• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2014 Scott Mansell
3  * Copyright © 2014 Broadcom
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  */
24 
25 #include <inttypes.h>
26 #include "util/format/u_format.h"
27 #include "util/crc32.h"
28 #include "util/u_helpers.h"
29 #include "util/u_math.h"
30 #include "util/u_memory.h"
31 #include "util/ralloc.h"
32 #include "util/hash_table.h"
33 #include "tgsi/tgsi_dump.h"
34 #include "tgsi/tgsi_parse.h"
35 #include "compiler/nir/nir.h"
36 #include "compiler/nir/nir_builder.h"
37 #include "compiler/nir_types.h"
38 #include "nir/tgsi_to_nir.h"
39 #include "vc4_context.h"
40 #include "vc4_qpu.h"
41 #include "vc4_qir.h"
42 
43 static struct qreg
44 ntq_get_src(struct vc4_compile *c, nir_src src, int i);
45 static void
46 ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list);
47 
48 static int
type_size(const struct glsl_type * type,bool bindless)49 type_size(const struct glsl_type *type, bool bindless)
50 {
51    return glsl_count_attribute_slots(type, false);
52 }
53 
54 static void
resize_qreg_array(struct vc4_compile * c,struct qreg ** regs,uint32_t * size,uint32_t decl_size)55 resize_qreg_array(struct vc4_compile *c,
56                   struct qreg **regs,
57                   uint32_t *size,
58                   uint32_t decl_size)
59 {
60         if (*size >= decl_size)
61                 return;
62 
63         uint32_t old_size = *size;
64         *size = MAX2(*size * 2, decl_size);
65         *regs = reralloc(c, *regs, struct qreg, *size);
66         if (!*regs) {
67                 fprintf(stderr, "Malloc failure\n");
68                 abort();
69         }
70 
71         for (uint32_t i = old_size; i < *size; i++)
72                 (*regs)[i] = c->undef;
73 }
74 
75 static void
ntq_emit_thrsw(struct vc4_compile * c)76 ntq_emit_thrsw(struct vc4_compile *c)
77 {
78         if (!c->fs_threaded)
79                 return;
80 
81         /* Always thread switch after each texture operation for now.
82          *
83          * We could do better by batching a bunch of texture fetches up and
84          * then doing one thread switch and collecting all their results
85          * afterward.
86          */
87         qir_emit_nondef(c, qir_inst(QOP_THRSW, c->undef,
88                                     c->undef, c->undef));
89         c->last_thrsw_at_top_level = (c->execute.file == QFILE_NULL);
90 }
91 
92 static struct qreg
indirect_uniform_load(struct vc4_compile * c,nir_intrinsic_instr * intr)93 indirect_uniform_load(struct vc4_compile *c, nir_intrinsic_instr *intr)
94 {
95         struct qreg indirect_offset = ntq_get_src(c, intr->src[0], 0);
96 
97         /* Clamp to [0, array size).  Note that MIN/MAX are signed. */
98         uint32_t range = nir_intrinsic_range(intr);
99         indirect_offset = qir_MAX(c, indirect_offset, qir_uniform_ui(c, 0));
100         indirect_offset = qir_MIN_NOIMM(c, indirect_offset,
101                                         qir_uniform_ui(c, range - 4));
102 
103         qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
104                      indirect_offset,
105                      qir_uniform(c, QUNIFORM_UBO0_ADDR,
106                                  nir_intrinsic_base(intr)));
107 
108         c->num_texture_samples++;
109 
110         ntq_emit_thrsw(c);
111 
112         return qir_TEX_RESULT(c);
113 }
114 
115 static struct qreg
vc4_ubo_load(struct vc4_compile * c,nir_intrinsic_instr * intr)116 vc4_ubo_load(struct vc4_compile *c, nir_intrinsic_instr *intr)
117 {
118         ASSERTED int buffer_index = nir_src_as_uint(intr->src[0]);
119         assert(buffer_index == 1);
120         assert(c->stage == QSTAGE_FRAG);
121 
122         struct qreg offset = ntq_get_src(c, intr->src[1], 0);
123 
124         /* Clamp to [0, array size).  Note that MIN/MAX are signed. */
125         offset = qir_MAX(c, offset, qir_uniform_ui(c, 0));
126         offset = qir_MIN_NOIMM(c, offset,
127                                qir_uniform_ui(c, c->fs_key->ubo_1_size - 4));
128 
129         qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
130                      offset,
131                      qir_uniform(c, QUNIFORM_UBO1_ADDR, 0));
132 
133         c->num_texture_samples++;
134 
135         ntq_emit_thrsw(c);
136 
137         return qir_TEX_RESULT(c);
138 }
139 
140 nir_ssa_def *
vc4_nir_get_swizzled_channel(nir_builder * b,nir_ssa_def ** srcs,int swiz)141 vc4_nir_get_swizzled_channel(nir_builder *b, nir_ssa_def **srcs, int swiz)
142 {
143         switch (swiz) {
144         default:
145         case PIPE_SWIZZLE_NONE:
146                 fprintf(stderr, "warning: unknown swizzle\n");
147                 FALLTHROUGH;
148         case PIPE_SWIZZLE_0:
149                 return nir_imm_float(b, 0.0);
150         case PIPE_SWIZZLE_1:
151                 return nir_imm_float(b, 1.0);
152         case PIPE_SWIZZLE_X:
153         case PIPE_SWIZZLE_Y:
154         case PIPE_SWIZZLE_Z:
155         case PIPE_SWIZZLE_W:
156                 return srcs[swiz];
157         }
158 }
159 
160 static struct qreg *
ntq_init_ssa_def(struct vc4_compile * c,nir_ssa_def * def)161 ntq_init_ssa_def(struct vc4_compile *c, nir_ssa_def *def)
162 {
163         struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
164                                           def->num_components);
165         _mesa_hash_table_insert(c->def_ht, def, qregs);
166         return qregs;
167 }
168 
169 /**
170  * This function is responsible for getting QIR results into the associated
171  * storage for a NIR instruction.
172  *
173  * If it's a NIR SSA def, then we just set the associated hash table entry to
174  * the new result.
