• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
10 
11 #include <asm/set_memory.h>
12 #include <asm/cpu_device_id.h>
13 #include <asm/e820/api.h>
14 #include <asm/init.h>
15 #include <asm/page.h>
16 #include <asm/page_types.h>
17 #include <asm/sections.h>
18 #include <asm/setup.h>
19 #include <asm/tlbflush.h>
20 #include <asm/tlb.h>
21 #include <asm/proto.h>
22 #include <asm/dma.h>		/* for MAX_DMA_PFN */
23 #include <asm/microcode.h>
24 #include <asm/kaslr.h>
25 #include <asm/hypervisor.h>
26 #include <asm/cpufeature.h>
27 #include <asm/pti.h>
28 #include <asm/text-patching.h>
29 #include <asm/memtype.h>
30 
31 /*
32  * We need to define the tracepoints somewhere, and tlb.c
33  * is only compied when SMP=y.
34  */
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/tlb.h>
37 
38 #include "mm_internal.h"
39 
40 /*
41  * Tables translating between page_cache_type_t and pte encoding.
42  *
43  * The default values are defined statically as minimal supported mode;
44  * WC and WT fall back to UC-.  pat_init() updates these values to support
45  * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
46  * for the details.  Note, __early_ioremap() used during early boot-time
47  * takes pgprot_t (pte encoding) and does not use these tables.
48  *
49  *   Index into __cachemode2pte_tbl[] is the cachemode.
50  *
51  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
52  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
53  */
54 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
55 	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
56 	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
57 	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
58 	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
59 	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
60 	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
61 };
62 
cachemode2protval(enum page_cache_mode pcm)63 unsigned long cachemode2protval(enum page_cache_mode pcm)
64 {
65 	if (likely(pcm == 0))
66 		return 0;
67 	return __cachemode2pte_tbl[pcm];
68 }
69 EXPORT_SYMBOL(cachemode2protval);
70 
71 static uint8_t __pte2cachemode_tbl[8] = {
72 	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
73 	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
74 	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
75 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
76 	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
77 	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
78 	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
79 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
80 };
81 
82 /*
83  * Check that the write-protect PAT entry is set for write-protect.
84  * To do this without making assumptions how PAT has been set up (Xen has
85  * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
86  * mode via the __cachemode2pte_tbl[] into protection bits (those protection
87  * bits will select a cache mode of WP or better), and then translate the
88  * protection bits back into the cache mode using __pte2cm_idx() and the
89  * __pte2cachemode_tbl[] array. This will return the really used cache mode.
90  */
x86_has_pat_wp(void)91 bool x86_has_pat_wp(void)
92 {
93 	uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
94 
95 	return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
96 }
97 
pgprot2cachemode(pgprot_t pgprot)98 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
99 {
100 	unsigned long masked;
101 
102 	masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
103 	if (likely(masked == 0))
104 		return 0;
105 	return __pte2cachemode_tbl[__pte2cm_idx(masked)];
106 }
107 
108 static unsigned long __initdata pgt_buf_start;
109 static unsigned long __initdata pgt_buf_end;
110 static unsigned long __initdata pgt_buf_top;
111 
112 static unsigned long min_pfn_mapped;
113 
114 static bool __initdata can_use_brk_pgt = true;
115 
116 /*
117  * Pages returned are already directly mapped.
118  *
119  * Changing that is likely to break Xen, see commit:
120  *
121  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
122  *
123  * for detailed information.
124  */
alloc_low_pages(unsigned int num)125 __ref void *alloc_low_pages(unsigned int num)
126 {
127 	unsigned long pfn;
128 	int i;
129 
130 	if (after_bootmem) {
131 		unsigned int order;
132 
133 		order = get_order((unsigned long)num << PAGE_SHIFT);
134 		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
135 	}
136 
137 	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
138 		unsigned long ret = 0;
139 
140 		if (min_pfn_mapped < max_pfn_mapped) {
141 			ret = memblock_find_in_range(
142 					min_pfn_mapped << PAGE_SHIFT,
143 					max_pfn_mapped << PAGE_SHIFT,
144 					PAGE_SIZE * num , PAGE_SIZE);
145 		}
146 		if (ret)
147 			memblock_reserve(ret, PAGE_SIZE * num);
148 		else if (can_use_brk_pgt)
149 			ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
150 
151 		if (!ret)
152 			panic("alloc_low_pages: can not alloc memory");
153 
154 		pfn = ret >> PAGE_SHIFT;
155 	} else {
156 		pfn = pgt_buf_end;
157 		pgt_buf_end += num;
158 	}
159 
160 	for (i = 0; i < num; i++) {
161 		void *adr;
162 
163 		adr = __va((pfn + i) << PAGE_SHIFT);
164 		clear_page(adr);
165 	}
166 
167 	return __va(pfn << PAGE_SHIFT);
168 }
169 
170 /*
171  * By default need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS.
