• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
284 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
285 
286 long sysctl_tcp_mem[3] __read_mostly;
287 EXPORT_SYMBOL(sysctl_tcp_mem);
288 
289 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
290 EXPORT_SYMBOL(tcp_memory_allocated);
291 
292 #if IS_ENABLED(CONFIG_SMC)
293 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
294 EXPORT_SYMBOL(tcp_have_smc);
295 #endif
296 
297 /*
298  * Current number of TCP sockets.
299  */
300 struct percpu_counter tcp_sockets_allocated;
301 EXPORT_SYMBOL(tcp_sockets_allocated);
302 
303 /*
304  * TCP splice context
305  */
306 struct tcp_splice_state {
307 	struct pipe_inode_info *pipe;
308 	size_t len;
309 	unsigned int flags;
310 };
311 
312 /*
313  * Pressure flag: try to collapse.
314  * Technical note: it is used by multiple contexts non atomically.
315  * All the __sk_mem_schedule() is of this nature: accounting
316  * is strict, actions are advisory and have some latency.
317  */
318 unsigned long tcp_memory_pressure __read_mostly;
319 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
320 
321 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
322 EXPORT_SYMBOL(tcp_rx_skb_cache_key);
323 
324 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
325 
tcp_enter_memory_pressure(struct sock * sk)326 void tcp_enter_memory_pressure(struct sock *sk)
327 {
328 	unsigned long val;
329 
330 	if (READ_ONCE(tcp_memory_pressure))
331 		return;
332 	val = jiffies;
333 
334 	if (!val)
335 		val--;
336 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
337 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
338 }
339 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
340 
tcp_leave_memory_pressure(struct sock * sk)341 void tcp_leave_memory_pressure(struct sock *sk)
342 {
343 	unsigned long val;
344 
345 	if (!READ_ONCE(tcp_memory_pressure))
346 		return;
347 	val = xchg(&tcp_memory_pressure, 0);
348 	if (val)
349 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
350 			      jiffies_to_msecs(jiffies - val));
351 }
352 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
353 
354 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)355 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
356 {
357 	u8 res = 0;
358 
359 	if (seconds > 0) {
360 		int period = timeout;
361 
362 		res = 1;
363 		while (seconds > period && res < 255) {
364 			res++;
365 			timeout <<= 1;
366 			if (timeout > rto_max)
367 				timeout = rto_max;
368 			period += timeout;
369 		}
370 	}
371 	return res;
372 }
373 
374 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)375 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
376 {
377 	int period = 0;
378 
379 	if (retrans > 0) {
380 		period = timeout;
381 		while (--retrans) {
382 			timeout <<= 1;
383 			if (timeout > rto_max)
384 				timeout = rto_max;
385 			period += timeout;
386 		}
387 	}
388 	return period;
389 }
390 
tcp_compute_delivery_rate(const struct tcp_sock * tp)391 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
392 {
393 	u32 rate = READ_ONCE(tp->rate_delivered);
394 	u32 intv = READ_ONCE(tp->rate_interval_us);
395 	u64 rate64 = 0;
396 
397 	if (rate && intv) {
398 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
399 		do_div(rate64, intv);
400 	}
401 	return rate64;
402 }
403 
404 /* Address-family independent initialization for a tcp_sock.
405  *
406  * NOTE: A lot of things set to zero explicitly by call to
407  *       sk_alloc() so need not be done here.
408  */
tcp_init_sock(struct sock * sk)409 void tcp_init_sock(struct sock *sk)
410 {
411 	struct inet_connection_sock *icsk = inet_csk(sk);
412 	struct tcp_sock *tp = tcp_sk(sk);
413 
414 	tp->out_of_order_queue = RB_ROOT;
415 	sk->tcp_rtx_queue = RB_ROOT;
416 	tcp_init_xmit_timers(sk);
417 	INIT_LIST_HEAD(&tp->tsq_node);
418 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
419 
420 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
421 	icsk->icsk_rto_min = TCP_RTO_MIN;
422 	icsk->icsk_delack_max = TCP_DELACK_MAX;
423 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
424 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
425 
426 	/* So many TCP implementations out there (incorrectly) count the
427 	 * initial SYN frame in their delayed-ACK and congestion control
428 	 * algorithms that we must have the following bandaid to talk
429 	 * efficiently to them.  -DaveM
430 	 */
431 	tp->snd_cwnd = TCP_INIT_CWND;
432 
433 	/* There's a bubble in the pipe until at least the first ACK. */
434 	tp->app_limited = ~0U;
435 	tp->rate_app_limited = 1;
436 
437 	/* See draft-stevens-tcpca-spec-01 for discussion of the
438 	 * initialization of these values.
439 	 */
440 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
441 	tp->snd_cwnd_clamp = ~0;
442 	tp->mss_cache = TCP_MSS_DEFAULT;
443 
444 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
445 	tcp_assign_congestion_control(sk);
446 
447 	tp->tsoffset = 0;
448 	tp->rack.reo_wnd_steps = 1;
449 
450 	sk->sk_write_space = sk_stream_write_space;
451 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
452 
453 	icsk->icsk_sync_mss = tcp_sync_mss;
454 
455 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
456 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
457 
458 	sk_sockets_allocated_inc(sk);
459 	sk->sk_route_forced_caps = NETIF_F_GSO;
460 }
461 EXPORT_SYMBOL(tcp_init_sock);
462 
tcp_tx_timestamp(struct sock * sk,u16 tsflags)463 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
464 {
465 	struct sk_buff *skb = tcp_write_queue_tail(sk);
466 
467 	if (tsflags && skb) {
468 		struct skb_shared_info *shinfo = skb_shinfo(skb);
469 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
470 
471 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
472 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
473 			tcb->txstamp_ack = 1;
474 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
475 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
476 	}
477 }
478 
tcp_stream_is_readable(const struct tcp_sock * tp,int target,struct sock * sk)479 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
480 					  int target, struct sock *sk)
481 {
482 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
483 
484 	if (avail > 0) {
485 		if (avail >= target)
486 			return true;
487 		if (tcp_rmem_pressure(sk))
488 			return true;
489 		if (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss)
490 			return true;
491 	}
492 	if (sk->sk_prot->stream_memory_read)
493 		return sk->sk_prot->stream_memory_read(sk);
494 	return false;
495 }
496 
497 /*
498  *	Wait for a TCP event.
499  *
500  *	Note that we don't need to lock the socket, as the upper poll layers
501  *	take care of normal races (between the test and the event) and we don't
502  *	go look at any of the socket buffers directly.
503  */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)504 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
505 {
506 	__poll_t mask;
507 	struct sock *sk = sock->sk;
508 	const struct tcp_sock *tp = tcp_sk(sk);
509 	u8 shutdown;
510 	int state;
511 
512 	sock_poll_wait(file, sock, wait);
513 
514 	state = inet_sk_state_load(sk);
515 	if (state == TCP_LISTEN)
516 		return inet_csk_listen_poll(sk);
517 
518 	/* Socket is not locked. We are protected from async events
519 	 * by poll logic and correct handling of state changes
520 	 * made by other threads is impossible in any case.
521 	 */
522 
523 	mask = 0;
524 
525 	/*
526 	 * EPOLLHUP is certainly not done right. But poll() doesn't
527 	 * have a notion of HUP in just one direction, and for a
528 	 * socket the read side is more interesting.
529 	 *
530 	 * Some poll() documentation says that EPOLLHUP is incompatible
531 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
532 	 * all. But careful, it tends to be safer to return too many
533 	 * bits than too few, and you can easily break real applications
534 	 * if you don't tell them that something has hung up!
535 	 *
536 	 * Check-me.
537 	 *
538 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
539 	 * our fs/select.c). It means that after we received EOF,
540 	 * poll always returns immediately, making impossible poll() on write()
541 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
542 	 * if and only if shutdown has been made in both directions.
543 	 * Actually, it is interesting to look how Solaris and DUX
544 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
545 	 * then we could set it on SND_SHUTDOWN. BTW examples given
546 	 * in Stevens' books assume exactly this behaviour, it explains
547 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
548 	 *
549 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
550 	 * blocking on fresh not-connected or disconnected socket. --ANK
551 	 */
552 	shutdown = READ_ONCE(sk->sk_shutdown);
553 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
554 		mask |= EPOLLHUP;
555 	if (shutdown & RCV_SHUTDOWN)
556 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
557 
558 	/* Connected or passive Fast Open socket? */
559 	if (state != TCP_SYN_SENT &&
560 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
561 		int target = sock_rcvlowat(sk, 0, INT_MAX);
562 
563 		if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
564 		    !sock_flag(sk, SOCK_URGINLINE) &&
565 		    tp->urg_data)
566 			target++;
567 
568 		if (tcp_stream_is_readable(tp, target, sk))
569 			mask |= EPOLLIN | EPOLLRDNORM;
570 
571 		if (!(shutdown & SEND_SHUTDOWN)) {
572 			if (__sk_stream_is_writeable(sk, 1)) {
573 				mask |= EPOLLOUT | EPOLLWRNORM;
574 			} else {  /* send SIGIO later */
575 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
576 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
577 
578 				/* Race breaker. If space is freed after
579 				 * wspace test but before the flags are set,
580 				 * IO signal will be lost. Memory barrier
581 				 * pairs with the input side.
582 				 */
583 				smp_mb__after_atomic();
584 				if (__sk_stream_is_writeable(sk, 1))
585 					mask |= EPOLLOUT | EPOLLWRNORM;
586 			}
587 		} else
588 			mask |= EPOLLOUT | EPOLLWRNORM;
589 
590 		if (tp->urg_data & TCP_URG_VALID)
591 			mask |= EPOLLPRI;
592 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
593 		/* Active TCP fastopen socket with defer_connect
594 		 * Return EPOLLOUT so application can call write()
595 		 * in order for kernel to generate SYN+data
596 		 */
597 		mask |= EPOLLOUT | EPOLLWRNORM;
598 	}
599 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
600 	smp_rmb();
601 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
602 		mask |= EPOLLERR;
603 
604 	return mask;
605 }
606 EXPORT_SYMBOL(tcp_poll);
607 
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)608 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
609 {
610 	struct tcp_sock *tp = tcp_sk(sk);
611 	int answ;
612 	bool slow;
613 
614 	switch (cmd) {
615 	case SIOCINQ:
616 		if (sk->sk_state == TCP_LISTEN)
617 			return -EINVAL;
618 
619 		slow = lock_sock_fast(sk);
620 		answ = tcp_inq(sk);
621 		unlock_sock_fast(sk, slow);
622 		break;
623 	case SIOCATMARK:
624 		answ = tp->urg_data &&
625 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
626 		break;
627 	case SIOCOUTQ:
628 		if (sk->sk_state == TCP_LISTEN)
629 			return -EINVAL;
630 
631 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
632 			answ = 0;
633 		else
634 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
635 		break;
636 	case SIOCOUTQNSD:
637 		if (sk->sk_state == TCP_LISTEN)
638 			return -EINVAL;
639 
640 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
641 			answ = 0;
642 		else
643 			answ = READ_ONCE(tp->write_seq) -
644 			       READ_ONCE(tp->snd_nxt);
645 		break;
646 	default:
647 		return -ENOIOCTLCMD;
648 	}
649 
650 	return put_user(answ, (int __user *)arg);
651 }
652 EXPORT_SYMBOL(tcp_ioctl);
653 
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)654 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
655 {
656 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
657 	tp->pushed_seq = tp->write_seq;
658 }
659 
forced_push(const struct tcp_sock * tp)660 static inline bool forced_push(const struct tcp_sock *tp)
661 {
662 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
663 }
664 
skb_entail(struct sock * sk,struct sk_buff * skb)665 static void skb_entail(struct sock *sk, struct sk_buff *skb)
666 {
667 	struct tcp_sock *tp = tcp_sk(sk);
668 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
669 
670 	skb->csum    = 0;
671 	tcb->seq     = tcb->end_seq = tp->write_seq;
672 	tcb->tcp_flags = TCPHDR_ACK;
673 	tcb->sacked  = 0;
674 	__skb_header_release(skb);
675 	tcp_add_write_queue_tail(sk, skb);
676 	sk_wmem_queued_add(sk, skb->truesize);
677 	sk_mem_charge(sk, skb->truesize);
678 	if (tp->nonagle & TCP_NAGLE_PUSH)
679 		tp->nonagle &= ~TCP_NAGLE_PUSH;
680 
681 	tcp_slow_start_after_idle_check(sk);
682 }
683 
tcp_mark_urg(struct tcp_sock * tp,int flags)684 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
685 {
686 	if (flags & MSG_OOB)
687 		tp->snd_up = tp->write_seq;
688 }
689 
690 /* If a not yet filled skb is pushed, do not send it if
691  * we have data packets in Qdisc or NIC queues :
692  * Because TX completion will happen shortly, it gives a chance
693  * to coalesce future sendmsg() payload into this skb, without
694  * need for a timer, and with no latency trade off.
695  * As packets containing data payload have a bigger truesize
696  * than pure acks (dataless) packets, the last checks prevent
697  * autocorking if we only have an ACK in Qdisc/NIC queues,
698  * or if TX completion was delayed after we processed ACK packet.
699  */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)700 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
701 				int size_goal)
702 {
703 	return skb->len < size_goal &&
704 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
705 	       !tcp_rtx_queue_empty(sk) &&
706 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
707 }
708 
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)709 void tcp_push(struct sock *sk, int flags, int mss_now,
710 	      int nonagle, int size_goal)
711 {
712 	struct tcp_sock *tp = tcp_sk(sk);
713 	struct sk_buff *skb;
714 
715 	skb = tcp_write_queue_tail(sk);
716 	if (!skb)
717 		return;
718 	if (!(flags & MSG_MORE) || forced_push(tp))
719 		tcp_mark_push(tp, skb);
720 
721 	tcp_mark_urg(tp, flags);
722 
723 	if (tcp_should_autocork(sk, skb, size_goal)) {
724 
725 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
726 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
727 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
728 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
729 		}
730 		/* It is possible TX completion already happened
731 		 * before we set TSQ_THROTTLED.
732 		 */
733 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
734 			return;
735 	}
736 
737 	if (flags & MSG_MORE)
738 		nonagle = TCP_NAGLE_CORK;
739 
740 	__tcp_push_pending_frames(sk, mss_now, nonagle);
741 }
742 
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)743 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
744 				unsigned int offset, size_t len)
745 {
746 	struct tcp_splice_state *tss = rd_desc->arg.data;
747 	int ret;
748 
749 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
750 			      min(rd_desc->count, len), tss->flags);
751 	if (ret > 0)
752 		rd_desc->count -= ret;
753 	return ret;
754 }
755 
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)756 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
757 {
758 	/* Store TCP splice context information in read_descriptor_t. */
759 	read_descriptor_t rd_desc = {
760 		.arg.data = tss,
761 		.count	  = tss->len,
762 	};
763 
764 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
765 }
766 
767 /**
768  *  tcp_splice_read - splice data from TCP socket to a pipe
769  * @sock:	socket to splice from
770  * @ppos:	position (not valid)
771  * @pipe:	pipe to splice to
772  * @len:	number of bytes to splice
773  * @flags:	splice modifier flags
774  *
775  * Description:
776  *    Will read pages from given socket and fill them into a pipe.
777  *
778  **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)779 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
780 			struct pipe_inode_info *pipe, size_t len,
781 			unsigned int flags)
782 {
783 	struct sock *sk = sock->sk;
784 	struct tcp_splice_state tss = {
785 		.pipe = pipe,
786 		.len = len,
787 		.flags = flags,
788 	};
789 	long timeo;
790 	ssize_t spliced;
791 	int ret;
792 
793 	sock_rps_record_flow(sk);
794 	/*
795 	 * We can't seek on a socket input
796 	 */
797 	if (unlikely(*ppos))
798 		return -ESPIPE;
799 
800 	ret = spliced = 0;
801 
802 	lock_sock(sk);
803 
804 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
805 	while (tss.len) {
806 		ret = __tcp_splice_read(sk, &tss);
807 		if (ret < 0)
808 			break;
809 		else if (!ret) {
810 			if (spliced)
811 				break;
812 			if (sock_flag(sk, SOCK_DONE))
813 				break;
814 			if (sk->sk_err) {
815 				ret = sock_error(sk);
816 				break;
817 			}
818 			if (sk->sk_shutdown & RCV_SHUTDOWN)
819 				break;
820 			if (sk->sk_state == TCP_CLOSE) {
821 				/*
822 				 * This occurs when user tries to read
823 				 * from never connected socket.