175  *
176  * If it's a NIR reg, then we need to update the existing qreg assigned to the
177  * NIR destination with the incoming value.  To do that without introducing
178  * new MOVs, we require that the incoming qreg either be a uniform, or be
179  * SSA-defined by the previous QIR instruction in the block and rewritable by
180  * this function.  That lets us sneak ahead and insert the SF flag beforehand
181  * (knowing that the previous instruction doesn't depend on flags) and rewrite
182  * its destination to be the NIR reg's destination
183  */
184 static void
ntq_store_dest(struct vc4_compile * c,nir_dest * dest,int chan,struct qreg result)185 ntq_store_dest(struct vc4_compile *c, nir_dest *dest, int chan,
186                struct qreg result)
187 {
188         struct qinst *last_inst = NULL;
189         if (!list_is_empty(&c->cur_block->instructions))
190                 last_inst = (struct qinst *)c->cur_block->instructions.prev;
191 
192         assert(result.file == QFILE_UNIF ||
193                (result.file == QFILE_TEMP &&
194                 last_inst && last_inst == c->defs[result.index]));
195 
196         if (dest->is_ssa) {
197                 assert(chan < dest->ssa.num_components);
198 
199                 struct qreg *qregs;
200                 struct hash_entry *entry =
201                         _mesa_hash_table_search(c->def_ht, &dest->ssa);
202 
203                 if (entry)
204                         qregs = entry->data;
205                 else
206                         qregs = ntq_init_ssa_def(c, &dest->ssa);
207 
208                 qregs[chan] = result;
209         } else {
210                 nir_register *reg = dest->reg.reg;
211                 assert(dest->reg.base_offset == 0);
212                 assert(reg->num_array_elems == 0);
213                 struct hash_entry *entry =
214                         _mesa_hash_table_search(c->def_ht, reg);
215                 struct qreg *qregs = entry->data;
216 
217                 /* Insert a MOV if the source wasn't an SSA def in the
218                  * previous instruction.
219                  */
220                 if (result.file == QFILE_UNIF) {
221                         result = qir_MOV(c, result);
222                         last_inst = c->defs[result.index];
223                 }
224 
225                 /* We know they're both temps, so just rewrite index. */
226                 c->defs[last_inst->dst.index] = NULL;
227                 last_inst->dst.index = qregs[chan].index;
228 
229                 /* If we're in control flow, then make this update of the reg
230                  * conditional on the execution mask.
231                  */
232                 if (c->execute.file != QFILE_NULL) {
233                         last_inst->dst.index = qregs[chan].index;
234 
235                         /* Set the flags to the current exec mask.  To insert
236                          * the SF, we temporarily remove our SSA instruction.
237                          */
238                         list_del(&last_inst->link);
239                         qir_SF(c, c->execute);
240                         list_addtail(&last_inst->link,
241                                      &c->cur_block->instructions);
242 
243                         last_inst->cond = QPU_COND_ZS;
244                         last_inst->cond_is_exec_mask = true;
245                 }
246         }
247 }
248 
249 static struct qreg
ntq_get_src(struct vc4_compile * c,nir_src src,int i)250 ntq_get_src(struct vc4_compile *c, nir_src src, int i)
251 {
252         struct hash_entry *entry;
253         if (src.is_ssa) {
254                 entry = _mesa_hash_table_search(c->def_ht, src.ssa);
255                 assert(i < src.ssa->num_components);
256         } else {
257                 nir_register *reg = src.reg.reg;
258                 entry = _mesa_hash_table_search(c->def_ht, reg);
259                 assert(reg->num_array_elems == 0);
260                 assert(src.reg.base_offset == 0);
261                 assert(i < reg->num_components);
262         }
263 
264         struct qreg *qregs = entry->data;
265         return qregs[i];
266 }
267 
268 static struct qreg
ntq_get_alu_src(struct vc4_compile * c,nir_alu_instr * instr,unsigned src)269 ntq_get_alu_src(struct vc4_compile *c, nir_alu_instr *instr,
270                 unsigned src)
271 {
272         assert(util_is_power_of_two_or_zero(instr->dest.write_mask));
273         unsigned chan = ffs(instr->dest.write_mask) - 1;
274         struct qreg r = ntq_get_src(c, instr->src[src].src,
275                                     instr->src[src].swizzle[chan]);
276 
277         assert(!instr->src[src].abs);
278         assert(!instr->src[src].negate);
279 
280         return r;
281 };
282 
283 static inline struct qreg
qir_SAT(struct vc4_compile * c,struct qreg val)284 qir_SAT(struct vc4_compile *c, struct qreg val)
285 {
286         return qir_FMAX(c,
287                         qir_FMIN(c, val, qir_uniform_f(c, 1.0)),
288                         qir_uniform_f(c, 0.0));
289 }
290 
291 static struct qreg
ntq_rcp(struct vc4_compile * c,struct qreg x)292 ntq_rcp(struct vc4_compile *c, struct qreg x)
293 {
294         struct qreg r = qir_RCP(c, x);
295 
296         /* Apply a Newton-Raphson step to improve the accuracy. */
297         r = qir_FMUL(c, r, qir_FSUB(c,
298                                     qir_uniform_f(c, 2.0),
299                                     qir_FMUL(c, x, r)));
300 
301         return r;
302 }
303 
304 static struct qreg
ntq_rsq(struct vc4_compile * c,struct qreg x)305 ntq_rsq(struct vc4_compile *c, struct qreg x)
306 {
307         struct qreg r = qir_RSQ(c, x);
308 
309         /* Apply a Newton-Raphson step to improve the accuracy. */
310         r = qir_FMUL(c, r, qir_FSUB(c,
311                                     qir_uniform_f(c, 1.5),
312                                     qir_FMUL(c,
313                                              qir_uniform_f(c, 0.5),
314                                              qir_FMUL(c, x,
315                                                       qir_FMUL(c, r, r)))));
316 
317         return r;
318 }
319 
320 static struct qreg
ntq_umul(struct vc4_compile * c,struct qreg src0,struct qreg src1)321 ntq_umul(struct vc4_compile *c, struct qreg src0, struct qreg src1)
322 {
323         struct qreg src0_hi = qir_SHR(c, src0,
324                                       qir_uniform_ui(c, 24));
325         struct qreg src1_hi = qir_SHR(c, src1,
326                                       qir_uniform_ui(c, 24));
327 
328         struct qreg hilo = qir_MUL24(c, src0_hi, src1);
329         struct qreg lohi = qir_MUL24(c, src0, src1_hi);
330         struct qreg lolo = qir_MUL24(c, src0, src1);
331 
332         return qir_ADD(c, lolo, qir_SHL(c,
333                                         qir_ADD(c, hilo, lohi),
334                                         qir_uniform_ui(c, 24)));
335 }
336 
337 static struct qreg
ntq_scale_depth_texture(struct vc4_compile * c,struct qreg src)338 ntq_scale_depth_texture(struct vc4_compile *c, struct qreg src)
339 {
340         struct qreg depthf = qir_ITOF(c, qir_SHR(c, src,
341                                                  qir_uniform_ui(c, 8)));
342         return qir_FMUL(c, depthf, qir_uniform_f(c, 1.0f/0xffffff));
343 }
344 
345 /**
346  * Emits a lowered TXF_MS from an MSAA texture.
