1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
60 #include <net/sock.h>
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
64
65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
66 MAX_CFTYPE_NAME + 2)
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
69
70 /*
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
73 *
74 * css_set_lock protects task->cgroups pointer, the list of css_set
75 * objects, and the chain of tasks off each css_set.
76 *
77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
78 * cgroup.h can use them for lockdep annotations.
79 */
80 DEFINE_MUTEX(cgroup_mutex);
81 DEFINE_SPINLOCK(css_set_lock);
82
83 #ifdef CONFIG_PROVE_RCU
84 EXPORT_SYMBOL_GPL(cgroup_mutex);
85 EXPORT_SYMBOL_GPL(css_set_lock);
86 #endif
87
88 DEFINE_SPINLOCK(trace_cgroup_path_lock);
89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
90 bool cgroup_debug __read_mostly;
91
92 /*
93 * Protects cgroup_idr and css_idr so that IDs can be released without
94 * grabbing cgroup_mutex.
95 */
96 static DEFINE_SPINLOCK(cgroup_idr_lock);
97
98 /*
99 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
100 * against file removal/re-creation across css hiding.
101 */
102 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
103
104 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
105
106 #define cgroup_assert_mutex_or_rcu_locked() \
107 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
108 !lockdep_is_held(&cgroup_mutex), \
109 "cgroup_mutex or RCU read lock required");
110
111 /*
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
116 */
117 static struct workqueue_struct *cgroup_destroy_wq;
118
119 /* generate an array of cgroup subsystem pointers */
120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
121 struct cgroup_subsys *cgroup_subsys[] = {
122 #include <linux/cgroup_subsys.h>
123 };
124 #undef SUBSYS
125
126 /* array of cgroup subsystem names */
127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
128 static const char *cgroup_subsys_name[] = {
129 #include <linux/cgroup_subsys.h>
130 };
131 #undef SUBSYS
132
133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
134 #define SUBSYS(_x) \
135 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
136 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
137 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
138 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
139 #include <linux/cgroup_subsys.h>
140 #undef SUBSYS
141
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
143 static struct static_key_true *cgroup_subsys_enabled_key[] = {
144 #include <linux/cgroup_subsys.h>
145 };
146 #undef SUBSYS
147
148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
150 #include <linux/cgroup_subsys.h>
151 };
152 #undef SUBSYS
153
154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
155
156 /* the default hierarchy */
157 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
158 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
159
160 /*
161 * The default hierarchy always exists but is hidden until mounted for the
162 * first time. This is for backward compatibility.
163 */
164 static bool cgrp_dfl_visible;
165
166 /* some controllers are not supported in the default hierarchy */
167 static u16 cgrp_dfl_inhibit_ss_mask;
168
169 /* some controllers are implicitly enabled on the default hierarchy */
170 static u16 cgrp_dfl_implicit_ss_mask;
171
172 /* some controllers can be threaded on the default hierarchy */
173 static u16 cgrp_dfl_threaded_ss_mask;
174
175 /* The list of hierarchy roots */
176 LIST_HEAD(cgroup_roots);
177 static int cgroup_root_count;
178
179 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
180 static DEFINE_IDR(cgroup_hierarchy_idr);
181
182 /*
183 * Assign a monotonically increasing serial number to csses. It guarantees
184 * cgroups with bigger numbers are newer than those with smaller numbers.
185 * Also, as csses are always appended to the parent's ->children list, it
186 * guarantees that sibling csses are always sorted in the ascending serial
187 * number order on the list. Protected by cgroup_mutex.
188 */
189 static u64 css_serial_nr_next = 1;
190
191 /*
192 * These bitmasks identify subsystems with specific features to avoid
193 * having to do iterative checks repeatedly.
194 */
195 static u16 have_fork_callback __read_mostly;
196 static u16 have_exit_callback __read_mostly;
197 static u16 have_release_callback __read_mostly;
198 static u16 have_canfork_callback __read_mostly;
199
200 /* cgroup namespace for init task */
201 struct cgroup_namespace init_cgroup_ns = {
202 .count = REFCOUNT_INIT(2),
203 .user_ns = &init_user_ns,
204 .ns.ops = &cgroupns_operations,
205 .ns.inum = PROC_CGROUP_INIT_INO,
206 .root_cset = &init_css_set,
207 };
208
209 static struct file_system_type cgroup2_fs_type;
210 static struct cftype cgroup_base_files[];
211
212 static int cgroup_apply_control(struct cgroup *cgrp);
213 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
214 static void css_task_iter_skip(struct css_task_iter *it,
215 struct task_struct *task);
216 static int cgroup_destroy_locked(struct cgroup *cgrp);
217 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
218 struct cgroup_subsys *ss);
219 static void css_release(struct percpu_ref *ref);
220 static void kill_css(struct cgroup_subsys_state *css);
221 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
222 struct cgroup *cgrp, struct cftype cfts[],
223 bool is_add);
224
225 /**
226 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
227 * @ssid: subsys ID of interest
228 *
229 * cgroup_subsys_enabled() can only be used with literal subsys names which
230 * is fine for individual subsystems but unsuitable for cgroup core. This
231 * is slower static_key_enabled() based test indexed by @ssid.
232 */
cgroup_ssid_enabled(int ssid)233 bool cgroup_ssid_enabled(int ssid)
234 {
235 if (CGROUP_SUBSYS_COUNT == 0)
236 return false;
237
238 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
239 }
240
241 /**
242 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
243 * @cgrp: the cgroup of interest
244 *
245 * The default hierarchy is the v2 interface of cgroup and this function
246 * can be used to test whether a cgroup is on the default hierarchy for
247 * cases where a subsystem should behave differnetly depending on the
248 * interface version.
249 *
250 * List of changed behaviors:
251 *
252 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
253 * and "name" are disallowed.
254 *
255 * - When mounting an existing superblock, mount options should match.
256 *
257 * - Remount is disallowed.
258 *
259 * - rename(2) is disallowed.
260 *
261 * - "tasks" is removed. Everything should be at process granularity. Use
262 * "cgroup.procs" instead.
263 *
264 * - "cgroup.procs" is not sorted. pids will be unique unless they got
265 * recycled inbetween reads.
266 *
267 * - "release_agent" and "notify_on_release" are removed. Replacement
268 * notification mechanism will be implemented.
269 *
270 * - "cgroup.clone_children" is removed.
271 *
272 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
273 * and its descendants contain no task; otherwise, 1. The file also
274 * generates kernfs notification which can be monitored through poll and
275 * [di]notify when the value of the file changes.
276 *
277 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
278 * take masks of ancestors with non-empty cpus/mems, instead of being
279 * moved to an ancestor.
280 *
281 * - cpuset: a task can be moved into an empty cpuset, and again it takes
282 * masks of ancestors.
283 *
284 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
285 * is not created.
286 *
287 * - blkcg: blk-throttle becomes properly hierarchical.
288 *
289 * - debug: disallowed on the default hierarchy.
290 */
cgroup_on_dfl(const struct cgroup * cgrp)291 bool cgroup_on_dfl(const struct cgroup *cgrp)
292 {
293 return cgrp->root == &cgrp_dfl_root;
294 }
295
296 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)297 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
298 gfp_t gfp_mask)
299 {
300 int ret;
301
302 idr_preload(gfp_mask);
303 spin_lock_bh(&cgroup_idr_lock);
304 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
305 spin_unlock_bh(&cgroup_idr_lock);
306 idr_preload_end();
307 return ret;
308 }
309
cgroup_idr_replace(struct idr * idr,void * ptr,int id)310 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
311 {
312 void *ret;
313
314 spin_lock_bh(&cgroup_idr_lock);
315 ret = idr_replace(idr, ptr, id);
316 spin_unlock_bh(&cgroup_idr_lock);
317 return ret;
318 }
319
cgroup_idr_remove(struct idr * idr,int id)320 static void cgroup_idr_remove(struct idr *idr, int id)
321 {
322 spin_lock_bh(&cgroup_idr_lock);
323 idr_remove(idr, id);
324 spin_unlock_bh(&cgroup_idr_lock);
325 }
326
cgroup_has_tasks(struct cgroup * cgrp)327 static bool cgroup_has_tasks(struct cgroup *cgrp)
328 {
329 return cgrp->nr_populated_csets;
330 }
331
cgroup_is_threaded(struct cgroup * cgrp)332 bool cgroup_is_threaded(struct cgroup *cgrp)
333 {
334 return cgrp->dom_cgrp != cgrp;
335 }
336
337 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)338 static bool cgroup_is_mixable(struct cgroup *cgrp)
339 {
340 /*
341 * Root isn't under domain level resource control exempting it from
342 * the no-internal-process constraint, so it can serve as a thread
343 * root and a parent of resource domains at the same time.
344 */
345 return !cgroup_parent(cgrp);
346 }
347
348 /* can @cgrp become a thread root? should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)349 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
350 {
351 /* mixables don't care */
352 if (cgroup_is_mixable(cgrp))
353 return true;
354
355 /* domain roots can't be nested under threaded */
356 if (cgroup_is_threaded(cgrp))
357 return false;
358
359 /* can only have either domain or threaded children */
360 if (cgrp->nr_populated_domain_children)
361 return false;
362
363 /* and no domain controllers can be enabled */
364 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
365 return false;
366
367 return true;
368 }
369
370 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)371 bool cgroup_is_thread_root(struct cgroup *cgrp)
372 {
373 /* thread root should be a domain */
374 if (cgroup_is_threaded(cgrp))
375 return false;
376
377 /* a domain w/ threaded children is a thread root */
378 if (cgrp->nr_threaded_children)
379 return true;
380
381 /*
382 * A domain which has tasks and explicit threaded controllers
383 * enabled is a thread root.
384 */
385 if (cgroup_has_tasks(cgrp) &&
386 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
387 return true;
388
389 return false;
390 }
391
392 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)393 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
394 {
395 /* the cgroup itself can be a thread root */
396 if (cgroup_is_threaded(cgrp))
397 return false;
398
399 /* but the ancestors can't be unless mixable */
400 while ((cgrp = cgroup_parent(cgrp))) {
401 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
402 return false;
403 if (cgroup_is_threaded(cgrp))
404 return false;
405 }
406
407 return true;
408 }
409
410 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)411 static u16 cgroup_control(struct cgroup *cgrp)
412 {
413 struct cgroup *parent = cgroup_parent(cgrp);
414 u16 root_ss_mask = cgrp->root->subsys_mask;
415
416 if (parent) {
417 u16 ss_mask = parent->subtree_control;
418
419 /* threaded cgroups can only have threaded controllers */
420 if (cgroup_is_threaded(cgrp))
421 ss_mask &= cgrp_dfl_threaded_ss_mask;
422 return ss_mask;
423 }
424
425 if (cgroup_on_dfl(cgrp))
426 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
427 cgrp_dfl_implicit_ss_mask);
428 return root_ss_mask;
429 }
430
431 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)432 static u16 cgroup_ss_mask(struct cgroup *cgrp)
433 {
434 struct cgroup *parent = cgroup_parent(cgrp);
435
436 if (parent) {
437 u16 ss_mask = parent->subtree_ss_mask;
438
439 /* threaded cgroups can only have threaded controllers */
440 if (cgroup_is_threaded(cgrp))
441 ss_mask &= cgrp_dfl_threaded_ss_mask;
442 return ss_mask;
443 }
444
445 return cgrp->root->subsys_mask;
446 }
447
448 /**
449 * cgroup_css - obtain a cgroup's css for the specified subsystem
450 * @cgrp: the cgroup of interest
451 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
452 *
453 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
454 * function must be called either under cgroup_mutex or rcu_read_lock() and
455 * the caller is responsible for pinning the returned css if it wants to
456 * keep accessing it outside the said locks. This function may return
457 * %NULL if @cgrp doesn't have @subsys_id enabled.
458 */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)459 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
460 struct cgroup_subsys *ss)
461 {
462 if (ss)
463 return rcu_dereference_check(cgrp->subsys[ss->id],
464 lockdep_is_held(&cgroup_mutex));
465 else
466 return &cgrp->self;
467 }
468
469 /**
470 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
471 * @cgrp: the cgroup of interest
472 * @ss: the subsystem of interest
473 *
474 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
475 * or is offline, %NULL is returned.
476 */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)477 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
478 struct cgroup_subsys *ss)
479 {
480 struct cgroup_subsys_state *css;
481
482 rcu_read_lock();
483 css = cgroup_css(cgrp, ss);
484 if (css && !css_tryget_online(css))
485 css = NULL;
486 rcu_read_unlock();
487
488 return css;
489 }
490
491 /**
492 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
493 * @cgrp: the cgroup of interest
494 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
495 *
496 * Similar to cgroup_css() but returns the effective css, which is defined
497 * as the matching css of the nearest ancestor including self which has @ss
498 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
499 * function is guaranteed to return non-NULL css.
500 */
cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)501 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
502 struct cgroup_subsys *ss)
503 {
504 lockdep_assert_held(&cgroup_mutex);
505
506 if (!ss)
507 return &cgrp->self;
508
509 /*
510 * This function is used while updating css associations and thus
511 * can't test the csses directly. Test ss_mask.
512 */
513 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
514 cgrp = cgroup_parent(cgrp);
515 if (!cgrp)
516 return NULL;
517 }
518
519 return cgroup_css(cgrp, ss);
520 }
521
522 /**
523 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
524 * @cgrp: the cgroup of interest
525 * @ss: the subsystem of interest
526 *
527 * Find and get the effective css of @cgrp for @ss. The effective css is
528 * defined as the matching css of the nearest ancestor including self which
529 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
530 * the root css is returned, so this function always returns a valid css.
531 *
532 * The returned css is not guaranteed to be online, and therefore it is the
533 * callers responsiblity to tryget a reference for it.
534 */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)535 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
536 struct cgroup_subsys *ss)
537 {
538 struct cgroup_subsys_state *css;
539
540 do {
541 css = cgroup_css(cgrp, ss);
542
543 if (css)
544 return css;
545 cgrp = cgroup_parent(cgrp);
546 } while (cgrp);
547
548 return init_css_set.subsys[ss->id];
549 }
550
551 /**
552 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
553 * @cgrp: the cgroup of interest
554 * @ss: the subsystem of interest
555 *
556 * Find and get the effective css of @cgrp for @ss. The effective css is
557 * defined as the matching css of the nearest ancestor including self which
558 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
559 * the root css is returned, so this function always returns a valid css.
560 * The returned css must be put using css_put().
561 */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)562 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
563 struct cgroup_subsys *ss)
564 {
565 struct cgroup_subsys_state *css;
566
567 rcu_read_lock();
568
569 do {
570 css = cgroup_css(cgrp, ss);
571
572 if (css && css_tryget_online(css))
573 goto out_unlock;
574 cgrp = cgroup_parent(cgrp);
575 } while (cgrp);
576
577 css = init_css_set.subsys[ss->id];
578 css_get(css);
579 out_unlock:
580 rcu_read_unlock();
581 return css;
582 }
583
cgroup_get_live(struct cgroup * cgrp)584 static void cgroup_get_live(struct cgroup *cgrp)
585 {
586 WARN_ON_ONCE(cgroup_is_dead(cgrp));
587 css_get(&cgrp->self);
588 }
589
590 /**
591 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
592 * is responsible for taking the css_set_lock.
593 * @cgrp: the cgroup in question
594 */
__cgroup_task_count(const struct cgroup * cgrp)595 int __cgroup_task_count(const struct cgroup *cgrp)
596 {
597 int count = 0;
598 struct cgrp_cset_link *link;
599
600 lockdep_assert_held(&css_set_lock);
601
602 list_for_each_entry(link, &cgrp->cset_links, cset_link)
603 count += link->cset->nr_tasks;
604
605 return count;
606 }
607
608 /**
609 * cgroup_task_count - count the number of tasks in a cgroup.
610 * @cgrp: the cgroup in question
611 */
cgroup_task_count(const struct cgroup * cgrp)612 int cgroup_task_count(const struct cgroup *cgrp)
613 {
614 int count;
615
616 spin_lock_irq(&css_set_lock);
617 count = __cgroup_task_count(cgrp);
618 spin_unlock_irq(&css_set_lock);
619
620 return count;
621 }
622
of_css(struct kernfs_open_file * of)623 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
624 {
625 struct cgroup *cgrp = of->kn->parent->priv;
626 struct cftype *cft = of_cft(of);
627
628 /*
629 * This is open and unprotected implementation of cgroup_css().
630 * seq_css() is only called from a kernfs file operation which has
631 * an active reference on the file. Because all the subsystem
632 * files are drained before a css is disassociated with a cgroup,
633 * the matching css from the cgroup's subsys table is guaranteed to
634 * be and stay valid until the enclosing operation is complete.
635 */
636 if (cft->ss)
637 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
638 else
639 return &cgrp->self;
640 }
641 EXPORT_SYMBOL_GPL(of_css);
642
643 /**
644 * for_each_css - iterate all css's of a cgroup
645 * @css: the iteration cursor
646 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
647 * @cgrp: the target cgroup to iterate css's of
648 *
649 * Should be called under cgroup_[tree_]mutex.
650 */
651 #define for_each_css(css, ssid, cgrp) \
652 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
653 if (!((css) = rcu_dereference_check( \
654 (cgrp)->subsys[(ssid)], \
655 lockdep_is_held(&cgroup_mutex)))) { } \
656 else
657
658 /**
659 * for_each_e_css - iterate all effective css's of a cgroup
660 * @css: the iteration cursor
661 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
662 * @cgrp: the target cgroup to iterate css's of
663 *
664 * Should be called under cgroup_[tree_]mutex.
665 */
666 #define for_each_e_css(css, ssid, cgrp) \
667 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
668 if (!((css) = cgroup_e_css_by_mask(cgrp, \
669 cgroup_subsys[(ssid)]))) \
670 ; \
671 else
672
673 /**
674 * do_each_subsys_mask - filter for_each_subsys with a bitmask
675 * @ss: the iteration cursor
676 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
677 * @ss_mask: the bitmask
678 *
679 * The block will only run for cases where the ssid-th bit (1 << ssid) of
680 * @ss_mask is set.
681 */
682 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
683 unsigned long __ss_mask = (ss_mask); \
684 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
685 (ssid) = 0; \
686 break; \
687 } \
688 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
689 (ss) = cgroup_subsys[ssid]; \
690 {
691
692 #define while_each_subsys_mask() \
693 } \
694 } \
695 } while (false)
696
697 /* iterate over child cgrps, lock should be held throughout iteration */
698 #define cgroup_for_each_live_child(child, cgrp) \
699 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
700 if (({ lockdep_assert_held(&cgroup_mutex); \
701 cgroup_is_dead(child); })) \
702 ; \
703 else
704
705 /* walk live descendants in preorder */
706 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
707 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
708 if (({ lockdep_assert_held(&cgroup_mutex); \
709 (dsct) = (d_css)->cgroup; \
710 cgroup_is_dead(dsct); })) \
711 ; \
712 else
713
714 /* walk live descendants in postorder */
715 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
716 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
717 if (({ lockdep_assert_held(&cgroup_mutex); \
718 (dsct) = (d_css)->cgroup; \
719 cgroup_is_dead(dsct); })) \
720 ; \
721 else
722
723 /*
724 * The default css_set - used by init and its children prior to any
725 * hierarchies being mounted. It contains a pointer to the root state
726 * for each subsystem. Also used to anchor the list of css_sets. Not
727 * reference-counted, to improve performance when child cgroups
728 * haven't been created.
729 */
730 struct css_set init_css_set = {
731 .refcount = REFCOUNT_INIT(1),
732 .dom_cset = &init_css_set,
733 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
734 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
735 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks),
736 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
737 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
738 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
739 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
740 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
741 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
742
743 /*
744 * The following field is re-initialized when this cset gets linked
745 * in cgroup_init(). However, let's initialize the field
746 * statically too so that the default cgroup can be accessed safely
747 * early during boot.
748 */
749 .dfl_cgrp = &cgrp_dfl_root.cgrp,
750 };
751
752 static int css_set_count = 1; /* 1 for init_css_set */
753
css_set_threaded(struct css_set * cset)754 static bool css_set_threaded(struct css_set *cset)
755 {
756 return cset->dom_cset != cset;
757 }
758
759 /**
760 * css_set_populated - does a css_set contain any tasks?
761 * @cset: target css_set
762 *
763 * css_set_populated() should be the same as !!cset->nr_tasks at steady
764 * state. However, css_set_populated() can be called while a task is being
765 * added to or removed from the linked list before the nr_tasks is
766 * properly updated. Hence, we can't just look at ->nr_tasks here.
767 */
css_set_populated(struct css_set * cset)768 static bool css_set_populated(struct css_set *cset)
769 {
770 lockdep_assert_held(&css_set_lock);
771
772 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
773 }
774
775 /**
776 * cgroup_update_populated - update the populated count of a cgroup
777 * @cgrp: the target cgroup
778 * @populated: inc or dec populated count
779 *
780 * One of the css_sets associated with @cgrp is either getting its first
781 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
782 * count is propagated towards root so that a given cgroup's
783 * nr_populated_children is zero iff none of its descendants contain any
784 * tasks.
785 *
786 * @cgrp's interface file "cgroup.populated" is zero if both
787 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
788 * 1 otherwise. When the sum changes from or to zero, userland is notified
789 * that the content of the interface file has changed. This can be used to
790 * detect when @cgrp and its descendants become populated or empty.
791 */
cgroup_update_populated(struct cgroup * cgrp,bool populated)792 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
793 {
794 struct cgroup *child = NULL;
795 int adj = populated ? 1 : -1;
796
797 lockdep_assert_held(&css_set_lock);
798
799 do {
800 bool was_populated = cgroup_is_populated(cgrp);
801
802 if (!child) {
803 cgrp->nr_populated_csets += adj;
804 } else {
805 if (cgroup_is_threaded(child))
806 cgrp->nr_populated_threaded_children += adj;
807 else
808 cgrp->nr_populated_domain_children += adj;
809 }
810
811 if (was_populated == cgroup_is_populated(cgrp))
812 break;
813
814 cgroup1_check_for_release(cgrp);
815 TRACE_CGROUP_PATH(notify_populated, cgrp,
816 cgroup_is_populated(cgrp));
817 cgroup_file_notify(&cgrp->events_file);
818
819 child = cgrp;
820 cgrp = cgroup_parent(cgrp);
821 } while (cgrp);
822 }
823
824 /**
825 * css_set_update_populated - update populated state of a css_set
826 * @cset: target css_set
827 * @populated: whether @cset is populated or depopulated
828 *
829 * @cset is either getting the first task or losing the last. Update the
830 * populated counters of all associated cgroups accordingly.
831 */
css_set_update_populated(struct css_set * cset,bool populated)832 static void css_set_update_populated(struct css_set *cset, bool populated)
833 {
834 struct cgrp_cset_link *link;
835
836 lockdep_assert_held(&css_set_lock);
837
838 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
839 cgroup_update_populated(link->cgrp, populated);
840 }
841
842 /*
843 * @task is leaving, advance task iterators which are pointing to it so
844 * that they can resume at the next position. Advancing an iterator might
845 * remove it from the list, use safe walk. See css_task_iter_skip() for
846 * details.
847 */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)848 static void css_set_skip_task_iters(struct css_set *cset,
849 struct task_struct *task)
850 {
851 struct css_task_iter *it, *pos;
852
853 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
854 css_task_iter_skip(it, task);
855 }
856
857 /**
858 * css_set_move_task - move a task from one css_set to another
859 * @task: task being moved
860 * @from_cset: css_set @task currently belongs to (may be NULL)
861 * @to_cset: new css_set @task is being moved to (may be NULL)
862 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
863 *
864 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
865 * css_set, @from_cset can be NULL. If @task is being disassociated
866 * instead of moved, @to_cset can be NULL.
867 *
868 * This function automatically handles populated counter updates and
869 * css_task_iter adjustments but the caller is responsible for managing
870 * @from_cset and @to_cset's reference counts.
871 */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)872 static void css_set_move_task(struct task_struct *task,
873 struct css_set *from_cset, struct css_set *to_cset,
874 bool use_mg_tasks)
875 {
876 lockdep_assert_held(&css_set_lock);
877
878 if (to_cset && !css_set_populated(to_cset))
879 css_set_update_populated(to_cset, true);
880
881 if (from_cset) {
882 WARN_ON_ONCE(list_empty(&task->cg_list));
883
884 css_set_skip_task_iters(from_cset, task);
885 list_del_init(&task->cg_list);
886 if (!css_set_populated(from_cset))
887 css_set_update_populated(from_cset, false);
888 } else {
889 WARN_ON_ONCE(!list_empty(&task->cg_list));
890 }
891
892 if (to_cset) {
893 /*
894 * We are synchronized through cgroup_threadgroup_rwsem
895 * against PF_EXITING setting such that we can't race
896 * against cgroup_exit()/cgroup_free() dropping the css_set.
897 */
898 WARN_ON_ONCE(task->flags & PF_EXITING);
899
900 cgroup_move_task(task, to_cset);
901 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
902 &to_cset->tasks);
903 }
904 }
905
906 /*
907 * hash table for cgroup groups. This improves the performance to find
908 * an existing css_set. This hash doesn't (currently) take into
909 * account cgroups in empty hierarchies.
