1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * V4L2 fwnode binding parsing library
4 *
5 * The origins of the V4L2 fwnode library are in V4L2 OF library that
6 * formerly was located in v4l2-of.c.
7 *
8 * Copyright (c) 2016 Intel Corporation.
9 * Author: Sakari Ailus <sakari.ailus@linux.intel.com>
10 *
11 * Copyright (C) 2012 - 2013 Samsung Electronics Co., Ltd.
12 * Author: Sylwester Nawrocki <s.nawrocki@samsung.com>
13 *
14 * Copyright (C) 2012 Renesas Electronics Corp.
15 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
16 */
17 #include <linux/acpi.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/property.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26
27 #include <media/v4l2-async.h>
28 #include <media/v4l2-fwnode.h>
29 #include <media/v4l2-subdev.h>
30
31 enum v4l2_fwnode_bus_type {
32 V4L2_FWNODE_BUS_TYPE_GUESS = 0,
33 V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
34 V4L2_FWNODE_BUS_TYPE_CSI1,
35 V4L2_FWNODE_BUS_TYPE_CCP2,
36 V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
37 V4L2_FWNODE_BUS_TYPE_PARALLEL,
38 V4L2_FWNODE_BUS_TYPE_BT656,
39 NR_OF_V4L2_FWNODE_BUS_TYPE,
40 };
41
42 static const struct v4l2_fwnode_bus_conv {
43 enum v4l2_fwnode_bus_type fwnode_bus_type;
44 enum v4l2_mbus_type mbus_type;
45 const char *name;
46 } buses[] = {
47 {
48 V4L2_FWNODE_BUS_TYPE_GUESS,
49 V4L2_MBUS_UNKNOWN,
50 "not specified",
51 }, {
52 V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
53 V4L2_MBUS_CSI2_CPHY,
54 "MIPI CSI-2 C-PHY",
55 }, {
56 V4L2_FWNODE_BUS_TYPE_CSI1,
57 V4L2_MBUS_CSI1,
58 "MIPI CSI-1",
59 }, {
60 V4L2_FWNODE_BUS_TYPE_CCP2,
61 V4L2_MBUS_CCP2,
62 "compact camera port 2",
63 }, {
64 V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
65 V4L2_MBUS_CSI2_DPHY,
66 "MIPI CSI-2 D-PHY",
67 }, {
68 V4L2_FWNODE_BUS_TYPE_PARALLEL,
69 V4L2_MBUS_PARALLEL,
70 "parallel",
71 }, {
72 V4L2_FWNODE_BUS_TYPE_BT656,
73 V4L2_MBUS_BT656,
74 "Bt.656",
75 }
76 };
77
78 static const struct v4l2_fwnode_bus_conv *
get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)79 get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)
80 {
81 unsigned int i;
82
83 for (i = 0; i < ARRAY_SIZE(buses); i++)
84 if (buses[i].fwnode_bus_type == type)
85 return &buses[i];
86
87 return NULL;
88 }
89
90 static enum v4l2_mbus_type
v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)91 v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)
92 {
93 const struct v4l2_fwnode_bus_conv *conv =
94 get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
95
96 return conv ? conv->mbus_type : V4L2_MBUS_INVALID;
97 }
98
99 static const char *
v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)100 v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)
101 {
102 const struct v4l2_fwnode_bus_conv *conv =
103 get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
104
105 return conv ? conv->name : "not found";
106 }
107
108 static const struct v4l2_fwnode_bus_conv *
get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)109 get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)
110 {
111 unsigned int i;
112
113 for (i = 0; i < ARRAY_SIZE(buses); i++)
114 if (buses[i].mbus_type == type)
115 return &buses[i];
116
117 return NULL;
118 }
119
120 static const char *
v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)121 v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)
122 {
123 const struct v4l2_fwnode_bus_conv *conv =
124 get_v4l2_fwnode_bus_conv_by_mbus(type);
125
126 return conv ? conv->name : "not found";
127 }
128
v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep,enum v4l2_mbus_type bus_type)129 static int v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode,
130 struct v4l2_fwnode_endpoint *vep,
131 enum v4l2_mbus_type bus_type)
132 {
133 struct v4l2_fwnode_bus_mipi_csi2 *bus = &vep->bus.mipi_csi2;
134 bool have_clk_lane = false, have_data_lanes = false,
135 have_lane_polarities = false;
136 unsigned int flags = 0, lanes_used = 0;
137 u32 array[1 + V4L2_FWNODE_CSI2_MAX_DATA_LANES];
138 u32 clock_lane = 0;
139 unsigned int num_data_lanes = 0;
140 bool use_default_lane_mapping = false;
141 unsigned int i;
142 u32 v;
143 int rval;
144
145 if (bus_type == V4L2_MBUS_CSI2_DPHY ||
146 bus_type == V4L2_MBUS_CSI2_CPHY) {
147 use_default_lane_mapping = true;
148
149 num_data_lanes = min_t(u32, bus->num_data_lanes,
150 V4L2_FWNODE_CSI2_MAX_DATA_LANES);
151
152 clock_lane = bus->clock_lane;
153 if (clock_lane)
154 use_default_lane_mapping = false;
155
156 for (i = 0; i < num_data_lanes; i++) {
157 array[i] = bus->data_lanes[i];
158 if (array[i])
159 use_default_lane_mapping = false;
160 }
161
162 if (use_default_lane_mapping)
163 pr_debug("no lane mapping given, using defaults\n");
164 }
165
166 rval = fwnode_property_count_u32(fwnode, "data-lanes");
167 if (rval > 0) {
168 num_data_lanes =
169 min_t(int, V4L2_FWNODE_CSI2_MAX_DATA_LANES, rval);
170
171 fwnode_property_read_u32_array(fwnode, "data-lanes", array,
172 num_data_lanes);
173
174 have_data_lanes = true;
175 if (use_default_lane_mapping) {