347  *
348  * The addressing math has been lowered in NIR, and now we just need to read
349  * it like a UBO.
350  */
351 static void
ntq_emit_txf(struct vc4_compile * c,nir_tex_instr * instr)352 ntq_emit_txf(struct vc4_compile *c, nir_tex_instr *instr)
353 {
354         uint32_t tile_width = 32;
355         uint32_t tile_height = 32;
356         uint32_t tile_size = (tile_height * tile_width *
357                               VC4_MAX_SAMPLES * sizeof(uint32_t));
358 
359         unsigned unit = instr->texture_index;
360         uint32_t w = align(c->key->tex[unit].msaa_width, tile_width);
361         uint32_t w_tiles = w / tile_width;
362         uint32_t h = align(c->key->tex[unit].msaa_height, tile_height);
363         uint32_t h_tiles = h / tile_height;
364         uint32_t size = w_tiles * h_tiles * tile_size;
365 
366         struct qreg addr;
367         assert(instr->num_srcs == 1);
368         assert(instr->src[0].src_type == nir_tex_src_coord);
369         addr = ntq_get_src(c, instr->src[0].src, 0);
370 
371         /* Perform the clamping required by kernel validation. */
372         addr = qir_MAX(c, addr, qir_uniform_ui(c, 0));
373         addr = qir_MIN_NOIMM(c, addr, qir_uniform_ui(c, size - 4));
374 
375         qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
376                      addr, qir_uniform(c, QUNIFORM_TEXTURE_MSAA_ADDR, unit));
377 
378         ntq_emit_thrsw(c);
379 
380         struct qreg tex = qir_TEX_RESULT(c);
381         c->num_texture_samples++;
382 
383         enum pipe_format format = c->key->tex[unit].format;
384         if (util_format_is_depth_or_stencil(format)) {
385                 struct qreg scaled = ntq_scale_depth_texture(c, tex);
386                 for (int i = 0; i < 4; i++)
387                         ntq_store_dest(c, &instr->dest, i, qir_MOV(c, scaled));
388         } else {
389                 for (int i = 0; i < 4; i++)
390                         ntq_store_dest(c, &instr->dest, i,
391                                        qir_UNPACK_8_F(c, tex, i));
392         }
393 }
394 
395 static void
ntq_emit_tex(struct vc4_compile * c,nir_tex_instr * instr)396 ntq_emit_tex(struct vc4_compile *c, nir_tex_instr *instr)
397 {
398         struct qreg s, t, r, lod, compare;
399         bool is_txb = false, is_txl = false;
400         unsigned unit = instr->texture_index;
401 
402         if (instr->op == nir_texop_txf) {
403                 ntq_emit_txf(c, instr);
404                 return;
405         }
406 
407         for (unsigned i = 0; i < instr->num_srcs; i++) {
408                 switch (instr->src[i].src_type) {
409                 case nir_tex_src_coord:
410                         s = ntq_get_src(c, instr->src[i].src, 0);
411                         if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D)
412                                 t = qir_uniform_f(c, 0.5);
413                         else
414                                 t = ntq_get_src(c, instr->src[i].src, 1);
415                         if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
416                                 r = ntq_get_src(c, instr->src[i].src, 2);
417                         break;
418                 case nir_tex_src_bias:
419                         lod = ntq_get_src(c, instr->src[i].src, 0);
420                         is_txb = true;
421                         break;
422                 case nir_tex_src_lod:
423                         lod = ntq_get_src(c, instr->src[i].src, 0);
424                         is_txl = true;
425                         break;
426                 case nir_tex_src_comparator:
427                         compare = ntq_get_src(c, instr->src[i].src, 0);
428                         break;
429                 default:
430                         unreachable("unknown texture source");
431                 }
432         }
433 
434         if (c->stage != QSTAGE_FRAG && !is_txl) {
435                 /* From the GLSL 1.20 spec:
436                  *
437                  *     "If it is mip-mapped and running on the vertex shader,
438                  *      then the base texture is used."
439                  */
440                 is_txl = true;
441                 lod = qir_uniform_ui(c, 0);
442         }
443 
444         if (c->key->tex[unit].force_first_level) {
445                 lod = qir_uniform(c, QUNIFORM_TEXTURE_FIRST_LEVEL, unit);
446                 is_txl = true;
447                 is_txb = false;
448         }
449 
450         struct qreg texture_u[] = {
451                 qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P0, unit),
452                 qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P1, unit),
453                 qir_uniform(c, QUNIFORM_CONSTANT, 0),
454                 qir_uniform(c, QUNIFORM_CONSTANT, 0),
455         };
456         uint32_t next_texture_u = 0;
457 
458         if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE || is_txl) {
459                 texture_u[2] = qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P2,
460                                            unit | (is_txl << 16));
461         }
462 
463         struct qinst *tmu;
464         if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
465                 tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_R, 0), r);
466                 tmu->src[qir_get_tex_uniform_src(tmu)] =
467                         texture_u[next_texture_u++];
468         } else if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
469                    c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP ||
470                    c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
471                    c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
472                 tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_R, 0),
473                                    qir_uniform(c, QUNIFORM_TEXTURE_BORDER_COLOR,
474                                                unit));
475                 tmu->src[qir_get_tex_uniform_src(tmu)] =
476                         texture_u[next_texture_u++];
477         }
478 
479         if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP) {
480                 s = qir_SAT(c, s);
481         }
482 
483         if (c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
484                 t = qir_SAT(c, t);
485         }
486 
487         tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_T, 0), t);
488         tmu->src[qir_get_tex_uniform_src(tmu)] =
489                 texture_u[next_texture_u++];
490 
491         if (is_txl || is_txb) {
492                 tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_B, 0), lod);
493                 tmu->src[qir_get_tex_uniform_src(tmu)] =
494                         texture_u[next_texture_u++];
495         }
496 
497         tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_S, 0), s);
498         tmu->src[qir_get_tex_uniform_src(tmu)] = texture_u[next_texture_u++];
499 
500         c->num_texture_samples++;
501 
502         ntq_emit_thrsw(c);
503 
504         struct qreg tex = qir_TEX_RESULT(c);
505 
506         enum pipe_format format = c->key->tex[unit].format;
507 
508         if (util_format_is_depth_or_stencil(format)) {
509                 struct qreg normalized = ntq_scale_depth_texture(c, tex);
510                 struct qreg depth_output;
511 
512                 struct qreg u0 = qir_uniform_f(c, 0.0f);
513                 struct qreg u1 = qir_uniform_f(c, 1.0f);
514                 if (c->key->tex[unit].compare_mode) {
515                         /* From the GL_ARB_shadow spec:
516                          *
517                          *     "Let Dt (D subscript t) be the depth texture
518                          *      value, in the range [0, 1].  Let R be the
519                          *      interpolated texture coordinate clamped to the
520                          *      range [0, 1]."
