1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file contains the base functions to manage periodic tick
4 * related events.
5 *
6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9 */
10 #include <linux/cpu.h>
11 #include <linux/err.h>
12 #include <linux/hrtimer.h>
13 #include <linux/interrupt.h>
14 #include <linux/nmi.h>
15 #include <linux/percpu.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/module.h>
19 #include <trace/events/power.h>
20
21 #include <asm/irq_regs.h>
22
23 #include "tick-internal.h"
24
25 /*
26 * Tick devices
27 */
28 DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
29 /*
30 * Tick next event: keeps track of the tick time
31 */
32 ktime_t tick_next_period;
33
34 /*
35 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
36 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
37 * variable has two functions:
38 *
39 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
40 * timekeeping lock all at once. Only the CPU which is assigned to do the
41 * update is handling it.
42 *
43 * 2) Hand off the duty in the NOHZ idle case by setting the value to
44 * TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
45 * at it will take over and keep the time keeping alive. The handover
46 * procedure also covers cpu hotplug.
47 */
48 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
49 #ifdef CONFIG_NO_HZ_FULL
50 /*
51 * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
52 * tick_do_timer_cpu and it should be taken over by an eligible secondary
53 * when one comes online.
54 */
55 static int tick_do_timer_boot_cpu __read_mostly = -1;
56 #endif
57
58 /*
59 * Debugging: see timer_list.c
60 */
tick_get_device(int cpu)61 struct tick_device *tick_get_device(int cpu)
62 {
63 return &per_cpu(tick_cpu_device, cpu);
64 }
65
66 /**
67 * tick_is_oneshot_available - check for a oneshot capable event device
68 */
tick_is_oneshot_available(void)69 int tick_is_oneshot_available(void)
70 {
71 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
72
73 if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
74 return 0;
75 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
76 return 1;
77 return tick_broadcast_oneshot_available();
78 }
79
80 /*
81 * Periodic tick
82 */
tick_periodic(int cpu)83 static void tick_periodic(int cpu)
84 {
85 if (tick_do_timer_cpu == cpu) {
86 raw_spin_lock(&jiffies_lock);
87 write_seqcount_begin(&jiffies_seq);
88
89 /* Keep track of the next tick event */
90 tick_next_period = ktime_add_ns(tick_next_period, TICK_NSEC);
91
92 do_timer(1);
93 write_seqcount_end(&jiffies_seq);
94 raw_spin_unlock(&jiffies_lock);
95 update_wall_time();
96 }
97
98 update_process_times(user_mode(get_irq_regs()));
99 profile_tick(CPU_PROFILING);
100 }
101
102 /*
103 * Event handler for periodic ticks
104 */
tick_handle_periodic(struct clock_event_device * dev)105 void tick_handle_periodic(struct clock_event_device *dev)
106 {
107 int cpu = smp_processor_id();
108 ktime_t next = dev->next_event;
109
110 tick_periodic(cpu);
111
112 #if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
113 /*
114 * The cpu might have transitioned to HIGHRES or NOHZ mode via
115 * update_process_times() -> run_local_timers() ->
116 * hrtimer_run_queues().
117 */
118 if (dev->event_handler != tick_handle_periodic)
119 return;
120 #endif
121
122 if (!clockevent_state_oneshot(dev))
123 return;
124 for (;;) {
125 /*
126 * Setup the next period for devices, which do not have
127 * periodic mode:
128 */
129 next = ktime_add_ns(next, TICK_NSEC);
130
131 if (!clockevents_program_event(dev, next, false))
132 return;
133 /*
134 * Have to be careful here. If we're in oneshot mode,
135 * before we call tick_periodic() in a loop, we need
136 * to be sure we're using a real hardware clocksource.
137 * Otherwise we could get trapped in an infinite
138 * loop, as the tick_periodic() increments jiffies,
139 * which then will increment time, possibly causing
140 * the loop to trigger again and again.
