();
102 I != E;) {
103 --I;
104 if (I->isCall()) {
105 LIP.second = LIS.getInstructionIndex(*I);
106 break;
107 }
108 }
109 }
110
111 // If CurLI is live into a landing pad successor, move the last insert point
112 // back to the call that may throw.
113 if (!LIP.second)
114 return LIP.first;
115
116 if (none_of(EHPadSuccessors, [&](const MachineBasicBlock *EHPad) {
117 return LIS.isLiveInToMBB(CurLI, EHPad);
118 }))
119 return LIP.first;
120
121 // Find the value leaving MBB.
122 const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
123 if (!VNI)
124 return LIP.first;
125
126 // If the value leaving MBB was defined after the call in MBB, it can't
127 // really be live-in to the landing pad. This can happen if the landing pad
128 // has a PHI, and this register is undef on the exceptional edge.
129 // <rdar://problem/10664933>
130 if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
131 return LIP.first;
132
133 // Value is properly live-in to the landing pad.
134 // Only allow inserts before the call.
135 return LIP.second;
136 }
137
138 MachineBasicBlock::iterator
getLastInsertPointIter(const LiveInterval & CurLI,MachineBasicBlock & MBB)139 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
140 MachineBasicBlock &MBB) {
141 SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
142 if (LIP == LIS.getMBBEndIdx(&MBB))
143 return MBB.end();
144 return LIS.getInstructionFromIndex(LIP);
145 }
146
147 //===----------------------------------------------------------------------===//
148 // Split Analysis
149 //===----------------------------------------------------------------------===//
150
SplitAnalysis(const VirtRegMap & vrm,const LiveIntervals & lis,const MachineLoopInfo & mli)151 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
152 const MachineLoopInfo &mli)
153 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
154 TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}
155
clear()156 void SplitAnalysis::clear() {
157 UseSlots.clear();
158 UseBlocks.clear();
159 ThroughBlocks.clear();
160 CurLI = nullptr;
161 DidRepairRange = false;
162 }
163
164 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
analyzeUses()165 void SplitAnalysis::analyzeUses() {
166 assert(UseSlots.empty() && "Call clear first");
167
168 // First get all the defs from the interval values. This provides the correct
169 // slots for early clobbers.
170 for (const VNInfo *VNI : CurLI->valnos)
171 if (!VNI->isPHIDef() && !VNI->isUnused())
172 UseSlots.push_back(VNI->def);
173
174 // Get use slots form the use-def chain.
175 const MachineRegisterInfo &MRI = MF.getRegInfo();
176 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg))
177 if (!MO.isUndef())
178 UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
179
180 array_pod_sort(UseSlots.begin(), UseSlots.end());
181
182 // Remove duplicates, keeping the smaller slot for each instruction.
183 // That is what we want for early clobbers.
184 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
185 SlotIndex::isSameInstr),
186 UseSlots.end());
187
188 // Compute per-live block info.
189 if (!calcLiveBlockInfo()) {
190 // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
191 // I am looking at you, RegisterCoalescer!
192 DidRepairRange = true;
193 ++NumRepairs;
194 LLVM_DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
195 const_cast<LiveIntervals&>(LIS)
196 .shrinkToUses(const_cast<LiveInterval*>(CurLI));
197 UseBlocks.clear();
198 ThroughBlocks.clear();
199 bool fixed = calcLiveBlockInfo();
200 (void)fixed;
201 assert(fixed && "Couldn't fix broken live interval");
202 }
203
204 LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in "
205 << UseBlocks.size() << " blocks, through "
206 << NumThroughBlocks << " blocks.\n");
207 }
208
209 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
210 /// where CurLI is live.
calcLiveBlockInfo()211 bool SplitAnalysis::calcLiveBlockInfo() {
212 ThroughBlocks.resize(MF.getNumBlockIDs());
213 NumThroughBlocks = NumGapBlocks = 0;
214 if (CurLI->empty())
215 return true;
216
217 LiveInterval::const_iterator LVI = CurLI->begin();
218 LiveInterval::const_iterator LVE = CurLI->end();
219
220 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
221 UseI = UseSlots.begin();
222 UseE = UseSlots.end();
223
224 // Loop over basic blocks where CurLI is live.
225 MachineFunction::iterator MFI =
226 LIS.getMBBFromIndex(LVI->start)->getIterator();
227 while (true) {
228 BlockInfo BI;
229 BI.MBB = &*MFI;
230 SlotIndex Start, Stop;
231 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
232
233 // If the block contains no uses, the range must be live through. At one
234 // point, RegisterCoalescer could create dangling ranges that ended
235 // mid-block.
236 if (UseI == UseE || *UseI >= Stop) {
237 ++NumThroughBlocks;
238 ThroughBlocks.set(BI.MBB->getNumber());
239 // The range shouldn't end mid-block if there are no uses. This shouldn't
240 // happen.
241 if (LVI->end < Stop)
242 return false;
243 } else {
244 // This block has uses. Find the first and last uses in the block.
245 BI.FirstInstr = *UseI;
246 assert(BI.FirstInstr >= Start);
247 do ++UseI;
248 while (UseI != UseE && *UseI < Stop);
249 BI.LastInstr = UseI[-1];
250 assert(BI.LastInstr < Stop);
251
252 // LVI is the first live segment overlapping MBB.
253 BI.LiveIn = LVI->start <= Start;
254
255 // When not live in, the first use should be a def.
256 if (!BI.LiveIn) {
257 assert(LVI->start == LVI->valno->def && "Dangling Segment start");
258 assert(LVI->start == BI.FirstInstr && "First instr should be a def");
259 BI.FirstDef = BI.FirstInstr;
260 }
261
262 // Look for gaps in the live range.
263 BI.LiveOut = true;
264 while (LVI->end < Stop) {
265 SlotIndex LastStop = LVI->end;
266 if (++LVI == LVE || LVI->start >= Stop) {
267 BI.LiveOut = false;
268 BI.LastInstr = LastStop;
269 break;
270 }
271
272 if (LastStop < LVI->start) {
273 // There is a gap in the live range. Create duplicate entries for the
274 // live-in snippet and the live-out snippet.
275 ++NumGapBlocks;
276
277 // Push the Live-in part.
278 BI.LiveOut = false;
279 UseBlocks.push_back(BI);
280 UseBlocks.back().LastInstr = LastStop;
281
282 // Set up BI for the live-out part.
283 BI.LiveIn = false;
284 BI.LiveOut = true;
285 BI.FirstInstr = BI.FirstDef = LVI->start;
286 }
287
288 // A Segment that starts in the middle of the block must be a def.
289 assert(LVI->start == LVI->valno->def && "Dangling Segment start");
290 if (!BI.FirstDef)
291 BI.FirstDef = LVI->start;
292 }
293
294 UseBlocks.push_back(BI);
295
296 // LVI is now at LVE or LVI->end >= Stop.
297 if (LVI == LVE)
298 break;
299 }
300
301 // Live segment ends exactly at Stop. Move to the next segment.
302 if (LVI->end == Stop && ++LVI == LVE)
303 break;
304
305 // Pick the next basic block.
306 if (LVI->start < Stop)
307 ++MFI;
308 else
309 MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
310 }
311
312 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
313 return true;
314 }
315
countLiveBlocks(const LiveInterval * cli) const316 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
317 if (cli->empty())
318 return 0;
319 LiveInterval *li = const_cast<LiveInterval*>(cli);
320 LiveInterval::iterator LVI = li->begin();
321 LiveInterval::iterator LVE = li->end();
322 unsigned Count = 0;
323
324 // Loop over basic blocks where li is live.