176 pr_debug("data-lanes property exists; disabling default mapping\n");
177 use_default_lane_mapping = false;
178 }
179 }
180
181 for (i = 0; i < num_data_lanes; i++) {
182 if (lanes_used & BIT(array[i])) {
183 if (have_data_lanes || !use_default_lane_mapping)
184 pr_warn("duplicated lane %u in data-lanes, using defaults\n",
185 array[i]);
186 use_default_lane_mapping = true;
187 }
188 lanes_used |= BIT(array[i]);
189
190 if (have_data_lanes)
191 pr_debug("lane %u position %u\n", i, array[i]);
192 }
193
194 rval = fwnode_property_count_u32(fwnode, "lane-polarities");
195 if (rval > 0) {
196 if (rval != 1 + num_data_lanes /* clock+data */) {
197 pr_warn("invalid number of lane-polarities entries (need %u, got %u)\n",
198 1 + num_data_lanes, rval);
199 return -EINVAL;
200 }
201
202 have_lane_polarities = true;
203 }
204
205 if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
206 clock_lane = v;
207 pr_debug("clock lane position %u\n", v);
208 have_clk_lane = true;
209 }
210
211 if (have_clk_lane && lanes_used & BIT(clock_lane) &&
212 !use_default_lane_mapping) {
213 pr_warn("duplicated lane %u in clock-lanes, using defaults\n",
214 v);
215 use_default_lane_mapping = true;
216 }
217
218 if (fwnode_property_present(fwnode, "clock-noncontinuous")) {
219 flags |= V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK;
220 pr_debug("non-continuous clock\n");
221 } else {
222 flags |= V4L2_MBUS_CSI2_CONTINUOUS_CLOCK;
223 }
224
225 if (bus_type == V4L2_MBUS_CSI2_DPHY ||
226 bus_type == V4L2_MBUS_CSI2_CPHY || lanes_used ||
227 have_clk_lane || (flags & ~V4L2_MBUS_CSI2_CONTINUOUS_CLOCK)) {
228 /* Only D-PHY has a clock lane. */
229 unsigned int dfl_data_lane_index =
230 bus_type == V4L2_MBUS_CSI2_DPHY;
231
232 bus->flags = flags;
233 if (bus_type == V4L2_MBUS_UNKNOWN)
234 vep->bus_type = V4L2_MBUS_CSI2_DPHY;
235 bus->num_data_lanes = num_data_lanes;
236
237 if (use_default_lane_mapping) {
238 bus->clock_lane = 0;
239 for (i = 0; i < num_data_lanes; i++)
240 bus->data_lanes[i] = dfl_data_lane_index + i;
241 } else {
242 bus->clock_lane = clock_lane;
243 for (i = 0; i < num_data_lanes; i++)
244 bus->data_lanes[i] = array[i];
245 }
246
247 if (have_lane_polarities) {
248 fwnode_property_read_u32_array(fwnode,
249 "lane-polarities", array,
250 1 + num_data_lanes);
251
252 for (i = 0; i < 1 + num_data_lanes; i++) {
253 bus->lane_polarities[i] = array[i];
254 pr_debug("lane %u polarity %sinverted",
255 i, array[i] ? "" : "not ");
256 }
257 } else {
258 pr_debug("no lane polarities defined, assuming not inverted\n");
259 }
260 }
261
262 return 0;
263 }
264
265 #define PARALLEL_MBUS_FLAGS (V4L2_MBUS_HSYNC_ACTIVE_HIGH | \
266 V4L2_MBUS_HSYNC_ACTIVE_LOW | \
267 V4L2_MBUS_VSYNC_ACTIVE_HIGH | \
268 V4L2_MBUS_VSYNC_ACTIVE_LOW | \
269 V4L2_MBUS_FIELD_EVEN_HIGH | \
270 V4L2_MBUS_FIELD_EVEN_LOW)
271
272 static void
v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep,enum v4l2_mbus_type bus_type)273 v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle *fwnode,
274 struct v4l2_fwnode_endpoint *vep,
275 enum v4l2_mbus_type bus_type)
276 {
277 struct v4l2_fwnode_bus_parallel *bus = &vep->bus.parallel;
278 unsigned int flags = 0;
279 u32 v;
280
281 if (bus_type == V4L2_MBUS_PARALLEL || bus_type == V4L2_MBUS_BT656)
282 flags = bus->flags;
283
284 if (!fwnode_property_read_u32(fwnode, "hsync-active", &v)) {
285 flags &= ~(V4L2_MBUS_HSYNC_ACTIVE_HIGH |
286 V4L2_MBUS_HSYNC_ACTIVE_LOW);
287 flags |= v ? V4L2_MBUS_HSYNC_ACTIVE_HIGH :
288 V4L2_MBUS_HSYNC_ACTIVE_LOW;
289 pr_debug("hsync-active %s\n", v ? "high" : "low");
290 }
291
292 if (!fwnode_property_read_u32(fwnode, "vsync-active", &v)) {
293 flags &= ~(V4L2_MBUS_VSYNC_ACTIVE_HIGH |
294 V4L2_MBUS_VSYNC_ACTIVE_LOW);
295 flags |= v ? V4L2_MBUS_VSYNC_ACTIVE_HIGH :
296 V4L2_MBUS_VSYNC_ACTIVE_LOW;
297 pr_debug("vsync-active %s\n", v ? "high" : "low");
298 }
299
300 if (!fwnode_property_read_u32(fwnode, "field-even-active", &v)) {
301 flags &= ~(V4L2_MBUS_FIELD_EVEN_HIGH |
302 V4L2_MBUS_FIELD_EVEN_LOW);
303 flags |= v ? V4L2_MBUS_FIELD_EVEN_HIGH :
304 V4L2_MBUS_FIELD_EVEN_LOW;
305 pr_debug("field-even-active %s\n", v ? "high" : "low");
306 }
307
308 if (!fwnode_property_read_u32(fwnode, "pclk-sample", &v)) {
309 flags &= ~(V4L2_MBUS_PCLK_SAMPLE_RISING |
310 V4L2_MBUS_PCLK_SAMPLE_FALLING);
311 flags |= v ? V4L2_MBUS_PCLK_SAMPLE_RISING :
312 V4L2_MBUS_PCLK_SAMPLE_FALLING;
313 pr_debug("pclk-sample %s\n", v ? "high" : "low");
314 }
315
316 if (!fwnode_property_read_u32(fwnode, "data-active", &v)) {
317 flags &= ~(V4L2_MBUS_DATA_ACTIVE_HIGH |
318 V4L2_MBUS_DATA_ACTIVE_LOW);
319 flags |= v ? V4L2_MBUS_DATA_ACTIVE_HIGH :
320 V4L2_MBUS_DATA_ACTIVE_LOW;
321 pr_debug("data-active %s\n", v ? "high" : "low");
322 }
323
324 if (fwnode_property_present(fwnode, "slave-mode")) {
325 pr_debug("slave mode\n");
326 flags &= ~V4L2_MBUS_MASTER;
327 flags |= V4L2_MBUS_SLAVE;
328 } else {
329 flags &= ~V4L2_MBUS_SLAVE;
330 flags |= V4L2_MBUS_MASTER;
331 }
332
333 if (!fwnode_property_read_u32(fwnode, "bus-width", &v)) {
334 bus->bus_width = v;
335 pr_debug("bus-width %u\n", v);
336 }
337
