• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains the base functions to manage periodic tick
4  * related events.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  */
10 #include <linux/cpu.h>
11 #include <linux/err.h>
12 #include <linux/hrtimer.h>
13 #include <linux/interrupt.h>
14 #include <linux/nmi.h>
15 #include <linux/percpu.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/module.h>
19 #include <trace/events/power.h>
20 
21 #include <asm/irq_regs.h>
22 
23 #include "tick-internal.h"
24 
25 /*
26  * Tick devices
27  */
28 DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
29 /*
30  * Tick next event: keeps track of the tick time
31  */
32 ktime_t tick_next_period;
33 
34 /*
35  * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
36  * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
37  * variable has two functions:
38  *
39  * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
40  *    timekeeping lock all at once. Only the CPU which is assigned to do the
41  *    update is handling it.
42  *
43  * 2) Hand off the duty in the NOHZ idle case by setting the value to
44  *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
45  *    at it will take over and keep the time keeping alive.  The handover
46  *    procedure also covers cpu hotplug.
47  */
48 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
49 #ifdef CONFIG_NO_HZ_FULL
50 /*
51  * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
52  * tick_do_timer_cpu and it should be taken over by an eligible secondary
53  * when one comes online.
54  */
55 static int tick_do_timer_boot_cpu __read_mostly = -1;
56 #endif
57 
58 /*
59  * Debugging: see timer_list.c
60  */
tick_get_device(int cpu)61 struct tick_device *tick_get_device(int cpu)
62 {
63 	return &per_cpu(tick_cpu_device, cpu);
64 }
65 
66 /**
67  * tick_is_oneshot_available - check for a oneshot capable event device
68  */
tick_is_oneshot_available(void)69 int tick_is_oneshot_available(void)
70 {
71 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
72 
73 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
74 		return 0;
75 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
76 		return 1;
77 	return tick_broadcast_oneshot_available();
78 }
79 
80 /*
81  * Periodic tick
82  */
tick_periodic(int cpu)83 static void tick_periodic(int cpu)
84 {
85 	if (tick_do_timer_cpu == cpu) {
86 		raw_spin_lock(&jiffies_lock);
87 		write_seqcount_begin(&jiffies_seq);
88 
89 		/* Keep track of the next tick event */
90 		tick_next_period = ktime_add_ns(tick_next_period, TICK_NSEC);
91 
92 		do_timer(1);
93 		write_seqcount_end(&jiffies_seq);
94 		raw_spin_unlock(&jiffies_lock);
95 		update_wall_time();
96 	}
97 
98 	update_process_times(user_mode(get_irq_regs()));
99 	profile_tick(CPU_PROFILING);
100 }
101 
102 /*
103  * Event handler for periodic ticks
104  */
tick_handle_periodic(struct clock_event_device * dev)105 void tick_handle_periodic(struct clock_event_device *dev)
106 {
107 	int cpu = smp_processor_id();
108 	ktime_t next = dev->next_event;
109 
110 	tick_periodic(cpu);
111 
112 #if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
113 	/*
114 	 * The cpu might have transitioned to HIGHRES or NOHZ mode via
115 	 * update_process_times() -> run_local_timers() ->
116 	 * hrtimer_run_queues().
117 	 */
118 	if (dev->event_handler != tick_handle_periodic)
119 		return;
120 #endif
121 
122 	if (!clockevent_state_oneshot(dev))
123 		return;
124 	for (;;) {
125 		/*
126 		 * Setup the next period for devices, which do not have
127 		 * periodic mode:
128 		 */
129 		next = ktime_add_ns(next, TICK_NSEC);
130 
131 		if (!clockevents_program_event(dev, next, false))
132 			return;
133 		/*
134 		 * Have to be careful here. If we're in oneshot mode,
135 		 * before we call tick_periodic() in a loop, we need
136 		 * to be sure we're using a real hardware clocksource.
137 		 * Otherwise we could get trapped in an infinite
138 		 * loop, as the tick_periodic() increments jiffies,
139 		 * which then will increment time, possibly causing
140 		 * the loop to trigger again and again.