325 MachineFunction::const_iterator MFI =
326 LIS.getMBBFromIndex(LVI->start)->getIterator();
327 SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
328 while (true) {
329 ++Count;
330 LVI = li->advanceTo(LVI, Stop);
331 if (LVI == LVE)
332 return Count;
333 do {
334 ++MFI;
335 Stop = LIS.getMBBEndIdx(&*MFI);
336 } while (Stop <= LVI->start);
337 }
338 }
339
isOriginalEndpoint(SlotIndex Idx) const340 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
341 unsigned OrigReg = VRM.getOriginal(CurLI->reg);
342 const LiveInterval &Orig = LIS.getInterval(OrigReg);
343 assert(!Orig.empty() && "Splitting empty interval?");
344 LiveInterval::const_iterator I = Orig.find(Idx);
345
346 // Range containing Idx should begin at Idx.
347 if (I != Orig.end() && I->start <= Idx)
348 return I->start == Idx;
349
350 // Range does not contain Idx, previous must end at Idx.
351 return I != Orig.begin() && (--I)->end == Idx;
352 }
353
analyze(const LiveInterval * li)354 void SplitAnalysis::analyze(const LiveInterval *li) {
355 clear();
356 CurLI = li;
357 analyzeUses();
358 }
359
360 //===----------------------------------------------------------------------===//
361 // Split Editor
362 //===----------------------------------------------------------------------===//
363
364 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
SplitEditor(SplitAnalysis & sa,AliasAnalysis & aa,LiveIntervals & lis,VirtRegMap & vrm,MachineDominatorTree & mdt,MachineBlockFrequencyInfo & mbfi)365 SplitEditor::SplitEditor(SplitAnalysis &sa, AliasAnalysis &aa,
366 LiveIntervals &lis, VirtRegMap &vrm,
367 MachineDominatorTree &mdt,
368 MachineBlockFrequencyInfo &mbfi)
369 : SA(sa), AA(aa), LIS(lis), VRM(vrm),
370 MRI(vrm.getMachineFunction().getRegInfo()), MDT(mdt),
371 TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()),
372 TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()),
373 MBFI(mbfi), RegAssign(Allocator) {}
374
reset(LiveRangeEdit & LRE,ComplementSpillMode SM)375 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
376 Edit = &LRE;
377 SpillMode = SM;
378 OpenIdx = 0;
379 RegAssign.clear();
380 Values.clear();
381
382 // Reset the LiveRangeCalc instances needed for this spill mode.
383 LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
384 &LIS.getVNInfoAllocator());
385 if (SpillMode)
386 LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
387 &LIS.getVNInfoAllocator());
388
389 // We don't need an AliasAnalysis since we will only be performing
390 // cheap-as-a-copy remats anyway.
391 Edit->anyRematerializable(nullptr);
392 }
393
394 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const395 LLVM_DUMP_METHOD void SplitEditor::dump() const {
396 if (RegAssign.empty()) {
397 dbgs() << " empty\n";
398 return;
399 }
400
401 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
402 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
403 dbgs() << '\n';
404 }
405 #endif
406
getSubRangeForMask(LaneBitmask LM,LiveInterval & LI)407 LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM,
408 LiveInterval &LI) {
409 for (LiveInterval::SubRange &S : LI.subranges())
410 if (S.LaneMask == LM)
411 return S;
412 llvm_unreachable("SubRange for this mask not found");
413 }
414
addDeadDef(LiveInterval & LI,VNInfo * VNI,bool Original)415 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
416 if (!LI.hasSubRanges()) {
417 LI.createDeadDef(VNI);
418 return;
419 }
420
421 SlotIndex Def = VNI->def;
422 if (Original) {
423 // If we are transferring a def from the original interval, make sure
424 // to only update the subranges for which the original subranges had
425 // a def at this location.
426 for (LiveInterval::SubRange &S : LI.subranges()) {
427 auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
428 VNInfo *PV = PS.getVNInfoAt(Def);
429 if (PV != nullptr && PV->def == Def)
430 S.createDeadDef(Def, LIS.getVNInfoAllocator());
431 }
432 } else {
433 // This is a new def: either from rematerialization, or from an inserted
434 // copy. Since rematerialization can regenerate a definition of a sub-
435 // register, we need to check which subranges need to be updated.
436 const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
437 assert(DefMI != nullptr);
438 LaneBitmask LM;
439 for (const MachineOperand &DefOp : DefMI->defs()) {
440 Register R = DefOp.getReg();
441 if (R != LI.reg)
442 continue;
443 if (unsigned SR = DefOp.getSubReg())
444 LM |= TRI.getSubRegIndexLaneMask(SR);
445 else {
446 LM = MRI.getMaxLaneMaskForVReg(R);
447 break;
448 }
449 }
450 for (LiveInterval::SubRange &S : LI.subranges())
451 if ((S.LaneMask & LM).any())
452 S.createDeadDef(Def, LIS.getVNInfoAllocator());
453 }
454 }
455
defValue(unsigned RegIdx,const VNInfo * ParentVNI,SlotIndex Idx,bool Original)456 VNInfo *SplitEditor::defValue(unsigned RegIdx,
457 const VNInfo *ParentVNI,
458 SlotIndex Idx,
459 bool Original) {
460 assert(ParentVNI && "Mapping NULL value");
461 assert(Idx.isValid() && "Invalid SlotIndex");
462 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
463 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
464
465 // Create a new value.
466 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
467
468 bool Force = LI->hasSubRanges();
469 ValueForcePair FP(Force ? nullptr : VNI, Force);
470 // Use insert for lookup, so we can add missing values with a second lookup.
471 std::pair<ValueMap::iterator, bool> InsP =
472 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));
473
474 // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
475 // forced. Keep it as a simple def without any liveness.
476 if (!Force && InsP.second)
477 return VNI;
478
479 // If the previous value was a simple mapping, add liveness for it now.
480 if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
481 addDeadDef(*LI, OldVNI, Original);
482
483 // No longer a simple mapping. Switch to a complex mapping. If the
484 // interval has subranges, make it a forced mapping.
485 InsP.first->second = ValueForcePair(nullptr, Force);
486 }
487
488 // This is a complex mapping, add liveness for VNI
489 addDeadDef(*LI, VNI, Original);
490 return VNI;
491 }
492
forceRecompute(unsigned RegIdx,const VNInfo & ParentVNI)493 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) {
494 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)];
495 VNInfo *VNI = VFP.getPointer();
496
497 // ParentVNI was either unmapped or already complex mapped. Either way, just
498 // set the force bit.
499 if (!VNI) {
500 VFP.setInt(true);
501 return;
502 }
503
504 // This was previously a single mapping. Make sure the old def is represented
505 // by a trivial live range.
506 addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);
507
508 // Mark as complex mapped, forced.
509 VFP = ValueForcePair(nullptr, true);
510 }
511
buildSingleSubRegCopy(unsigned FromReg,unsigned ToReg,MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertBefore,unsigned SubIdx,LiveInterval & DestLI,bool Late,SlotIndex Def)512 SlotIndex SplitEditor::buildSingleSubRegCopy(unsigned FromReg, unsigned ToReg,
513 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
514 unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) {
515 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
516 bool FirstCopy = !Def.isValid();
517 MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
518 .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
519 | getInternalReadRegState(!FirstCopy), SubIdx)
520 .addReg(FromReg, 0, SubIdx);
521
522 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
523 SlotIndexes &Indexes = *LIS.getSlotIndexes();
524 if (FirstCopy) {
525 Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
526 } else {
527 CopyMI->bundleWithPred();
528 }
529 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubIdx);
530 DestLI.refineSubRanges(Allocator, LaneMask,
531 [Def, &Allocator](LiveInterval::SubRange &SR) {
532 SR.createDeadDef(Def, Allocator);
533 },
534 Indexes, TRI);
535 return Def;
536 }
537
buildCopy(unsigned FromReg,unsigned ToReg,LaneBitmask LaneMask,MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertBefore,bool Late,unsigned RegIdx)538 SlotIndex SplitEditor::buildCopy(unsigned FromReg, unsigned ToReg,
539 LaneBitmask LaneMask, MachineBasicBlock &MBB,
540 MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
541 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
542 if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
543 // The full vreg is copied.