338 if (!fwnode_property_read_u32(fwnode, "data-shift", &v)) {
339 bus->data_shift = v;
340 pr_debug("data-shift %u\n", v);
341 }
342
343 if (!fwnode_property_read_u32(fwnode, "sync-on-green-active", &v)) {
344 flags &= ~(V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH |
345 V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW);
346 flags |= v ? V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH :
347 V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW;
348 pr_debug("sync-on-green-active %s\n", v ? "high" : "low");
349 }
350
351 if (!fwnode_property_read_u32(fwnode, "data-enable-active", &v)) {
352 flags &= ~(V4L2_MBUS_DATA_ENABLE_HIGH |
353 V4L2_MBUS_DATA_ENABLE_LOW);
354 flags |= v ? V4L2_MBUS_DATA_ENABLE_HIGH :
355 V4L2_MBUS_DATA_ENABLE_LOW;
356 pr_debug("data-enable-active %s\n", v ? "high" : "low");
357 }
358
359 switch (bus_type) {
360 default:
361 bus->flags = flags;
362 if (flags & PARALLEL_MBUS_FLAGS)
363 vep->bus_type = V4L2_MBUS_PARALLEL;
364 else
365 vep->bus_type = V4L2_MBUS_BT656;
366 break;
367 case V4L2_MBUS_PARALLEL:
368 vep->bus_type = V4L2_MBUS_PARALLEL;
369 bus->flags = flags;
370 break;
371 case V4L2_MBUS_BT656:
372 vep->bus_type = V4L2_MBUS_BT656;
373 bus->flags = flags & ~PARALLEL_MBUS_FLAGS;
374 break;
375 }
376 }
377
378 static void
v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep,enum v4l2_mbus_type bus_type)379 v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode,
380 struct v4l2_fwnode_endpoint *vep,
381 enum v4l2_mbus_type bus_type)
382 {
383 struct v4l2_fwnode_bus_mipi_csi1 *bus = &vep->bus.mipi_csi1;
384 u32 v;
385
386 if (!fwnode_property_read_u32(fwnode, "clock-inv", &v)) {
387 bus->clock_inv = v;
388 pr_debug("clock-inv %u\n", v);
389 }
390
391 if (!fwnode_property_read_u32(fwnode, "strobe", &v)) {
392 bus->strobe = v;
393 pr_debug("strobe %u\n", v);
394 }
395
396 if (!fwnode_property_read_u32(fwnode, "data-lanes", &v)) {
397 bus->data_lane = v;
398 pr_debug("data-lanes %u\n", v);
399 }
400
401 if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
402 bus->clock_lane = v;
403 pr_debug("clock-lanes %u\n", v);
404 }
405
406 if (bus_type == V4L2_MBUS_CCP2)
407 vep->bus_type = V4L2_MBUS_CCP2;
408 else
409 vep->bus_type = V4L2_MBUS_CSI1;
410 }
411
__v4l2_fwnode_endpoint_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep)412 static int __v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
413 struct v4l2_fwnode_endpoint *vep)
414 {
415 u32 bus_type = V4L2_FWNODE_BUS_TYPE_GUESS;
416 enum v4l2_mbus_type mbus_type;
417 int rval;
418
419 if (vep->bus_type == V4L2_MBUS_UNKNOWN) {
420 /* Zero fields from bus union to until the end */
421 memset(&vep->bus, 0,
422 sizeof(*vep) - offsetof(typeof(*vep), bus));
423 }
424
425 pr_debug("===== begin parsing endpoint %pfw\n", fwnode);
426
427 /*
428 * Zero the fwnode graph endpoint memory in case we don't end up parsing
429 * the endpoint.
430 */
431 memset(&vep->base, 0, sizeof(vep->base));
432
433 fwnode_property_read_u32(fwnode, "bus-type", &bus_type);
434 pr_debug("fwnode video bus type %s (%u), mbus type %s (%u)\n",
435 v4l2_fwnode_bus_type_to_string(bus_type), bus_type,
436 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
437 vep->bus_type);
438 mbus_type = v4l2_fwnode_bus_type_to_mbus(bus_type);
439 if (mbus_type == V4L2_MBUS_INVALID) {
440 pr_debug("unsupported bus type %u\n", bus_type);
441 return -EINVAL;
442 }
443
444 if (vep->bus_type != V4L2_MBUS_UNKNOWN) {
445 if (mbus_type != V4L2_MBUS_UNKNOWN &&
446 vep->bus_type != mbus_type) {
447 pr_debug("expecting bus type %s\n",
448 v4l2_fwnode_mbus_type_to_string(vep->bus_type));
449 return -ENXIO;
450 }
451 } else {
452 vep->bus_type = mbus_type;
453 }
454
455 switch (vep->bus_type) {
456 case V4L2_MBUS_UNKNOWN:
457 rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
458 V4L2_MBUS_UNKNOWN);
459 if (rval)
460 return rval;
461
462 if (vep->bus_type == V4L2_MBUS_UNKNOWN)
463 v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
464 V4L2_MBUS_UNKNOWN);
465
466 pr_debug("assuming media bus type %s (%u)\n",
467 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
468 vep->bus_type);
469
470 break;
471 case V4L2_MBUS_CCP2:
472 case V4L2_MBUS_CSI1:
473 v4l2_fwnode_endpoint_parse_csi1_bus(fwnode, vep, vep->bus_type);
474
475 break;
476 case V4L2_MBUS_CSI2_DPHY:
477 case V4L2_MBUS_CSI2_CPHY:
478 rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
479 vep->bus_type);
480 if (rval)
481 return rval;
482
483 break;
484 case V4L2_MBUS_PARALLEL:
485 case V4L2_MBUS_BT656:
486 v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
487 vep->bus_type);
488
489 break;
490 default:
491 pr_warn("unsupported bus type %u\n", mbus_type);
492 return -EINVAL;
493 }
494
495 fwnode_graph_parse_endpoint(fwnode, &vep->base);
496
497 return 0;
498 }
499
v4l2_fwnode_endpoint_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep)500 int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
501 struct v4l2_fwnode_endpoint *vep)
502 {
503 int ret;
504
505 ret = __v4l2_fwnode_endpoint_parse(fwnode, vep);
506