141 		 */
142 		if (timekeeping_valid_for_hres())
143 			tick_periodic(cpu);
144 	}
145 }
146 
147 /*
148  * Setup the device for a periodic tick
149  */
tick_setup_periodic(struct clock_event_device * dev,int broadcast)150 void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
151 {
152 	tick_set_periodic_handler(dev, broadcast);
153 
154 	/* Broadcast setup ? */
155 	if (!tick_device_is_functional(dev))
156 		return;
157 
158 	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
159 	    !tick_broadcast_oneshot_active()) {
160 		clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
161 	} else {
162 		unsigned int seq;
163 		ktime_t next;
164 
165 		do {
166 			seq = read_seqcount_begin(&jiffies_seq);
167 			next = tick_next_period;
168 		} while (read_seqcount_retry(&jiffies_seq, seq));
169 
170 		clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
171 
172 		for (;;) {
173 			if (!clockevents_program_event(dev, next, false))
174 				return;
175 			next = ktime_add_ns(next, TICK_NSEC);
176 		}
177 	}
178 }
179 
180 #ifdef CONFIG_NO_HZ_FULL
giveup_do_timer(void * info)181 static void giveup_do_timer(void *info)
182 {
183 	int cpu = *(unsigned int *)info;
184 
185 	WARN_ON(tick_do_timer_cpu != smp_processor_id());
186 
187 	tick_do_timer_cpu = cpu;
188 }
189 
tick_take_do_timer_from_boot(void)190 static void tick_take_do_timer_from_boot(void)
191 {
192 	int cpu = smp_processor_id();
193 	int from = tick_do_timer_boot_cpu;
194 
195 	if (from >= 0 && from != cpu)
196 		smp_call_function_single(from, giveup_do_timer, &cpu, 1);
197 }
198 #endif
199 
200 /*
201  * Setup the tick device
202  */
tick_setup_device(struct tick_device * td,struct clock_event_device * newdev,int cpu,const struct cpumask * cpumask)203 static void tick_setup_device(struct tick_device *td,
204 			      struct clock_event_device *newdev, int cpu,
205 			      const struct cpumask *cpumask)
206 {
207 	void (*handler)(struct clock_event_device *) = NULL;
208 	ktime_t next_event = 0;
209 
210 	/*
211 	 * First device setup ?
212 	 */
213 	if (!td->evtdev) {
214 		/*
215 		 * If no cpu took the do_timer update, assign it to
216 		 * this cpu:
217 		 */
218 		if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
219 			ktime_t next_p;
220 			u32 rem;
221 
222 			tick_do_timer_cpu = cpu;
223 
224 			next_p = ktime_get();
225 			div_u64_rem(next_p, TICK_NSEC, &rem);
226 			if (rem) {
227 				next_p -= rem;
228 				next_p += TICK_NSEC;
229 			}
230 
231 			tick_next_period = next_p;
232 #ifdef CONFIG_NO_HZ_FULL
233 			/*
234 			 * The boot CPU may be nohz_full, in which case set
235 			 * tick_do_timer_boot_cpu so the first housekeeping
236 			 * secondary that comes up will take do_timer from
237 			 * us.
238 			 */
239 			if (tick_nohz_full_cpu(cpu))
240 				tick_do_timer_boot_cpu = cpu;
241 
242 		} else if (tick_do_timer_boot_cpu != -1 &&
243 						!tick_nohz_full_cpu(cpu)) {
244 			tick_take_do_timer_from_boot();
245 			tick_do_timer_boot_cpu = -1;
246 			WARN_ON(tick_do_timer_cpu != cpu);
247 #endif
248 		}
249 
250 		/*
251 		 * Startup in periodic mode first.
252 		 */
253 		td->mode = TICKDEV_MODE_PERIODIC;
254 	} else {
255 		handler = td->evtdev->event_handler;
256 		next_event = td->evtdev->next_event;
257 		td->evtdev->event_handler = clockevents_handle_noop;
258 	}
259 
260 	td->evtdev = newdev;
261 
262 	/*
263 	 * When the device is not per cpu, pin the interrupt to the
264 	 * current cpu:
265 	 */
266 	if (!cpumask_equal(newdev->cpumask, cpumask))
267 		irq_set_affinity(newdev->irq, cpumask);
268 
269 	/*
270 	 * When global broadcasting is active, check if the current
271 	 * device is registered as a placeholder for broadcast mode.
272 	 * This allows us to handle this x86 misfeature in a generic
273 	 * way. This function also returns !=0 when we keep the
274 	 * current active broadcast state for this CPU.