544 MachineInstr *CopyMI =
545 BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
546 SlotIndexes &Indexes = *LIS.getSlotIndexes();
547 return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
548 }
549
550 // Only a subset of lanes needs to be copied. The following is a simple
551 // heuristic to construct a sequence of COPYs. We could add a target
552 // specific callback if this turns out to be suboptimal.
553 LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));
554
555 // First pass: Try to find a perfectly matching subregister index. If none
556 // exists find the one covering the most lanemask bits.
557 SmallVector<unsigned, 8> PossibleIndexes;
558 unsigned BestIdx = 0;
559 unsigned BestCover = 0;
560 const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
561 assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
562 for (unsigned Idx = 1, E = TRI.getNumSubRegIndices(); Idx < E; ++Idx) {
563 // Is this index even compatible with the given class?
564 if (TRI.getSubClassWithSubReg(RC, Idx) != RC)
565 continue;
566 LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx);
567 // Early exit if we found a perfect match.
568 if (SubRegMask == LaneMask) {
569 BestIdx = Idx;
570 break;
571 }
572
573 // The index must not cover any lanes outside \p LaneMask.
574 if ((SubRegMask & ~LaneMask).any())
575 continue;
576
577 unsigned PopCount = SubRegMask.getNumLanes();
578 PossibleIndexes.push_back(Idx);
579 if (PopCount > BestCover) {
580 BestCover = PopCount;
581 BestIdx = Idx;
582 }
583 }
584
585 // Abort if we cannot possibly implement the COPY with the given indexes.
586 if (BestIdx == 0)
587 report_fatal_error("Impossible to implement partial COPY");
588
589 SlotIndex Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore,
590 BestIdx, DestLI, Late, SlotIndex());
591
592 // Greedy heuristic: Keep iterating keeping the best covering subreg index
593 // each time.
594 LaneBitmask LanesLeft = LaneMask & ~(TRI.getSubRegIndexLaneMask(BestIdx));
595 while (LanesLeft.any()) {
596 unsigned BestIdx = 0;
597 int BestCover = std::numeric_limits<int>::min();
598 for (unsigned Idx : PossibleIndexes) {
599 LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx);
600 // Early exit if we found a perfect match.
601 if (SubRegMask == LanesLeft) {
602 BestIdx = Idx;
603 break;
604 }
605
606 // Try to cover as much of the remaining lanes as possible but
607 // as few of the already covered lanes as possible.
608 int Cover = (SubRegMask & LanesLeft).getNumLanes()
609 - (SubRegMask & ~LanesLeft).getNumLanes();
610 if (Cover > BestCover) {
611 BestCover = Cover;
612 BestIdx = Idx;
613 }
614 }
615
616 if (BestIdx == 0)
617 report_fatal_error("Impossible to implement partial COPY");
618
619 buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
620 DestLI, Late, Def);
621 LanesLeft &= ~TRI.getSubRegIndexLaneMask(BestIdx);
622 }
623
624 return Def;
625 }
626
defFromParent(unsigned RegIdx,VNInfo * ParentVNI,SlotIndex UseIdx,MachineBasicBlock & MBB,MachineBasicBlock::iterator I)627 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
628 VNInfo *ParentVNI,
629 SlotIndex UseIdx,
630 MachineBasicBlock &MBB,
631 MachineBasicBlock::iterator I) {
632 SlotIndex Def;
633 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
634
635 // We may be trying to avoid interference that ends at a deleted instruction,
636 // so always begin RegIdx 0 early and all others late.
637 bool Late = RegIdx != 0;
638
639 // Attempt cheap-as-a-copy rematerialization.
640 unsigned Original = VRM.getOriginal(Edit->get(RegIdx));
641 LiveInterval &OrigLI = LIS.getInterval(Original);
642 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
643
644 unsigned Reg = LI->reg;
645 bool DidRemat = false;
646 if (OrigVNI) {
647 LiveRangeEdit::Remat RM(ParentVNI);
648 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
649 if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
650 Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
651 ++NumRemats;
652 DidRemat = true;
653 }
654 }
655 if (!DidRemat) {
656 LaneBitmask LaneMask;
657 if (LI->hasSubRanges()) {
658 LaneMask = LaneBitmask::getNone();
659 for (LiveInterval::SubRange &S : LI->subranges())
660 LaneMask |= S.LaneMask;
661 } else {
662 LaneMask = LaneBitmask::getAll();
663 }
664
665 ++NumCopies;
666 Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
667 }
668
669 // Define the value in Reg.
670 return defValue(RegIdx, ParentVNI, Def, false);
671 }
672
673 /// Create a new virtual register and live interval.
openIntv()674 unsigned SplitEditor::openIntv() {
675 // Create the complement as index 0.
676 if (Edit->empty())
677 Edit->createEmptyInterval();
678
679 // Create the open interval.
680 OpenIdx = Edit->size();
681 Edit->createEmptyInterval();
682 return OpenIdx;
683 }
684
selectIntv(unsigned Idx)685 void SplitEditor::selectIntv(unsigned Idx) {
686 assert(Idx != 0 && "Cannot select the complement interval");
687 assert(Idx < Edit->size() && "Can only select previously opened interval");
688 LLVM_DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n');
689 OpenIdx = Idx;
690 }
691
enterIntvBefore(SlotIndex Idx)692 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
693 assert(OpenIdx && "openIntv not called before enterIntvBefore");
694 LLVM_DEBUG(dbgs() << " enterIntvBefore " << Idx);
695 Idx = Idx.getBaseIndex();
696 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
697 if (!ParentVNI) {
698 LLVM_DEBUG(dbgs() << ": not live\n");
699 return Idx;
700 }
701 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
702 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
703 assert(MI && "enterIntvBefore called with invalid index");
704
705 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
706 return VNI->def;
707 }
708
enterIntvAfter(SlotIndex Idx)709 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
710 assert(OpenIdx && "openIntv not called before enterIntvAfter");
711 LLVM_DEBUG(dbgs() << " enterIntvAfter " << Idx);
712 Idx = Idx.getBoundaryIndex();
713 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
714 if (!ParentVNI) {
715 LLVM_DEBUG(dbgs() << ": not live\n");
716 return Idx;
717 }
718 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
719 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
720 assert(MI && "enterIntvAfter called with invalid index");
721
722 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
723 std::next(MachineBasicBlock::iterator(MI)));
724 return VNI->def;
725 }
726
enterIntvAtEnd(MachineBasicBlock & MBB)727 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
728 assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
729 SlotIndex End = LIS.getMBBEndIdx(&MBB);
730 SlotIndex Last = End.getPrevSlot();
731 LLVM_DEBUG(dbgs() << " enterIntvAtEnd " << printMBBReference(MBB) << ", "
732 << Last);
733 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
734 if (!ParentVNI) {
735 LLVM_DEBUG(dbgs() << ": not live\n");
736 return End;
737 }
738 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id);
739 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
740 SA.getLastSplitPointIter(&MBB));
741 RegAssign.insert(VNI->def, End, OpenIdx);
742 LLVM_DEBUG(dump());
743 return VNI->def;
744 }
745
746 /// useIntv - indicate that all instructions in MBB should use OpenLI.
useIntv(const MachineBasicBlock & MBB)747 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
748 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
749 }
750
useIntv(SlotIndex Start,SlotIndex End)751 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
752 assert(OpenIdx && "openIntv not called before useIntv");
753 LLVM_DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
754 RegAssign.insert(Start, End, OpenIdx);
755 LLVM_DEBUG(dump());
756 }
757
leaveIntvAfter(SlotIndex Idx)758 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
759 assert(OpenIdx && "openIntv not called before leaveIntvAfter");
760 LLVM_DEBUG(dbgs() << " leaveIntvAfter " << Idx);
761
762 // The interval must be live beyond the instruction at Idx.