910 */
911 #define CSS_SET_HASH_BITS 7
912 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
913
css_set_hash(struct cgroup_subsys_state * css[])914 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
915 {
916 unsigned long key = 0UL;
917 struct cgroup_subsys *ss;
918 int i;
919
920 for_each_subsys(ss, i)
921 key += (unsigned long)css[i];
922 key = (key >> 16) ^ key;
923
924 return key;
925 }
926
put_css_set_locked(struct css_set * cset)927 void put_css_set_locked(struct css_set *cset)
928 {
929 struct cgrp_cset_link *link, *tmp_link;
930 struct cgroup_subsys *ss;
931 int ssid;
932
933 lockdep_assert_held(&css_set_lock);
934
935 if (!refcount_dec_and_test(&cset->refcount))
936 return;
937
938 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
939
940 /* This css_set is dead. unlink it and release cgroup and css refs */
941 for_each_subsys(ss, ssid) {
942 list_del(&cset->e_cset_node[ssid]);
943 css_put(cset->subsys[ssid]);
944 }
945 hash_del(&cset->hlist);
946 css_set_count--;
947
948 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
949 list_del(&link->cset_link);
950 list_del(&link->cgrp_link);
951 if (cgroup_parent(link->cgrp))
952 cgroup_put(link->cgrp);
953 kfree(link);
954 }
955
956 if (css_set_threaded(cset)) {
957 list_del(&cset->threaded_csets_node);
958 put_css_set_locked(cset->dom_cset);
959 }
960
961 kfree_rcu(cset, rcu_head);
962 }
963
964 /**
965 * compare_css_sets - helper function for find_existing_css_set().
966 * @cset: candidate css_set being tested
967 * @old_cset: existing css_set for a task
968 * @new_cgrp: cgroup that's being entered by the task
969 * @template: desired set of css pointers in css_set (pre-calculated)
970 *
971 * Returns true if "cset" matches "old_cset" except for the hierarchy
972 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
973 */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])974 static bool compare_css_sets(struct css_set *cset,
975 struct css_set *old_cset,
976 struct cgroup *new_cgrp,
977 struct cgroup_subsys_state *template[])
978 {
979 struct cgroup *new_dfl_cgrp;
980 struct list_head *l1, *l2;
981
982 /*
983 * On the default hierarchy, there can be csets which are
984 * associated with the same set of cgroups but different csses.
985 * Let's first ensure that csses match.
986 */
987 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
988 return false;
989
990
991 /* @cset's domain should match the default cgroup's */
992 if (cgroup_on_dfl(new_cgrp))
993 new_dfl_cgrp = new_cgrp;
994 else
995 new_dfl_cgrp = old_cset->dfl_cgrp;
996
997 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
998 return false;
999
1000 /*
1001 * Compare cgroup pointers in order to distinguish between
1002 * different cgroups in hierarchies. As different cgroups may
1003 * share the same effective css, this comparison is always
1004 * necessary.
1005 */
1006 l1 = &cset->cgrp_links;
1007 l2 = &old_cset->cgrp_links;
1008 while (1) {
1009 struct cgrp_cset_link *link1, *link2;
1010 struct cgroup *cgrp1, *cgrp2;
1011
1012 l1 = l1->next;
1013 l2 = l2->next;
1014 /* See if we reached the end - both lists are equal length. */
1015 if (l1 == &cset->cgrp_links) {
1016 BUG_ON(l2 != &old_cset->cgrp_links);
1017 break;
1018 } else {
1019 BUG_ON(l2 == &old_cset->cgrp_links);
1020 }
1021 /* Locate the cgroups associated with these links. */
1022 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1023 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1024 cgrp1 = link1->cgrp;
1025 cgrp2 = link2->cgrp;
1026 /* Hierarchies should be linked in the same order. */
1027 BUG_ON(cgrp1->root != cgrp2->root);
1028
1029 /*
1030 * If this hierarchy is the hierarchy of the cgroup
1031 * that's changing, then we need to check that this
1032 * css_set points to the new cgroup; if it's any other
1033 * hierarchy, then this css_set should point to the
1034 * same cgroup as the old css_set.
1035 */
1036 if (cgrp1->root == new_cgrp->root) {
1037 if (cgrp1 != new_cgrp)
1038 return false;
1039 } else {
1040 if (cgrp1 != cgrp2)
1041 return false;
1042 }
1043 }
1044 return true;
1045 }
1046
1047 /**
1048 * find_existing_css_set - init css array and find the matching css_set
1049 * @old_cset: the css_set that we're using before the cgroup transition
1050 * @cgrp: the cgroup that we're moving into
1051 * @template: out param for the new set of csses, should be clear on entry
1052 */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state * template[])1053 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1054 struct cgroup *cgrp,
1055 struct cgroup_subsys_state *template[])
1056 {
1057 struct cgroup_root *root = cgrp->root;
1058 struct cgroup_subsys *ss;
1059 struct css_set *cset;
1060 unsigned long key;
1061 int i;
1062
1063 /*
1064 * Build the set of subsystem state objects that we want to see in the
1065 * new css_set. while subsystems can change globally, the entries here
1066 * won't change, so no need for locking.
1067 */
1068 for_each_subsys(ss, i) {
1069 if (root->subsys_mask & (1UL << i)) {
1070 /*
1071 * @ss is in this hierarchy, so we want the
1072 * effective css from @cgrp.
1073 */
1074 template[i] = cgroup_e_css_by_mask(cgrp, ss);
1075 } else {
1076 /*
1077 * @ss is not in this hierarchy, so we don't want
1078 * to change the css.
1079 */
1080 template[i] = old_cset->subsys[i];
1081 }
1082 }
1083
1084 key = css_set_hash(template);
1085 hash_for_each_possible(css_set_table, cset, hlist, key) {
1086 if (!compare_css_sets(cset, old_cset, cgrp, template))
1087 continue;
1088
1089 /* This css_set matches what we need */
1090 return cset;
1091 }
1092
1093 /* No existing cgroup group matched */
1094 return NULL;
1095 }
1096
free_cgrp_cset_links(struct list_head * links_to_free)1097 static void free_cgrp_cset_links(struct list_head *links_to_free)
1098 {
1099 struct cgrp_cset_link *link, *tmp_link;
1100
1101 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1102 list_del(&link->cset_link);
1103 kfree(link);
1104 }
1105 }
1106
1107 /**
1108 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1109 * @count: the number of links to allocate
1110 * @tmp_links: list_head the allocated links are put on
1111 *
1112 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1113 * through ->cset_link. Returns 0 on success or -errno.
1114 */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1115 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1116 {
1117 struct cgrp_cset_link *link;
1118 int i;
1119
1120 INIT_LIST_HEAD(tmp_links);
1121
1122 for (i = 0; i < count; i++) {
1123 link = kzalloc(sizeof(*link), GFP_KERNEL);
1124 if (!link) {
1125 free_cgrp_cset_links(tmp_links);
1126 return -ENOMEM;
1127 }
1128 list_add(&link->cset_link, tmp_links);
1129 }
1130 return 0;
1131 }
1132
1133 /**
1134 * link_css_set - a helper function to link a css_set to a cgroup
1135 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1136 * @cset: the css_set to be linked
1137 * @cgrp: the destination cgroup
1138 */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1139 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1140 struct cgroup *cgrp)
1141 {
1142 struct cgrp_cset_link *link;
1143
1144 BUG_ON(list_empty(tmp_links));
1145
1146 if (cgroup_on_dfl(cgrp))
1147 cset->dfl_cgrp = cgrp;
1148
1149 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1150 link->cset = cset;
1151 link->cgrp = cgrp;
1152
1153 /*
1154 * Always add links to the tail of the lists so that the lists are
1155 * in choronological order.
1156 */
1157 list_move_tail(&link->cset_link, &cgrp->cset_links);
1158 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1159
1160 if (cgroup_parent(cgrp))
1161 cgroup_get_live(cgrp);
1162 }
1163
1164 /**
1165 * find_css_set - return a new css_set with one cgroup updated
1166 * @old_cset: the baseline css_set
1167 * @cgrp: the cgroup to be updated
1168 *
1169 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1170 * substituted into the appropriate hierarchy.
1171 */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1172 static struct css_set *find_css_set(struct css_set *old_cset,
1173 struct cgroup *cgrp)
1174 {
1175 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1176 struct css_set *cset;
1177 struct list_head tmp_links;
1178 struct cgrp_cset_link *link;
1179 struct cgroup_subsys *ss;
1180 unsigned long key;
1181 int ssid;
1182
1183 lockdep_assert_held(&cgroup_mutex);
1184
1185 /* First see if we already have a cgroup group that matches
1186 * the desired set */
1187 spin_lock_irq(&css_set_lock);
1188 cset = find_existing_css_set(old_cset, cgrp, template);
1189 if (cset)
1190 get_css_set(cset);
1191 spin_unlock_irq(&css_set_lock);
1192
1193 if (cset)
1194 return cset;
1195
1196 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1197 if (!cset)
1198 return NULL;
1199
1200 /* Allocate all the cgrp_cset_link objects that we'll need */
1201 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1202 kfree(cset);
1203 return NULL;
1204 }
1205
1206 refcount_set(&cset->refcount, 1);
1207 cset->dom_cset = cset;
1208 INIT_LIST_HEAD(&cset->tasks);
1209 INIT_LIST_HEAD(&cset->mg_tasks);
1210 INIT_LIST_HEAD(&cset->dying_tasks);
1211 INIT_LIST_HEAD(&cset->task_iters);
1212 INIT_LIST_HEAD(&cset->threaded_csets);
1213 INIT_HLIST_NODE(&cset->hlist);
1214 INIT_LIST_HEAD(&cset->cgrp_links);
1215 INIT_LIST_HEAD(&cset->mg_src_preload_node);
1216 INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1217 INIT_LIST_HEAD(&cset->mg_node);
1218
1219 /* Copy the set of subsystem state objects generated in
1220 * find_existing_css_set() */
1221 memcpy(cset->subsys, template, sizeof(cset->subsys));
1222
1223 spin_lock_irq(&css_set_lock);
1224 /* Add reference counts and links from the new css_set. */
1225 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1226 struct cgroup *c = link->cgrp;
1227
1228 if (c->root == cgrp->root)
1229 c = cgrp;
1230 link_css_set(&tmp_links, cset, c);
1231 }
1232
1233 BUG_ON(!list_empty(&tmp_links));
1234
1235 css_set_count++;
1236
1237 /* Add @cset to the hash table */
1238 key = css_set_hash(cset->subsys);
1239 hash_add(css_set_table, &cset->hlist, key);
1240
1241 for_each_subsys(ss, ssid) {
1242 struct cgroup_subsys_state *css = cset->subsys[ssid];
1243
1244 list_add_tail(&cset->e_cset_node[ssid],
1245 &css->cgroup->e_csets[ssid]);
1246 css_get(css);
1247 }
1248
1249 spin_unlock_irq(&css_set_lock);
1250
1251 /*
1252 * If @cset should be threaded, look up the matching dom_cset and
1253 * link them up. We first fully initialize @cset then look for the
1254 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1255 * to stay empty until we return.
1256 */
1257 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1258 struct css_set *dcset;
1259
1260 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1261 if (!dcset) {
1262 put_css_set(cset);
1263 return NULL;
1264 }
1265
1266 spin_lock_irq(&css_set_lock);
1267 cset->dom_cset = dcset;
1268 list_add_tail(&cset->threaded_csets_node,
1269 &dcset->threaded_csets);
1270 spin_unlock_irq(&css_set_lock);
1271 }
1272
1273 return cset;
1274 }
1275
cgroup_root_from_kf(struct kernfs_root * kf_root)1276 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1277 {
1278 struct cgroup *root_cgrp = kf_root->kn->priv;
1279
1280 return root_cgrp->root;
1281 }
1282
cgroup_init_root_id(struct cgroup_root * root)1283 static int cgroup_init_root_id(struct cgroup_root *root)
1284 {
1285 int id;
1286
1287 lockdep_assert_held(&cgroup_mutex);
1288
1289 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1290 if (id < 0)
1291 return id;
1292
1293 root->hierarchy_id = id;
1294 return 0;
1295 }
1296
cgroup_exit_root_id(struct cgroup_root * root)1297 static void cgroup_exit_root_id(struct cgroup_root *root)
1298 {
1299 lockdep_assert_held(&cgroup_mutex);
1300
1301 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1302 }
1303
cgroup_free_root(struct cgroup_root * root)1304 void cgroup_free_root(struct cgroup_root *root)
1305 {
1306 kfree(root);
1307 }
1308
cgroup_destroy_root(struct cgroup_root * root)1309 static void cgroup_destroy_root(struct cgroup_root *root)
1310 {
1311 struct cgroup *cgrp = &root->cgrp;
1312 struct cgrp_cset_link *link, *tmp_link;
1313
1314 trace_cgroup_destroy_root(root);
1315
1316 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1317
1318 BUG_ON(atomic_read(&root->nr_cgrps));
1319 BUG_ON(!list_empty(&cgrp->self.children));
1320
1321 /* Rebind all subsystems back to the default hierarchy */
1322 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1323
1324 /*
1325 * Release all the links from cset_links to this hierarchy's
1326 * root cgroup
1327 */
1328 spin_lock_irq(&css_set_lock);
1329
1330 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1331 list_del(&link->cset_link);
1332 list_del(&link->cgrp_link);
1333 kfree(link);
1334 }
1335
1336 spin_unlock_irq(&css_set_lock);
1337
1338 if (!list_empty(&root->root_list)) {
1339 list_del(&root->root_list);
1340 cgroup_root_count--;
1341 }
1342
1343 cgroup_exit_root_id(root);
1344
1345 mutex_unlock(&cgroup_mutex);
1346
1347 kernfs_destroy_root(root->kf_root);
1348 cgroup_free_root(root);
1349 }
1350
1351 /*
1352 * look up cgroup associated with current task's cgroup namespace on the
1353 * specified hierarchy
1354 */
1355 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1356 current_cgns_cgroup_from_root(struct cgroup_root *root)
1357 {
1358 struct cgroup *res = NULL;
1359 struct css_set *cset;
1360
1361 lockdep_assert_held(&css_set_lock);
1362
1363 rcu_read_lock();
1364
1365 cset = current->nsproxy->cgroup_ns->root_cset;
1366 if (cset == &init_css_set) {
1367 res = &root->cgrp;
1368 } else if (root == &cgrp_dfl_root) {
1369 res = cset->dfl_cgrp;
1370 } else {
1371 struct cgrp_cset_link *link;
1372
1373 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1374 struct cgroup *c = link->cgrp;
1375
1376 if (c->root == root) {
1377 res = c;
1378 break;
1379 }
1380 }
1381 }
1382 rcu_read_unlock();
1383
1384 BUG_ON(!res);
1385 return res;
1386 }
1387
1388 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1389 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1390 struct cgroup_root *root)
1391 {
1392 struct cgroup *res = NULL;
1393
1394 lockdep_assert_held(&cgroup_mutex);
1395 lockdep_assert_held(&css_set_lock);
1396
1397 if (cset == &init_css_set) {
1398 res = &root->cgrp;
1399 } else if (root == &cgrp_dfl_root) {
1400 res = cset->dfl_cgrp;
1401 } else {
1402 struct cgrp_cset_link *link;
1403
1404 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1405 struct cgroup *c = link->cgrp;
1406
1407 if (c->root == root) {
1408 res = c;
1409 break;
1410 }
1411 }
1412 }
1413
1414 BUG_ON(!res);
1415 return res;
1416 }
1417
1418 /*
1419 * Return the cgroup for "task" from the given hierarchy. Must be
1420 * called with cgroup_mutex and css_set_lock held.
1421 */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1422 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1423 struct cgroup_root *root)
1424 {
1425 /*
1426 * No need to lock the task - since we hold css_set_lock the
1427 * task can't change groups.
1428 */
1429 return cset_cgroup_from_root(task_css_set(task), root);
1430 }
1431
1432 /*
1433 * A task must hold cgroup_mutex to modify cgroups.
1434 *
1435 * Any task can increment and decrement the count field without lock.
1436 * So in general, code holding cgroup_mutex can't rely on the count
1437 * field not changing. However, if the count goes to zero, then only
1438 * cgroup_attach_task() can increment it again. Because a count of zero
1439 * means that no tasks are currently attached, therefore there is no
1440 * way a task attached to that cgroup can fork (the other way to
1441 * increment the count). So code holding cgroup_mutex can safely
1442 * assume that if the count is zero, it will stay zero. Similarly, if
1443 * a task holds cgroup_mutex on a cgroup with zero count, it
1444 * knows that the cgroup won't be removed, as cgroup_rmdir()
1445 * needs that mutex.
1446 *
1447 * A cgroup can only be deleted if both its 'count' of using tasks
1448 * is zero, and its list of 'children' cgroups is empty. Since all
1449 * tasks in the system use _some_ cgroup, and since there is always at
1450 * least one task in the system (init, pid == 1), therefore, root cgroup
1451 * always has either children cgroups and/or using tasks. So we don't
1452 * need a special hack to ensure that root cgroup cannot be deleted.
1453 *
1454 * P.S. One more locking exception. RCU is used to guard the
1455 * update of a tasks cgroup pointer by cgroup_attach_task()
1456 */
1457
1458 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1459
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1460 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1461 char *buf)
1462 {
1463 struct cgroup_subsys *ss = cft->ss;
1464
1465 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1466 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1467 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1468
1469 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1470 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1471 cft->name);
1472 } else {
1473 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1474 }
1475 return buf;
1476 }
1477
1478 /**
1479 * cgroup_file_mode - deduce file mode of a control file
1480 * @cft: the control file in question
1481 *
1482 * S_IRUGO for read, S_IWUSR for write.
1483 */
cgroup_file_mode(const struct cftype * cft)1484 static umode_t cgroup_file_mode(const struct cftype *cft)
1485 {
1486 umode_t mode = 0;
1487
1488 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1489 mode |= S_IRUGO;
1490
1491 if (cft->write_u64 || cft->write_s64 || cft->write) {
1492 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1493 mode |= S_IWUGO;
1494 else
1495 mode |= S_IWUSR;
1496 }
1497
1498 return mode;
1499 }
1500
1501 /**
1502 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1503 * @subtree_control: the new subtree_control mask to consider
1504 * @this_ss_mask: available subsystems
1505 *
1506 * On the default hierarchy, a subsystem may request other subsystems to be
1507 * enabled together through its ->depends_on mask. In such cases, more
1508 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1509 *
1510 * This function calculates which subsystems need to be enabled if
1511 * @subtree_control is to be applied while restricted to @this_ss_mask.
1512 */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1513 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1514 {
1515 u16 cur_ss_mask = subtree_control;
1516 struct cgroup_subsys *ss;
1517 int ssid;
1518
1519 lockdep_assert_held(&cgroup_mutex);
1520
1521 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1522
1523 while (true) {
1524 u16 new_ss_mask = cur_ss_mask;
1525
1526 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1527 new_ss_mask |= ss->depends_on;
1528 } while_each_subsys_mask();
1529
1530 /*
1531 * Mask out subsystems which aren't available. This can
1532 * happen only if some depended-upon subsystems were bound
1533 * to non-default hierarchies.
1534 */
1535 new_ss_mask &= this_ss_mask;
1536
1537 if (new_ss_mask == cur_ss_mask)
1538 break;
1539 cur_ss_mask = new_ss_mask;
1540 }
1541
1542 return cur_ss_mask;
1543 }
1544
1545 /**
1546 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1547 * @kn: the kernfs_node being serviced
1548 *
1549 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1550 * the method finishes if locking succeeded. Note that once this function
1551 * returns the cgroup returned by cgroup_kn_lock_live() may become
1552 * inaccessible any time. If the caller intends to continue to access the
1553 * cgroup, it should pin it before invoking this function.
1554 */
cgroup_kn_unlock(struct kernfs_node * kn)1555 void cgroup_kn_unlock(struct kernfs_node *kn)
1556 {
1557 struct cgroup *cgrp;
1558
1559 if (kernfs_type(kn) == KERNFS_DIR)
1560 cgrp = kn->priv;
1561 else
1562 cgrp = kn->parent->priv;
1563
1564 mutex_unlock(&cgroup_mutex);
1565
1566 kernfs_unbreak_active_protection(kn);
1567 cgroup_put(cgrp);
1568 }
1569
1570 /**
1571 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1572 * @kn: the kernfs_node being serviced
1573 * @drain_offline: perform offline draining on the cgroup
1574 *
1575 * This helper is to be used by a cgroup kernfs method currently servicing
1576 * @kn. It breaks the active protection, performs cgroup locking and
1577 * verifies that the associated cgroup is alive. Returns the cgroup if
1578 * alive; otherwise, %NULL. A successful return should be undone by a
1579 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1580 * cgroup is drained of offlining csses before return.
1581 *
1582 * Any cgroup kernfs method implementation which requires locking the
1583 * associated cgroup should use this helper. It avoids nesting cgroup
1584 * locking under kernfs active protection and allows all kernfs operations
1585 * including self-removal.
1586 */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1587 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1588 {
1589 struct cgroup *cgrp;
1590
1591 if (kernfs_type(kn) == KERNFS_DIR)
1592 cgrp = kn->priv;
1593 else
1594 cgrp = kn->parent->priv;
1595
1596 /*
1597 * We're gonna grab cgroup_mutex which nests outside kernfs
1598 * active_ref. cgroup liveliness check alone provides enough
1599 * protection against removal. Ensure @cgrp stays accessible and
1600 * break the active_ref protection.
1601 */
1602 if (!cgroup_tryget(cgrp))
1603 return NULL;
1604 kernfs_break_active_protection(kn);
1605
1606 if (drain_offline)
1607 cgroup_lock_and_drain_offline(cgrp);
1608 else
1609 mutex_lock(&cgroup_mutex);
1610
1611 if (!cgroup_is_dead(cgrp))
1612 return cgrp;
1613
1614 cgroup_kn_unlock(kn);
1615 return NULL;
1616 }
1617
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1618 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1619 {
1620 char name[CGROUP_FILE_NAME_MAX];
1621
1622 lockdep_assert_held(&cgroup_mutex);
1623
1624 if (cft->file_offset) {
1625 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1626 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1627
1628 spin_lock_irq(&cgroup_file_kn_lock);
1629 cfile->kn = NULL;
1630 spin_unlock_irq(&cgroup_file_kn_lock);
1631
1632 del_timer_sync(&cfile->notify_timer);
1633 }
1634
1635 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1636 }
1637
1638 /**
1639 * css_clear_dir - remove subsys files in a cgroup directory
1640 * @css: taget css
1641 */
css_clear_dir(struct cgroup_subsys_state * css)1642 static void css_clear_dir(struct cgroup_subsys_state *css)
1643 {
1644 struct cgroup *cgrp = css->cgroup;
1645 struct cftype *cfts;
1646
1647 if (!(css->flags & CSS_VISIBLE))
1648 return;
1649
1650 css->flags &= ~CSS_VISIBLE;
1651
1652 if (!css->ss) {
1653 if (cgroup_on_dfl(cgrp))
1654 cfts = cgroup_base_files;
1655 else
1656 cfts = cgroup1_base_files;
1657
1658 cgroup_addrm_files(css, cgrp, cfts, false);
1659 } else {
1660 list_for_each_entry(cfts, &css->ss->cfts, node)
1661 cgroup_addrm_files(css, cgrp, cfts, false);
1662 }
1663 }
1664
1665 /**
1666 * css_populate_dir - create subsys files in a cgroup directory
1667 * @css: target css
1668 *
1669 * On failure, no file is added.
1670 */
css_populate_dir(struct cgroup_subsys_state * css)1671 static int css_populate_dir(struct cgroup_subsys_state *css)
1672 {
1673 struct cgroup *cgrp = css->cgroup;
1674 struct cftype *cfts, *failed_cfts;
1675 int ret;
1676
1677 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1678 return 0;
1679
1680 if (!css->ss) {
1681 if (cgroup_on_dfl(cgrp))
1682 cfts = cgroup_base_files;
1683 else
1684 cfts = cgroup1_base_files;
1685
1686 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1687 if (ret < 0)
1688 return ret;
1689 } else {
1690 list_for_each_entry(cfts, &css->ss->cfts, node) {
1691 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1692 if (ret < 0) {
1693 failed_cfts = cfts;
1694 goto err;
1695 }
1696 }
1697 }
1698
1699 css->flags |= CSS_VISIBLE;
1700
1701 return 0;
1702 err:
1703 list_for_each_entry(cfts, &css->ss->cfts, node) {
1704 if (cfts == failed_cfts)
1705 break;
1706 cgroup_addrm_files(css, cgrp, cfts, false);
1707 }
1708 return ret;
1709 }
1710
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1711 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1712 {
1713 struct cgroup *dcgrp = &dst_root->cgrp;
1714 struct cgroup_subsys *ss;
1715 int ssid, i, ret;
1716 u16 dfl_disable_ss_mask = 0;
1717
1718 lockdep_assert_held(&cgroup_mutex);
1719
1720 do_each_subsys_mask(ss, ssid, ss_mask) {
1721 /*
1722 * If @ss has non-root csses attached to it, can't move.
1723 * If @ss is an implicit controller, it is exempt from this
1724 * rule and can be stolen.
1725 */
1726 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1727 !ss->implicit_on_dfl)
1728 return -EBUSY;
1729
1730 /* can't move between two non-dummy roots either */
1731 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1732 return -EBUSY;
1733
1734 /*
1735 * Collect ssid's that need to be disabled from default
1736 * hierarchy.
1737 */
1738 if (ss->root == &cgrp_dfl_root)
1739 dfl_disable_ss_mask |= 1 << ssid;
1740
1741 } while_each_subsys_mask();
1742
1743 if (dfl_disable_ss_mask) {
1744 struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1745
1746 /*
1747 * Controllers from default hierarchy that need to be rebound
1748 * are all disabled together in one go.