521                          */
522                         compare = qir_SAT(c, compare);
523 
524                         switch (c->key->tex[unit].compare_func) {
525                         case PIPE_FUNC_NEVER:
526                                 depth_output = qir_uniform_f(c, 0.0f);
527                                 break;
528                         case PIPE_FUNC_ALWAYS:
529                                 depth_output = u1;
530                                 break;
531                         case PIPE_FUNC_EQUAL:
532                                 qir_SF(c, qir_FSUB(c, compare, normalized));
533                                 depth_output = qir_SEL(c, QPU_COND_ZS, u1, u0);
534                                 break;
535                         case PIPE_FUNC_NOTEQUAL:
536                                 qir_SF(c, qir_FSUB(c, compare, normalized));
537                                 depth_output = qir_SEL(c, QPU_COND_ZC, u1, u0);
538                                 break;
539                         case PIPE_FUNC_GREATER:
540                                 qir_SF(c, qir_FSUB(c, compare, normalized));
541                                 depth_output = qir_SEL(c, QPU_COND_NC, u1, u0);
542                                 break;
543                         case PIPE_FUNC_GEQUAL:
544                                 qir_SF(c, qir_FSUB(c, normalized, compare));
545                                 depth_output = qir_SEL(c, QPU_COND_NS, u1, u0);
546                                 break;
547                         case PIPE_FUNC_LESS:
548                                 qir_SF(c, qir_FSUB(c, compare, normalized));
549                                 depth_output = qir_SEL(c, QPU_COND_NS, u1, u0);
550                                 break;
551                         case PIPE_FUNC_LEQUAL:
552                                 qir_SF(c, qir_FSUB(c, normalized, compare));
553                                 depth_output = qir_SEL(c, QPU_COND_NC, u1, u0);
554                                 break;
555                         }
556                 } else {
557                         depth_output = normalized;
558                 }
559 
560                 for (int i = 0; i < 4; i++)
561                         ntq_store_dest(c, &instr->dest, i,
562                                        qir_MOV(c, depth_output));
563         } else {
564                 for (int i = 0; i < 4; i++)
565                         ntq_store_dest(c, &instr->dest, i,
566                                        qir_UNPACK_8_F(c, tex, i));
567         }
568 }
569 
570 /**
571  * Computes x - floor(x), which is tricky because our FTOI truncates (rounds
572  * to zero).
573  */
574 static struct qreg
ntq_ffract(struct vc4_compile * c,struct qreg src)575 ntq_ffract(struct vc4_compile *c, struct qreg src)
576 {
577         struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
578         struct qreg diff = qir_FSUB(c, src, trunc);
579         qir_SF(c, diff);
580 
581         qir_FADD_dest(c, diff,
582                       diff, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS;
583 
584         return qir_MOV(c, diff);
585 }
586 
587 /**
588  * Computes floor(x), which is tricky because our FTOI truncates (rounds to
589  * zero).
590  */
591 static struct qreg
ntq_ffloor(struct vc4_compile * c,struct qreg src)592 ntq_ffloor(struct vc4_compile *c, struct qreg src)
593 {
594         struct qreg result = qir_ITOF(c, qir_FTOI(c, src));
595 
596         /* This will be < 0 if we truncated and the truncation was of a value
597          * that was < 0 in the first place.
598          */
599         qir_SF(c, qir_FSUB(c, src, result));
600 
601         struct qinst *sub = qir_FSUB_dest(c, result,
602                                           result, qir_uniform_f(c, 1.0));
603         sub->cond = QPU_COND_NS;
604 
605         return qir_MOV(c, result);
606 }
607 
608 /**
609  * Computes ceil(x), which is tricky because our FTOI truncates (rounds to
610  * zero).
611  */
612 static struct qreg
ntq_fceil(struct vc4_compile * c,struct qreg src)613 ntq_fceil(struct vc4_compile *c, struct qreg src)
614 {
615         struct qreg result = qir_ITOF(c, qir_FTOI(c, src));
616 
617         /* This will be < 0 if we truncated and the truncation was of a value
618          * that was > 0 in the first place.