172  * With KASLR memory randomization, depending on the machine e820 memory
173  * and the PUD alignment. We may need twice more pages when KASLR memory
174  * randomization is enabled.
175  */
176 #ifndef CONFIG_RANDOMIZE_MEMORY
177 #define INIT_PGD_PAGE_COUNT      6
178 #else
179 #define INIT_PGD_PAGE_COUNT      12
180 #endif
181 #define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
182 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
early_alloc_pgt_buf(void)183 void  __init early_alloc_pgt_buf(void)
184 {
185 	unsigned long tables = INIT_PGT_BUF_SIZE;
186 	phys_addr_t base;
187 
188 	base = __pa(extend_brk(tables, PAGE_SIZE));
189 
190 	pgt_buf_start = base >> PAGE_SHIFT;
191 	pgt_buf_end = pgt_buf_start;
192 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
193 }
194 
195 int after_bootmem;
196 
197 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
198 
199 struct map_range {
200 	unsigned long start;
201 	unsigned long end;
202 	unsigned page_size_mask;
203 };
204 
205 static int page_size_mask;
206 
207 /*
208  * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
209  * enable and PPro Global page enable), so that any CPU's that boot
210  * up after us can get the correct flags. Invoked on the boot CPU.
211  */
cr4_set_bits_and_update_boot(unsigned long mask)212 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
213 {
214 	mmu_cr4_features |= mask;
215 	if (trampoline_cr4_features)
216 		*trampoline_cr4_features = mmu_cr4_features;
217 	cr4_set_bits(mask);
218 }
219 
probe_page_size_mask(void)220 static void __init probe_page_size_mask(void)
221 {
222 	/*
223 	 * For pagealloc debugging, identity mapping will use small pages.
224 	 * This will simplify cpa(), which otherwise needs to support splitting
225 	 * large pages into small in interrupt context, etc.
226 	 */
227 	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
228 		page_size_mask |= 1 << PG_LEVEL_2M;
229 	else
230 		direct_gbpages = 0;
231 
232 	/* Enable PSE if available */
233 	if (boot_cpu_has(X86_FEATURE_PSE))
234 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
235 
236 	/* Enable PGE if available */
237 	__supported_pte_mask &= ~_PAGE_GLOBAL;
238 	if (boot_cpu_has(X86_FEATURE_PGE)) {
239 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
240 		__supported_pte_mask |= _PAGE_GLOBAL;
241 	}
242 
243 	/* By the default is everything supported: */
244 	__default_kernel_pte_mask = __supported_pte_mask;
245 	/* Except when with PTI where the kernel is mostly non-Global: */
246 	if (cpu_feature_enabled(X86_FEATURE_PTI))
247 		__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
248 
249 	/* Enable 1 GB linear kernel mappings if available: */
250 	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
251 		printk(KERN_INFO "Using GB pages for direct mapping\n");
252 		page_size_mask |= 1 << PG_LEVEL_1G;
253 	} else {
254 		direct_gbpages = 0;
255 	}
256 }
257 
258 #define INTEL_MATCH(_model) { .vendor  = X86_VENDOR_INTEL,	\
259 			      .family  = 6,			\
260 			      .model = _model,			\
261 			    }
262 /*
263  * INVLPG may not properly flush Global entries
264  * on these CPUs when PCIDs are enabled.
265  */
266 static const struct x86_cpu_id invlpg_miss_ids[] = {
267 	INTEL_MATCH(INTEL_FAM6_ALDERLAKE   ),
268 	INTEL_MATCH(INTEL_FAM6_ALDERLAKE_L ),
269 	INTEL_MATCH(INTEL_FAM6_ALDERLAKE_N ),
270 	INTEL_MATCH(INTEL_FAM6_RAPTORLAKE  ),
271 	INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_P),
272 	INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_S),
273 	{}
274 };
275 
setup_pcid(void)276 static void setup_pcid(void)
277 {
278 	if (!IS_ENABLED(CONFIG_X86_64))
279 		return;
280 
281 	if (!boot_cpu_has(X86_FEATURE_PCID))
282 		return;
283 
284 	if (x86_match_cpu(invlpg_miss_ids)) {
285 		pr_info("Incomplete global flushes, disabling PCID");
286 		setup_clear_cpu_cap(X86_FEATURE_PCID);
287 		return;
288 	}
289 
290 	if (boot_cpu_has(X86_FEATURE_PGE)) {
291 		/*
292 		 * This can't be cr4_set_bits_and_update_boot() -- the
293 		 * trampoline code can't handle CR4.PCIDE and it wouldn't
294 		 * do any good anyway.  Despite the name,
295 		 * cr4_set_bits_and_update_boot() doesn't actually cause
296 		 * the bits in question to remain set all the way through
297 		 * the secondary boot asm.