1749 */
1750 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1751 WARN_ON(cgroup_apply_control(scgrp));
1752 cgroup_finalize_control(scgrp, 0);
1753 }
1754
1755 do_each_subsys_mask(ss, ssid, ss_mask) {
1756 struct cgroup_root *src_root = ss->root;
1757 struct cgroup *scgrp = &src_root->cgrp;
1758 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1759 struct css_set *cset;
1760
1761 WARN_ON(!css || cgroup_css(dcgrp, ss));
1762
1763 if (src_root != &cgrp_dfl_root) {
1764 /* disable from the source */
1765 src_root->subsys_mask &= ~(1 << ssid);
1766 WARN_ON(cgroup_apply_control(scgrp));
1767 cgroup_finalize_control(scgrp, 0);
1768 }
1769
1770 /* rebind */
1771 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1772 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1773 ss->root = dst_root;
1774 css->cgroup = dcgrp;
1775
1776 spin_lock_irq(&css_set_lock);
1777 hash_for_each(css_set_table, i, cset, hlist)
1778 list_move_tail(&cset->e_cset_node[ss->id],
1779 &dcgrp->e_csets[ss->id]);
1780 spin_unlock_irq(&css_set_lock);
1781
1782 /* default hierarchy doesn't enable controllers by default */
1783 dst_root->subsys_mask |= 1 << ssid;
1784 if (dst_root == &cgrp_dfl_root) {
1785 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1786 } else {
1787 dcgrp->subtree_control |= 1 << ssid;
1788 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1789 }
1790
1791 ret = cgroup_apply_control(dcgrp);
1792 if (ret)
1793 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1794 ss->name, ret);
1795
1796 if (ss->bind)
1797 ss->bind(css);
1798 } while_each_subsys_mask();
1799
1800 kernfs_activate(dcgrp->kn);
1801 return 0;
1802 }
1803
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1804 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1805 struct kernfs_root *kf_root)
1806 {
1807 int len = 0;
1808 char *buf = NULL;
1809 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1810 struct cgroup *ns_cgroup;
1811
1812 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1813 if (!buf)
1814 return -ENOMEM;
1815
1816 spin_lock_irq(&css_set_lock);
1817 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1818 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1819 spin_unlock_irq(&css_set_lock);
1820
1821 if (len >= PATH_MAX)
1822 len = -ERANGE;
1823 else if (len > 0) {
1824 seq_escape(sf, buf, " \t\n\\");
1825 len = 0;
1826 }
1827 kfree(buf);
1828 return len;
1829 }
1830
1831 enum cgroup2_param {
1832 Opt_nsdelegate,
1833 Opt_memory_localevents,
1834 Opt_memory_recursiveprot,
1835 nr__cgroup2_params
1836 };
1837
1838 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1839 fsparam_flag("nsdelegate", Opt_nsdelegate),
1840 fsparam_flag("memory_localevents", Opt_memory_localevents),
1841 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot),
1842 {}
1843 };
1844
cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)1845 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1846 {
1847 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1848 struct fs_parse_result result;
1849 int opt;
1850
1851 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1852 if (opt < 0)
1853 return opt;
1854
1855 switch (opt) {
1856 case Opt_nsdelegate:
1857 ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1858 return 0;
1859 case Opt_memory_localevents:
1860 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1861 return 0;
1862 case Opt_memory_recursiveprot:
1863 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1864 return 0;
1865 }
1866 return -EINVAL;
1867 }
1868
apply_cgroup_root_flags(unsigned int root_flags)1869 static void apply_cgroup_root_flags(unsigned int root_flags)
1870 {
1871 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1872 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1873 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1874 else
1875 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1876
1877 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1878 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1879 else
1880 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1881
1882 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1883 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1884 else
1885 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1886 }
1887 }
1888
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)1889 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1890 {
1891 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1892 seq_puts(seq, ",nsdelegate");
1893 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1894 seq_puts(seq, ",memory_localevents");
1895 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1896 seq_puts(seq, ",memory_recursiveprot");
1897 return 0;
1898 }
1899
cgroup_reconfigure(struct fs_context * fc)1900 static int cgroup_reconfigure(struct fs_context *fc)
1901 {
1902 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1903
1904 apply_cgroup_root_flags(ctx->flags);
1905 return 0;
1906 }
1907
init_cgroup_housekeeping(struct cgroup * cgrp)1908 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1909 {
1910 struct cgroup_subsys *ss;
1911 int ssid;
1912
1913 INIT_LIST_HEAD(&cgrp->self.sibling);
1914 INIT_LIST_HEAD(&cgrp->self.children);
1915 INIT_LIST_HEAD(&cgrp->cset_links);
1916 INIT_LIST_HEAD(&cgrp->pidlists);
1917 mutex_init(&cgrp->pidlist_mutex);
1918 cgrp->self.cgroup = cgrp;
1919 cgrp->self.flags |= CSS_ONLINE;
1920 cgrp->dom_cgrp = cgrp;
1921 cgrp->max_descendants = INT_MAX;
1922 cgrp->max_depth = INT_MAX;
1923 INIT_LIST_HEAD(&cgrp->rstat_css_list);
1924 prev_cputime_init(&cgrp->prev_cputime);
1925
1926 for_each_subsys(ss, ssid)
1927 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1928
1929 init_waitqueue_head(&cgrp->offline_waitq);
1930 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1931 }
1932
init_cgroup_root(struct cgroup_fs_context * ctx)1933 void init_cgroup_root(struct cgroup_fs_context *ctx)
1934 {
1935 struct cgroup_root *root = ctx->root;
1936 struct cgroup *cgrp = &root->cgrp;
1937
1938 INIT_LIST_HEAD(&root->root_list);
1939 atomic_set(&root->nr_cgrps, 1);
1940 cgrp->root = root;
1941 init_cgroup_housekeeping(cgrp);
1942 init_waitqueue_head(&root->wait);
1943
1944 root->flags = ctx->flags;
1945 if (ctx->release_agent)
1946 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1947 if (ctx->name)
1948 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1949 if (ctx->cpuset_clone_children)
1950 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1951 }
1952
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)1953 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1954 {
1955 LIST_HEAD(tmp_links);
1956 struct cgroup *root_cgrp = &root->cgrp;
1957 struct kernfs_syscall_ops *kf_sops;
1958 struct css_set *cset;
1959 int i, ret;
1960
1961 lockdep_assert_held(&cgroup_mutex);
1962
1963 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1964 0, GFP_KERNEL);
1965 if (ret)
1966 goto out;
1967
1968 /*
1969 * We're accessing css_set_count without locking css_set_lock here,
1970 * but that's OK - it can only be increased by someone holding
1971 * cgroup_lock, and that's us. Later rebinding may disable
1972 * controllers on the default hierarchy and thus create new csets,
1973 * which can't be more than the existing ones. Allocate 2x.
1974 */
1975 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1976 if (ret)
1977 goto cancel_ref;
1978
1979 ret = cgroup_init_root_id(root);
1980 if (ret)
1981 goto cancel_ref;
1982
1983 kf_sops = root == &cgrp_dfl_root ?
1984 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1985
1986 root->kf_root = kernfs_create_root(kf_sops,
1987 KERNFS_ROOT_CREATE_DEACTIVATED |
1988 KERNFS_ROOT_SUPPORT_EXPORTOP |
1989 KERNFS_ROOT_SUPPORT_USER_XATTR,
1990 root_cgrp);
1991 if (IS_ERR(root->kf_root)) {
1992 ret = PTR_ERR(root->kf_root);
1993 goto exit_root_id;
1994 }
1995 root_cgrp->kn = root->kf_root->kn;
1996 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
1997 root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
1998
1999 ret = css_populate_dir(&root_cgrp->self);
2000 if (ret)
2001 goto destroy_root;
2002
2003 ret = rebind_subsystems(root, ss_mask);
2004 if (ret)
2005 goto destroy_root;
2006
2007 ret = cgroup_bpf_inherit(root_cgrp);
2008 WARN_ON_ONCE(ret);
2009
2010 trace_cgroup_setup_root(root);
2011
2012 /*
2013 * There must be no failure case after here, since rebinding takes
2014 * care of subsystems' refcounts, which are explicitly dropped in
2015 * the failure exit path.
2016 */
2017 list_add(&root->root_list, &cgroup_roots);
2018 cgroup_root_count++;
2019
2020 /*
2021 * Link the root cgroup in this hierarchy into all the css_set
2022 * objects.
2023 */
2024 spin_lock_irq(&css_set_lock);
2025 hash_for_each(css_set_table, i, cset, hlist) {
2026 link_css_set(&tmp_links, cset, root_cgrp);
2027 if (css_set_populated(cset))
2028 cgroup_update_populated(root_cgrp, true);
2029 }
2030 spin_unlock_irq(&css_set_lock);
2031
2032 BUG_ON(!list_empty(&root_cgrp->self.children));
2033 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2034
2035 ret = 0;
2036 goto out;
2037
2038 destroy_root:
2039 kernfs_destroy_root(root->kf_root);
2040 root->kf_root = NULL;
2041 exit_root_id:
2042 cgroup_exit_root_id(root);
2043 cancel_ref:
2044 percpu_ref_exit(&root_cgrp->self.refcnt);
2045 out:
2046 free_cgrp_cset_links(&tmp_links);
2047 return ret;
2048 }
2049
cgroup_do_get_tree(struct fs_context * fc)2050 int cgroup_do_get_tree(struct fs_context *fc)
2051 {
2052 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2053 int ret;
2054
2055 ctx->kfc.root = ctx->root->kf_root;
2056 if (fc->fs_type == &cgroup2_fs_type)
2057 ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2058 else
2059 ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2060 ret = kernfs_get_tree(fc);
2061
2062 /*
2063 * In non-init cgroup namespace, instead of root cgroup's dentry,
2064 * we return the dentry corresponding to the cgroupns->root_cgrp.
2065 */
2066 if (!ret && ctx->ns != &init_cgroup_ns) {
2067 struct dentry *nsdentry;
2068 struct super_block *sb = fc->root->d_sb;
2069 struct cgroup *cgrp;
2070
2071 mutex_lock(&cgroup_mutex);
2072 spin_lock_irq(&css_set_lock);
2073
2074 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2075
2076 spin_unlock_irq(&css_set_lock);
2077 mutex_unlock(&cgroup_mutex);
2078
2079 nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2080 dput(fc->root);
2081 if (IS_ERR(nsdentry)) {
2082 deactivate_locked_super(sb);
2083 ret = PTR_ERR(nsdentry);
2084 nsdentry = NULL;
2085 }
2086 fc->root = nsdentry;
2087 }
2088
2089 if (!ctx->kfc.new_sb_created)
2090 cgroup_put(&ctx->root->cgrp);
2091
2092 return ret;
2093 }
2094
2095 /*
2096 * Destroy a cgroup filesystem context.
2097 */
cgroup_fs_context_free(struct fs_context * fc)2098 static void cgroup_fs_context_free(struct fs_context *fc)
2099 {
2100 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2101
2102 kfree(ctx->name);
2103 kfree(ctx->release_agent);
2104 put_cgroup_ns(ctx->ns);
2105 kernfs_free_fs_context(fc);
2106 kfree(ctx);
2107 }
2108
cgroup_get_tree(struct fs_context * fc)2109 static int cgroup_get_tree(struct fs_context *fc)
2110 {
2111 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2112 int ret;
2113
2114 cgrp_dfl_visible = true;
2115 cgroup_get_live(&cgrp_dfl_root.cgrp);
2116 ctx->root = &cgrp_dfl_root;
2117
2118 ret = cgroup_do_get_tree(fc);
2119 if (!ret)
2120 apply_cgroup_root_flags(ctx->flags);
2121 return ret;
2122 }
2123
2124 static const struct fs_context_operations cgroup_fs_context_ops = {
2125 .free = cgroup_fs_context_free,
2126 .parse_param = cgroup2_parse_param,
2127 .get_tree = cgroup_get_tree,
2128 .reconfigure = cgroup_reconfigure,
2129 };
2130
2131 static const struct fs_context_operations cgroup1_fs_context_ops = {
2132 .free = cgroup_fs_context_free,
2133 .parse_param = cgroup1_parse_param,
2134 .get_tree = cgroup1_get_tree,
2135 .reconfigure = cgroup1_reconfigure,
2136 };
2137
2138 /*
2139 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2140 * we select the namespace we're going to use.
2141 */
cgroup_init_fs_context(struct fs_context * fc)2142 static int cgroup_init_fs_context(struct fs_context *fc)
2143 {
2144 struct cgroup_fs_context *ctx;
2145
2146 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2147 if (!ctx)
2148 return -ENOMEM;
2149
2150 ctx->ns = current->nsproxy->cgroup_ns;
2151 get_cgroup_ns(ctx->ns);
2152 fc->fs_private = &ctx->kfc;
2153 if (fc->fs_type == &cgroup2_fs_type)
2154 fc->ops = &cgroup_fs_context_ops;
2155 else
2156 fc->ops = &cgroup1_fs_context_ops;
2157 put_user_ns(fc->user_ns);
2158 fc->user_ns = get_user_ns(ctx->ns->user_ns);
2159 fc->global = true;
2160 return 0;
2161 }
2162
cgroup_kill_sb(struct super_block * sb)2163 static void cgroup_kill_sb(struct super_block *sb)
2164 {
2165 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2166 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2167
2168 /*
2169 * Wait if there are cgroups being destroyed, because the destruction
2170 * is asynchronous. On the other hand some controllers like memcg
2171 * may pin cgroups for a very long time, so don't wait forever.
2172 */
2173 if (root != &cgrp_dfl_root) {
2174 wait_event_timeout(root->wait,
2175 list_empty(&root->cgrp.self.children),
2176 msecs_to_jiffies(500));
2177 }
2178
2179 /*
2180 * If @root doesn't have any children, start killing it.
2181 * This prevents new mounts by disabling percpu_ref_tryget_live().
2182 * cgroup_mount() may wait for @root's release.
2183 *
2184 * And don't kill the default root.
2185 */
2186 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2187 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2188 cgroup_bpf_offline(&root->cgrp);
2189 percpu_ref_kill(&root->cgrp.self.refcnt);
2190 }
2191 cgroup_put(&root->cgrp);
2192 kernfs_kill_sb(sb);
2193 }
2194
2195 struct file_system_type cgroup_fs_type = {
2196 .name = "cgroup",
2197 .init_fs_context = cgroup_init_fs_context,
2198 .parameters = cgroup1_fs_parameters,
2199 .kill_sb = cgroup_kill_sb,
2200 .fs_flags = FS_USERNS_MOUNT,
2201 };
2202
2203 static struct file_system_type cgroup2_fs_type = {
2204 .name = "cgroup2",
2205 .init_fs_context = cgroup_init_fs_context,
2206 .parameters = cgroup2_fs_parameters,
2207 .kill_sb = cgroup_kill_sb,
2208 .fs_flags = FS_USERNS_MOUNT,
2209 };
2210
2211 #ifdef CONFIG_CPUSETS
2212 static const struct fs_context_operations cpuset_fs_context_ops = {
2213 .get_tree = cgroup1_get_tree,
2214 .free = cgroup_fs_context_free,
2215 };
2216
2217 /*
2218 * This is ugly, but preserves the userspace API for existing cpuset
2219 * users. If someone tries to mount the "cpuset" filesystem, we
2220 * silently switch it to mount "cgroup" instead
2221 */
cpuset_init_fs_context(struct fs_context * fc)2222 static int cpuset_init_fs_context(struct fs_context *fc)
2223 {
2224 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2225 struct cgroup_fs_context *ctx;
2226 int err;
2227
2228 err = cgroup_init_fs_context(fc);
2229 if (err) {
2230 kfree(agent);
2231 return err;
2232 }
2233
2234 fc->ops = &cpuset_fs_context_ops;
2235
2236 ctx = cgroup_fc2context(fc);
2237 ctx->subsys_mask = 1 << cpuset_cgrp_id;
2238 ctx->flags |= CGRP_ROOT_NOPREFIX;
2239 ctx->release_agent = agent;
2240
2241 get_filesystem(&cgroup_fs_type);
2242 put_filesystem(fc->fs_type);
2243 fc->fs_type = &cgroup_fs_type;
2244
2245 return 0;
2246 }
2247
2248 static struct file_system_type cpuset_fs_type = {
2249 .name = "cpuset",
2250 .init_fs_context = cpuset_init_fs_context,
2251 .fs_flags = FS_USERNS_MOUNT,
2252 };
2253 #endif
2254
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2255 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2256 struct cgroup_namespace *ns)
2257 {
2258 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2259
2260 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2261 }
2262
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2263 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2264 struct cgroup_namespace *ns)
2265 {
2266 int ret;
2267
2268 mutex_lock(&cgroup_mutex);
2269 spin_lock_irq(&css_set_lock);
2270
2271 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2272
2273 spin_unlock_irq(&css_set_lock);
2274 mutex_unlock(&cgroup_mutex);
2275
2276 return ret;
2277 }
2278 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2279
2280 /**
2281 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2282 * @task: target task
2283 * @buf: the buffer to write the path into
2284 * @buflen: the length of the buffer
2285 *
2286 * Determine @task's cgroup on the first (the one with the lowest non-zero
2287 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2288 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2289 * cgroup controller callbacks.
2290 *
2291 * Return value is the same as kernfs_path().
2292 */
task_cgroup_path(struct task_struct * task,char * buf,size_t buflen)2293 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2294 {
2295 struct cgroup_root *root;
2296 struct cgroup *cgrp;
2297 int hierarchy_id = 1;
2298 int ret;
2299
2300 mutex_lock(&cgroup_mutex);
2301 spin_lock_irq(&css_set_lock);
2302
2303 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2304
2305 if (root) {
2306 cgrp = task_cgroup_from_root(task, root);
2307 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2308 } else {
2309 /* if no hierarchy exists, everyone is in "/" */
2310 ret = strlcpy(buf, "/", buflen);
2311 }
2312
2313 spin_unlock_irq(&css_set_lock);
2314 mutex_unlock(&cgroup_mutex);
2315 return ret;
2316 }
2317 EXPORT_SYMBOL_GPL(task_cgroup_path);
2318
2319 /**
2320 * cgroup_attach_lock - Lock for ->attach()
2321 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2322 *
2323 * cgroup migration sometimes needs to stabilize threadgroups against forks and
2324 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2325 * implementations (e.g. cpuset), also need to disable CPU hotplug.
2326 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2327 * lead to deadlocks.
2328 *
2329 * Bringing up a CPU may involve creating and destroying tasks which requires
2330 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2331 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2332 * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2333 * waiting for an on-going CPU hotplug operation which in turn is waiting for
2334 * the threadgroup_rwsem to be released to create new tasks. For more details:
2335 *
2336 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2337 *
2338 * Resolve the situation by always acquiring cpus_read_lock() before optionally
2339 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2340 * CPU hotplug is disabled on entry.
2341 */
cgroup_attach_lock(bool lock_threadgroup)2342 static void cgroup_attach_lock(bool lock_threadgroup)
2343 {
2344 cpus_read_lock();
2345 if (lock_threadgroup)
2346 percpu_down_write(&cgroup_threadgroup_rwsem);
2347 }
2348
2349 /**
2350 * cgroup_attach_unlock - Undo cgroup_attach_lock()
2351 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2352 */
cgroup_attach_unlock(bool lock_threadgroup)2353 static void cgroup_attach_unlock(bool lock_threadgroup)
2354 {
2355 if (lock_threadgroup)
2356 percpu_up_write(&cgroup_threadgroup_rwsem);
2357 cpus_read_unlock();
2358 }
2359
2360 /**
2361 * cgroup_migrate_add_task - add a migration target task to a migration context
2362 * @task: target task
2363 * @mgctx: target migration context
2364 *
2365 * Add @task, which is a migration target, to @mgctx->tset. This function
2366 * becomes noop if @task doesn't need to be migrated. @task's css_set
2367 * should have been added as a migration source and @task->cg_list will be
2368 * moved from the css_set's tasks list to mg_tasks one.
2369 */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2370 static void cgroup_migrate_add_task(struct task_struct *task,
2371 struct cgroup_mgctx *mgctx)
2372 {
2373 struct css_set *cset;
2374
2375 lockdep_assert_held(&css_set_lock);
2376
2377 /* @task either already exited or can't exit until the end */
2378 if (task->flags & PF_EXITING)
2379 return;
2380
2381 /* cgroup_threadgroup_rwsem protects racing against forks */
2382 WARN_ON_ONCE(list_empty(&task->cg_list));
2383
2384 cset = task_css_set(task);
2385 if (!cset->mg_src_cgrp)
2386 return;
2387
2388 mgctx->tset.nr_tasks++;
2389
2390 list_move_tail(&task->cg_list, &cset->mg_tasks);
2391 if (list_empty(&cset->mg_node))
2392 list_add_tail(&cset->mg_node,
2393 &mgctx->tset.src_csets);
2394 if (list_empty(&cset->mg_dst_cset->mg_node))
2395 list_add_tail(&cset->mg_dst_cset->mg_node,
2396 &mgctx->tset.dst_csets);
2397 }
2398
2399 /**
2400 * cgroup_taskset_first - reset taskset and return the first task
2401 * @tset: taskset of interest
2402 * @dst_cssp: output variable for the destination css
2403 *
2404 * @tset iteration is initialized and the first task is returned.
2405 */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2406 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2407 struct cgroup_subsys_state **dst_cssp)
2408 {
2409 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2410 tset->cur_task = NULL;
2411
2412 return cgroup_taskset_next(tset, dst_cssp);
2413 }
2414
2415 /**
2416 * cgroup_taskset_next - iterate to the next task in taskset
2417 * @tset: taskset of interest
2418 * @dst_cssp: output variable for the destination css
2419 *
2420 * Return the next task in @tset. Iteration must have been initialized
2421 * with cgroup_taskset_first().
2422 */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2423 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2424 struct cgroup_subsys_state **dst_cssp)
2425 {
2426 struct css_set *cset = tset->cur_cset;
2427 struct task_struct *task = tset->cur_task;
2428
2429 while (&cset->mg_node != tset->csets) {
2430 if (!task)
2431 task = list_first_entry(&cset->mg_tasks,
2432 struct task_struct, cg_list);
2433 else
2434 task = list_next_entry(task, cg_list);
2435
2436 if (&task->cg_list != &cset->mg_tasks) {
2437 tset->cur_cset = cset;
2438 tset->cur_task = task;
2439
2440 /*
2441 * This function may be called both before and
2442 * after cgroup_taskset_migrate(). The two cases
2443 * can be distinguished by looking at whether @cset
2444 * has its ->mg_dst_cset set.
2445 */
2446 if (cset->mg_dst_cset)
2447 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2448 else
2449 *dst_cssp = cset->subsys[tset->ssid];
2450
2451 return task;
2452 }
2453
2454 cset = list_next_entry(cset, mg_node);
2455 task = NULL;
2456 }
2457
2458 return NULL;
2459 }
2460
2461 /**
2462 * cgroup_taskset_migrate - migrate a taskset
2463 * @mgctx: migration context
2464 *
2465 * Migrate tasks in @mgctx as setup by migration preparation functions.
2466 * This function fails iff one of the ->can_attach callbacks fails and
2467 * guarantees that either all or none of the tasks in @mgctx are migrated.
2468 * @mgctx is consumed regardless of success.
2469 */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2470 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2471 {
2472 struct cgroup_taskset *tset = &mgctx->tset;
2473 struct cgroup_subsys *ss;
2474 struct task_struct *task, *tmp_task;
2475 struct css_set *cset, *tmp_cset;
2476 int ssid, failed_ssid, ret;
2477
2478 /* check that we can legitimately attach to the cgroup */
2479 if (tset->nr_tasks) {
2480 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2481 if (ss->can_attach) {
2482 tset->ssid = ssid;
2483 ret = ss->can_attach(tset);
2484 if (ret) {
2485 failed_ssid = ssid;
2486 goto out_cancel_attach;
2487 }
2488 }
2489 } while_each_subsys_mask();
2490 }
2491
2492 /*
2493 * Now that we're guaranteed success, proceed to move all tasks to
2494 * the new cgroup. There are no failure cases after here, so this
2495 * is the commit point.
2496 */
2497 spin_lock_irq(&css_set_lock);
2498 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2499 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2500 struct css_set *from_cset = task_css_set(task);
2501 struct css_set *to_cset = cset->mg_dst_cset;
2502
2503 get_css_set(to_cset);
2504 to_cset->nr_tasks++;
2505 css_set_move_task(task, from_cset, to_cset, true);
2506 from_cset->nr_tasks--;
2507 /*
2508 * If the source or destination cgroup is frozen,
2509 * the task might require to change its state.
2510 */
2511 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2512 to_cset->dfl_cgrp);
2513 put_css_set_locked(from_cset);
2514
2515 }
2516 }
2517 spin_unlock_irq(&css_set_lock);
2518
2519 /*
2520 * Migration is committed, all target tasks are now on dst_csets.
2521 * Nothing is sensitive to fork() after this point. Notify
2522 * controllers that migration is complete.
2523 */
2524 tset->csets = &tset->dst_csets;
2525
2526 if (tset->nr_tasks) {
2527 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2528 if (ss->attach) {
2529 tset->ssid = ssid;
2530 ss->attach(tset);
2531 }
2532 } while_each_subsys_mask();
2533 }
2534
2535 ret = 0;
2536 goto out_release_tset;
2537
2538 out_cancel_attach:
2539 if (tset->nr_tasks) {
2540 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2541 if (ssid == failed_ssid)
2542 break;
2543 if (ss->cancel_attach) {
2544 tset->ssid = ssid;
2545 ss->cancel_attach(tset);
2546 }
2547 } while_each_subsys_mask();
2548 }
2549 out_release_tset:
2550 spin_lock_irq(&css_set_lock);
2551 list_splice_init(&tset->dst_csets, &tset->src_csets);
2552 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2553 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2554 list_del_init(&cset->mg_node);
2555 }
2556 spin_unlock_irq(&css_set_lock);
2557
2558 /*
2559 * Re-initialize the cgroup_taskset structure in case it is reused
2560 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2561 * iteration.
2562 */
2563 tset->nr_tasks = 0;
2564 tset->csets = &tset->src_csets;
2565 return ret;
2566 }
2567
2568 /**
2569 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2570 * @dst_cgrp: destination cgroup to test
2571 *
2572 * On the default hierarchy, except for the mixable, (possible) thread root
2573 * and threaded cgroups, subtree_control must be zero for migration
2574 * destination cgroups with tasks so that child cgroups don't compete
2575 * against tasks.