141 */
142 if (timekeeping_valid_for_hres())
143 tick_periodic(cpu);
144 }
145 }
146
147 /*
148 * Setup the device for a periodic tick
149 */
tick_setup_periodic(struct clock_event_device * dev,int broadcast)150 void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
151 {
152 tick_set_periodic_handler(dev, broadcast);
153
154 /* Broadcast setup ? */
155 if (!tick_device_is_functional(dev))
156 return;
157
158 if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
159 !tick_broadcast_oneshot_active()) {
160 clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
161 } else {
162 unsigned int seq;
163 ktime_t next;
164
165 do {
166 seq = read_seqcount_begin(&jiffies_seq);
167 next = tick_next_period;
168 } while (read_seqcount_retry(&jiffies_seq, seq));
169
170 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
171
172 for (;;) {
173 if (!clockevents_program_event(dev, next, false))
174 return;
175 next = ktime_add_ns(next, TICK_NSEC);
176 }
177 }
178 }
179
180 #ifdef CONFIG_NO_HZ_FULL
giveup_do_timer(void * info)181 static void giveup_do_timer(void *info)
182 {
183 int cpu = *(unsigned int *)info;
184
185 WARN_ON(tick_do_timer_cpu != smp_processor_id());
186
187 tick_do_timer_cpu = cpu;
188 }
189
tick_take_do_timer_from_boot(void)190 static void tick_take_do_timer_from_boot(void)
191 {
192 int cpu = smp_processor_id();
193 int from = tick_do_timer_boot_cpu;
194
195 if (from >= 0 && from != cpu)
196 smp_call_function_single(from, giveup_do_timer, &cpu, 1);
197 }
198 #endif
199
200 /*
201 * Setup the tick device
202 */
tick_setup_device(struct tick_device * td,struct clock_event_device * newdev,int cpu,const struct cpumask * cpumask)203 static void tick_setup_device(struct tick_device *td,
204 struct clock_event_device *newdev, int cpu,
205 const struct cpumask *cpumask)
206 {
207 void (*handler)(struct clock_event_device *) = NULL;
208 ktime_t next_event = 0;
209
210 /*
211 * First device setup ?
212 */
213 if (!td->evtdev) {
214 /*
215 * If no cpu took the do_timer update, assign it to
216 * this cpu:
217 */
218 if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
219 ktime_t next_p;
220 u32 rem;
221
222 tick_do_timer_cpu = cpu;
223
224 next_p = ktime_get();
225 div_u64_rem(next_p, TICK_NSEC, &rem);
226 if (rem) {
227 next_p -= rem;
228 next_p += TICK_NSEC;
229 }
230
231 tick_next_period = next_p;
232 #ifdef CONFIG_NO_HZ_FULL
233 /*
234 * The boot CPU may be nohz_full, in which case set
235 * tick_do_timer_boot_cpu so the first housekeeping
236 * secondary that comes up will take do_timer from
237 * us.
238 */
239 if (tick_nohz_full_cpu(cpu))
240 tick_do_timer_boot_cpu = cpu;
241
242 } else if (tick_do_timer_boot_cpu != -1 &&
243 !tick_nohz_full_cpu(cpu)) {
244 tick_take_do_timer_from_boot();
245 tick_do_timer_boot_cpu = -1;
246 WARN_ON(tick_do_timer_cpu != cpu);
247 #endif
248 }
249
250 /*
251 * Startup in periodic mode first.
252 */
253 td->mode = TICKDEV_MODE_PERIODIC;
254 } else {
255 handler = td->evtdev->event_handler;
256 next_event = td->evtdev->next_event;
257 td->evtdev->event_handler = clockevents_handle_noop;
258 }
259
260 td->evtdev = newdev;
261
262 /*
263 * When the device is not per cpu, pin the interrupt to the
264 * current cpu:
265 */
266 if (!cpumask_equal(newdev->cpumask, cpumask))
267 irq_set_affinity(newdev->irq, cpumask);
268
269 /*
270 * When global broadcasting is active, check if the current
271 * device is registered as a placeholder for broadcast mode.
272 * This allows us to handle this x86 misfeature in a generic
273 * way. This function also returns !=0 when we keep the
274 * current active broadcast state for this CPU.