298 		 *
299 		 * Instead, we brute-force it and set CR4.PCIDE manually in
300 		 * start_secondary().
301 		 */
302 		cr4_set_bits(X86_CR4_PCIDE);
303 
304 		/*
305 		 * INVPCID's single-context modes (2/3) only work if we set
306 		 * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
307 		 * on systems that have X86_CR4_PCIDE clear, or that have
308 		 * no INVPCID support at all.
309 		 */
310 		if (boot_cpu_has(X86_FEATURE_INVPCID))
311 			setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
312 	} else {
313 		/*
314 		 * flush_tlb_all(), as currently implemented, won't work if
315 		 * PCID is on but PGE is not.  Since that combination
316 		 * doesn't exist on real hardware, there's no reason to try
317 		 * to fully support it, but it's polite to avoid corrupting
318 		 * data if we're on an improperly configured VM.
319 		 */
320 		setup_clear_cpu_cap(X86_FEATURE_PCID);
321 	}
322 }
323 
324 #ifdef CONFIG_X86_32
325 #define NR_RANGE_MR 3
326 #else /* CONFIG_X86_64 */
327 #define NR_RANGE_MR 5
328 #endif
329 
save_mr(struct map_range * mr,int nr_range,unsigned long start_pfn,unsigned long end_pfn,unsigned long page_size_mask)330 static int __meminit save_mr(struct map_range *mr, int nr_range,
331 			     unsigned long start_pfn, unsigned long end_pfn,
332 			     unsigned long page_size_mask)
333 {
334 	if (start_pfn < end_pfn) {
335 		if (nr_range >= NR_RANGE_MR)
336 			panic("run out of range for init_memory_mapping\n");
337 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
338 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
339 		mr[nr_range].page_size_mask = page_size_mask;
340 		nr_range++;
341 	}
342 
343 	return nr_range;
344 }
345 
346 /*
347  * adjust the page_size_mask for small range to go with
348  *	big page size instead small one if nearby are ram too.
349  */
adjust_range_page_size_mask(struct map_range * mr,int nr_range)350 static void __ref adjust_range_page_size_mask(struct map_range *mr,
351 							 int nr_range)
352 {
353 	int i;
354 
355 	for (i = 0; i < nr_range; i++) {
356 		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
357 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
358 			unsigned long start = round_down(mr[i].start, PMD_SIZE);
359 			unsigned long end = round_up(mr[i].end, PMD_SIZE);
360 
361 #ifdef CONFIG_X86_32
362 			if ((end >> PAGE_SHIFT) > max_low_pfn)
363 				continue;
364 #endif
365 
366 			if (memblock_is_region_memory(start, end - start))
367 				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
368 		}
369 		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
370 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
371 			unsigned long start = round_down(mr[i].start, PUD_SIZE);
372 			unsigned long end = round_up(mr[i].end, PUD_SIZE);
373 
374 			if (memblock_is_region_memory(start, end - start))
375 				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
376 		}
377 	}
378 }
379 
page_size_string(struct map_range * mr)380 static const char *page_size_string(struct map_range *mr)
381 {
382 	static const char str_1g[] = "1G";
383 	static const char str_2m[] = "2M";
384 	static const char str_4m[] = "4M";
385 	static const char str_4k[] = "4k";
386 
387 	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
388 		return str_1g;
389 	/*
390 	 * 32-bit without PAE has a 4M large page size.
391 	 * PG_LEVEL_2M is misnamed, but we can at least
392 	 * print out the right size in the string.