2576 */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2577 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2578 {
2579 /* v1 doesn't have any restriction */
2580 if (!cgroup_on_dfl(dst_cgrp))
2581 return 0;
2582
2583 /* verify @dst_cgrp can host resources */
2584 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2585 return -EOPNOTSUPP;
2586
2587 /* mixables don't care */
2588 if (cgroup_is_mixable(dst_cgrp))
2589 return 0;
2590
2591 /*
2592 * If @dst_cgrp is already or can become a thread root or is
2593 * threaded, it doesn't matter.
2594 */
2595 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2596 return 0;
2597
2598 /* apply no-internal-process constraint */
2599 if (dst_cgrp->subtree_control)
2600 return -EBUSY;
2601
2602 return 0;
2603 }
2604
2605 /**
2606 * cgroup_migrate_finish - cleanup after attach
2607 * @mgctx: migration context
2608 *
2609 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2610 * those functions for details.
2611 */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2612 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2613 {
2614 struct css_set *cset, *tmp_cset;
2615
2616 lockdep_assert_held(&cgroup_mutex);
2617
2618 spin_lock_irq(&css_set_lock);
2619
2620 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2621 mg_src_preload_node) {
2622 cset->mg_src_cgrp = NULL;
2623 cset->mg_dst_cgrp = NULL;
2624 cset->mg_dst_cset = NULL;
2625 list_del_init(&cset->mg_src_preload_node);
2626 put_css_set_locked(cset);
2627 }
2628
2629 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2630 mg_dst_preload_node) {
2631 cset->mg_src_cgrp = NULL;
2632 cset->mg_dst_cgrp = NULL;
2633 cset->mg_dst_cset = NULL;
2634 list_del_init(&cset->mg_dst_preload_node);
2635 put_css_set_locked(cset);
2636 }
2637
2638 spin_unlock_irq(&css_set_lock);
2639 }
2640
2641 /**
2642 * cgroup_migrate_add_src - add a migration source css_set
2643 * @src_cset: the source css_set to add
2644 * @dst_cgrp: the destination cgroup
2645 * @mgctx: migration context
2646 *
2647 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2648 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2649 * up by cgroup_migrate_finish().
2650 *
2651 * This function may be called without holding cgroup_threadgroup_rwsem
2652 * even if the target is a process. Threads may be created and destroyed
2653 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2654 * into play and the preloaded css_sets are guaranteed to cover all
2655 * migrations.
2656 */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2657 void cgroup_migrate_add_src(struct css_set *src_cset,
2658 struct cgroup *dst_cgrp,
2659 struct cgroup_mgctx *mgctx)
2660 {
2661 struct cgroup *src_cgrp;
2662
2663 lockdep_assert_held(&cgroup_mutex);
2664 lockdep_assert_held(&css_set_lock);
2665
2666 /*
2667 * If ->dead, @src_set is associated with one or more dead cgroups
2668 * and doesn't contain any migratable tasks. Ignore it early so
2669 * that the rest of migration path doesn't get confused by it.
2670 */
2671 if (src_cset->dead)
2672 return;
2673
2674 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2675
2676 if (!list_empty(&src_cset->mg_src_preload_node))
2677 return;
2678
2679 WARN_ON(src_cset->mg_src_cgrp);
2680 WARN_ON(src_cset->mg_dst_cgrp);
2681 WARN_ON(!list_empty(&src_cset->mg_tasks));
2682 WARN_ON(!list_empty(&src_cset->mg_node));
2683
2684 src_cset->mg_src_cgrp = src_cgrp;
2685 src_cset->mg_dst_cgrp = dst_cgrp;
2686 get_css_set(src_cset);
2687 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2688 }
2689
2690 /**
2691 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2692 * @mgctx: migration context
2693 *
2694 * Tasks are about to be moved and all the source css_sets have been
2695 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2696 * pins all destination css_sets, links each to its source, and append them
2697 * to @mgctx->preloaded_dst_csets.
2698 *
2699 * This function must be called after cgroup_migrate_add_src() has been
2700 * called on each migration source css_set. After migration is performed
2701 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2702 * @mgctx.
2703 */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2704 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2705 {
2706 struct css_set *src_cset, *tmp_cset;
2707
2708 lockdep_assert_held(&cgroup_mutex);
2709
2710 /* look up the dst cset for each src cset and link it to src */
2711 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2712 mg_src_preload_node) {
2713 struct css_set *dst_cset;
2714 struct cgroup_subsys *ss;
2715 int ssid;
2716
2717 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2718 if (!dst_cset)
2719 return -ENOMEM;
2720
2721 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2722
2723 /*
2724 * If src cset equals dst, it's noop. Drop the src.
2725 * cgroup_migrate() will skip the cset too. Note that we
2726 * can't handle src == dst as some nodes are used by both.
2727 */
2728 if (src_cset == dst_cset) {
2729 src_cset->mg_src_cgrp = NULL;
2730 src_cset->mg_dst_cgrp = NULL;
2731 list_del_init(&src_cset->mg_src_preload_node);
2732 put_css_set(src_cset);
2733 put_css_set(dst_cset);
2734 continue;
2735 }
2736
2737 src_cset->mg_dst_cset = dst_cset;
2738
2739 if (list_empty(&dst_cset->mg_dst_preload_node))
2740 list_add_tail(&dst_cset->mg_dst_preload_node,
2741 &mgctx->preloaded_dst_csets);
2742 else
2743 put_css_set(dst_cset);
2744
2745 for_each_subsys(ss, ssid)
2746 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2747 mgctx->ss_mask |= 1 << ssid;
2748 }
2749
2750 return 0;
2751 }
2752
2753 /**
2754 * cgroup_migrate - migrate a process or task to a cgroup
2755 * @leader: the leader of the process or the task to migrate
2756 * @threadgroup: whether @leader points to the whole process or a single task
2757 * @mgctx: migration context
2758 *
2759 * Migrate a process or task denoted by @leader. If migrating a process,
2760 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2761 * responsible for invoking cgroup_migrate_add_src() and
2762 * cgroup_migrate_prepare_dst() on the targets before invoking this
2763 * function and following up with cgroup_migrate_finish().
2764 *
2765 * As long as a controller's ->can_attach() doesn't fail, this function is
2766 * guaranteed to succeed. This means that, excluding ->can_attach()
2767 * failure, when migrating multiple targets, the success or failure can be
2768 * decided for all targets by invoking group_migrate_prepare_dst() before
2769 * actually starting migrating.
2770 */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2771 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2772 struct cgroup_mgctx *mgctx)
2773 {
2774 int err = 0;
2775 struct task_struct *task;
2776
2777 /*
2778 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2779 * already PF_EXITING could be freed from underneath us unless we
2780 * take an rcu_read_lock.
2781 */
2782 spin_lock_irq(&css_set_lock);
2783 rcu_read_lock();
2784 task = leader;
2785 do {
2786 cgroup_migrate_add_task(task, mgctx);
2787 if (!threadgroup) {
2788 if (task->flags & PF_EXITING)
2789 err = -ESRCH;
2790 break;
2791 }
2792 } while_each_thread(leader, task);
2793 rcu_read_unlock();
2794 spin_unlock_irq(&css_set_lock);
2795
2796 return err ? err : cgroup_migrate_execute(mgctx);
2797 }
2798
2799 /**
2800 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2801 * @dst_cgrp: the cgroup to attach to
2802 * @leader: the task or the leader of the threadgroup to be attached
2803 * @threadgroup: attach the whole threadgroup?
2804 *
2805 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2806 */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2807 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2808 bool threadgroup)
2809 {
2810 DEFINE_CGROUP_MGCTX(mgctx);
2811 struct task_struct *task;
2812 int ret = 0;
2813
2814 /* look up all src csets */
2815 spin_lock_irq(&css_set_lock);
2816 rcu_read_lock();
2817 task = leader;
2818 do {
2819 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2820 if (!threadgroup)
2821 break;
2822 } while_each_thread(leader, task);
2823 rcu_read_unlock();
2824 spin_unlock_irq(&css_set_lock);
2825
2826 /* prepare dst csets and commit */
2827 ret = cgroup_migrate_prepare_dst(&mgctx);
2828 if (!ret)
2829 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2830
2831 cgroup_migrate_finish(&mgctx);
2832
2833 if (!ret)
2834 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2835
2836 return ret;
2837 }
2838
cgroup_procs_write_start(char * buf,bool threadgroup,bool * threadgroup_locked)2839 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2840 bool *threadgroup_locked)
2841 {
2842 struct task_struct *tsk;
2843 pid_t pid;
2844
2845 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2846 return ERR_PTR(-EINVAL);
2847
2848 /*
2849 * If we migrate a single thread, we don't care about threadgroup
2850 * stability. If the thread is `current`, it won't exit(2) under our
2851 * hands or change PID through exec(2). We exclude
2852 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2853 * callers by cgroup_mutex.
2854 * Therefore, we can skip the global lock.
2855 */
2856 lockdep_assert_held(&cgroup_mutex);
2857 *threadgroup_locked = pid || threadgroup;
2858 cgroup_attach_lock(*threadgroup_locked);
2859
2860 rcu_read_lock();
2861 if (pid) {
2862 tsk = find_task_by_vpid(pid);
2863 if (!tsk) {
2864 tsk = ERR_PTR(-ESRCH);
2865 goto out_unlock_threadgroup;
2866 }
2867 } else {
2868 tsk = current;
2869 }
2870
2871 if (threadgroup)
2872 tsk = tsk->group_leader;
2873
2874 /*
2875 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2876 * If userland migrates such a kthread to a non-root cgroup, it can
2877 * become trapped in a cpuset, or RT kthread may be born in a
2878 * cgroup with no rt_runtime allocated. Just say no.
2879 */
2880 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2881 tsk = ERR_PTR(-EINVAL);
2882 goto out_unlock_threadgroup;
2883 }
2884
2885 get_task_struct(tsk);
2886 goto out_unlock_rcu;
2887
2888 out_unlock_threadgroup:
2889 cgroup_attach_unlock(*threadgroup_locked);
2890 *threadgroup_locked = false;
2891 out_unlock_rcu:
2892 rcu_read_unlock();
2893 return tsk;
2894 }
2895
cgroup_procs_write_finish(struct task_struct * task,bool threadgroup_locked)2896 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
2897 {
2898 struct cgroup_subsys *ss;
2899 int ssid;
2900
2901 /* release reference from cgroup_procs_write_start() */
2902 put_task_struct(task);
2903
2904 cgroup_attach_unlock(threadgroup_locked);
2905
2906 for_each_subsys(ss, ssid)
2907 if (ss->post_attach)
2908 ss->post_attach();
2909 }
2910
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)2911 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2912 {
2913 struct cgroup_subsys *ss;
2914 bool printed = false;
2915 int ssid;
2916
2917 do_each_subsys_mask(ss, ssid, ss_mask) {
2918 if (printed)
2919 seq_putc(seq, ' ');
2920 seq_puts(seq, ss->name);
2921 printed = true;
2922 } while_each_subsys_mask();
2923 if (printed)
2924 seq_putc(seq, '\n');
2925 }
2926
2927 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)2928 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2929 {
2930 struct cgroup *cgrp = seq_css(seq)->cgroup;
2931
2932 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2933 return 0;
2934 }
2935
2936 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)2937 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2938 {
2939 struct cgroup *cgrp = seq_css(seq)->cgroup;
2940
2941 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2942 return 0;
2943 }
2944
2945 /**
2946 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2947 * @cgrp: root of the subtree to update csses for
2948 *
2949 * @cgrp's control masks have changed and its subtree's css associations
2950 * need to be updated accordingly. This function looks up all css_sets
2951 * which are attached to the subtree, creates the matching updated css_sets
2952 * and migrates the tasks to the new ones.
2953 */
cgroup_update_dfl_csses(struct cgroup * cgrp)2954 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2955 {
2956 DEFINE_CGROUP_MGCTX(mgctx);
2957 struct cgroup_subsys_state *d_css;
2958 struct cgroup *dsct;
2959 struct css_set *src_cset;
2960 bool has_tasks;
2961 int ret;
2962
2963 lockdep_assert_held(&cgroup_mutex);
2964
2965 /* look up all csses currently attached to @cgrp's subtree */
2966 spin_lock_irq(&css_set_lock);
2967 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2968 struct cgrp_cset_link *link;
2969
2970 list_for_each_entry(link, &dsct->cset_links, cset_link)
2971 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2972 }
2973 spin_unlock_irq(&css_set_lock);
2974
2975 /*
2976 * We need to write-lock threadgroup_rwsem while migrating tasks.
2977 * However, if there are no source csets for @cgrp, changing its
2978 * controllers isn't gonna produce any task migrations and the
2979 * write-locking can be skipped safely.
2980 */
2981 has_tasks = !list_empty(&mgctx.preloaded_src_csets);
2982 cgroup_attach_lock(has_tasks);
2983
2984 /* NULL dst indicates self on default hierarchy */
2985 ret = cgroup_migrate_prepare_dst(&mgctx);
2986 if (ret)
2987 goto out_finish;
2988
2989 spin_lock_irq(&css_set_lock);
2990 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
2991 mg_src_preload_node) {
2992 struct task_struct *task, *ntask;
2993
2994 /* all tasks in src_csets need to be migrated */
2995 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2996 cgroup_migrate_add_task(task, &mgctx);
2997 }
2998 spin_unlock_irq(&css_set_lock);
2999
3000 ret = cgroup_migrate_execute(&mgctx);
3001 out_finish:
3002 cgroup_migrate_finish(&mgctx);
3003 cgroup_attach_unlock(has_tasks);
3004 return ret;
3005 }
3006
3007 /**
3008 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3009 * @cgrp: root of the target subtree
3010 *
3011 * Because css offlining is asynchronous, userland may try to re-enable a
3012 * controller while the previous css is still around. This function grabs
3013 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3014 */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)3015 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3016 __acquires(&cgroup_mutex)
3017 {
3018 struct cgroup *dsct;
3019 struct cgroup_subsys_state *d_css;
3020 struct cgroup_subsys *ss;
3021 int ssid;
3022
3023 restart:
3024 mutex_lock(&cgroup_mutex);
3025
3026 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3027 for_each_subsys(ss, ssid) {
3028 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3029 DEFINE_WAIT(wait);
3030
3031 if (!css || !percpu_ref_is_dying(&css->refcnt))
3032 continue;
3033
3034 cgroup_get_live(dsct);
3035 prepare_to_wait(&dsct->offline_waitq, &wait,
3036 TASK_UNINTERRUPTIBLE);
3037
3038 mutex_unlock(&cgroup_mutex);
3039 schedule();
3040 finish_wait(&dsct->offline_waitq, &wait);
3041
3042 cgroup_put(dsct);
3043 goto restart;
3044 }
3045 }
3046 }
3047
3048 /**
3049 * cgroup_save_control - save control masks and dom_cgrp of a subtree
3050 * @cgrp: root of the target subtree
3051 *
3052 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3053 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3054 * itself.
3055 */
cgroup_save_control(struct cgroup * cgrp)3056 static void cgroup_save_control(struct cgroup *cgrp)
3057 {
3058 struct cgroup *dsct;
3059 struct cgroup_subsys_state *d_css;
3060
3061 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3062 dsct->old_subtree_control = dsct->subtree_control;
3063 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3064 dsct->old_dom_cgrp = dsct->dom_cgrp;
3065 }
3066 }
3067
3068 /**
3069 * cgroup_propagate_control - refresh control masks of a subtree
3070 * @cgrp: root of the target subtree
3071 *
3072 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3073 * ->subtree_control and propagate controller availability through the
3074 * subtree so that descendants don't have unavailable controllers enabled.
3075 */
cgroup_propagate_control(struct cgroup * cgrp)3076 static void cgroup_propagate_control(struct cgroup *cgrp)
3077 {
3078 struct cgroup *dsct;
3079 struct cgroup_subsys_state *d_css;
3080
3081 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3082 dsct->subtree_control &= cgroup_control(dsct);
3083 dsct->subtree_ss_mask =
3084 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3085 cgroup_ss_mask(dsct));
3086 }
3087 }
3088
3089 /**
3090 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3091 * @cgrp: root of the target subtree
3092 *
3093 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3094 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3095 * itself.
3096 */
cgroup_restore_control(struct cgroup * cgrp)3097 static void cgroup_restore_control(struct cgroup *cgrp)
3098 {
3099 struct cgroup *dsct;
3100 struct cgroup_subsys_state *d_css;
3101
3102 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3103 dsct->subtree_control = dsct->old_subtree_control;
3104 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3105 dsct->dom_cgrp = dsct->old_dom_cgrp;
3106 }
3107 }
3108
css_visible(struct cgroup_subsys_state * css)3109 static bool css_visible(struct cgroup_subsys_state *css)
3110 {
3111 struct cgroup_subsys *ss = css->ss;
3112 struct cgroup *cgrp = css->cgroup;
3113
3114 if (cgroup_control(cgrp) & (1 << ss->id))
3115 return true;
3116 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3117 return false;
3118 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3119 }
3120
3121 /**
3122 * cgroup_apply_control_enable - enable or show csses according to control
3123 * @cgrp: root of the target subtree
3124 *
3125 * Walk @cgrp's subtree and create new csses or make the existing ones
3126 * visible. A css is created invisible if it's being implicitly enabled
3127 * through dependency. An invisible css is made visible when the userland
3128 * explicitly enables it.
3129 *
3130 * Returns 0 on success, -errno on failure. On failure, csses which have
3131 * been processed already aren't cleaned up. The caller is responsible for
3132 * cleaning up with cgroup_apply_control_disable().
3133 */
cgroup_apply_control_enable(struct cgroup * cgrp)3134 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3135 {
3136 struct cgroup *dsct;
3137 struct cgroup_subsys_state *d_css;
3138 struct cgroup_subsys *ss;
3139 int ssid, ret;
3140
3141 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3142 for_each_subsys(ss, ssid) {
3143 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3144
3145 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3146 continue;
3147
3148 if (!css) {
3149 css = css_create(dsct, ss);
3150 if (IS_ERR(css))
3151 return PTR_ERR(css);
3152 }
3153
3154 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3155
3156 if (css_visible(css)) {
3157 ret = css_populate_dir(css);
3158 if (ret)
3159 return ret;
3160 }
3161 }
3162 }
3163
3164 return 0;
3165 }
3166
3167 /**
3168 * cgroup_apply_control_disable - kill or hide csses according to control
3169 * @cgrp: root of the target subtree
3170 *
3171 * Walk @cgrp's subtree and kill and hide csses so that they match
3172 * cgroup_ss_mask() and cgroup_visible_mask().
3173 *
3174 * A css is hidden when the userland requests it to be disabled while other
3175 * subsystems are still depending on it. The css must not actively control
3176 * resources and be in the vanilla state if it's made visible again later.
3177 * Controllers which may be depended upon should provide ->css_reset() for
3178 * this purpose.
3179 */
cgroup_apply_control_disable(struct cgroup * cgrp)3180 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3181 {
3182 struct cgroup *dsct;
3183 struct cgroup_subsys_state *d_css;
3184 struct cgroup_subsys *ss;
3185 int ssid;
3186
3187 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3188 for_each_subsys(ss, ssid) {
3189 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3190
3191 if (!css)
3192 continue;
3193
3194 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3195
3196 if (css->parent &&
3197 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3198 kill_css(css);
3199 } else if (!css_visible(css)) {
3200 css_clear_dir(css);
3201 if (ss->css_reset)
3202 ss->css_reset(css);
3203 }
3204 }
3205 }
3206 }
3207
3208 /**
3209 * cgroup_apply_control - apply control mask updates to the subtree
3210 * @cgrp: root of the target subtree
3211 *
3212 * subsystems can be enabled and disabled in a subtree using the following
3213 * steps.
3214 *
3215 * 1. Call cgroup_save_control() to stash the current state.
3216 * 2. Update ->subtree_control masks in the subtree as desired.
3217 * 3. Call cgroup_apply_control() to apply the changes.
3218 * 4. Optionally perform other related operations.
3219 * 5. Call cgroup_finalize_control() to finish up.
3220 *
3221 * This function implements step 3 and propagates the mask changes
3222 * throughout @cgrp's subtree, updates csses accordingly and perform
3223 * process migrations.
3224 */
cgroup_apply_control(struct cgroup * cgrp)3225 static int cgroup_apply_control(struct cgroup *cgrp)
3226 {
3227 int ret;
3228
3229 cgroup_propagate_control(cgrp);
3230
3231 ret = cgroup_apply_control_enable(cgrp);
3232 if (ret)
3233 return ret;
3234
3235 /*
3236 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3237 * making the following cgroup_update_dfl_csses() properly update
3238 * css associations of all tasks in the subtree.
3239 */
3240 ret = cgroup_update_dfl_csses(cgrp);
3241 if (ret)
3242 return ret;
3243
3244 return 0;
3245 }
3246
3247 /**
3248 * cgroup_finalize_control - finalize control mask update
3249 * @cgrp: root of the target subtree
3250 * @ret: the result of the update
3251 *
3252 * Finalize control mask update. See cgroup_apply_control() for more info.
3253 */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3254 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3255 {
3256 if (ret) {
3257 cgroup_restore_control(cgrp);
3258 cgroup_propagate_control(cgrp);
3259 }
3260
3261 cgroup_apply_control_disable(cgrp);
3262 }
3263
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3264 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3265 {
3266 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3267
3268 /* if nothing is getting enabled, nothing to worry about */
3269 if (!enable)
3270 return 0;
3271
3272 /* can @cgrp host any resources? */
3273 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3274 return -EOPNOTSUPP;
3275
3276 /* mixables don't care */
3277 if (cgroup_is_mixable(cgrp))
3278 return 0;
3279
3280 if (domain_enable) {
3281 /* can't enable domain controllers inside a thread subtree */
3282 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3283 return -EOPNOTSUPP;
3284 } else {
3285 /*
3286 * Threaded controllers can handle internal competitions
3287 * and are always allowed inside a (prospective) thread
3288 * subtree.
3289 */
3290 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3291 return 0;
3292 }
3293
3294 /*
3295 * Controllers can't be enabled for a cgroup with tasks to avoid
3296 * child cgroups competing against tasks.
3297 */
3298 if (cgroup_has_tasks(cgrp))
3299 return -EBUSY;
3300
3301 return 0;
3302 }
3303
3304 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3305 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3306 char *buf, size_t nbytes,
3307 loff_t off)
3308 {
3309 u16 enable = 0, disable = 0;
3310 struct cgroup *cgrp, *child;
3311 struct cgroup_subsys *ss;
3312 char *tok;
3313 int ssid, ret;
3314
3315 /*
3316 * Parse input - space separated list of subsystem names prefixed
3317 * with either + or -.
3318 */
3319 buf = strstrip(buf);
3320 while ((tok = strsep(&buf, " "))) {
3321 if (tok[0] == '\0')
3322 continue;
3323 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3324 if (!cgroup_ssid_enabled(ssid) ||
3325 strcmp(tok + 1, ss->name))
3326 continue;
3327
3328 if (*tok == '+') {
3329 enable |= 1 << ssid;
3330 disable &= ~(1 << ssid);
3331 } else if (*tok == '-') {
3332 disable |= 1 << ssid;
3333 enable &= ~(1 << ssid);
3334 } else {
3335 return -EINVAL;
3336 }
3337 break;
3338 } while_each_subsys_mask();
3339 if (ssid == CGROUP_SUBSYS_COUNT)
3340 return -EINVAL;
3341 }
3342
3343 cgrp = cgroup_kn_lock_live(of->kn, true);
3344 if (!cgrp)
3345 return -ENODEV;
3346
3347 for_each_subsys(ss, ssid) {
3348 if (enable & (1 << ssid)) {
3349 if (cgrp->subtree_control & (1 << ssid)) {
3350 enable &= ~(1 << ssid);
3351 continue;
3352 }
3353
3354 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3355 ret = -ENOENT;
3356 goto out_unlock;
3357 }
3358 } else if (disable & (1 << ssid)) {
3359 if (!(cgrp->subtree_control & (1 << ssid))) {
3360 disable &= ~(1 << ssid);
3361 continue;
3362 }
3363
3364 /* a child has it enabled? */
3365 cgroup_for_each_live_child(child, cgrp) {
3366 if (child->subtree_control & (1 << ssid)) {
3367 ret = -EBUSY;
3368 goto out_unlock;
3369 }
3370 }
3371 }
3372 }
3373
3374 if (!enable && !disable) {
3375 ret = 0;
3376 goto out_unlock;
3377 }
3378
3379 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3380 if (ret)
3381 goto out_unlock;
3382
3383 /* save and update control masks and prepare csses */
3384 cgroup_save_control(cgrp);
3385
3386 cgrp->subtree_control |= enable;
3387 cgrp->subtree_control &= ~disable;
3388
3389 ret = cgroup_apply_control(cgrp);
3390 cgroup_finalize_control(cgrp, ret);
3391 if (ret)
3392 goto out_unlock;
3393
3394 kernfs_activate(cgrp->kn);
3395 out_unlock:
3396 cgroup_kn_unlock(of->kn);
3397 return ret ?: nbytes;
3398 }
3399
3400 /**
3401 * cgroup_enable_threaded - make @cgrp threaded
3402 * @cgrp: the target cgroup
3403 *
3404 * Called when "threaded" is written to the cgroup.type interface file and
3405 * tries to make @cgrp threaded and join the parent's resource domain.
3406 * This function is never called on the root cgroup as cgroup.type doesn't
3407 * exist on it.