507 pr_debug("===== end parsing endpoint %pfw\n", fwnode);
508
509 return ret;
510 }
511 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_parse);
512
v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint * vep)513 void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep)
514 {
515 if (IS_ERR_OR_NULL(vep))
516 return;
517
518 kfree(vep->link_frequencies);
519 vep->link_frequencies = NULL;
520 }
521 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_free);
522
v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep)523 int v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle *fwnode,
524 struct v4l2_fwnode_endpoint *vep)
525 {
526 int rval;
527
528 rval = __v4l2_fwnode_endpoint_parse(fwnode, vep);
529 if (rval < 0)
530 return rval;
531
532 rval = fwnode_property_count_u64(fwnode, "link-frequencies");
533 if (rval > 0) {
534 unsigned int i;
535
536 vep->link_frequencies =
537 kmalloc_array(rval, sizeof(*vep->link_frequencies),
538 GFP_KERNEL);
539 if (!vep->link_frequencies)
540 return -ENOMEM;
541
542 vep->nr_of_link_frequencies = rval;
543
544 rval = fwnode_property_read_u64_array(fwnode,
545 "link-frequencies",
546 vep->link_frequencies,
547 vep->nr_of_link_frequencies);
548 if (rval < 0) {
549 v4l2_fwnode_endpoint_free(vep);
550 return rval;
551 }
552
553 for (i = 0; i < vep->nr_of_link_frequencies; i++)
554 pr_debug("link-frequencies %u value %llu\n", i,
555 vep->link_frequencies[i]);
556 }
557
558 pr_debug("===== end parsing endpoint %pfw\n", fwnode);
559
560 return 0;
561 }
562 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_alloc_parse);
563
v4l2_fwnode_parse_link(struct fwnode_handle * fwnode,struct v4l2_fwnode_link * link)564 int v4l2_fwnode_parse_link(struct fwnode_handle *fwnode,
565 struct v4l2_fwnode_link *link)
566 {
567 struct fwnode_endpoint fwep;
568
569 memset(link, 0, sizeof(*link));
570
571 fwnode_graph_parse_endpoint(fwnode, &fwep);
572 link->local_id = fwep.id;
573 link->local_port = fwep.port;
574 link->local_node = fwnode_graph_get_port_parent(fwnode);
575
576 fwnode = fwnode_graph_get_remote_endpoint(fwnode);
577 if (!fwnode) {
578 fwnode_handle_put(fwnode);
579 return -ENOLINK;
580 }
581
582 fwnode_graph_parse_endpoint(fwnode, &fwep);
583 link->remote_id = fwep.id;
584 link->remote_port = fwep.port;
585 link->remote_node = fwnode_graph_get_port_parent(fwnode);
586
587 return 0;
588 }
589 EXPORT_SYMBOL_GPL(v4l2_fwnode_parse_link);
590
v4l2_fwnode_put_link(struct v4l2_fwnode_link * link)591 void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link)
592 {
593 fwnode_handle_put(link->local_node);
594 fwnode_handle_put(link->remote_node);
595 }
596 EXPORT_SYMBOL_GPL(v4l2_fwnode_put_link);
597
598 static const struct v4l2_fwnode_connector_conv {
599 enum v4l2_connector_type type;
600 const char *compatible;
601 } connectors[] = {
602 {
603 .type = V4L2_CONN_COMPOSITE,
604 .compatible = "composite-video-connector",
605 }, {
606 .type = V4L2_CONN_SVIDEO,
607 .compatible = "svideo-connector",
608 },
609 };
610
611 static enum v4l2_connector_type
v4l2_fwnode_string_to_connector_type(const char * con_str)612 v4l2_fwnode_string_to_connector_type(const char *con_str)
613 {
614 unsigned int i;
615
616 for (i = 0; i < ARRAY_SIZE(connectors); i++)
617 if (!strcmp(con_str, connectors[i].compatible))
618 return connectors[i].type;
619
620 return V4L2_CONN_UNKNOWN;
621 }
622
623 static void
v4l2_fwnode_connector_parse_analog(struct fwnode_handle * fwnode,struct v4l2_fwnode_connector * vc)624 v4l2_fwnode_connector_parse_analog(struct fwnode_handle *fwnode,
625 struct v4l2_fwnode_connector *vc)
626 {
627 u32 stds;
628 int ret;
629
630 ret = fwnode_property_read_u32(fwnode, "sdtv-standards", &stds);
631
632 /* The property is optional. */
633 vc->connector.analog.sdtv_stds = ret ? V4L2_STD_ALL : stds;
634 }
635
v4l2_fwnode_connector_free(struct v4l2_fwnode_connector * connector)636 void v4l2_fwnode_connector_free(struct v4l2_fwnode_connector *connector)
637 {
638 struct v4l2_connector_link *link, *tmp;
639
640 if (IS_ERR_OR_NULL(connector) || connector->type == V4L2_CONN_UNKNOWN)
641 return;
642
643 list_for_each_entry_safe(link, tmp, &connector->links, head) {
644 v4l2_fwnode_put_link(&link->fwnode_link);
645 list_del(&link->head);
646 kfree(link);
647 }
648
649 kfree(connector->label);
650 connector->label = NULL;
651 connector->type = V4L2_CONN_UNKNOWN;
652 }
653 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_free);
654
655 static enum v4l2_connector_type
v4l2_fwnode_get_connector_type(struct fwnode_handle * fwnode)656 v4l2_fwnode_get_connector_type(struct fwnode_handle *fwnode)
657 {
658 const char *type_name;
659 int err;
660
661 if (!fwnode)
662 return V4L2_CONN_UNKNOWN;
663
664 /* The connector-type is stored within the compatible string. */
665 err = fwnode_property_read_string(fwnode, "compatible", &type_name);
666 if (err)
667 return V4L2_CONN_UNKNOWN;
668
669 return v4l2_fwnode_string_to_connector_type(type_name);
670 }
671
v4l2_fwnode_connector_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_connector * connector)672 int v4l2_fwnode_connector_parse(struct fwnode_handle *fwnode,
