1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282
283 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
284 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
285
286 long sysctl_tcp_mem[3] __read_mostly;
287 EXPORT_SYMBOL(sysctl_tcp_mem);
288
289 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
290 EXPORT_SYMBOL(tcp_memory_allocated);
291
292 #if IS_ENABLED(CONFIG_SMC)
293 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
294 EXPORT_SYMBOL(tcp_have_smc);
295 #endif
296
297 /*
298 * Current number of TCP sockets.
299 */
300 struct percpu_counter tcp_sockets_allocated;
301 EXPORT_SYMBOL(tcp_sockets_allocated);
302
303 /*
304 * TCP splice context
305 */
306 struct tcp_splice_state {
307 struct pipe_inode_info *pipe;
308 size_t len;
309 unsigned int flags;
310 };
311
312 /*
313 * Pressure flag: try to collapse.
314 * Technical note: it is used by multiple contexts non atomically.
315 * All the __sk_mem_schedule() is of this nature: accounting
316 * is strict, actions are advisory and have some latency.
317 */
318 unsigned long tcp_memory_pressure __read_mostly;
319 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
320
321 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
322 EXPORT_SYMBOL(tcp_rx_skb_cache_key);
323
324 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
325
tcp_enter_memory_pressure(struct sock * sk)326 void tcp_enter_memory_pressure(struct sock *sk)
327 {
328 unsigned long val;
329
330 if (READ_ONCE(tcp_memory_pressure))
331 return;
332 val = jiffies;
333
334 if (!val)
335 val--;
336 if (!cmpxchg(&tcp_memory_pressure, 0, val))
337 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
338 }
339 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
340
tcp_leave_memory_pressure(struct sock * sk)341 void tcp_leave_memory_pressure(struct sock *sk)
342 {
343 unsigned long val;
344
345 if (!READ_ONCE(tcp_memory_pressure))
346 return;
347 val = xchg(&tcp_memory_pressure, 0);
348 if (val)
349 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
350 jiffies_to_msecs(jiffies - val));
351 }
352 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
353
354 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)355 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
356 {
357 u8 res = 0;
358
359 if (seconds > 0) {
360 int period = timeout;
361
362 res = 1;
363 while (seconds > period && res < 255) {
364 res++;
365 timeout <<= 1;
366 if (timeout > rto_max)
367 timeout = rto_max;
368 period += timeout;
369 }
370 }
371 return res;
372 }
373
374 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)375 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
376 {
377 int period = 0;
378
379 if (retrans > 0) {
380 period = timeout;
381 while (--retrans) {
382 timeout <<= 1;
383 if (timeout > rto_max)
384 timeout = rto_max;
385 period += timeout;
386 }
387 }
388 return period;
389 }
390
tcp_compute_delivery_rate(const struct tcp_sock * tp)391 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
392 {
393 u32 rate = READ_ONCE(tp->rate_delivered);
394 u32 intv = READ_ONCE(tp->rate_interval_us);
395 u64 rate64 = 0;
396
397 if (rate && intv) {
398 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
399 do_div(rate64, intv);
400 }
401 return rate64;
402 }
403
404 /* Address-family independent initialization for a tcp_sock.
405 *
406 * NOTE: A lot of things set to zero explicitly by call to
407 * sk_alloc() so need not be done here.
408 */
tcp_init_sock(struct sock * sk)409 void tcp_init_sock(struct sock *sk)
410 {
411 struct inet_connection_sock *icsk = inet_csk(sk);
412 struct tcp_sock *tp = tcp_sk(sk);
413
414 tp->out_of_order_queue = RB_ROOT;
415 sk->tcp_rtx_queue = RB_ROOT;
416 tcp_init_xmit_timers(sk);
417 INIT_LIST_HEAD(&tp->tsq_node);
418 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
419
420 icsk->icsk_rto = TCP_TIMEOUT_INIT;
421 icsk->icsk_rto_min = TCP_RTO_MIN;
422 icsk->icsk_delack_max = TCP_DELACK_MAX;
423 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
424 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
425
426 /* So many TCP implementations out there (incorrectly) count the
427 * initial SYN frame in their delayed-ACK and congestion control
428 * algorithms that we must have the following bandaid to talk
429 * efficiently to them. -DaveM
430 */
431 tp->snd_cwnd = TCP_INIT_CWND;
432
433 /* There's a bubble in the pipe until at least the first ACK. */
434 tp->app_limited = ~0U;
435 tp->rate_app_limited = 1;
436
437 /* See draft-stevens-tcpca-spec-01 for discussion of the
438 * initialization of these values.
439 */
440 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
441 tp->snd_cwnd_clamp = ~0;
442 tp->mss_cache = TCP_MSS_DEFAULT;
443
444 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
445 tcp_assign_congestion_control(sk);
446
447 tp->tsoffset = 0;
448 tp->rack.reo_wnd_steps = 1;
449
450 sk->sk_write_space = sk_stream_write_space;
451 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
452
453 icsk->icsk_sync_mss = tcp_sync_mss;
454
455 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
456 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
457
458 sk_sockets_allocated_inc(sk);
459 sk->sk_route_forced_caps = NETIF_F_GSO;
460 }
461 EXPORT_SYMBOL(tcp_init_sock);
462
tcp_tx_timestamp(struct sock * sk,u16 tsflags)463 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
464 {
465 struct sk_buff *skb = tcp_write_queue_tail(sk);
466
467 if (tsflags && skb) {
468 struct skb_shared_info *shinfo = skb_shinfo(skb);
469 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
470
471 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
472 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
473 tcb->txstamp_ack = 1;
474 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
475 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
476 }
477 }
478
tcp_stream_is_readable(const struct tcp_sock * tp,int target,struct sock * sk)479 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
480 int target, struct sock *sk)
481 {
482 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
483
484 if (avail > 0) {
485 if (avail >= target)
486 return true;
487 if (tcp_rmem_pressure(sk))
488 return true;
489 if (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss)
490 return true;
491 }
492 if (sk->sk_prot->stream_memory_read)
493 return sk->sk_prot->stream_memory_read(sk);
494 return false;
495 }
496
497 /*
498 * Wait for a TCP event.
499 *
500 * Note that we don't need to lock the socket, as the upper poll layers
501 * take care of normal races (between the test and the event) and we don't
502 * go look at any of the socket buffers directly.
503 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)504 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
505 {
506 __poll_t mask;
507 struct sock *sk = sock->sk;
508 const struct tcp_sock *tp = tcp_sk(sk);
509 u8 shutdown;
510 int state;
511
512 sock_poll_wait(file, sock, wait);
513
514 state = inet_sk_state_load(sk);
515 if (state == TCP_LISTEN)
516 return inet_csk_listen_poll(sk);
517
518 /* Socket is not locked. We are protected from async events
519 * by poll logic and correct handling of state changes
520 * made by other threads is impossible in any case.
521 */
522
523 mask = 0;
524
525 /*
526 * EPOLLHUP is certainly not done right. But poll() doesn't
527 * have a notion of HUP in just one direction, and for a
528 * socket the read side is more interesting.
529 *
530 * Some poll() documentation says that EPOLLHUP is incompatible
531 * with the EPOLLOUT/POLLWR flags, so somebody should check this
532 * all. But careful, it tends to be safer to return too many
533 * bits than too few, and you can easily break real applications
534 * if you don't tell them that something has hung up!
535 *
536 * Check-me.
537 *
538 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
539 * our fs/select.c). It means that after we received EOF,
540 * poll always returns immediately, making impossible poll() on write()
541 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
542 * if and only if shutdown has been made in both directions.
543 * Actually, it is interesting to look how Solaris and DUX
544 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
545 * then we could set it on SND_SHUTDOWN. BTW examples given
546 * in Stevens' books assume exactly this behaviour, it explains
547 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
548 *
549 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
550 * blocking on fresh not-connected or disconnected socket. --ANK
551 */
552 shutdown = READ_ONCE(sk->sk_shutdown);
553 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
554 mask |= EPOLLHUP;
555 if (shutdown & RCV_SHUTDOWN)
556 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
557
558 /* Connected or passive Fast Open socket? */
559 if (state != TCP_SYN_SENT &&
560 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
561 int target = sock_rcvlowat(sk, 0, INT_MAX);
562
563 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
564 !sock_flag(sk, SOCK_URGINLINE) &&
565 tp->urg_data)
566 target++;
567
568 if (tcp_stream_is_readable(tp, target, sk))
569 mask |= EPOLLIN | EPOLLRDNORM;
570
571 if (!(shutdown & SEND_SHUTDOWN)) {
572 if (__sk_stream_is_writeable(sk, 1)) {
573 mask |= EPOLLOUT | EPOLLWRNORM;
574 } else { /* send SIGIO later */
575 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
576 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
577
578 /* Race breaker. If space is freed after
579 * wspace test but before the flags are set,
580 * IO signal will be lost. Memory barrier
581 * pairs with the input side.
582 */
583 smp_mb__after_atomic();
584 if (__sk_stream_is_writeable(sk, 1))
585 mask |= EPOLLOUT | EPOLLWRNORM;
586 }
587 } else
588 mask |= EPOLLOUT | EPOLLWRNORM;
589
590 if (tp->urg_data & TCP_URG_VALID)
591 mask |= EPOLLPRI;
592 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
593 /* Active TCP fastopen socket with defer_connect
594 * Return EPOLLOUT so application can call write()
595 * in order for kernel to generate SYN+data
596 */
597 mask |= EPOLLOUT | EPOLLWRNORM;
598 }
599 /* This barrier is coupled with smp_wmb() in tcp_reset() */
600 smp_rmb();
601 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
602 mask |= EPOLLERR;
603
604 return mask;
605 }
606 EXPORT_SYMBOL(tcp_poll);
607
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)608 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
609 {
610 struct tcp_sock *tp = tcp_sk(sk);
611 int answ;
612 bool slow;
613
614 switch (cmd) {
615 case SIOCINQ:
616 if (sk->sk_state == TCP_LISTEN)
617 return -EINVAL;
618
619 slow = lock_sock_fast(sk);
620 answ = tcp_inq(sk);
621 unlock_sock_fast(sk, slow);
622 break;
623 case SIOCATMARK:
624 answ = tp->urg_data &&
625 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
626 break;
627 case SIOCOUTQ:
628 if (sk->sk_state == TCP_LISTEN)
629 return -EINVAL;
630
631 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
632 answ = 0;
633 else
634 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
635 break;
636 case SIOCOUTQNSD:
637 if (sk->sk_state == TCP_LISTEN)
638 return -EINVAL;
639
640 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
641 answ = 0;
642 else
643 answ = READ_ONCE(tp->write_seq) -
644 READ_ONCE(tp->snd_nxt);
645 break;
646 default:
647 return -ENOIOCTLCMD;
648 }
649
650 return put_user(answ, (int __user *)arg);
651 }
652 EXPORT_SYMBOL(tcp_ioctl);
653
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)654 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
655 {
656 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
657 tp->pushed_seq = tp->write_seq;
658 }
659
forced_push(const struct tcp_sock * tp)660 static inline bool forced_push(const struct tcp_sock *tp)
661 {
662 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
663 }
664
skb_entail(struct sock * sk,struct sk_buff * skb)665 static void skb_entail(struct sock *sk, struct sk_buff *skb)
666 {
667 struct tcp_sock *tp = tcp_sk(sk);
668 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
669
670 skb->csum = 0;
671 tcb->seq = tcb->end_seq = tp->write_seq;
672 tcb->tcp_flags = TCPHDR_ACK;
673 tcb->sacked = 0;
674 __skb_header_release(skb);
675 tcp_add_write_queue_tail(sk, skb);
676 sk_wmem_queued_add(sk, skb->truesize);
677 sk_mem_charge(sk, skb->truesize);
678 if (tp->nonagle & TCP_NAGLE_PUSH)
679 tp->nonagle &= ~TCP_NAGLE_PUSH;
680
681 tcp_slow_start_after_idle_check(sk);
682 }
683
tcp_mark_urg(struct tcp_sock * tp,int flags)684 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
685 {
686 if (flags & MSG_OOB)
687 tp->snd_up = tp->write_seq;
688 }
689
690 /* If a not yet filled skb is pushed, do not send it if
691 * we have data packets in Qdisc or NIC queues :
692 * Because TX completion will happen shortly, it gives a chance
693 * to coalesce future sendmsg() payload into this skb, without
694 * need for a timer, and with no latency trade off.
695 * As packets containing data payload have a bigger truesize
696 * than pure acks (dataless) packets, the last checks prevent
697 * autocorking if we only have an ACK in Qdisc/NIC queues,
698 * or if TX completion was delayed after we processed ACK packet.
699 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)700 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
701 int size_goal)
702 {
703 return skb->len < size_goal &&
704 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
705 !tcp_rtx_queue_empty(sk) &&
706 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
707 }
708
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)709 void tcp_push(struct sock *sk, int flags, int mss_now,
710 int nonagle, int size_goal)
711 {
712 struct tcp_sock *tp = tcp_sk(sk);
713 struct sk_buff *skb;
714
715 skb = tcp_write_queue_tail(sk);
716 if (!skb)
717 return;
718 if (!(flags & MSG_MORE) || forced_push(tp))
719 tcp_mark_push(tp, skb);
720
721 tcp_mark_urg(tp, flags);
722
723 if (tcp_should_autocork(sk, skb, size_goal)) {
724
725 /* avoid atomic op if TSQ_THROTTLED bit is already set */
726 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
727 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
728 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
729 }
730 /* It is possible TX completion already happened
731 * before we set TSQ_THROTTLED.
732 */
733 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
734 return;
735 }
736
737 if (flags & MSG_MORE)
738 nonagle = TCP_NAGLE_CORK;
739
740 __tcp_push_pending_frames(sk, mss_now, nonagle);
741 }
742
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)743 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
744 unsigned int offset, size_t len)
745 {
746 struct tcp_splice_state *tss = rd_desc->arg.data;
747 int ret;
748
749 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
750 min(rd_desc->count, len), tss->flags);
751 if (ret > 0)
752 rd_desc->count -= ret;
753 return ret;
754 }
755
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)756 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
757 {
758 /* Store TCP splice context information in read_descriptor_t. */
759 read_descriptor_t rd_desc = {
760 .arg.data = tss,
761 .count = tss->len,
762 };
763
764 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
765 }
766
767 /**
768 * tcp_splice_read - splice data from TCP socket to a pipe
769 * @sock: socket to splice from
770 * @ppos: position (not valid)
771 * @pipe: pipe to splice to
772 * @len: number of bytes to splice
773 * @flags: splice modifier flags
774 *
775 * Description:
776 * Will read pages from given socket and fill them into a pipe.
777 *
778 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)779 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
780 struct pipe_inode_info *pipe, size_t len,
781 unsigned int flags)
782 {
783 struct sock *sk = sock->sk;
784 struct tcp_splice_state tss = {
785 .pipe = pipe,
786 .len = len,
787 .flags = flags,
788 };
789 long timeo;
790 ssize_t spliced;
791 int ret;
792
793 sock_rps_record_flow(sk);
794 /*
795 * We can't seek on a socket input
796 */
797 if (unlikely(*ppos))
798 return -ESPIPE;
799
800 ret = spliced = 0;
801
802 lock_sock(sk);
803
804 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
805 while (tss.len) {
806 ret = __tcp_splice_read(sk, &tss);
807 if (ret < 0)
808 break;
809 else if (!ret) {
810 if (spliced)
811 break;
812 if (sock_flag(sk, SOCK_DONE))
813 break;
814 if (sk->sk_err) {
815 ret = sock_error(sk);
816 break;
817 }
818 if (sk->sk_shutdown & RCV_SHUTDOWN)
819 break;
820 if (sk->sk_state == TCP_CLOSE) {
821 /*
822 * This occurs when user tries to read
823 * from never connected socket.