3408 */
cgroup_enable_threaded(struct cgroup * cgrp)3409 static int cgroup_enable_threaded(struct cgroup *cgrp)
3410 {
3411 struct cgroup *parent = cgroup_parent(cgrp);
3412 struct cgroup *dom_cgrp = parent->dom_cgrp;
3413 struct cgroup *dsct;
3414 struct cgroup_subsys_state *d_css;
3415 int ret;
3416
3417 lockdep_assert_held(&cgroup_mutex);
3418
3419 /* noop if already threaded */
3420 if (cgroup_is_threaded(cgrp))
3421 return 0;
3422
3423 /*
3424 * If @cgroup is populated or has domain controllers enabled, it
3425 * can't be switched. While the below cgroup_can_be_thread_root()
3426 * test can catch the same conditions, that's only when @parent is
3427 * not mixable, so let's check it explicitly.
3428 */
3429 if (cgroup_is_populated(cgrp) ||
3430 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3431 return -EOPNOTSUPP;
3432
3433 /* we're joining the parent's domain, ensure its validity */
3434 if (!cgroup_is_valid_domain(dom_cgrp) ||
3435 !cgroup_can_be_thread_root(dom_cgrp))
3436 return -EOPNOTSUPP;
3437
3438 /*
3439 * The following shouldn't cause actual migrations and should
3440 * always succeed.
3441 */
3442 cgroup_save_control(cgrp);
3443
3444 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3445 if (dsct == cgrp || cgroup_is_threaded(dsct))
3446 dsct->dom_cgrp = dom_cgrp;
3447
3448 ret = cgroup_apply_control(cgrp);
3449 if (!ret)
3450 parent->nr_threaded_children++;
3451
3452 cgroup_finalize_control(cgrp, ret);
3453 return ret;
3454 }
3455
cgroup_type_show(struct seq_file * seq,void * v)3456 static int cgroup_type_show(struct seq_file *seq, void *v)
3457 {
3458 struct cgroup *cgrp = seq_css(seq)->cgroup;
3459
3460 if (cgroup_is_threaded(cgrp))
3461 seq_puts(seq, "threaded\n");
3462 else if (!cgroup_is_valid_domain(cgrp))
3463 seq_puts(seq, "domain invalid\n");
3464 else if (cgroup_is_thread_root(cgrp))
3465 seq_puts(seq, "domain threaded\n");
3466 else
3467 seq_puts(seq, "domain\n");
3468
3469 return 0;
3470 }
3471
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3472 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3473 size_t nbytes, loff_t off)
3474 {
3475 struct cgroup *cgrp;
3476 int ret;
3477
3478 /* only switching to threaded mode is supported */
3479 if (strcmp(strstrip(buf), "threaded"))
3480 return -EINVAL;
3481
3482 /* drain dying csses before we re-apply (threaded) subtree control */
3483 cgrp = cgroup_kn_lock_live(of->kn, true);
3484 if (!cgrp)
3485 return -ENOENT;
3486
3487 /* threaded can only be enabled */
3488 ret = cgroup_enable_threaded(cgrp);
3489
3490 cgroup_kn_unlock(of->kn);
3491 return ret ?: nbytes;
3492 }
3493
cgroup_max_descendants_show(struct seq_file * seq,void * v)3494 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3495 {
3496 struct cgroup *cgrp = seq_css(seq)->cgroup;
3497 int descendants = READ_ONCE(cgrp->max_descendants);
3498
3499 if (descendants == INT_MAX)
3500 seq_puts(seq, "max\n");
3501 else
3502 seq_printf(seq, "%d\n", descendants);
3503
3504 return 0;
3505 }
3506
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3507 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3508 char *buf, size_t nbytes, loff_t off)
3509 {
3510 struct cgroup *cgrp;
3511 int descendants;
3512 ssize_t ret;
3513
3514 buf = strstrip(buf);
3515 if (!strcmp(buf, "max")) {
3516 descendants = INT_MAX;
3517 } else {
3518 ret = kstrtoint(buf, 0, &descendants);
3519 if (ret)
3520 return ret;
3521 }
3522
3523 if (descendants < 0)
3524 return -ERANGE;
3525
3526 cgrp = cgroup_kn_lock_live(of->kn, false);
3527 if (!cgrp)
3528 return -ENOENT;
3529
3530 cgrp->max_descendants = descendants;
3531
3532 cgroup_kn_unlock(of->kn);
3533
3534 return nbytes;
3535 }
3536
cgroup_max_depth_show(struct seq_file * seq,void * v)3537 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3538 {
3539 struct cgroup *cgrp = seq_css(seq)->cgroup;
3540 int depth = READ_ONCE(cgrp->max_depth);
3541
3542 if (depth == INT_MAX)
3543 seq_puts(seq, "max\n");
3544 else
3545 seq_printf(seq, "%d\n", depth);
3546
3547 return 0;
3548 }
3549
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3550 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3551 char *buf, size_t nbytes, loff_t off)
3552 {
3553 struct cgroup *cgrp;
3554 ssize_t ret;
3555 int depth;
3556
3557 buf = strstrip(buf);
3558 if (!strcmp(buf, "max")) {
3559 depth = INT_MAX;
3560 } else {
3561 ret = kstrtoint(buf, 0, &depth);
3562 if (ret)
3563 return ret;
3564 }
3565
3566 if (depth < 0)
3567 return -ERANGE;
3568
3569 cgrp = cgroup_kn_lock_live(of->kn, false);
3570 if (!cgrp)
3571 return -ENOENT;
3572
3573 cgrp->max_depth = depth;
3574
3575 cgroup_kn_unlock(of->kn);
3576
3577 return nbytes;
3578 }
3579
cgroup_events_show(struct seq_file * seq,void * v)3580 static int cgroup_events_show(struct seq_file *seq, void *v)
3581 {
3582 struct cgroup *cgrp = seq_css(seq)->cgroup;
3583
3584 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3585 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3586
3587 return 0;
3588 }
3589
cgroup_stat_show(struct seq_file * seq,void * v)3590 static int cgroup_stat_show(struct seq_file *seq, void *v)
3591 {
3592 struct cgroup *cgroup = seq_css(seq)->cgroup;
3593
3594 seq_printf(seq, "nr_descendants %d\n",
3595 cgroup->nr_descendants);
3596 seq_printf(seq, "nr_dying_descendants %d\n",
3597 cgroup->nr_dying_descendants);
3598
3599 return 0;
3600 }
3601
cgroup_extra_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3602 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3603 struct cgroup *cgrp, int ssid)
3604 {
3605 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3606 struct cgroup_subsys_state *css;
3607 int ret;
3608
3609 if (!ss->css_extra_stat_show)
3610 return 0;
3611
3612 css = cgroup_tryget_css(cgrp, ss);
3613 if (!css)
3614 return 0;
3615
3616 ret = ss->css_extra_stat_show(seq, css);
3617 css_put(css);
3618 return ret;
3619 }
3620
cpu_stat_show(struct seq_file * seq,void * v)3621 static int cpu_stat_show(struct seq_file *seq, void *v)
3622 {
3623 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3624 int ret = 0;
3625
3626 cgroup_base_stat_cputime_show(seq);
3627 #ifdef CONFIG_CGROUP_SCHED
3628 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3629 #endif
3630 return ret;
3631 }
3632
3633 #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3634 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3635 {
3636 struct cgroup *cgrp = seq_css(seq)->cgroup;
3637 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3638
3639 return psi_show(seq, psi, PSI_IO);
3640 }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3641 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3642 {
3643 struct cgroup *cgrp = seq_css(seq)->cgroup;
3644 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3645
3646 return psi_show(seq, psi, PSI_MEM);
3647 }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3648 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3649 {
3650 struct cgroup *cgrp = seq_css(seq)->cgroup;
3651 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3652
3653 return psi_show(seq, psi, PSI_CPU);
3654 }
3655
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3656 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3657 size_t nbytes, enum psi_res res)
3658 {
3659 struct cgroup_file_ctx *ctx = of->priv;
3660 struct psi_trigger *new;
3661 struct cgroup *cgrp;
3662 struct psi_group *psi;
3663
3664 cgrp = cgroup_kn_lock_live(of->kn, false);
3665 if (!cgrp)
3666 return -ENODEV;
3667
3668 cgroup_get(cgrp);
3669 cgroup_kn_unlock(of->kn);
3670
3671 /* Allow only one trigger per file descriptor */
3672 if (of->priv) {
3673 cgroup_put(cgrp);
3674 return -EBUSY;
3675 }
3676
3677 psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3678 new = psi_trigger_create(psi, buf, nbytes, res);
3679 if (IS_ERR(new)) {
3680 cgroup_put(cgrp);
3681 return PTR_ERR(new);
3682 }
3683
3684 smp_store_release(&ctx->psi.trigger, new);
3685 cgroup_put(cgrp);
3686
3687 return nbytes;
3688 }
3689
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3690 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3691 char *buf, size_t nbytes,
3692 loff_t off)
3693 {
3694 return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3695 }
3696
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3697 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3698 char *buf, size_t nbytes,
3699 loff_t off)
3700 {
3701 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3702 }
3703
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3704 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3705 char *buf, size_t nbytes,
3706 loff_t off)
3707 {
3708 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3709 }
3710
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)3711 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3712 poll_table *pt)
3713 {
3714 struct cgroup_file_ctx *ctx = of->priv;
3715
3716 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3717 }
3718
cgroup_pressure_release(struct kernfs_open_file * of)3719 static void cgroup_pressure_release(struct kernfs_open_file *of)
3720 {
3721 struct cgroup_file_ctx *ctx = of->priv;
3722
3723 psi_trigger_destroy(ctx->psi.trigger);
3724 }
3725 #endif /* CONFIG_PSI */
3726
cgroup_freeze_show(struct seq_file * seq,void * v)3727 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3728 {
3729 struct cgroup *cgrp = seq_css(seq)->cgroup;
3730
3731 seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3732
3733 return 0;
3734 }
3735
cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3736 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3737 char *buf, size_t nbytes, loff_t off)
3738 {
3739 struct cgroup *cgrp;
3740 ssize_t ret;
3741 int freeze;
3742
3743 ret = kstrtoint(strstrip(buf), 0, &freeze);
3744 if (ret)
3745 return ret;
3746
3747 if (freeze < 0 || freeze > 1)
3748 return -ERANGE;
3749
3750 cgrp = cgroup_kn_lock_live(of->kn, false);
3751 if (!cgrp)
3752 return -ENOENT;
3753
3754 cgroup_freeze(cgrp, freeze);
3755
3756 cgroup_kn_unlock(of->kn);
3757
3758 return nbytes;
3759 }
3760
cgroup_file_open(struct kernfs_open_file * of)3761 static int cgroup_file_open(struct kernfs_open_file *of)
3762 {
3763 struct cftype *cft = of_cft(of);
3764 struct cgroup_file_ctx *ctx;
3765 int ret;
3766
3767 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3768 if (!ctx)
3769 return -ENOMEM;
3770
3771 ctx->ns = current->nsproxy->cgroup_ns;
3772 get_cgroup_ns(ctx->ns);
3773 of->priv = ctx;
3774
3775 if (!cft->open)
3776 return 0;
3777
3778 ret = cft->open(of);
3779 if (ret) {
3780 put_cgroup_ns(ctx->ns);
3781 kfree(ctx);
3782 }
3783 return ret;
3784 }
3785
cgroup_file_release(struct kernfs_open_file * of)3786 static void cgroup_file_release(struct kernfs_open_file *of)
3787 {
3788 struct cftype *cft = of_cft(of);
3789 struct cgroup_file_ctx *ctx = of->priv;
3790
3791 if (cft->release)
3792 cft->release(of);
3793 put_cgroup_ns(ctx->ns);
3794 kfree(ctx);
3795 }
3796
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3797 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3798 size_t nbytes, loff_t off)
3799 {
3800 struct cgroup_file_ctx *ctx = of->priv;
3801 struct cgroup *cgrp = of->kn->parent->priv;
3802 struct cftype *cft = of_cft(of);
3803 struct cgroup_subsys_state *css;
3804 int ret;
3805
3806 if (!nbytes)
3807 return 0;
3808
3809 /*
3810 * If namespaces are delegation boundaries, disallow writes to
3811 * files in an non-init namespace root from inside the namespace
3812 * except for the files explicitly marked delegatable -
3813 * cgroup.procs and cgroup.subtree_control.
3814 */
3815 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3816 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3817 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
3818 return -EPERM;
3819
3820 if (cft->write)
3821 return cft->write(of, buf, nbytes, off);
3822
3823 /*
3824 * kernfs guarantees that a file isn't deleted with operations in
3825 * flight, which means that the matching css is and stays alive and
3826 * doesn't need to be pinned. The RCU locking is not necessary
3827 * either. It's just for the convenience of using cgroup_css().
3828 */
3829 rcu_read_lock();
3830 css = cgroup_css(cgrp, cft->ss);
3831 rcu_read_unlock();
3832
3833 if (cft->write_u64) {
3834 unsigned long long v;
3835 ret = kstrtoull(buf, 0, &v);
3836 if (!ret)
3837 ret = cft->write_u64(css, cft, v);
3838 } else if (cft->write_s64) {
3839 long long v;
3840 ret = kstrtoll(buf, 0, &v);
3841 if (!ret)
3842 ret = cft->write_s64(css, cft, v);
3843 } else {
3844 ret = -EINVAL;
3845 }
3846
3847 return ret ?: nbytes;
3848 }
3849
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)3850 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3851 {
3852 struct cftype *cft = of_cft(of);
3853
3854 if (cft->poll)
3855 return cft->poll(of, pt);
3856
3857 return kernfs_generic_poll(of, pt);
3858 }
3859
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)3860 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3861 {
3862 return seq_cft(seq)->seq_start(seq, ppos);
3863 }
3864
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)3865 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3866 {
3867 return seq_cft(seq)->seq_next(seq, v, ppos);
3868 }
3869
cgroup_seqfile_stop(struct seq_file * seq,void * v)3870 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3871 {
3872 if (seq_cft(seq)->seq_stop)
3873 seq_cft(seq)->seq_stop(seq, v);
3874 }
3875
cgroup_seqfile_show(struct seq_file * m,void * arg)3876 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3877 {
3878 struct cftype *cft = seq_cft(m);
3879 struct cgroup_subsys_state *css = seq_css(m);
3880
3881 if (cft->seq_show)
3882 return cft->seq_show(m, arg);
3883
3884 if (cft->read_u64)
3885 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3886 else if (cft->read_s64)
3887 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3888 else
3889 return -EINVAL;
3890 return 0;
3891 }
3892
3893 static struct kernfs_ops cgroup_kf_single_ops = {
3894 .atomic_write_len = PAGE_SIZE,
3895 .open = cgroup_file_open,
3896 .release = cgroup_file_release,
3897 .write = cgroup_file_write,
3898 .poll = cgroup_file_poll,
3899 .seq_show = cgroup_seqfile_show,
3900 };
3901
3902 static struct kernfs_ops cgroup_kf_ops = {
3903 .atomic_write_len = PAGE_SIZE,
3904 .open = cgroup_file_open,
3905 .release = cgroup_file_release,
3906 .write = cgroup_file_write,
3907 .poll = cgroup_file_poll,
3908 .seq_start = cgroup_seqfile_start,
3909 .seq_next = cgroup_seqfile_next,
3910 .seq_stop = cgroup_seqfile_stop,
3911 .seq_show = cgroup_seqfile_show,
3912 };
3913
3914 /* set uid and gid of cgroup dirs and files to that of the creator */
cgroup_kn_set_ugid(struct kernfs_node * kn)3915 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3916 {
3917 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3918 .ia_uid = current_fsuid(),
3919 .ia_gid = current_fsgid(), };
3920
3921 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3922 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3923 return 0;
3924
3925 return kernfs_setattr(kn, &iattr);
3926 }
3927
cgroup_file_notify_timer(struct timer_list * timer)3928 static void cgroup_file_notify_timer(struct timer_list *timer)
3929 {
3930 cgroup_file_notify(container_of(timer, struct cgroup_file,
3931 notify_timer));
3932 }
3933
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)3934 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3935 struct cftype *cft)
3936 {
3937 char name[CGROUP_FILE_NAME_MAX];
3938 struct kernfs_node *kn;
3939 struct lock_class_key *key = NULL;
3940 int ret;
3941
3942 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3943 key = &cft->lockdep_key;
3944 #endif
3945 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3946 cgroup_file_mode(cft),
3947 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3948 0, cft->kf_ops, cft,
3949 NULL, key);
3950 if (IS_ERR(kn))
3951 return PTR_ERR(kn);
3952
3953 ret = cgroup_kn_set_ugid(kn);
3954 if (ret) {
3955 kernfs_remove(kn);
3956 return ret;
3957 }
3958
3959 if (cft->file_offset) {
3960 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3961
3962 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3963
3964 spin_lock_irq(&cgroup_file_kn_lock);
3965 cfile->kn = kn;
3966 spin_unlock_irq(&cgroup_file_kn_lock);
3967 }
3968
3969 return 0;
3970 }
3971
3972 /**
3973 * cgroup_addrm_files - add or remove files to a cgroup directory
3974 * @css: the target css
3975 * @cgrp: the target cgroup (usually css->cgroup)
3976 * @cfts: array of cftypes to be added
3977 * @is_add: whether to add or remove
3978 *
3979 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3980 * For removals, this function never fails.
3981 */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)3982 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3983 struct cgroup *cgrp, struct cftype cfts[],
3984 bool is_add)
3985 {
3986 struct cftype *cft, *cft_end = NULL;
3987 int ret = 0;
3988
3989 lockdep_assert_held(&cgroup_mutex);
3990
3991 restart:
3992 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3993 /* does cft->flags tell us to skip this file on @cgrp? */
3994 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3995 continue;
3996 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3997 continue;
3998 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3999 continue;
4000 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4001 continue;
4002 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4003 continue;
4004 if (is_add) {
4005 ret = cgroup_add_file(css, cgrp, cft);
4006 if (ret) {
4007 pr_warn("%s: failed to add %s, err=%d\n",
4008 __func__, cft->name, ret);
4009 cft_end = cft;
4010 is_add = false;
4011 goto restart;
4012 }
4013 } else {
4014 cgroup_rm_file(cgrp, cft);
4015 }
4016 }
4017 return ret;
4018 }
4019
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)4020 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4021 {
4022 struct cgroup_subsys *ss = cfts[0].ss;
4023 struct cgroup *root = &ss->root->cgrp;
4024 struct cgroup_subsys_state *css;
4025 int ret = 0;
4026
4027 lockdep_assert_held(&cgroup_mutex);
4028
4029 /* add/rm files for all cgroups created before */
4030 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4031 struct cgroup *cgrp = css->cgroup;
4032
4033 if (!(css->flags & CSS_VISIBLE))
4034 continue;
4035
4036 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4037 if (ret)
4038 break;
4039 }
4040
4041 if (is_add && !ret)
4042 kernfs_activate(root->kn);
4043 return ret;
4044 }
4045
cgroup_exit_cftypes(struct cftype * cfts)4046 static void cgroup_exit_cftypes(struct cftype *cfts)
4047 {
4048 struct cftype *cft;
4049
4050 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4051 /* free copy for custom atomic_write_len, see init_cftypes() */
4052 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4053 kfree(cft->kf_ops);
4054 cft->kf_ops = NULL;
4055 cft->ss = NULL;
4056
4057 /* revert flags set by cgroup core while adding @cfts */
4058 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
4059 }
4060 }
4061
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4062 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4063 {
4064 struct cftype *cft;
4065
4066 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4067 struct kernfs_ops *kf_ops;
4068
4069 WARN_ON(cft->ss || cft->kf_ops);
4070
4071 if (cft->seq_start)
4072 kf_ops = &cgroup_kf_ops;
4073 else
4074 kf_ops = &cgroup_kf_single_ops;
4075
4076 /*
4077 * Ugh... if @cft wants a custom max_write_len, we need to
4078 * make a copy of kf_ops to set its atomic_write_len.
4079 */
4080 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4081 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4082 if (!kf_ops) {
4083 cgroup_exit_cftypes(cfts);
4084 return -ENOMEM;
4085 }
4086 kf_ops->atomic_write_len = cft->max_write_len;
4087 }
4088
4089 cft->kf_ops = kf_ops;
4090 cft->ss = ss;
4091 }
4092
4093 return 0;
4094 }
4095
cgroup_rm_cftypes_locked(struct cftype * cfts)4096 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4097 {
4098 lockdep_assert_held(&cgroup_mutex);
4099
4100 if (!cfts || !cfts[0].ss)
4101 return -ENOENT;
4102
4103 list_del(&cfts->node);
4104 cgroup_apply_cftypes(cfts, false);
4105 cgroup_exit_cftypes(cfts);
4106 return 0;
4107 }
4108
4109 /**
4110 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4111 * @cfts: zero-length name terminated array of cftypes
4112 *
4113 * Unregister @cfts. Files described by @cfts are removed from all
4114 * existing cgroups and all future cgroups won't have them either. This
4115 * function can be called anytime whether @cfts' subsys is attached or not.
4116 *
4117 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4118 * registered.
4119 */
cgroup_rm_cftypes(struct cftype * cfts)4120 int cgroup_rm_cftypes(struct cftype *cfts)
4121 {
4122 int ret;
4123
4124 mutex_lock(&cgroup_mutex);
4125 ret = cgroup_rm_cftypes_locked(cfts);
4126 mutex_unlock(&cgroup_mutex);
4127 return ret;
4128 }
4129
4130 /**
4131 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4132 * @ss: target cgroup subsystem
4133 * @cfts: zero-length name terminated array of cftypes
4134 *
4135 * Register @cfts to @ss. Files described by @cfts are created for all
4136 * existing cgroups to which @ss is attached and all future cgroups will
4137 * have them too. This function can be called anytime whether @ss is
4138 * attached or not.
4139 *
4140 * Returns 0 on successful registration, -errno on failure. Note that this
4141 * function currently returns 0 as long as @cfts registration is successful
4142 * even if some file creation attempts on existing cgroups fail.
4143 */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4144 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4145 {
4146 int ret;
4147
4148 if (!cgroup_ssid_enabled(ss->id))
4149 return 0;
4150
4151 if (!cfts || cfts[0].name[0] == '\0')
4152 return 0;
4153
4154 ret = cgroup_init_cftypes(ss, cfts);
4155 if (ret)
4156 return ret;
4157
4158 mutex_lock(&cgroup_mutex);
4159
4160 list_add_tail(&cfts->node, &ss->cfts);
4161 ret = cgroup_apply_cftypes(cfts, true);
4162 if (ret)
4163 cgroup_rm_cftypes_locked(cfts);
4164
4165 mutex_unlock(&cgroup_mutex);
4166 return ret;
4167 }
4168
4169 /**
4170 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4171 * @ss: target cgroup subsystem
4172 * @cfts: zero-length name terminated array of cftypes
4173 *
4174 * Similar to cgroup_add_cftypes() but the added files are only used for
4175 * the default hierarchy.
4176 */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4177 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4178 {
4179 struct cftype *cft;
4180
4181 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4182 cft->flags |= __CFTYPE_ONLY_ON_DFL;
4183 return cgroup_add_cftypes(ss, cfts);
4184 }
4185
4186 /**
4187 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4188 * @ss: target cgroup subsystem
4189 * @cfts: zero-length name terminated array of cftypes
4190 *
4191 * Similar to cgroup_add_cftypes() but the added files are only used for
4192 * the legacy hierarchies.
4193 */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4194 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4195 {
4196 struct cftype *cft;
4197
4198 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4199 cft->flags |= __CFTYPE_NOT_ON_DFL;
4200 return cgroup_add_cftypes(ss, cfts);
4201 }
4202
4203 /**
4204 * cgroup_file_notify - generate a file modified event for a cgroup_file
4205 * @cfile: target cgroup_file
4206 *
4207 * @cfile must have been obtained by setting cftype->file_offset.
4208 */
cgroup_file_notify(struct cgroup_file * cfile)4209 void cgroup_file_notify(struct cgroup_file *cfile)
4210 {
4211 unsigned long flags;
4212
4213 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4214 if (cfile->kn) {
4215 unsigned long last = cfile->notified_at;
4216 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4217
4218 if (time_in_range(jiffies, last, next)) {
4219 timer_reduce(&cfile->notify_timer, next);
4220 } else {
4221 kernfs_notify(cfile->kn);
4222 cfile->notified_at = jiffies;
4223 }
4224 }
4225 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4226 }
4227
4228 /**
4229 * css_next_child - find the next child of a given css
4230 * @pos: the current position (%NULL to initiate traversal)
4231 * @parent: css whose children to walk
4232 *
4233 * This function returns the next child of @parent and should be called
4234 * under either cgroup_mutex or RCU read lock. The only requirement is
4235 * that @parent and @pos are accessible. The next sibling is guaranteed to
4236 * be returned regardless of their states.
4237 *
4238 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4239 * css which finished ->css_online() is guaranteed to be visible in the
4240 * future iterations and will stay visible until the last reference is put.
4241 * A css which hasn't finished ->css_online() or already finished
4242 * ->css_offline() may show up during traversal. It's each subsystem's
4243 * responsibility to synchronize against on/offlining.
4244 */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4245 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4246 struct cgroup_subsys_state *parent)
4247 {
4248 struct cgroup_subsys_state *next;
4249
4250 cgroup_assert_mutex_or_rcu_locked();
4251
4252 /*
4253 * @pos could already have been unlinked from the sibling list.
4254 * Once a cgroup is removed, its ->sibling.next is no longer
4255 * updated when its next sibling changes. CSS_RELEASED is set when
4256 * @pos is taken off list, at which time its next pointer is valid,
4257 * and, as releases are serialized, the one pointed to by the next
4258 * pointer is guaranteed to not have started release yet. This
4259 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4260 * critical section, the one pointed to by its next pointer is
4261 * guaranteed to not have finished its RCU grace period even if we
4262 * have dropped rcu_read_lock() inbetween iterations.