824 				 */
825 				ret = -ENOTCONN;
826 				break;
827 			}
828 			if (!timeo) {
829 				ret = -EAGAIN;
830 				break;
831 			}
832 			/* if __tcp_splice_read() got nothing while we have
833 			 * an skb in receive queue, we do not want to loop.
834 			 * This might happen with URG data.
835 			 */
836 			if (!skb_queue_empty(&sk->sk_receive_queue))
837 				break;
838 			sk_wait_data(sk, &timeo, NULL);
839 			if (signal_pending(current)) {
840 				ret = sock_intr_errno(timeo);
841 				break;
842 			}
843 			continue;
844 		}
845 		tss.len -= ret;
846 		spliced += ret;
847 
848 		if (!timeo)
849 			break;
850 		release_sock(sk);
851 		lock_sock(sk);
852 
853 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
854 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
855 		    signal_pending(current))
856 			break;
857 	}
858 
859 	release_sock(sk);
860 
861 	if (spliced)
862 		return spliced;
863 
864 	return ret;
865 }
866 EXPORT_SYMBOL(tcp_splice_read);
867 
sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp,bool force_schedule)868 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
869 				    bool force_schedule)
870 {
871 	struct sk_buff *skb;
872 
873 	if (likely(!size)) {
874 		skb = sk->sk_tx_skb_cache;
875 		if (skb) {
876 			skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
877 			sk->sk_tx_skb_cache = NULL;
878 			pskb_trim(skb, 0);
879 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
880 			skb_shinfo(skb)->tx_flags = 0;
881 			memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
882 			return skb;
883 		}
884 	}
885 	/* The TCP header must be at least 32-bit aligned.  */
886 	size = ALIGN(size, 4);
887 
888 	if (unlikely(tcp_under_memory_pressure(sk)))
889 		sk_mem_reclaim_partial(sk);
890 
891 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
892 	if (likely(skb)) {
893 		bool mem_scheduled;
894 
895 		if (force_schedule) {
896 			mem_scheduled = true;
897 			sk_forced_mem_schedule(sk, skb->truesize);
898 		} else {
899 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
900 		}
901 		if (likely(mem_scheduled)) {
902 			skb_reserve(skb, sk->sk_prot->max_header);
903 			/*
904 			 * Make sure that we have exactly size bytes
905 			 * available to the caller, no more, no less.
906 			 */
907 			skb->reserved_tailroom = skb->end - skb->tail - size;
908 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
909 			return skb;
910 		}
911 		__kfree_skb(skb);
912 	} else {
913 		sk->sk_prot->enter_memory_pressure(sk);
914 		sk_stream_moderate_sndbuf(sk);
915 	}
916 	return NULL;
917 }
918 
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)919 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
920 				       int large_allowed)
921 {
922 	struct tcp_sock *tp = tcp_sk(sk);
923 	u32 new_size_goal, size_goal;
924 
925 	if (!large_allowed)
926 		return mss_now;
927 
928 	/* Note : tcp_tso_autosize() will eventually split this later */
929 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
930 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
931 
932 	/* We try hard to avoid divides here */
933 	size_goal = tp->gso_segs * mss_now;
934 	if (unlikely(new_size_goal < size_goal ||
935 		     new_size_goal >= size_goal + mss_now)) {
936 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
937 				     sk->sk_gso_max_segs);
938 		size_goal = tp->gso_segs * mss_now;
939 	}
940 
941 	return max(size_goal, mss_now);
942 }
943 
tcp_send_mss(struct sock * sk,int * size_goal,int flags)944 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
945 {
946 	int mss_now;
947 
948 	mss_now = tcp_current_mss(sk);
949 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
950 
951 	return mss_now;
952 }
953 
954 /* In some cases, both sendpage() and sendmsg() could have added
955  * an skb to the write queue, but failed adding payload on it.
956  * We need to remove it to consume less memory, but more
957  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
958  * users.
959  */
tcp_remove_empty_skb(struct sock * sk,struct sk_buff * skb)960 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
961 {
962 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
963 		tcp_unlink_write_queue(skb, sk);
964 		if (tcp_write_queue_empty(sk))
965 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
966 		sk_wmem_free_skb(sk, skb);
967 	}
968 }
969 
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)970 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
971 			 size_t size, int flags)
972 {
973 	struct tcp_sock *tp = tcp_sk(sk);
974 	int mss_now, size_goal;
975 	int err;
976 	ssize_t copied;
977 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
978 
979 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
980 	    WARN_ONCE(!sendpage_ok(page),
981 		      "page must not be a Slab one and have page_count > 0"))
982 		return -EINVAL;
983 
984 	/* Wait for a connection to finish. One exception is TCP Fast Open
985 	 * (passive side) where data is allowed to be sent before a connection
986 	 * is fully established.
987 	 */
988 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
989 	    !tcp_passive_fastopen(sk)) {
990 		err = sk_stream_wait_connect(sk, &timeo);
991 		if (err != 0)
992 			goto out_err;
993 	}
994 
995 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
996 
997 	mss_now = tcp_send_mss(sk, &size_goal, flags);
998 	copied = 0;
999 
1000 	err = -EPIPE;
1001 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1002 		goto out_err;
1003 
1004 	while (size > 0) {
1005 		struct sk_buff *skb = tcp_write_queue_tail(sk);
1006 		int copy, i;
1007 		bool can_coalesce;
1008 
1009 		if (!skb || (copy = size_goal - skb->len) <= 0 ||
1010 		    !tcp_skb_can_collapse_to(skb)) {
1011 new_segment:
1012 			if (!sk_stream_memory_free(sk))
1013 				goto wait_for_space;
1014 
1015 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1016 					tcp_rtx_and_write_queues_empty(sk));
1017 			if (!skb)
1018 				goto wait_for_space;
1019 
1020 #ifdef CONFIG_TLS_DEVICE
1021 			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1022 #endif
1023 			skb_entail(sk, skb);
1024 			copy = size_goal;
1025 		}
1026 
1027 		if (copy > size)
1028 			copy = size;
1029 
1030 		i = skb_shinfo(skb)->nr_frags;
1031 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
1032 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
1033 			tcp_mark_push(tp, skb);
1034 			goto new_segment;
1035 		}
1036 		if (!sk_wmem_schedule(sk, copy))
1037 			goto wait_for_space;
1038 
1039 		if (can_coalesce) {
1040 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1041 		} else {
1042 			get_page(page);
1043 			skb_fill_page_desc(skb, i, page, offset, copy);
1044 		}
1045 
1046 		if (!(flags & MSG_NO_SHARED_FRAGS))
1047 			skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1048 
1049 		skb->len += copy;
1050 		skb->data_len += copy;
1051 		skb->truesize += copy;
1052 		sk_wmem_queued_add(sk, copy);
1053 		sk_mem_charge(sk, copy);
1054 		skb->ip_summed = CHECKSUM_PARTIAL;
1055 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1056 		TCP_SKB_CB(skb)->end_seq += copy;
1057 		tcp_skb_pcount_set(skb, 0);
1058 
1059 		if (!copied)
1060 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1061 
1062 		copied += copy;
1063 		offset += copy;
1064 		size -= copy;
1065 		if (!size)
1066 			goto out;
1067 
1068 		if (skb->len < size_goal || (flags & MSG_OOB))
1069 			continue;
1070 
1071 		if (forced_push(tp)) {
1072 			tcp_mark_push(tp, skb);
1073 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1074 		} else if (skb == tcp_send_head(sk))
1075 			tcp_push_one(sk, mss_now);
1076 		continue;
1077 
1078 wait_for_space:
1079 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1080 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1081 			 TCP_NAGLE_PUSH, size_goal);
1082 
1083 		err = sk_stream_wait_memory(sk, &timeo);
1084 		if (err != 0)
1085 			goto do_error;
1086 
1087 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1088 	}
1089 
1090 out:
1091 	if (copied) {
1092 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1093 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1094 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1095 	}
1096 	return copied;
1097 
1098 do_error:
1099 	tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1100 	if (copied)
1101 		goto out;
1102 out_err:
1103 	/* make sure we wake any epoll edge trigger waiter */
1104 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1105 		sk->sk_write_space(sk);
1106 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1107 	}
1108 	return sk_stream_error(sk, flags, err);
1109 }
1110 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1111 
tcp_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1112 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1113 			size_t size, int flags)
1114 {
1115 	if (!(sk->sk_route_caps & NETIF_F_SG))
1116 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1117 
1118 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1119 
1120 	return do_tcp_sendpages(sk, page, offset, size, flags);
1121 }
1122 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1123 
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1124 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1125 		 size_t size, int flags)
1126 {
1127 	int ret;
1128 
1129 	lock_sock(sk);
1130 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1131 	release_sock(sk);
1132 
1133 	return ret;
1134 }
1135 EXPORT_SYMBOL(tcp_sendpage);
1136 
tcp_free_fastopen_req(struct tcp_sock * tp)1137 void tcp_free_fastopen_req(struct tcp_sock *tp)
1138 {
1139 	if (tp->fastopen_req) {
1140 		kfree(tp->fastopen_req);
1141 		tp->fastopen_req = NULL;
1142 	}
1143 }
1144 
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1145 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1146 				int *copied, size_t size,
1147 				struct ubuf_info *uarg)
1148 {
1149 	struct tcp_sock *tp = tcp_sk(sk);
1150 	struct inet_sock *inet = inet_sk(sk);
1151 	struct sockaddr *uaddr = msg->msg_name;
1152 	int err, flags;
1153 
1154 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1155 	      TFO_CLIENT_ENABLE) ||
1156 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1157 	     uaddr->sa_family == AF_UNSPEC))
1158 		return -EOPNOTSUPP;
1159 	if (tp->fastopen_req)
1160 		return -EALREADY; /* Another Fast Open is in progress */
1161 
1162 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1163 				   sk->sk_allocation);
1164 	if (unlikely(!tp->fastopen_req))
1165 		return -ENOBUFS;
1166 	tp->fastopen_req->data = msg;
1167 	tp->fastopen_req->size = size;
1168 	tp->fastopen_req->uarg = uarg;
1169 
1170 	if (inet->defer_connect) {
1171 		err = tcp_connect(sk);
1172 		/* Same failure procedure as in tcp_v4/6_connect */
1173 		if (err) {
1174 			tcp_set_state(sk, TCP_CLOSE);
1175 			inet->inet_dport = 0;
1176 			sk->sk_route_caps = 0;
1177 		}
1178 	}
1179 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1180 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1181 				    msg->msg_namelen, flags, 1);
1182 	/* fastopen_req could already be freed in __inet_stream_connect
1183 	 * if the connection times out or gets rst
1184 	 */
1185 	if (tp->fastopen_req) {
1186 		*copied = tp->fastopen_req->copied;
1187 		tcp_free_fastopen_req(tp);
1188 		inet->defer_connect = 0;
1189 	}
1190 	return err;
1191 }
1192 
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1193 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1194 {
1195 	struct tcp_sock *tp = tcp_sk(sk);
1196 	struct ubuf_info *uarg = NULL;
1197 	struct sk_buff *skb;
1198 	struct sockcm_cookie sockc;
1199 	int flags, err, copied = 0;
1200 	int mss_now = 0, size_goal, copied_syn = 0;
1201 	int process_backlog = 0;
1202 	bool zc = false;
1203 	long timeo;
1204 
1205 	flags = msg->msg_flags;
1206 
1207 	if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1208 		skb = tcp_write_queue_tail(sk);
1209 		uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1210 		if (!uarg) {
1211 			err = -ENOBUFS;
1212 			goto out_err;
1213 		}
1214 
1215 		zc = sk->sk_route_caps & NETIF_F_SG;
1216 		if (!zc)
1217 			uarg->zerocopy = 0;
1218 	}
1219 
1220 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1221 	    !tp->repair) {
1222 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1223 		if (err == -EINPROGRESS && copied_syn > 0)
1224 			goto out;
1225 		else if (err)
1226 			goto out_err;
1227 	}
1228 
1229 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1230 
1231 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1232 
1233 	/* Wait for a connection to finish. One exception is TCP Fast Open
1234 	 * (passive side) where data is allowed to be sent before a connection
1235 	 * is fully established.
1236 	 */
1237 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1238 	    !tcp_passive_fastopen(sk)) {
1239 		err = sk_stream_wait_connect(sk, &timeo);
1240 		if (err != 0)
1241 			goto do_error;
1242 	}
1243 
1244 	if (unlikely(tp->repair)) {
1245 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1246 			copied = tcp_send_rcvq(sk, msg, size);
1247 			goto out_nopush;
1248 		}
1249 
1250 		err = -EINVAL;
1251 		if (tp->repair_queue == TCP_NO_QUEUE)
1252 			goto out_err;
1253 
1254 		/* 'common' sending to sendq */
1255 	}
1256 
1257 	sockcm_init(&sockc, sk);
1258 	if (msg->msg_controllen) {
1259 		err = sock_cmsg_send(sk, msg, &sockc);
1260 		if (unlikely(err)) {
1261 			err = -EINVAL;
1262 			goto out_err;
1263 		}
1264 	}
1265 
1266 	/* This should be in poll */
1267 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1268 
1269 	/* Ok commence sending. */
1270 	copied = 0;
1271 
1272 restart:
1273 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1274 
1275 	err = -EPIPE;
1276 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1277 		goto do_error;
1278 
1279 	while (msg_data_left(msg)) {
1280 		int copy = 0;
1281 
1282 		skb = tcp_write_queue_tail(sk);
1283 		if (skb)
1284 			copy = size_goal - skb->len;
1285 
1286 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1287 			bool first_skb;
1288 
1289 new_segment:
1290 			if (!sk_stream_memory_free(sk))
1291 				goto wait_for_space;
1292 
1293 			if (unlikely(process_backlog >= 16)) {
1294 				process_backlog = 0;
1295 				if (sk_flush_backlog(sk))
1296 					goto restart;
1297 			}
1298 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1299 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1300 						  first_skb);
1301 			if (!skb)
1302 				goto wait_for_space;
1303 
1304 			process_backlog++;
1305 			skb->ip_summed = CHECKSUM_PARTIAL;
1306 
1307 			skb_entail(sk, skb);
1308 			copy = size_goal;
1309 
1310 			/* All packets are restored as if they have
1311 			 * already been sent. skb_mstamp_ns isn't set to
1312 			 * avoid wrong rtt estimation.