824 */
825 ret = -ENOTCONN;
826 break;
827 }
828 if (!timeo) {
829 ret = -EAGAIN;
830 break;
831 }
832 /* if __tcp_splice_read() got nothing while we have
833 * an skb in receive queue, we do not want to loop.
834 * This might happen with URG data.
835 */
836 if (!skb_queue_empty(&sk->sk_receive_queue))
837 break;
838 sk_wait_data(sk, &timeo, NULL);
839 if (signal_pending(current)) {
840 ret = sock_intr_errno(timeo);
841 break;
842 }
843 continue;
844 }
845 tss.len -= ret;
846 spliced += ret;
847
848 if (!timeo)
849 break;
850 release_sock(sk);
851 lock_sock(sk);
852
853 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
854 (sk->sk_shutdown & RCV_SHUTDOWN) ||
855 signal_pending(current))
856 break;
857 }
858
859 release_sock(sk);
860
861 if (spliced)
862 return spliced;
863
864 return ret;
865 }
866 EXPORT_SYMBOL(tcp_splice_read);
867
sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp,bool force_schedule)868 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
869 bool force_schedule)
870 {
871 struct sk_buff *skb;
872
873 if (likely(!size)) {
874 skb = sk->sk_tx_skb_cache;
875 if (skb) {
876 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
877 sk->sk_tx_skb_cache = NULL;
878 pskb_trim(skb, 0);
879 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
880 skb_shinfo(skb)->tx_flags = 0;
881 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
882 return skb;
883 }
884 }
885 /* The TCP header must be at least 32-bit aligned. */
886 size = ALIGN(size, 4);
887
888 if (unlikely(tcp_under_memory_pressure(sk)))
889 sk_mem_reclaim_partial(sk);
890
891 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
892 if (likely(skb)) {
893 bool mem_scheduled;
894
895 if (force_schedule) {
896 mem_scheduled = true;
897 sk_forced_mem_schedule(sk, skb->truesize);
898 } else {
899 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
900 }
901 if (likely(mem_scheduled)) {
902 skb_reserve(skb, sk->sk_prot->max_header);
903 /*
904 * Make sure that we have exactly size bytes
905 * available to the caller, no more, no less.
906 */
907 skb->reserved_tailroom = skb->end - skb->tail - size;
908 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
909 return skb;
910 }
911 __kfree_skb(skb);
912 } else {
913 sk->sk_prot->enter_memory_pressure(sk);
914 sk_stream_moderate_sndbuf(sk);
915 }
916 return NULL;
917 }
918
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)919 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
920 int large_allowed)
921 {
922 struct tcp_sock *tp = tcp_sk(sk);
923 u32 new_size_goal, size_goal;
924
925 if (!large_allowed)
926 return mss_now;
927
928 /* Note : tcp_tso_autosize() will eventually split this later */
929 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
930 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
931
932 /* We try hard to avoid divides here */
933 size_goal = tp->gso_segs * mss_now;
934 if (unlikely(new_size_goal < size_goal ||
935 new_size_goal >= size_goal + mss_now)) {
936 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
937 sk->sk_gso_max_segs);
938 size_goal = tp->gso_segs * mss_now;
939 }
940
941 return max(size_goal, mss_now);
942 }
943
tcp_send_mss(struct sock * sk,int * size_goal,int flags)944 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
945 {
946 int mss_now;
947
948 mss_now = tcp_current_mss(sk);
949 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
950
951 return mss_now;
952 }
953
954 /* In some cases, both sendpage() and sendmsg() could have added
955 * an skb to the write queue, but failed adding payload on it.
956 * We need to remove it to consume less memory, but more
957 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
958 * users.
959 */
tcp_remove_empty_skb(struct sock * sk,struct sk_buff * skb)960 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
961 {
962 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
963 tcp_unlink_write_queue(skb, sk);
964 if (tcp_write_queue_empty(sk))
965 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
966 sk_wmem_free_skb(sk, skb);
967 }
968 }
969
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)970 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
971 size_t size, int flags)
972 {
973 struct tcp_sock *tp = tcp_sk(sk);
974 int mss_now, size_goal;
975 int err;
976 ssize_t copied;
977 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
978
979 if (IS_ENABLED(CONFIG_DEBUG_VM) &&
980 WARN_ONCE(!sendpage_ok(page),
981 "page must not be a Slab one and have page_count > 0"))
982 return -EINVAL;
983
984 /* Wait for a connection to finish. One exception is TCP Fast Open
985 * (passive side) where data is allowed to be sent before a connection
986 * is fully established.
987 */
988 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
989 !tcp_passive_fastopen(sk)) {
990 err = sk_stream_wait_connect(sk, &timeo);
991 if (err != 0)
992 goto out_err;
993 }
994
995 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
996
997 mss_now = tcp_send_mss(sk, &size_goal, flags);
998 copied = 0;
999
1000 err = -EPIPE;
1001 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1002 goto out_err;
1003
1004 while (size > 0) {
1005 struct sk_buff *skb = tcp_write_queue_tail(sk);
1006 int copy, i;
1007 bool can_coalesce;
1008
1009 if (!skb || (copy = size_goal - skb->len) <= 0 ||
1010 !tcp_skb_can_collapse_to(skb)) {
1011 new_segment:
1012 if (!sk_stream_memory_free(sk))
1013 goto wait_for_space;
1014
1015 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1016 tcp_rtx_and_write_queues_empty(sk));
1017 if (!skb)
1018 goto wait_for_space;
1019
1020 #ifdef CONFIG_TLS_DEVICE
1021 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1022 #endif
1023 skb_entail(sk, skb);
1024 copy = size_goal;
1025 }
1026
1027 if (copy > size)
1028 copy = size;
1029
1030 i = skb_shinfo(skb)->nr_frags;
1031 can_coalesce = skb_can_coalesce(skb, i, page, offset);
1032 if (!can_coalesce && i >= sysctl_max_skb_frags) {
1033 tcp_mark_push(tp, skb);
1034 goto new_segment;
1035 }
1036 if (!sk_wmem_schedule(sk, copy))
1037 goto wait_for_space;
1038
1039 if (can_coalesce) {
1040 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1041 } else {
1042 get_page(page);
1043 skb_fill_page_desc(skb, i, page, offset, copy);
1044 }
1045
1046 if (!(flags & MSG_NO_SHARED_FRAGS))
1047 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1048
1049 skb->len += copy;
1050 skb->data_len += copy;
1051 skb->truesize += copy;
1052 sk_wmem_queued_add(sk, copy);
1053 sk_mem_charge(sk, copy);
1054 skb->ip_summed = CHECKSUM_PARTIAL;
1055 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1056 TCP_SKB_CB(skb)->end_seq += copy;
1057 tcp_skb_pcount_set(skb, 0);
1058
1059 if (!copied)
1060 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1061
1062 copied += copy;
1063 offset += copy;
1064 size -= copy;
1065 if (!size)
1066 goto out;
1067
1068 if (skb->len < size_goal || (flags & MSG_OOB))
1069 continue;
1070
1071 if (forced_push(tp)) {
1072 tcp_mark_push(tp, skb);
1073 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1074 } else if (skb == tcp_send_head(sk))
1075 tcp_push_one(sk, mss_now);
1076 continue;
1077
1078 wait_for_space:
1079 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1080 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1081 TCP_NAGLE_PUSH, size_goal);
1082
1083 err = sk_stream_wait_memory(sk, &timeo);
1084 if (err != 0)
1085 goto do_error;
1086
1087 mss_now = tcp_send_mss(sk, &size_goal, flags);
1088 }
1089
1090 out:
1091 if (copied) {
1092 tcp_tx_timestamp(sk, sk->sk_tsflags);
1093 if (!(flags & MSG_SENDPAGE_NOTLAST))
1094 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1095 }
1096 return copied;
1097
1098 do_error:
1099 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1100 if (copied)
1101 goto out;
1102 out_err:
1103 /* make sure we wake any epoll edge trigger waiter */
1104 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1105 sk->sk_write_space(sk);
1106 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1107 }
1108 return sk_stream_error(sk, flags, err);
1109 }
1110 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1111
tcp_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1112 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1113 size_t size, int flags)
1114 {
1115 if (!(sk->sk_route_caps & NETIF_F_SG))
1116 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1117
1118 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1119
1120 return do_tcp_sendpages(sk, page, offset, size, flags);
1121 }
1122 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1123
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1124 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1125 size_t size, int flags)
1126 {
1127 int ret;
1128
1129 lock_sock(sk);
1130 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1131 release_sock(sk);
1132
1133 return ret;
1134 }
1135 EXPORT_SYMBOL(tcp_sendpage);
1136
tcp_free_fastopen_req(struct tcp_sock * tp)1137 void tcp_free_fastopen_req(struct tcp_sock *tp)
1138 {
1139 if (tp->fastopen_req) {
1140 kfree(tp->fastopen_req);
1141 tp->fastopen_req = NULL;
1142 }
1143 }
1144
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1145 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1146 int *copied, size_t size,
1147 struct ubuf_info *uarg)
1148 {
1149 struct tcp_sock *tp = tcp_sk(sk);
1150 struct inet_sock *inet = inet_sk(sk);
1151 struct sockaddr *uaddr = msg->msg_name;
1152 int err, flags;
1153
1154 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1155 TFO_CLIENT_ENABLE) ||
1156 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1157 uaddr->sa_family == AF_UNSPEC))
1158 return -EOPNOTSUPP;
1159 if (tp->fastopen_req)
1160 return -EALREADY; /* Another Fast Open is in progress */
1161
1162 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1163 sk->sk_allocation);
1164 if (unlikely(!tp->fastopen_req))
1165 return -ENOBUFS;
1166 tp->fastopen_req->data = msg;
1167 tp->fastopen_req->size = size;
1168 tp->fastopen_req->uarg = uarg;
1169
1170 if (inet->defer_connect) {
1171 err = tcp_connect(sk);
1172 /* Same failure procedure as in tcp_v4/6_connect */
1173 if (err) {
1174 tcp_set_state(sk, TCP_CLOSE);
1175 inet->inet_dport = 0;
1176 sk->sk_route_caps = 0;
1177 }
1178 }
1179 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1180 err = __inet_stream_connect(sk->sk_socket, uaddr,
1181 msg->msg_namelen, flags, 1);
1182 /* fastopen_req could already be freed in __inet_stream_connect
1183 * if the connection times out or gets rst
1184 */
1185 if (tp->fastopen_req) {
1186 *copied = tp->fastopen_req->copied;
1187 tcp_free_fastopen_req(tp);
1188 inet->defer_connect = 0;
1189 }
1190 return err;
1191 }
1192
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1193 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1194 {
1195 struct tcp_sock *tp = tcp_sk(sk);
1196 struct ubuf_info *uarg = NULL;
1197 struct sk_buff *skb;
1198 struct sockcm_cookie sockc;
1199 int flags, err, copied = 0;
1200 int mss_now = 0, size_goal, copied_syn = 0;
1201 int process_backlog = 0;
1202 bool zc = false;
1203 long timeo;
1204
1205 flags = msg->msg_flags;
1206
1207 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1208 skb = tcp_write_queue_tail(sk);
1209 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1210 if (!uarg) {
1211 err = -ENOBUFS;
1212 goto out_err;
1213 }
1214
1215 zc = sk->sk_route_caps & NETIF_F_SG;
1216 if (!zc)
1217 uarg->zerocopy = 0;
1218 }
1219
1220 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1221 !tp->repair) {
1222 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1223 if (err == -EINPROGRESS && copied_syn > 0)
1224 goto out;
1225 else if (err)
1226 goto out_err;
1227 }
1228
1229 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1230
1231 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1232
1233 /* Wait for a connection to finish. One exception is TCP Fast Open
1234 * (passive side) where data is allowed to be sent before a connection
1235 * is fully established.
1236 */
1237 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1238 !tcp_passive_fastopen(sk)) {
1239 err = sk_stream_wait_connect(sk, &timeo);
1240 if (err != 0)
1241 goto do_error;
1242 }
1243
1244 if (unlikely(tp->repair)) {
1245 if (tp->repair_queue == TCP_RECV_QUEUE) {
1246 copied = tcp_send_rcvq(sk, msg, size);
1247 goto out_nopush;
1248 }
1249
1250 err = -EINVAL;
1251 if (tp->repair_queue == TCP_NO_QUEUE)
1252 goto out_err;
1253
1254 /* 'common' sending to sendq */
1255 }
1256
1257 sockcm_init(&sockc, sk);
1258 if (msg->msg_controllen) {
1259 err = sock_cmsg_send(sk, msg, &sockc);
1260 if (unlikely(err)) {
1261 err = -EINVAL;
1262 goto out_err;
1263 }
1264 }
1265
1266 /* This should be in poll */
1267 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1268
1269 /* Ok commence sending. */
1270 copied = 0;
1271
1272 restart:
1273 mss_now = tcp_send_mss(sk, &size_goal, flags);
1274
1275 err = -EPIPE;
1276 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1277 goto do_error;
1278
1279 while (msg_data_left(msg)) {
1280 int copy = 0;
1281
1282 skb = tcp_write_queue_tail(sk);
1283 if (skb)
1284 copy = size_goal - skb->len;
1285
1286 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1287 bool first_skb;
1288
1289 new_segment:
1290 if (!sk_stream_memory_free(sk))
1291 goto wait_for_space;
1292
1293 if (unlikely(process_backlog >= 16)) {
1294 process_backlog = 0;
1295 if (sk_flush_backlog(sk))
1296 goto restart;
1297 }
1298 first_skb = tcp_rtx_and_write_queues_empty(sk);
1299 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1300 first_skb);
1301 if (!skb)
1302 goto wait_for_space;
1303
1304 process_backlog++;
1305 skb->ip_summed = CHECKSUM_PARTIAL;
1306
1307 skb_entail(sk, skb);
1308 copy = size_goal;
1309
1310 /* All packets are restored as if they have
1311 * already been sent. skb_mstamp_ns isn't set to
1312 * avoid wrong rtt estimation.