4263 *
4264 * If @pos has CSS_RELEASED set, its next pointer can't be
4265 * dereferenced; however, as each css is given a monotonically
4266 * increasing unique serial number and always appended to the
4267 * sibling list, the next one can be found by walking the parent's
4268 * children until the first css with higher serial number than
4269 * @pos's. While this path can be slower, it happens iff iteration
4270 * races against release and the race window is very small.
4271 */
4272 if (!pos) {
4273 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4274 } else if (likely(!(pos->flags & CSS_RELEASED))) {
4275 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4276 } else {
4277 list_for_each_entry_rcu(next, &parent->children, sibling,
4278 lockdep_is_held(&cgroup_mutex))
4279 if (next->serial_nr > pos->serial_nr)
4280 break;
4281 }
4282
4283 /*
4284 * @next, if not pointing to the head, can be dereferenced and is
4285 * the next sibling.
4286 */
4287 if (&next->sibling != &parent->children)
4288 return next;
4289 return NULL;
4290 }
4291
4292 /**
4293 * css_next_descendant_pre - find the next descendant for pre-order walk
4294 * @pos: the current position (%NULL to initiate traversal)
4295 * @root: css whose descendants to walk
4296 *
4297 * To be used by css_for_each_descendant_pre(). Find the next descendant
4298 * to visit for pre-order traversal of @root's descendants. @root is
4299 * included in the iteration and the first node to be visited.
4300 *
4301 * While this function requires cgroup_mutex or RCU read locking, it
4302 * doesn't require the whole traversal to be contained in a single critical
4303 * section. This function will return the correct next descendant as long
4304 * as both @pos and @root are accessible and @pos is a descendant of @root.
4305 *
4306 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4307 * css which finished ->css_online() is guaranteed to be visible in the
4308 * future iterations and will stay visible until the last reference is put.
4309 * A css which hasn't finished ->css_online() or already finished
4310 * ->css_offline() may show up during traversal. It's each subsystem's
4311 * responsibility to synchronize against on/offlining.
4312 */
4313 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4314 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4315 struct cgroup_subsys_state *root)
4316 {
4317 struct cgroup_subsys_state *next;
4318
4319 cgroup_assert_mutex_or_rcu_locked();
4320
4321 /* if first iteration, visit @root */
4322 if (!pos)
4323 return root;
4324
4325 /* visit the first child if exists */
4326 next = css_next_child(NULL, pos);
4327 if (next)
4328 return next;
4329
4330 /* no child, visit my or the closest ancestor's next sibling */
4331 while (pos != root) {
4332 next = css_next_child(pos, pos->parent);
4333 if (next)
4334 return next;
4335 pos = pos->parent;
4336 }
4337
4338 return NULL;
4339 }
4340 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4341
4342 /**
4343 * css_rightmost_descendant - return the rightmost descendant of a css
4344 * @pos: css of interest
4345 *
4346 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4347 * is returned. This can be used during pre-order traversal to skip
4348 * subtree of @pos.
4349 *
4350 * While this function requires cgroup_mutex or RCU read locking, it
4351 * doesn't require the whole traversal to be contained in a single critical
4352 * section. This function will return the correct rightmost descendant as
4353 * long as @pos is accessible.
4354 */
4355 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4356 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4357 {
4358 struct cgroup_subsys_state *last, *tmp;
4359
4360 cgroup_assert_mutex_or_rcu_locked();
4361
4362 do {
4363 last = pos;
4364 /* ->prev isn't RCU safe, walk ->next till the end */
4365 pos = NULL;
4366 css_for_each_child(tmp, last)
4367 pos = tmp;
4368 } while (pos);
4369
4370 return last;
4371 }
4372
4373 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4374 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4375 {
4376 struct cgroup_subsys_state *last;
4377
4378 do {
4379 last = pos;
4380 pos = css_next_child(NULL, pos);
4381 } while (pos);
4382
4383 return last;
4384 }
4385
4386 /**
4387 * css_next_descendant_post - find the next descendant for post-order walk
4388 * @pos: the current position (%NULL to initiate traversal)
4389 * @root: css whose descendants to walk
4390 *
4391 * To be used by css_for_each_descendant_post(). Find the next descendant
4392 * to visit for post-order traversal of @root's descendants. @root is
4393 * included in the iteration and the last node to be visited.
4394 *
4395 * While this function requires cgroup_mutex or RCU read locking, it
4396 * doesn't require the whole traversal to be contained in a single critical
4397 * section. This function will return the correct next descendant as long
4398 * as both @pos and @cgroup are accessible and @pos is a descendant of
4399 * @cgroup.
4400 *
4401 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4402 * css which finished ->css_online() is guaranteed to be visible in the
4403 * future iterations and will stay visible until the last reference is put.
4404 * A css which hasn't finished ->css_online() or already finished
4405 * ->css_offline() may show up during traversal. It's each subsystem's
4406 * responsibility to synchronize against on/offlining.
4407 */
4408 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4409 css_next_descendant_post(struct cgroup_subsys_state *pos,
4410 struct cgroup_subsys_state *root)
4411 {
4412 struct cgroup_subsys_state *next;
4413
4414 cgroup_assert_mutex_or_rcu_locked();
4415
4416 /* if first iteration, visit leftmost descendant which may be @root */
4417 if (!pos)
4418 return css_leftmost_descendant(root);
4419
4420 /* if we visited @root, we're done */
4421 if (pos == root)
4422 return NULL;
4423
4424 /* if there's an unvisited sibling, visit its leftmost descendant */
4425 next = css_next_child(pos, pos->parent);
4426 if (next)
4427 return css_leftmost_descendant(next);
4428
4429 /* no sibling left, visit parent */
4430 return pos->parent;
4431 }
4432
4433 /**
4434 * css_has_online_children - does a css have online children
4435 * @css: the target css
4436 *
4437 * Returns %true if @css has any online children; otherwise, %false. This
4438 * function can be called from any context but the caller is responsible
4439 * for synchronizing against on/offlining as necessary.
4440 */
css_has_online_children(struct cgroup_subsys_state * css)4441 bool css_has_online_children(struct cgroup_subsys_state *css)
4442 {
4443 struct cgroup_subsys_state *child;
4444 bool ret = false;
4445
4446 rcu_read_lock();
4447 css_for_each_child(child, css) {
4448 if (child->flags & CSS_ONLINE) {
4449 ret = true;
4450 break;
4451 }
4452 }
4453 rcu_read_unlock();
4454 return ret;
4455 }
4456
css_task_iter_next_css_set(struct css_task_iter * it)4457 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4458 {
4459 struct list_head *l;
4460 struct cgrp_cset_link *link;
4461 struct css_set *cset;
4462
4463 lockdep_assert_held(&css_set_lock);
4464
4465 /* find the next threaded cset */
4466 if (it->tcset_pos) {
4467 l = it->tcset_pos->next;
4468
4469 if (l != it->tcset_head) {
4470 it->tcset_pos = l;
4471 return container_of(l, struct css_set,
4472 threaded_csets_node);
4473 }
4474
4475 it->tcset_pos = NULL;
4476 }
4477
4478 /* find the next cset */
4479 l = it->cset_pos;
4480 l = l->next;
4481 if (l == it->cset_head) {
4482 it->cset_pos = NULL;
4483 return NULL;
4484 }
4485
4486 if (it->ss) {
4487 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4488 } else {
4489 link = list_entry(l, struct cgrp_cset_link, cset_link);
4490 cset = link->cset;
4491 }
4492
4493 it->cset_pos = l;
4494
4495 /* initialize threaded css_set walking */
4496 if (it->flags & CSS_TASK_ITER_THREADED) {
4497 if (it->cur_dcset)
4498 put_css_set_locked(it->cur_dcset);
4499 it->cur_dcset = cset;
4500 get_css_set(cset);
4501
4502 it->tcset_head = &cset->threaded_csets;
4503 it->tcset_pos = &cset->threaded_csets;
4504 }
4505
4506 return cset;
4507 }
4508
4509 /**
4510 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4511 * @it: the iterator to advance
4512 *
4513 * Advance @it to the next css_set to walk.
4514 */
css_task_iter_advance_css_set(struct css_task_iter * it)4515 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4516 {
4517 struct css_set *cset;
4518
4519 lockdep_assert_held(&css_set_lock);
4520
4521 /* Advance to the next non-empty css_set and find first non-empty tasks list*/
4522 while ((cset = css_task_iter_next_css_set(it))) {
4523 if (!list_empty(&cset->tasks)) {
4524 it->cur_tasks_head = &cset->tasks;
4525 break;
4526 } else if (!list_empty(&cset->mg_tasks)) {
4527 it->cur_tasks_head = &cset->mg_tasks;
4528 break;
4529 } else if (!list_empty(&cset->dying_tasks)) {
4530 it->cur_tasks_head = &cset->dying_tasks;
4531 break;
4532 }
4533 }
4534 if (!cset) {
4535 it->task_pos = NULL;
4536 return;
4537 }
4538 it->task_pos = it->cur_tasks_head->next;
4539
4540 /*
4541 * We don't keep css_sets locked across iteration steps and thus
4542 * need to take steps to ensure that iteration can be resumed after
4543 * the lock is re-acquired. Iteration is performed at two levels -
4544 * css_sets and tasks in them.
4545 *
4546 * Once created, a css_set never leaves its cgroup lists, so a
4547 * pinned css_set is guaranteed to stay put and we can resume
4548 * iteration afterwards.
4549 *
4550 * Tasks may leave @cset across iteration steps. This is resolved
4551 * by registering each iterator with the css_set currently being
4552 * walked and making css_set_move_task() advance iterators whose
4553 * next task is leaving.
4554 */
4555 if (it->cur_cset) {
4556 list_del(&it->iters_node);
4557 put_css_set_locked(it->cur_cset);
4558 }
4559 get_css_set(cset);
4560 it->cur_cset = cset;
4561 list_add(&it->iters_node, &cset->task_iters);
4562 }
4563
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4564 static void css_task_iter_skip(struct css_task_iter *it,
4565 struct task_struct *task)
4566 {
4567 lockdep_assert_held(&css_set_lock);
4568
4569 if (it->task_pos == &task->cg_list) {
4570 it->task_pos = it->task_pos->next;
4571 it->flags |= CSS_TASK_ITER_SKIPPED;
4572 }
4573 }
4574
css_task_iter_advance(struct css_task_iter * it)4575 static void css_task_iter_advance(struct css_task_iter *it)
4576 {
4577 struct task_struct *task;
4578
4579 lockdep_assert_held(&css_set_lock);
4580 repeat:
4581 if (it->task_pos) {
4582 /*
4583 * Advance iterator to find next entry. We go through cset
4584 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4585 * the next cset.
4586 */
4587 if (it->flags & CSS_TASK_ITER_SKIPPED)
4588 it->flags &= ~CSS_TASK_ITER_SKIPPED;
4589 else
4590 it->task_pos = it->task_pos->next;
4591
4592 if (it->task_pos == &it->cur_cset->tasks) {
4593 it->cur_tasks_head = &it->cur_cset->mg_tasks;
4594 it->task_pos = it->cur_tasks_head->next;
4595 }
4596 if (it->task_pos == &it->cur_cset->mg_tasks) {
4597 it->cur_tasks_head = &it->cur_cset->dying_tasks;
4598 it->task_pos = it->cur_tasks_head->next;
4599 }
4600 if (it->task_pos == &it->cur_cset->dying_tasks)
4601 css_task_iter_advance_css_set(it);
4602 } else {
4603 /* called from start, proceed to the first cset */
4604 css_task_iter_advance_css_set(it);
4605 }
4606
4607 if (!it->task_pos)
4608 return;
4609
4610 task = list_entry(it->task_pos, struct task_struct, cg_list);
4611
4612 if (it->flags & CSS_TASK_ITER_PROCS) {
4613 /* if PROCS, skip over tasks which aren't group leaders */
4614 if (!thread_group_leader(task))
4615 goto repeat;
4616
4617 /* and dying leaders w/o live member threads */
4618 if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4619 !atomic_read(&task->signal->live))
4620 goto repeat;
4621 } else {
4622 /* skip all dying ones */
4623 if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4624 goto repeat;
4625 }
4626 }
4627
4628 /**
4629 * css_task_iter_start - initiate task iteration
4630 * @css: the css to walk tasks of
4631 * @flags: CSS_TASK_ITER_* flags
4632 * @it: the task iterator to use
4633 *
4634 * Initiate iteration through the tasks of @css. The caller can call
4635 * css_task_iter_next() to walk through the tasks until the function
4636 * returns NULL. On completion of iteration, css_task_iter_end() must be
4637 * called.
4638 */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)4639 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4640 struct css_task_iter *it)
4641 {
4642 memset(it, 0, sizeof(*it));
4643
4644 spin_lock_irq(&css_set_lock);
4645
4646 it->ss = css->ss;
4647 it->flags = flags;
4648
4649 if (it->ss)
4650 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4651 else
4652 it->cset_pos = &css->cgroup->cset_links;
4653
4654 it->cset_head = it->cset_pos;
4655
4656 css_task_iter_advance(it);
4657
4658 spin_unlock_irq(&css_set_lock);
4659 }
4660
4661 /**
4662 * css_task_iter_next - return the next task for the iterator
4663 * @it: the task iterator being iterated
4664 *
4665 * The "next" function for task iteration. @it should have been
4666 * initialized via css_task_iter_start(). Returns NULL when the iteration
4667 * reaches the end.
4668 */
css_task_iter_next(struct css_task_iter * it)4669 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4670 {
4671 if (it->cur_task) {
4672 put_task_struct(it->cur_task);
4673 it->cur_task = NULL;
4674 }
4675
4676 spin_lock_irq(&css_set_lock);
4677
4678 /* @it may be half-advanced by skips, finish advancing */
4679 if (it->flags & CSS_TASK_ITER_SKIPPED)
4680 css_task_iter_advance(it);
4681
4682 if (it->task_pos) {
4683 it->cur_task = list_entry(it->task_pos, struct task_struct,
4684 cg_list);
4685 get_task_struct(it->cur_task);
4686 css_task_iter_advance(it);
4687 }
4688
4689 spin_unlock_irq(&css_set_lock);
4690
4691 return it->cur_task;
4692 }
4693
4694 /**
4695 * css_task_iter_end - finish task iteration
4696 * @it: the task iterator to finish
4697 *
4698 * Finish task iteration started by css_task_iter_start().
4699 */
css_task_iter_end(struct css_task_iter * it)4700 void css_task_iter_end(struct css_task_iter *it)
4701 {
4702 if (it->cur_cset) {
4703 spin_lock_irq(&css_set_lock);
4704 list_del(&it->iters_node);
4705 put_css_set_locked(it->cur_cset);
4706 spin_unlock_irq(&css_set_lock);
4707 }
4708
4709 if (it->cur_dcset)
4710 put_css_set(it->cur_dcset);
4711
4712 if (it->cur_task)
4713 put_task_struct(it->cur_task);
4714 }
4715
cgroup_procs_release(struct kernfs_open_file * of)4716 static void cgroup_procs_release(struct kernfs_open_file *of)
4717 {
4718 struct cgroup_file_ctx *ctx = of->priv;
4719
4720 if (ctx->procs.started)
4721 css_task_iter_end(&ctx->procs.iter);
4722 }
4723
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)4724 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4725 {
4726 struct kernfs_open_file *of = s->private;
4727 struct cgroup_file_ctx *ctx = of->priv;
4728
4729 if (pos)
4730 (*pos)++;
4731
4732 return css_task_iter_next(&ctx->procs.iter);
4733 }
4734
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)4735 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4736 unsigned int iter_flags)
4737 {
4738 struct kernfs_open_file *of = s->private;
4739 struct cgroup *cgrp = seq_css(s)->cgroup;
4740 struct cgroup_file_ctx *ctx = of->priv;
4741 struct css_task_iter *it = &ctx->procs.iter;
4742
4743 /*
4744 * When a seq_file is seeked, it's always traversed sequentially
4745 * from position 0, so we can simply keep iterating on !0 *pos.
4746 */
4747 if (!ctx->procs.started) {
4748 if (WARN_ON_ONCE((*pos)))
4749 return ERR_PTR(-EINVAL);
4750 css_task_iter_start(&cgrp->self, iter_flags, it);
4751 ctx->procs.started = true;
4752 } else if (!(*pos)) {
4753 css_task_iter_end(it);
4754 css_task_iter_start(&cgrp->self, iter_flags, it);
4755 } else
4756 return it->cur_task;
4757
4758 return cgroup_procs_next(s, NULL, NULL);
4759 }
4760
cgroup_procs_start(struct seq_file * s,loff_t * pos)4761 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4762 {
4763 struct cgroup *cgrp = seq_css(s)->cgroup;
4764
4765 /*
4766 * All processes of a threaded subtree belong to the domain cgroup
4767 * of the subtree. Only threads can be distributed across the
4768 * subtree. Reject reads on cgroup.procs in the subtree proper.
4769 * They're always empty anyway.
4770 */
4771 if (cgroup_is_threaded(cgrp))
4772 return ERR_PTR(-EOPNOTSUPP);
4773
4774 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4775 CSS_TASK_ITER_THREADED);
4776 }
4777
cgroup_procs_show(struct seq_file * s,void * v)4778 static int cgroup_procs_show(struct seq_file *s, void *v)
4779 {
4780 seq_printf(s, "%d\n", task_pid_vnr(v));
4781 return 0;
4782 }
4783
cgroup_may_write(const struct cgroup * cgrp,struct super_block * sb)4784 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4785 {
4786 int ret;
4787 struct inode *inode;
4788
4789 lockdep_assert_held(&cgroup_mutex);
4790
4791 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4792 if (!inode)
4793 return -ENOMEM;
4794
4795 ret = inode_permission(inode, MAY_WRITE);
4796 iput(inode);
4797 return ret;
4798 }
4799
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,struct cgroup_namespace * ns)4800 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4801 struct cgroup *dst_cgrp,
4802 struct super_block *sb,
4803 struct cgroup_namespace *ns)
4804 {
4805 struct cgroup *com_cgrp = src_cgrp;
4806 int ret;
4807
4808 lockdep_assert_held(&cgroup_mutex);
4809
4810 /* find the common ancestor */
4811 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4812 com_cgrp = cgroup_parent(com_cgrp);
4813
4814 /* %current should be authorized to migrate to the common ancestor */
4815 ret = cgroup_may_write(com_cgrp, sb);
4816 if (ret)
4817 return ret;
4818
4819 /*
4820 * If namespaces are delegation boundaries, %current must be able
4821 * to see both source and destination cgroups from its namespace.
4822 */
4823 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4824 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4825 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4826 return -ENOENT;
4827
4828 return 0;
4829 }
4830
cgroup_attach_permissions(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,bool threadgroup,struct cgroup_namespace * ns)4831 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4832 struct cgroup *dst_cgrp,
4833 struct super_block *sb, bool threadgroup,
4834 struct cgroup_namespace *ns)
4835 {
4836 int ret = 0;
4837
4838 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
4839 if (ret)
4840 return ret;
4841
4842 ret = cgroup_migrate_vet_dst(dst_cgrp);
4843 if (ret)
4844 return ret;
4845
4846 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4847 ret = -EOPNOTSUPP;
4848
4849 return ret;
4850 }
4851
__cgroup_procs_write(struct kernfs_open_file * of,char * buf,bool threadgroup)4852 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
4853 bool threadgroup)
4854 {
4855 struct cgroup_file_ctx *ctx = of->priv;
4856 struct cgroup *src_cgrp, *dst_cgrp;
4857 struct task_struct *task;
4858 const struct cred *saved_cred;
4859 ssize_t ret;
4860 bool threadgroup_locked;
4861
4862 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4863 if (!dst_cgrp)
4864 return -ENODEV;
4865
4866 task = cgroup_procs_write_start(buf, true, &threadgroup_locked);
4867 ret = PTR_ERR_OR_ZERO(task);
4868 if (ret)
4869 goto out_unlock;
4870
4871 /* find the source cgroup */
4872 spin_lock_irq(&css_set_lock);
4873 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4874 spin_unlock_irq(&css_set_lock);
4875
4876 /*
4877 * Process and thread migrations follow same delegation rule. Check
4878 * permissions using the credentials from file open to protect against
4879 * inherited fd attacks.
4880 */
4881 saved_cred = override_creds(of->file->f_cred);
4882 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4883 of->file->f_path.dentry->d_sb,
4884 threadgroup, ctx->ns);
4885 revert_creds(saved_cred);
4886 if (ret)
4887 goto out_finish;
4888
4889 ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
4890
4891 out_finish:
4892 cgroup_procs_write_finish(task, threadgroup_locked);
4893 out_unlock:
4894 cgroup_kn_unlock(of->kn);
4895
4896 return ret;
4897 }
4898
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4899 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4900 char *buf, size_t nbytes, loff_t off)
4901 {
4902 return __cgroup_procs_write(of, buf, true) ?: nbytes;
4903 }
4904
cgroup_threads_start(struct seq_file * s,loff_t * pos)4905 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4906 {
4907 return __cgroup_procs_start(s, pos, 0);
4908 }
4909
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4910 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4911 char *buf, size_t nbytes, loff_t off)
4912 {
4913 return __cgroup_procs_write(of, buf, false) ?: nbytes;
4914 }
4915
4916 /* cgroup core interface files for the default hierarchy */
4917 static struct cftype cgroup_base_files[] = {
4918 {
4919 .name = "cgroup.type",
4920 .flags = CFTYPE_NOT_ON_ROOT,
4921 .seq_show = cgroup_type_show,
4922 .write = cgroup_type_write,
4923 },
4924 {
4925 .name = "cgroup.procs",
4926 .flags = CFTYPE_NS_DELEGATABLE,
4927 .file_offset = offsetof(struct cgroup, procs_file),
4928 .release = cgroup_procs_release,
4929 .seq_start = cgroup_procs_start,
4930 .seq_next = cgroup_procs_next,
4931 .seq_show = cgroup_procs_show,
4932 .write = cgroup_procs_write,
4933 },
4934 {
4935 .name = "cgroup.threads",
4936 .flags = CFTYPE_NS_DELEGATABLE,
4937 .release = cgroup_procs_release,
4938 .seq_start = cgroup_threads_start,
4939 .seq_next = cgroup_procs_next,
4940 .seq_show = cgroup_procs_show,
4941 .write = cgroup_threads_write,
4942 },
4943 {
4944 .name = "cgroup.controllers",
4945 .seq_show = cgroup_controllers_show,
4946 },
4947 {
4948 .name = "cgroup.subtree_control",
4949 .flags = CFTYPE_NS_DELEGATABLE,
4950 .seq_show = cgroup_subtree_control_show,
4951 .write = cgroup_subtree_control_write,
4952 },
4953 {
4954 .name = "cgroup.events",
4955 .flags = CFTYPE_NOT_ON_ROOT,
4956 .file_offset = offsetof(struct cgroup, events_file),
4957 .seq_show = cgroup_events_show,
4958 },
4959 {
4960 .name = "cgroup.max.descendants",
4961 .seq_show = cgroup_max_descendants_show,
4962 .write = cgroup_max_descendants_write,
4963 },
4964 {
4965 .name = "cgroup.max.depth",
4966 .seq_show = cgroup_max_depth_show,
4967 .write = cgroup_max_depth_write,
4968 },
4969 {
4970 .name = "cgroup.stat",
4971 .seq_show = cgroup_stat_show,
4972 },
4973 {
4974 .name = "cgroup.freeze",
4975 .flags = CFTYPE_NOT_ON_ROOT,
4976 .seq_show = cgroup_freeze_show,
4977 .write = cgroup_freeze_write,
4978 },
4979 {
4980 .name = "cpu.stat",
4981 .seq_show = cpu_stat_show,
4982 },
4983 #ifdef CONFIG_PSI
4984 {
4985 .name = "io.pressure",
4986 .seq_show = cgroup_io_pressure_show,
4987 .write = cgroup_io_pressure_write,
4988 .poll = cgroup_pressure_poll,
4989 .release = cgroup_pressure_release,
4990 },
4991 {
4992 .name = "memory.pressure",
4993 .seq_show = cgroup_memory_pressure_show,
4994 .write = cgroup_memory_pressure_write,
4995 .poll = cgroup_pressure_poll,
4996 .release = cgroup_pressure_release,
4997 },
4998 {
4999 .name = "cpu.pressure",
5000 .seq_show = cgroup_cpu_pressure_show,
5001 .write = cgroup_cpu_pressure_write,
5002 .poll = cgroup_pressure_poll,
5003 .release = cgroup_pressure_release,
5004 },
5005 #endif /* CONFIG_PSI */
5006 { } /* terminate */
5007 };
5008
5009 /*
5010 * css destruction is four-stage process.
5011 *
5012 * 1. Destruction starts. Killing of the percpu_ref is initiated.
5013 * Implemented in kill_css().
5014 *
5015 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5016 * and thus css_tryget_online() is guaranteed to fail, the css can be
5017 * offlined by invoking offline_css(). After offlining, the base ref is
5018 * put. Implemented in css_killed_work_fn().
5019 *
5020 * 3. When the percpu_ref reaches zero, the only possible remaining
5021 * accessors are inside RCU read sections. css_release() schedules the
5022 * RCU callback.
5023 *
5024 * 4. After the grace period, the css can be freed. Implemented in
5025 * css_free_work_fn().
5026 *
5027 * It is actually hairier because both step 2 and 4 require process context
5028 * and thus involve punting to css->destroy_work adding two additional
5029 * steps to the already complex sequence.