393 	 */
394 	if (IS_ENABLED(CONFIG_X86_32) &&
395 	    !IS_ENABLED(CONFIG_X86_PAE) &&
396 	    mr->page_size_mask & (1<<PG_LEVEL_2M))
397 		return str_4m;
398 
399 	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
400 		return str_2m;
401 
402 	return str_4k;
403 }
404 
split_mem_range(struct map_range * mr,int nr_range,unsigned long start,unsigned long end)405 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
406 				     unsigned long start,
407 				     unsigned long end)
408 {
409 	unsigned long start_pfn, end_pfn, limit_pfn;
410 	unsigned long pfn;
411 	int i;
412 
413 	limit_pfn = PFN_DOWN(end);
414 
415 	/* head if not big page alignment ? */
416 	pfn = start_pfn = PFN_DOWN(start);
417 #ifdef CONFIG_X86_32
418 	/*
419 	 * Don't use a large page for the first 2/4MB of memory
420 	 * because there are often fixed size MTRRs in there
421 	 * and overlapping MTRRs into large pages can cause
422 	 * slowdowns.
423 	 */
424 	if (pfn == 0)
425 		end_pfn = PFN_DOWN(PMD_SIZE);
426 	else
427 		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
428 #else /* CONFIG_X86_64 */
429 	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
430 #endif
431 	if (end_pfn > limit_pfn)
432 		end_pfn = limit_pfn;
433 	if (start_pfn < end_pfn) {
434 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
435 		pfn = end_pfn;
436 	}
437 
438 	/* big page (2M) range */
439 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
440 #ifdef CONFIG_X86_32
441 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
442 #else /* CONFIG_X86_64 */
443 	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
444 	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
445 		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
446 #endif
447 
448 	if (start_pfn < end_pfn) {
449 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
450 				page_size_mask & (1<<PG_LEVEL_2M));
451 		pfn = end_pfn;
452 	}
453 
454 #ifdef CONFIG_X86_64
455 	/* big page (1G) range */
456 	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
457 	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
458 	if (start_pfn < end_pfn) {
459 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
460 				page_size_mask &
461 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
462 		pfn = end_pfn;
463 	}
464 
465 	/* tail is not big page (1G) alignment */
466 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
467 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
468 	if (start_pfn < end_pfn) {
469 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
470 				page_size_mask & (1<<PG_LEVEL_2M));
471 		pfn = end_pfn;
472 	}
473 #endif
474 
475 	/* tail is not big page (2M) alignment */
476 	start_pfn = pfn;
477 	end_pfn = limit_pfn;
478 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
479 
480 	if (!after_bootmem)
481 		adjust_range_page_size_mask(mr, nr_range);
482 
483 	/* try to merge same page size and continuous */
484 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
485 		unsigned long old_start;
486 		if (mr[i].end != mr[i+1].start ||
487 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
488 			continue;
489 		/* move it */
490 		old_start = mr[i].start;
491 		memmove(&mr[i], &mr[i+1],
492 			(nr_range - 1 - i) * sizeof(struct map_range));
493 		mr[i--].start = old_start;
494 		nr_range--;
495 	}
496 
497 	for (i = 0; i < nr_range; i++)
498 		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
499 				mr[i].start, mr[i].end - 1,
500 				page_size_string(&mr[i]));
501 
502 	return nr_range;
503 }
504 
505 struct range pfn_mapped[E820_MAX_ENTRIES];
506 int nr_pfn_mapped;
507 
add_pfn_range_mapped(unsigned long start_pfn,unsigned long end_pfn)508 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
509 {
510 	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
511 					     nr_pfn_mapped, start_pfn, end_pfn);
512 	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
513 
514 	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
515 
516 	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
517 		max_low_pfn_mapped = max(max_low_pfn_mapped,
518 					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
519 }
520 
pfn_range_is_mapped(unsigned long start_pfn,unsigned long end_pfn)521 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
522 {
523 	int i;
524 
525 	for (i = 0; i < nr_pfn_mapped; i++)
526 		if ((start_pfn >= pfn_mapped[i].start) &&
527 		    (end_pfn <= pfn_mapped[i].end))
528 			return true;
529 
530 	return false;
531 }
532 
533 /*
534  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
535  * This runs before bootmem is initialized and gets pages directly from
536  * the physical memory. To access them they are temporarily mapped.
537  */
init_memory_mapping(unsigned long start,unsigned long end,pgprot_t prot)538 unsigned long __ref init_memory_mapping(unsigned long start,
539 					unsigned long end, pgprot_t prot)
540 {
541 	struct map_range mr[NR_RANGE_MR];
542 	unsigned long ret = 0;
543 	int nr_range, i;
544 
545 	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
546 	       start, end - 1);
547 
548 	memset(mr, 0, sizeof(mr));
549 	nr_range = split_mem_range(mr, 0, start, end);
550 
551 	for (i = 0; i < nr_range; i++)
552 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
553 						   mr[i].page_size_mask,
554 						   prot);
555 
556 	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
557 
558 	return ret >> PAGE_SHIFT;
559 }
560 
561 /*
562  * We need to iterate through the E820 memory map and create direct mappings
563  * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
564  * create direct mappings for all pfns from [0 to max_low_pfn) and
565  * [4GB to max_pfn) because of possible memory holes in high addresses
566  * that cannot be marked as UC by fixed/variable range MTRRs.