1313 */
1314 if (tp->repair)
1315 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1316 }
1317
1318 /* Try to append data to the end of skb. */
1319 if (copy > msg_data_left(msg))
1320 copy = msg_data_left(msg);
1321
1322 /* Where to copy to? */
1323 if (skb_availroom(skb) > 0 && !zc) {
1324 /* We have some space in skb head. Superb! */
1325 copy = min_t(int, copy, skb_availroom(skb));
1326 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1327 if (err)
1328 goto do_fault;
1329 } else if (!zc) {
1330 bool merge = true;
1331 int i = skb_shinfo(skb)->nr_frags;
1332 struct page_frag *pfrag = sk_page_frag(sk);
1333
1334 if (!sk_page_frag_refill(sk, pfrag))
1335 goto wait_for_space;
1336
1337 if (!skb_can_coalesce(skb, i, pfrag->page,
1338 pfrag->offset)) {
1339 if (i >= sysctl_max_skb_frags) {
1340 tcp_mark_push(tp, skb);
1341 goto new_segment;
1342 }
1343 merge = false;
1344 }
1345
1346 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1347
1348 if (!sk_wmem_schedule(sk, copy))
1349 goto wait_for_space;
1350
1351 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1352 pfrag->page,
1353 pfrag->offset,
1354 copy);
1355 if (err)
1356 goto do_error;
1357
1358 /* Update the skb. */
1359 if (merge) {
1360 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1361 } else {
1362 skb_fill_page_desc(skb, i, pfrag->page,
1363 pfrag->offset, copy);
1364 page_ref_inc(pfrag->page);
1365 }
1366 pfrag->offset += copy;
1367 } else {
1368 if (!sk_wmem_schedule(sk, copy))
1369 goto wait_for_space;
1370
1371 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1372 if (err == -EMSGSIZE || err == -EEXIST) {
1373 tcp_mark_push(tp, skb);
1374 goto new_segment;
1375 }
1376 if (err < 0)
1377 goto do_error;
1378 copy = err;
1379 }
1380
1381 if (!copied)
1382 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1383
1384 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1385 TCP_SKB_CB(skb)->end_seq += copy;
1386 tcp_skb_pcount_set(skb, 0);
1387
1388 copied += copy;
1389 if (!msg_data_left(msg)) {
1390 if (unlikely(flags & MSG_EOR))
1391 TCP_SKB_CB(skb)->eor = 1;
1392 goto out;
1393 }
1394
1395 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1396 continue;
1397
1398 if (forced_push(tp)) {
1399 tcp_mark_push(tp, skb);
1400 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1401 } else if (skb == tcp_send_head(sk))
1402 tcp_push_one(sk, mss_now);
1403 continue;
1404
1405 wait_for_space:
1406 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1407 if (copied)
1408 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1409 TCP_NAGLE_PUSH, size_goal);
1410
1411 err = sk_stream_wait_memory(sk, &timeo);
1412 if (err != 0)
1413 goto do_error;
1414
1415 mss_now = tcp_send_mss(sk, &size_goal, flags);
1416 }
1417
1418 out:
1419 if (copied) {
1420 tcp_tx_timestamp(sk, sockc.tsflags);
1421 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1422 }
1423 out_nopush:
1424 sock_zerocopy_put(uarg);
1425 return copied + copied_syn;
1426
1427 do_error:
1428 skb = tcp_write_queue_tail(sk);
1429 do_fault:
1430 tcp_remove_empty_skb(sk, skb);
1431
1432 if (copied + copied_syn)
1433 goto out;
1434 out_err:
1435 sock_zerocopy_put_abort(uarg, true);
1436 err = sk_stream_error(sk, flags, err);
1437 /* make sure we wake any epoll edge trigger waiter */
1438 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1439 sk->sk_write_space(sk);
1440 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1441 }
1442 return err;
1443 }
1444 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1445
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1446 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1447 {
1448 int ret;
1449
1450 lock_sock(sk);
1451 ret = tcp_sendmsg_locked(sk, msg, size);
1452 release_sock(sk);
1453
1454 return ret;
1455 }
1456 EXPORT_SYMBOL(tcp_sendmsg);
1457
1458 /*
1459 * Handle reading urgent data. BSD has very simple semantics for
1460 * this, no blocking and very strange errors 8)
1461 */
1462
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1463 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1464 {
1465 struct tcp_sock *tp = tcp_sk(sk);
1466
1467 /* No URG data to read. */
1468 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1469 tp->urg_data == TCP_URG_READ)
1470 return -EINVAL; /* Yes this is right ! */
1471
1472 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1473 return -ENOTCONN;
1474
1475 if (tp->urg_data & TCP_URG_VALID) {
1476 int err = 0;
1477 char c = tp->urg_data;
1478
1479 if (!(flags & MSG_PEEK))
1480 tp->urg_data = TCP_URG_READ;
1481
1482 /* Read urgent data. */
1483 msg->msg_flags |= MSG_OOB;
1484
1485 if (len > 0) {
1486 if (!(flags & MSG_TRUNC))
1487 err = memcpy_to_msg(msg, &c, 1);
1488 len = 1;
1489 } else
1490 msg->msg_flags |= MSG_TRUNC;
1491
1492 return err ? -EFAULT : len;
1493 }
1494
1495 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1496 return 0;
1497
1498 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1499 * the available implementations agree in this case:
1500 * this call should never block, independent of the
1501 * blocking state of the socket.
1502 * Mike <pall@rz.uni-karlsruhe.de>
1503 */
1504 return -EAGAIN;
1505 }
1506
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1507 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1508 {
1509 struct sk_buff *skb;
1510 int copied = 0, err = 0;
1511
1512 /* XXX -- need to support SO_PEEK_OFF */
1513
1514 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1515 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1516 if (err)
1517 return err;
1518 copied += skb->len;
1519 }
1520
1521 skb_queue_walk(&sk->sk_write_queue, skb) {
1522 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1523 if (err)
1524 break;
1525
1526 copied += skb->len;
1527 }
1528
1529 return err ?: copied;
1530 }
1531
1532 /* Clean up the receive buffer for full frames taken by the user,
1533 * then send an ACK if necessary. COPIED is the number of bytes
1534 * tcp_recvmsg has given to the user so far, it speeds up the
1535 * calculation of whether or not we must ACK for the sake of
1536 * a window update.
1537 */
tcp_cleanup_rbuf(struct sock * sk,int copied)1538 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1539 {
1540 struct tcp_sock *tp = tcp_sk(sk);
1541 bool time_to_ack = false;
1542
1543 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1544
1545 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1546 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1547 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1548
1549 if (inet_csk_ack_scheduled(sk)) {
1550 const struct inet_connection_sock *icsk = inet_csk(sk);
1551
1552 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1553 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1554 /*
1555 * If this read emptied read buffer, we send ACK, if
1556 * connection is not bidirectional, user drained
1557 * receive buffer and there was a small segment
1558 * in queue.
1559 */
1560 (copied > 0 &&
1561 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1562 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1563 !inet_csk_in_pingpong_mode(sk))) &&
1564 !atomic_read(&sk->sk_rmem_alloc)))
1565 time_to_ack = true;
1566 }
1567
1568 /* We send an ACK if we can now advertise a non-zero window
1569 * which has been raised "significantly".
1570 *
1571 * Even if window raised up to infinity, do not send window open ACK
1572 * in states, where we will not receive more. It is useless.
1573 */
1574 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1575 __u32 rcv_window_now = tcp_receive_window(tp);
1576
1577 /* Optimize, __tcp_select_window() is not cheap. */
1578 if (2*rcv_window_now <= tp->window_clamp) {
1579 __u32 new_window = __tcp_select_window(sk);
1580
1581 /* Send ACK now, if this read freed lots of space
1582 * in our buffer. Certainly, new_window is new window.
1583 * We can advertise it now, if it is not less than current one.
1584 * "Lots" means "at least twice" here.
1585 */
1586 if (new_window && new_window >= 2 * rcv_window_now)
1587 time_to_ack = true;
1588 }
1589 }
1590 if (time_to_ack)
1591 tcp_send_ack(sk);
1592 }
1593
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1594 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1595 {
1596 struct sk_buff *skb;
1597 u32 offset;
1598
1599 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1600 offset = seq - TCP_SKB_CB(skb)->seq;
1601 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1602 pr_err_once("%s: found a SYN, please report !\n", __func__);
1603 offset--;
1604 }
1605 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1606 *off = offset;
1607 return skb;
1608 }
1609 /* This looks weird, but this can happen if TCP collapsing
1610 * splitted a fat GRO packet, while we released socket lock
1611 * in skb_splice_bits()
1612 */
1613 sk_eat_skb(sk, skb);
1614 }
1615 return NULL;
1616 }
1617
1618 /*
1619 * This routine provides an alternative to tcp_recvmsg() for routines
1620 * that would like to handle copying from skbuffs directly in 'sendfile'
1621 * fashion.
1622 * Note:
1623 * - It is assumed that the socket was locked by the caller.
1624 * - The routine does not block.
1625 * - At present, there is no support for reading OOB data
1626 * or for 'peeking' the socket using this routine
1627 * (although both would be easy to implement).
1628 */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1629 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1630 sk_read_actor_t recv_actor)
1631 {
1632 struct sk_buff *skb;
1633 struct tcp_sock *tp = tcp_sk(sk);
1634 u32 seq = tp->copied_seq;
1635 u32 offset;
1636 int copied = 0;
1637
1638 if (sk->sk_state == TCP_LISTEN)
1639 return -ENOTCONN;
1640 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1641 if (offset < skb->len) {
1642 int used;
1643 size_t len;
1644
1645 len = skb->len - offset;
1646 /* Stop reading if we hit a patch of urgent data */
1647 if (tp->urg_data) {
1648 u32 urg_offset = tp->urg_seq - seq;
1649 if (urg_offset < len)
1650 len = urg_offset;
1651 if (!len)
1652 break;
1653 }
1654 used = recv_actor(desc, skb, offset, len);
1655 if (used <= 0) {
1656 if (!copied)
1657 copied = used;
1658 break;
1659 }
1660 if (WARN_ON_ONCE(used > len))
1661 used = len;
1662 seq += used;
1663 copied += used;
1664 offset += used;
1665
1666 /* If recv_actor drops the lock (e.g. TCP splice
1667 * receive) the skb pointer might be invalid when
1668 * getting here: tcp_collapse might have deleted it
1669 * while aggregating skbs from the socket queue.
1670 */
1671 skb = tcp_recv_skb(sk, seq - 1, &offset);
1672 if (!skb)
1673 break;
1674 /* TCP coalescing might have appended data to the skb.
1675 * Try to splice more frags
1676 */
1677 if (offset + 1 != skb->len)
1678 continue;
1679 }
1680 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1681 sk_eat_skb(sk, skb);
1682 ++seq;
1683 break;
1684 }
1685 sk_eat_skb(sk, skb);
1686 if (!desc->count)
1687 break;
1688 WRITE_ONCE(tp->copied_seq, seq);
1689 }
1690 WRITE_ONCE(tp->copied_seq, seq);
1691
1692 tcp_rcv_space_adjust(sk);
1693
1694 /* Clean up data we have read: This will do ACK frames. */
1695 if (copied > 0) {
1696 tcp_recv_skb(sk, seq, &offset);
1697 tcp_cleanup_rbuf(sk, copied);
1698 }
1699 return copied;
1700 }
1701 EXPORT_SYMBOL(tcp_read_sock);
1702
tcp_peek_len(struct socket * sock)1703 int tcp_peek_len(struct socket *sock)
1704 {
1705 return tcp_inq(sock->sk);
1706 }
1707 EXPORT_SYMBOL(tcp_peek_len);
1708
1709 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1710 int tcp_set_rcvlowat(struct sock *sk, int val)
1711 {
1712 int cap;
1713
1714 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1715 cap = sk->sk_rcvbuf >> 1;
1716 else
1717 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1718 val = min(val, cap);
1719 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1720
1721 /* Check if we need to signal EPOLLIN right now */
1722 tcp_data_ready(sk);
1723
1724 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1725 return 0;
1726
1727 val <<= 1;
1728 if (val > sk->sk_rcvbuf) {
1729 WRITE_ONCE(sk->sk_rcvbuf, val);
1730 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1731 }
1732 return 0;
1733 }
1734 EXPORT_SYMBOL(tcp_set_rcvlowat);
1735
1736 #ifdef CONFIG_MMU
1737 static const struct vm_operations_struct tcp_vm_ops = {
1738 };
1739
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1740 int tcp_mmap(struct file *file, struct socket *sock,
1741 struct vm_area_struct *vma)
1742 {
1743 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1744 return -EPERM;
1745 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1746
1747 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1748 vma->vm_flags |= VM_MIXEDMAP;
1749
1750 vma->vm_ops = &tcp_vm_ops;
1751 return 0;
1752 }
1753 EXPORT_SYMBOL(tcp_mmap);
1754
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1755 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1756 u32 *offset_frag)
1757 {
1758 skb_frag_t *frag;
1759
1760 if (unlikely(offset_skb >= skb->len))
1761 return NULL;
1762
1763 offset_skb -= skb_headlen(skb);
1764 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1765 return NULL;
1766
1767 frag = skb_shinfo(skb)->frags;
1768 while (offset_skb) {
1769 if (skb_frag_size(frag) > offset_skb) {
1770 *offset_frag = offset_skb;
1771 return frag;
1772 }
1773 offset_skb -= skb_frag_size(frag);
1774 ++frag;
1775 }
1776 *offset_frag = 0;
1777 return frag;
1778 }
1779
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1780 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1781 struct sk_buff *skb, u32 copylen,
1782 u32 *offset, u32 *seq)
1783 {
1784 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1785 struct msghdr msg = {};
1786 struct iovec iov;
1787 int err;
1788
1789 if (copy_address != zc->copybuf_address)
1790 return -EINVAL;
1791
1792 err = import_single_range(READ, (void __user *)copy_address,
1793 copylen, &iov, &msg.msg_iter);
1794 if (err)
1795 return err;
1796 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1797 if (err)
1798 return err;
1799 zc->recv_skip_hint -= copylen;
1800 *offset += copylen;
1801 *seq += copylen;
1802 return (__s32)copylen;
1803 }
1804
tcp_zerocopy_handle_leftover_data(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len)1805 static int tcp_zerocopy_handle_leftover_data(struct tcp_zerocopy_receive *zc,
1806 struct sock *sk,
1807 struct sk_buff *skb,
1808 u32 *seq,
1809 s32 copybuf_len)
1810 {
1811 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1812
1813 if (!copylen)
1814 return 0;
1815 /* skb is null if inq < PAGE_SIZE. */
1816 if (skb)
1817 offset = *seq - TCP_SKB_CB(skb)->seq;
1818 else
1819 skb = tcp_recv_skb(sk, *seq, &offset);
1820
1821 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1822 seq);
1823 return zc->copybuf_len < 0 ? 0 : copylen;
1824 }
1825
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned long pages_to_map,unsigned long * insert_addr,u32 * length_with_pending,u32 * seq,struct tcp_zerocopy_receive * zc)1826 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1827 struct page **pages,
1828 unsigned long pages_to_map,
1829 unsigned long *insert_addr,
1830 u32 *length_with_pending,
1831 u32 *seq,
1832 struct tcp_zerocopy_receive *zc)
1833 {
1834 unsigned long pages_remaining = pages_to_map;
1835 int bytes_mapped;
1836 int ret;
1837
1838 ret = vm_insert_pages(vma, *insert_addr, pages, &pages_remaining);
1839 bytes_mapped = PAGE_SIZE * (pages_to_map - pages_remaining);
1840 /* Even if vm_insert_pages fails, it may have partially succeeded in
1841 * mapping (some but not all of the pages).
1842 */
1843 *seq += bytes_mapped;
1844 *insert_addr += bytes_mapped;
1845 if (ret) {
1846 /* But if vm_insert_pages did fail, we have to unroll some state
1847 * we speculatively touched before.