275 */
276 if (tick_device_uses_broadcast(newdev, cpu))
277 return;
278
279 if (td->mode == TICKDEV_MODE_PERIODIC)
280 tick_setup_periodic(newdev, 0);
281 else
282 tick_setup_oneshot(newdev, handler, next_event);
283 }
284
tick_install_replacement(struct clock_event_device * newdev)285 void tick_install_replacement(struct clock_event_device *newdev)
286 {
287 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
288 int cpu = smp_processor_id();
289
290 clockevents_exchange_device(td->evtdev, newdev);
291 tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
292 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
293 tick_oneshot_notify();
294 }
295
tick_check_percpu(struct clock_event_device * curdev,struct clock_event_device * newdev,int cpu)296 static bool tick_check_percpu(struct clock_event_device *curdev,
297 struct clock_event_device *newdev, int cpu)
298 {
299 if (!cpumask_test_cpu(cpu, newdev->cpumask))
300 return false;
301 if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
302 return true;
303 /* Check if irq affinity can be set */
304 if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
305 return false;
306 /* Prefer an existing cpu local device */
307 if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
308 return false;
309 return true;
310 }
311
tick_check_preferred(struct clock_event_device * curdev,struct clock_event_device * newdev)312 static bool tick_check_preferred(struct clock_event_device *curdev,
313 struct clock_event_device *newdev)
314 {
315 /* Prefer oneshot capable device */
316 if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
317 if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
318 return false;
319 if (tick_oneshot_mode_active())
320 return false;
321 }
322
323 /*
324 * Use the higher rated one, but prefer a CPU local device with a lower
325 * rating than a non-CPU local device
326 */
327 return !curdev ||
328 newdev->rating > curdev->rating ||
329 !cpumask_equal(curdev->cpumask, newdev->cpumask);
330 }
331
332 /*
333 * Check whether the new device is a better fit than curdev. curdev
334 * can be NULL !
335 */
tick_check_replacement(struct clock_event_device * curdev,struct clock_event_device * newdev)336 bool tick_check_replacement(struct clock_event_device *curdev,
337 struct clock_event_device *newdev)
338 {
339 if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
340 return false;
341
342 return tick_check_preferred(curdev, newdev);
343 }
344
345 /*
346 * Check, if the new registered device should be used. Called with
347 * clockevents_lock held and interrupts disabled.
348 */
tick_check_new_device(struct clock_event_device * newdev)349 void tick_check_new_device(struct clock_event_device *newdev)
350 {
351 struct clock_event_device *curdev;
352 struct tick_device *td;
353 int cpu;
354
355 cpu = smp_processor_id();
356 td = &per_cpu(tick_cpu_device, cpu);
357 curdev = td->evtdev;
358
359 /* cpu local device ? */
360 if (!tick_check_percpu(curdev, newdev, cpu))
361 goto out_bc;
362
363 /* Preference decision */
364 if (!tick_check_preferred(curdev, newdev))
365 goto out_bc;
366
367 if (!try_module_get(newdev->owner))
368 return;
369
370 /*
371 * Replace the eventually existing device by the new
372 * device. If the current device is the broadcast device, do
373 * not give it back to the clockevents layer !
374 */
375 if (tick_is_broadcast_device(curdev)) {
376 clockevents_shutdown(curdev);
377 curdev = NULL;
378 }
379 clockevents_exchange_device(curdev, newdev);
380 tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
381 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
382 tick_oneshot_notify();
383 return;
384
385 out_bc:
386 /*
387 * Can the new device be used as a broadcast device ?
388 */
389 tick_install_broadcast_device(newdev);
390 }
391
392 /**
393 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
394 * @state: The target state (enter/exit)
395 *
396 * The system enters/leaves a state, where affected devices might stop
397 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
398 *
399 * Called with interrupts disabled, so clockevents_lock is not
400 * required here because the local clock event device cannot go away
401 * under us.
402 */
tick_broadcast_oneshot_control(enum tick_broadcast_state state)403 int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
404 {
405 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
406
407 if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
408 return 0;
409
410 return __tick_broadcast_oneshot_control(state);
411 }
412 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
413
414 #ifdef CONFIG_HOTPLUG_CPU
415 /*
416 * Transfer the do_timer job away from a dying cpu.
417 *
418 * Called with interrupts disabled. Not locking required. If
419 * tick_do_timer_cpu is owned by this cpu, nothing can change it.
420 */
tick_handover_do_timer(void)421 void tick_handover_do_timer(void)
422 {
423 if (tick_do_timer_cpu == smp_processor_id()) {
424 int cpu = cpumask_first(cpu_online_mask);
425
426 tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
427 TICK_DO_TIMER_NONE;
428 }
429 }
430
431 /*
432 * Shutdown an event device on a given cpu:
433 *
434 * This is called on a life CPU, when a CPU is dead. So we cannot
435 * access the hardware device itself.
436 * We just set the mode and remove it from the lists.
437 */
tick_shutdown(unsigned int cpu)438 void tick_shutdown(unsigned int cpu)
439 {
440 struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
441 struct clock_event_device *dev = td->evtdev;
442
443 td->mode = TICKDEV_MODE_PERIODIC;
444 if (dev) {
445 /*
446 * Prevent that the clock events layer tries to call
447 * the set mode function!