567  * Depending on the alignment of E820 ranges, this may possibly result
568  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
569  *
570  * init_mem_mapping() calls init_range_memory_mapping() with big range.
571  * That range would have hole in the middle or ends, and only ram parts
572  * will be mapped in init_range_memory_mapping().
573  */
init_range_memory_mapping(unsigned long r_start,unsigned long r_end)574 static unsigned long __init init_range_memory_mapping(
575 					   unsigned long r_start,
576 					   unsigned long r_end)
577 {
578 	unsigned long start_pfn, end_pfn;
579 	unsigned long mapped_ram_size = 0;
580 	int i;
581 
582 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
583 		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
584 		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
585 		if (start >= end)
586 			continue;
587 
588 		/*
589 		 * if it is overlapping with brk pgt, we need to
590 		 * alloc pgt buf from memblock instead.
591 		 */
592 		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
593 				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
594 		init_memory_mapping(start, end, PAGE_KERNEL);
595 		mapped_ram_size += end - start;
596 		can_use_brk_pgt = true;
597 	}
598 
599 	return mapped_ram_size;
600 }
601 
get_new_step_size(unsigned long step_size)602 static unsigned long __init get_new_step_size(unsigned long step_size)
603 {
604 	/*
605 	 * Initial mapped size is PMD_SIZE (2M).
606 	 * We can not set step_size to be PUD_SIZE (1G) yet.
607 	 * In worse case, when we cross the 1G boundary, and
608 	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
609 	 * to map 1G range with PTE. Hence we use one less than the
610 	 * difference of page table level shifts.
611 	 *
612 	 * Don't need to worry about overflow in the top-down case, on 32bit,
613 	 * when step_size is 0, round_down() returns 0 for start, and that
614 	 * turns it into 0x100000000ULL.
615 	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
616 	 * needs to be taken into consideration by the code below.
617 	 */
618 	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
619 }
620 
621 /**
622  * memory_map_top_down - Map [map_start, map_end) top down
623  * @map_start: start address of the target memory range
624  * @map_end: end address of the target memory range
625  *
626  * This function will setup direct mapping for memory range
627  * [map_start, map_end) in top-down. That said, the page tables
628  * will be allocated at the end of the memory, and we map the
629  * memory in top-down.
630  */
memory_map_top_down(unsigned long map_start,unsigned long map_end)631 static void __init memory_map_top_down(unsigned long map_start,
632 				       unsigned long map_end)
633 {
634 	unsigned long real_end, start, last_start;
635 	unsigned long step_size;
636 	unsigned long addr;
637 	unsigned long mapped_ram_size = 0;
638 
639 	/* xen has big range in reserved near end of ram, skip it at first.*/
640 	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
641 	real_end = addr + PMD_SIZE;
642 
643 	/* step_size need to be small so pgt_buf from BRK could cover it */
644 	step_size = PMD_SIZE;
645 	max_pfn_mapped = 0; /* will get exact value next */
646 	min_pfn_mapped = real_end >> PAGE_SHIFT;
647 	last_start = start = real_end;
648 
649 	/*
650 	 * We start from the top (end of memory) and go to the bottom.
651 	 * The memblock_find_in_range() gets us a block of RAM from the
652 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
653 	 * for page table.
654 	 */
655 	while (last_start > map_start) {
656 		if (last_start > step_size) {
657 			start = round_down(last_start - 1, step_size);
658 			if (start < map_start)
659 				start = map_start;
660 		} else
661 			start = map_start;
662 		mapped_ram_size += init_range_memory_mapping(start,
663 							last_start);
664 		last_start = start;
665 		min_pfn_mapped = last_start >> PAGE_SHIFT;
666 		if (mapped_ram_size >= step_size)
667 			step_size = get_new_step_size(step_size);
668 	}
669 
670 	if (real_end < map_end)
671 		init_range_memory_mapping(real_end, map_end);
672 }
673 
674 /**
675  * memory_map_bottom_up - Map [map_start, map_end) bottom up
676  * @map_start: start address of the target memory range
677  * @map_end: end address of the target memory range
678  *
679  * This function will setup direct mapping for memory range
680  * [map_start, map_end) in bottom-up. Since we have limited the
681  * bottom-up allocation above the kernel, the page tables will
682  * be allocated just above the kernel and we map the memory
683  * in [map_start, map_end) in bottom-up.