1848 */
1849 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1850 *length_with_pending -= bytes_not_mapped;
1851 zc->recv_skip_hint += bytes_not_mapped;
1852 }
1853 return ret;
1854 }
1855
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc)1856 static int tcp_zerocopy_receive(struct sock *sk,
1857 struct tcp_zerocopy_receive *zc)
1858 {
1859 u32 length = 0, offset, vma_len, avail_len, aligned_len, copylen = 0;
1860 unsigned long address = (unsigned long)zc->address;
1861 s32 copybuf_len = zc->copybuf_len;
1862 struct tcp_sock *tp = tcp_sk(sk);
1863 #define PAGE_BATCH_SIZE 8
1864 struct page *pages[PAGE_BATCH_SIZE];
1865 const skb_frag_t *frags = NULL;
1866 struct vm_area_struct *vma;
1867 struct sk_buff *skb = NULL;
1868 unsigned long pg_idx = 0;
1869 unsigned long curr_addr;
1870 u32 seq = tp->copied_seq;
1871 int inq = tcp_inq(sk);
1872 int ret;
1873
1874 zc->copybuf_len = 0;
1875
1876 if (address & (PAGE_SIZE - 1) || address != zc->address)
1877 return -EINVAL;
1878
1879 if (sk->sk_state == TCP_LISTEN)
1880 return -ENOTCONN;
1881
1882 sock_rps_record_flow(sk);
1883
1884 mmap_read_lock(current->mm);
1885
1886 vma = find_vma(current->mm, address);
1887 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) {
1888 mmap_read_unlock(current->mm);
1889 return -EINVAL;
1890 }
1891 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
1892 avail_len = min_t(u32, vma_len, inq);
1893 aligned_len = avail_len & ~(PAGE_SIZE - 1);
1894 if (aligned_len) {
1895 zap_page_range(vma, address, aligned_len);
1896 zc->length = aligned_len;
1897 zc->recv_skip_hint = 0;
1898 } else {
1899 zc->length = avail_len;
1900 zc->recv_skip_hint = avail_len;
1901 }
1902 ret = 0;
1903 curr_addr = address;
1904 while (length + PAGE_SIZE <= zc->length) {
1905 if (zc->recv_skip_hint < PAGE_SIZE) {
1906 u32 offset_frag;
1907
1908 /* If we're here, finish the current batch. */
1909 if (pg_idx) {
1910 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
1911 pg_idx,
1912 &curr_addr,
1913 &length,
1914 &seq, zc);
1915 if (ret)
1916 goto out;
1917 pg_idx = 0;
1918 }
1919 if (skb) {
1920 if (zc->recv_skip_hint > 0)
1921 break;
1922 skb = skb->next;
1923 offset = seq - TCP_SKB_CB(skb)->seq;
1924 } else {
1925 skb = tcp_recv_skb(sk, seq, &offset);
1926 }
1927 zc->recv_skip_hint = skb->len - offset;
1928 frags = skb_advance_to_frag(skb, offset, &offset_frag);
1929 if (!frags || offset_frag)
1930 break;
1931 }
1932 if (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags)) {
1933 int remaining = zc->recv_skip_hint;
1934
1935 while (remaining && (skb_frag_size(frags) != PAGE_SIZE ||
1936 skb_frag_off(frags))) {
1937 remaining -= skb_frag_size(frags);
1938 frags++;
1939 }
1940 zc->recv_skip_hint -= remaining;
1941 break;
1942 }
1943 pages[pg_idx] = skb_frag_page(frags);
1944 pg_idx++;
1945 length += PAGE_SIZE;
1946 zc->recv_skip_hint -= PAGE_SIZE;
1947 frags++;
1948 if (pg_idx == PAGE_BATCH_SIZE) {
1949 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
1950 &curr_addr, &length,
1951 &seq, zc);
1952 if (ret)
1953 goto out;
1954 pg_idx = 0;
1955 }
1956 }
1957 if (pg_idx) {
1958 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
1959 &curr_addr, &length, &seq,
1960 zc);
1961 }
1962 out:
1963 mmap_read_unlock(current->mm);
1964 /* Try to copy straggler data. */
1965 if (!ret)
1966 copylen = tcp_zerocopy_handle_leftover_data(zc, sk, skb, &seq,
1967 copybuf_len);
1968
1969 if (length + copylen) {
1970 WRITE_ONCE(tp->copied_seq, seq);
1971 tcp_rcv_space_adjust(sk);
1972
1973 /* Clean up data we have read: This will do ACK frames. */
1974 tcp_recv_skb(sk, seq, &offset);
1975 tcp_cleanup_rbuf(sk, length + copylen);
1976 ret = 0;
1977 if (length == zc->length)
1978 zc->recv_skip_hint = 0;
1979 } else {
1980 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1981 ret = -EIO;
1982 }
1983 zc->length = length;
1984 return ret;
1985 }
1986 #endif
1987
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1988 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1989 struct scm_timestamping_internal *tss)
1990 {
1991 if (skb->tstamp)
1992 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1993 else
1994 tss->ts[0] = (struct timespec64) {0};
1995
1996 if (skb_hwtstamps(skb)->hwtstamp)
1997 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1998 else
1999 tss->ts[2] = (struct timespec64) {0};
2000 }
2001
2002 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2003 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2004 struct scm_timestamping_internal *tss)
2005 {
2006 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2007 bool has_timestamping = false;
2008
2009 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2010 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2011 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2012 if (new_tstamp) {
2013 struct __kernel_timespec kts = {
2014 .tv_sec = tss->ts[0].tv_sec,
2015 .tv_nsec = tss->ts[0].tv_nsec,
2016 };
2017 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2018 sizeof(kts), &kts);
2019 } else {
2020 struct __kernel_old_timespec ts_old = {
2021 .tv_sec = tss->ts[0].tv_sec,
2022 .tv_nsec = tss->ts[0].tv_nsec,
2023 };
2024 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2025 sizeof(ts_old), &ts_old);
2026 }
2027 } else {
2028 if (new_tstamp) {
2029 struct __kernel_sock_timeval stv = {
2030 .tv_sec = tss->ts[0].tv_sec,
2031 .tv_usec = tss->ts[0].tv_nsec / 1000,
2032 };
2033 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2034 sizeof(stv), &stv);
2035 } else {
2036 struct __kernel_old_timeval tv = {
2037 .tv_sec = tss->ts[0].tv_sec,
2038 .tv_usec = tss->ts[0].tv_nsec / 1000,
2039 };
2040 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2041 sizeof(tv), &tv);
2042 }
2043 }
2044 }
2045
2046 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2047 has_timestamping = true;
2048 else
2049 tss->ts[0] = (struct timespec64) {0};
2050 }
2051
2052 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2053 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2054 has_timestamping = true;
2055 else
2056 tss->ts[2] = (struct timespec64) {0};
2057 }
2058
2059 if (has_timestamping) {
2060 tss->ts[1] = (struct timespec64) {0};
2061 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2062 put_cmsg_scm_timestamping64(msg, tss);
2063 else
2064 put_cmsg_scm_timestamping(msg, tss);
2065 }
2066 }
2067
tcp_inq_hint(struct sock * sk)2068 static int tcp_inq_hint(struct sock *sk)
2069 {
2070 const struct tcp_sock *tp = tcp_sk(sk);
2071 u32 copied_seq = READ_ONCE(tp->copied_seq);
2072 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2073 int inq;
2074
2075 inq = rcv_nxt - copied_seq;
2076 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2077 lock_sock(sk);
2078 inq = tp->rcv_nxt - tp->copied_seq;
2079 release_sock(sk);
2080 }
2081 /* After receiving a FIN, tell the user-space to continue reading
2082 * by returning a non-zero inq.
2083 */
2084 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2085 inq = 1;
2086 return inq;
2087 }
2088
2089 /*
2090 * This routine copies from a sock struct into the user buffer.
2091 *
2092 * Technical note: in 2.3 we work on _locked_ socket, so that
2093 * tricks with *seq access order and skb->users are not required.
2094 * Probably, code can be easily improved even more.
2095 */
2096
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)2097 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2098 int flags, int *addr_len)
2099 {
2100 struct tcp_sock *tp = tcp_sk(sk);
2101 int copied = 0;
2102 u32 peek_seq;
2103 u32 *seq;
2104 unsigned long used;
2105 int err, inq;
2106 int target; /* Read at least this many bytes */
2107 long timeo;
2108 struct sk_buff *skb, *last;
2109 u32 urg_hole = 0;
2110 struct scm_timestamping_internal tss;
2111 int cmsg_flags;
2112
2113 if (unlikely(flags & MSG_ERRQUEUE))
2114 return inet_recv_error(sk, msg, len, addr_len);
2115
2116 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2117 (sk->sk_state == TCP_ESTABLISHED))
2118 sk_busy_loop(sk, nonblock);
2119
2120 lock_sock(sk);
2121
2122 err = -ENOTCONN;
2123 if (sk->sk_state == TCP_LISTEN)
2124 goto out;
2125
2126 cmsg_flags = tp->recvmsg_inq ? 1 : 0;
2127 timeo = sock_rcvtimeo(sk, nonblock);
2128
2129 /* Urgent data needs to be handled specially. */
2130 if (flags & MSG_OOB)
2131 goto recv_urg;
2132
2133 if (unlikely(tp->repair)) {
2134 err = -EPERM;
2135 if (!(flags & MSG_PEEK))
2136 goto out;
2137
2138 if (tp->repair_queue == TCP_SEND_QUEUE)
2139 goto recv_sndq;
2140
2141 err = -EINVAL;
2142 if (tp->repair_queue == TCP_NO_QUEUE)
2143 goto out;
2144
2145 /* 'common' recv queue MSG_PEEK-ing */
2146 }
2147
2148 seq = &tp->copied_seq;
2149 if (flags & MSG_PEEK) {
2150 peek_seq = tp->copied_seq;
2151 seq = &peek_seq;
2152 }
2153
2154 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2155
2156 do {
2157 u32 offset;
2158
2159 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2160 if (tp->urg_data && tp->urg_seq == *seq) {
2161 if (copied)
2162 break;
2163 if (signal_pending(current)) {
2164 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2165 break;
2166 }
2167 }
2168
2169 /* Next get a buffer. */
2170
2171 last = skb_peek_tail(&sk->sk_receive_queue);
2172 skb_queue_walk(&sk->sk_receive_queue, skb) {
2173 last = skb;
2174 /* Now that we have two receive queues this
2175 * shouldn't happen.
2176 */
2177 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2178 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2179 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2180 flags))
2181 break;
2182
2183 offset = *seq - TCP_SKB_CB(skb)->seq;
2184 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2185 pr_err_once("%s: found a SYN, please report !\n", __func__);
2186 offset--;
2187 }
2188 if (offset < skb->len)
2189 goto found_ok_skb;
2190 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2191 goto found_fin_ok;
2192 WARN(!(flags & MSG_PEEK),
2193 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2194 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2195 }
2196
2197 /* Well, if we have backlog, try to process it now yet. */
2198
2199 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2200 break;
2201
2202 if (copied) {
2203 if (sk->sk_err ||
2204 sk->sk_state == TCP_CLOSE ||
2205 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2206 !timeo ||
2207 signal_pending(current))
2208 break;
2209 } else {
2210 if (sock_flag(sk, SOCK_DONE))
2211 break;
2212
2213 if (sk->sk_err) {
2214 copied = sock_error(sk);
2215 break;
2216 }
2217
2218 if (sk->sk_shutdown & RCV_SHUTDOWN)
2219 break;
2220
2221 if (sk->sk_state == TCP_CLOSE) {
2222 /* This occurs when user tries to read
2223 * from never connected socket.
2224 */
2225 copied = -ENOTCONN;
2226 break;
2227 }
2228
2229 if (!timeo) {
2230 copied = -EAGAIN;
2231 break;
2232 }
2233
2234 if (signal_pending(current)) {
2235 copied = sock_intr_errno(timeo);
2236 break;
2237 }
2238 }
2239
2240 tcp_cleanup_rbuf(sk, copied);
2241
2242 if (copied >= target) {
2243 /* Do not sleep, just process backlog. */
2244 release_sock(sk);
2245 lock_sock(sk);
2246 } else {
2247 sk_wait_data(sk, &timeo, last);
2248 }
2249
2250 if ((flags & MSG_PEEK) &&
2251 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2252 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2253 current->comm,
2254 task_pid_nr(current));
2255 peek_seq = tp->copied_seq;
2256 }
2257 continue;
2258
2259 found_ok_skb:
2260 /* Ok so how much can we use? */
2261 used = skb->len - offset;
2262 if (len < used)
2263 used = len;
2264
2265 /* Do we have urgent data here? */
2266 if (tp->urg_data) {
2267 u32 urg_offset = tp->urg_seq - *seq;
2268 if (urg_offset < used) {
2269 if (!urg_offset) {
2270 if (!sock_flag(sk, SOCK_URGINLINE)) {
2271 WRITE_ONCE(*seq, *seq + 1);
2272 urg_hole++;
2273 offset++;
2274 used--;
2275 if (!used)
2276 goto skip_copy;
2277 }
2278 } else
2279 used = urg_offset;
2280 }
2281 }
2282
2283 if (!(flags & MSG_TRUNC)) {
2284 err = skb_copy_datagram_msg(skb, offset, msg, used);
2285 if (err) {
2286 /* Exception. Bailout! */
2287 if (!copied)
2288 copied = -EFAULT;
2289 break;
2290 }
2291 }
2292
2293 WRITE_ONCE(*seq, *seq + used);
2294 copied += used;
2295 len -= used;
2296
2297 tcp_rcv_space_adjust(sk);
2298
2299 skip_copy:
2300 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2301 tp->urg_data = 0;
2302 tcp_fast_path_check(sk);
2303 }
2304
2305 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2306 tcp_update_recv_tstamps(skb, &tss);
2307 cmsg_flags |= 2;
2308 }
2309
2310 if (used + offset < skb->len)
2311 continue;
2312
2313 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2314 goto found_fin_ok;
2315 if (!(flags & MSG_PEEK))
2316 sk_eat_skb(sk, skb);
2317 continue;
2318
2319 found_fin_ok:
2320 /* Process the FIN. */
2321 WRITE_ONCE(*seq, *seq + 1);
2322 if (!(flags & MSG_PEEK))
2323 sk_eat_skb(sk, skb);
2324 break;
2325 } while (len > 0);
2326
2327 /* According to UNIX98, msg_name/msg_namelen are ignored
2328 * on connected socket. I was just happy when found this 8) --ANK
2329 */
2330
2331 /* Clean up data we have read: This will do ACK frames. */
2332 tcp_cleanup_rbuf(sk, copied);
2333
2334 release_sock(sk);
2335
2336 if (cmsg_flags) {
2337 if (cmsg_flags & 2)
2338 tcp_recv_timestamp(msg, sk, &tss);
2339 if (cmsg_flags & 1) {
2340 inq = tcp_inq_hint(sk);
2341 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2342 }
2343 }
2344
2345 return copied;
2346
2347 out:
2348 release_sock(sk);
2349 return err;
2350
2351 recv_urg:
2352 err = tcp_recv_urg(sk, msg, len, flags);
2353 goto out;
2354
2355 recv_sndq:
2356 err = tcp_peek_sndq(sk, msg, len);
2357 goto out;
2358 }
2359 EXPORT_SYMBOL(tcp_recvmsg);
2360
tcp_set_state(struct sock * sk,int state)2361 void tcp_set_state(struct sock *sk, int state)
2362 {
2363 int oldstate = sk->sk_state;
2364
2365 /* We defined a new enum for TCP states that are exported in BPF
2366 * so as not force the internal TCP states to be frozen. The
2367 * following checks will detect if an internal state value ever
2368 * differs from the BPF value. If this ever happens, then we will
2369 * need to remap the internal value to the BPF value before calling
2370 * tcp_call_bpf_2arg.