763 SlotIndex Boundary = Idx.getBoundaryIndex();
764 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
765 if (!ParentVNI) {
766 LLVM_DEBUG(dbgs() << ": not live\n");
767 return Boundary.getNextSlot();
768 }
769 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
770 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
771 assert(MI && "No instruction at index");
772
773 // In spill mode, make live ranges as short as possible by inserting the copy
774 // before MI. This is only possible if that instruction doesn't redefine the
775 // value. The inserted COPY is not a kill, and we don't need to recompute
776 // the source live range. The spiller also won't try to hoist this copy.
777 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
778 MI->readsVirtualRegister(Edit->getReg())) {
779 forceRecompute(0, *ParentVNI);
780 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
781 return Idx;
782 }
783
784 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
785 std::next(MachineBasicBlock::iterator(MI)));
786 return VNI->def;
787 }
788
leaveIntvBefore(SlotIndex Idx)789 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
790 assert(OpenIdx && "openIntv not called before leaveIntvBefore");
791 LLVM_DEBUG(dbgs() << " leaveIntvBefore " << Idx);
792
793 // The interval must be live into the instruction at Idx.
794 Idx = Idx.getBaseIndex();
795 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
796 if (!ParentVNI) {
797 LLVM_DEBUG(dbgs() << ": not live\n");
798 return Idx.getNextSlot();
799 }
800 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
801
802 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
803 assert(MI && "No instruction at index");
804 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
805 return VNI->def;
806 }
807
leaveIntvAtTop(MachineBasicBlock & MBB)808 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
809 assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
810 SlotIndex Start = LIS.getMBBStartIdx(&MBB);
811 LLVM_DEBUG(dbgs() << " leaveIntvAtTop " << printMBBReference(MBB) << ", "
812 << Start);
813
814 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
815 if (!ParentVNI) {
816 LLVM_DEBUG(dbgs() << ": not live\n");
817 return Start;
818 }
819
820 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
821 MBB.SkipPHIsLabelsAndDebug(MBB.begin()));
822 RegAssign.insert(Start, VNI->def, OpenIdx);
823 LLVM_DEBUG(dump());
824 return VNI->def;
825 }
826
overlapIntv(SlotIndex Start,SlotIndex End)827 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
828 assert(OpenIdx && "openIntv not called before overlapIntv");
829 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
830 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
831 "Parent changes value in extended range");
832 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
833 "Range cannot span basic blocks");
834
835 // The complement interval will be extended as needed by LRCalc.extend().
836 if (ParentVNI)
837 forceRecompute(0, *ParentVNI);
838 LLVM_DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):");
839 RegAssign.insert(Start, End, OpenIdx);
840 LLVM_DEBUG(dump());
841 }
842
843 //===----------------------------------------------------------------------===//
844 // Spill modes
845 //===----------------------------------------------------------------------===//
846
removeBackCopies(SmallVectorImpl<VNInfo * > & Copies)847 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
848 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
849 LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
850 RegAssignMap::iterator AssignI;
851 AssignI.setMap(RegAssign);
852
853 for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
854 SlotIndex Def = Copies[i]->def;
855 MachineInstr *MI = LIS.getInstructionFromIndex(Def);
856 assert(MI && "No instruction for back-copy");
857
858 MachineBasicBlock *MBB = MI->getParent();
859 MachineBasicBlock::iterator MBBI(MI);
860 bool AtBegin;
861 do AtBegin = MBBI == MBB->begin();
862 while (!AtBegin && (--MBBI)->isDebugInstr());
863
864 LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
865 LIS.removeVRegDefAt(*LI, Def);
866 LIS.RemoveMachineInstrFromMaps(*MI);
867 MI->eraseFromParent();
868
869 // Adjust RegAssign if a register assignment is killed at Def. We want to
870 // avoid calculating the live range of the source register if possible.
871 AssignI.find(Def.getPrevSlot());
872 if (!AssignI.valid() || AssignI.start() >= Def)
873 continue;
874 // If MI doesn't kill the assigned register, just leave it.
875 if (AssignI.stop() != Def)
876 continue;
877 unsigned RegIdx = AssignI.value();
878 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
879 LLVM_DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx
880 << '\n');
881 forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def));
882 } else {
883 SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot();
884 LLVM_DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI);
885 AssignI.setStop(Kill);
886 }
887 }
888 }
889
890 MachineBasicBlock*
findShallowDominator(MachineBasicBlock * MBB,MachineBasicBlock * DefMBB)891 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
892 MachineBasicBlock *DefMBB) {
893 if (MBB == DefMBB)
894 return MBB;
895 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
896
897 const MachineLoopInfo &Loops = SA.Loops;
898 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
899 MachineDomTreeNode *DefDomNode = MDT[DefMBB];
900
901 // Best candidate so far.
902 MachineBasicBlock *BestMBB = MBB;
903 unsigned BestDepth = std::numeric_limits<unsigned>::max();
904
905 while (true) {
906 const MachineLoop *Loop = Loops.getLoopFor(MBB);
907
908 // MBB isn't in a loop, it doesn't get any better. All dominators have a
909 // higher frequency by definition.
910 if (!Loop) {
911 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
912 << " dominates " << printMBBReference(*MBB)
913 << " at depth 0\n");
914 return MBB;
915 }
916
917 // We'll never be able to exit the DefLoop.
918 if (Loop == DefLoop) {
919 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
920 << " dominates " << printMBBReference(*MBB)
921 << " in the same loop\n");
922 return MBB;
923 }
924
925 // Least busy dominator seen so far.
926 unsigned Depth = Loop->getLoopDepth();
927 if (Depth < BestDepth) {
928 BestMBB = MBB;
929 BestDepth = Depth;
930 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
931 << " dominates " << printMBBReference(*MBB)
932 << " at depth " << Depth << '\n');
933 }
934
935 // Leave loop by going to the immediate dominator of the loop header.
936 // This is a bigger stride than simply walking up the dominator tree.
937 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
938
939 // Too far up the dominator tree?
940 if (!IDom || !MDT.dominates(DefDomNode, IDom))
941 return BestMBB;
942
943 MBB = IDom->getBlock();
944 }
945 }
946
computeRedundantBackCopies(DenseSet<unsigned> & NotToHoistSet,SmallVectorImpl<VNInfo * > & BackCopies)947 void SplitEditor::computeRedundantBackCopies(
948 DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
949 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
950 LiveInterval *Parent = &Edit->getParent();
951 SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
952 SmallPtrSet<VNInfo *, 8> DominatedVNIs;
953
954 // Aggregate VNIs having the same value as ParentVNI.
955 for (VNInfo *VNI : LI->valnos) {
956 if (VNI->isUnused())
957 continue;
958 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
959 EqualVNs[ParentVNI->id].insert(VNI);
960 }
961
962 // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
963 // redundant VNIs to BackCopies.
964 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
965 VNInfo *ParentVNI = Parent->getValNumInfo(i);
966 if (!NotToHoistSet.count(ParentVNI->id))
967 continue;
968 SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
969 SmallPtrSetIterator<VNInfo *> It2 = It1;
970 for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
971 It2 = It1;
972 for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
973 if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
974 continue;
975
976 MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
977 MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
978 if (MBB1 == MBB2) {
979 DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
980 } else if (MDT.dominates(MBB1, MBB2)) {
981 DominatedVNIs.insert(*It2);
982 } else if (MDT.dominates(MBB2, MBB1)) {
983 DominatedVNIs.insert(*It1);
984 }
985 }
986 }
987 if (!DominatedVNIs.empty()) {
988 forceRecompute(0, *ParentVNI);
989 for (auto VNI : DominatedVNIs) {
990 BackCopies.push_back(VNI);
991 }
992 DominatedVNIs.clear();
993 }
994 }
995 }
996
997 /// For SM_Size mode, find a common dominator for all the back-copies for
998 /// the same ParentVNI and hoist the backcopies to the dominator BB.