684  */
memory_map_bottom_up(unsigned long map_start,unsigned long map_end)685 static void __init memory_map_bottom_up(unsigned long map_start,
686 					unsigned long map_end)
687 {
688 	unsigned long next, start;
689 	unsigned long mapped_ram_size = 0;
690 	/* step_size need to be small so pgt_buf from BRK could cover it */
691 	unsigned long step_size = PMD_SIZE;
692 
693 	start = map_start;
694 	min_pfn_mapped = start >> PAGE_SHIFT;
695 
696 	/*
697 	 * We start from the bottom (@map_start) and go to the top (@map_end).
698 	 * The memblock_find_in_range() gets us a block of RAM from the
699 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
700 	 * for page table.
701 	 */
702 	while (start < map_end) {
703 		if (step_size && map_end - start > step_size) {
704 			next = round_up(start + 1, step_size);
705 			if (next > map_end)
706 				next = map_end;
707 		} else {
708 			next = map_end;
709 		}
710 
711 		mapped_ram_size += init_range_memory_mapping(start, next);
712 		start = next;
713 
714 		if (mapped_ram_size >= step_size)
715 			step_size = get_new_step_size(step_size);
716 	}
717 }
718 
719 /*
720  * The real mode trampoline, which is required for bootstrapping CPUs
721  * occupies only a small area under the low 1MB.  See reserve_real_mode()
722  * for details.
723  *
724  * If KASLR is disabled the first PGD entry of the direct mapping is copied
725  * to map the real mode trampoline.
726  *
727  * If KASLR is enabled, copy only the PUD which covers the low 1MB
728  * area. This limits the randomization granularity to 1GB for both 4-level
729  * and 5-level paging.
730  */
init_trampoline(void)731 static void __init init_trampoline(void)
732 {
733 #ifdef CONFIG_X86_64
734 	if (!kaslr_memory_enabled())
735 		trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
736 	else
737 		init_trampoline_kaslr();
738 #endif
739 }
740 
init_mem_mapping(void)741 void __init init_mem_mapping(void)
742 {
743 	unsigned long end;
744 
745 	pti_check_boottime_disable();
746 	probe_page_size_mask();
747 	setup_pcid();
748 
749 #ifdef CONFIG_X86_64
750 	end = max_pfn << PAGE_SHIFT;
751 #else
752 	end = max_low_pfn << PAGE_SHIFT;
753 #endif
754 
755 	/* the ISA range is always mapped regardless of memory holes */
756 	init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
757 
758 	/* Init the trampoline, possibly with KASLR memory offset */
759 	init_trampoline();
760 
761 	/*
762 	 * If the allocation is in bottom-up direction, we setup direct mapping
763 	 * in bottom-up, otherwise we setup direct mapping in top-down.
764 	 */
765 	if (memblock_bottom_up()) {
766 		unsigned long kernel_end = __pa_symbol(_end);
767 
768 		/*
769 		 * we need two separate calls here. This is because we want to
770 		 * allocate page tables above the kernel. So we first map
771 		 * [kernel_end, end) to make memory above the kernel be mapped
772 		 * as soon as possible. And then use page tables allocated above
773 		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
774 		 */
775 		memory_map_bottom_up(kernel_end, end);
776 		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
777 	} else {
778 		memory_map_top_down(ISA_END_ADDRESS, end);
779 	}
780 
781 #ifdef CONFIG_X86_64
782 	if (max_pfn > max_low_pfn) {
783 		/* can we preseve max_low_pfn ?*/
784 		max_low_pfn = max_pfn;
785 	}
786 #else
787 	early_ioremap_page_table_range_init();
788 #endif
789 
790 	load_cr3(swapper_pg_dir);
791 	__flush_tlb_all();
792 
793 	x86_init.hyper.init_mem_mapping();
794 
795 	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
796 }
797 
798 /*
799  * Initialize an mm_struct to be used during poking and a pointer to be used
800  * during patching.
801  */
poking_init(void)802 void __init poking_init(void)
803 {
804 	spinlock_t *ptl;
805 	pte_t *ptep;
806 
807 	poking_mm = copy_init_mm();
808 	BUG_ON(!poking_mm);
809 
810 	/*
811 	 * Randomize the poking address, but make sure that the following page
812 	 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
813 	 * and adjust the address if the PMD ends after the first one.