448 */
449 clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
450 clockevents_exchange_device(dev, NULL);
451 dev->event_handler = clockevents_handle_noop;
452 td->evtdev = NULL;
453 }
454 }
455 #endif
456
457 /**
458 * tick_suspend_local - Suspend the local tick device
459 *
460 * Called from the local cpu for freeze with interrupts disabled.
461 *
462 * No locks required. Nothing can change the per cpu device.
463 */
tick_suspend_local(void)464 void tick_suspend_local(void)
465 {
466 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
467
468 clockevents_shutdown(td->evtdev);
469 }
470
471 /**
472 * tick_resume_local - Resume the local tick device
473 *
474 * Called from the local CPU for unfreeze or XEN resume magic.
475 *
476 * No locks required. Nothing can change the per cpu device.
477 */
tick_resume_local(void)478 void tick_resume_local(void)
479 {
480 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
481 bool broadcast = tick_resume_check_broadcast();
482
483 clockevents_tick_resume(td->evtdev);
484 if (!broadcast) {
485 if (td->mode == TICKDEV_MODE_PERIODIC)
486 tick_setup_periodic(td->evtdev, 0);
487 else
488 tick_resume_oneshot();
489 }
490 }
491
492 /**
493 * tick_suspend - Suspend the tick and the broadcast device
494 *
495 * Called from syscore_suspend() via timekeeping_suspend with only one
496 * CPU online and interrupts disabled or from tick_unfreeze() under
497 * tick_freeze_lock.
498 *
499 * No locks required. Nothing can change the per cpu device.
500 */
tick_suspend(void)501 void tick_suspend(void)
502 {
503 tick_suspend_local();
504 tick_suspend_broadcast();
505 }
506
507 /**
508 * tick_resume - Resume the tick and the broadcast device
509 *
510 * Called from syscore_resume() via timekeeping_resume with only one
511 * CPU online and interrupts disabled.
512 *
513 * No locks required. Nothing can change the per cpu device.
514 */
tick_resume(void)515 void tick_resume(void)
516 {
517 tick_resume_broadcast();
518 tick_resume_local();
519 }
520
521 #ifdef CONFIG_SUSPEND
522 static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
523 static unsigned int tick_freeze_depth;
524
525 /**
526 * tick_freeze - Suspend the local tick and (possibly) timekeeping.
527 *
528 * Check if this is the last online CPU executing the function and if so,
529 * suspend timekeeping. Otherwise suspend the local tick.
530 *
531 * Call with interrupts disabled. Must be balanced with %tick_unfreeze().
532 * Interrupts must not be enabled before the subsequent %tick_unfreeze().
533 */
tick_freeze(void)534 void tick_freeze(void)
535 {
536 raw_spin_lock(&tick_freeze_lock);
537
538 tick_freeze_depth++;
539 if (tick_freeze_depth == num_online_cpus()) {
540 trace_suspend_resume(TPS("timekeeping_freeze"),
541 smp_processor_id(), true);
542 system_state = SYSTEM_SUSPEND;
543 sched_clock_suspend();
544 timekeeping_suspend();
545 } else {
546 tick_suspend_local();
547 }
548
549 raw_spin_unlock(&tick_freeze_lock);
550 }
551
552 /**
553 * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
554 *
555 * Check if this is the first CPU executing the function and if so, resume
556 * timekeeping. Otherwise resume the local tick.
557 *
558 * Call with interrupts disabled. Must be balanced with %tick_freeze().
559 * Interrupts must not be enabled after the preceding %tick_freeze().
560 */
tick_unfreeze(void)561 void tick_unfreeze(void)
562 {
563 raw_spin_lock(&tick_freeze_lock);
564
565 if (tick_freeze_depth == num_online_cpus()) {
566 timekeeping_resume();
567 sched_clock_resume();
568 system_state = SYSTEM_RUNNING;
569 trace_suspend_resume(TPS("timekeeping_freeze"),
570 smp_processor_id(), false);
571 } else {
572 touch_softlockup_watchdog();
573 tick_resume_local();
574 }
575
576 tick_freeze_depth--;
577
578 raw_spin_unlock(&tick_freeze_lock);
579 }
580 #endif /* CONFIG_SUSPEND */
581
582 /**
583 * tick_init - initialize the tick control
584 */
tick_init(void)585 void __init tick_init(void)
586 {
587 tick_broadcast_init();
588 tick_nohz_init();
589 }
590