1313 			 */
1314 			if (tp->repair)
1315 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1316 		}
1317 
1318 		/* Try to append data to the end of skb. */
1319 		if (copy > msg_data_left(msg))
1320 			copy = msg_data_left(msg);
1321 
1322 		/* Where to copy to? */
1323 		if (skb_availroom(skb) > 0 && !zc) {
1324 			/* We have some space in skb head. Superb! */
1325 			copy = min_t(int, copy, skb_availroom(skb));
1326 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1327 			if (err)
1328 				goto do_fault;
1329 		} else if (!zc) {
1330 			bool merge = true;
1331 			int i = skb_shinfo(skb)->nr_frags;
1332 			struct page_frag *pfrag = sk_page_frag(sk);
1333 
1334 			if (!sk_page_frag_refill(sk, pfrag))
1335 				goto wait_for_space;
1336 
1337 			if (!skb_can_coalesce(skb, i, pfrag->page,
1338 					      pfrag->offset)) {
1339 				if (i >= sysctl_max_skb_frags) {
1340 					tcp_mark_push(tp, skb);
1341 					goto new_segment;
1342 				}
1343 				merge = false;
1344 			}
1345 
1346 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1347 
1348 			if (!sk_wmem_schedule(sk, copy))
1349 				goto wait_for_space;
1350 
1351 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1352 						       pfrag->page,
1353 						       pfrag->offset,
1354 						       copy);
1355 			if (err)
1356 				goto do_error;
1357 
1358 			/* Update the skb. */
1359 			if (merge) {
1360 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1361 			} else {
1362 				skb_fill_page_desc(skb, i, pfrag->page,
1363 						   pfrag->offset, copy);
1364 				page_ref_inc(pfrag->page);
1365 			}
1366 			pfrag->offset += copy;
1367 		} else {
1368 			if (!sk_wmem_schedule(sk, copy))
1369 				goto wait_for_space;
1370 
1371 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1372 			if (err == -EMSGSIZE || err == -EEXIST) {
1373 				tcp_mark_push(tp, skb);
1374 				goto new_segment;
1375 			}
1376 			if (err < 0)
1377 				goto do_error;
1378 			copy = err;
1379 		}
1380 
1381 		if (!copied)
1382 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1383 
1384 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1385 		TCP_SKB_CB(skb)->end_seq += copy;
1386 		tcp_skb_pcount_set(skb, 0);
1387 
1388 		copied += copy;
1389 		if (!msg_data_left(msg)) {
1390 			if (unlikely(flags & MSG_EOR))
1391 				TCP_SKB_CB(skb)->eor = 1;
1392 			goto out;
1393 		}
1394 
1395 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1396 			continue;
1397 
1398 		if (forced_push(tp)) {
1399 			tcp_mark_push(tp, skb);
1400 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1401 		} else if (skb == tcp_send_head(sk))
1402 			tcp_push_one(sk, mss_now);
1403 		continue;
1404 
1405 wait_for_space:
1406 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1407 		if (copied)
1408 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1409 				 TCP_NAGLE_PUSH, size_goal);
1410 
1411 		err = sk_stream_wait_memory(sk, &timeo);
1412 		if (err != 0)
1413 			goto do_error;
1414 
1415 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1416 	}
1417 
1418 out:
1419 	if (copied) {
1420 		tcp_tx_timestamp(sk, sockc.tsflags);
1421 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1422 	}
1423 out_nopush:
1424 	sock_zerocopy_put(uarg);
1425 	return copied + copied_syn;
1426 
1427 do_error:
1428 	skb = tcp_write_queue_tail(sk);
1429 do_fault:
1430 	tcp_remove_empty_skb(sk, skb);
1431 
1432 	if (copied + copied_syn)
1433 		goto out;
1434 out_err:
1435 	sock_zerocopy_put_abort(uarg, true);
1436 	err = sk_stream_error(sk, flags, err);
1437 	/* make sure we wake any epoll edge trigger waiter */
1438 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1439 		sk->sk_write_space(sk);
1440 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1441 	}
1442 	return err;
1443 }
1444 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1445 
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1446 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1447 {
1448 	int ret;
1449 
1450 	lock_sock(sk);
1451 	ret = tcp_sendmsg_locked(sk, msg, size);
1452 	release_sock(sk);
1453 
1454 	return ret;
1455 }
1456 EXPORT_SYMBOL(tcp_sendmsg);
1457 
1458 /*
1459  *	Handle reading urgent data. BSD has very simple semantics for
1460  *	this, no blocking and very strange errors 8)
1461  */
1462 
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1463 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1464 {
1465 	struct tcp_sock *tp = tcp_sk(sk);
1466 
1467 	/* No URG data to read. */
1468 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1469 	    tp->urg_data == TCP_URG_READ)
1470 		return -EINVAL;	/* Yes this is right ! */
1471 
1472 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1473 		return -ENOTCONN;
1474 
1475 	if (tp->urg_data & TCP_URG_VALID) {
1476 		int err = 0;
1477 		char c = tp->urg_data;
1478 
1479 		if (!(flags & MSG_PEEK))
1480 			tp->urg_data = TCP_URG_READ;
1481 
1482 		/* Read urgent data. */
1483 		msg->msg_flags |= MSG_OOB;
1484 
1485 		if (len > 0) {
1486 			if (!(flags & MSG_TRUNC))
1487 				err = memcpy_to_msg(msg, &c, 1);
1488 			len = 1;
1489 		} else
1490 			msg->msg_flags |= MSG_TRUNC;
1491 
1492 		return err ? -EFAULT : len;
1493 	}
1494 
1495 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1496 		return 0;
1497 
1498 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1499 	 * the available implementations agree in this case:
1500 	 * this call should never block, independent of the
1501 	 * blocking state of the socket.
1502 	 * Mike <pall@rz.uni-karlsruhe.de>
1503 	 */
1504 	return -EAGAIN;
1505 }
1506 
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1507 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1508 {
1509 	struct sk_buff *skb;
1510 	int copied = 0, err = 0;
1511 
1512 	/* XXX -- need to support SO_PEEK_OFF */
1513 
1514 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1515 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1516 		if (err)
1517 			return err;
1518 		copied += skb->len;
1519 	}
1520 
1521 	skb_queue_walk(&sk->sk_write_queue, skb) {
1522 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1523 		if (err)
1524 			break;
1525 
1526 		copied += skb->len;
1527 	}
1528 
1529 	return err ?: copied;
1530 }
1531 
1532 /* Clean up the receive buffer for full frames taken by the user,
1533  * then send an ACK if necessary.  COPIED is the number of bytes
1534  * tcp_recvmsg has given to the user so far, it speeds up the
1535  * calculation of whether or not we must ACK for the sake of
1536  * a window update.
1537  */
tcp_cleanup_rbuf(struct sock * sk,int copied)1538 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1539 {
1540 	struct tcp_sock *tp = tcp_sk(sk);
1541 	bool time_to_ack = false;
1542 
1543 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1544 
1545 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1546 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1547 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1548 
1549 	if (inet_csk_ack_scheduled(sk)) {
1550 		const struct inet_connection_sock *icsk = inet_csk(sk);
1551 
1552 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1553 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1554 		    /*
1555 		     * If this read emptied read buffer, we send ACK, if
1556 		     * connection is not bidirectional, user drained
1557 		     * receive buffer and there was a small segment
1558 		     * in queue.
1559 		     */
1560 		    (copied > 0 &&
1561 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1562 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1563 		       !inet_csk_in_pingpong_mode(sk))) &&
1564 		      !atomic_read(&sk->sk_rmem_alloc)))
1565 			time_to_ack = true;
1566 	}
1567 
1568 	/* We send an ACK if we can now advertise a non-zero window
1569 	 * which has been raised "significantly".
1570 	 *
1571 	 * Even if window raised up to infinity, do not send window open ACK
1572 	 * in states, where we will not receive more. It is useless.
1573 	 */
1574 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1575 		__u32 rcv_window_now = tcp_receive_window(tp);
1576 
1577 		/* Optimize, __tcp_select_window() is not cheap. */
1578 		if (2*rcv_window_now <= tp->window_clamp) {
1579 			__u32 new_window = __tcp_select_window(sk);
1580 
1581 			/* Send ACK now, if this read freed lots of space
1582 			 * in our buffer. Certainly, new_window is new window.
1583 			 * We can advertise it now, if it is not less than current one.
1584 			 * "Lots" means "at least twice" here.
1585 			 */
1586 			if (new_window && new_window >= 2 * rcv_window_now)
1587 				time_to_ack = true;
1588 		}
1589 	}
1590 	if (time_to_ack)
1591 		tcp_send_ack(sk);
1592 }
1593 
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1594 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1595 {
1596 	struct sk_buff *skb;
1597 	u32 offset;
1598 
1599 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1600 		offset = seq - TCP_SKB_CB(skb)->seq;
1601 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1602 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1603 			offset--;
1604 		}
1605 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1606 			*off = offset;
1607 			return skb;
1608 		}
1609 		/* This looks weird, but this can happen if TCP collapsing
1610 		 * splitted a fat GRO packet, while we released socket lock
1611 		 * in skb_splice_bits()
1612 		 */
1613 		sk_eat_skb(sk, skb);
1614 	}
1615 	return NULL;
1616 }
1617 
1618 /*
1619  * This routine provides an alternative to tcp_recvmsg() for routines
1620  * that would like to handle copying from skbuffs directly in 'sendfile'
1621  * fashion.
1622  * Note:
1623  *	- It is assumed that the socket was locked by the caller.
1624  *	- The routine does not block.
1625  *	- At present, there is no support for reading OOB data
1626  *	  or for 'peeking' the socket using this routine
1627  *	  (although both would be easy to implement).
1628  */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1629 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1630 		  sk_read_actor_t recv_actor)
1631 {
1632 	struct sk_buff *skb;
1633 	struct tcp_sock *tp = tcp_sk(sk);
1634 	u32 seq = tp->copied_seq;
1635 	u32 offset;
1636 	int copied = 0;
1637 
1638 	if (sk->sk_state == TCP_LISTEN)
1639 		return -ENOTCONN;
1640 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1641 		if (offset < skb->len) {
1642 			int used;
1643 			size_t len;
1644 
1645 			len = skb->len - offset;
1646 			/* Stop reading if we hit a patch of urgent data */
1647 			if (tp->urg_data) {
1648 				u32 urg_offset = tp->urg_seq - seq;
1649 				if (urg_offset < len)
1650 					len = urg_offset;
1651 				if (!len)
1652 					break;
1653 			}
1654 			used = recv_actor(desc, skb, offset, len);
1655 			if (used <= 0) {
1656 				if (!copied)
1657 					copied = used;
1658 				break;
1659 			}
1660 			if (WARN_ON_ONCE(used > len))
1661 				used = len;
1662 			seq += used;
1663 			copied += used;
1664 			offset += used;
1665 
1666 			/* If recv_actor drops the lock (e.g. TCP splice
1667 			 * receive) the skb pointer might be invalid when
1668 			 * getting here: tcp_collapse might have deleted it
1669 			 * while aggregating skbs from the socket queue.
1670 			 */
1671 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1672 			if (!skb)
1673 				break;
1674 			/* TCP coalescing might have appended data to the skb.
1675 			 * Try to splice more frags
1676 			 */
1677 			if (offset + 1 != skb->len)
1678 				continue;
1679 		}
1680 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1681 			sk_eat_skb(sk, skb);
1682 			++seq;
1683 			break;
1684 		}
1685 		sk_eat_skb(sk, skb);
1686 		if (!desc->count)
1687 			break;
1688 		WRITE_ONCE(tp->copied_seq, seq);
1689 	}
1690 	WRITE_ONCE(tp->copied_seq, seq);
1691 
1692 	tcp_rcv_space_adjust(sk);
1693 
1694 	/* Clean up data we have read: This will do ACK frames. */
1695 	if (copied > 0) {
1696 		tcp_recv_skb(sk, seq, &offset);
1697 		tcp_cleanup_rbuf(sk, copied);
1698 	}
1699 	return copied;
1700 }
1701 EXPORT_SYMBOL(tcp_read_sock);
1702 
tcp_peek_len(struct socket * sock)1703 int tcp_peek_len(struct socket *sock)
1704 {
1705 	return tcp_inq(sock->sk);
1706 }
1707 EXPORT_SYMBOL(tcp_peek_len);
1708 
1709 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1710 int tcp_set_rcvlowat(struct sock *sk, int val)
1711 {
1712 	int cap;
1713 
1714 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1715 		cap = sk->sk_rcvbuf >> 1;
1716 	else
1717 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1718 	val = min(val, cap);
1719 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1720 
1721 	/* Check if we need to signal EPOLLIN right now */
1722 	tcp_data_ready(sk);
1723 
1724 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1725 		return 0;
1726 
1727 	val <<= 1;
1728 	if (val > sk->sk_rcvbuf) {
1729 		WRITE_ONCE(sk->sk_rcvbuf, val);
1730 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1731 	}
1732 	return 0;
1733 }
1734 EXPORT_SYMBOL(tcp_set_rcvlowat);
1735 
1736 #ifdef CONFIG_MMU
1737 static const struct vm_operations_struct tcp_vm_ops = {
1738 };
1739 
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1740 int tcp_mmap(struct file *file, struct socket *sock,
1741 	     struct vm_area_struct *vma)
1742 {
1743 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1744 		return -EPERM;
1745 	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1746 
1747 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1748 	vma->vm_flags |= VM_MIXEDMAP;
1749 
1750 	vma->vm_ops = &tcp_vm_ops;
1751 	return 0;
1752 }
1753 EXPORT_SYMBOL(tcp_mmap);
1754 
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1755 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1756 				       u32 *offset_frag)
1757 {
1758 	skb_frag_t *frag;
1759 
1760 	if (unlikely(offset_skb >= skb->len))
1761 		return NULL;
1762 
1763 	offset_skb -= skb_headlen(skb);
1764 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1765 		return NULL;
1766 
1767 	frag = skb_shinfo(skb)->frags;
1768 	while (offset_skb) {
1769 		if (skb_frag_size(frag) > offset_skb) {
1770 			*offset_frag = offset_skb;
1771 			return frag;
1772 		}
1773 		offset_skb -= skb_frag_size(frag);
1774 		++frag;
1775 	}
1776 	*offset_frag = 0;
1777 	return frag;
1778 }
1779 
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1780 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1781 				   struct sk_buff *skb, u32 copylen,
1782 				   u32 *offset, u32 *seq)
1783 {
1784 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1785 	struct msghdr msg = {};
1786 	struct iovec iov;
1787 	int err;
1788 
1789 	if (copy_address != zc->copybuf_address)
1790 		return -EINVAL;
1791 
1792 	err = import_single_range(READ, (void __user *)copy_address,
1793 				  copylen, &iov, &msg.msg_iter);
1794 	if (err)
1795 		return err;
1796 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1797 	if (err)
1798 		return err;
1799 	zc->recv_skip_hint -= copylen;
1800 	*offset += copylen;
1801 	*seq += copylen;
1802 	return (__s32)copylen;
1803 }
1804 
tcp_zerocopy_handle_leftover_data(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len)1805 static int tcp_zerocopy_handle_leftover_data(struct tcp_zerocopy_receive *zc,
1806 					     struct sock *sk,
1807 					     struct sk_buff *skb,
1808 					     u32 *seq,
1809 					     s32 copybuf_len)
1810 {
1811 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1812 
1813 	if (!copylen)
1814 		return 0;
1815 	/* skb is null if inq < PAGE_SIZE. */
1816 	if (skb)
1817 		offset = *seq - TCP_SKB_CB(skb)->seq;
1818 	else
1819 		skb = tcp_recv_skb(sk, *seq, &offset);
1820 
1821 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1822 						  seq);
1823 	return zc->copybuf_len < 0 ? 0 : copylen;
1824 }
1825 
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned long pages_to_map,unsigned long * insert_addr,u32 * length_with_pending,u32 * seq,struct tcp_zerocopy_receive * zc)1826 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1827 					struct page **pages,
1828 					unsigned long pages_to_map,
1829 					unsigned long *insert_addr,
1830 					u32 *length_with_pending,
1831 					u32 *seq,
1832 					struct tcp_zerocopy_receive *zc)
1833 {
1834 	unsigned long pages_remaining = pages_to_map;
1835 	int bytes_mapped;
1836 	int ret;
1837 
1838 	ret = vm_insert_pages(vma, *insert_addr, pages, &pages_remaining);
1839 	bytes_mapped = PAGE_SIZE * (pages_to_map - pages_remaining);
1840 	/* Even if vm_insert_pages fails, it may have partially succeeded in
1841 	 * mapping (some but not all of the pages).
1842 	 */
1843 	*seq += bytes_mapped;
1844 	*insert_addr += bytes_mapped;
1845 	if (ret) {
1846 		/* But if vm_insert_pages did fail, we have to unroll some state
1847 		 * we speculatively touched before.