673 struct v4l2_fwnode_connector *connector)
674 {
675 struct fwnode_handle *connector_node;
676 enum v4l2_connector_type connector_type;
677 const char *label;
678 int err;
679
680 if (!fwnode)
681 return -EINVAL;
682
683 memset(connector, 0, sizeof(*connector));
684
685 INIT_LIST_HEAD(&connector->links);
686
687 connector_node = fwnode_graph_get_port_parent(fwnode);
688 connector_type = v4l2_fwnode_get_connector_type(connector_node);
689 if (connector_type == V4L2_CONN_UNKNOWN) {
690 fwnode_handle_put(connector_node);
691 connector_node = fwnode_graph_get_remote_port_parent(fwnode);
692 connector_type = v4l2_fwnode_get_connector_type(connector_node);
693 }
694
695 if (connector_type == V4L2_CONN_UNKNOWN) {
696 pr_err("Unknown connector type\n");
697 err = -ENOTCONN;
698 goto out;
699 }
700
701 connector->type = connector_type;
702 connector->name = fwnode_get_name(connector_node);
703 err = fwnode_property_read_string(connector_node, "label", &label);
704 connector->label = err ? NULL : kstrdup_const(label, GFP_KERNEL);
705
706 /* Parse the connector specific properties. */
707 switch (connector->type) {
708 case V4L2_CONN_COMPOSITE:
709 case V4L2_CONN_SVIDEO:
710 v4l2_fwnode_connector_parse_analog(connector_node, connector);
711 break;
712 /* Avoid compiler warnings */
713 case V4L2_CONN_UNKNOWN:
714 break;
715 }
716
717 out:
718 fwnode_handle_put(connector_node);
719
720 return err;
721 }
722 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_parse);
723
v4l2_fwnode_connector_add_link(struct fwnode_handle * fwnode,struct v4l2_fwnode_connector * connector)724 int v4l2_fwnode_connector_add_link(struct fwnode_handle *fwnode,
725 struct v4l2_fwnode_connector *connector)
726 {
727 struct fwnode_handle *connector_ep;
728 struct v4l2_connector_link *link;
729 int err;
730
731 if (!fwnode || !connector || connector->type == V4L2_CONN_UNKNOWN)
732 return -EINVAL;
733
734 connector_ep = fwnode_graph_get_remote_endpoint(fwnode);
735 if (!connector_ep)
736 return -ENOTCONN;
737
738 link = kzalloc(sizeof(*link), GFP_KERNEL);
739 if (!link) {
740 err = -ENOMEM;
741 goto err;
742 }
743
744 err = v4l2_fwnode_parse_link(connector_ep, &link->fwnode_link);
745 if (err)
746 goto err;
747
748 fwnode_handle_put(connector_ep);
749
750 list_add(&link->head, &connector->links);
751 connector->nr_of_links++;
752
753 return 0;
754
755 err:
756 kfree(link);
757 fwnode_handle_put(connector_ep);
758
759 return err;
760 }
761 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_add_link);
762
v4l2_fwnode_device_parse(struct device * dev,struct v4l2_fwnode_device_properties * props)763 int v4l2_fwnode_device_parse(struct device *dev,
764 struct v4l2_fwnode_device_properties *props)
765 {
766 struct fwnode_handle *fwnode = dev_fwnode(dev);
767 u32 val;
768 int ret;
769
770 memset(props, 0, sizeof(*props));
771
772 props->orientation = V4L2_FWNODE_PROPERTY_UNSET;
773 ret = fwnode_property_read_u32(fwnode, "orientation", &val);
774 if (!ret) {
775 switch (val) {
776 case V4L2_FWNODE_ORIENTATION_FRONT:
777 case V4L2_FWNODE_ORIENTATION_BACK:
778 case V4L2_FWNODE_ORIENTATION_EXTERNAL:
779 break;
780 default:
781 dev_warn(dev, "Unsupported device orientation: %u\n", val);
782 return -EINVAL;
783 }
784
785 props->orientation = val;
786 dev_dbg(dev, "device orientation: %u\n", val);
787 }
788
789 props->rotation = V4L2_FWNODE_PROPERTY_UNSET;
790 ret = fwnode_property_read_u32(fwnode, "rotation", &val);
791 if (!ret) {
792 if (val >= 360) {
793 dev_warn(dev, "Unsupported device rotation: %u\n", val);
794 return -EINVAL;
795 }
796
797 props->rotation = val;
798 dev_dbg(dev, "device rotation: %u\n", val);
799 }
800
801 return 0;
802 }
803 EXPORT_SYMBOL_GPL(v4l2_fwnode_device_parse);
804
805 static int
v4l2_async_notifier_fwnode_parse_endpoint(struct device * dev,struct v4l2_async_notifier * notifier,struct fwnode_handle * endpoint,unsigned int asd_struct_size,parse_endpoint_func parse_endpoint)806 v4l2_async_notifier_fwnode_parse_endpoint(struct device *dev,
807 struct v4l2_async_notifier *notifier,
808 struct fwnode_handle *endpoint,
809 unsigned int asd_struct_size,
810 parse_endpoint_func parse_endpoint)
811 {
812 struct v4l2_fwnode_endpoint vep = { .bus_type = 0 };
813 struct v4l2_async_subdev *asd;
814 int ret;
815
816 asd = kzalloc(asd_struct_size, GFP_KERNEL);
817 if (!asd)
818 return -ENOMEM;
819
820 asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
821 asd->match.fwnode =
822 fwnode_graph_get_remote_port_parent(endpoint);
823 if (!asd->match.fwnode) {
824 dev_dbg(dev, "no remote endpoint found\n");
825 ret = -ENOTCONN;
826 goto out_err;
827 }
828
829 ret = v4l2_fwnode_endpoint_alloc_parse(endpoint, &vep);
830 if (ret) {
831 dev_warn(dev, "unable to parse V4L2 fwnode endpoint (%d)\n",
832 ret);
833 goto out_err;
834 }
835
836 ret = parse_endpoint ? parse_endpoint(dev, &vep, asd) : 0;
837 if (ret == -ENOTCONN)
838 dev_dbg(dev, "ignoring port@%u/endpoint@%u\n", vep.base.port,
839 vep.base.id);
840 else if (ret < 0)
841 dev_warn(dev,