2371 */
2372 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2373 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2374 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2375 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2376 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2377 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2378 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2379 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2380 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2381 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2382 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2383 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2384 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2385
2386 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2387 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2388
2389 switch (state) {
2390 case TCP_ESTABLISHED:
2391 if (oldstate != TCP_ESTABLISHED)
2392 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2393 break;
2394
2395 case TCP_CLOSE:
2396 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2397 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2398
2399 sk->sk_prot->unhash(sk);
2400 if (inet_csk(sk)->icsk_bind_hash &&
2401 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2402 inet_put_port(sk);
2403 fallthrough;
2404 default:
2405 if (oldstate == TCP_ESTABLISHED)
2406 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2407 }
2408
2409 /* Change state AFTER socket is unhashed to avoid closed
2410 * socket sitting in hash tables.
2411 */
2412 inet_sk_state_store(sk, state);
2413 }
2414 EXPORT_SYMBOL_GPL(tcp_set_state);
2415
2416 /*
2417 * State processing on a close. This implements the state shift for
2418 * sending our FIN frame. Note that we only send a FIN for some
2419 * states. A shutdown() may have already sent the FIN, or we may be
2420 * closed.
2421 */
2422
2423 static const unsigned char new_state[16] = {
2424 /* current state: new state: action: */
2425 [0 /* (Invalid) */] = TCP_CLOSE,
2426 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2427 [TCP_SYN_SENT] = TCP_CLOSE,
2428 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2429 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2430 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2431 [TCP_TIME_WAIT] = TCP_CLOSE,
2432 [TCP_CLOSE] = TCP_CLOSE,
2433 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2434 [TCP_LAST_ACK] = TCP_LAST_ACK,
2435 [TCP_LISTEN] = TCP_CLOSE,
2436 [TCP_CLOSING] = TCP_CLOSING,
2437 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2438 };
2439
tcp_close_state(struct sock * sk)2440 static int tcp_close_state(struct sock *sk)
2441 {
2442 int next = (int)new_state[sk->sk_state];
2443 int ns = next & TCP_STATE_MASK;
2444
2445 tcp_set_state(sk, ns);
2446
2447 return next & TCP_ACTION_FIN;
2448 }
2449
2450 /*
2451 * Shutdown the sending side of a connection. Much like close except
2452 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2453 */
2454
tcp_shutdown(struct sock * sk,int how)2455 void tcp_shutdown(struct sock *sk, int how)
2456 {
2457 /* We need to grab some memory, and put together a FIN,
2458 * and then put it into the queue to be sent.
2459 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2460 */
2461 if (!(how & SEND_SHUTDOWN))
2462 return;
2463
2464 /* If we've already sent a FIN, or it's a closed state, skip this. */
2465 if ((1 << sk->sk_state) &
2466 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2467 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2468 /* Clear out any half completed packets. FIN if needed. */
2469 if (tcp_close_state(sk))
2470 tcp_send_fin(sk);
2471 }
2472 }
2473 EXPORT_SYMBOL(tcp_shutdown);
2474
tcp_orphan_count_sum(void)2475 int tcp_orphan_count_sum(void)
2476 {
2477 int i, total = 0;
2478
2479 for_each_possible_cpu(i)
2480 total += per_cpu(tcp_orphan_count, i);
2481
2482 return max(total, 0);
2483 }
2484
2485 static int tcp_orphan_cache;
2486 static struct timer_list tcp_orphan_timer;
2487 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2488
tcp_orphan_update(struct timer_list * unused)2489 static void tcp_orphan_update(struct timer_list *unused)
2490 {
2491 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2492 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2493 }
2494
tcp_too_many_orphans(int shift)2495 static bool tcp_too_many_orphans(int shift)
2496 {
2497 return READ_ONCE(tcp_orphan_cache) << shift >
2498 READ_ONCE(sysctl_tcp_max_orphans);
2499 }
2500
tcp_check_oom(struct sock * sk,int shift)2501 bool tcp_check_oom(struct sock *sk, int shift)
2502 {
2503 bool too_many_orphans, out_of_socket_memory;
2504
2505 too_many_orphans = tcp_too_many_orphans(shift);
2506 out_of_socket_memory = tcp_out_of_memory(sk);
2507
2508 if (too_many_orphans)
2509 net_info_ratelimited("too many orphaned sockets\n");
2510 if (out_of_socket_memory)
2511 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2512 return too_many_orphans || out_of_socket_memory;
2513 }
2514
__tcp_close(struct sock * sk,long timeout)2515 void __tcp_close(struct sock *sk, long timeout)
2516 {
2517 struct sk_buff *skb;
2518 int data_was_unread = 0;
2519 int state;
2520
2521 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2522
2523 if (sk->sk_state == TCP_LISTEN) {
2524 tcp_set_state(sk, TCP_CLOSE);
2525
2526 /* Special case. */
2527 inet_csk_listen_stop(sk);
2528
2529 goto adjudge_to_death;
2530 }
2531
2532 /* We need to flush the recv. buffs. We do this only on the
2533 * descriptor close, not protocol-sourced closes, because the
2534 * reader process may not have drained the data yet!
2535 */
2536 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2537 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2538
2539 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2540 len--;
2541 data_was_unread += len;
2542 __kfree_skb(skb);
2543 }
2544
2545 sk_mem_reclaim(sk);
2546
2547 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2548 if (sk->sk_state == TCP_CLOSE)
2549 goto adjudge_to_death;
2550
2551 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2552 * data was lost. To witness the awful effects of the old behavior of
2553 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2554 * GET in an FTP client, suspend the process, wait for the client to
2555 * advertise a zero window, then kill -9 the FTP client, wheee...
2556 * Note: timeout is always zero in such a case.
2557 */
2558 if (unlikely(tcp_sk(sk)->repair)) {
2559 sk->sk_prot->disconnect(sk, 0);
2560 } else if (data_was_unread) {
2561 /* Unread data was tossed, zap the connection. */
2562 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2563 tcp_set_state(sk, TCP_CLOSE);
2564 tcp_send_active_reset(sk, sk->sk_allocation);
2565 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2566 /* Check zero linger _after_ checking for unread data. */
2567 sk->sk_prot->disconnect(sk, 0);
2568 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2569 } else if (tcp_close_state(sk)) {
2570 /* We FIN if the application ate all the data before
2571 * zapping the connection.
2572 */
2573
2574 /* RED-PEN. Formally speaking, we have broken TCP state
2575 * machine. State transitions:
2576 *
2577 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2578 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2579 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2580 *
2581 * are legal only when FIN has been sent (i.e. in window),
2582 * rather than queued out of window. Purists blame.
2583 *
2584 * F.e. "RFC state" is ESTABLISHED,
2585 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2586 *
2587 * The visible declinations are that sometimes
2588 * we enter time-wait state, when it is not required really
2589 * (harmless), do not send active resets, when they are
2590 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2591 * they look as CLOSING or LAST_ACK for Linux)
2592 * Probably, I missed some more holelets.
2593 * --ANK
2594 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2595 * in a single packet! (May consider it later but will
2596 * probably need API support or TCP_CORK SYN-ACK until
2597 * data is written and socket is closed.)
2598 */
2599 tcp_send_fin(sk);
2600 }
2601
2602 sk_stream_wait_close(sk, timeout);
2603
2604 adjudge_to_death:
2605 state = sk->sk_state;
2606 sock_hold(sk);
2607 sock_orphan(sk);
2608
2609 local_bh_disable();
2610 bh_lock_sock(sk);
2611 /* remove backlog if any, without releasing ownership. */
2612 __release_sock(sk);
2613
2614 this_cpu_inc(tcp_orphan_count);
2615
2616 /* Have we already been destroyed by a softirq or backlog? */
2617 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2618 goto out;
2619
2620 /* This is a (useful) BSD violating of the RFC. There is a
2621 * problem with TCP as specified in that the other end could
2622 * keep a socket open forever with no application left this end.
2623 * We use a 1 minute timeout (about the same as BSD) then kill
2624 * our end. If they send after that then tough - BUT: long enough
2625 * that we won't make the old 4*rto = almost no time - whoops
2626 * reset mistake.
2627 *
2628 * Nope, it was not mistake. It is really desired behaviour
2629 * f.e. on http servers, when such sockets are useless, but
2630 * consume significant resources. Let's do it with special
2631 * linger2 option. --ANK
2632 */
2633
2634 if (sk->sk_state == TCP_FIN_WAIT2) {
2635 struct tcp_sock *tp = tcp_sk(sk);
2636 if (tp->linger2 < 0) {
2637 tcp_set_state(sk, TCP_CLOSE);
2638 tcp_send_active_reset(sk, GFP_ATOMIC);
2639 __NET_INC_STATS(sock_net(sk),
2640 LINUX_MIB_TCPABORTONLINGER);
2641 } else {
2642 const int tmo = tcp_fin_time(sk);
2643
2644 if (tmo > TCP_TIMEWAIT_LEN) {
2645 inet_csk_reset_keepalive_timer(sk,
2646 tmo - TCP_TIMEWAIT_LEN);
2647 } else {
2648 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2649 goto out;
2650 }
2651 }
2652 }
2653 if (sk->sk_state != TCP_CLOSE) {
2654 sk_mem_reclaim(sk);
2655 if (tcp_check_oom(sk, 0)) {
2656 tcp_set_state(sk, TCP_CLOSE);
2657 tcp_send_active_reset(sk, GFP_ATOMIC);
2658 __NET_INC_STATS(sock_net(sk),
2659 LINUX_MIB_TCPABORTONMEMORY);
2660 } else if (!check_net(sock_net(sk))) {
2661 /* Not possible to send reset; just close */
2662 tcp_set_state(sk, TCP_CLOSE);
2663 }
2664 }
2665
2666 if (sk->sk_state == TCP_CLOSE) {
2667 struct request_sock *req;
2668
2669 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2670 lockdep_sock_is_held(sk));
2671 /* We could get here with a non-NULL req if the socket is
2672 * aborted (e.g., closed with unread data) before 3WHS
2673 * finishes.
2674 */
2675 if (req)
2676 reqsk_fastopen_remove(sk, req, false);
2677 inet_csk_destroy_sock(sk);
2678 }
2679 /* Otherwise, socket is reprieved until protocol close. */
2680
2681 out:
2682 bh_unlock_sock(sk);
2683 local_bh_enable();
2684 }
2685
tcp_close(struct sock * sk,long timeout)2686 void tcp_close(struct sock *sk, long timeout)
2687 {
2688 lock_sock(sk);
2689 __tcp_close(sk, timeout);
2690 release_sock(sk);
2691 sock_put(sk);
2692 }
2693 EXPORT_SYMBOL(tcp_close);
2694
2695 /* These states need RST on ABORT according to RFC793 */
2696
tcp_need_reset(int state)2697 static inline bool tcp_need_reset(int state)
2698 {
2699 return (1 << state) &
2700 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2701 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2702 }
2703
tcp_rtx_queue_purge(struct sock * sk)2704 static void tcp_rtx_queue_purge(struct sock *sk)
2705 {
2706 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2707
2708 tcp_sk(sk)->highest_sack = NULL;
2709 while (p) {
2710 struct sk_buff *skb = rb_to_skb(p);
2711
2712 p = rb_next(p);
2713 /* Since we are deleting whole queue, no need to
2714 * list_del(&skb->tcp_tsorted_anchor)
2715 */
2716 tcp_rtx_queue_unlink(skb, sk);
2717 sk_wmem_free_skb(sk, skb);
2718 }
2719 }
2720
tcp_write_queue_purge(struct sock * sk)2721 void tcp_write_queue_purge(struct sock *sk)
2722 {
2723 struct sk_buff *skb;
2724
2725 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2726 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2727 tcp_skb_tsorted_anchor_cleanup(skb);
2728 sk_wmem_free_skb(sk, skb);
2729 }
2730 tcp_rtx_queue_purge(sk);
2731 skb = sk->sk_tx_skb_cache;
2732 if (skb) {
2733 __kfree_skb(skb);
2734 sk->sk_tx_skb_cache = NULL;
2735 }
2736 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2737 sk_mem_reclaim(sk);
2738 tcp_clear_all_retrans_hints(tcp_sk(sk));
2739 tcp_sk(sk)->packets_out = 0;
2740 inet_csk(sk)->icsk_backoff = 0;
2741 }
2742
tcp_disconnect(struct sock * sk,int flags)2743 int tcp_disconnect(struct sock *sk, int flags)
2744 {
2745 struct inet_sock *inet = inet_sk(sk);
2746 struct inet_connection_sock *icsk = inet_csk(sk);
2747 struct tcp_sock *tp = tcp_sk(sk);
2748 int old_state = sk->sk_state;
2749 u32 seq;
2750
2751 /* Deny disconnect if other threads are blocked in sk_wait_event()
2752 * or inet_wait_for_connect().