999 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial
1000 /// to do the hoisting, simply remove the dominated backcopies for the same
1001 /// ParentVNI.
hoistCopies()1002 void SplitEditor::hoistCopies() {
1003 // Get the complement interval, always RegIdx 0.
1004 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
1005 LiveInterval *Parent = &Edit->getParent();
1006
1007 // Track the nearest common dominator for all back-copies for each ParentVNI,
1008 // indexed by ParentVNI->id.
1009 using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
1010 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
1011 // The total cost of all the back-copies for each ParentVNI.
1012 SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
1013 // The ParentVNI->id set for which hoisting back-copies are not beneficial
1014 // for Speed.
1015 DenseSet<unsigned> NotToHoistSet;
1016
1017 // Find the nearest common dominator for parent values with multiple
1018 // back-copies. If a single back-copy dominates, put it in DomPair.second.
1019 for (VNInfo *VNI : LI->valnos) {
1020 if (VNI->isUnused())
1021 continue;
1022 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1023 assert(ParentVNI && "Parent not live at complement def");
1024
1025 // Don't hoist remats. The complement is probably going to disappear
1026 // completely anyway.
1027 if (Edit->didRematerialize(ParentVNI))
1028 continue;
1029
1030 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
1031
1032 DomPair &Dom = NearestDom[ParentVNI->id];
1033
1034 // Keep directly defined parent values. This is either a PHI or an
1035 // instruction in the complement range. All other copies of ParentVNI
1036 // should be eliminated.
1037 if (VNI->def == ParentVNI->def) {
1038 LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
1039 Dom = DomPair(ValMBB, VNI->def);
1040 continue;
1041 }
1042 // Skip the singly mapped values. There is nothing to gain from hoisting a
1043 // single back-copy.
1044 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
1045 LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
1046 continue;
1047 }
1048
1049 if (!Dom.first) {
1050 // First time we see ParentVNI. VNI dominates itself.
1051 Dom = DomPair(ValMBB, VNI->def);
1052 } else if (Dom.first == ValMBB) {
1053 // Two defs in the same block. Pick the earlier def.
1054 if (!Dom.second.isValid() || VNI->def < Dom.second)
1055 Dom.second = VNI->def;
1056 } else {
1057 // Different basic blocks. Check if one dominates.
1058 MachineBasicBlock *Near =
1059 MDT.findNearestCommonDominator(Dom.first, ValMBB);
1060 if (Near == ValMBB)
1061 // Def ValMBB dominates.
1062 Dom = DomPair(ValMBB, VNI->def);
1063 else if (Near != Dom.first)
1064 // None dominate. Hoist to common dominator, need new def.
1065 Dom = DomPair(Near, SlotIndex());
1066 Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
1067 }
1068
1069 LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@'
1070 << VNI->def << " for parent " << ParentVNI->id << '@'
1071 << ParentVNI->def << " hoist to "
1072 << printMBBReference(*Dom.first) << ' ' << Dom.second
1073 << '\n');
1074 }
1075
1076 // Insert the hoisted copies.
1077 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
1078 DomPair &Dom = NearestDom[i];
1079 if (!Dom.first || Dom.second.isValid())
1080 continue;
1081 // This value needs a hoisted copy inserted at the end of Dom.first.
1082 VNInfo *ParentVNI = Parent->getValNumInfo(i);
1083 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
1084 // Get a less loopy dominator than Dom.first.
1085 Dom.first = findShallowDominator(Dom.first, DefMBB);
1086 if (SpillMode == SM_Speed &&
1087 MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
1088 NotToHoistSet.insert(ParentVNI->id);
1089 continue;
1090 }
1091 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
1092 Dom.second =
1093 defFromParent(0, ParentVNI, Last, *Dom.first,
1094 SA.getLastSplitPointIter(Dom.first))->def;
1095 }
1096
1097 // Remove redundant back-copies that are now known to be dominated by another
1098 // def with the same value.
1099 SmallVector<VNInfo*, 8> BackCopies;
1100 for (VNInfo *VNI : LI->valnos) {
1101 if (VNI->isUnused())
1102 continue;
1103 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1104 const DomPair &Dom = NearestDom[ParentVNI->id];
1105 if (!Dom.first || Dom.second == VNI->def ||
1106 NotToHoistSet.count(ParentVNI->id))
1107 continue;
1108 BackCopies.push_back(VNI);
1109 forceRecompute(0, *ParentVNI);
1110 }
1111
1112 // If it is not beneficial to hoist all the BackCopies, simply remove
1113 // redundant BackCopies in speed mode.
1114 if (SpillMode == SM_Speed && !NotToHoistSet.empty())
1115 computeRedundantBackCopies(NotToHoistSet, BackCopies);
1116
1117 removeBackCopies(BackCopies);
1118 }
1119
1120 /// transferValues - Transfer all possible values to the new live ranges.
1121 /// Values that were rematerialized are left alone, they need LRCalc.extend().
transferValues()1122 bool SplitEditor::transferValues() {
1123 bool Skipped = false;
1124 RegAssignMap::const_iterator AssignI = RegAssign.begin();
1125 for (const LiveRange::Segment &S : Edit->getParent()) {
1126 LLVM_DEBUG(dbgs() << " blit " << S << ':');
1127 VNInfo *ParentVNI = S.valno;
1128 // RegAssign has holes where RegIdx 0 should be used.
1129 SlotIndex Start = S.start;
1130 AssignI.advanceTo(Start);
1131 do {
1132 unsigned RegIdx;
1133 SlotIndex End = S.end;
1134 if (!AssignI.valid()) {
1135 RegIdx = 0;
1136 } else if (AssignI.start() <= Start) {
1137 RegIdx = AssignI.value();
1138 if (AssignI.stop() < End) {
1139 End = AssignI.stop();
1140 ++AssignI;
1141 }
1142 } else {
1143 RegIdx = 0;
1144 End = std::min(End, AssignI.start());
1145 }
1146
1147 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
1148 LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '('
1149 << printReg(Edit->get(RegIdx)) << ')');
1150 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1151
1152 // Check for a simply defined value that can be blitted directly.
1153 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
1154 if (VNInfo *VNI = VFP.getPointer()) {
1155 LLVM_DEBUG(dbgs() << ':' << VNI->id);
1156 LI.addSegment(LiveInterval::Segment(Start, End, VNI));
1157 Start = End;
1158 continue;
1159 }
1160
1161 // Skip values with forced recomputation.
1162 if (VFP.getInt()) {
1163 LLVM_DEBUG(dbgs() << "(recalc)");
1164 Skipped = true;
1165 Start = End;
1166 continue;
1167 }
1168
1169 LiveRangeCalc &LRC = getLRCalc(RegIdx);
1170
1171 // This value has multiple defs in RegIdx, but it wasn't rematerialized,
1172 // so the live range is accurate. Add live-in blocks in [Start;End) to the
1173 // LiveInBlocks.
1174 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1175 SlotIndex BlockStart, BlockEnd;
1176 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
1177
1178 // The first block may be live-in, or it may have its own def.
1179 if (Start != BlockStart) {
1180 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1181 assert(VNI && "Missing def for complex mapped value");
1182 LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB));
1183 // MBB has its own def. Is it also live-out?
1184 if (BlockEnd <= End)
1185 LRC.setLiveOutValue(&*MBB, VNI);
1186
1187 // Skip to the next block for live-in.
1188 ++MBB;
1189 BlockStart = BlockEnd;
1190 }
1191
1192 // Handle the live-in blocks covered by [Start;End).