814 	 */
815 	poking_addr = TASK_UNMAPPED_BASE;
816 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
817 		poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
818 			(TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
819 
820 	if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
821 		poking_addr += PAGE_SIZE;
822 
823 	/*
824 	 * We need to trigger the allocation of the page-tables that will be
825 	 * needed for poking now. Later, poking may be performed in an atomic
826 	 * section, which might cause allocation to fail.
827 	 */
828 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
829 	BUG_ON(!ptep);
830 	pte_unmap_unlock(ptep, ptl);
831 }
832 
833 /*
834  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
835  * is valid. The argument is a physical page number.
836  *
837  * On x86, access has to be given to the first megabyte of RAM because that
838  * area traditionally contains BIOS code and data regions used by X, dosemu,
839  * and similar apps. Since they map the entire memory range, the whole range
840  * must be allowed (for mapping), but any areas that would otherwise be
841  * disallowed are flagged as being "zero filled" instead of rejected.
842  * Access has to be given to non-kernel-ram areas as well, these contain the
843  * PCI mmio resources as well as potential bios/acpi data regions.
844  */
devmem_is_allowed(unsigned long pagenr)845 int devmem_is_allowed(unsigned long pagenr)
846 {
847 	if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
848 				IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
849 			!= REGION_DISJOINT) {
850 		/*
851 		 * For disallowed memory regions in the low 1MB range,
852 		 * request that the page be shown as all zeros.
853 		 */
854 		if (pagenr < 256)
855 			return 2;
856 
857 		return 0;
858 	}
859 
860 	/*
861 	 * This must follow RAM test, since System RAM is considered a
862 	 * restricted resource under CONFIG_STRICT_IOMEM.
863 	 */
864 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
865 		/* Low 1MB bypasses iomem restrictions. */
866 		if (pagenr < 256)
867 			return 1;
868 
869 		return 0;
870 	}
871 
872 	return 1;
873 }
874 
free_init_pages(const char * what,unsigned long begin,unsigned long end)875 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
876 {
877 	unsigned long begin_aligned, end_aligned;
878 
879 	/* Make sure boundaries are page aligned */
880 	begin_aligned = PAGE_ALIGN(begin);
881 	end_aligned   = end & PAGE_MASK;
882 
883 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
884 		begin = begin_aligned;
885 		end   = end_aligned;
886 	}
887 
888 	if (begin >= end)
889 		return;
890 
891 	/*
892 	 * If debugging page accesses then do not free this memory but
893 	 * mark them not present - any buggy init-section access will
894 	 * create a kernel page fault:
895 	 */
896 	if (debug_pagealloc_enabled()) {
897 		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
898 			begin, end - 1);
899 		/*
900 		 * Inform kmemleak about the hole in the memory since the
901 		 * corresponding pages will be unmapped.
902 		 */
903 		kmemleak_free_part((void *)begin, end - begin);
904 		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
905 	} else {
906 		/*
907 		 * We just marked the kernel text read only above, now that
908 		 * we are going to free part of that, we need to make that
909 		 * writeable and non-executable first.
910 		 */
911 		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
912 		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
913 
914 		free_reserved_area((void *)begin, (void *)end,
915 				   POISON_FREE_INITMEM, what);
916 	}
917 }
918 
919 /*
920  * begin/end can be in the direct map or the "high kernel mapping"
921  * used for the kernel image only.  free_init_pages() will do the
922  * right thing for either kind of address.
923  */
free_kernel_image_pages(const char * what,void * begin,void * end)924 void free_kernel_image_pages(const char *what, void *begin, void *end)
925 {
926 	unsigned long begin_ul = (unsigned long)begin;
927 	unsigned long end_ul = (unsigned long)end;
928 	unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
929 
930 	free_init_pages(what, begin_ul, end_ul);
931 
932 	/*
933 	 * PTI maps some of the kernel into userspace.  For performance,
934 	 * this includes some kernel areas that do not contain secrets.
935 	 * Those areas might be adjacent to the parts of the kernel image
936 	 * being freed, which may contain secrets.  Remove the "high kernel
937 	 * image mapping" for these freed areas, ensuring they are not even
938 	 * potentially vulnerable to Meltdown regardless of the specific
939 	 * optimizations PTI is currently using.
940 	 *
941 	 * The "noalias" prevents unmapping the direct map alias which is
942 	 * needed to access the freed pages.