1848 		 */
1849 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1850 		*length_with_pending -= bytes_not_mapped;
1851 		zc->recv_skip_hint += bytes_not_mapped;
1852 	}
1853 	return ret;
1854 }
1855 
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc)1856 static int tcp_zerocopy_receive(struct sock *sk,
1857 				struct tcp_zerocopy_receive *zc)
1858 {
1859 	u32 length = 0, offset, vma_len, avail_len, aligned_len, copylen = 0;
1860 	unsigned long address = (unsigned long)zc->address;
1861 	s32 copybuf_len = zc->copybuf_len;
1862 	struct tcp_sock *tp = tcp_sk(sk);
1863 	#define PAGE_BATCH_SIZE 8
1864 	struct page *pages[PAGE_BATCH_SIZE];
1865 	const skb_frag_t *frags = NULL;
1866 	struct vm_area_struct *vma;
1867 	struct sk_buff *skb = NULL;
1868 	unsigned long pg_idx = 0;
1869 	unsigned long curr_addr;
1870 	u32 seq = tp->copied_seq;
1871 	int inq = tcp_inq(sk);
1872 	int ret;
1873 
1874 	zc->copybuf_len = 0;
1875 
1876 	if (address & (PAGE_SIZE - 1) || address != zc->address)
1877 		return -EINVAL;
1878 
1879 	if (sk->sk_state == TCP_LISTEN)
1880 		return -ENOTCONN;
1881 
1882 	sock_rps_record_flow(sk);
1883 
1884 	mmap_read_lock(current->mm);
1885 
1886 	vma = find_vma(current->mm, address);
1887 	if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) {
1888 		mmap_read_unlock(current->mm);
1889 		return -EINVAL;
1890 	}
1891 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
1892 	avail_len = min_t(u32, vma_len, inq);
1893 	aligned_len = avail_len & ~(PAGE_SIZE - 1);
1894 	if (aligned_len) {
1895 		zap_page_range(vma, address, aligned_len);
1896 		zc->length = aligned_len;
1897 		zc->recv_skip_hint = 0;
1898 	} else {
1899 		zc->length = avail_len;
1900 		zc->recv_skip_hint = avail_len;
1901 	}
1902 	ret = 0;
1903 	curr_addr = address;
1904 	while (length + PAGE_SIZE <= zc->length) {
1905 		if (zc->recv_skip_hint < PAGE_SIZE) {
1906 			u32 offset_frag;
1907 
1908 			/* If we're here, finish the current batch. */
1909 			if (pg_idx) {
1910 				ret = tcp_zerocopy_vm_insert_batch(vma, pages,
1911 								   pg_idx,
1912 								   &curr_addr,
1913 								   &length,
1914 								   &seq, zc);
1915 				if (ret)
1916 					goto out;
1917 				pg_idx = 0;
1918 			}
1919 			if (skb) {
1920 				if (zc->recv_skip_hint > 0)
1921 					break;
1922 				skb = skb->next;
1923 				offset = seq - TCP_SKB_CB(skb)->seq;
1924 			} else {
1925 				skb = tcp_recv_skb(sk, seq, &offset);
1926 			}
1927 			zc->recv_skip_hint = skb->len - offset;
1928 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
1929 			if (!frags || offset_frag)
1930 				break;
1931 		}
1932 		if (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags)) {
1933 			int remaining = zc->recv_skip_hint;
1934 
1935 			while (remaining && (skb_frag_size(frags) != PAGE_SIZE ||
1936 					     skb_frag_off(frags))) {
1937 				remaining -= skb_frag_size(frags);
1938 				frags++;
1939 			}
1940 			zc->recv_skip_hint -= remaining;
1941 			break;
1942 		}
1943 		pages[pg_idx] = skb_frag_page(frags);
1944 		pg_idx++;
1945 		length += PAGE_SIZE;
1946 		zc->recv_skip_hint -= PAGE_SIZE;
1947 		frags++;
1948 		if (pg_idx == PAGE_BATCH_SIZE) {
1949 			ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
1950 							   &curr_addr, &length,
1951 							   &seq, zc);
1952 			if (ret)
1953 				goto out;
1954 			pg_idx = 0;
1955 		}
1956 	}
1957 	if (pg_idx) {
1958 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
1959 						   &curr_addr, &length, &seq,
1960 						   zc);
1961 	}
1962 out:
1963 	mmap_read_unlock(current->mm);
1964 	/* Try to copy straggler data. */
1965 	if (!ret)
1966 		copylen = tcp_zerocopy_handle_leftover_data(zc, sk, skb, &seq,
1967 							    copybuf_len);
1968 
1969 	if (length + copylen) {
1970 		WRITE_ONCE(tp->copied_seq, seq);
1971 		tcp_rcv_space_adjust(sk);
1972 
1973 		/* Clean up data we have read: This will do ACK frames. */
1974 		tcp_recv_skb(sk, seq, &offset);
1975 		tcp_cleanup_rbuf(sk, length + copylen);
1976 		ret = 0;
1977 		if (length == zc->length)
1978 			zc->recv_skip_hint = 0;
1979 	} else {
1980 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1981 			ret = -EIO;
1982 	}
1983 	zc->length = length;
1984 	return ret;
1985 }
1986 #endif
1987 
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1988 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1989 				    struct scm_timestamping_internal *tss)
1990 {
1991 	if (skb->tstamp)
1992 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1993 	else
1994 		tss->ts[0] = (struct timespec64) {0};
1995 
1996 	if (skb_hwtstamps(skb)->hwtstamp)
1997 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1998 	else
1999 		tss->ts[2] = (struct timespec64) {0};
2000 }
2001 
2002 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2003 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2004 			       struct scm_timestamping_internal *tss)
2005 {
2006 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2007 	bool has_timestamping = false;
2008 
2009 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2010 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2011 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2012 				if (new_tstamp) {
2013 					struct __kernel_timespec kts = {
2014 						.tv_sec = tss->ts[0].tv_sec,
2015 						.tv_nsec = tss->ts[0].tv_nsec,
2016 					};
2017 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2018 						 sizeof(kts), &kts);
2019 				} else {
2020 					struct __kernel_old_timespec ts_old = {
2021 						.tv_sec = tss->ts[0].tv_sec,
2022 						.tv_nsec = tss->ts[0].tv_nsec,
2023 					};
2024 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2025 						 sizeof(ts_old), &ts_old);
2026 				}
2027 			} else {
2028 				if (new_tstamp) {
2029 					struct __kernel_sock_timeval stv = {
2030 						.tv_sec = tss->ts[0].tv_sec,
2031 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2032 					};
2033 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2034 						 sizeof(stv), &stv);
2035 				} else {
2036 					struct __kernel_old_timeval tv = {
2037 						.tv_sec = tss->ts[0].tv_sec,
2038 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2039 					};
2040 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2041 						 sizeof(tv), &tv);
2042 				}
2043 			}
2044 		}
2045 
2046 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2047 			has_timestamping = true;
2048 		else
2049 			tss->ts[0] = (struct timespec64) {0};
2050 	}
2051 
2052 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2053 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2054 			has_timestamping = true;
2055 		else
2056 			tss->ts[2] = (struct timespec64) {0};
2057 	}
2058 
2059 	if (has_timestamping) {
2060 		tss->ts[1] = (struct timespec64) {0};
2061 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2062 			put_cmsg_scm_timestamping64(msg, tss);
2063 		else
2064 			put_cmsg_scm_timestamping(msg, tss);
2065 	}
2066 }
2067 
tcp_inq_hint(struct sock * sk)2068 static int tcp_inq_hint(struct sock *sk)
2069 {
2070 	const struct tcp_sock *tp = tcp_sk(sk);
2071 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2072 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2073 	int inq;
2074 
2075 	inq = rcv_nxt - copied_seq;
2076 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2077 		lock_sock(sk);
2078 		inq = tp->rcv_nxt - tp->copied_seq;
2079 		release_sock(sk);
2080 	}
2081 	/* After receiving a FIN, tell the user-space to continue reading
2082 	 * by returning a non-zero inq.
2083 	 */
2084 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2085 		inq = 1;
2086 	return inq;
2087 }
2088 
2089 /*
2090  *	This routine copies from a sock struct into the user buffer.
2091  *
2092  *	Technical note: in 2.3 we work on _locked_ socket, so that
2093  *	tricks with *seq access order and skb->users are not required.
2094  *	Probably, code can be easily improved even more.
2095  */
2096 
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)2097 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2098 		int flags, int *addr_len)
2099 {
2100 	struct tcp_sock *tp = tcp_sk(sk);
2101 	int copied = 0;
2102 	u32 peek_seq;
2103 	u32 *seq;
2104 	unsigned long used;
2105 	int err, inq;
2106 	int target;		/* Read at least this many bytes */
2107 	long timeo;
2108 	struct sk_buff *skb, *last;
2109 	u32 urg_hole = 0;
2110 	struct scm_timestamping_internal tss;
2111 	int cmsg_flags;
2112 
2113 	if (unlikely(flags & MSG_ERRQUEUE))
2114 		return inet_recv_error(sk, msg, len, addr_len);
2115 
2116 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2117 	    (sk->sk_state == TCP_ESTABLISHED))
2118 		sk_busy_loop(sk, nonblock);
2119 
2120 	lock_sock(sk);
2121 
2122 	err = -ENOTCONN;
2123 	if (sk->sk_state == TCP_LISTEN)
2124 		goto out;
2125 
2126 	cmsg_flags = tp->recvmsg_inq ? 1 : 0;
2127 	timeo = sock_rcvtimeo(sk, nonblock);
2128 
2129 	/* Urgent data needs to be handled specially. */
2130 	if (flags & MSG_OOB)
2131 		goto recv_urg;
2132 
2133 	if (unlikely(tp->repair)) {
2134 		err = -EPERM;
2135 		if (!(flags & MSG_PEEK))
2136 			goto out;
2137 
2138 		if (tp->repair_queue == TCP_SEND_QUEUE)
2139 			goto recv_sndq;
2140 
2141 		err = -EINVAL;
2142 		if (tp->repair_queue == TCP_NO_QUEUE)
2143 			goto out;
2144 
2145 		/* 'common' recv queue MSG_PEEK-ing */
2146 	}
2147 
2148 	seq = &tp->copied_seq;
2149 	if (flags & MSG_PEEK) {
2150 		peek_seq = tp->copied_seq;
2151 		seq = &peek_seq;
2152 	}
2153 
2154 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2155 
2156 	do {
2157 		u32 offset;
2158 
2159 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2160 		if (tp->urg_data && tp->urg_seq == *seq) {
2161 			if (copied)
2162 				break;
2163 			if (signal_pending(current)) {
2164 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2165 				break;
2166 			}
2167 		}
2168 
2169 		/* Next get a buffer. */
2170 
2171 		last = skb_peek_tail(&sk->sk_receive_queue);
2172 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2173 			last = skb;
2174 			/* Now that we have two receive queues this
2175 			 * shouldn't happen.
2176 			 */
2177 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2178 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2179 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2180 				 flags))
2181 				break;
2182 
2183 			offset = *seq - TCP_SKB_CB(skb)->seq;
2184 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2185 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2186 				offset--;
2187 			}
2188 			if (offset < skb->len)
2189 				goto found_ok_skb;
2190 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2191 				goto found_fin_ok;
2192 			WARN(!(flags & MSG_PEEK),
2193 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2194 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2195 		}
2196 
2197 		/* Well, if we have backlog, try to process it now yet. */
2198 
2199 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2200 			break;
2201 
2202 		if (copied) {
2203 			if (sk->sk_err ||
2204 			    sk->sk_state == TCP_CLOSE ||
2205 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2206 			    !timeo ||
2207 			    signal_pending(current))
2208 				break;
2209 		} else {
2210 			if (sock_flag(sk, SOCK_DONE))
2211 				break;
2212 
2213 			if (sk->sk_err) {
2214 				copied = sock_error(sk);
2215 				break;
2216 			}
2217 
2218 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2219 				break;
2220 
2221 			if (sk->sk_state == TCP_CLOSE) {
2222 				/* This occurs when user tries to read
2223 				 * from never connected socket.
2224 				 */
2225 				copied = -ENOTCONN;
2226 				break;
2227 			}
2228 
2229 			if (!timeo) {
2230 				copied = -EAGAIN;
2231 				break;
2232 			}
2233 
2234 			if (signal_pending(current)) {
2235 				copied = sock_intr_errno(timeo);
2236 				break;
2237 			}
2238 		}
2239 
2240 		tcp_cleanup_rbuf(sk, copied);
2241 
2242 		if (copied >= target) {
2243 			/* Do not sleep, just process backlog. */
2244 			release_sock(sk);
2245 			lock_sock(sk);
2246 		} else {
2247 			sk_wait_data(sk, &timeo, last);
2248 		}
2249 
2250 		if ((flags & MSG_PEEK) &&
2251 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2252 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2253 					    current->comm,
2254 					    task_pid_nr(current));
2255 			peek_seq = tp->copied_seq;
2256 		}
2257 		continue;
2258 
2259 found_ok_skb:
2260 		/* Ok so how much can we use? */
2261 		used = skb->len - offset;
2262 		if (len < used)
2263 			used = len;
2264 
2265 		/* Do we have urgent data here? */
2266 		if (tp->urg_data) {
2267 			u32 urg_offset = tp->urg_seq - *seq;
2268 			if (urg_offset < used) {
2269 				if (!urg_offset) {
2270 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2271 						WRITE_ONCE(*seq, *seq + 1);
2272 						urg_hole++;
2273 						offset++;
2274 						used--;
2275 						if (!used)
2276 							goto skip_copy;
2277 					}
2278 				} else
2279 					used = urg_offset;
2280 			}
2281 		}
2282 
2283 		if (!(flags & MSG_TRUNC)) {
2284 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2285 			if (err) {
2286 				/* Exception. Bailout! */
2287 				if (!copied)
2288 					copied = -EFAULT;
2289 				break;
2290 			}
2291 		}
2292 
2293 		WRITE_ONCE(*seq, *seq + used);
2294 		copied += used;
2295 		len -= used;
2296 
2297 		tcp_rcv_space_adjust(sk);
2298 
2299 skip_copy:
2300 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2301 			tp->urg_data = 0;
2302 			tcp_fast_path_check(sk);
2303 		}
2304 
2305 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2306 			tcp_update_recv_tstamps(skb, &tss);
2307 			cmsg_flags |= 2;
2308 		}
2309 
2310 		if (used + offset < skb->len)
2311 			continue;
2312 
2313 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2314 			goto found_fin_ok;
2315 		if (!(flags & MSG_PEEK))
2316 			sk_eat_skb(sk, skb);
2317 		continue;
2318 
2319 found_fin_ok:
2320 		/* Process the FIN. */
2321 		WRITE_ONCE(*seq, *seq + 1);
2322 		if (!(flags & MSG_PEEK))
2323 			sk_eat_skb(sk, skb);
2324 		break;
2325 	} while (len > 0);
2326 
2327 	/* According to UNIX98, msg_name/msg_namelen are ignored
2328 	 * on connected socket. I was just happy when found this 8) --ANK
2329 	 */
2330 
2331 	/* Clean up data we have read: This will do ACK frames. */
2332 	tcp_cleanup_rbuf(sk, copied);
2333 
2334 	release_sock(sk);
2335 
2336 	if (cmsg_flags) {
2337 		if (cmsg_flags & 2)
2338 			tcp_recv_timestamp(msg, sk, &tss);
2339 		if (cmsg_flags & 1) {
2340 			inq = tcp_inq_hint(sk);
2341 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2342 		}
2343 	}
2344 
2345 	return copied;
2346 
2347 out:
2348 	release_sock(sk);
2349 	return err;
2350 
2351 recv_urg:
2352 	err = tcp_recv_urg(sk, msg, len, flags);
2353 	goto out;
2354 
2355 recv_sndq:
2356 	err = tcp_peek_sndq(sk, msg, len);
2357 	goto out;
2358 }
2359 EXPORT_SYMBOL(tcp_recvmsg);
2360 
tcp_set_state(struct sock * sk,int state)2361 void tcp_set_state(struct sock *sk, int state)
2362 {
2363 	int oldstate = sk->sk_state;
2364 
2365 	/* We defined a new enum for TCP states that are exported in BPF
2366 	 * so as not force the internal TCP states to be frozen. The
2367 	 * following checks will detect if an internal state value ever
2368 	 * differs from the BPF value. If this ever happens, then we will
2369 	 * need to remap the internal value to the BPF value before calling
2370 	 * tcp_call_bpf_2arg.