1193 assert(Start <= BlockStart && "Expected live-in block");
1194 while (BlockStart < End) {
1195 LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB));
1196 BlockEnd = LIS.getMBBEndIdx(&*MBB);
1197 if (BlockStart == ParentVNI->def) {
1198 // This block has the def of a parent PHI, so it isn't live-in.
1199 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
1200 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1201 assert(VNI && "Missing def for complex mapped parent PHI");
1202 if (End >= BlockEnd)
1203 LRC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
1204 } else {
1205 // This block needs a live-in value. The last block covered may not
1206 // be live-out.
1207 if (End < BlockEnd)
1208 LRC.addLiveInBlock(LI, MDT[&*MBB], End);
1209 else {
1210 // Live-through, and we don't know the value.
1211 LRC.addLiveInBlock(LI, MDT[&*MBB]);
1212 LRC.setLiveOutValue(&*MBB, nullptr);
1213 }
1214 }
1215 BlockStart = BlockEnd;
1216 ++MBB;
1217 }
1218 Start = End;
1219 } while (Start != S.end);
1220 LLVM_DEBUG(dbgs() << '\n');
1221 }
1222
1223 LRCalc[0].calculateValues();
1224 if (SpillMode)
1225 LRCalc[1].calculateValues();
1226
1227 return Skipped;
1228 }
1229
removeDeadSegment(SlotIndex Def,LiveRange & LR)1230 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
1231 const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
1232 if (Seg == nullptr)
1233 return true;
1234 if (Seg->end != Def.getDeadSlot())
1235 return false;
1236 // This is a dead PHI. Remove it.
1237 LR.removeSegment(*Seg, true);
1238 return true;
1239 }
1240
extendPHIRange(MachineBasicBlock & B,LiveRangeCalc & LRC,LiveRange & LR,LaneBitmask LM,ArrayRef<SlotIndex> Undefs)1241 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveRangeCalc &LRC,
1242 LiveRange &LR, LaneBitmask LM,
1243 ArrayRef<SlotIndex> Undefs) {
1244 for (MachineBasicBlock *P : B.predecessors()) {
1245 SlotIndex End = LIS.getMBBEndIdx(P);
1246 SlotIndex LastUse = End.getPrevSlot();
1247 // The predecessor may not have a live-out value. That is OK, like an
1248 // undef PHI operand.
1249 LiveInterval &PLI = Edit->getParent();
1250 // Need the cast because the inputs to ?: would otherwise be deemed
1251 // "incompatible": SubRange vs LiveInterval.
1252 LiveRange &PSR = !LM.all() ? getSubRangeForMask(LM, PLI)
1253 : static_cast<LiveRange&>(PLI);
1254 if (PSR.liveAt(LastUse))
1255 LRC.extend(LR, End, /*PhysReg=*/0, Undefs);
1256 }
1257 }
1258
extendPHIKillRanges()1259 void SplitEditor::extendPHIKillRanges() {
1260 // Extend live ranges to be live-out for successor PHI values.
1261
1262 // Visit each PHI def slot in the parent live interval. If the def is dead,
1263 // remove it. Otherwise, extend the live interval to reach the end indexes
1264 // of all predecessor blocks.
1265
1266 LiveInterval &ParentLI = Edit->getParent();
1267 for (const VNInfo *V : ParentLI.valnos) {
1268 if (V->isUnused() || !V->isPHIDef())
1269 continue;
1270
1271 unsigned RegIdx = RegAssign.lookup(V->def);
1272 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1273 LiveRangeCalc &LRC = getLRCalc(RegIdx);
1274 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1275 if (!removeDeadSegment(V->def, LI))
1276 extendPHIRange(B, LRC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
1277 }
1278
1279 SmallVector<SlotIndex, 4> Undefs;
1280 LiveRangeCalc SubLRC;
1281
1282 for (LiveInterval::SubRange &PS : ParentLI.subranges()) {
1283 for (const VNInfo *V : PS.valnos) {
1284 if (V->isUnused() || !V->isPHIDef())
1285 continue;
1286 unsigned RegIdx = RegAssign.lookup(V->def);
1287 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1288 LiveInterval::SubRange &S = getSubRangeForMask(PS.LaneMask, LI);
1289 if (removeDeadSegment(V->def, S))
1290 continue;
1291
1292 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1293 SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1294 &LIS.getVNInfoAllocator());
1295 Undefs.clear();
1296 LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
1297 extendPHIRange(B, SubLRC, S, PS.LaneMask, Undefs);
1298 }
1299 }
1300 }
1301
1302 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
rewriteAssigned(bool ExtendRanges)1303 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
1304 struct ExtPoint {
1305 ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
1306 : MO(O), RegIdx(R), Next(N) {}
1307
1308 MachineOperand MO;
1309 unsigned RegIdx;
1310 SlotIndex Next;
1311 };
1312
1313 SmallVector<ExtPoint,4> ExtPoints;
1314
1315 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
1316 RE = MRI.reg_end(); RI != RE;) {
1317 MachineOperand &MO = *RI;
1318 MachineInstr *MI = MO.getParent();
1319 ++RI;
1320 // LiveDebugVariables should have handled all DBG_VALUE instructions.
1321 if (MI->isDebugValue()) {
1322 LLVM_DEBUG(dbgs() << "Zapping " << *MI);
1323 MO.setReg(0);
1324 continue;
1325 }
1326
1327 // <undef> operands don't really read the register, so it doesn't matter
1328 // which register we choose. When the use operand is tied to a def, we must
1329 // use the same register as the def, so just do that always.
1330 SlotIndex Idx = LIS.getInstructionIndex(*MI);
1331 if (MO.isDef() || MO.isUndef())
1332 Idx = Idx.getRegSlot(MO.isEarlyClobber());
1333
1334 // Rewrite to the mapped register at Idx.
1335 unsigned RegIdx = RegAssign.lookup(Idx);
1336 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1337 MO.setReg(LI.reg);
1338 LLVM_DEBUG(dbgs() << " rewr " << printMBBReference(*MI->getParent())
1339 << '\t' << Idx << ':' << RegIdx << '\t' << *MI);
1340
1341 // Extend liveness to Idx if the instruction reads reg.
1342 if (!ExtendRanges || MO.isUndef())
1343 continue;
1344
1345 // Skip instructions that don't read Reg.
1346 if (MO.isDef()) {
1347 if (!MO.getSubReg() && !MO.isEarlyClobber())
1348 continue;
1349 // We may want to extend a live range for a partial redef, or for a use
1350 // tied to an early clobber.
1351 Idx = Idx.getPrevSlot();
1352 if (!Edit->getParent().liveAt(Idx))
1353 continue;
1354 } else
1355 Idx = Idx.getRegSlot(true);
1356
1357 SlotIndex Next = Idx.getNextSlot();
1358 if (LI.hasSubRanges()) {
1359 // We have to delay extending subranges until we have seen all operands
1360 // defining the register. This is because a <def,read-undef> operand
1361 // will create an "undef" point, and we cannot extend any subranges
1362 // until all of them have been accounted for.
1363 if (MO.isUse())
1364 ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
1365 } else {
1366 LiveRangeCalc &LRC = getLRCalc(RegIdx);
1367 LRC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
1368 }
1369 }
1370
1371 for (ExtPoint &EP : ExtPoints) {
1372 LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
1373 assert(LI.hasSubRanges());
1374
1375 LiveRangeCalc SubLRC;
1376 Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
1377 LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
1378 : MRI.getMaxLaneMaskForVReg(Reg);
1379 for (LiveInterval::SubRange &S : LI.subranges()) {
1380 if ((S.LaneMask & LM).none())
1381 continue;
1382 // The problem here can be that the new register may have been created
1383 // for a partially defined original register. For example:
1384 // %0:subreg_hireg<def,read-undef> = ...
1385 // ...