842 "driver could not parse port@%u/endpoint@%u (%d)\n",
843 vep.base.port, vep.base.id, ret);
844 v4l2_fwnode_endpoint_free(&vep);
845 if (ret < 0)
846 goto out_err;
847
848 ret = v4l2_async_notifier_add_subdev(notifier, asd);
849 if (ret < 0) {
850 /* not an error if asd already exists */
851 if (ret == -EEXIST)
852 ret = 0;
853 goto out_err;
854 }
855
856 return 0;
857
858 out_err:
859 fwnode_handle_put(asd->match.fwnode);
860 kfree(asd);
861
862 return ret == -ENOTCONN ? 0 : ret;
863 }
864
865 static int
__v4l2_async_notifier_parse_fwnode_ep(struct device * dev,struct v4l2_async_notifier * notifier,size_t asd_struct_size,unsigned int port,bool has_port,parse_endpoint_func parse_endpoint)866 __v4l2_async_notifier_parse_fwnode_ep(struct device *dev,
867 struct v4l2_async_notifier *notifier,
868 size_t asd_struct_size,
869 unsigned int port,
870 bool has_port,
871 parse_endpoint_func parse_endpoint)
872 {
873 struct fwnode_handle *fwnode;
874 int ret = 0;
875
876 if (WARN_ON(asd_struct_size < sizeof(struct v4l2_async_subdev)))
877 return -EINVAL;
878
879 fwnode_graph_for_each_endpoint(dev_fwnode(dev), fwnode) {
880 struct fwnode_handle *dev_fwnode;
881 bool is_available;
882
883 dev_fwnode = fwnode_graph_get_port_parent(fwnode);
884 is_available = fwnode_device_is_available(dev_fwnode);
885 fwnode_handle_put(dev_fwnode);
886 if (!is_available)
887 continue;
888
889 if (has_port) {
890 struct fwnode_endpoint ep;
891
892 ret = fwnode_graph_parse_endpoint(fwnode, &ep);
893 if (ret)
894 break;
895
896 if (ep.port != port)
897 continue;
898 }
899
900 ret = v4l2_async_notifier_fwnode_parse_endpoint(dev,
901 notifier,
902 fwnode,
903 asd_struct_size,
904 parse_endpoint);
905 if (ret < 0)
906 break;
907 }
908
909 fwnode_handle_put(fwnode);
910
911 return ret;
912 }
913
914 int
v4l2_async_notifier_parse_fwnode_endpoints(struct device * dev,struct v4l2_async_notifier * notifier,size_t asd_struct_size,parse_endpoint_func parse_endpoint)915 v4l2_async_notifier_parse_fwnode_endpoints(struct device *dev,
916 struct v4l2_async_notifier *notifier,
917 size_t asd_struct_size,
918 parse_endpoint_func parse_endpoint)
919 {
920 return __v4l2_async_notifier_parse_fwnode_ep(dev, notifier,
921 asd_struct_size, 0,
922 false, parse_endpoint);
923 }
924 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints);
925
926 int
v4l2_async_notifier_parse_fwnode_endpoints_by_port(struct device * dev,struct v4l2_async_notifier * notifier,size_t asd_struct_size,unsigned int port,parse_endpoint_func parse_endpoint)927 v4l2_async_notifier_parse_fwnode_endpoints_by_port(struct device *dev,
928 struct v4l2_async_notifier *notifier,
929 size_t asd_struct_size,
930 unsigned int port,
931 parse_endpoint_func parse_endpoint)
932 {
933 return __v4l2_async_notifier_parse_fwnode_ep(dev, notifier,
934 asd_struct_size,
935 port, true,
936 parse_endpoint);
937 }
938 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints_by_port);
939
940 /*
941 * v4l2_fwnode_reference_parse - parse references for async sub-devices
942 * @dev: the device node the properties of which are parsed for references
943 * @notifier: the async notifier where the async subdevs will be added
944 * @prop: the name of the property
945 *
946 * Return: 0 on success
947 * -ENOENT if no entries were found
948 * -ENOMEM if memory allocation failed
949 * -EINVAL if property parsing failed
950 */
v4l2_fwnode_reference_parse(struct device * dev,struct v4l2_async_notifier * notifier,const char * prop)951 static int v4l2_fwnode_reference_parse(struct device *dev,
952 struct v4l2_async_notifier *notifier,
953 const char *prop)
954 {
955 struct fwnode_reference_args args;
956 unsigned int index;
957 int ret;
958
959 for (index = 0;
960 !(ret = fwnode_property_get_reference_args(dev_fwnode(dev),
961 prop, NULL, 0,
962 index, &args));
963 index++)
964 fwnode_handle_put(args.fwnode);
965
966 if (!index)
967 return -ENOENT;
968
969 /*
970 * Note that right now both -ENODATA and -ENOENT may signal
971 * out-of-bounds access. Return the error in cases other than that.
972 */
973 if (ret != -ENOENT && ret != -ENODATA)
974 return ret;
975
976 for (index = 0;
977 !fwnode_property_get_reference_args(dev_fwnode(dev), prop, NULL,
978 0, index, &args);
979 index++) {
980 struct v4l2_async_subdev *asd;
981
982 asd = v4l2_async_notifier_add_fwnode_subdev(notifier,
983 args.fwnode,
984 sizeof(*asd));
985 fwnode_handle_put(args.fwnode);
986 if (IS_ERR(asd)) {
987 /* not an error if asd already exists */
988 if (PTR_ERR(asd) == -EEXIST)
989 continue;
990
991 return PTR_ERR(asd);
992 }
993 }
994
995 return 0;
996 }
997
998 /*
999 * v4l2_fwnode_reference_get_int_prop - parse a reference with integer
1000 * arguments
1001 * @fwnode: fwnode to read @prop from
1002 * @notifier: notifier for @dev
1003 * @prop: the name of the property
1004 * @index: the index of the reference to get
1005 * @props: the array of integer property names
1006 * @nprops: the number of integer property names in @nprops
1007 *
1008 * First find an fwnode referred to by the reference at @index in @prop.