2371 	 */
2372 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2373 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2374 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2375 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2376 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2377 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2378 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2379 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2380 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2381 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2382 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2383 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2384 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2385 
2386 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2387 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2388 
2389 	switch (state) {
2390 	case TCP_ESTABLISHED:
2391 		if (oldstate != TCP_ESTABLISHED)
2392 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2393 		break;
2394 
2395 	case TCP_CLOSE:
2396 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2397 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2398 
2399 		sk->sk_prot->unhash(sk);
2400 		if (inet_csk(sk)->icsk_bind_hash &&
2401 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2402 			inet_put_port(sk);
2403 		fallthrough;
2404 	default:
2405 		if (oldstate == TCP_ESTABLISHED)
2406 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2407 	}
2408 
2409 	/* Change state AFTER socket is unhashed to avoid closed
2410 	 * socket sitting in hash tables.
2411 	 */
2412 	inet_sk_state_store(sk, state);
2413 }
2414 EXPORT_SYMBOL_GPL(tcp_set_state);
2415 
2416 /*
2417  *	State processing on a close. This implements the state shift for
2418  *	sending our FIN frame. Note that we only send a FIN for some
2419  *	states. A shutdown() may have already sent the FIN, or we may be
2420  *	closed.
2421  */
2422 
2423 static const unsigned char new_state[16] = {
2424   /* current state:        new state:      action:	*/
2425   [0 /* (Invalid) */]	= TCP_CLOSE,
2426   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2427   [TCP_SYN_SENT]	= TCP_CLOSE,
2428   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2429   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2430   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2431   [TCP_TIME_WAIT]	= TCP_CLOSE,
2432   [TCP_CLOSE]		= TCP_CLOSE,
2433   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2434   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2435   [TCP_LISTEN]		= TCP_CLOSE,
2436   [TCP_CLOSING]		= TCP_CLOSING,
2437   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2438 };
2439 
tcp_close_state(struct sock * sk)2440 static int tcp_close_state(struct sock *sk)
2441 {
2442 	int next = (int)new_state[sk->sk_state];
2443 	int ns = next & TCP_STATE_MASK;
2444 
2445 	tcp_set_state(sk, ns);
2446 
2447 	return next & TCP_ACTION_FIN;
2448 }
2449 
2450 /*
2451  *	Shutdown the sending side of a connection. Much like close except
2452  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2453  */
2454 
tcp_shutdown(struct sock * sk,int how)2455 void tcp_shutdown(struct sock *sk, int how)
2456 {
2457 	/*	We need to grab some memory, and put together a FIN,
2458 	 *	and then put it into the queue to be sent.
2459 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2460 	 */
2461 	if (!(how & SEND_SHUTDOWN))
2462 		return;
2463 
2464 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2465 	if ((1 << sk->sk_state) &
2466 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2467 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2468 		/* Clear out any half completed packets.  FIN if needed. */
2469 		if (tcp_close_state(sk))
2470 			tcp_send_fin(sk);
2471 	}
2472 }
2473 EXPORT_SYMBOL(tcp_shutdown);
2474 
tcp_orphan_count_sum(void)2475 int tcp_orphan_count_sum(void)
2476 {
2477 	int i, total = 0;
2478 
2479 	for_each_possible_cpu(i)
2480 		total += per_cpu(tcp_orphan_count, i);
2481 
2482 	return max(total, 0);
2483 }
2484 
2485 static int tcp_orphan_cache;
2486 static struct timer_list tcp_orphan_timer;
2487 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2488 
tcp_orphan_update(struct timer_list * unused)2489 static void tcp_orphan_update(struct timer_list *unused)
2490 {
2491 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2492 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2493 }
2494 
tcp_too_many_orphans(int shift)2495 static bool tcp_too_many_orphans(int shift)
2496 {
2497 	return READ_ONCE(tcp_orphan_cache) << shift >
2498 		READ_ONCE(sysctl_tcp_max_orphans);
2499 }
2500 
tcp_check_oom(struct sock * sk,int shift)2501 bool tcp_check_oom(struct sock *sk, int shift)
2502 {
2503 	bool too_many_orphans, out_of_socket_memory;
2504 
2505 	too_many_orphans = tcp_too_many_orphans(shift);
2506 	out_of_socket_memory = tcp_out_of_memory(sk);
2507 
2508 	if (too_many_orphans)
2509 		net_info_ratelimited("too many orphaned sockets\n");
2510 	if (out_of_socket_memory)
2511 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2512 	return too_many_orphans || out_of_socket_memory;
2513 }
2514 
__tcp_close(struct sock * sk,long timeout)2515 void __tcp_close(struct sock *sk, long timeout)
2516 {
2517 	struct sk_buff *skb;
2518 	int data_was_unread = 0;
2519 	int state;
2520 
2521 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2522 
2523 	if (sk->sk_state == TCP_LISTEN) {
2524 		tcp_set_state(sk, TCP_CLOSE);
2525 
2526 		/* Special case. */
2527 		inet_csk_listen_stop(sk);
2528 
2529 		goto adjudge_to_death;
2530 	}
2531 
2532 	/*  We need to flush the recv. buffs.  We do this only on the
2533 	 *  descriptor close, not protocol-sourced closes, because the
2534 	 *  reader process may not have drained the data yet!
2535 	 */
2536 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2537 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2538 
2539 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2540 			len--;
2541 		data_was_unread += len;
2542 		__kfree_skb(skb);
2543 	}
2544 
2545 	sk_mem_reclaim(sk);
2546 
2547 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2548 	if (sk->sk_state == TCP_CLOSE)
2549 		goto adjudge_to_death;
2550 
2551 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2552 	 * data was lost. To witness the awful effects of the old behavior of
2553 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2554 	 * GET in an FTP client, suspend the process, wait for the client to
2555 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2556 	 * Note: timeout is always zero in such a case.
2557 	 */
2558 	if (unlikely(tcp_sk(sk)->repair)) {
2559 		sk->sk_prot->disconnect(sk, 0);
2560 	} else if (data_was_unread) {
2561 		/* Unread data was tossed, zap the connection. */
2562 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2563 		tcp_set_state(sk, TCP_CLOSE);
2564 		tcp_send_active_reset(sk, sk->sk_allocation);
2565 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2566 		/* Check zero linger _after_ checking for unread data. */
2567 		sk->sk_prot->disconnect(sk, 0);
2568 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2569 	} else if (tcp_close_state(sk)) {
2570 		/* We FIN if the application ate all the data before
2571 		 * zapping the connection.
2572 		 */
2573 
2574 		/* RED-PEN. Formally speaking, we have broken TCP state
2575 		 * machine. State transitions:
2576 		 *
2577 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2578 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2579 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2580 		 *
2581 		 * are legal only when FIN has been sent (i.e. in window),
2582 		 * rather than queued out of window. Purists blame.
2583 		 *
2584 		 * F.e. "RFC state" is ESTABLISHED,
2585 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2586 		 *
2587 		 * The visible declinations are that sometimes
2588 		 * we enter time-wait state, when it is not required really
2589 		 * (harmless), do not send active resets, when they are
2590 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2591 		 * they look as CLOSING or LAST_ACK for Linux)
2592 		 * Probably, I missed some more holelets.
2593 		 * 						--ANK
2594 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2595 		 * in a single packet! (May consider it later but will
2596 		 * probably need API support or TCP_CORK SYN-ACK until
2597 		 * data is written and socket is closed.)
2598 		 */
2599 		tcp_send_fin(sk);
2600 	}
2601 
2602 	sk_stream_wait_close(sk, timeout);
2603 
2604 adjudge_to_death:
2605 	state = sk->sk_state;
2606 	sock_hold(sk);
2607 	sock_orphan(sk);
2608 
2609 	local_bh_disable();
2610 	bh_lock_sock(sk);
2611 	/* remove backlog if any, without releasing ownership. */
2612 	__release_sock(sk);
2613 
2614 	this_cpu_inc(tcp_orphan_count);
2615 
2616 	/* Have we already been destroyed by a softirq or backlog? */
2617 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2618 		goto out;
2619 
2620 	/*	This is a (useful) BSD violating of the RFC. There is a
2621 	 *	problem with TCP as specified in that the other end could
2622 	 *	keep a socket open forever with no application left this end.
2623 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2624 	 *	our end. If they send after that then tough - BUT: long enough
2625 	 *	that we won't make the old 4*rto = almost no time - whoops
2626 	 *	reset mistake.
2627 	 *
2628 	 *	Nope, it was not mistake. It is really desired behaviour
2629 	 *	f.e. on http servers, when such sockets are useless, but
2630 	 *	consume significant resources. Let's do it with special
2631 	 *	linger2	option.					--ANK
2632 	 */
2633 
2634 	if (sk->sk_state == TCP_FIN_WAIT2) {
2635 		struct tcp_sock *tp = tcp_sk(sk);
2636 		if (tp->linger2 < 0) {
2637 			tcp_set_state(sk, TCP_CLOSE);
2638 			tcp_send_active_reset(sk, GFP_ATOMIC);
2639 			__NET_INC_STATS(sock_net(sk),
2640 					LINUX_MIB_TCPABORTONLINGER);
2641 		} else {
2642 			const int tmo = tcp_fin_time(sk);
2643 
2644 			if (tmo > TCP_TIMEWAIT_LEN) {
2645 				inet_csk_reset_keepalive_timer(sk,
2646 						tmo - TCP_TIMEWAIT_LEN);
2647 			} else {
2648 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2649 				goto out;
2650 			}
2651 		}
2652 	}
2653 	if (sk->sk_state != TCP_CLOSE) {
2654 		sk_mem_reclaim(sk);
2655 		if (tcp_check_oom(sk, 0)) {
2656 			tcp_set_state(sk, TCP_CLOSE);
2657 			tcp_send_active_reset(sk, GFP_ATOMIC);
2658 			__NET_INC_STATS(sock_net(sk),
2659 					LINUX_MIB_TCPABORTONMEMORY);
2660 		} else if (!check_net(sock_net(sk))) {
2661 			/* Not possible to send reset; just close */
2662 			tcp_set_state(sk, TCP_CLOSE);
2663 		}
2664 	}
2665 
2666 	if (sk->sk_state == TCP_CLOSE) {
2667 		struct request_sock *req;
2668 
2669 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2670 						lockdep_sock_is_held(sk));
2671 		/* We could get here with a non-NULL req if the socket is
2672 		 * aborted (e.g., closed with unread data) before 3WHS
2673 		 * finishes.
2674 		 */
2675 		if (req)
2676 			reqsk_fastopen_remove(sk, req, false);
2677 		inet_csk_destroy_sock(sk);
2678 	}
2679 	/* Otherwise, socket is reprieved until protocol close. */
2680 
2681 out:
2682 	bh_unlock_sock(sk);
2683 	local_bh_enable();
2684 }
2685 
tcp_close(struct sock * sk,long timeout)2686 void tcp_close(struct sock *sk, long timeout)
2687 {
2688 	lock_sock(sk);
2689 	__tcp_close(sk, timeout);
2690 	release_sock(sk);
2691 	sock_put(sk);
2692 }
2693 EXPORT_SYMBOL(tcp_close);
2694 
2695 /* These states need RST on ABORT according to RFC793 */
2696 
tcp_need_reset(int state)2697 static inline bool tcp_need_reset(int state)
2698 {
2699 	return (1 << state) &
2700 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2701 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2702 }
2703 
tcp_rtx_queue_purge(struct sock * sk)2704 static void tcp_rtx_queue_purge(struct sock *sk)
2705 {
2706 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2707 
2708 	tcp_sk(sk)->highest_sack = NULL;
2709 	while (p) {
2710 		struct sk_buff *skb = rb_to_skb(p);
2711 
2712 		p = rb_next(p);
2713 		/* Since we are deleting whole queue, no need to
2714 		 * list_del(&skb->tcp_tsorted_anchor)
2715 		 */
2716 		tcp_rtx_queue_unlink(skb, sk);
2717 		sk_wmem_free_skb(sk, skb);
2718 	}
2719 }
2720 
tcp_write_queue_purge(struct sock * sk)2721 void tcp_write_queue_purge(struct sock *sk)
2722 {
2723 	struct sk_buff *skb;
2724 
2725 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2726 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2727 		tcp_skb_tsorted_anchor_cleanup(skb);
2728 		sk_wmem_free_skb(sk, skb);
2729 	}
2730 	tcp_rtx_queue_purge(sk);
2731 	skb = sk->sk_tx_skb_cache;
2732 	if (skb) {
2733 		__kfree_skb(skb);
2734 		sk->sk_tx_skb_cache = NULL;
2735 	}
2736 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2737 	sk_mem_reclaim(sk);
2738 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2739 	tcp_sk(sk)->packets_out = 0;
2740 	inet_csk(sk)->icsk_backoff = 0;
2741 }
2742 
tcp_disconnect(struct sock * sk,int flags)2743 int tcp_disconnect(struct sock *sk, int flags)
2744 {
2745 	struct inet_sock *inet = inet_sk(sk);
2746 	struct inet_connection_sock *icsk = inet_csk(sk);
2747 	struct tcp_sock *tp = tcp_sk(sk);
2748 	int old_state = sk->sk_state;
2749 	u32 seq;
2750 
2751 	/* Deny disconnect if other threads are blocked in sk_wait_event()
2752 	 * or inet_wait_for_connect().