1386 // %1 = COPY %0
1387 if (S.empty())
1388 continue;
1389 SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1390 &LIS.getVNInfoAllocator());
1391 SmallVector<SlotIndex, 4> Undefs;
1392 LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
1393 SubLRC.extend(S, EP.Next, 0, Undefs);
1394 }
1395 }
1396
1397 for (unsigned R : *Edit) {
1398 LiveInterval &LI = LIS.getInterval(R);
1399 if (!LI.hasSubRanges())
1400 continue;
1401 LI.clear();
1402 LI.removeEmptySubRanges();
1403 LIS.constructMainRangeFromSubranges(LI);
1404 }
1405 }
1406
deleteRematVictims()1407 void SplitEditor::deleteRematVictims() {
1408 SmallVector<MachineInstr*, 8> Dead;
1409 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
1410 LiveInterval *LI = &LIS.getInterval(*I);
1411 for (const LiveRange::Segment &S : LI->segments) {
1412 // Dead defs end at the dead slot.
1413 if (S.end != S.valno->def.getDeadSlot())
1414 continue;
1415 if (S.valno->isPHIDef())
1416 continue;
1417 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1418 assert(MI && "Missing instruction for dead def");
1419 MI->addRegisterDead(LI->reg, &TRI);
1420
1421 if (!MI->allDefsAreDead())
1422 continue;
1423
1424 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
1425 Dead.push_back(MI);
1426 }
1427 }
1428
1429 if (Dead.empty())
1430 return;
1431
1432 Edit->eliminateDeadDefs(Dead, None, &AA);
1433 }
1434
forceRecomputeVNI(const VNInfo & ParentVNI)1435 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) {
1436 // Fast-path for common case.
1437 if (!ParentVNI.isPHIDef()) {
1438 for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1439 forceRecompute(I, ParentVNI);
1440 return;
1441 }
1442
1443 // Trace value through phis.
1444 SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist.
1445 SmallVector<const VNInfo *, 4> WorkList;
1446 Visited.insert(&ParentVNI);
1447 WorkList.push_back(&ParentVNI);
1448
1449 const LiveInterval &ParentLI = Edit->getParent();
1450 const SlotIndexes &Indexes = *LIS.getSlotIndexes();
1451 do {
1452 const VNInfo &VNI = *WorkList.back();
1453 WorkList.pop_back();
1454 for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1455 forceRecompute(I, VNI);
1456 if (!VNI.isPHIDef())
1457 continue;
1458
1459 MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def);
1460 for (const MachineBasicBlock *Pred : MBB.predecessors()) {
1461 SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
1462 VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd);
1463 assert(PredVNI && "Value available in PhiVNI predecessor");
1464 if (Visited.insert(PredVNI).second)
1465 WorkList.push_back(PredVNI);
1466 }
1467 } while(!WorkList.empty());
1468 }
1469
finish(SmallVectorImpl<unsigned> * LRMap)1470 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1471 ++NumFinished;
1472
1473 // At this point, the live intervals in Edit contain VNInfos corresponding to
1474 // the inserted copies.
1475
1476 // Add the original defs from the parent interval.
1477 for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1478 if (ParentVNI->isUnused())
1479 continue;
1480 unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1481 defValue(RegIdx, ParentVNI, ParentVNI->def, true);
1482
1483 // Force rematted values to be recomputed everywhere.
1484 // The new live ranges may be truncated.
1485 if (Edit->didRematerialize(ParentVNI))
1486 forceRecomputeVNI(*ParentVNI);
1487 }
1488
1489 // Hoist back-copies to the complement interval when in spill mode.
1490 switch (SpillMode) {
1491 case SM_Partition:
1492 // Leave all back-copies as is.
1493 break;
1494 case SM_Size:
1495 case SM_Speed:
1496 // hoistCopies will behave differently between size and speed.
1497 hoistCopies();
1498 }
1499
1500 // Transfer the simply mapped values, check if any are skipped.
1501 bool Skipped = transferValues();
1502
1503 // Rewrite virtual registers, possibly extending ranges.
1504 rewriteAssigned(Skipped);
1505
1506 if (Skipped)
1507 extendPHIKillRanges();
1508 else
1509 ++NumSimple;
1510
1511 // Delete defs that were rematted everywhere.
1512 if (Skipped)
1513 deleteRematVictims();
1514
1515 // Get rid of unused values and set phi-kill flags.
1516 for (unsigned Reg : *Edit) {
1517 LiveInterval &LI = LIS.getInterval(Reg);
1518 LI.removeEmptySubRanges();
1519 LI.RenumberValues();
1520 }
1521
1522 // Provide a reverse mapping from original indices to Edit ranges.
1523 if (LRMap) {
1524 LRMap->clear();
1525 for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1526 LRMap->push_back(i);
1527 }
1528
1529 // Now check if any registers were separated into multiple components.
1530 ConnectedVNInfoEqClasses ConEQ(LIS);
1531 for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1532 // Don't use iterators, they are invalidated by create() below.
1533 unsigned VReg = Edit->get(i);
1534 LiveInterval &LI = LIS.getInterval(VReg);
1535 SmallVector<LiveInterval*, 8> SplitLIs;
1536 LIS.splitSeparateComponents(LI, SplitLIs);
1537 unsigned Original = VRM.getOriginal(VReg);
1538 for (LiveInterval *SplitLI : SplitLIs)
1539 VRM.setIsSplitFromReg(SplitLI->reg, Original);
1540
1541 // The new intervals all map back to i.
1542 if (LRMap)
1543 LRMap->resize(Edit->size(), i);
1544 }
1545
1546 // Calculate spill weight and allocation hints for new intervals.
1547 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);
1548
1549 assert(!LRMap || LRMap->size() == Edit->size());
1550 }
1551
1552 //===----------------------------------------------------------------------===//
1553 // Single Block Splitting
1554 //===----------------------------------------------------------------------===//
1555
shouldSplitSingleBlock(const BlockInfo & BI,bool SingleInstrs) const1556 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1557 bool SingleInstrs) const {
1558 // Always split for multiple instructions.
1559 if (!BI.isOneInstr())
1560 return true;
1561 // Don't split for single instructions unless explicitly requested.
1562 if (!SingleInstrs)
1563 return false;
1564 // Splitting a live-through range always makes progress.
1565 if (BI.LiveIn && BI.LiveOut)
1566 return true;
1567 // No point in isolating a copy. It has no register class constraints.
1568 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1569 return false;
1570 // Finally, don't isolate an end point that was created by earlier splits.
1571 return isOriginalEndpoint(BI.FirstInstr);
1572 }
1573
splitSingleBlock(const SplitAnalysis::BlockInfo & BI)1574 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1575 openIntv();
1576 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1577 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1578 LastSplitPoint));
1579 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1580 useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1581 } else {
1582 // The last use is after the last valid split point.
1583 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1584 useIntv(SegStart, SegStop);
1585 overlapIntv(SegStop, BI.LastInstr);
1586 }
1587 }
1588
1589 //===----------------------------------------------------------------------===//
1590 // Global Live Range Splitting Support
1591 //===----------------------------------------------------------------------===//
1592
1593 // These methods support a method of global live range splitting that uses a
1594 // global algorithm to decide intervals for CFG edges. They will insert split
1595 // points and color intervals in basic blocks while avoiding interference.
1596 //
1597 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1598 // are on the stack.
1599
splitLiveThroughBlock(unsigned MBBNum,unsigned IntvIn,SlotIndex LeaveBefore,unsigned IntvOut,SlotIndex EnterAfter)1600 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1601 unsigned IntvIn, SlotIndex LeaveBefore,
1602 unsigned IntvOut, SlotIndex EnterAfter){
1603 SlotIndex Start, Stop;
1604 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1605
1606 LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop
1607 << ") intf " << LeaveBefore << '-' << EnterAfter
1608 << ", live-through " << IntvIn << " -> " << IntvOut);
1609
1610 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1611
1612 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1613 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1614 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1615
1616 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1617
1618 if (!IntvOut) {
1619 LLVM_DEBUG(dbgs() << ", spill on entry.\n");
1620 //
1621 // <<<<<<<<< Possible LeaveBefore interference.