2753 */
2754 if (sk->sk_wait_pending)
2755 return -EBUSY;
2756
2757 if (old_state != TCP_CLOSE)
2758 tcp_set_state(sk, TCP_CLOSE);
2759
2760 /* ABORT function of RFC793 */
2761 if (old_state == TCP_LISTEN) {
2762 inet_csk_listen_stop(sk);
2763 } else if (unlikely(tp->repair)) {
2764 sk->sk_err = ECONNABORTED;
2765 } else if (tcp_need_reset(old_state) ||
2766 (tp->snd_nxt != tp->write_seq &&
2767 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2768 /* The last check adjusts for discrepancy of Linux wrt. RFC
2769 * states
2770 */
2771 tcp_send_active_reset(sk, gfp_any());
2772 sk->sk_err = ECONNRESET;
2773 } else if (old_state == TCP_SYN_SENT)
2774 sk->sk_err = ECONNRESET;
2775
2776 tcp_clear_xmit_timers(sk);
2777 __skb_queue_purge(&sk->sk_receive_queue);
2778 if (sk->sk_rx_skb_cache) {
2779 __kfree_skb(sk->sk_rx_skb_cache);
2780 sk->sk_rx_skb_cache = NULL;
2781 }
2782 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2783 tp->urg_data = 0;
2784 tcp_write_queue_purge(sk);
2785 tcp_fastopen_active_disable_ofo_check(sk);
2786 skb_rbtree_purge(&tp->out_of_order_queue);
2787
2788 inet->inet_dport = 0;
2789
2790 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2791 inet_reset_saddr(sk);
2792
2793 WRITE_ONCE(sk->sk_shutdown, 0);
2794 sock_reset_flag(sk, SOCK_DONE);
2795 tp->srtt_us = 0;
2796 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2797 tp->rcv_rtt_last_tsecr = 0;
2798
2799 seq = tp->write_seq + tp->max_window + 2;
2800 if (!seq)
2801 seq = 1;
2802 WRITE_ONCE(tp->write_seq, seq);
2803
2804 icsk->icsk_backoff = 0;
2805 icsk->icsk_probes_out = 0;
2806 icsk->icsk_probes_tstamp = 0;
2807 icsk->icsk_rto = TCP_TIMEOUT_INIT;
2808 icsk->icsk_rto_min = TCP_RTO_MIN;
2809 icsk->icsk_delack_max = TCP_DELACK_MAX;
2810 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2811 tp->snd_cwnd = TCP_INIT_CWND;
2812 tp->snd_cwnd_cnt = 0;
2813 tp->is_cwnd_limited = 0;
2814 tp->max_packets_out = 0;
2815 tp->window_clamp = 0;
2816 tp->delivered = 0;
2817 tp->delivered_ce = 0;
2818 if (icsk->icsk_ca_ops->release)
2819 icsk->icsk_ca_ops->release(sk);
2820 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
2821 icsk->icsk_ca_initialized = 0;
2822 tcp_set_ca_state(sk, TCP_CA_Open);
2823 tp->is_sack_reneg = 0;
2824 tcp_clear_retrans(tp);
2825 tp->total_retrans = 0;
2826 inet_csk_delack_init(sk);
2827 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2828 * issue in __tcp_select_window()
2829 */
2830 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2831 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2832 __sk_dst_reset(sk);
2833 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
2834 tcp_saved_syn_free(tp);
2835 tp->compressed_ack = 0;
2836 tp->segs_in = 0;
2837 tp->segs_out = 0;
2838 tp->bytes_sent = 0;
2839 tp->bytes_acked = 0;
2840 tp->bytes_received = 0;
2841 tp->bytes_retrans = 0;
2842 tp->data_segs_in = 0;
2843 tp->data_segs_out = 0;
2844 tp->duplicate_sack[0].start_seq = 0;
2845 tp->duplicate_sack[0].end_seq = 0;
2846 tp->dsack_dups = 0;
2847 tp->reord_seen = 0;
2848 tp->retrans_out = 0;
2849 tp->sacked_out = 0;
2850 tp->tlp_high_seq = 0;
2851 tp->last_oow_ack_time = 0;
2852 /* There's a bubble in the pipe until at least the first ACK. */
2853 tp->app_limited = ~0U;
2854 tp->rate_app_limited = 1;
2855 tp->rack.mstamp = 0;
2856 tp->rack.advanced = 0;
2857 tp->rack.reo_wnd_steps = 1;
2858 tp->rack.last_delivered = 0;
2859 tp->rack.reo_wnd_persist = 0;
2860 tp->rack.dsack_seen = 0;
2861 tp->syn_data_acked = 0;
2862 tp->rx_opt.saw_tstamp = 0;
2863 tp->rx_opt.dsack = 0;
2864 tp->rx_opt.num_sacks = 0;
2865 tp->rcv_ooopack = 0;
2866
2867
2868 /* Clean up fastopen related fields */
2869 tcp_free_fastopen_req(tp);
2870 inet->defer_connect = 0;
2871 tp->fastopen_client_fail = 0;
2872
2873 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2874
2875 if (sk->sk_frag.page) {
2876 put_page(sk->sk_frag.page);
2877 sk->sk_frag.page = NULL;
2878 sk->sk_frag.offset = 0;
2879 }
2880
2881 sk->sk_error_report(sk);
2882 return 0;
2883 }
2884 EXPORT_SYMBOL(tcp_disconnect);
2885
tcp_can_repair_sock(const struct sock * sk)2886 static inline bool tcp_can_repair_sock(const struct sock *sk)
2887 {
2888 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2889 (sk->sk_state != TCP_LISTEN);
2890 }
2891
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)2892 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
2893 {
2894 struct tcp_repair_window opt;
2895
2896 if (!tp->repair)
2897 return -EPERM;
2898
2899 if (len != sizeof(opt))
2900 return -EINVAL;
2901
2902 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
2903 return -EFAULT;
2904
2905 if (opt.max_window < opt.snd_wnd)
2906 return -EINVAL;
2907
2908 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2909 return -EINVAL;
2910
2911 if (after(opt.rcv_wup, tp->rcv_nxt))
2912 return -EINVAL;
2913
2914 tp->snd_wl1 = opt.snd_wl1;
2915 tp->snd_wnd = opt.snd_wnd;
2916 tp->max_window = opt.max_window;
2917
2918 tp->rcv_wnd = opt.rcv_wnd;
2919 tp->rcv_wup = opt.rcv_wup;
2920
2921 return 0;
2922 }
2923
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)2924 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
2925 unsigned int len)
2926 {
2927 struct tcp_sock *tp = tcp_sk(sk);
2928 struct tcp_repair_opt opt;
2929 size_t offset = 0;
2930
2931 while (len >= sizeof(opt)) {
2932 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
2933 return -EFAULT;
2934
2935 offset += sizeof(opt);
2936 len -= sizeof(opt);
2937
2938 switch (opt.opt_code) {
2939 case TCPOPT_MSS:
2940 tp->rx_opt.mss_clamp = opt.opt_val;
2941 tcp_mtup_init(sk);
2942 break;
2943 case TCPOPT_WINDOW:
2944 {
2945 u16 snd_wscale = opt.opt_val & 0xFFFF;
2946 u16 rcv_wscale = opt.opt_val >> 16;
2947
2948 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2949 return -EFBIG;
2950
2951 tp->rx_opt.snd_wscale = snd_wscale;
2952 tp->rx_opt.rcv_wscale = rcv_wscale;
2953 tp->rx_opt.wscale_ok = 1;
2954 }
2955 break;
2956 case TCPOPT_SACK_PERM:
2957 if (opt.opt_val != 0)
2958 return -EINVAL;
2959
2960 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2961 break;
2962 case TCPOPT_TIMESTAMP:
2963 if (opt.opt_val != 0)
2964 return -EINVAL;
2965
2966 tp->rx_opt.tstamp_ok = 1;
2967 break;
2968 }
2969 }
2970
2971 return 0;
2972 }
2973
2974 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2975 EXPORT_SYMBOL(tcp_tx_delay_enabled);
2976
tcp_enable_tx_delay(void)2977 static void tcp_enable_tx_delay(void)
2978 {
2979 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
2980 static int __tcp_tx_delay_enabled = 0;
2981
2982 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
2983 static_branch_enable(&tcp_tx_delay_enabled);
2984 pr_info("TCP_TX_DELAY enabled\n");
2985 }
2986 }
2987 }
2988
2989 /* When set indicates to always queue non-full frames. Later the user clears
2990 * this option and we transmit any pending partial frames in the queue. This is
2991 * meant to be used alongside sendfile() to get properly filled frames when the
2992 * user (for example) must write out headers with a write() call first and then
2993 * use sendfile to send out the data parts.
2994 *
2995 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
2996 * TCP_NODELAY.
2997 */
__tcp_sock_set_cork(struct sock * sk,bool on)2998 static void __tcp_sock_set_cork(struct sock *sk, bool on)
2999 {
3000 struct tcp_sock *tp = tcp_sk(sk);
3001
3002 if (on) {
3003 tp->nonagle |= TCP_NAGLE_CORK;
3004 } else {
3005 tp->nonagle &= ~TCP_NAGLE_CORK;
3006 if (tp->nonagle & TCP_NAGLE_OFF)
3007 tp->nonagle |= TCP_NAGLE_PUSH;
3008 tcp_push_pending_frames(sk);
3009 }
3010 }
3011
tcp_sock_set_cork(struct sock * sk,bool on)3012 void tcp_sock_set_cork(struct sock *sk, bool on)
3013 {
3014 lock_sock(sk);
3015 __tcp_sock_set_cork(sk, on);
3016 release_sock(sk);
3017 }
3018 EXPORT_SYMBOL(tcp_sock_set_cork);
3019
3020 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3021 * remembered, but it is not activated until cork is cleared.
3022 *
3023 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3024 * even TCP_CORK for currently queued segments.
3025 */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3026 static void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3027 {
3028 if (on) {
3029 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3030 tcp_push_pending_frames(sk);
3031 } else {
3032 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3033 }
3034 }
3035
tcp_sock_set_nodelay(struct sock * sk)3036 void tcp_sock_set_nodelay(struct sock *sk)
3037 {
3038 lock_sock(sk);
3039 __tcp_sock_set_nodelay(sk, true);
3040 release_sock(sk);
3041 }
3042 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3043
__tcp_sock_set_quickack(struct sock * sk,int val)3044 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3045 {
3046 if (!val) {
3047 inet_csk_enter_pingpong_mode(sk);
3048 return;
3049 }
3050
3051 inet_csk_exit_pingpong_mode(sk);
3052 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3053 inet_csk_ack_scheduled(sk)) {
3054 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3055 tcp_cleanup_rbuf(sk, 1);
3056 if (!(val & 1))
3057 inet_csk_enter_pingpong_mode(sk);
3058 }
3059 }
3060
tcp_sock_set_quickack(struct sock * sk,int val)3061 void tcp_sock_set_quickack(struct sock *sk, int val)
3062 {
3063 lock_sock(sk);
3064 __tcp_sock_set_quickack(sk, val);
3065 release_sock(sk);
3066 }
3067 EXPORT_SYMBOL(tcp_sock_set_quickack);
3068
tcp_sock_set_syncnt(struct sock * sk,int val)3069 int tcp_sock_set_syncnt(struct sock *sk, int val)
3070 {
3071 if (val < 1 || val > MAX_TCP_SYNCNT)
3072 return -EINVAL;
3073
3074 lock_sock(sk);
3075 inet_csk(sk)->icsk_syn_retries = val;
3076 release_sock(sk);
3077 return 0;
3078 }
3079 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3080
tcp_sock_set_user_timeout(struct sock * sk,u32 val)3081 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3082 {
3083 lock_sock(sk);
3084 inet_csk(sk)->icsk_user_timeout = val;
3085 release_sock(sk);
3086 }
3087 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3088
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3089 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3090 {
3091 struct tcp_sock *tp = tcp_sk(sk);
3092
3093 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3094 return -EINVAL;
3095
3096 tp->keepalive_time = val * HZ;
3097 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3098 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3099 u32 elapsed = keepalive_time_elapsed(tp);
3100
3101 if (tp->keepalive_time > elapsed)
3102 elapsed = tp->keepalive_time - elapsed;
3103 else
3104 elapsed = 0;
3105 inet_csk_reset_keepalive_timer(sk, elapsed);
3106 }
3107
3108 return 0;
3109 }
3110
tcp_sock_set_keepidle(struct sock * sk,int val)3111 int tcp_sock_set_keepidle(struct sock *sk, int val)
3112 {
3113 int err;
3114
3115 lock_sock(sk);
3116 err = tcp_sock_set_keepidle_locked(sk, val);
3117 release_sock(sk);
3118 return err;
3119 }
3120 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3121
tcp_sock_set_keepintvl(struct sock * sk,int val)3122 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3123 {
3124 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3125 return -EINVAL;
3126
3127 lock_sock(sk);
3128 tcp_sk(sk)->keepalive_intvl = val * HZ;
3129 release_sock(sk);
3130 return 0;
3131 }
3132 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3133
tcp_sock_set_keepcnt(struct sock * sk,int val)3134 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3135 {
3136 if (val < 1 || val > MAX_TCP_KEEPCNT)
3137 return -EINVAL;
3138
3139 lock_sock(sk);
3140 tcp_sk(sk)->keepalive_probes = val;
3141 release_sock(sk);
3142 return 0;
3143 }
3144 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3145
3146 /*
3147 * Socket option code for TCP.
3148 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3149 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3150 sockptr_t optval, unsigned int optlen)
3151 {
3152 struct tcp_sock *tp = tcp_sk(sk);
3153 struct inet_connection_sock *icsk = inet_csk(sk);
3154 struct net *net = sock_net(sk);
3155 int val;
3156 int err = 0;
3157
3158 /* These are data/string values, all the others are ints */
3159 switch (optname) {
3160 case TCP_CONGESTION: {
3161 char name[TCP_CA_NAME_MAX];
3162
3163 if (optlen < 1)
3164 return -EINVAL;
3165
3166 val = strncpy_from_sockptr(name, optval,
3167 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3168 if (val < 0)
3169 return -EFAULT;
3170 name[val] = 0;
3171
3172 lock_sock(sk);
3173 err = tcp_set_congestion_control(sk, name, true,
3174 ns_capable(sock_net(sk)->user_ns,
3175 CAP_NET_ADMIN));
3176 release_sock(sk);
3177 return err;
3178 }
3179 case TCP_ULP: {
3180 char name[TCP_ULP_NAME_MAX];
3181
3182 if (optlen < 1)
3183 return -EINVAL;
3184
3185 val = strncpy_from_sockptr(name, optval,
3186 min_t(long, TCP_ULP_NAME_MAX - 1,
3187 optlen));
3188 if (val < 0)
3189 return -EFAULT;
3190 name[val] = 0;
3191
3192 lock_sock(sk);
3193 err = tcp_set_ulp(sk, name);
3194 release_sock(sk);
3195 return err;
3196 }
3197 case TCP_FASTOPEN_KEY: {
3198 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3199 __u8 *backup_key = NULL;
3200
3201 /* Allow a backup key as well to facilitate key rotation
3202 * First key is the active one.
3203 */
3204 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3205 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3206 return -EINVAL;
3207
3208 if (copy_from_sockptr(key, optval, optlen))
3209 return -EFAULT;
3210
3211 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3212 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3213
3214 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3215 }
3216 default:
3217 /* fallthru */
3218 break;
3219 }
3220
3221 if (optlen < sizeof(int))
3222 return -EINVAL;
3223
3224 if (copy_from_sockptr(&val, optval, sizeof(val)))
3225 return -EFAULT;
3226
3227 lock_sock(sk);
3228
3229 switch (optname) {
3230 case TCP_MAXSEG:
3231 /* Values greater than interface MTU won't take effect. However
3232 * at the point when this call is done we typically don't yet
3233 * know which interface is going to be used
3234 */
3235 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3236 err = -EINVAL;
3237 break;
3238 }
3239 tp->rx_opt.user_mss = val;
3240 break;
3241
3242 case TCP_NODELAY:
3243 __tcp_sock_set_nodelay(sk, val);
3244 break;
3245
3246 case TCP_THIN_LINEAR_TIMEOUTS:
3247 if (val < 0 || val > 1)
3248 err = -EINVAL;
3249 else
3250 tp->thin_lto = val;
3251 break;
3252
3253 case TCP_THIN_DUPACK:
3254 if (val < 0 || val > 1)
3255 err = -EINVAL;
3256 break;
3257
3258 case TCP_REPAIR:
3259 if (!tcp_can_repair_sock(sk))
3260 err = -EPERM;
3261 else if (val == TCP_REPAIR_ON) {
3262 tp->repair = 1;
3263 sk->sk_reuse = SK_FORCE_REUSE;
3264 tp->repair_queue = TCP_NO_QUEUE;
3265 } else if (val == TCP_REPAIR_OFF) {
3266 tp->repair = 0;
3267 sk->sk_reuse = SK_NO_REUSE;
3268 tcp_send_window_probe(sk);
3269 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3270 tp->repair = 0;
3271 sk->sk_reuse = SK_NO_REUSE;
3272 } else
3273 err = -EINVAL;
3274
3275 break;
3276
3277 case TCP_REPAIR_QUEUE:
3278 if (!tp->repair)
3279 err = -EPERM;
3280 else if ((unsigned int)val < TCP_QUEUES_NR)
3281 tp->repair_queue = val;
3282 else
3283 err = -EINVAL;
3284 break;
3285
3286 case TCP_QUEUE_SEQ:
3287 if (sk->sk_state != TCP_CLOSE) {
3288 err = -EPERM;
3289 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3290 if (!tcp_rtx_queue_empty(sk))
3291 err = -EPERM;
3292 else
3293 WRITE_ONCE(tp->write_seq, val);
3294 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3295 if (tp->rcv_nxt != tp->copied_seq) {
3296 err = -EPERM;
3297 } else {
3298 WRITE_ONCE(tp->rcv_nxt, val);
3299 WRITE_ONCE(tp->copied_seq, val);
3300 }
3301 } else {
3302 err = -EINVAL;
3303 }
3304 break;
3305
3306 case TCP_REPAIR_OPTIONS:
3307 if (!tp->repair)
3308 err = -EINVAL;
3309 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3310 err = tcp_repair_options_est(sk, optval, optlen);
3311 else
3312 err = -EPERM;
3313 break;
3314
3315 case TCP_CORK:
3316 __tcp_sock_set_cork(sk, val);
3317 break;
3318
3319 case TCP_KEEPIDLE:
3320 err = tcp_sock_set_keepidle_locked(sk, val);
3321 break;
3322 case TCP_KEEPINTVL:
3323 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3324 err = -EINVAL;
3325 else
3326 tp->keepalive_intvl = val * HZ;
3327 break;
3328 case TCP_KEEPCNT:
3329 if (val < 1 || val > MAX_TCP_KEEPCNT)
3330 err = -EINVAL;
3331 else
3332 tp->keepalive_probes = val;
3333 break;
3334 case TCP_SYNCNT:
3335 if (val < 1 || val > MAX_TCP_SYNCNT)
3336 err = -EINVAL;
3337 else
3338 icsk->icsk_syn_retries = val;
3339 break;
3340
3341 case TCP_SAVE_SYN:
3342 /* 0: disable, 1: enable, 2: start from ether_header */
3343 if (val < 0 || val > 2)
3344 err = -EINVAL;
3345 else
3346 tp->save_syn = val;
3347 break;
3348
3349 case TCP_LINGER2:
3350 if (val < 0)
3351 tp->linger2 = -1;
3352 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3353 tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3354 else
3355 tp->linger2 = val * HZ;
3356 break;
3357
3358 case TCP_DEFER_ACCEPT:
3359 /* Translate value in seconds to number of retransmits */
3360 icsk->icsk_accept_queue.rskq_defer_accept =
3361 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3362 TCP_RTO_MAX / HZ);
3363 break;
3364
3365 case TCP_WINDOW_CLAMP:
3366 if (!val) {
3367 if (sk->sk_state != TCP_CLOSE) {
3368 err = -EINVAL;
3369 break;
3370 }
3371 tp->window_clamp = 0;
3372 } else
3373 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3374 SOCK_MIN_RCVBUF / 2 : val;
3375 break;
3376
3377 case TCP_QUICKACK:
3378 __tcp_sock_set_quickack(sk, val);
3379 break;
3380
3381 #ifdef CONFIG_TCP_MD5SIG
3382 case TCP_MD5SIG:
3383 case TCP_MD5SIG_EXT:
3384 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3385 break;
3386 #endif
3387 case TCP_USER_TIMEOUT:
3388 /* Cap the max time in ms TCP will retry or probe the window
3389 * before giving up and aborting (ETIMEDOUT) a connection.