5030 */
css_free_rwork_fn(struct work_struct * work)5031 static void css_free_rwork_fn(struct work_struct *work)
5032 {
5033 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5034 struct cgroup_subsys_state, destroy_rwork);
5035 struct cgroup_subsys *ss = css->ss;
5036 struct cgroup *cgrp = css->cgroup;
5037
5038 percpu_ref_exit(&css->refcnt);
5039
5040 if (ss) {
5041 /* css free path */
5042 struct cgroup_subsys_state *parent = css->parent;
5043 int id = css->id;
5044
5045 ss->css_free(css);
5046 cgroup_idr_remove(&ss->css_idr, id);
5047 cgroup_put(cgrp);
5048
5049 if (parent)
5050 css_put(parent);
5051 } else {
5052 /* cgroup free path */
5053 atomic_dec(&cgrp->root->nr_cgrps);
5054 cgroup1_pidlist_destroy_all(cgrp);
5055 cancel_work_sync(&cgrp->release_agent_work);
5056
5057 if (cgroup_parent(cgrp)) {
5058 /*
5059 * We get a ref to the parent, and put the ref when
5060 * this cgroup is being freed, so it's guaranteed
5061 * that the parent won't be destroyed before its
5062 * children.
5063 */
5064 cgroup_put(cgroup_parent(cgrp));
5065 kernfs_put(cgrp->kn);
5066 psi_cgroup_free(cgrp);
5067 if (cgroup_on_dfl(cgrp))
5068 cgroup_rstat_exit(cgrp);
5069 kfree(cgrp);
5070 } else {
5071 /*
5072 * This is root cgroup's refcnt reaching zero,
5073 * which indicates that the root should be
5074 * released.
5075 */
5076 cgroup_destroy_root(cgrp->root);
5077 }
5078 }
5079 }
5080
css_release_work_fn(struct work_struct * work)5081 static void css_release_work_fn(struct work_struct *work)
5082 {
5083 struct cgroup_subsys_state *css =
5084 container_of(work, struct cgroup_subsys_state, destroy_work);
5085 struct cgroup_subsys *ss = css->ss;
5086 struct cgroup *cgrp = css->cgroup;
5087
5088 mutex_lock(&cgroup_mutex);
5089
5090 css->flags |= CSS_RELEASED;
5091 list_del_rcu(&css->sibling);
5092
5093 if (ss) {
5094 /* css release path */
5095 if (!list_empty(&css->rstat_css_node)) {
5096 cgroup_rstat_flush(cgrp);
5097 list_del_rcu(&css->rstat_css_node);
5098 }
5099
5100 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5101 if (ss->css_released)
5102 ss->css_released(css);
5103 } else {
5104 struct cgroup *tcgrp;
5105
5106 /* cgroup release path */
5107 TRACE_CGROUP_PATH(release, cgrp);
5108
5109 if (cgroup_on_dfl(cgrp))
5110 cgroup_rstat_flush(cgrp);
5111
5112 spin_lock_irq(&css_set_lock);
5113 for (tcgrp = cgroup_parent(cgrp); tcgrp;
5114 tcgrp = cgroup_parent(tcgrp))
5115 tcgrp->nr_dying_descendants--;
5116 spin_unlock_irq(&css_set_lock);
5117
5118 /*
5119 * There are two control paths which try to determine
5120 * cgroup from dentry without going through kernfs -
5121 * cgroupstats_build() and css_tryget_online_from_dir().
5122 * Those are supported by RCU protecting clearing of
5123 * cgrp->kn->priv backpointer.
5124 */
5125 if (cgrp->kn)
5126 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5127 NULL);
5128 if (css->parent && !css->parent->parent &&
5129 list_empty(&css->parent->children))
5130 wake_up(&cgrp->root->wait);
5131 }
5132 mutex_unlock(&cgroup_mutex);
5133
5134 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5135 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5136 }
5137
css_release(struct percpu_ref * ref)5138 static void css_release(struct percpu_ref *ref)
5139 {
5140 struct cgroup_subsys_state *css =
5141 container_of(ref, struct cgroup_subsys_state, refcnt);
5142
5143 INIT_WORK(&css->destroy_work, css_release_work_fn);
5144 queue_work(cgroup_destroy_wq, &css->destroy_work);
5145 }
5146
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5147 static void init_and_link_css(struct cgroup_subsys_state *css,
5148 struct cgroup_subsys *ss, struct cgroup *cgrp)
5149 {
5150 lockdep_assert_held(&cgroup_mutex);
5151
5152 cgroup_get_live(cgrp);
5153
5154 memset(css, 0, sizeof(*css));
5155 css->cgroup = cgrp;
5156 css->ss = ss;
5157 css->id = -1;
5158 INIT_LIST_HEAD(&css->sibling);
5159 INIT_LIST_HEAD(&css->children);
5160 INIT_LIST_HEAD(&css->rstat_css_node);
5161 css->serial_nr = css_serial_nr_next++;
5162 atomic_set(&css->online_cnt, 0);
5163
5164 if (cgroup_parent(cgrp)) {
5165 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5166 css_get(css->parent);
5167 }
5168
5169 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5170 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5171
5172 BUG_ON(cgroup_css(cgrp, ss));
5173 }
5174
5175 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5176 static int online_css(struct cgroup_subsys_state *css)
5177 {
5178 struct cgroup_subsys *ss = css->ss;
5179 int ret = 0;
5180
5181 lockdep_assert_held(&cgroup_mutex);
5182
5183 if (ss->css_online)
5184 ret = ss->css_online(css);
5185 if (!ret) {
5186 css->flags |= CSS_ONLINE;
5187 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5188
5189 atomic_inc(&css->online_cnt);
5190 if (css->parent)
5191 atomic_inc(&css->parent->online_cnt);
5192 }
5193 return ret;
5194 }
5195
5196 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5197 static void offline_css(struct cgroup_subsys_state *css)
5198 {
5199 struct cgroup_subsys *ss = css->ss;
5200
5201 lockdep_assert_held(&cgroup_mutex);
5202
5203 if (!(css->flags & CSS_ONLINE))
5204 return;
5205
5206 if (ss->css_offline)
5207 ss->css_offline(css);
5208
5209 css->flags &= ~CSS_ONLINE;
5210 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5211
5212 wake_up_all(&css->cgroup->offline_waitq);
5213 }
5214
5215 /**
5216 * css_create - create a cgroup_subsys_state
5217 * @cgrp: the cgroup new css will be associated with
5218 * @ss: the subsys of new css
5219 *
5220 * Create a new css associated with @cgrp - @ss pair. On success, the new
5221 * css is online and installed in @cgrp. This function doesn't create the
5222 * interface files. Returns 0 on success, -errno on failure.
5223 */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5224 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5225 struct cgroup_subsys *ss)
5226 {
5227 struct cgroup *parent = cgroup_parent(cgrp);
5228 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5229 struct cgroup_subsys_state *css;
5230 int err;
5231
5232 lockdep_assert_held(&cgroup_mutex);
5233
5234 css = ss->css_alloc(parent_css);
5235 if (!css)
5236 css = ERR_PTR(-ENOMEM);
5237 if (IS_ERR(css))
5238 return css;
5239
5240 init_and_link_css(css, ss, cgrp);
5241
5242 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5243 if (err)
5244 goto err_free_css;
5245
5246 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5247 if (err < 0)
5248 goto err_free_css;
5249 css->id = err;
5250
5251 /* @css is ready to be brought online now, make it visible */
5252 list_add_tail_rcu(&css->sibling, &parent_css->children);
5253 cgroup_idr_replace(&ss->css_idr, css, css->id);
5254
5255 err = online_css(css);
5256 if (err)
5257 goto err_list_del;
5258
5259 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5260 cgroup_parent(parent)) {
5261 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5262 current->comm, current->pid, ss->name);
5263 if (!strcmp(ss->name, "memory"))
5264 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5265 ss->warned_broken_hierarchy = true;
5266 }
5267
5268 return css;
5269
5270 err_list_del:
5271 list_del_rcu(&css->sibling);
5272 err_free_css:
5273 list_del_rcu(&css->rstat_css_node);
5274 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5275 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5276 return ERR_PTR(err);
5277 }
5278
5279 /*
5280 * The returned cgroup is fully initialized including its control mask, but
5281 * it isn't associated with its kernfs_node and doesn't have the control
5282 * mask applied.
5283 */
cgroup_create(struct cgroup * parent,const char * name,umode_t mode)5284 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5285 umode_t mode)
5286 {
5287 struct cgroup_root *root = parent->root;
5288 struct cgroup *cgrp, *tcgrp;
5289 struct kernfs_node *kn;
5290 int level = parent->level + 1;
5291 int ret;
5292
5293 /* allocate the cgroup and its ID, 0 is reserved for the root */
5294 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5295 GFP_KERNEL);
5296 if (!cgrp)
5297 return ERR_PTR(-ENOMEM);
5298
5299 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5300 if (ret)
5301 goto out_free_cgrp;
5302
5303 if (cgroup_on_dfl(parent)) {
5304 ret = cgroup_rstat_init(cgrp);
5305 if (ret)
5306 goto out_cancel_ref;
5307 }
5308
5309 /* create the directory */
5310 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5311 if (IS_ERR(kn)) {
5312 ret = PTR_ERR(kn);
5313 goto out_stat_exit;
5314 }
5315 cgrp->kn = kn;
5316
5317 init_cgroup_housekeeping(cgrp);
5318
5319 cgrp->self.parent = &parent->self;
5320 cgrp->root = root;
5321 cgrp->level = level;
5322
5323 ret = psi_cgroup_alloc(cgrp);
5324 if (ret)
5325 goto out_kernfs_remove;
5326
5327 ret = cgroup_bpf_inherit(cgrp);
5328 if (ret)
5329 goto out_psi_free;
5330
5331 /*
5332 * New cgroup inherits effective freeze counter, and
5333 * if the parent has to be frozen, the child has too.
5334 */
5335 cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5336 if (cgrp->freezer.e_freeze) {
5337 /*
5338 * Set the CGRP_FREEZE flag, so when a process will be
5339 * attached to the child cgroup, it will become frozen.
5340 * At this point the new cgroup is unpopulated, so we can
5341 * consider it frozen immediately.
5342 */
5343 set_bit(CGRP_FREEZE, &cgrp->flags);
5344 set_bit(CGRP_FROZEN, &cgrp->flags);
5345 }
5346
5347 spin_lock_irq(&css_set_lock);
5348 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5349 cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5350
5351 if (tcgrp != cgrp) {
5352 tcgrp->nr_descendants++;
5353
5354 /*
5355 * If the new cgroup is frozen, all ancestor cgroups
5356 * get a new frozen descendant, but their state can't
5357 * change because of this.
5358 */
5359 if (cgrp->freezer.e_freeze)
5360 tcgrp->freezer.nr_frozen_descendants++;
5361 }
5362 }
5363 spin_unlock_irq(&css_set_lock);
5364
5365 if (notify_on_release(parent))
5366 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5367
5368 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5369 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5370
5371 cgrp->self.serial_nr = css_serial_nr_next++;
5372
5373 /* allocation complete, commit to creation */
5374 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5375 atomic_inc(&root->nr_cgrps);
5376 cgroup_get_live(parent);
5377
5378 /*
5379 * On the default hierarchy, a child doesn't automatically inherit
5380 * subtree_control from the parent. Each is configured manually.
5381 */
5382 if (!cgroup_on_dfl(cgrp))
5383 cgrp->subtree_control = cgroup_control(cgrp);
5384
5385 cgroup_propagate_control(cgrp);
5386
5387 return cgrp;
5388
5389 out_psi_free:
5390 psi_cgroup_free(cgrp);
5391 out_kernfs_remove:
5392 kernfs_remove(cgrp->kn);
5393 out_stat_exit:
5394 if (cgroup_on_dfl(parent))
5395 cgroup_rstat_exit(cgrp);
5396 out_cancel_ref:
5397 percpu_ref_exit(&cgrp->self.refcnt);
5398 out_free_cgrp:
5399 kfree(cgrp);
5400 return ERR_PTR(ret);
5401 }
5402
cgroup_check_hierarchy_limits(struct cgroup * parent)5403 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5404 {
5405 struct cgroup *cgroup;
5406 int ret = false;
5407 int level = 1;
5408
5409 lockdep_assert_held(&cgroup_mutex);
5410
5411 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5412 if (cgroup->nr_descendants >= cgroup->max_descendants)
5413 goto fail;
5414
5415 if (level > cgroup->max_depth)
5416 goto fail;
5417
5418 level++;
5419 }
5420
5421 ret = true;
5422 fail:
5423 return ret;
5424 }
5425
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5426 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5427 {
5428 struct cgroup *parent, *cgrp;
5429 int ret;
5430
5431 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5432 if (strchr(name, '\n'))
5433 return -EINVAL;
5434
5435 parent = cgroup_kn_lock_live(parent_kn, false);
5436 if (!parent)
5437 return -ENODEV;
5438
5439 if (!cgroup_check_hierarchy_limits(parent)) {
5440 ret = -EAGAIN;
5441 goto out_unlock;
5442 }
5443
5444 cgrp = cgroup_create(parent, name, mode);
5445 if (IS_ERR(cgrp)) {
5446 ret = PTR_ERR(cgrp);
5447 goto out_unlock;
5448 }
5449
5450 /*
5451 * This extra ref will be put in cgroup_free_fn() and guarantees
5452 * that @cgrp->kn is always accessible.
5453 */
5454 kernfs_get(cgrp->kn);
5455
5456 ret = cgroup_kn_set_ugid(cgrp->kn);
5457 if (ret)
5458 goto out_destroy;
5459
5460 ret = css_populate_dir(&cgrp->self);
5461 if (ret)
5462 goto out_destroy;
5463
5464 ret = cgroup_apply_control_enable(cgrp);
5465 if (ret)
5466 goto out_destroy;
5467
5468 TRACE_CGROUP_PATH(mkdir, cgrp);
5469
5470 /* let's create and online css's */
5471 kernfs_activate(cgrp->kn);
5472
5473 ret = 0;
5474 goto out_unlock;
5475
5476 out_destroy:
5477 cgroup_destroy_locked(cgrp);
5478 out_unlock:
5479 cgroup_kn_unlock(parent_kn);
5480 return ret;
5481 }
5482
5483 /*
5484 * This is called when the refcnt of a css is confirmed to be killed.
5485 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5486 * initate destruction and put the css ref from kill_css().
5487 */
css_killed_work_fn(struct work_struct * work)5488 static void css_killed_work_fn(struct work_struct *work)
5489 {
5490 struct cgroup_subsys_state *css =
5491 container_of(work, struct cgroup_subsys_state, destroy_work);
5492
5493 mutex_lock(&cgroup_mutex);
5494
5495 do {
5496 offline_css(css);
5497 css_put(css);
5498 /* @css can't go away while we're holding cgroup_mutex */
5499 css = css->parent;
5500 } while (css && atomic_dec_and_test(&css->online_cnt));
5501
5502 mutex_unlock(&cgroup_mutex);
5503 }
5504
5505 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5506 static void css_killed_ref_fn(struct percpu_ref *ref)
5507 {
5508 struct cgroup_subsys_state *css =
5509 container_of(ref, struct cgroup_subsys_state, refcnt);
5510
5511 if (atomic_dec_and_test(&css->online_cnt)) {
5512 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5513 queue_work(cgroup_destroy_wq, &css->destroy_work);
5514 }
5515 }
5516
5517 /**
5518 * kill_css - destroy a css
5519 * @css: css to destroy
5520 *
5521 * This function initiates destruction of @css by removing cgroup interface
5522 * files and putting its base reference. ->css_offline() will be invoked
5523 * asynchronously once css_tryget_online() is guaranteed to fail and when
5524 * the reference count reaches zero, @css will be released.
5525 */
kill_css(struct cgroup_subsys_state * css)5526 static void kill_css(struct cgroup_subsys_state *css)
5527 {
5528 lockdep_assert_held(&cgroup_mutex);
5529
5530 if (css->flags & CSS_DYING)
5531 return;
5532
5533 css->flags |= CSS_DYING;
5534
5535 /*
5536 * This must happen before css is disassociated with its cgroup.
5537 * See seq_css() for details.
5538 */
5539 css_clear_dir(css);
5540
5541 /*
5542 * Killing would put the base ref, but we need to keep it alive
5543 * until after ->css_offline().
5544 */
5545 css_get(css);
5546
5547 /*
5548 * cgroup core guarantees that, by the time ->css_offline() is
5549 * invoked, no new css reference will be given out via
5550 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5551 * proceed to offlining css's because percpu_ref_kill() doesn't
5552 * guarantee that the ref is seen as killed on all CPUs on return.
5553 *
5554 * Use percpu_ref_kill_and_confirm() to get notifications as each
5555 * css is confirmed to be seen as killed on all CPUs.
5556 */
5557 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5558 }
5559
5560 /**
5561 * cgroup_destroy_locked - the first stage of cgroup destruction
5562 * @cgrp: cgroup to be destroyed
5563 *
5564 * css's make use of percpu refcnts whose killing latency shouldn't be
5565 * exposed to userland and are RCU protected. Also, cgroup core needs to
5566 * guarantee that css_tryget_online() won't succeed by the time
5567 * ->css_offline() is invoked. To satisfy all the requirements,
5568 * destruction is implemented in the following two steps.
5569 *
5570 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5571 * userland visible parts and start killing the percpu refcnts of
5572 * css's. Set up so that the next stage will be kicked off once all
5573 * the percpu refcnts are confirmed to be killed.
5574 *
5575 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5576 * rest of destruction. Once all cgroup references are gone, the
5577 * cgroup is RCU-freed.
5578 *
5579 * This function implements s1. After this step, @cgrp is gone as far as
5580 * the userland is concerned and a new cgroup with the same name may be
5581 * created. As cgroup doesn't care about the names internally, this
5582 * doesn't cause any problem.
5583 */
cgroup_destroy_locked(struct cgroup * cgrp)5584 static int cgroup_destroy_locked(struct cgroup *cgrp)
5585 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5586 {
5587 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5588 struct cgroup_subsys_state *css;
5589 struct cgrp_cset_link *link;
5590 int ssid;
5591
5592 lockdep_assert_held(&cgroup_mutex);
5593
5594 /*
5595 * Only migration can raise populated from zero and we're already
5596 * holding cgroup_mutex.
5597 */
5598 if (cgroup_is_populated(cgrp))
5599 return -EBUSY;
5600
5601 /*
5602 * Make sure there's no live children. We can't test emptiness of
5603 * ->self.children as dead children linger on it while being
5604 * drained; otherwise, "rmdir parent/child parent" may fail.
5605 */
5606 if (css_has_online_children(&cgrp->self))
5607 return -EBUSY;
5608
5609 /*
5610 * Mark @cgrp and the associated csets dead. The former prevents
5611 * further task migration and child creation by disabling
5612 * cgroup_lock_live_group(). The latter makes the csets ignored by
5613 * the migration path.
5614 */
5615 cgrp->self.flags &= ~CSS_ONLINE;
5616
5617 spin_lock_irq(&css_set_lock);
5618 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5619 link->cset->dead = true;
5620 spin_unlock_irq(&css_set_lock);
5621
5622 /* initiate massacre of all css's */
5623 for_each_css(css, ssid, cgrp)
5624 kill_css(css);
5625
5626 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5627 css_clear_dir(&cgrp->self);
5628 kernfs_remove(cgrp->kn);
5629
5630 if (parent && cgroup_is_threaded(cgrp))
5631 parent->nr_threaded_children--;
5632
5633 spin_lock_irq(&css_set_lock);
5634 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5635 tcgrp->nr_descendants--;
5636 tcgrp->nr_dying_descendants++;
5637 /*
5638 * If the dying cgroup is frozen, decrease frozen descendants
5639 * counters of ancestor cgroups.
5640 */
5641 if (test_bit(CGRP_FROZEN, &cgrp->flags))
5642 tcgrp->freezer.nr_frozen_descendants--;
5643 }
5644 spin_unlock_irq(&css_set_lock);
5645
5646 cgroup1_check_for_release(parent);
5647
5648 cgroup_bpf_offline(cgrp);
5649
5650 /* put the base reference */
5651 percpu_ref_kill(&cgrp->self.refcnt);
5652
5653 return 0;
5654 };
5655
cgroup_rmdir(struct kernfs_node * kn)5656 int cgroup_rmdir(struct kernfs_node *kn)
5657 {
5658 struct cgroup *cgrp;
5659 int ret = 0;
5660
5661 cgrp = cgroup_kn_lock_live(kn, false);
5662 if (!cgrp)
5663 return 0;
5664
5665 ret = cgroup_destroy_locked(cgrp);
5666 if (!ret)
5667 TRACE_CGROUP_PATH(rmdir, cgrp);
5668
5669 cgroup_kn_unlock(kn);
5670 return ret;
5671 }
5672
5673 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5674 .show_options = cgroup_show_options,
5675 .mkdir = cgroup_mkdir,
5676 .rmdir = cgroup_rmdir,
5677 .show_path = cgroup_show_path,
5678 };
5679
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)5680 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5681 {
5682 struct cgroup_subsys_state *css;
5683
5684 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5685
5686 mutex_lock(&cgroup_mutex);
5687
5688 idr_init(&ss->css_idr);
5689 INIT_LIST_HEAD(&ss->cfts);
5690
5691 /* Create the root cgroup state for this subsystem */
5692 ss->root = &cgrp_dfl_root;
5693 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5694 /* We don't handle early failures gracefully */
5695 BUG_ON(IS_ERR(css));
5696 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5697
5698 /*
5699 * Root csses are never destroyed and we can't initialize
5700 * percpu_ref during early init. Disable refcnting.
5701 */
5702 css->flags |= CSS_NO_REF;
5703
5704 if (early) {
5705 /* allocation can't be done safely during early init */
5706 css->id = 1;
5707 } else {
5708 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5709 BUG_ON(css->id < 0);
5710 }
5711
5712 /* Update the init_css_set to contain a subsys
5713 * pointer to this state - since the subsystem is
5714 * newly registered, all tasks and hence the
5715 * init_css_set is in the subsystem's root cgroup. */
5716 init_css_set.subsys[ss->id] = css;
5717
5718 have_fork_callback |= (bool)ss->fork << ss->id;
5719 have_exit_callback |= (bool)ss->exit << ss->id;
5720 have_release_callback |= (bool)ss->release << ss->id;
5721 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5722
5723 /* At system boot, before all subsystems have been
5724 * registered, no tasks have been forked, so we don't
5725 * need to invoke fork callbacks here. */
5726 BUG_ON(!list_empty(&init_task.tasks));
5727
5728 BUG_ON(online_css(css));
5729
5730 mutex_unlock(&cgroup_mutex);
5731 }
5732
5733 /**
5734 * cgroup_init_early - cgroup initialization at system boot
5735 *
5736 * Initialize cgroups at system boot, and initialize any
5737 * subsystems that request early init.
5738 */
cgroup_init_early(void)5739 int __init cgroup_init_early(void)
5740 {
5741 static struct cgroup_fs_context __initdata ctx;
5742 struct cgroup_subsys *ss;
5743 int i;
5744
5745 ctx.root = &cgrp_dfl_root;
5746 init_cgroup_root(&ctx);
5747 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5748
5749 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5750
5751 for_each_subsys(ss, i) {
5752 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5753 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5754 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5755 ss->id, ss->name);
5756 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5757 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5758
5759 ss->id = i;
5760 ss->name = cgroup_subsys_name[i];
5761 if (!ss->legacy_name)
5762 ss->legacy_name = cgroup_subsys_name[i];
5763
5764 if (ss->early_init)
5765 cgroup_init_subsys(ss, true);
5766 }
5767 return 0;
5768 }
5769
5770 /**
5771 * cgroup_init - cgroup initialization
5772 *
5773 * Register cgroup filesystem and /proc file, and initialize
5774 * any subsystems that didn't request early init.
5775 */
cgroup_init(void)5776 int __init cgroup_init(void)
5777 {
5778 struct cgroup_subsys *ss;
5779 int ssid;
5780
5781 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5782 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5783 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5784
5785 cgroup_rstat_boot();
5786
5787 /*
5788 * The latency of the synchronize_rcu() is too high for cgroups,
5789 * avoid it at the cost of forcing all readers into the slow path.
5790 */
5791 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5792
5793 get_user_ns(init_cgroup_ns.user_ns);
5794
5795 mutex_lock(&cgroup_mutex);
5796
5797 /*
5798 * Add init_css_set to the hash table so that dfl_root can link to
5799 * it during init.
5800 */
5801 hash_add(css_set_table, &init_css_set.hlist,
5802 css_set_hash(init_css_set.subsys));
5803
5804 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5805
5806 mutex_unlock(&cgroup_mutex);
5807
5808 for_each_subsys(ss, ssid) {
5809 if (ss->early_init) {
5810 struct cgroup_subsys_state *css =
5811 init_css_set.subsys[ss->id];
5812
5813 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5814 GFP_KERNEL);
5815 BUG_ON(css->id < 0);
5816 } else {
5817 cgroup_init_subsys(ss, false);
5818 }
5819
5820 list_add_tail(&init_css_set.e_cset_node[ssid],
5821 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5822
5823 /*
5824 * Setting dfl_root subsys_mask needs to consider the
5825 * disabled flag and cftype registration needs kmalloc,
5826 * both of which aren't available during early_init.
5827 */
5828 if (!cgroup_ssid_enabled(ssid))
5829 continue;
5830
5831 if (cgroup1_ssid_disabled(ssid))
5832 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5833 ss->name);
5834
5835 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5836
5837 /* implicit controllers must be threaded too */
5838 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5839
5840 if (ss->implicit_on_dfl)
5841 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5842 else if (!ss->dfl_cftypes)
5843 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5844
5845 if (ss->threaded)
5846 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5847
5848 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5849 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5850 } else {
5851 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5852 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5853 }
5854
5855 if (ss->bind)
5856 ss->bind(init_css_set.subsys[ssid]);
5857
5858 mutex_lock(&cgroup_mutex);
5859 css_populate_dir(init_css_set.subsys[ssid]);
5860 mutex_unlock(&cgroup_mutex);
5861 }
5862
5863 /* init_css_set.subsys[] has been updated, re-hash */
5864 hash_del(&init_css_set.hlist);
5865 hash_add(css_set_table, &init_css_set.hlist,
5866 css_set_hash(init_css_set.subsys));
5867
5868 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5869 WARN_ON(register_filesystem(&cgroup_fs_type));
5870 WARN_ON(register_filesystem(&cgroup2_fs_type));
5871 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5872 #ifdef CONFIG_CPUSETS
5873 WARN_ON(register_filesystem(&cpuset_fs_type));
5874 #endif
5875
5876 return 0;
5877 }
5878
cgroup_wq_init(void)5879 static int __init cgroup_wq_init(void)
5880 {
5881 /*
5882 * There isn't much point in executing destruction path in
5883 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5884 * Use 1 for @max_active.