943 	 *
944 	 * This is only valid for 64bit kernels. 32bit has only one mapping
945 	 * which can't be treated in this way for obvious reasons.
946 	 */
947 	if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
948 		set_memory_np_noalias(begin_ul, len_pages);
949 }
950 
free_initmem(void)951 void __ref free_initmem(void)
952 {
953 	e820__reallocate_tables();
954 
955 	mem_encrypt_free_decrypted_mem();
956 
957 	free_kernel_image_pages("unused kernel image (initmem)",
958 				&__init_begin, &__init_end);
959 }
960 
961 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)962 void __init free_initrd_mem(unsigned long start, unsigned long end)
963 {
964 	/*
965 	 * end could be not aligned, and We can not align that,
966 	 * decompresser could be confused by aligned initrd_end
967 	 * We already reserve the end partial page before in
968 	 *   - i386_start_kernel()
969 	 *   - x86_64_start_kernel()
970 	 *   - relocate_initrd()
971 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
972 	 */
973 	free_init_pages("initrd", start, PAGE_ALIGN(end));
974 }
975 #endif
976 
977 /*
978  * Calculate the precise size of the DMA zone (first 16 MB of RAM),
979  * and pass it to the MM layer - to help it set zone watermarks more
980  * accurately.
981  *
982  * Done on 64-bit systems only for the time being, although 32-bit systems
983  * might benefit from this as well.
984  */
memblock_find_dma_reserve(void)985 void __init memblock_find_dma_reserve(void)
986 {
987 #ifdef CONFIG_X86_64
988 	u64 nr_pages = 0, nr_free_pages = 0;
989 	unsigned long start_pfn, end_pfn;
990 	phys_addr_t start_addr, end_addr;
991 	int i;
992 	u64 u;
993 
994 	/*
995 	 * Iterate over all memory ranges (free and reserved ones alike),
996 	 * to calculate the total number of pages in the first 16 MB of RAM:
997 	 */
998 	nr_pages = 0;
999 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1000 		start_pfn = min(start_pfn, MAX_DMA_PFN);
1001 		end_pfn   = min(end_pfn,   MAX_DMA_PFN);
1002 
1003 		nr_pages += end_pfn - start_pfn;
1004 	}
1005 
1006 	/*
1007 	 * Iterate over free memory ranges to calculate the number of free
1008 	 * pages in the DMA zone, while not counting potential partial
1009 	 * pages at the beginning or the end of the range:
1010 	 */
1011 	nr_free_pages = 0;
1012 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1013 		start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
1014 		end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
1015 
1016 		if (start_pfn < end_pfn)
1017 			nr_free_pages += end_pfn - start_pfn;
1018 	}
1019 
1020 	set_dma_reserve(nr_pages - nr_free_pages);
1021 #endif
1022 }
1023 
zone_sizes_init(void)1024 void __init zone_sizes_init(void)
1025 {
1026 	unsigned long max_zone_pfns[MAX_NR_ZONES];
1027 
1028 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1029 
1030 #ifdef CONFIG_ZONE_DMA
1031 	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
1032 #endif
1033 #ifdef CONFIG_ZONE_DMA32
1034 	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
1035 #endif
1036 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
1037 #ifdef CONFIG_HIGHMEM
1038 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
1039 #endif
1040 
1041 	free_area_init(max_zone_pfns);
1042 }
1043 
1044 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1045 	.loaded_mm = &init_mm,
1046 	.next_asid = 1,
1047 	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
1048 };
1049 
update_cache_mode_entry(unsigned entry,enum page_cache_mode cache)1050 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1051 {
1052 	/* entry 0 MUST be WB (hardwired to speed up translations) */
1053 	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1054 
1055 	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1056 	__pte2cachemode_tbl[entry] = cache;
1057 }
1058 
1059 #ifdef CONFIG_SWAP
max_swapfile_size(void)1060 unsigned long max_swapfile_size(void)
1061 {
1062 	unsigned long pages;
1063 
1064 	pages = generic_max_swapfile_size();
1065 
1066 	if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1067 		/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1068 		unsigned long long l1tf_limit = l1tf_pfn_limit();
1069 		/*
1070 		 * We encode swap offsets also with 3 bits below those for pfn
1071 		 * which makes the usable limit higher.
1072 		 */
1073 #if CONFIG_PGTABLE_LEVELS > 2
1074 		l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1075 #endif
1076 		pages = min_t(unsigned long long, l1tf_limit, pages);
1077 	}
1078 	return pages;
1079 }
1080 #endif
1081