275 	 */
276 	if (tick_device_uses_broadcast(newdev, cpu))
277 		return;
278 
279 	if (td->mode == TICKDEV_MODE_PERIODIC)
280 		tick_setup_periodic(newdev, 0);
281 	else
282 		tick_setup_oneshot(newdev, handler, next_event);
283 }
284 
tick_install_replacement(struct clock_event_device * newdev)285 void tick_install_replacement(struct clock_event_device *newdev)
286 {
287 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
288 	int cpu = smp_processor_id();
289 
290 	clockevents_exchange_device(td->evtdev, newdev);
291 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
292 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
293 		tick_oneshot_notify();
294 }
295 
tick_check_percpu(struct clock_event_device * curdev,struct clock_event_device * newdev,int cpu)296 static bool tick_check_percpu(struct clock_event_device *curdev,
297 			      struct clock_event_device *newdev, int cpu)
298 {
299 	if (!cpumask_test_cpu(cpu, newdev->cpumask))
300 		return false;
301 	if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
302 		return true;
303 	/* Check if irq affinity can be set */
304 	if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
305 		return false;
306 	/* Prefer an existing cpu local device */
307 	if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
308 		return false;
309 	return true;
310 }
311 
tick_check_preferred(struct clock_event_device * curdev,struct clock_event_device * newdev)312 static bool tick_check_preferred(struct clock_event_device *curdev,
313 				 struct clock_event_device *newdev)
314 {
315 	/* Prefer oneshot capable device */
316 	if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
317 		if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
318 			return false;
319 		if (tick_oneshot_mode_active())
320 			return false;
321 	}
322 
323 	/*
324 	 * Use the higher rated one, but prefer a CPU local device with a lower
325 	 * rating than a non-CPU local device
326 	 */
327 	return !curdev ||
328 		newdev->rating > curdev->rating ||
329 	       !cpumask_equal(curdev->cpumask, newdev->cpumask);
330 }
331 
332 /*
333  * Check whether the new device is a better fit than curdev. curdev
334  * can be NULL !
335  */
tick_check_replacement(struct clock_event_device * curdev,struct clock_event_device * newdev)336 bool tick_check_replacement(struct clock_event_device *curdev,
337 			    struct clock_event_device *newdev)
338 {
339 	if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
340 		return false;
341 
342 	return tick_check_preferred(curdev, newdev);
343 }
344 
345 /*
346  * Check, if the new registered device should be used. Called with
347  * clockevents_lock held and interrupts disabled.
348  */
tick_check_new_device(struct clock_event_device * newdev)349 void tick_check_new_device(struct clock_event_device *newdev)
350 {
351 	struct clock_event_device *curdev;
352 	struct tick_device *td;
353 	int cpu;
354 
355 	cpu = smp_processor_id();
356 	td = &per_cpu(tick_cpu_device, cpu);
357 	curdev = td->evtdev;
358 
359 	/* cpu local device ? */
360 	if (!tick_check_percpu(curdev, newdev, cpu))
361 		goto out_bc;
362 
363 	/* Preference decision */
364 	if (!tick_check_preferred(curdev, newdev))
365 		goto out_bc;
366 
367 	if (!try_module_get(newdev->owner))
368 		return;
369 
370 	/*
371 	 * Replace the eventually existing device by the new
372 	 * device. If the current device is the broadcast device, do
373 	 * not give it back to the clockevents layer !
374 	 */
375 	if (tick_is_broadcast_device(curdev)) {
376 		clockevents_shutdown(curdev);
377 		curdev = NULL;
378 	}
379 	clockevents_exchange_device(curdev, newdev);
380 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
381 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
382 		tick_oneshot_notify();
383 	return;
384 
385 out_bc:
386 	/*
387 	 * Can the new device be used as a broadcast device ?
388 	 */
389 	tick_install_broadcast_device(newdev);
390 }
391 
392 /**
393  * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
394  * @state:	The target state (enter/exit)
395  *
396  * The system enters/leaves a state, where affected devices might stop
397  * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
398  *
399  * Called with interrupts disabled, so clockevents_lock is not
400  * required here because the local clock event device cannot go away
401  * under us.
402  */
tick_broadcast_oneshot_control(enum tick_broadcast_state state)403 int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
404 {
405 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
406 
407 	if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
408 		return 0;
409 
410 	return __tick_broadcast_oneshot_control(state);
411 }
412 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
413 
414 #ifdef CONFIG_HOTPLUG_CPU
415 /*
416  * Transfer the do_timer job away from a dying cpu.
417  *
418  * Called with interrupts disabled. Not locking required. If
419  * tick_do_timer_cpu is owned by this cpu, nothing can change it.
420  */
tick_handover_do_timer(void)421 void tick_handover_do_timer(void)
422 {
423 	if (tick_do_timer_cpu == smp_processor_id()) {
424 		int cpu = cpumask_first(cpu_online_mask);
425 
426 		tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
427 			TICK_DO_TIMER_NONE;
428 	}
429 }
430 
431 /*
432  * Shutdown an event device on a given cpu:
433  *
434  * This is called on a life CPU, when a CPU is dead. So we cannot
435  * access the hardware device itself.
436  * We just set the mode and remove it from the lists.
437  */
tick_shutdown(unsigned int cpu)438 void tick_shutdown(unsigned int cpu)
439 {
440 	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
441 	struct clock_event_device *dev = td->evtdev;
442 
443 	td->mode = TICKDEV_MODE_PERIODIC;
444 	if (dev) {
445 		/*
446 		 * Prevent that the clock events layer tries to call
447 		 * the set mode function!