1009 *
1010 * Then under that fwnode, @nprops times, for each property in @props,
1011 * iteratively follow child nodes starting from fwnode such that they have the
1012 * property in @props array at the index of the child node distance from the
1013 * root node and the value of that property matching with the integer argument
1014 * of the reference, at the same index.
1015 *
1016 * The child fwnode reached at the end of the iteration is then returned to the
1017 * caller.
1018 *
1019 * The core reason for this is that you cannot refer to just any node in ACPI.
1020 * So to refer to an endpoint (easy in DT) you need to refer to a device, then
1021 * provide a list of (property name, property value) tuples where each tuple
1022 * uniquely identifies a child node. The first tuple identifies a child directly
1023 * underneath the device fwnode, the next tuple identifies a child node
1024 * underneath the fwnode identified by the previous tuple, etc. until you
1025 * reached the fwnode you need.
1026 *
1027 * THIS EXAMPLE EXISTS MERELY TO DOCUMENT THIS FUNCTION. DO NOT USE IT AS A
1028 * REFERENCE IN HOW ACPI TABLES SHOULD BE WRITTEN!! See documentation under
1029 * Documentation/firmware-guide/acpi/dsd/ instead and especially graph.txt,
1030 * data-node-references.txt and leds.txt .
1031 *
1032 * Scope (\_SB.PCI0.I2C2)
1033 * {
1034 * Device (CAM0)
1035 * {
1036 * Name (_DSD, Package () {
1037 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1038 * Package () {
1039 * Package () {
1040 * "compatible",
1041 * Package () { "nokia,smia" }
1042 * },
1043 * },
1044 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1045 * Package () {
1046 * Package () { "port0", "PRT0" },
1047 * }
1048 * })
1049 * Name (PRT0, Package() {
1050 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1051 * Package () {
1052 * Package () { "port", 0 },
1053 * },
1054 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1055 * Package () {
1056 * Package () { "endpoint0", "EP00" },
1057 * }
1058 * })
1059 * Name (EP00, Package() {
1060 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1061 * Package () {
1062 * Package () { "endpoint", 0 },
1063 * Package () {
1064 * "remote-endpoint",
1065 * Package() {
1066 * \_SB.PCI0.ISP, 4, 0
1067 * }
1068 * },
1069 * }
1070 * })
1071 * }
1072 * }
1073 *
1074 * Scope (\_SB.PCI0)
1075 * {
1076 * Device (ISP)
1077 * {
1078 * Name (_DSD, Package () {
1079 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1080 * Package () {
1081 * Package () { "port4", "PRT4" },
1082 * }
1083 * })
1084 *
1085 * Name (PRT4, Package() {
1086 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1087 * Package () {
1088 * Package () { "port", 4 },
1089 * },
1090 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1091 * Package () {
1092 * Package () { "endpoint0", "EP40" },
1093 * }
1094 * })
1095 *
1096 * Name (EP40, Package() {
1097 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1098 * Package () {
1099 * Package () { "endpoint", 0 },
1100 * Package () {
1101 * "remote-endpoint",
1102 * Package () {
1103 * \_SB.PCI0.I2C2.CAM0,
1104 * 0, 0
1105 * }
1106 * },
1107 * }
1108 * })
1109 * }
1110 * }
1111 *
1112 * From the EP40 node under ISP device, you could parse the graph remote
1113 * endpoint using v4l2_fwnode_reference_get_int_prop with these arguments:
1114 *
1115 * @fwnode: fwnode referring to EP40 under ISP.
1116 * @prop: "remote-endpoint"
1117 * @index: 0
1118 * @props: "port", "endpoint"
1119 * @nprops: 2
1120 *
1121 * And you'd get back fwnode referring to EP00 under CAM0.
1122 *
1123 * The same works the other way around: if you use EP00 under CAM0 as the
1124 * fwnode, you'll get fwnode referring to EP40 under ISP.
1125 *
1126 * The same example in DT syntax would look like this:
1127 *
1128 * cam: cam0 {
1129 * compatible = "nokia,smia";
1130 *
1131 * port {
1132 * port = <0>;
1133 * endpoint {
1134 * endpoint = <0>;
1135 * remote-endpoint = <&isp 4 0>;
1136 * };
1137 * };
1138 * };
1139 *
1140 * isp: isp {
1141 * ports {
1142 * port@4 {
1143 * port = <4>;
1144 * endpoint {
1145 * endpoint = <0>;
1146 * remote-endpoint = <&cam 0 0>;
1147 * };
1148 * };
1149 * };
1150 * };
1151 *
1152 * Return: 0 on success
1153 * -ENOENT if no entries (or the property itself) were found
1154 * -EINVAL if property parsing otherwise failed
1155 * -ENOMEM if memory allocation failed
1156 */
1157 static struct fwnode_handle *
v4l2_fwnode_reference_get_int_prop(struct fwnode_handle * fwnode,const char * prop,unsigned int index,const char * const * props,unsigned int nprops)1158 v4l2_fwnode_reference_get_int_prop(struct fwnode_handle *fwnode,
1159 const char *prop,
1160 unsigned int index,
1161 const char * const *props,
1162 unsigned int nprops)
1163 {
1164 struct fwnode_reference_args fwnode_args;
1165 u64 *args = fwnode_args.args;
1166 struct fwnode_handle *child;
1167 int ret;
1168
1169 /*
1170 * Obtain remote fwnode as well as the integer arguments.
1171 *
1172 * Note that right now both -ENODATA and -ENOENT may signal
1173 * out-of-bounds access. Return -ENOENT in that case.
1174 */
1175 ret = fwnode_property_get_reference_args(fwnode, prop, NULL, nprops,
1176 index, &fwnode_args);
1177 if (ret)
1178 return ERR_PTR(ret == -ENODATA ? -ENOENT : ret);
1179
1180 /*
1181 * Find a node in the tree under the referred fwnode corresponding to
1182 * the integer arguments.