5885 *
5886 * We would prefer to do this in cgroup_init() above, but that
5887 * is called before init_workqueues(): so leave this until after.
5888 */
5889 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5890 BUG_ON(!cgroup_destroy_wq);
5891 return 0;
5892 }
5893 core_initcall(cgroup_wq_init);
5894
cgroup_path_from_kernfs_id(u64 id,char * buf,size_t buflen)5895 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5896 {
5897 struct kernfs_node *kn;
5898
5899 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5900 if (!kn)
5901 return;
5902 kernfs_path(kn, buf, buflen);
5903 kernfs_put(kn);
5904 }
5905
5906 /*
5907 * proc_cgroup_show()
5908 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5909 * - Used for /proc/<pid>/cgroup.
5910 */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)5911 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5912 struct pid *pid, struct task_struct *tsk)
5913 {
5914 char *buf;
5915 int retval;
5916 struct cgroup_root *root;
5917
5918 retval = -ENOMEM;
5919 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5920 if (!buf)
5921 goto out;
5922
5923 mutex_lock(&cgroup_mutex);
5924 spin_lock_irq(&css_set_lock);
5925
5926 for_each_root(root) {
5927 struct cgroup_subsys *ss;
5928 struct cgroup *cgrp;
5929 int ssid, count = 0;
5930
5931 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5932 continue;
5933
5934 seq_printf(m, "%d:", root->hierarchy_id);
5935 if (root != &cgrp_dfl_root)
5936 for_each_subsys(ss, ssid)
5937 if (root->subsys_mask & (1 << ssid))
5938 seq_printf(m, "%s%s", count++ ? "," : "",
5939 ss->legacy_name);
5940 if (strlen(root->name))
5941 seq_printf(m, "%sname=%s", count ? "," : "",
5942 root->name);
5943 seq_putc(m, ':');
5944
5945 cgrp = task_cgroup_from_root(tsk, root);
5946
5947 /*
5948 * On traditional hierarchies, all zombie tasks show up as
5949 * belonging to the root cgroup. On the default hierarchy,
5950 * while a zombie doesn't show up in "cgroup.procs" and
5951 * thus can't be migrated, its /proc/PID/cgroup keeps
5952 * reporting the cgroup it belonged to before exiting. If
5953 * the cgroup is removed before the zombie is reaped,
5954 * " (deleted)" is appended to the cgroup path.
5955 */
5956 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5957 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5958 current->nsproxy->cgroup_ns);
5959 if (retval >= PATH_MAX)
5960 retval = -ENAMETOOLONG;
5961 if (retval < 0)
5962 goto out_unlock;
5963
5964 seq_puts(m, buf);
5965 } else {
5966 seq_puts(m, "/");
5967 }
5968
5969 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5970 seq_puts(m, " (deleted)\n");
5971 else
5972 seq_putc(m, '\n');
5973 }
5974
5975 retval = 0;
5976 out_unlock:
5977 spin_unlock_irq(&css_set_lock);
5978 mutex_unlock(&cgroup_mutex);
5979 kfree(buf);
5980 out:
5981 return retval;
5982 }
5983
5984 /**
5985 * cgroup_fork - initialize cgroup related fields during copy_process()
5986 * @child: pointer to task_struct of forking parent process.
5987 *
5988 * A task is associated with the init_css_set until cgroup_post_fork()
5989 * attaches it to the target css_set.
5990 */
cgroup_fork(struct task_struct * child)5991 void cgroup_fork(struct task_struct *child)
5992 {
5993 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5994 INIT_LIST_HEAD(&child->cg_list);
5995 }
5996
cgroup_get_from_file(struct file * f)5997 static struct cgroup *cgroup_get_from_file(struct file *f)
5998 {
5999 struct cgroup_subsys_state *css;
6000 struct cgroup *cgrp;
6001
6002 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6003 if (IS_ERR(css))
6004 return ERR_CAST(css);
6005
6006 cgrp = css->cgroup;
6007 if (!cgroup_on_dfl(cgrp)) {
6008 cgroup_put(cgrp);
6009 return ERR_PTR(-EBADF);
6010 }
6011
6012 return cgrp;
6013 }
6014
6015 /**
6016 * cgroup_css_set_fork - find or create a css_set for a child process
6017 * @kargs: the arguments passed to create the child process
6018 *
6019 * This functions finds or creates a new css_set which the child
6020 * process will be attached to in cgroup_post_fork(). By default,
6021 * the child process will be given the same css_set as its parent.
6022 *
6023 * If CLONE_INTO_CGROUP is specified this function will try to find an
6024 * existing css_set which includes the requested cgroup and if not create
6025 * a new css_set that the child will be attached to later. If this function
6026 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6027 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6028 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6029 * to the target cgroup.
6030 */
cgroup_css_set_fork(struct kernel_clone_args * kargs)6031 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6032 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6033 {
6034 int ret;
6035 struct cgroup *dst_cgrp = NULL;
6036 struct css_set *cset;
6037 struct super_block *sb;
6038 struct file *f;
6039
6040 if (kargs->flags & CLONE_INTO_CGROUP)
6041 mutex_lock(&cgroup_mutex);
6042
6043 cgroup_threadgroup_change_begin(current);
6044
6045 spin_lock_irq(&css_set_lock);
6046 cset = task_css_set(current);
6047 get_css_set(cset);
6048 spin_unlock_irq(&css_set_lock);
6049
6050 if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6051 kargs->cset = cset;
6052 return 0;
6053 }
6054
6055 f = fget_raw(kargs->cgroup);
6056 if (!f) {
6057 ret = -EBADF;
6058 goto err;
6059 }
6060 sb = f->f_path.dentry->d_sb;
6061
6062 dst_cgrp = cgroup_get_from_file(f);
6063 if (IS_ERR(dst_cgrp)) {
6064 ret = PTR_ERR(dst_cgrp);
6065 dst_cgrp = NULL;
6066 goto err;
6067 }
6068
6069 if (cgroup_is_dead(dst_cgrp)) {
6070 ret = -ENODEV;
6071 goto err;
6072 }
6073
6074 /*
6075 * Verify that we the target cgroup is writable for us. This is
6076 * usually done by the vfs layer but since we're not going through
6077 * the vfs layer here we need to do it "manually".
6078 */
6079 ret = cgroup_may_write(dst_cgrp, sb);
6080 if (ret)
6081 goto err;
6082
6083 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6084 !(kargs->flags & CLONE_THREAD),
6085 current->nsproxy->cgroup_ns);
6086 if (ret)
6087 goto err;
6088
6089 kargs->cset = find_css_set(cset, dst_cgrp);
6090 if (!kargs->cset) {
6091 ret = -ENOMEM;
6092 goto err;
6093 }
6094
6095 put_css_set(cset);
6096 fput(f);
6097 kargs->cgrp = dst_cgrp;
6098 return ret;
6099
6100 err:
6101 cgroup_threadgroup_change_end(current);
6102 mutex_unlock(&cgroup_mutex);
6103 if (f)
6104 fput(f);
6105 if (dst_cgrp)
6106 cgroup_put(dst_cgrp);
6107 put_css_set(cset);
6108 if (kargs->cset)
6109 put_css_set(kargs->cset);
6110 return ret;
6111 }
6112
6113 /**
6114 * cgroup_css_set_put_fork - drop references we took during fork
6115 * @kargs: the arguments passed to create the child process
6116 *
6117 * Drop references to the prepared css_set and target cgroup if
6118 * CLONE_INTO_CGROUP was requested.
6119 */
cgroup_css_set_put_fork(struct kernel_clone_args * kargs)6120 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6121 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6122 {
6123 cgroup_threadgroup_change_end(current);
6124
6125 if (kargs->flags & CLONE_INTO_CGROUP) {
6126 struct cgroup *cgrp = kargs->cgrp;
6127 struct css_set *cset = kargs->cset;
6128
6129 mutex_unlock(&cgroup_mutex);
6130
6131 if (cset) {
6132 put_css_set(cset);
6133 kargs->cset = NULL;
6134 }
6135
6136 if (cgrp) {
6137 cgroup_put(cgrp);
6138 kargs->cgrp = NULL;
6139 }
6140 }
6141 }
6142
6143 /**
6144 * cgroup_can_fork - called on a new task before the process is exposed
6145 * @child: the child process
6146 *
6147 * This prepares a new css_set for the child process which the child will
6148 * be attached to in cgroup_post_fork().
6149 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6150 * callback returns an error, the fork aborts with that error code. This
6151 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6152 */
cgroup_can_fork(struct task_struct * child,struct kernel_clone_args * kargs)6153 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6154 {
6155 struct cgroup_subsys *ss;
6156 int i, j, ret;
6157
6158 ret = cgroup_css_set_fork(kargs);
6159 if (ret)
6160 return ret;
6161
6162 do_each_subsys_mask(ss, i, have_canfork_callback) {
6163 ret = ss->can_fork(child, kargs->cset);
6164 if (ret)
6165 goto out_revert;
6166 } while_each_subsys_mask();
6167
6168 return 0;
6169
6170 out_revert:
6171 for_each_subsys(ss, j) {
6172 if (j >= i)
6173 break;
6174 if (ss->cancel_fork)
6175 ss->cancel_fork(child, kargs->cset);
6176 }
6177
6178 cgroup_css_set_put_fork(kargs);
6179
6180 return ret;
6181 }
6182
6183 /**
6184 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6185 * @child: the child process
6186 * @kargs: the arguments passed to create the child process
6187 *
6188 * This calls the cancel_fork() callbacks if a fork failed *after*
6189 * cgroup_can_fork() succeded and cleans up references we took to
6190 * prepare a new css_set for the child process in cgroup_can_fork().
6191 */
cgroup_cancel_fork(struct task_struct * child,struct kernel_clone_args * kargs)6192 void cgroup_cancel_fork(struct task_struct *child,
6193 struct kernel_clone_args *kargs)
6194 {
6195 struct cgroup_subsys *ss;
6196 int i;
6197
6198 for_each_subsys(ss, i)
6199 if (ss->cancel_fork)
6200 ss->cancel_fork(child, kargs->cset);
6201
6202 cgroup_css_set_put_fork(kargs);
6203 }
6204
6205 /**
6206 * cgroup_post_fork - finalize cgroup setup for the child process
6207 * @child: the child process
6208 *
6209 * Attach the child process to its css_set calling the subsystem fork()
6210 * callbacks.
6211 */
cgroup_post_fork(struct task_struct * child,struct kernel_clone_args * kargs)6212 void cgroup_post_fork(struct task_struct *child,
6213 struct kernel_clone_args *kargs)
6214 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6215 {
6216 struct cgroup_subsys *ss;
6217 struct css_set *cset;
6218 int i;
6219
6220 cset = kargs->cset;
6221 kargs->cset = NULL;
6222
6223 spin_lock_irq(&css_set_lock);
6224
6225 /* init tasks are special, only link regular threads */
6226 if (likely(child->pid)) {
6227 WARN_ON_ONCE(!list_empty(&child->cg_list));
6228 cset->nr_tasks++;
6229 css_set_move_task(child, NULL, cset, false);
6230 } else {
6231 put_css_set(cset);
6232 cset = NULL;
6233 }
6234
6235 /*
6236 * If the cgroup has to be frozen, the new task has too. Let's set
6237 * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the
6238 * frozen state.
6239 */
6240 if (unlikely(cgroup_task_freeze(child))) {
6241 spin_lock(&child->sighand->siglock);
6242 WARN_ON_ONCE(child->frozen);
6243 child->jobctl |= JOBCTL_TRAP_FREEZE;
6244 spin_unlock(&child->sighand->siglock);
6245
6246 /*
6247 * Calling cgroup_update_frozen() isn't required here,
6248 * because it will be called anyway a bit later from
6249 * do_freezer_trap(). So we avoid cgroup's transient switch
6250 * from the frozen state and back.
6251 */
6252 }
6253
6254 spin_unlock_irq(&css_set_lock);
6255
6256 /*
6257 * Call ss->fork(). This must happen after @child is linked on
6258 * css_set; otherwise, @child might change state between ->fork()
6259 * and addition to css_set.
6260 */
6261 do_each_subsys_mask(ss, i, have_fork_callback) {
6262 ss->fork(child);
6263 } while_each_subsys_mask();
6264
6265 /* Make the new cset the root_cset of the new cgroup namespace. */
6266 if (kargs->flags & CLONE_NEWCGROUP) {
6267 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6268
6269 get_css_set(cset);
6270 child->nsproxy->cgroup_ns->root_cset = cset;
6271 put_css_set(rcset);
6272 }
6273
6274 cgroup_css_set_put_fork(kargs);
6275 }
6276
6277 /**
6278 * cgroup_exit - detach cgroup from exiting task
6279 * @tsk: pointer to task_struct of exiting process
6280 *
6281 * Description: Detach cgroup from @tsk.
6282 *
6283 */
cgroup_exit(struct task_struct * tsk)6284 void cgroup_exit(struct task_struct *tsk)
6285 {
6286 struct cgroup_subsys *ss;
6287 struct css_set *cset;
6288 int i;
6289
6290 spin_lock_irq(&css_set_lock);
6291
6292 WARN_ON_ONCE(list_empty(&tsk->cg_list));
6293 cset = task_css_set(tsk);
6294 css_set_move_task(tsk, cset, NULL, false);
6295 list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6296 cset->nr_tasks--;
6297
6298 WARN_ON_ONCE(cgroup_task_frozen(tsk));
6299 if (unlikely(cgroup_task_freeze(tsk)))
6300 cgroup_update_frozen(task_dfl_cgroup(tsk));
6301
6302 spin_unlock_irq(&css_set_lock);
6303
6304 /* see cgroup_post_fork() for details */
6305 do_each_subsys_mask(ss, i, have_exit_callback) {
6306 ss->exit(tsk);
6307 } while_each_subsys_mask();
6308 }
6309
cgroup_release(struct task_struct * task)6310 void cgroup_release(struct task_struct *task)
6311 {
6312 struct cgroup_subsys *ss;
6313 int ssid;
6314
6315 do_each_subsys_mask(ss, ssid, have_release_callback) {
6316 ss->release(task);
6317 } while_each_subsys_mask();
6318
6319 spin_lock_irq(&css_set_lock);
6320 css_set_skip_task_iters(task_css_set(task), task);
6321 list_del_init(&task->cg_list);
6322 spin_unlock_irq(&css_set_lock);
6323 }
6324
cgroup_free(struct task_struct * task)6325 void cgroup_free(struct task_struct *task)
6326 {
6327 struct css_set *cset = task_css_set(task);
6328 put_css_set(cset);
6329 }
6330
cgroup_disable(char * str)6331 static int __init cgroup_disable(char *str)
6332 {
6333 struct cgroup_subsys *ss;
6334 char *token;
6335 int i;
6336
6337 while ((token = strsep(&str, ",")) != NULL) {
6338 if (!*token)
6339 continue;
6340
6341 for_each_subsys(ss, i) {
6342 if (strcmp(token, ss->name) &&
6343 strcmp(token, ss->legacy_name))
6344 continue;
6345
6346 static_branch_disable(cgroup_subsys_enabled_key[i]);
6347 pr_info("Disabling %s control group subsystem\n",
6348 ss->name);
6349 }
6350 }
6351 return 1;
6352 }
6353 __setup("cgroup_disable=", cgroup_disable);
6354
enable_debug_cgroup(void)6355 void __init __weak enable_debug_cgroup(void) { }
6356
enable_cgroup_debug(char * str)6357 static int __init enable_cgroup_debug(char *str)
6358 {
6359 cgroup_debug = true;
6360 enable_debug_cgroup();
6361 return 1;
6362 }
6363 __setup("cgroup_debug", enable_cgroup_debug);
6364
6365 /**
6366 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6367 * @dentry: directory dentry of interest
6368 * @ss: subsystem of interest
6369 *
6370 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6371 * to get the corresponding css and return it. If such css doesn't exist
6372 * or can't be pinned, an ERR_PTR value is returned.
6373 */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6374 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6375 struct cgroup_subsys *ss)
6376 {
6377 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6378 struct file_system_type *s_type = dentry->d_sb->s_type;
6379 struct cgroup_subsys_state *css = NULL;
6380 struct cgroup *cgrp;
6381
6382 /* is @dentry a cgroup dir? */
6383 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6384 !kn || kernfs_type(kn) != KERNFS_DIR)
6385 return ERR_PTR(-EBADF);
6386
6387 rcu_read_lock();
6388
6389 /*
6390 * This path doesn't originate from kernfs and @kn could already
6391 * have been or be removed at any point. @kn->priv is RCU
6392 * protected for this access. See css_release_work_fn() for details.
6393 */
6394 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6395 if (cgrp)
6396 css = cgroup_css(cgrp, ss);
6397
6398 if (!css || !css_tryget_online(css))
6399 css = ERR_PTR(-ENOENT);
6400
6401 rcu_read_unlock();
6402 return css;
6403 }
6404
6405 /**
6406 * css_from_id - lookup css by id
6407 * @id: the cgroup id
6408 * @ss: cgroup subsys to be looked into
6409 *
6410 * Returns the css if there's valid one with @id, otherwise returns NULL.
6411 * Should be called under rcu_read_lock().
6412 */
css_from_id(int id,struct cgroup_subsys * ss)6413 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6414 {
6415 WARN_ON_ONCE(!rcu_read_lock_held());
6416 return idr_find(&ss->css_idr, id);
6417 }
6418
6419 /**
6420 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6421 * @path: path on the default hierarchy
6422 *
6423 * Find the cgroup at @path on the default hierarchy, increment its
6424 * reference count and return it. Returns pointer to the found cgroup on
6425 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6426 * if @path points to a non-directory.
6427 */
cgroup_get_from_path(const char * path)6428 struct cgroup *cgroup_get_from_path(const char *path)
6429 {
6430 struct kernfs_node *kn;
6431 struct cgroup *cgrp;
6432
6433 mutex_lock(&cgroup_mutex);
6434
6435 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6436 if (kn) {
6437 if (kernfs_type(kn) == KERNFS_DIR) {
6438 cgrp = kn->priv;
6439 cgroup_get_live(cgrp);
6440 } else {
6441 cgrp = ERR_PTR(-ENOTDIR);
6442 }
6443 kernfs_put(kn);
6444 } else {
6445 cgrp = ERR_PTR(-ENOENT);
6446 }
6447
6448 mutex_unlock(&cgroup_mutex);
6449 return cgrp;
6450 }
6451 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6452
6453 /**
6454 * cgroup_get_from_fd - get a cgroup pointer from a fd
6455 * @fd: fd obtained by open(cgroup2_dir)
6456 *
6457 * Find the cgroup from a fd which should be obtained
6458 * by opening a cgroup directory. Returns a pointer to the
6459 * cgroup on success. ERR_PTR is returned if the cgroup
6460 * cannot be found.
6461 */
cgroup_get_from_fd(int fd)6462 struct cgroup *cgroup_get_from_fd(int fd)
6463 {
6464 struct cgroup *cgrp;
6465 struct file *f;
6466
6467 f = fget_raw(fd);
6468 if (!f)
6469 return ERR_PTR(-EBADF);
6470
6471 cgrp = cgroup_get_from_file(f);
6472 fput(f);
6473 return cgrp;
6474 }
6475 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6476
power_of_ten(int power)6477 static u64 power_of_ten(int power)
6478 {
6479 u64 v = 1;
6480 while (power--)
6481 v *= 10;
6482 return v;
6483 }
6484
6485 /**
6486 * cgroup_parse_float - parse a floating number
6487 * @input: input string
6488 * @dec_shift: number of decimal digits to shift
6489 * @v: output
6490 *
6491 * Parse a decimal floating point number in @input and store the result in
6492 * @v with decimal point right shifted @dec_shift times. For example, if
6493 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6494 * Returns 0 on success, -errno otherwise.
6495 *
6496 * There's nothing cgroup specific about this function except that it's
6497 * currently the only user.
6498 */
cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)6499 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6500 {
6501 s64 whole, frac = 0;
6502 int fstart = 0, fend = 0, flen;
6503
6504 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6505 return -EINVAL;
6506 if (frac < 0)
6507 return -EINVAL;
6508
6509 flen = fend > fstart ? fend - fstart : 0;
6510 if (flen < dec_shift)
6511 frac *= power_of_ten(dec_shift - flen);
6512 else
6513 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6514
6515 *v = whole * power_of_ten(dec_shift) + frac;
6516 return 0;
6517 }
6518
6519 /*
6520 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6521 * definition in cgroup-defs.h.
6522 */
6523 #ifdef CONFIG_SOCK_CGROUP_DATA
6524
cgroup_sk_alloc(struct sock_cgroup_data * skcd)6525 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6526 {
6527 struct cgroup *cgroup;
6528
6529 rcu_read_lock();
6530 /* Don't associate the sock with unrelated interrupted task's cgroup. */
6531 if (in_interrupt()) {
6532 cgroup = &cgrp_dfl_root.cgrp;
6533 cgroup_get(cgroup);
6534 goto out;
6535 }
6536
6537 while (true) {
6538 struct css_set *cset;
6539
6540 cset = task_css_set(current);
6541 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6542 cgroup = cset->dfl_cgrp;
6543 break;
6544 }
6545 cpu_relax();
6546 }
6547 out:
6548 skcd->cgroup = cgroup;
6549 cgroup_bpf_get(cgroup);
6550 rcu_read_unlock();
6551 }
6552
cgroup_sk_clone(struct sock_cgroup_data * skcd)6553 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6554 {
6555 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6556
6557 /*
6558 * We might be cloning a socket which is left in an empty
6559 * cgroup and the cgroup might have already been rmdir'd.
6560 * Don't use cgroup_get_live().
6561 */
6562 cgroup_get(cgrp);
6563 cgroup_bpf_get(cgrp);
6564 }
6565
cgroup_sk_free(struct sock_cgroup_data * skcd)6566 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6567 {
6568 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6569
6570 cgroup_bpf_put(cgrp);
6571 cgroup_put(cgrp);
6572 }
6573
6574 #endif /* CONFIG_SOCK_CGROUP_DATA */
6575
6576 #ifdef CONFIG_CGROUP_BPF
cgroup_bpf_attach(struct cgroup * cgrp,struct bpf_prog * prog,struct bpf_prog * replace_prog,struct bpf_cgroup_link * link,enum bpf_attach_type type,u32 flags)6577 int cgroup_bpf_attach(struct cgroup *cgrp,
6578 struct bpf_prog *prog, struct bpf_prog *replace_prog,
6579 struct bpf_cgroup_link *link,
6580 enum bpf_attach_type type,
6581 u32 flags)
6582 {
6583 int ret;
6584
6585 mutex_lock(&cgroup_mutex);
6586 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
6587 mutex_unlock(&cgroup_mutex);
6588 return ret;
6589 }
6590
cgroup_bpf_detach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type)6591 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6592 enum bpf_attach_type type)
6593 {
6594 int ret;
6595
6596 mutex_lock(&cgroup_mutex);
6597 ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
6598 mutex_unlock(&cgroup_mutex);
6599 return ret;
6600 }
6601
cgroup_bpf_query(struct cgroup * cgrp,const union bpf_attr * attr,union bpf_attr __user * uattr)6602 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6603 union bpf_attr __user *uattr)
6604 {
6605 int ret;
6606
6607 mutex_lock(&cgroup_mutex);
6608 ret = __cgroup_bpf_query(cgrp, attr, uattr);
6609 mutex_unlock(&cgroup_mutex);
6610 return ret;
6611 }
6612 #endif /* CONFIG_CGROUP_BPF */
6613
6614 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)6615 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6616 ssize_t size, const char *prefix)
6617 {
6618 struct cftype *cft;
6619 ssize_t ret = 0;
6620
6621 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6622 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6623 continue;
6624
6625 if (prefix)
6626 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6627
6628 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6629
6630 if (WARN_ON(ret >= size))
6631 break;
6632 }
6633
6634 return ret;
6635 }
6636
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6637 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6638 char *buf)
6639 {
6640 struct cgroup_subsys *ss;
6641 int ssid;
6642 ssize_t ret = 0;
6643
6644 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6645 NULL);
6646
6647 for_each_subsys(ss, ssid)
6648 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6649 PAGE_SIZE - ret,
6650 cgroup_subsys_name[ssid]);
6651
6652 return ret;
6653 }
6654 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6655
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6656 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6657 char *buf)
6658 {
6659 return snprintf(buf, PAGE_SIZE,
6660 "nsdelegate\n"
6661 "memory_localevents\n"
6662 "memory_recursiveprot\n");
6663 }
6664 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6665
6666 static struct attribute *cgroup_sysfs_attrs[] = {
6667 &cgroup_delegate_attr.attr,
6668 &cgroup_features_attr.attr,
6669 NULL,
6670 };
6671
6672 static const struct attribute_group cgroup_sysfs_attr_group = {
6673 .attrs = cgroup_sysfs_attrs,
6674 .name = "cgroup",
6675 };
6676
cgroup_sysfs_init(void)6677 static int __init cgroup_sysfs_init(void)
6678 {
6679 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6680 }
6681 subsys_initcall(cgroup_sysfs_init);
6682
6683 #endif /* CONFIG_SYSFS */
6684