3390 */
3391 if (val < 0)
3392 err = -EINVAL;
3393 else
3394 icsk->icsk_user_timeout = val;
3395 break;
3396
3397 case TCP_FASTOPEN:
3398 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3399 TCPF_LISTEN))) {
3400 tcp_fastopen_init_key_once(net);
3401
3402 fastopen_queue_tune(sk, val);
3403 } else {
3404 err = -EINVAL;
3405 }
3406 break;
3407 case TCP_FASTOPEN_CONNECT:
3408 if (val > 1 || val < 0) {
3409 err = -EINVAL;
3410 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3411 TFO_CLIENT_ENABLE) {
3412 if (sk->sk_state == TCP_CLOSE)
3413 tp->fastopen_connect = val;
3414 else
3415 err = -EINVAL;
3416 } else {
3417 err = -EOPNOTSUPP;
3418 }
3419 break;
3420 case TCP_FASTOPEN_NO_COOKIE:
3421 if (val > 1 || val < 0)
3422 err = -EINVAL;
3423 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3424 err = -EINVAL;
3425 else
3426 tp->fastopen_no_cookie = val;
3427 break;
3428 case TCP_TIMESTAMP:
3429 if (!tp->repair)
3430 err = -EPERM;
3431 else
3432 tp->tsoffset = val - tcp_time_stamp_raw();
3433 break;
3434 case TCP_REPAIR_WINDOW:
3435 err = tcp_repair_set_window(tp, optval, optlen);
3436 break;
3437 case TCP_NOTSENT_LOWAT:
3438 tp->notsent_lowat = val;
3439 sk->sk_write_space(sk);
3440 break;
3441 case TCP_INQ:
3442 if (val > 1 || val < 0)
3443 err = -EINVAL;
3444 else
3445 tp->recvmsg_inq = val;
3446 break;
3447 case TCP_TX_DELAY:
3448 if (val)
3449 tcp_enable_tx_delay();
3450 tp->tcp_tx_delay = val;
3451 break;
3452 default:
3453 err = -ENOPROTOOPT;
3454 break;
3455 }
3456
3457 release_sock(sk);
3458 return err;
3459 }
3460
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3461 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3462 unsigned int optlen)
3463 {
3464 const struct inet_connection_sock *icsk = inet_csk(sk);
3465
3466 if (level != SOL_TCP)
3467 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3468 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3469 optval, optlen);
3470 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3471 }
3472 EXPORT_SYMBOL(tcp_setsockopt);
3473
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3474 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3475 struct tcp_info *info)
3476 {
3477 u64 stats[__TCP_CHRONO_MAX], total = 0;
3478 enum tcp_chrono i;
3479
3480 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3481 stats[i] = tp->chrono_stat[i - 1];
3482 if (i == tp->chrono_type)
3483 stats[i] += tcp_jiffies32 - tp->chrono_start;
3484 stats[i] *= USEC_PER_SEC / HZ;
3485 total += stats[i];
3486 }
3487
3488 info->tcpi_busy_time = total;
3489 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3490 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3491 }
3492
3493 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3494 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3495 {
3496 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3497 const struct inet_connection_sock *icsk = inet_csk(sk);
3498 unsigned long rate;
3499 u32 now;
3500 u64 rate64;
3501 bool slow;
3502
3503 memset(info, 0, sizeof(*info));
3504 if (sk->sk_type != SOCK_STREAM)
3505 return;
3506
3507 info->tcpi_state = inet_sk_state_load(sk);
3508
3509 /* Report meaningful fields for all TCP states, including listeners */
3510 rate = READ_ONCE(sk->sk_pacing_rate);
3511 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3512 info->tcpi_pacing_rate = rate64;
3513
3514 rate = READ_ONCE(sk->sk_max_pacing_rate);
3515 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3516 info->tcpi_max_pacing_rate = rate64;
3517
3518 info->tcpi_reordering = tp->reordering;
3519 info->tcpi_snd_cwnd = tp->snd_cwnd;
3520
3521 if (info->tcpi_state == TCP_LISTEN) {
3522 /* listeners aliased fields :
3523 * tcpi_unacked -> Number of children ready for accept()
3524 * tcpi_sacked -> max backlog
3525 */
3526 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3527 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3528 return;
3529 }
3530
3531 slow = lock_sock_fast(sk);
3532
3533 info->tcpi_ca_state = icsk->icsk_ca_state;
3534 info->tcpi_retransmits = icsk->icsk_retransmits;
3535 info->tcpi_probes = icsk->icsk_probes_out;
3536 info->tcpi_backoff = icsk->icsk_backoff;
3537
3538 if (tp->rx_opt.tstamp_ok)
3539 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3540 if (tcp_is_sack(tp))
3541 info->tcpi_options |= TCPI_OPT_SACK;
3542 if (tp->rx_opt.wscale_ok) {
3543 info->tcpi_options |= TCPI_OPT_WSCALE;
3544 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3545 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3546 }
3547
3548 if (tp->ecn_flags & TCP_ECN_OK)
3549 info->tcpi_options |= TCPI_OPT_ECN;
3550 if (tp->ecn_flags & TCP_ECN_SEEN)
3551 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3552 if (tp->syn_data_acked)
3553 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3554
3555 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3556 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3557 info->tcpi_snd_mss = tp->mss_cache;
3558 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3559
3560 info->tcpi_unacked = tp->packets_out;
3561 info->tcpi_sacked = tp->sacked_out;
3562
3563 info->tcpi_lost = tp->lost_out;
3564 info->tcpi_retrans = tp->retrans_out;
3565
3566 now = tcp_jiffies32;
3567 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3568 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3569 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3570
3571 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3572 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3573 info->tcpi_rtt = tp->srtt_us >> 3;
3574 info->tcpi_rttvar = tp->mdev_us >> 2;
3575 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3576 info->tcpi_advmss = tp->advmss;
3577
3578 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3579 info->tcpi_rcv_space = tp->rcvq_space.space;
3580
3581 info->tcpi_total_retrans = tp->total_retrans;
3582
3583 info->tcpi_bytes_acked = tp->bytes_acked;
3584 info->tcpi_bytes_received = tp->bytes_received;
3585 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3586 tcp_get_info_chrono_stats(tp, info);
3587
3588 info->tcpi_segs_out = tp->segs_out;
3589 info->tcpi_segs_in = tp->segs_in;
3590
3591 info->tcpi_min_rtt = tcp_min_rtt(tp);
3592 info->tcpi_data_segs_in = tp->data_segs_in;
3593 info->tcpi_data_segs_out = tp->data_segs_out;
3594
3595 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3596 rate64 = tcp_compute_delivery_rate(tp);
3597 if (rate64)
3598 info->tcpi_delivery_rate = rate64;
3599 info->tcpi_delivered = tp->delivered;
3600 info->tcpi_delivered_ce = tp->delivered_ce;
3601 info->tcpi_bytes_sent = tp->bytes_sent;
3602 info->tcpi_bytes_retrans = tp->bytes_retrans;
3603 info->tcpi_dsack_dups = tp->dsack_dups;
3604 info->tcpi_reord_seen = tp->reord_seen;
3605 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3606 info->tcpi_snd_wnd = tp->snd_wnd;
3607 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3608 unlock_sock_fast(sk, slow);
3609 }
3610 EXPORT_SYMBOL_GPL(tcp_get_info);
3611
tcp_opt_stats_get_size(void)3612 static size_t tcp_opt_stats_get_size(void)
3613 {
3614 return
3615 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3616 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3617 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3618 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3619 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3620 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3621 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3622 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3623 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3624 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3625 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3626 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3627 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3628 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3629 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3630 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3631 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3632 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3633 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3634 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3635 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3636 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3637 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3638 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3639 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3640 0;
3641 }
3642
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb)3643 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3644 const struct sk_buff *orig_skb)
3645 {
3646 const struct tcp_sock *tp = tcp_sk(sk);
3647 struct sk_buff *stats;
3648 struct tcp_info info;
3649 unsigned long rate;
3650 u64 rate64;
3651
3652 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3653 if (!stats)
3654 return NULL;
3655
3656 tcp_get_info_chrono_stats(tp, &info);
3657 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3658 info.tcpi_busy_time, TCP_NLA_PAD);
3659 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3660 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3661 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3662 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3663 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3664 tp->data_segs_out, TCP_NLA_PAD);
3665 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3666 tp->total_retrans, TCP_NLA_PAD);
3667
3668 rate = READ_ONCE(sk->sk_pacing_rate);
3669 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3670 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3671
3672 rate64 = tcp_compute_delivery_rate(tp);
3673 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3674
3675 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3676 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3677 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3678
3679 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3680 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3681 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3682 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3683 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3684
3685 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3686 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3687
3688 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3689 TCP_NLA_PAD);
3690 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3691 TCP_NLA_PAD);
3692 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3693 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3694 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3695 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3696 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3697 max_t(int, 0, tp->write_seq - tp->snd_nxt));
3698 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3699 TCP_NLA_PAD);
3700
3701 return stats;
3702 }
3703
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3704 static int do_tcp_getsockopt(struct sock *sk, int level,
3705 int optname, char __user *optval, int __user *optlen)
3706 {
3707 struct inet_connection_sock *icsk = inet_csk(sk);
3708 struct tcp_sock *tp = tcp_sk(sk);
3709 struct net *net = sock_net(sk);
3710 int val, len;
3711
3712 if (get_user(len, optlen))
3713 return -EFAULT;
3714
3715 len = min_t(unsigned int, len, sizeof(int));
3716
3717 if (len < 0)
3718 return -EINVAL;
3719
3720 switch (optname) {
3721 case TCP_MAXSEG:
3722 val = tp->mss_cache;
3723 if (tp->rx_opt.user_mss &&
3724 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3725 val = tp->rx_opt.user_mss;
3726 if (tp->repair)
3727 val = tp->rx_opt.mss_clamp;
3728 break;
3729 case TCP_NODELAY:
3730 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3731 break;
3732 case TCP_CORK:
3733 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3734 break;
3735 case TCP_KEEPIDLE:
3736 val = keepalive_time_when(tp) / HZ;
3737 break;
3738 case TCP_KEEPINTVL:
3739 val = keepalive_intvl_when(tp) / HZ;
3740 break;
3741 case TCP_KEEPCNT:
3742 val = keepalive_probes(tp);
3743 break;
3744 case TCP_SYNCNT:
3745 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3746 break;
3747 case TCP_LINGER2:
3748 val = tp->linger2;
3749 if (val >= 0)
3750 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
3751 break;
3752 case TCP_DEFER_ACCEPT:
3753 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3754 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3755 break;
3756 case TCP_WINDOW_CLAMP:
3757 val = tp->window_clamp;
3758 break;
3759 case TCP_INFO: {
3760 struct tcp_info info;
3761
3762 if (get_user(len, optlen))
3763 return -EFAULT;
3764
3765 tcp_get_info(sk, &info);
3766
3767 len = min_t(unsigned int, len, sizeof(info));
3768 if (put_user(len, optlen))
3769 return -EFAULT;
3770 if (copy_to_user(optval, &info, len))
3771 return -EFAULT;
3772 return 0;
3773 }
3774 case TCP_CC_INFO: {
3775 const struct tcp_congestion_ops *ca_ops;
3776 union tcp_cc_info info;
3777 size_t sz = 0;
3778 int attr;
3779
3780 if (get_user(len, optlen))
3781 return -EFAULT;
3782
3783 ca_ops = icsk->icsk_ca_ops;
3784 if (ca_ops && ca_ops->get_info)
3785 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3786
3787 len = min_t(unsigned int, len, sz);
3788 if (put_user(len, optlen))
3789 return -EFAULT;
3790 if (copy_to_user(optval, &info, len))
3791 return -EFAULT;
3792 return 0;
3793 }
3794 case TCP_QUICKACK:
3795 val = !inet_csk_in_pingpong_mode(sk);
3796 break;
3797
3798 case TCP_CONGESTION:
3799 if (get_user(len, optlen))
3800 return -EFAULT;
3801 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3802 if (put_user(len, optlen))
3803 return -EFAULT;
3804 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3805 return -EFAULT;
3806 return 0;
3807
3808 case TCP_ULP:
3809 if (get_user(len, optlen))
3810 return -EFAULT;
3811 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3812 if (!icsk->icsk_ulp_ops) {
3813 if (put_user(0, optlen))
3814 return -EFAULT;
3815 return 0;
3816 }
3817 if (put_user(len, optlen))
3818 return -EFAULT;
3819 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3820 return -EFAULT;
3821 return 0;
3822
3823 case TCP_FASTOPEN_KEY: {
3824 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
3825 unsigned int key_len;
3826
3827 if (get_user(len, optlen))
3828 return -EFAULT;
3829
3830 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
3831 TCP_FASTOPEN_KEY_LENGTH;
3832 len = min_t(unsigned int, len, key_len);
3833 if (put_user(len, optlen))
3834 return -EFAULT;
3835 if (copy_to_user(optval, key, len))