1622 // |-----------| Live through.
1623 // -____________ Spill on entry.
1624 //
1625 selectIntv(IntvIn);
1626 SlotIndex Idx = leaveIntvAtTop(*MBB);
1627 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1628 (void)Idx;
1629 return;
1630 }
1631
1632 if (!IntvIn) {
1633 LLVM_DEBUG(dbgs() << ", reload on exit.\n");
1634 //
1635 // >>>>>>> Possible EnterAfter interference.
1636 // |-----------| Live through.
1637 // ___________-- Reload on exit.
1638 //
1639 selectIntv(IntvOut);
1640 SlotIndex Idx = enterIntvAtEnd(*MBB);
1641 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1642 (void)Idx;
1643 return;
1644 }
1645
1646 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1647 LLVM_DEBUG(dbgs() << ", straight through.\n");
1648 //
1649 // |-----------| Live through.
1650 // ------------- Straight through, same intv, no interference.
1651 //
1652 selectIntv(IntvOut);
1653 useIntv(Start, Stop);
1654 return;
1655 }
1656
1657 // We cannot legally insert splits after LSP.
1658 SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1659 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1660
1661 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1662 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1663 LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
1664 //
1665 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference.
1666 // |-----------| Live through.
1667 // ------======= Switch intervals between interference.
1668 //
1669 selectIntv(IntvOut);
1670 SlotIndex Idx;
1671 if (LeaveBefore && LeaveBefore < LSP) {
1672 Idx = enterIntvBefore(LeaveBefore);
1673 useIntv(Idx, Stop);
1674 } else {
1675 Idx = enterIntvAtEnd(*MBB);
1676 }
1677 selectIntv(IntvIn);
1678 useIntv(Start, Idx);
1679 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1680 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1681 return;
1682 }
1683
1684 LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
1685 //
1686 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference.
1687 // |-----------| Live through.
1688 // ==---------== Switch intervals before/after interference.
1689 //
1690 assert(LeaveBefore <= EnterAfter && "Missed case");
1691
1692 selectIntv(IntvOut);
1693 SlotIndex Idx = enterIntvAfter(EnterAfter);
1694 useIntv(Idx, Stop);
1695 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1696
1697 selectIntv(IntvIn);
1698 Idx = leaveIntvBefore(LeaveBefore);
1699 useIntv(Start, Idx);
1700 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1701 }
1702
splitRegInBlock(const SplitAnalysis::BlockInfo & BI,unsigned IntvIn,SlotIndex LeaveBefore)1703 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1704 unsigned IntvIn, SlotIndex LeaveBefore) {
1705 SlotIndex Start, Stop;
1706 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1707
1708 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1709 << Stop << "), uses " << BI.FirstInstr << '-'
1710 << BI.LastInstr << ", reg-in " << IntvIn
1711 << ", leave before " << LeaveBefore
1712 << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1713
1714 assert(IntvIn && "Must have register in");
1715 assert(BI.LiveIn && "Must be live-in");
1716 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1717
1718 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1719 LLVM_DEBUG(dbgs() << " before interference.\n");
1720 //
1721 // <<< Interference after kill.
1722 // |---o---x | Killed in block.
1723 // ========= Use IntvIn everywhere.
1724 //
1725 selectIntv(IntvIn);
1726 useIntv(Start, BI.LastInstr);
1727 return;
1728 }
1729
1730 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1731
1732 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1733 //
1734 // <<< Possible interference after last use.
1735 // |---o---o---| Live-out on stack.
1736 // =========____ Leave IntvIn after last use.
1737 //
1738 // < Interference after last use.
1739 // |---o---o--o| Live-out on stack, late last use.
1740 // ============ Copy to stack after LSP, overlap IntvIn.
1741 // \_____ Stack interval is live-out.
1742 //
1743 if (BI.LastInstr < LSP) {
1744 LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
1745 selectIntv(IntvIn);
1746 SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1747 useIntv(Start, Idx);
1748 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1749 } else {
1750 LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
1751 selectIntv(IntvIn);
1752 SlotIndex Idx = leaveIntvBefore(LSP);
1753 overlapIntv(Idx, BI.LastInstr);
1754 useIntv(Start, Idx);
1755 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1756 }
1757 return;
1758 }
1759
1760 // The interference is overlapping somewhere we wanted to use IntvIn. That
1761 // means we need to create a local interval that can be allocated a
1762 // different register.
1763 unsigned LocalIntv = openIntv();
1764 (void)LocalIntv;
1765 LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1766
1767 if (!BI.LiveOut || BI.LastInstr < LSP) {
1768 //
1769 // <<<<<<< Interference overlapping uses.
1770 // |---o---o---| Live-out on stack.
1771 // =====----____ Leave IntvIn before interference, then spill.
1772 //
1773 SlotIndex To = leaveIntvAfter(BI.LastInstr);
1774 SlotIndex From = enterIntvBefore(LeaveBefore);
1775 useIntv(From, To);
1776 selectIntv(IntvIn);
1777 useIntv(Start, From);
1778 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1779 return;
1780 }
1781
1782 // <<<<<<< Interference overlapping uses.
1783 // |---o---o--o| Live-out on stack, late last use.
1784 // =====------- Copy to stack before LSP, overlap LocalIntv.
1785 // \_____ Stack interval is live-out.
1786 //
1787 SlotIndex To = leaveIntvBefore(LSP);
1788 overlapIntv(To, BI.LastInstr);
1789 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1790 useIntv(From, To);
1791 selectIntv(IntvIn);
1792 useIntv(Start, From);
1793 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1794 }
1795
splitRegOutBlock(const SplitAnalysis::BlockInfo & BI,unsigned IntvOut,SlotIndex EnterAfter)1796 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1797 unsigned IntvOut, SlotIndex EnterAfter) {
1798 SlotIndex Start, Stop;
1799 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1800
1801 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1802 << Stop << "), uses " << BI.FirstInstr << '-'
1803 << BI.LastInstr << ", reg-out " << IntvOut
1804 << ", enter after " << EnterAfter
1805 << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1806
1807 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1808
1809 assert(IntvOut && "Must have register out");
1810 assert(BI.LiveOut && "Must be live-out");
1811 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1812
1813 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1814 LLVM_DEBUG(dbgs() << " after interference.\n");
1815 //
1816 // >>>> Interference before def.
1817 // | o---o---| Defined in block.
1818 // ========= Use IntvOut everywhere.
1819 //
1820 selectIntv(IntvOut);
1821 useIntv(BI.FirstInstr, Stop);
1822 return;
1823 }
1824
1825 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1826 LLVM_DEBUG(dbgs() << ", reload after interference.\n");
1827 //
1828 // >>>> Interference before def.
1829 // |---o---o---| Live-through, stack-in.
1830 // ____========= Enter IntvOut before first use.
1831 //
1832 selectIntv(IntvOut);
1833 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1834 useIntv(Idx, Stop);
1835 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1836 return;
1837 }
1838
1839 // The interference is overlapping somewhere we wanted to use IntvOut. That
1840 // means we need to create a local interval that can be allocated a
1841 // different register.
1842 LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
1843 //
1844 // >>>>>>> Interference overlapping uses.
1845 // |---o---o---| Live-through, stack-in.
1846 // ____---====== Create local interval for interference range.
1847 //
1848 selectIntv(IntvOut);
1849 SlotIndex Idx = enterIntvAfter(EnterAfter);
1850 useIntv(Idx, Stop);
1851 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1852
1853 openIntv();
1854 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1855 useIntv(From, Idx);
1856 }
1857