619          */
620         qir_SF(c, qir_FSUB(c, result, src));
621 
622         qir_FADD_dest(c, result,
623                       result, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS;
624 
625         return qir_MOV(c, result);
626 }
627 
628 static struct qreg
ntq_shrink_sincos_input_range(struct vc4_compile * c,struct qreg x)629 ntq_shrink_sincos_input_range(struct vc4_compile *c, struct qreg x)
630 {
631         /* Since we're using a Taylor approximation, we want to have a small
632          * number of coefficients and take advantage of sin/cos repeating
633          * every 2pi.  We keep our x as close to 0 as we can, since the series
634          * will be less accurate as |x| increases.  (Also, be careful of
635          * shifting the input x value to be tricky with sin/cos relations,
636          * because getting accurate values for x==0 is very important for SDL
637          * rendering)
638          */
639         struct qreg scaled_x =
640                 qir_FMUL(c, x,
641                          qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
642         /* Note: FTOI truncates toward 0. */
643         struct qreg x_frac = qir_FSUB(c, scaled_x,
644                                       qir_ITOF(c, qir_FTOI(c, scaled_x)));
645         /* Map [0.5, 1] to [-0.5, 0] */
646         qir_SF(c, qir_FSUB(c, x_frac, qir_uniform_f(c, 0.5)));
647         qir_FSUB_dest(c, x_frac, x_frac, qir_uniform_f(c, 1.0))->cond = QPU_COND_NC;
648         /* Map [-1, -0.5] to [0, 0.5] */
649         qir_SF(c, qir_FADD(c, x_frac, qir_uniform_f(c, 0.5)));
650         qir_FADD_dest(c, x_frac, x_frac, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS;
651 
652         return x_frac;
653 }
654 
655 static struct qreg
ntq_fsin(struct vc4_compile * c,struct qreg src)656 ntq_fsin(struct vc4_compile *c, struct qreg src)
657 {
658         float coeff[] = {
659                 2.0 * M_PI,
660                 -pow(2.0 * M_PI, 3) / (3 * 2 * 1),
661                 pow(2.0 * M_PI, 5) / (5 * 4 * 3 * 2 * 1),
662                 -pow(2.0 * M_PI, 7) / (7 * 6 * 5 * 4 * 3 * 2 * 1),
663                 pow(2.0 * M_PI, 9) / (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
664         };
665 
666         struct qreg x = ntq_shrink_sincos_input_range(c, src);
667         struct qreg x2 = qir_FMUL(c, x, x);
668         struct qreg sum = qir_FMUL(c, x, qir_uniform_f(c, coeff[0]));
669         for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
670                 x = qir_FMUL(c, x, x2);
671                 sum = qir_FADD(c,
672                                sum,
673                                qir_FMUL(c,
674                                         x,
675                                         qir_uniform_f(c, coeff[i])));
676         }
677         return sum;
678 }
679 
680 static struct qreg
ntq_fcos(struct vc4_compile * c,struct qreg src)681 ntq_fcos(struct vc4_compile *c, struct qreg src)
682 {
683         float coeff[] = {
684                 1.0f,
685                 -pow(2.0 * M_PI, 2) / (2 * 1),
686                 pow(2.0 * M_PI, 4) / (4 * 3 * 2 * 1),
687                 -pow(2.0 * M_PI, 6) / (6 * 5 * 4 * 3 * 2 * 1),
688                 pow(2.0 * M_PI, 8) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
689                 -pow(2.0 * M_PI, 10) / (10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
690         };
691 
692         struct qreg x_frac = ntq_shrink_sincos_input_range(c, src);
693         struct qreg sum = qir_uniform_f(c, coeff[0]);
694         struct qreg x2 = qir_FMUL(c, x_frac, x_frac);
695         struct qreg x = x2; /* Current x^2, x^4, or x^6 */
696         for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
697                 if (i != 1)
698                         x = qir_FMUL(c, x, x2);
699 
700                 sum = qir_FADD(c, qir_FMUL(c,
701                                            x,
702                                            qir_uniform_f(c, coeff[i])),
703                                sum);
704         }
705         return sum;
706 }
707 
708 static struct qreg
ntq_fsign(struct vc4_compile * c,struct qreg src)709 ntq_fsign(struct vc4_compile *c, struct qreg src)
710 {
711         struct qreg t = qir_get_temp(c);
712 
713         qir_SF(c, src);
714         qir_MOV_dest(c, t, qir_uniform_f(c, 0.0));
715         qir_MOV_dest(c, t, qir_uniform_f(c, 1.0))->cond = QPU_COND_ZC;
716         qir_MOV_dest(c, t, qir_uniform_f(c, -1.0))->cond = QPU_COND_NS;
717         return qir_MOV(c, t);
718 }
719 
720 static void
emit_vertex_input(struct vc4_compile * c,int attr)721 emit_vertex_input(struct vc4_compile *c, int attr)
722 {
723         enum pipe_format format = c->vs_key->attr_formats[attr];
724         uint32_t attr_size = util_format_get_blocksize(format);
725 
726         c->vattr_sizes[attr] = align(attr_size, 4);
727         for (int i = 0; i < align(attr_size, 4) / 4; i++) {
728                 c->inputs[attr * 4 + i] =
729                         qir_MOV(c, qir_reg(QFILE_VPM, attr * 4 + i));
730                 c->num_inputs++;
731         }
732 }
733 
734 static void
emit_fragcoord_input(struct vc4_compile * c,int attr)735 emit_fragcoord_input(struct vc4_compile *c, int attr)
736 {
737         c->inputs[attr * 4 + 0] = qir_ITOF(c, qir_reg(QFILE_FRAG_X, 0));
738         c->inputs[attr * 4 + 1] = qir_ITOF(c, qir_reg(QFILE_FRAG_Y, 0));
739         c->inputs[attr * 4 + 2] =
740                 qir_FMUL(c,
741                          qir_ITOF(c, qir_FRAG_Z(c)),
742                          qir_uniform_f(c, 1.0 / 0xffffff));
743         c->inputs[attr * 4 + 3] = qir_RCP(c, qir_FRAG_W(c));
744 }
745 
746 static struct qreg
emit_fragment_varying(struct vc4_compile * c,gl_varying_slot slot,uint8_t swizzle)747 emit_fragment_varying(struct vc4_compile *c, gl_varying_slot slot,
748                       uint8_t swizzle)
749 {
750         uint32_t i = c->num_input_slots++;
751         struct qreg vary = {
752                 QFILE_VARY,
753                 i
754         };
755 
756         if (c->num_input_slots >= c->input_slots_array_size) {
757                 c->input_slots_array_size =
758                         MAX2(4, c->input_slots_array_size * 2);
759 
760                 c->input_slots = reralloc(c, c->input_slots,
761                                           struct vc4_varying_slot,
762                                           c->input_slots_array_size);
763         }
764 
765         c->input_slots[i].slot = slot;
766         c->input_slots[i].swizzle = swizzle;
767 
768         return qir_VARY_ADD_C(c, qir_FMUL(c, vary, qir_FRAG_W(c)));
769 }
770 
771 static void
emit_fragment_input(struct vc4_compile * c,int attr,gl_varying_slot slot)772 emit_fragment_input(struct vc4_compile *c, int attr, gl_varying_slot slot)
773 {
774         for (int i = 0; i < 4; i++) {
775                 c->inputs[attr * 4 + i] =
776                         emit_fragment_varying(c, slot, i);
777                 c->num_inputs++;
778         }
779 }
780 
781 static void
add_output(struct vc4_compile * c,uint32_t decl_offset,uint8_t slot,uint8_t swizzle)782 add_output(struct vc4_compile *c,
783            uint32_t decl_offset,
784            uint8_t slot,
785            uint8_t swizzle)
786 {
787         uint32_t old_array_size = c->outputs_array_size;
788         resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
789                           decl_offset + 1);
790 
791         if (old_array_size != c->outputs_array_size) {
792                 c->output_slots = reralloc(c,
793                                            c->output_slots,
794                                            struct vc4_varying_slot,
795                                            c->outputs_array_size);
796         }
797 
798         c->output_slots[decl_offset].slot = slot;
799         c->output_slots[decl_offset].swizzle = swizzle;
800 }
801 
802 static bool
ntq_src_is_only_ssa_def_user(nir_src * src)803 ntq_src_is_only_ssa_def_user(nir_src *src)
804 {
805         if (!src->is_ssa)
806                 return false;
807 
808         if (!list_is_empty(&src->ssa->if_uses))
809                 return false;
810 
811         return (src->ssa->uses.next == &src->use_link &&
812                 src->ssa->uses.next->next == &src->ssa->uses);
813 }
814 
815 /**
816  * In general, emits a nir_pack_unorm_4x8 as a series of MOVs with the pack
817  * bit set.