448 		 */
449 		clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
450 		clockevents_exchange_device(dev, NULL);
451 		dev->event_handler = clockevents_handle_noop;
452 		td->evtdev = NULL;
453 	}
454 }
455 #endif
456 
457 /**
458  * tick_suspend_local - Suspend the local tick device
459  *
460  * Called from the local cpu for freeze with interrupts disabled.
461  *
462  * No locks required. Nothing can change the per cpu device.
463  */
tick_suspend_local(void)464 void tick_suspend_local(void)
465 {
466 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
467 
468 	clockevents_shutdown(td->evtdev);
469 }
470 
471 /**
472  * tick_resume_local - Resume the local tick device
473  *
474  * Called from the local CPU for unfreeze or XEN resume magic.
475  *
476  * No locks required. Nothing can change the per cpu device.
477  */
tick_resume_local(void)478 void tick_resume_local(void)
479 {
480 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
481 	bool broadcast = tick_resume_check_broadcast();
482 
483 	clockevents_tick_resume(td->evtdev);
484 	if (!broadcast) {
485 		if (td->mode == TICKDEV_MODE_PERIODIC)
486 			tick_setup_periodic(td->evtdev, 0);
487 		else
488 			tick_resume_oneshot();
489 	}
490 }
491 
492 /**
493  * tick_suspend - Suspend the tick and the broadcast device
494  *
495  * Called from syscore_suspend() via timekeeping_suspend with only one
496  * CPU online and interrupts disabled or from tick_unfreeze() under
497  * tick_freeze_lock.
498  *
499  * No locks required. Nothing can change the per cpu device.
500  */
tick_suspend(void)501 void tick_suspend(void)
502 {
503 	tick_suspend_local();
504 	tick_suspend_broadcast();
505 }
506 
507 /**
508  * tick_resume - Resume the tick and the broadcast device
509  *
510  * Called from syscore_resume() via timekeeping_resume with only one
511  * CPU online and interrupts disabled.
512  *
513  * No locks required. Nothing can change the per cpu device.
514  */
tick_resume(void)515 void tick_resume(void)
516 {
517 	tick_resume_broadcast();
518 	tick_resume_local();
519 }
520 
521 #ifdef CONFIG_SUSPEND
522 static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
523 static unsigned int tick_freeze_depth;
524 
525 /**
526  * tick_freeze - Suspend the local tick and (possibly) timekeeping.
527  *
528  * Check if this is the last online CPU executing the function and if so,
529  * suspend timekeeping.  Otherwise suspend the local tick.
530  *
531  * Call with interrupts disabled.  Must be balanced with %tick_unfreeze().
532  * Interrupts must not be enabled before the subsequent %tick_unfreeze().
533  */
tick_freeze(void)534 void tick_freeze(void)
535 {
536 	raw_spin_lock(&tick_freeze_lock);
537 
538 	tick_freeze_depth++;
539 	if (tick_freeze_depth == num_online_cpus()) {
540 		trace_suspend_resume(TPS("timekeeping_freeze"),
541 				     smp_processor_id(), true);
542 		system_state = SYSTEM_SUSPEND;
543 		sched_clock_suspend();
544 		timekeeping_suspend();
545 	} else {
546 		tick_suspend_local();
547 	}
548 
549 	raw_spin_unlock(&tick_freeze_lock);
550 }
551 
552 /**
553  * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
554  *
555  * Check if this is the first CPU executing the function and if so, resume
556  * timekeeping.  Otherwise resume the local tick.
557  *
558  * Call with interrupts disabled.  Must be balanced with %tick_freeze().
559  * Interrupts must not be enabled after the preceding %tick_freeze().
560  */
tick_unfreeze(void)561 void tick_unfreeze(void)
562 {
563 	raw_spin_lock(&tick_freeze_lock);
564 
565 	if (tick_freeze_depth == num_online_cpus()) {
566 		timekeeping_resume();
567 		sched_clock_resume();
568 		system_state = SYSTEM_RUNNING;
569 		trace_suspend_resume(TPS("timekeeping_freeze"),
570 				     smp_processor_id(), false);
571 	} else {
572 		touch_softlockup_watchdog();
573 		tick_resume_local();
574 	}
575 
576 	tick_freeze_depth--;
577 
578 	raw_spin_unlock(&tick_freeze_lock);
579 }
580 #endif /* CONFIG_SUSPEND */
581 
582 /**
583  * tick_init - initialize the tick control
584  */
tick_init(void)585 void __init tick_init(void)
586 {
587 	tick_broadcast_init();
588 	tick_nohz_init();
589 }
590