2753 	 */
2754 	if (sk->sk_wait_pending)
2755 		return -EBUSY;
2756 
2757 	if (old_state != TCP_CLOSE)
2758 		tcp_set_state(sk, TCP_CLOSE);
2759 
2760 	/* ABORT function of RFC793 */
2761 	if (old_state == TCP_LISTEN) {
2762 		inet_csk_listen_stop(sk);
2763 	} else if (unlikely(tp->repair)) {
2764 		sk->sk_err = ECONNABORTED;
2765 	} else if (tcp_need_reset(old_state) ||
2766 		   (tp->snd_nxt != tp->write_seq &&
2767 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2768 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2769 		 * states
2770 		 */
2771 		tcp_send_active_reset(sk, gfp_any());
2772 		sk->sk_err = ECONNRESET;
2773 	} else if (old_state == TCP_SYN_SENT)
2774 		sk->sk_err = ECONNRESET;
2775 
2776 	tcp_clear_xmit_timers(sk);
2777 	__skb_queue_purge(&sk->sk_receive_queue);
2778 	if (sk->sk_rx_skb_cache) {
2779 		__kfree_skb(sk->sk_rx_skb_cache);
2780 		sk->sk_rx_skb_cache = NULL;
2781 	}
2782 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2783 	tp->urg_data = 0;
2784 	tcp_write_queue_purge(sk);
2785 	tcp_fastopen_active_disable_ofo_check(sk);
2786 	skb_rbtree_purge(&tp->out_of_order_queue);
2787 
2788 	inet->inet_dport = 0;
2789 
2790 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2791 		inet_reset_saddr(sk);
2792 
2793 	WRITE_ONCE(sk->sk_shutdown, 0);
2794 	sock_reset_flag(sk, SOCK_DONE);
2795 	tp->srtt_us = 0;
2796 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2797 	tp->rcv_rtt_last_tsecr = 0;
2798 
2799 	seq = tp->write_seq + tp->max_window + 2;
2800 	if (!seq)
2801 		seq = 1;
2802 	WRITE_ONCE(tp->write_seq, seq);
2803 
2804 	icsk->icsk_backoff = 0;
2805 	icsk->icsk_probes_out = 0;
2806 	icsk->icsk_probes_tstamp = 0;
2807 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
2808 	icsk->icsk_rto_min = TCP_RTO_MIN;
2809 	icsk->icsk_delack_max = TCP_DELACK_MAX;
2810 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2811 	tp->snd_cwnd = TCP_INIT_CWND;
2812 	tp->snd_cwnd_cnt = 0;
2813 	tp->is_cwnd_limited = 0;
2814 	tp->max_packets_out = 0;
2815 	tp->window_clamp = 0;
2816 	tp->delivered = 0;
2817 	tp->delivered_ce = 0;
2818 	if (icsk->icsk_ca_ops->release)
2819 		icsk->icsk_ca_ops->release(sk);
2820 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
2821 	icsk->icsk_ca_initialized = 0;
2822 	tcp_set_ca_state(sk, TCP_CA_Open);
2823 	tp->is_sack_reneg = 0;
2824 	tcp_clear_retrans(tp);
2825 	tp->total_retrans = 0;
2826 	inet_csk_delack_init(sk);
2827 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2828 	 * issue in __tcp_select_window()
2829 	 */
2830 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2831 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2832 	__sk_dst_reset(sk);
2833 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
2834 	tcp_saved_syn_free(tp);
2835 	tp->compressed_ack = 0;
2836 	tp->segs_in = 0;
2837 	tp->segs_out = 0;
2838 	tp->bytes_sent = 0;
2839 	tp->bytes_acked = 0;
2840 	tp->bytes_received = 0;
2841 	tp->bytes_retrans = 0;
2842 	tp->data_segs_in = 0;
2843 	tp->data_segs_out = 0;
2844 	tp->duplicate_sack[0].start_seq = 0;
2845 	tp->duplicate_sack[0].end_seq = 0;
2846 	tp->dsack_dups = 0;
2847 	tp->reord_seen = 0;
2848 	tp->retrans_out = 0;
2849 	tp->sacked_out = 0;
2850 	tp->tlp_high_seq = 0;
2851 	tp->last_oow_ack_time = 0;
2852 	/* There's a bubble in the pipe until at least the first ACK. */
2853 	tp->app_limited = ~0U;
2854 	tp->rate_app_limited = 1;
2855 	tp->rack.mstamp = 0;
2856 	tp->rack.advanced = 0;
2857 	tp->rack.reo_wnd_steps = 1;
2858 	tp->rack.last_delivered = 0;
2859 	tp->rack.reo_wnd_persist = 0;
2860 	tp->rack.dsack_seen = 0;
2861 	tp->syn_data_acked = 0;
2862 	tp->rx_opt.saw_tstamp = 0;
2863 	tp->rx_opt.dsack = 0;
2864 	tp->rx_opt.num_sacks = 0;
2865 	tp->rcv_ooopack = 0;
2866 
2867 
2868 	/* Clean up fastopen related fields */
2869 	tcp_free_fastopen_req(tp);
2870 	inet->defer_connect = 0;
2871 	tp->fastopen_client_fail = 0;
2872 
2873 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2874 
2875 	if (sk->sk_frag.page) {
2876 		put_page(sk->sk_frag.page);
2877 		sk->sk_frag.page = NULL;
2878 		sk->sk_frag.offset = 0;
2879 	}
2880 
2881 	sk->sk_error_report(sk);
2882 	return 0;
2883 }
2884 EXPORT_SYMBOL(tcp_disconnect);
2885 
tcp_can_repair_sock(const struct sock * sk)2886 static inline bool tcp_can_repair_sock(const struct sock *sk)
2887 {
2888 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2889 		(sk->sk_state != TCP_LISTEN);
2890 }
2891 
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)2892 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
2893 {
2894 	struct tcp_repair_window opt;
2895 
2896 	if (!tp->repair)
2897 		return -EPERM;
2898 
2899 	if (len != sizeof(opt))
2900 		return -EINVAL;
2901 
2902 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
2903 		return -EFAULT;
2904 
2905 	if (opt.max_window < opt.snd_wnd)
2906 		return -EINVAL;
2907 
2908 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2909 		return -EINVAL;
2910 
2911 	if (after(opt.rcv_wup, tp->rcv_nxt))
2912 		return -EINVAL;
2913 
2914 	tp->snd_wl1	= opt.snd_wl1;
2915 	tp->snd_wnd	= opt.snd_wnd;
2916 	tp->max_window	= opt.max_window;
2917 
2918 	tp->rcv_wnd	= opt.rcv_wnd;
2919 	tp->rcv_wup	= opt.rcv_wup;
2920 
2921 	return 0;
2922 }
2923 
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)2924 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
2925 		unsigned int len)
2926 {
2927 	struct tcp_sock *tp = tcp_sk(sk);
2928 	struct tcp_repair_opt opt;
2929 	size_t offset = 0;
2930 
2931 	while (len >= sizeof(opt)) {
2932 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
2933 			return -EFAULT;
2934 
2935 		offset += sizeof(opt);
2936 		len -= sizeof(opt);
2937 
2938 		switch (opt.opt_code) {
2939 		case TCPOPT_MSS:
2940 			tp->rx_opt.mss_clamp = opt.opt_val;
2941 			tcp_mtup_init(sk);
2942 			break;
2943 		case TCPOPT_WINDOW:
2944 			{
2945 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2946 				u16 rcv_wscale = opt.opt_val >> 16;
2947 
2948 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2949 					return -EFBIG;
2950 
2951 				tp->rx_opt.snd_wscale = snd_wscale;
2952 				tp->rx_opt.rcv_wscale = rcv_wscale;
2953 				tp->rx_opt.wscale_ok = 1;
2954 			}
2955 			break;
2956 		case TCPOPT_SACK_PERM:
2957 			if (opt.opt_val != 0)
2958 				return -EINVAL;
2959 
2960 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2961 			break;
2962 		case TCPOPT_TIMESTAMP:
2963 			if (opt.opt_val != 0)
2964 				return -EINVAL;
2965 
2966 			tp->rx_opt.tstamp_ok = 1;
2967 			break;
2968 		}
2969 	}
2970 
2971 	return 0;
2972 }
2973 
2974 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2975 EXPORT_SYMBOL(tcp_tx_delay_enabled);
2976 
tcp_enable_tx_delay(void)2977 static void tcp_enable_tx_delay(void)
2978 {
2979 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
2980 		static int __tcp_tx_delay_enabled = 0;
2981 
2982 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
2983 			static_branch_enable(&tcp_tx_delay_enabled);
2984 			pr_info("TCP_TX_DELAY enabled\n");
2985 		}
2986 	}
2987 }
2988 
2989 /* When set indicates to always queue non-full frames.  Later the user clears
2990  * this option and we transmit any pending partial frames in the queue.  This is
2991  * meant to be used alongside sendfile() to get properly filled frames when the
2992  * user (for example) must write out headers with a write() call first and then
2993  * use sendfile to send out the data parts.
2994  *
2995  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
2996  * TCP_NODELAY.
2997  */
__tcp_sock_set_cork(struct sock * sk,bool on)2998 static void __tcp_sock_set_cork(struct sock *sk, bool on)
2999 {
3000 	struct tcp_sock *tp = tcp_sk(sk);
3001 
3002 	if (on) {
3003 		tp->nonagle |= TCP_NAGLE_CORK;
3004 	} else {
3005 		tp->nonagle &= ~TCP_NAGLE_CORK;
3006 		if (tp->nonagle & TCP_NAGLE_OFF)
3007 			tp->nonagle |= TCP_NAGLE_PUSH;
3008 		tcp_push_pending_frames(sk);
3009 	}
3010 }
3011 
tcp_sock_set_cork(struct sock * sk,bool on)3012 void tcp_sock_set_cork(struct sock *sk, bool on)
3013 {
3014 	lock_sock(sk);
3015 	__tcp_sock_set_cork(sk, on);
3016 	release_sock(sk);
3017 }
3018 EXPORT_SYMBOL(tcp_sock_set_cork);
3019 
3020 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3021  * remembered, but it is not activated until cork is cleared.
3022  *
3023  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3024  * even TCP_CORK for currently queued segments.
3025  */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3026 static void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3027 {
3028 	if (on) {
3029 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3030 		tcp_push_pending_frames(sk);
3031 	} else {
3032 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3033 	}
3034 }
3035 
tcp_sock_set_nodelay(struct sock * sk)3036 void tcp_sock_set_nodelay(struct sock *sk)
3037 {
3038 	lock_sock(sk);
3039 	__tcp_sock_set_nodelay(sk, true);
3040 	release_sock(sk);
3041 }
3042 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3043 
__tcp_sock_set_quickack(struct sock * sk,int val)3044 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3045 {
3046 	if (!val) {
3047 		inet_csk_enter_pingpong_mode(sk);
3048 		return;
3049 	}
3050 
3051 	inet_csk_exit_pingpong_mode(sk);
3052 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3053 	    inet_csk_ack_scheduled(sk)) {
3054 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3055 		tcp_cleanup_rbuf(sk, 1);
3056 		if (!(val & 1))
3057 			inet_csk_enter_pingpong_mode(sk);
3058 	}
3059 }
3060 
tcp_sock_set_quickack(struct sock * sk,int val)3061 void tcp_sock_set_quickack(struct sock *sk, int val)
3062 {
3063 	lock_sock(sk);
3064 	__tcp_sock_set_quickack(sk, val);
3065 	release_sock(sk);
3066 }
3067 EXPORT_SYMBOL(tcp_sock_set_quickack);
3068 
tcp_sock_set_syncnt(struct sock * sk,int val)3069 int tcp_sock_set_syncnt(struct sock *sk, int val)
3070 {
3071 	if (val < 1 || val > MAX_TCP_SYNCNT)
3072 		return -EINVAL;
3073 
3074 	lock_sock(sk);
3075 	inet_csk(sk)->icsk_syn_retries = val;
3076 	release_sock(sk);
3077 	return 0;
3078 }
3079 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3080 
tcp_sock_set_user_timeout(struct sock * sk,u32 val)3081 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3082 {
3083 	lock_sock(sk);
3084 	inet_csk(sk)->icsk_user_timeout = val;
3085 	release_sock(sk);
3086 }
3087 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3088 
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3089 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3090 {
3091 	struct tcp_sock *tp = tcp_sk(sk);
3092 
3093 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3094 		return -EINVAL;
3095 
3096 	tp->keepalive_time = val * HZ;
3097 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3098 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3099 		u32 elapsed = keepalive_time_elapsed(tp);
3100 
3101 		if (tp->keepalive_time > elapsed)
3102 			elapsed = tp->keepalive_time - elapsed;
3103 		else
3104 			elapsed = 0;
3105 		inet_csk_reset_keepalive_timer(sk, elapsed);
3106 	}
3107 
3108 	return 0;
3109 }
3110 
tcp_sock_set_keepidle(struct sock * sk,int val)3111 int tcp_sock_set_keepidle(struct sock *sk, int val)
3112 {
3113 	int err;
3114 
3115 	lock_sock(sk);
3116 	err = tcp_sock_set_keepidle_locked(sk, val);
3117 	release_sock(sk);
3118 	return err;
3119 }
3120 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3121 
tcp_sock_set_keepintvl(struct sock * sk,int val)3122 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3123 {
3124 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3125 		return -EINVAL;
3126 
3127 	lock_sock(sk);
3128 	tcp_sk(sk)->keepalive_intvl = val * HZ;
3129 	release_sock(sk);
3130 	return 0;
3131 }
3132 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3133 
tcp_sock_set_keepcnt(struct sock * sk,int val)3134 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3135 {
3136 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3137 		return -EINVAL;
3138 
3139 	lock_sock(sk);
3140 	tcp_sk(sk)->keepalive_probes = val;
3141 	release_sock(sk);
3142 	return 0;
3143 }
3144 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3145 
3146 /*
3147  *	Socket option code for TCP.
3148  */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3149 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3150 		sockptr_t optval, unsigned int optlen)
3151 {
3152 	struct tcp_sock *tp = tcp_sk(sk);
3153 	struct inet_connection_sock *icsk = inet_csk(sk);
3154 	struct net *net = sock_net(sk);
3155 	int val;
3156 	int err = 0;
3157 
3158 	/* These are data/string values, all the others are ints */
3159 	switch (optname) {
3160 	case TCP_CONGESTION: {
3161 		char name[TCP_CA_NAME_MAX];
3162 
3163 		if (optlen < 1)
3164 			return -EINVAL;
3165 
3166 		val = strncpy_from_sockptr(name, optval,
3167 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3168 		if (val < 0)
3169 			return -EFAULT;
3170 		name[val] = 0;
3171 
3172 		lock_sock(sk);
3173 		err = tcp_set_congestion_control(sk, name, true,
3174 						 ns_capable(sock_net(sk)->user_ns,
3175 							    CAP_NET_ADMIN));
3176 		release_sock(sk);
3177 		return err;
3178 	}
3179 	case TCP_ULP: {
3180 		char name[TCP_ULP_NAME_MAX];
3181 
3182 		if (optlen < 1)
3183 			return -EINVAL;
3184 
3185 		val = strncpy_from_sockptr(name, optval,
3186 					min_t(long, TCP_ULP_NAME_MAX - 1,
3187 					      optlen));
3188 		if (val < 0)
3189 			return -EFAULT;
3190 		name[val] = 0;
3191 
3192 		lock_sock(sk);
3193 		err = tcp_set_ulp(sk, name);
3194 		release_sock(sk);
3195 		return err;
3196 	}
3197 	case TCP_FASTOPEN_KEY: {
3198 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3199 		__u8 *backup_key = NULL;
3200 
3201 		/* Allow a backup key as well to facilitate key rotation
3202 		 * First key is the active one.
3203 		 */
3204 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3205 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3206 			return -EINVAL;
3207 
3208 		if (copy_from_sockptr(key, optval, optlen))
3209 			return -EFAULT;
3210 
3211 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3212 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3213 
3214 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3215 	}
3216 	default:
3217 		/* fallthru */
3218 		break;
3219 	}
3220 
3221 	if (optlen < sizeof(int))
3222 		return -EINVAL;
3223 
3224 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3225 		return -EFAULT;
3226 
3227 	lock_sock(sk);
3228 
3229 	switch (optname) {
3230 	case TCP_MAXSEG:
3231 		/* Values greater than interface MTU won't take effect. However
3232 		 * at the point when this call is done we typically don't yet
3233 		 * know which interface is going to be used
3234 		 */
3235 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3236 			err = -EINVAL;
3237 			break;
3238 		}
3239 		tp->rx_opt.user_mss = val;
3240 		break;
3241 
3242 	case TCP_NODELAY:
3243 		__tcp_sock_set_nodelay(sk, val);
3244 		break;
3245 
3246 	case TCP_THIN_LINEAR_TIMEOUTS:
3247 		if (val < 0 || val > 1)
3248 			err = -EINVAL;
3249 		else
3250 			tp->thin_lto = val;
3251 		break;
3252 
3253 	case TCP_THIN_DUPACK:
3254 		if (val < 0 || val > 1)
3255 			err = -EINVAL;
3256 		break;
3257 
3258 	case TCP_REPAIR:
3259 		if (!tcp_can_repair_sock(sk))
3260 			err = -EPERM;
3261 		else if (val == TCP_REPAIR_ON) {
3262 			tp->repair = 1;
3263 			sk->sk_reuse = SK_FORCE_REUSE;
3264 			tp->repair_queue = TCP_NO_QUEUE;
3265 		} else if (val == TCP_REPAIR_OFF) {
3266 			tp->repair = 0;
3267 			sk->sk_reuse = SK_NO_REUSE;
3268 			tcp_send_window_probe(sk);
3269 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3270 			tp->repair = 0;
3271 			sk->sk_reuse = SK_NO_REUSE;
3272 		} else
3273 			err = -EINVAL;
3274 
3275 		break;
3276 
3277 	case TCP_REPAIR_QUEUE:
3278 		if (!tp->repair)
3279 			err = -EPERM;
3280 		else if ((unsigned int)val < TCP_QUEUES_NR)
3281 			tp->repair_queue = val;
3282 		else
3283 			err = -EINVAL;
3284 		break;
3285 
3286 	case TCP_QUEUE_SEQ:
3287 		if (sk->sk_state != TCP_CLOSE) {
3288 			err = -EPERM;
3289 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3290 			if (!tcp_rtx_queue_empty(sk))
3291 				err = -EPERM;
3292 			else
3293 				WRITE_ONCE(tp->write_seq, val);
3294 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3295 			if (tp->rcv_nxt != tp->copied_seq) {
3296 				err = -EPERM;
3297 			} else {
3298 				WRITE_ONCE(tp->rcv_nxt, val);
3299 				WRITE_ONCE(tp->copied_seq, val);
3300 			}
3301 		} else {
3302 			err = -EINVAL;
3303 		}
3304 		break;
3305 
3306 	case TCP_REPAIR_OPTIONS:
3307 		if (!tp->repair)
3308 			err = -EINVAL;
3309 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3310 			err = tcp_repair_options_est(sk, optval, optlen);
3311 		else
3312 			err = -EPERM;
3313 		break;
3314 
3315 	case TCP_CORK:
3316 		__tcp_sock_set_cork(sk, val);
3317 		break;
3318 
3319 	case TCP_KEEPIDLE:
3320 		err = tcp_sock_set_keepidle_locked(sk, val);
3321 		break;
3322 	case TCP_KEEPINTVL:
3323 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3324 			err = -EINVAL;
3325 		else
3326 			tp->keepalive_intvl = val * HZ;
3327 		break;
3328 	case TCP_KEEPCNT:
3329 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3330 			err = -EINVAL;
3331 		else
3332 			tp->keepalive_probes = val;
3333 		break;
3334 	case TCP_SYNCNT:
3335 		if (val < 1 || val > MAX_TCP_SYNCNT)
3336 			err = -EINVAL;
3337 		else
3338 			icsk->icsk_syn_retries = val;
3339 		break;
3340 
3341 	case TCP_SAVE_SYN:
3342 		/* 0: disable, 1: enable, 2: start from ether_header */
3343 		if (val < 0 || val > 2)
3344 			err = -EINVAL;
3345 		else
3346 			tp->save_syn = val;
3347 		break;
3348 
3349 	case TCP_LINGER2:
3350 		if (val < 0)
3351 			tp->linger2 = -1;
3352 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3353 			tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3354 		else
3355 			tp->linger2 = val * HZ;
3356 		break;
3357 
3358 	case TCP_DEFER_ACCEPT:
3359 		/* Translate value in seconds to number of retransmits */
3360 		icsk->icsk_accept_queue.rskq_defer_accept =
3361 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3362 					TCP_RTO_MAX / HZ);
3363 		break;
3364 
3365 	case TCP_WINDOW_CLAMP:
3366 		if (!val) {
3367 			if (sk->sk_state != TCP_CLOSE) {
3368 				err = -EINVAL;
3369 				break;
3370 			}
3371 			tp->window_clamp = 0;
3372 		} else
3373 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3374 						SOCK_MIN_RCVBUF / 2 : val;
3375 		break;
3376 
3377 	case TCP_QUICKACK:
3378 		__tcp_sock_set_quickack(sk, val);
3379 		break;
3380 
3381 #ifdef CONFIG_TCP_MD5SIG
3382 	case TCP_MD5SIG:
3383 	case TCP_MD5SIG_EXT:
3384 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3385 		break;
3386 #endif
3387 	case TCP_USER_TIMEOUT:
3388 		/* Cap the max time in ms TCP will retry or probe the window
3389 		 * before giving up and aborting (ETIMEDOUT) a connection.