3836 return -EFAULT;
3837 return 0;
3838 }
3839 case TCP_THIN_LINEAR_TIMEOUTS:
3840 val = tp->thin_lto;
3841 break;
3842
3843 case TCP_THIN_DUPACK:
3844 val = 0;
3845 break;
3846
3847 case TCP_REPAIR:
3848 val = tp->repair;
3849 break;
3850
3851 case TCP_REPAIR_QUEUE:
3852 if (tp->repair)
3853 val = tp->repair_queue;
3854 else
3855 return -EINVAL;
3856 break;
3857
3858 case TCP_REPAIR_WINDOW: {
3859 struct tcp_repair_window opt;
3860
3861 if (get_user(len, optlen))
3862 return -EFAULT;
3863
3864 if (len != sizeof(opt))
3865 return -EINVAL;
3866
3867 if (!tp->repair)
3868 return -EPERM;
3869
3870 opt.snd_wl1 = tp->snd_wl1;
3871 opt.snd_wnd = tp->snd_wnd;
3872 opt.max_window = tp->max_window;
3873 opt.rcv_wnd = tp->rcv_wnd;
3874 opt.rcv_wup = tp->rcv_wup;
3875
3876 if (copy_to_user(optval, &opt, len))
3877 return -EFAULT;
3878 return 0;
3879 }
3880 case TCP_QUEUE_SEQ:
3881 if (tp->repair_queue == TCP_SEND_QUEUE)
3882 val = tp->write_seq;
3883 else if (tp->repair_queue == TCP_RECV_QUEUE)
3884 val = tp->rcv_nxt;
3885 else
3886 return -EINVAL;
3887 break;
3888
3889 case TCP_USER_TIMEOUT:
3890 val = icsk->icsk_user_timeout;
3891 break;
3892
3893 case TCP_FASTOPEN:
3894 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3895 break;
3896
3897 case TCP_FASTOPEN_CONNECT:
3898 val = tp->fastopen_connect;
3899 break;
3900
3901 case TCP_FASTOPEN_NO_COOKIE:
3902 val = tp->fastopen_no_cookie;
3903 break;
3904
3905 case TCP_TX_DELAY:
3906 val = tp->tcp_tx_delay;
3907 break;
3908
3909 case TCP_TIMESTAMP:
3910 val = tcp_time_stamp_raw() + tp->tsoffset;
3911 break;
3912 case TCP_NOTSENT_LOWAT:
3913 val = tp->notsent_lowat;
3914 break;
3915 case TCP_INQ:
3916 val = tp->recvmsg_inq;
3917 break;
3918 case TCP_SAVE_SYN:
3919 val = tp->save_syn;
3920 break;
3921 case TCP_SAVED_SYN: {
3922 if (get_user(len, optlen))
3923 return -EFAULT;
3924
3925 lock_sock(sk);
3926 if (tp->saved_syn) {
3927 if (len < tcp_saved_syn_len(tp->saved_syn)) {
3928 if (put_user(tcp_saved_syn_len(tp->saved_syn),
3929 optlen)) {
3930 release_sock(sk);
3931 return -EFAULT;
3932 }
3933 release_sock(sk);
3934 return -EINVAL;
3935 }
3936 len = tcp_saved_syn_len(tp->saved_syn);
3937 if (put_user(len, optlen)) {
3938 release_sock(sk);
3939 return -EFAULT;
3940 }
3941 if (copy_to_user(optval, tp->saved_syn->data, len)) {
3942 release_sock(sk);
3943 return -EFAULT;
3944 }
3945 tcp_saved_syn_free(tp);
3946 release_sock(sk);
3947 } else {
3948 release_sock(sk);
3949 len = 0;
3950 if (put_user(len, optlen))
3951 return -EFAULT;
3952 }
3953 return 0;
3954 }
3955 #ifdef CONFIG_MMU
3956 case TCP_ZEROCOPY_RECEIVE: {
3957 struct tcp_zerocopy_receive zc = {};
3958 int err;
3959
3960 if (get_user(len, optlen))
3961 return -EFAULT;
3962 if (len < 0 ||
3963 len < offsetofend(struct tcp_zerocopy_receive, length))
3964 return -EINVAL;
3965 if (len > sizeof(zc)) {
3966 len = sizeof(zc);
3967 if (put_user(len, optlen))
3968 return -EFAULT;
3969 }
3970 if (copy_from_user(&zc, optval, len))
3971 return -EFAULT;
3972 lock_sock(sk);
3973 err = tcp_zerocopy_receive(sk, &zc);
3974 release_sock(sk);
3975 if (len >= offsetofend(struct tcp_zerocopy_receive, err))
3976 goto zerocopy_rcv_sk_err;
3977 switch (len) {
3978 case offsetofend(struct tcp_zerocopy_receive, err):
3979 goto zerocopy_rcv_sk_err;
3980 case offsetofend(struct tcp_zerocopy_receive, inq):
3981 goto zerocopy_rcv_inq;
3982 case offsetofend(struct tcp_zerocopy_receive, length):
3983 default:
3984 goto zerocopy_rcv_out;
3985 }
3986 zerocopy_rcv_sk_err:
3987 if (!err)
3988 zc.err = sock_error(sk);
3989 zerocopy_rcv_inq:
3990 zc.inq = tcp_inq_hint(sk);
3991 zerocopy_rcv_out:
3992 if (!err && copy_to_user(optval, &zc, len))
3993 err = -EFAULT;
3994 return err;
3995 }
3996 #endif
3997 default:
3998 return -ENOPROTOOPT;
3999 }
4000
4001 if (put_user(len, optlen))
4002 return -EFAULT;
4003 if (copy_to_user(optval, &val, len))
4004 return -EFAULT;
4005 return 0;
4006 }
4007
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4008 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4009 int __user *optlen)
4010 {
4011 struct inet_connection_sock *icsk = inet_csk(sk);
4012
4013 if (level != SOL_TCP)
4014 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4015 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4016 optval, optlen);
4017 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
4018 }
4019 EXPORT_SYMBOL(tcp_getsockopt);
4020
4021 #ifdef CONFIG_TCP_MD5SIG
4022 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4023 static DEFINE_MUTEX(tcp_md5sig_mutex);
4024 static bool tcp_md5sig_pool_populated = false;
4025
__tcp_alloc_md5sig_pool(void)4026 static void __tcp_alloc_md5sig_pool(void)
4027 {
4028 struct crypto_ahash *hash;
4029 int cpu;
4030
4031 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4032 if (IS_ERR(hash))
4033 return;
4034
4035 for_each_possible_cpu(cpu) {
4036 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4037 struct ahash_request *req;
4038
4039 if (!scratch) {
4040 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4041 sizeof(struct tcphdr),
4042 GFP_KERNEL,
4043 cpu_to_node(cpu));
4044 if (!scratch)
4045 return;
4046 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4047 }
4048 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4049 continue;
4050
4051 req = ahash_request_alloc(hash, GFP_KERNEL);
4052 if (!req)
4053 return;
4054
4055 ahash_request_set_callback(req, 0, NULL, NULL);
4056
4057 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4058 }
4059 /* before setting tcp_md5sig_pool_populated, we must commit all writes
4060 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4061 */
4062 smp_wmb();
4063 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4064 * and tcp_get_md5sig_pool().
4065 */
4066 WRITE_ONCE(tcp_md5sig_pool_populated, true);
4067 }
4068
tcp_alloc_md5sig_pool(void)4069 bool tcp_alloc_md5sig_pool(void)
4070 {
4071 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4072 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4073 mutex_lock(&tcp_md5sig_mutex);
4074
4075 if (!tcp_md5sig_pool_populated) {
4076 __tcp_alloc_md5sig_pool();
4077 if (tcp_md5sig_pool_populated)
4078 static_branch_inc(&tcp_md5_needed);
4079 }
4080
4081 mutex_unlock(&tcp_md5sig_mutex);
4082 }
4083 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4084 return READ_ONCE(tcp_md5sig_pool_populated);
4085 }
4086 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4087
4088
4089 /**
4090 * tcp_get_md5sig_pool - get md5sig_pool for this user
4091 *
4092 * We use percpu structure, so if we succeed, we exit with preemption
4093 * and BH disabled, to make sure another thread or softirq handling
4094 * wont try to get same context.
4095 */
tcp_get_md5sig_pool(void)4096 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4097 {
4098 local_bh_disable();
4099
4100 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4101 if (READ_ONCE(tcp_md5sig_pool_populated)) {
4102 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4103 smp_rmb();
4104 return this_cpu_ptr(&tcp_md5sig_pool);
4105 }
4106 local_bh_enable();
4107 return NULL;
4108 }
4109 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4110
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)4111 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4112 const struct sk_buff *skb, unsigned int header_len)
4113 {
4114 struct scatterlist sg;
4115 const struct tcphdr *tp = tcp_hdr(skb);
4116 struct ahash_request *req = hp->md5_req;
4117 unsigned int i;
4118 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4119 skb_headlen(skb) - header_len : 0;
4120 const struct skb_shared_info *shi = skb_shinfo(skb);
4121 struct sk_buff *frag_iter;
4122
4123 sg_init_table(&sg, 1);
4124
4125 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4126 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4127 if (crypto_ahash_update(req))
4128 return 1;
4129
4130 for (i = 0; i < shi->nr_frags; ++i) {
4131 const skb_frag_t *f = &shi->frags[i];
4132 unsigned int offset = skb_frag_off(f);
4133 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4134
4135 sg_set_page(&sg, page, skb_frag_size(f),
4136 offset_in_page(offset));
4137 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4138 if (crypto_ahash_update(req))
4139 return 1;
4140 }
4141
4142 skb_walk_frags(skb, frag_iter)
4143 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4144 return 1;
4145
4146 return 0;
4147 }
4148 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4149
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)4150 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4151 {
4152 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4153 struct scatterlist sg;
4154
4155 sg_init_one(&sg, key->key, keylen);
4156 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4157
4158 /* We use data_race() because tcp_md5_do_add() might change key->key under us */
4159 return data_race(crypto_ahash_update(hp->md5_req));
4160 }
4161 EXPORT_SYMBOL(tcp_md5_hash_key);
4162
4163 #endif
4164
tcp_done(struct sock * sk)4165 void tcp_done(struct sock *sk)
4166 {
4167 struct request_sock *req;
4168
4169 /* We might be called with a new socket, after
4170 * inet_csk_prepare_forced_close() has been called
4171 * so we can not use lockdep_sock_is_held(sk)
4172 */
4173 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4174
4175 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4176 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4177
4178 tcp_set_state(sk, TCP_CLOSE);
4179 tcp_clear_xmit_timers(sk);
4180 if (req)
4181 reqsk_fastopen_remove(sk, req, false);
4182
4183 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4184
4185 if (!sock_flag(sk, SOCK_DEAD))
4186 sk->sk_state_change(sk);
4187 else
4188 inet_csk_destroy_sock(sk);
4189 }
4190 EXPORT_SYMBOL_GPL(tcp_done);
4191
tcp_abort(struct sock * sk,int err)4192 int tcp_abort(struct sock *sk, int err)
4193 {
4194 if (!sk_fullsock(sk)) {
4195 if (sk->sk_state == TCP_NEW_SYN_RECV) {
4196 struct request_sock *req = inet_reqsk(sk);
4197
4198 local_bh_disable();
4199 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4200 local_bh_enable();
4201 return 0;
4202 }
4203 return -EOPNOTSUPP;
4204 }
4205
4206 /* Don't race with userspace socket closes such as tcp_close. */
4207 lock_sock(sk);
4208
4209 if (sk->sk_state == TCP_LISTEN) {
4210 tcp_set_state(sk, TCP_CLOSE);
4211 inet_csk_listen_stop(sk);
4212 }
4213
4214 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4215 local_bh_disable();
4216 bh_lock_sock(sk);
4217
4218 if (!sock_flag(sk, SOCK_DEAD)) {
4219 sk->sk_err = err;
4220 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4221 smp_wmb();
4222 sk->sk_error_report(sk);
4223 if (tcp_need_reset(sk->sk_state))
4224 tcp_send_active_reset(sk, GFP_ATOMIC);
4225 tcp_done(sk);
4226 }
4227
4228 bh_unlock_sock(sk);
4229 local_bh_enable();
4230 tcp_write_queue_purge(sk);
4231 release_sock(sk);
4232 return 0;
4233 }
4234 EXPORT_SYMBOL_GPL(tcp_abort);
4235
4236 extern struct tcp_congestion_ops tcp_reno;
4237
4238 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4239 static int __init set_thash_entries(char *str)
4240 {
4241 ssize_t ret;
4242
4243 if (!str)
4244 return 0;
4245
4246 ret = kstrtoul(str, 0, &thash_entries);
4247 if (ret)
4248 return 0;
4249
4250 return 1;
4251 }
4252 __setup("thash_entries=", set_thash_entries);
4253
tcp_init_mem(void)4254 static void __init tcp_init_mem(void)
4255 {
4256 unsigned long limit = nr_free_buffer_pages() / 16;
4257
4258 limit = max(limit, 128UL);
4259 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
4260 sysctl_tcp_mem[1] = limit; /* 6.25 % */
4261 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
4262 }
4263
tcp_init(void)4264 void __init tcp_init(void)
4265 {
4266 int max_rshare, max_wshare, cnt;
4267 unsigned long limit;
4268 unsigned int i;
4269
4270 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4271 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4272 sizeof_field(struct sk_buff, cb));
4273
4274 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4275
4276 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4277 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4278
4279 inet_hashinfo_init(&tcp_hashinfo);
4280 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4281 thash_entries, 21, /* one slot per 2 MB*/
4282 0, 64 * 1024);
4283 tcp_hashinfo.bind_bucket_cachep =
4284 kmem_cache_create("tcp_bind_bucket",
4285 sizeof(struct inet_bind_bucket), 0,
4286 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
4287
4288 /* Size and allocate the main established and bind bucket
4289 * hash tables.
4290 *
4291 * The methodology is similar to that of the buffer cache.
4292 */
4293 tcp_hashinfo.ehash =
4294 alloc_large_system_hash("TCP established",
4295 sizeof(struct inet_ehash_bucket),
4296 thash_entries,
4297 17, /* one slot per 128 KB of memory */
4298 0,
4299 NULL,
4300 &tcp_hashinfo.ehash_mask,
4301 0,
4302 thash_entries ? 0 : 512 * 1024);
4303 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4304 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4305
4306 if (inet_ehash_locks_alloc(&tcp_hashinfo))
4307 panic("TCP: failed to alloc ehash_locks");
4308 tcp_hashinfo.bhash =
4309 alloc_large_system_hash("TCP bind",
4310 sizeof(struct inet_bind_hashbucket),
4311 tcp_hashinfo.ehash_mask + 1,
4312 17, /* one slot per 128 KB of memory */
4313 0,
4314 &tcp_hashinfo.bhash_size,
4315 NULL,
4316 0,
4317 64 * 1024);
4318 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4319 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4320 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4321 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4322 }
4323
4324
4325 cnt = tcp_hashinfo.ehash_mask + 1;
4326 sysctl_tcp_max_orphans = cnt / 2;
4327
4328 tcp_init_mem();
4329 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4330 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4331 max_wshare = min(4UL*1024*1024, limit);
4332 max_rshare = min(6UL*1024*1024, limit);
4333
4334 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4335 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4336 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4337
4338 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4339 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4340 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4341
4342 pr_info("Hash tables configured (established %u bind %u)\n",
4343 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4344
4345 tcp_v4_init();
4346 tcp_metrics_init();
4347 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4348 tcp_tasklet_init();
4349 mptcp_init();
4350 }
4351