818  *
819  * However, as an optimization, it tries to find the instructions generating
820  * the sources to be packed and just emit the pack flag there, if possible.
821  */
822 static void
ntq_emit_pack_unorm_4x8(struct vc4_compile * c,nir_alu_instr * instr)823 ntq_emit_pack_unorm_4x8(struct vc4_compile *c, nir_alu_instr *instr)
824 {
825         struct qreg result = qir_get_temp(c);
826         struct nir_alu_instr *vec4 = NULL;
827 
828         /* If packing from a vec4 op (as expected), identify it so that we can
829          * peek back at what generated its sources.
830          */
831         if (instr->src[0].src.is_ssa &&
832             instr->src[0].src.ssa->parent_instr->type == nir_instr_type_alu &&
833             nir_instr_as_alu(instr->src[0].src.ssa->parent_instr)->op ==
834             nir_op_vec4) {
835                 vec4 = nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
836         }
837 
838         /* If the pack is replicating the same channel 4 times, use the 8888
839          * pack flag.  This is common for blending using the alpha
840          * channel.
841          */
842         if (instr->src[0].swizzle[0] == instr->src[0].swizzle[1] &&
843             instr->src[0].swizzle[0] == instr->src[0].swizzle[2] &&
844             instr->src[0].swizzle[0] == instr->src[0].swizzle[3]) {
845                 struct qreg rep = ntq_get_src(c,
846                                               instr->src[0].src,
847                                               instr->src[0].swizzle[0]);
848                 ntq_store_dest(c, &instr->dest.dest, 0, qir_PACK_8888_F(c, rep));
849                 return;
850         }
851 
852         for (int i = 0; i < 4; i++) {
853                 int swiz = instr->src[0].swizzle[i];
854                 struct qreg src;
855                 if (vec4) {
856                         src = ntq_get_src(c, vec4->src[swiz].src,
857                                           vec4->src[swiz].swizzle[0]);
858                 } else {
859                         src = ntq_get_src(c, instr->src[0].src, swiz);
860                 }
861 
862                 if (vec4 &&
863                     ntq_src_is_only_ssa_def_user(&vec4->src[swiz].src) &&
864                     src.file == QFILE_TEMP &&
865                     c->defs[src.index] &&
866                     qir_is_mul(c->defs[src.index]) &&
867                     !c->defs[src.index]->dst.pack) {
868                         struct qinst *rewrite = c->defs[src.index];
869                         c->defs[src.index] = NULL;
870                         rewrite->dst = result;
871                         rewrite->dst.pack = QPU_PACK_MUL_8A + i;
872                         continue;
873                 }
874 
875                 qir_PACK_8_F(c, result, src, i);
876         }
877 
878         ntq_store_dest(c, &instr->dest.dest, 0, qir_MOV(c, result));
879 }
880 
881 /** Handles sign-extended bitfield extracts for 16 bits. */
882 static struct qreg
ntq_emit_ibfe(struct vc4_compile * c,struct qreg base,struct qreg offset,struct qreg bits)883 ntq_emit_ibfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
884               struct qreg bits)
885 {
886         assert(bits.file == QFILE_UNIF &&
887                c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
888                c->uniform_data[bits.index] == 16);
889 
890         assert(offset.file == QFILE_UNIF &&
891                c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
892         int offset_bit = c->uniform_data[offset.index];
893         assert(offset_bit % 16 == 0);
894 
895         return qir_UNPACK_16_I(c, base, offset_bit / 16);
896 }
897 
898 /** Handles unsigned bitfield extracts for 8 bits. */
899 static struct qreg
ntq_emit_ubfe(struct vc4_compile * c,struct qreg base,struct qreg offset,struct qreg bits)900 ntq_emit_ubfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
901               struct qreg bits)
902 {
903         assert(bits.file == QFILE_UNIF &&
904                c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
905                c->uniform_data[bits.index] == 8);
906 
907         assert(offset.file == QFILE_UNIF &&
908                c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
909         int offset_bit = c->uniform_data[offset.index];
910         assert(offset_bit % 8 == 0);
911 
912         return qir_UNPACK_8_I(c, base, offset_bit / 8);
913 }
914 
915 /**
916  * If compare_instr is a valid comparison instruction, emits the
917  * compare_instr's comparison and returns the sel_instr's return value based
918  * on the compare_instr's result.