3390 		 */
3391 		if (val < 0)
3392 			err = -EINVAL;
3393 		else
3394 			icsk->icsk_user_timeout = val;
3395 		break;
3396 
3397 	case TCP_FASTOPEN:
3398 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3399 		    TCPF_LISTEN))) {
3400 			tcp_fastopen_init_key_once(net);
3401 
3402 			fastopen_queue_tune(sk, val);
3403 		} else {
3404 			err = -EINVAL;
3405 		}
3406 		break;
3407 	case TCP_FASTOPEN_CONNECT:
3408 		if (val > 1 || val < 0) {
3409 			err = -EINVAL;
3410 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3411 			   TFO_CLIENT_ENABLE) {
3412 			if (sk->sk_state == TCP_CLOSE)
3413 				tp->fastopen_connect = val;
3414 			else
3415 				err = -EINVAL;
3416 		} else {
3417 			err = -EOPNOTSUPP;
3418 		}
3419 		break;
3420 	case TCP_FASTOPEN_NO_COOKIE:
3421 		if (val > 1 || val < 0)
3422 			err = -EINVAL;
3423 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3424 			err = -EINVAL;
3425 		else
3426 			tp->fastopen_no_cookie = val;
3427 		break;
3428 	case TCP_TIMESTAMP:
3429 		if (!tp->repair)
3430 			err = -EPERM;
3431 		else
3432 			tp->tsoffset = val - tcp_time_stamp_raw();
3433 		break;
3434 	case TCP_REPAIR_WINDOW:
3435 		err = tcp_repair_set_window(tp, optval, optlen);
3436 		break;
3437 	case TCP_NOTSENT_LOWAT:
3438 		tp->notsent_lowat = val;
3439 		sk->sk_write_space(sk);
3440 		break;
3441 	case TCP_INQ:
3442 		if (val > 1 || val < 0)
3443 			err = -EINVAL;
3444 		else
3445 			tp->recvmsg_inq = val;
3446 		break;
3447 	case TCP_TX_DELAY:
3448 		if (val)
3449 			tcp_enable_tx_delay();
3450 		tp->tcp_tx_delay = val;
3451 		break;
3452 	default:
3453 		err = -ENOPROTOOPT;
3454 		break;
3455 	}
3456 
3457 	release_sock(sk);
3458 	return err;
3459 }
3460 
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3461 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3462 		   unsigned int optlen)
3463 {
3464 	const struct inet_connection_sock *icsk = inet_csk(sk);
3465 
3466 	if (level != SOL_TCP)
3467 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3468 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3469 								optval, optlen);
3470 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3471 }
3472 EXPORT_SYMBOL(tcp_setsockopt);
3473 
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3474 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3475 				      struct tcp_info *info)
3476 {
3477 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3478 	enum tcp_chrono i;
3479 
3480 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3481 		stats[i] = tp->chrono_stat[i - 1];
3482 		if (i == tp->chrono_type)
3483 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3484 		stats[i] *= USEC_PER_SEC / HZ;
3485 		total += stats[i];
3486 	}
3487 
3488 	info->tcpi_busy_time = total;
3489 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3490 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3491 }
3492 
3493 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3494 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3495 {
3496 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3497 	const struct inet_connection_sock *icsk = inet_csk(sk);
3498 	unsigned long rate;
3499 	u32 now;
3500 	u64 rate64;
3501 	bool slow;
3502 
3503 	memset(info, 0, sizeof(*info));
3504 	if (sk->sk_type != SOCK_STREAM)
3505 		return;
3506 
3507 	info->tcpi_state = inet_sk_state_load(sk);
3508 
3509 	/* Report meaningful fields for all TCP states, including listeners */
3510 	rate = READ_ONCE(sk->sk_pacing_rate);
3511 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3512 	info->tcpi_pacing_rate = rate64;
3513 
3514 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3515 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3516 	info->tcpi_max_pacing_rate = rate64;
3517 
3518 	info->tcpi_reordering = tp->reordering;
3519 	info->tcpi_snd_cwnd = tp->snd_cwnd;
3520 
3521 	if (info->tcpi_state == TCP_LISTEN) {
3522 		/* listeners aliased fields :
3523 		 * tcpi_unacked -> Number of children ready for accept()
3524 		 * tcpi_sacked  -> max backlog
3525 		 */
3526 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3527 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3528 		return;
3529 	}
3530 
3531 	slow = lock_sock_fast(sk);
3532 
3533 	info->tcpi_ca_state = icsk->icsk_ca_state;
3534 	info->tcpi_retransmits = icsk->icsk_retransmits;
3535 	info->tcpi_probes = icsk->icsk_probes_out;
3536 	info->tcpi_backoff = icsk->icsk_backoff;
3537 
3538 	if (tp->rx_opt.tstamp_ok)
3539 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3540 	if (tcp_is_sack(tp))
3541 		info->tcpi_options |= TCPI_OPT_SACK;
3542 	if (tp->rx_opt.wscale_ok) {
3543 		info->tcpi_options |= TCPI_OPT_WSCALE;
3544 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3545 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3546 	}
3547 
3548 	if (tp->ecn_flags & TCP_ECN_OK)
3549 		info->tcpi_options |= TCPI_OPT_ECN;
3550 	if (tp->ecn_flags & TCP_ECN_SEEN)
3551 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3552 	if (tp->syn_data_acked)
3553 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3554 
3555 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3556 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3557 	info->tcpi_snd_mss = tp->mss_cache;
3558 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3559 
3560 	info->tcpi_unacked = tp->packets_out;
3561 	info->tcpi_sacked = tp->sacked_out;
3562 
3563 	info->tcpi_lost = tp->lost_out;
3564 	info->tcpi_retrans = tp->retrans_out;
3565 
3566 	now = tcp_jiffies32;
3567 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3568 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3569 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3570 
3571 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3572 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3573 	info->tcpi_rtt = tp->srtt_us >> 3;
3574 	info->tcpi_rttvar = tp->mdev_us >> 2;
3575 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3576 	info->tcpi_advmss = tp->advmss;
3577 
3578 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3579 	info->tcpi_rcv_space = tp->rcvq_space.space;
3580 
3581 	info->tcpi_total_retrans = tp->total_retrans;
3582 
3583 	info->tcpi_bytes_acked = tp->bytes_acked;
3584 	info->tcpi_bytes_received = tp->bytes_received;
3585 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3586 	tcp_get_info_chrono_stats(tp, info);
3587 
3588 	info->tcpi_segs_out = tp->segs_out;
3589 	info->tcpi_segs_in = tp->segs_in;
3590 
3591 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3592 	info->tcpi_data_segs_in = tp->data_segs_in;
3593 	info->tcpi_data_segs_out = tp->data_segs_out;
3594 
3595 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3596 	rate64 = tcp_compute_delivery_rate(tp);
3597 	if (rate64)
3598 		info->tcpi_delivery_rate = rate64;
3599 	info->tcpi_delivered = tp->delivered;
3600 	info->tcpi_delivered_ce = tp->delivered_ce;
3601 	info->tcpi_bytes_sent = tp->bytes_sent;
3602 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3603 	info->tcpi_dsack_dups = tp->dsack_dups;
3604 	info->tcpi_reord_seen = tp->reord_seen;
3605 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3606 	info->tcpi_snd_wnd = tp->snd_wnd;
3607 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3608 	unlock_sock_fast(sk, slow);
3609 }
3610 EXPORT_SYMBOL_GPL(tcp_get_info);
3611 
tcp_opt_stats_get_size(void)3612 static size_t tcp_opt_stats_get_size(void)
3613 {
3614 	return
3615 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3616 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3617 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3618 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3619 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3620 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3621 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3622 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3623 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3624 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3625 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3626 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3627 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3628 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3629 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3630 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3631 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3632 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3633 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3634 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3635 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3636 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3637 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3638 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3639 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3640 		0;
3641 }
3642 
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb)3643 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3644 					       const struct sk_buff *orig_skb)
3645 {
3646 	const struct tcp_sock *tp = tcp_sk(sk);
3647 	struct sk_buff *stats;
3648 	struct tcp_info info;
3649 	unsigned long rate;
3650 	u64 rate64;
3651 
3652 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3653 	if (!stats)
3654 		return NULL;
3655 
3656 	tcp_get_info_chrono_stats(tp, &info);
3657 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3658 			  info.tcpi_busy_time, TCP_NLA_PAD);
3659 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3660 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3661 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3662 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3663 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3664 			  tp->data_segs_out, TCP_NLA_PAD);
3665 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3666 			  tp->total_retrans, TCP_NLA_PAD);
3667 
3668 	rate = READ_ONCE(sk->sk_pacing_rate);
3669 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3670 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3671 
3672 	rate64 = tcp_compute_delivery_rate(tp);
3673 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3674 
3675 	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3676 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3677 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3678 
3679 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3680 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3681 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3682 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3683 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3684 
3685 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3686 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3687 
3688 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3689 			  TCP_NLA_PAD);
3690 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3691 			  TCP_NLA_PAD);
3692 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3693 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3694 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3695 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3696 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3697 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3698 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3699 			  TCP_NLA_PAD);
3700 
3701 	return stats;
3702 }
3703 
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3704 static int do_tcp_getsockopt(struct sock *sk, int level,
3705 		int optname, char __user *optval, int __user *optlen)
3706 {
3707 	struct inet_connection_sock *icsk = inet_csk(sk);
3708 	struct tcp_sock *tp = tcp_sk(sk);
3709 	struct net *net = sock_net(sk);
3710 	int val, len;
3711 
3712 	if (get_user(len, optlen))
3713 		return -EFAULT;
3714 
3715 	len = min_t(unsigned int, len, sizeof(int));
3716 
3717 	if (len < 0)
3718 		return -EINVAL;
3719 
3720 	switch (optname) {
3721 	case TCP_MAXSEG:
3722 		val = tp->mss_cache;
3723 		if (tp->rx_opt.user_mss &&
3724 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3725 			val = tp->rx_opt.user_mss;
3726 		if (tp->repair)
3727 			val = tp->rx_opt.mss_clamp;
3728 		break;
3729 	case TCP_NODELAY:
3730 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3731 		break;
3732 	case TCP_CORK:
3733 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3734 		break;
3735 	case TCP_KEEPIDLE:
3736 		val = keepalive_time_when(tp) / HZ;
3737 		break;
3738 	case TCP_KEEPINTVL:
3739 		val = keepalive_intvl_when(tp) / HZ;
3740 		break;
3741 	case TCP_KEEPCNT:
3742 		val = keepalive_probes(tp);
3743 		break;
3744 	case TCP_SYNCNT:
3745 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3746 		break;
3747 	case TCP_LINGER2:
3748 		val = tp->linger2;
3749 		if (val >= 0)
3750 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
3751 		break;
3752 	case TCP_DEFER_ACCEPT:
3753 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3754 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3755 		break;
3756 	case TCP_WINDOW_CLAMP:
3757 		val = tp->window_clamp;
3758 		break;
3759 	case TCP_INFO: {
3760 		struct tcp_info info;
3761 
3762 		if (get_user(len, optlen))
3763 			return -EFAULT;
3764 
3765 		tcp_get_info(sk, &info);
3766 
3767 		len = min_t(unsigned int, len, sizeof(info));
3768 		if (put_user(len, optlen))
3769 			return -EFAULT;
3770 		if (copy_to_user(optval, &info, len))
3771 			return -EFAULT;
3772 		return 0;
3773 	}
3774 	case TCP_CC_INFO: {
3775 		const struct tcp_congestion_ops *ca_ops;
3776 		union tcp_cc_info info;
3777 		size_t sz = 0;
3778 		int attr;
3779 
3780 		if (get_user(len, optlen))
3781 			return -EFAULT;
3782 
3783 		ca_ops = icsk->icsk_ca_ops;
3784 		if (ca_ops && ca_ops->get_info)
3785 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3786 
3787 		len = min_t(unsigned int, len, sz);
3788 		if (put_user(len, optlen))
3789 			return -EFAULT;
3790 		if (copy_to_user(optval, &info, len))
3791 			return -EFAULT;
3792 		return 0;
3793 	}
3794 	case TCP_QUICKACK:
3795 		val = !inet_csk_in_pingpong_mode(sk);
3796 		break;
3797 
3798 	case TCP_CONGESTION:
3799 		if (get_user(len, optlen))
3800 			return -EFAULT;
3801 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3802 		if (put_user(len, optlen))
3803 			return -EFAULT;
3804 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3805 			return -EFAULT;
3806 		return 0;
3807 
3808 	case TCP_ULP:
3809 		if (get_user(len, optlen))
3810 			return -EFAULT;
3811 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3812 		if (!icsk->icsk_ulp_ops) {
3813 			if (put_user(0, optlen))
3814 				return -EFAULT;
3815 			return 0;
3816 		}
3817 		if (put_user(len, optlen))
3818 			return -EFAULT;
3819 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3820 			return -EFAULT;
3821 		return 0;
3822 
3823 	case TCP_FASTOPEN_KEY: {
3824 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
3825 		unsigned int key_len;
3826 
3827 		if (get_user(len, optlen))
3828 			return -EFAULT;
3829 
3830 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
3831 				TCP_FASTOPEN_KEY_LENGTH;
3832 		len = min_t(unsigned int, len, key_len);
3833 		if (put_user(len, optlen))
3834 			return -EFAULT;
3835 		if (copy_to_user(optval, key, len))
3836 			return -EFAULT;
3837 		return 0;
3838 	}
3839 	case TCP_THIN_LINEAR_TIMEOUTS:
3840 		val = tp->thin_lto;
3841 		break;
3842 
3843 	case TCP_THIN_DUPACK:
3844 		val = 0;
3845 		break;
3846 
3847 	case TCP_REPAIR:
3848 		val = tp->repair;
3849 		break;
3850 
3851 	case TCP_REPAIR_QUEUE:
3852 		if (tp->repair)
3853 			val = tp->repair_queue;
3854 		else
3855 			return -EINVAL;
3856 		break;
3857 
3858 	case TCP_REPAIR_WINDOW: {
3859 		struct tcp_repair_window opt;
3860 
3861 		if (get_user(len, optlen))
3862 			return -EFAULT;
3863 
3864 		if (len != sizeof(opt))
3865 			return -EINVAL;
3866 
3867 		if (!tp->repair)
3868 			return -EPERM;
3869 
3870 		opt.snd_wl1	= tp->snd_wl1;
3871 		opt.snd_wnd	= tp->snd_wnd;
3872 		opt.max_window	= tp->max_window;
3873 		opt.rcv_wnd	= tp->rcv_wnd;
3874 		opt.rcv_wup	= tp->rcv_wup;
3875 
3876 		if (copy_to_user(optval, &opt, len))
3877 			return -EFAULT;
3878 		return 0;
3879 	}
3880 	case TCP_QUEUE_SEQ:
3881 		if (tp->repair_queue == TCP_SEND_QUEUE)
3882 			val = tp->write_seq;
3883 		else if (tp->repair_queue == TCP_RECV_QUEUE)
3884 			val = tp->rcv_nxt;
3885 		else
3886 			return -EINVAL;
3887 		break;
3888 
3889 	case TCP_USER_TIMEOUT:
3890 		val = icsk->icsk_user_timeout;
3891 		break;
3892 
3893 	case TCP_FASTOPEN:
3894 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3895 		break;
3896 
3897 	case TCP_FASTOPEN_CONNECT:
3898 		val = tp->fastopen_connect;
3899 		break;
3900 
3901 	case TCP_FASTOPEN_NO_COOKIE:
3902 		val = tp->fastopen_no_cookie;
3903 		break;
3904 
3905 	case TCP_TX_DELAY:
3906 		val = tp->tcp_tx_delay;
3907 		break;
3908 
3909 	case TCP_TIMESTAMP:
3910 		val = tcp_time_stamp_raw() + tp->tsoffset;
3911 		break;
3912 	case TCP_NOTSENT_LOWAT:
3913 		val = tp->notsent_lowat;
3914 		break;
3915 	case TCP_INQ:
3916 		val = tp->recvmsg_inq;
3917 		break;
3918 	case TCP_SAVE_SYN:
3919 		val = tp->save_syn;
3920 		break;
3921 	case TCP_SAVED_SYN: {
3922 		if (get_user(len, optlen))
3923 			return -EFAULT;
3924 
3925 		lock_sock(sk);
3926 		if (tp->saved_syn) {
3927 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
3928 				if (put_user(tcp_saved_syn_len(tp->saved_syn),
3929 					     optlen)) {
3930 					release_sock(sk);
3931 					return -EFAULT;
3932 				}
3933 				release_sock(sk);
3934 				return -EINVAL;
3935 			}
3936 			len = tcp_saved_syn_len(tp->saved_syn);
3937 			if (put_user(len, optlen)) {
3938 				release_sock(sk);
3939 				return -EFAULT;
3940 			}
3941 			if (copy_to_user(optval, tp->saved_syn->data, len)) {
3942 				release_sock(sk);
3943 				return -EFAULT;
3944 			}
3945 			tcp_saved_syn_free(tp);
3946 			release_sock(sk);
3947 		} else {
3948 			release_sock(sk);
3949 			len = 0;
3950 			if (put_user(len, optlen))
3951 				return -EFAULT;
3952 		}
3953 		return 0;
3954 	}
3955 #ifdef CONFIG_MMU
3956 	case TCP_ZEROCOPY_RECEIVE: {
3957 		struct tcp_zerocopy_receive zc = {};
3958 		int err;
3959 
3960 		if (get_user(len, optlen))
3961 			return -EFAULT;
3962 		if (len < 0 ||
3963 		    len < offsetofend(struct tcp_zerocopy_receive, length))
3964 			return -EINVAL;
3965 		if (len > sizeof(zc)) {
3966 			len = sizeof(zc);
3967 			if (put_user(len, optlen))
3968 				return -EFAULT;
3969 		}
3970 		if (copy_from_user(&zc, optval, len))
3971 			return -EFAULT;
3972 		lock_sock(sk);
3973 		err = tcp_zerocopy_receive(sk, &zc);
3974 		release_sock(sk);
3975 		if (len >= offsetofend(struct tcp_zerocopy_receive, err))
3976 			goto zerocopy_rcv_sk_err;
3977 		switch (len) {
3978 		case offsetofend(struct tcp_zerocopy_receive, err):
3979 			goto zerocopy_rcv_sk_err;
3980 		case offsetofend(struct tcp_zerocopy_receive, inq):
3981 			goto zerocopy_rcv_inq;
3982 		case offsetofend(struct tcp_zerocopy_receive, length):
3983 		default:
3984 			goto zerocopy_rcv_out;
3985 		}
3986 zerocopy_rcv_sk_err:
3987 		if (!err)
3988 			zc.err = sock_error(sk);
3989 zerocopy_rcv_inq:
3990 		zc.inq = tcp_inq_hint(sk);
3991 zerocopy_rcv_out:
3992 		if (!err && copy_to_user(optval, &zc, len))
3993 			err = -EFAULT;
3994 		return err;
3995 	}
3996 #endif
3997 	default:
3998 		return -ENOPROTOOPT;
3999 	}
4000 
4001 	if (put_user(len, optlen))
4002 		return -EFAULT;
4003 	if (copy_to_user(optval, &val, len))
4004 		return -EFAULT;
4005 	return 0;
4006 }
4007 
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4008 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4009 		   int __user *optlen)
4010 {
4011 	struct inet_connection_sock *icsk = inet_csk(sk);
4012 
4013 	if (level != SOL_TCP)
4014 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4015 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4016 								optval, optlen);
4017 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
4018 }
4019 EXPORT_SYMBOL(tcp_getsockopt);
4020 
4021 #ifdef CONFIG_TCP_MD5SIG
4022 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4023 static DEFINE_MUTEX(tcp_md5sig_mutex);
4024 static bool tcp_md5sig_pool_populated = false;
4025 
__tcp_alloc_md5sig_pool(void)4026 static void __tcp_alloc_md5sig_pool(void)
4027 {
4028 	struct crypto_ahash *hash;
4029 	int cpu;
4030 
4031 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4032 	if (IS_ERR(hash))
4033 		return;
4034 
4035 	for_each_possible_cpu(cpu) {
4036 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4037 		struct ahash_request *req;
4038 
4039 		if (!scratch) {
4040 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4041 					       sizeof(struct tcphdr),
4042 					       GFP_KERNEL,
4043 					       cpu_to_node(cpu));
4044 			if (!scratch)
4045 				return;
4046 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4047 		}
4048 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4049 			continue;
4050 
4051 		req = ahash_request_alloc(hash, GFP_KERNEL);
4052 		if (!req)
4053 			return;
4054 
4055 		ahash_request_set_callback(req, 0, NULL, NULL);
4056 
4057 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4058 	}
4059 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4060 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4061 	 */
4062 	smp_wmb();
4063 	/* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4064 	 * and tcp_get_md5sig_pool().
4065 	*/
4066 	WRITE_ONCE(tcp_md5sig_pool_populated, true);
4067 }
4068 
tcp_alloc_md5sig_pool(void)4069 bool tcp_alloc_md5sig_pool(void)
4070 {
4071 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4072 	if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4073 		mutex_lock(&tcp_md5sig_mutex);
4074 
4075 		if (!tcp_md5sig_pool_populated) {
4076 			__tcp_alloc_md5sig_pool();
4077 			if (tcp_md5sig_pool_populated)
4078 				static_branch_inc(&tcp_md5_needed);
4079 		}
4080 
4081 		mutex_unlock(&tcp_md5sig_mutex);
4082 	}
4083 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4084 	return READ_ONCE(tcp_md5sig_pool_populated);
4085 }
4086 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4087 
4088 
4089 /**
4090  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4091  *
4092  *	We use percpu structure, so if we succeed, we exit with preemption
4093  *	and BH disabled, to make sure another thread or softirq handling
4094  *	wont try to get same context.
4095  */
tcp_get_md5sig_pool(void)4096 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4097 {
4098 	local_bh_disable();
4099 
4100 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4101 	if (READ_ONCE(tcp_md5sig_pool_populated)) {
4102 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4103 		smp_rmb();
4104 		return this_cpu_ptr(&tcp_md5sig_pool);
4105 	}
4106 	local_bh_enable();
4107 	return NULL;
4108 }
4109 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4110 
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)4111 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4112 			  const struct sk_buff *skb, unsigned int header_len)
4113 {
4114 	struct scatterlist sg;
4115 	const struct tcphdr *tp = tcp_hdr(skb);
4116 	struct ahash_request *req = hp->md5_req;
4117 	unsigned int i;
4118 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4119 					   skb_headlen(skb) - header_len : 0;
4120 	const struct skb_shared_info *shi = skb_shinfo(skb);
4121 	struct sk_buff *frag_iter;
4122 
4123 	sg_init_table(&sg, 1);
4124 
4125 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4126 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4127 	if (crypto_ahash_update(req))
4128 		return 1;
4129 
4130 	for (i = 0; i < shi->nr_frags; ++i) {
4131 		const skb_frag_t *f = &shi->frags[i];
4132 		unsigned int offset = skb_frag_off(f);
4133 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4134 
4135 		sg_set_page(&sg, page, skb_frag_size(f),
4136 			    offset_in_page(offset));
4137 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4138 		if (crypto_ahash_update(req))
4139 			return 1;
4140 	}
4141 
4142 	skb_walk_frags(skb, frag_iter)
4143 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4144 			return 1;
4145 
4146 	return 0;
4147 }
4148 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4149 
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)4150 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4151 {
4152 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4153 	struct scatterlist sg;
4154 
4155 	sg_init_one(&sg, key->key, keylen);
4156 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4157 
4158 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4159 	return data_race(crypto_ahash_update(hp->md5_req));
4160 }
4161 EXPORT_SYMBOL(tcp_md5_hash_key);
4162 
4163 #endif
4164 
tcp_done(struct sock * sk)4165 void tcp_done(struct sock *sk)
4166 {
4167 	struct request_sock *req;
4168 
4169 	/* We might be called with a new socket, after
4170 	 * inet_csk_prepare_forced_close() has been called
4171 	 * so we can not use lockdep_sock_is_held(sk)
4172 	 */
4173 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4174 
4175 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4176 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4177 
4178 	tcp_set_state(sk, TCP_CLOSE);
4179 	tcp_clear_xmit_timers(sk);
4180 	if (req)
4181 		reqsk_fastopen_remove(sk, req, false);
4182 
4183 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4184 
4185 	if (!sock_flag(sk, SOCK_DEAD))
4186 		sk->sk_state_change(sk);
4187 	else
4188 		inet_csk_destroy_sock(sk);
4189 }
4190 EXPORT_SYMBOL_GPL(tcp_done);
4191 
tcp_abort(struct sock * sk,int err)4192 int tcp_abort(struct sock *sk, int err)
4193 {
4194 	if (!sk_fullsock(sk)) {
4195 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
4196 			struct request_sock *req = inet_reqsk(sk);
4197 
4198 			local_bh_disable();
4199 			inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4200 			local_bh_enable();
4201 			return 0;
4202 		}
4203 		return -EOPNOTSUPP;
4204 	}
4205 
4206 	/* Don't race with userspace socket closes such as tcp_close. */
4207 	lock_sock(sk);
4208 
4209 	if (sk->sk_state == TCP_LISTEN) {
4210 		tcp_set_state(sk, TCP_CLOSE);
4211 		inet_csk_listen_stop(sk);
4212 	}
4213 
4214 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4215 	local_bh_disable();
4216 	bh_lock_sock(sk);
4217 
4218 	if (!sock_flag(sk, SOCK_DEAD)) {
4219 		sk->sk_err = err;
4220 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4221 		smp_wmb();
4222 		sk->sk_error_report(sk);
4223 		if (tcp_need_reset(sk->sk_state))
4224 			tcp_send_active_reset(sk, GFP_ATOMIC);
4225 		tcp_done(sk);
4226 	}
4227 
4228 	bh_unlock_sock(sk);
4229 	local_bh_enable();
4230 	tcp_write_queue_purge(sk);
4231 	release_sock(sk);
4232 	return 0;
4233 }
4234 EXPORT_SYMBOL_GPL(tcp_abort);
4235 
4236 extern struct tcp_congestion_ops tcp_reno;
4237 
4238 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4239 static int __init set_thash_entries(char *str)
4240 {
4241 	ssize_t ret;
4242 
4243 	if (!str)
4244 		return 0;
4245 
4246 	ret = kstrtoul(str, 0, &thash_entries);
4247 	if (ret)
4248 		return 0;
4249 
4250 	return 1;
4251 }
4252 __setup("thash_entries=", set_thash_entries);
4253 
tcp_init_mem(void)4254 static void __init tcp_init_mem(void)
4255 {
4256 	unsigned long limit = nr_free_buffer_pages() / 16;
4257 
4258 	limit = max(limit, 128UL);
4259 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4260 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4261 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4262 }
4263 
tcp_init(void)4264 void __init tcp_init(void)
4265 {
4266 	int max_rshare, max_wshare, cnt;
4267 	unsigned long limit;
4268 	unsigned int i;
4269 
4270 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4271 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4272 		     sizeof_field(struct sk_buff, cb));
4273 
4274 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4275 
4276 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4277 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4278 
4279 	inet_hashinfo_init(&tcp_hashinfo);
4280 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4281 			    thash_entries, 21,  /* one slot per 2 MB*/
4282 			    0, 64 * 1024);
4283 	tcp_hashinfo.bind_bucket_cachep =
4284 		kmem_cache_create("tcp_bind_bucket",
4285 				  sizeof(struct inet_bind_bucket), 0,
4286 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
4287 
4288 	/* Size and allocate the main established and bind bucket
4289 	 * hash tables.
4290 	 *
4291 	 * The methodology is similar to that of the buffer cache.
4292 	 */
4293 	tcp_hashinfo.ehash =
4294 		alloc_large_system_hash("TCP established",
4295 					sizeof(struct inet_ehash_bucket),
4296 					thash_entries,
4297 					17, /* one slot per 128 KB of memory */
4298 					0,
4299 					NULL,
4300 					&tcp_hashinfo.ehash_mask,
4301 					0,
4302 					thash_entries ? 0 : 512 * 1024);
4303 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4304 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4305 
4306 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4307 		panic("TCP: failed to alloc ehash_locks");
4308 	tcp_hashinfo.bhash =
4309 		alloc_large_system_hash("TCP bind",
4310 					sizeof(struct inet_bind_hashbucket),
4311 					tcp_hashinfo.ehash_mask + 1,
4312 					17, /* one slot per 128 KB of memory */
4313 					0,
4314 					&tcp_hashinfo.bhash_size,
4315 					NULL,
4316 					0,
4317 					64 * 1024);
4318 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4319 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4320 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4321 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4322 	}
4323 
4324 
4325 	cnt = tcp_hashinfo.ehash_mask + 1;
4326 	sysctl_tcp_max_orphans = cnt / 2;
4327 
4328 	tcp_init_mem();
4329 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4330 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4331 	max_wshare = min(4UL*1024*1024, limit);
4332 	max_rshare = min(6UL*1024*1024, limit);
4333 
4334 	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4335 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4336 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4337 
4338 	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4339 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4340 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4341 
4342 	pr_info("Hash tables configured (established %u bind %u)\n",
4343 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4344 
4345 	tcp_v4_init();
4346 	tcp_metrics_init();
4347 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4348 	tcp_tasklet_init();
4349 	mptcp_init();
4350 }
4351