1183 */
1184 fwnode = fwnode_args.fwnode;
1185 while (nprops--) {
1186 u32 val;
1187
1188 /* Loop over all child nodes under fwnode. */
1189 fwnode_for_each_child_node(fwnode, child) {
1190 if (fwnode_property_read_u32(child, *props, &val))
1191 continue;
1192
1193 /* Found property, see if its value matches. */
1194 if (val == *args)
1195 break;
1196 }
1197
1198 fwnode_handle_put(fwnode);
1199
1200 /* No property found; return an error here. */
1201 if (!child) {
1202 fwnode = ERR_PTR(-ENOENT);
1203 break;
1204 }
1205
1206 props++;
1207 args++;
1208 fwnode = child;
1209 }
1210
1211 return fwnode;
1212 }
1213
1214 struct v4l2_fwnode_int_props {
1215 const char *name;
1216 const char * const *props;
1217 unsigned int nprops;
1218 };
1219
1220 /*
1221 * v4l2_fwnode_reference_parse_int_props - parse references for async
1222 * sub-devices
1223 * @dev: struct device pointer
1224 * @notifier: notifier for @dev
1225 * @prop: the name of the property
1226 * @props: the array of integer property names
1227 * @nprops: the number of integer properties
1228 *
1229 * Use v4l2_fwnode_reference_get_int_prop to find fwnodes through reference in
1230 * property @prop with integer arguments with child nodes matching in properties
1231 * @props. Then, set up V4L2 async sub-devices for those fwnodes in the notifier
1232 * accordingly.
1233 *
1234 * While it is technically possible to use this function on DT, it is only
1235 * meaningful on ACPI. On Device tree you can refer to any node in the tree but
1236 * on ACPI the references are limited to devices.
1237 *
1238 * Return: 0 on success
1239 * -ENOENT if no entries (or the property itself) were found
1240 * -EINVAL if property parsing otherwisefailed
1241 * -ENOMEM if memory allocation failed
1242 */
1243 static int
v4l2_fwnode_reference_parse_int_props(struct device * dev,struct v4l2_async_notifier * notifier,const struct v4l2_fwnode_int_props * p)1244 v4l2_fwnode_reference_parse_int_props(struct device *dev,
1245 struct v4l2_async_notifier *notifier,
1246 const struct v4l2_fwnode_int_props *p)
1247 {
1248 struct fwnode_handle *fwnode;
1249 unsigned int index;
1250 int ret;
1251 const char *prop = p->name;
1252 const char * const *props = p->props;
1253 unsigned int nprops = p->nprops;
1254
1255 index = 0;
1256 do {
1257 fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1258 prop, index,
1259 props, nprops);
1260 if (IS_ERR(fwnode)) {
1261 /*
1262 * Note that right now both -ENODATA and -ENOENT may
1263 * signal out-of-bounds access. Return the error in
1264 * cases other than that.
1265 */
1266 if (PTR_ERR(fwnode) != -ENOENT &&
1267 PTR_ERR(fwnode) != -ENODATA)
1268 return PTR_ERR(fwnode);
1269 break;
1270 }
1271 fwnode_handle_put(fwnode);
1272 index++;
1273 } while (1);
1274
1275 for (index = 0;
1276 !IS_ERR((fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1277 prop, index,
1278 props,
1279 nprops)));
1280 index++) {
1281 struct v4l2_async_subdev *asd;
1282
1283 asd = v4l2_async_notifier_add_fwnode_subdev(notifier, fwnode,
1284 sizeof(*asd));
1285 fwnode_handle_put(fwnode);
1286 if (IS_ERR(asd)) {
1287 ret = PTR_ERR(asd);
1288 /* not an error if asd already exists */
1289 if (ret == -EEXIST)
1290 continue;
1291
1292 return PTR_ERR(asd);
1293 }
1294 }
1295
1296 return !fwnode || PTR_ERR(fwnode) == -ENOENT ? 0 : PTR_ERR(fwnode);
1297 }
1298
v4l2_async_notifier_parse_fwnode_sensor_common(struct device * dev,struct v4l2_async_notifier * notifier)1299 int v4l2_async_notifier_parse_fwnode_sensor_common(struct device *dev,
1300 struct v4l2_async_notifier *notifier)
1301 {
1302 static const char * const led_props[] = { "led" };
1303 static const struct v4l2_fwnode_int_props props[] = {
1304 { "flash-leds", led_props, ARRAY_SIZE(led_props) },
1305 { "lens-focus", NULL, 0 },
1306 };
1307 unsigned int i;
1308
1309 for (i = 0; i < ARRAY_SIZE(props); i++) {
1310 int ret;
1311
1312 if (props[i].props && is_acpi_node(dev_fwnode(dev)))
1313 ret = v4l2_fwnode_reference_parse_int_props(dev,
1314 notifier,
1315 &props[i]);
1316 else
1317 ret = v4l2_fwnode_reference_parse(dev, notifier,
1318 props[i].name);
1319 if (ret && ret != -ENOENT) {
1320 dev_warn(dev, "parsing property \"%s\" failed (%d)\n",
1321 props[i].name, ret);
1322 return ret;
1323 }
1324 }
1325
1326 return 0;
1327 }
1328 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_sensor_common);
1329
v4l2_async_register_subdev_sensor_common(struct v4l2_subdev * sd)1330 int v4l2_async_register_subdev_sensor_common(struct v4l2_subdev *sd)
1331 {
1332 struct v4l2_async_notifier *notifier;
1333 int ret;
1334
1335 if (WARN_ON(!sd->dev))
1336 return -ENODEV;
1337
1338 notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
1339 if (!notifier)
1340 return -ENOMEM;
1341
1342 v4l2_async_notifier_init(notifier);
1343
1344 ret = v4l2_async_notifier_parse_fwnode_sensor_common(sd->dev,
1345 notifier);
1346 if (ret < 0)
1347 goto out_cleanup;
1348
1349 ret = v4l2_async_subdev_notifier_register(sd, notifier);
1350 if (ret < 0)
1351 goto out_cleanup;
1352
1353 ret = v4l2_async_register_subdev(sd);
1354 if (ret < 0)
1355 goto out_unregister;
1356
1357 sd->subdev_notifier = notifier;
1358
1359 return 0;
1360
1361 out_unregister:
1362 v4l2_async_notifier_unregister(notifier);
1363
1364 out_cleanup:
1365 v4l2_async_notifier_cleanup(notifier);
1366 kfree(notifier);
1367
1368 return ret;
1369 }
1370 EXPORT_SYMBOL_GPL(v4l2_async_register_subdev_sensor_common);
1371
1372 MODULE_LICENSE("GPL");
1373 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
1374 MODULE_AUTHOR("Sylwester Nawrocki <s.nawrocki@samsung.com>");
1375 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1376