919  */
920 static bool
ntq_emit_comparison(struct vc4_compile * c,struct qreg * dest,nir_alu_instr * compare_instr,nir_alu_instr * sel_instr)921 ntq_emit_comparison(struct vc4_compile *c, struct qreg *dest,
922                     nir_alu_instr *compare_instr,
923                     nir_alu_instr *sel_instr)
924 {
925         enum qpu_cond cond;
926 
927         switch (compare_instr->op) {
928         case nir_op_feq32:
929         case nir_op_ieq32:
930         case nir_op_seq:
931                 cond = QPU_COND_ZS;
932                 break;
933         case nir_op_fneu32:
934         case nir_op_ine32:
935         case nir_op_sne:
936                 cond = QPU_COND_ZC;
937                 break;
938         case nir_op_fge32:
939         case nir_op_ige32:
940         case nir_op_uge32:
941         case nir_op_sge:
942                 cond = QPU_COND_NC;
943                 break;
944         case nir_op_flt32:
945         case nir_op_ilt32:
946         case nir_op_slt:
947                 cond = QPU_COND_NS;
948                 break;
949         default:
950                 return false;
951         }
952 
953         struct qreg src0 = ntq_get_alu_src(c, compare_instr, 0);
954         struct qreg src1 = ntq_get_alu_src(c, compare_instr, 1);
955 
956         unsigned unsized_type =
957                 nir_alu_type_get_base_type(nir_op_infos[compare_instr->op].input_types[0]);
958         if (unsized_type == nir_type_float)
959                 qir_SF(c, qir_FSUB(c, src0, src1));
960         else
961                 qir_SF(c, qir_SUB(c, src0, src1));
962 
963         switch (sel_instr->op) {
964         case nir_op_seq:
965         case nir_op_sne:
966         case nir_op_sge:
967         case nir_op_slt:
968                 *dest = qir_SEL(c, cond,
969                                 qir_uniform_f(c, 1.0), qir_uniform_f(c, 0.0));
970                 break;
971 
972         case nir_op_b32csel:
973                 *dest = qir_SEL(c, cond,
974                                 ntq_get_alu_src(c, sel_instr, 1),
975                                 ntq_get_alu_src(c, sel_instr, 2));
976                 break;
977 
978         default:
979                 *dest = qir_SEL(c, cond,
980                                 qir_uniform_ui(c, ~0), qir_uniform_ui(c, 0));
981                 break;
982         }
983 
984         /* Make the temporary for nir_store_dest(). */
985         *dest = qir_MOV(c, *dest);
986 
987         return true;
988 }
989 
990 /**
991  * Attempts to fold a comparison generating a boolean result into the
992  * condition code for selecting between two values, instead of comparing the
993  * boolean result against 0 to generate the condition code.
994  */
ntq_emit_bcsel(struct vc4_compile * c,nir_alu_instr * instr,struct qreg * src)995 static struct qreg ntq_emit_bcsel(struct vc4_compile *c, nir_alu_instr *instr,
996                                   struct qreg *src)
997 {
998         if (!instr->src[0].src.is_ssa)
999                 goto out;
1000         if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
1001                 goto out;
1002         nir_alu_instr *compare =
1003                 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
1004         if (!compare)
1005                 goto out;
1006 
1007         struct qreg dest;
1008         if (ntq_emit_comparison(c, &dest, compare, instr))
1009                 return dest;
1010 
1011 out:
1012         qir_SF(c, src[0]);
1013         return qir_MOV(c, qir_SEL(c, QPU_COND_NS, src[1], src[2]));
1014 }
1015 
1016 static struct qreg
ntq_fddx(struct vc4_compile * c,struct qreg src)1017 ntq_fddx(struct vc4_compile *c, struct qreg src)
1018 {
1019         /* Make sure that we have a bare temp to use for MUL rotation, so it
1020          * can be allocated to an accumulator.
1021          */
1022         if (src.pack || src.file != QFILE_TEMP)
1023                 src = qir_MOV(c, src);
1024 
1025         struct qreg from_left = qir_ROT_MUL(c, src, 1);
1026         struct qreg from_right = qir_ROT_MUL(c, src, 15);
1027 
1028         /* Distinguish left/right pixels of the quad. */
1029         qir_SF(c, qir_AND(c, qir_reg(QFILE_QPU_ELEMENT, 0),
1030                           qir_uniform_ui(c, 1)));
1031 
1032         return qir_MOV(c, qir_SEL(c, QPU_COND_ZS,
1033                                   qir_FSUB(c, from_right, src),
1034                                   qir_FSUB(c, src, from_left)));
1035 }
1036 
1037 static struct qreg
ntq_fddy(struct vc4_compile * c,struct qreg src)1038 ntq_fddy(struct vc4_compile *c, struct qreg src)
1039 {
1040         if (src.pack || src.file != QFILE_TEMP)
1041                 src = qir_MOV(c, src);
1042 
1043         struct qreg from_bottom = qir_ROT_MUL(c, src, 2);
1044         struct qreg from_top = qir_ROT_MUL(c, src, 14);
1045 
1046         /* Distinguish top/bottom pixels of the quad. */
1047         qir_SF(c, qir_AND(c,
1048                           qir_reg(QFILE_QPU_ELEMENT, 0),
1049                           qir_uniform_ui(c, 2)));
1050 
1051         return qir_MOV(c, qir_SEL(c, QPU_COND_ZS,
1052                                   qir_FSUB(c, from_top, src),
1053                                   qir_FSUB(c, src, from_bottom)));
1054 }
1055 
1056 static void
ntq_emit_alu(struct vc4_compile * c,nir_alu_instr * instr)1057 ntq_emit_alu(struct vc4_compile *c, nir_alu_instr *instr)
1058 {
1059         /* This should always be lowered to ALU operations for VC4. */
1060         assert(!instr->dest.saturate);
1061 
1062         /* Vectors are special in that they have non-scalarized writemasks,
1063          * and just take the first swizzle channel for each argument in order
1064          * into each writemask channel.
1065          */
1066         if (instr->op == nir_op_vec2 ||
1067             instr->op == nir_op_vec3 ||
1068             instr->op == nir_op_vec4) {
1069                 struct qreg srcs[4];
1070                 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
1071                         srcs[i] = ntq_get_src(c, instr->src[i].src,
1072                                               instr->src[i].swizzle[0]);
1073                 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
1074                         ntq_store_dest(c, &instr->dest.dest, i,
1075                                        qir_MOV(c, srcs[i]));
1076                 return;
1077         }
1078 
1079         if (instr->op == nir_op_pack_unorm_4x8) {
1080                 ntq_emit_pack_unorm_4x8(c, instr);
1081                 return;
1082         }
1083 
1084         if (instr->op == nir_op_unpack_unorm_4x8) {
1085                 struct qreg src = ntq_get_src(c, instr->src[0].src,
1086                                               instr->src[0].swizzle[0]);
1087                 for (int i = 0; i < 4; i++) {
1088                         if (instr->dest.write_mask & (1 << i))
1089                                 ntq_store_dest(c, &instr->dest.dest, i,
1090                                                qir_UNPACK_8_F(c, src, i));
1091                 }
1092                 return;
1093         }
1094 
1095         /* General case: We can just grab the one used channel per src. */
1096         struct qreg src[nir_op_infos[instr->op].num_inputs];
1097         for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1098                 src[i] = ntq_get_alu_src(c, instr, i);
1099         }
1100 
1101         struct qreg result;
1102 
1103         switch (instr->op) {
1104         case nir_op_mov:
1105                 result = qir_MOV(c, src[0]);
1106                 break;
1107         case nir_op_fmul:
1108                 result = qir_FMUL(c, src[0], src[1]);
1109                 break;
1110         case nir_op_fadd:
1111                 result = qir_FADD(c, src[0], src[1]);
1112                 break;
1113         case nir_op_fsub:
1114                 result = qir_FSUB(c, src[0], src[1]);
1115                 break;
1116         case nir_op_fmin:
1117                 result = qir_FMIN(c, src[0], src[1]);
1118                 break;
1119         case nir_op_fmax:
1120                 result = qir_FMAX(c, src[0], src[1]);
1121                 break;
1122 
1123         case nir_op_f2i32:
1124         case nir_op_f2u32:
1125                 result = qir_FTOI(c, src[0]);
1126                 break;
1127         case nir_op_i2f32:
1128         case nir_op_u2f32:
1129                 result = qir_ITOF(c, src[0]);
1130                 break;
1131         case nir_op_b2f32:
1132                 result = qir_AND(c, src[0], qir_uniform_f(c, 1.0));
1133                 break;
1134         case nir_op_b2i32:
1135                 result = qir_AND(c, src[0], qir_uniform_ui(c, 1));
1136                 break;
1137         case nir_op_i2b32:
1138         case nir_op_f2b32:
1139                 qir_SF(c, src[0]);
1140                 result = qir_MOV(c, qir_SEL(c, QPU_COND_ZC,
1141                                             qir_uniform_ui(c, ~0),
1142                                             qir_uniform_ui(c, 0)));
1143                 break;
1144 
1145         case nir_op_iadd:
1146                 result = qir_ADD(c, src[0], src[1]);
1147                 break;
1148         case nir_op_ushr:
1149                 result = qir_SHR(c, src[0], src[1]);
1150                 break;
1151         case nir_op_isub:
1152                 result = qir_SUB(c, src[0], src[1]);
1153                 break;
1154         case nir_op_ishr:
1155                 result = qir_ASR(c, src[0], src[1]);
1156                 break;
1157         case nir_op_ishl:
1158                 result = qir_SHL(c, src[0], src[1]);
1159                 break;
1160         case nir_op_imin:
1161                 result = qir_MIN(c, src[0], src[1]);
1162                 break;
1163         case nir_op_imax:
1164                 result = qir_MAX(c, src[0], src[1]);
1165                 break;
1166         case nir_op_iand:
1167                 result = qir_AND(c, src[0], src[1]);
1168                 break;
1169         case nir_op_ior:
1170                 result = qir_OR(c, src[0], src[1]);
1171                 break;
1172         case nir_op_ixor:
1173                 result = qir_XOR(c, src[0], src[1]);
1174                 break;
1175         case nir_op_inot:
1176                 result = qir_NOT(c, src[0]);
1177                 break;
1178 
1179         case nir_op_imul:
1180                 result = ntq_umul(c, src[0], src[1]);
1181                 break;
1182 
1183         case nir_op_seq:
1184         case nir_op_sne:
1185         case nir_op_sge:
1186         case nir_op_slt:
1187         case nir_op_feq32:
1188         case nir_op_fneu32:
1189         case nir_op_fge32:
1190         case nir_op_flt32:
1191         case nir_op_ieq32:
1192         case nir_op_ine32:
1193         case nir_op_ige32:
1194         case nir_op_uge32:
1195         case nir_op_ilt32:
1196                 if (!ntq_emit_comparison(c, &result, instr, instr)) {
1197                         fprintf(stderr, "Bad comparison instruction\n");
1198                 }
1199                 break;
1200 
1201         case nir_op_b32csel:
1202                 result = ntq_emit_bcsel(c, instr, src);
1203                 break;
1204         case nir_op_fcsel:
1205                 qir_SF(c, src[0]);
1206                 result = qir_MOV(c, qir_SEL(c, QPU_COND_ZC, src[1], src[2]));
1207                 break;
1208 
1209         case nir_op_frcp:
1210                 result = ntq_rcp(c, src[0]);
1211                 break;
1212         case nir_op_frsq:
1213                 result = ntq_rsq(c, src[0]);
1214                 break;
1215         case nir_op_fexp2:
1216                 result = qir_EXP2(c, src[0]);
1217                 break;
1218         case nir_op_flog2:
1219                 result = qir_LOG2(c, src[0]);
1220                 break;
1221 
1222         case nir_op_ftrunc:
1223                 result = qir_ITOF(c, qir_FTOI(c, src[0]));
1224                 break;
1225         case nir_op_fceil:
1226                 result = ntq_fceil(c, src[0]);
1227                 break;
1228         case nir_op_ffract:
1229                 result = ntq_ffract(c, src[0]);
1230                 break;
1231         case nir_op_ffloor:
1232                 result = ntq_ffloor(c, src[0]);
1233                 break;
1234 
1235         case nir_op_fsin:
1236                 result = ntq_fsin(c, src[0]);
1237                 break;
1238         case nir_op_fcos:
1239                 result = ntq_fcos(c, src[0]);
1240                 break;
1241 
1242         case nir_op_fsign:
1243                 result = ntq_fsign(c, src[0]);
1244                 break;
1245 
1246         case nir_op_fabs:
1247                 result = qir_FMAXABS(c, src[0], src[0]);
1248                 break;
1249         case nir_op_iabs:
1250                 result = qir_MAX(c, src[0],
1251                                 qir_SUB(c, qir_uniform_ui(c, 0), src[0]));
1252                 break;
1253 
1254         case nir_op_ibitfield_extract:
1255                 result = ntq_emit_ibfe(c, src[0], src[1], src[2]);
1256                 break;
1257 
1258         case nir_op_ubitfield_extract:
1259                 result = ntq_emit_ubfe(c, src[0], src[1], src[2]);
1260                 break;
1261 
1262         case nir_op_usadd_4x8_vc4:
1263                 result = qir_V8ADDS(c, src[0], src[1]);
1264                 break;
1265 
1266         case nir_op_ussub_4x8_vc4:
1267                 result = qir_V8SUBS(c, src[0], src[1]);
1268                 break;
1269 
1270         case nir_op_umin_4x8_vc4:
1271                 result = qir_V8MIN(c, src[0], src[1]);
1272                 break;
1273 
1274         case nir_op_umax_4x8_vc4:
1275                 result = qir_V8MAX(c, src[0], src[1]);
1276                 break;
1277 
1278         case nir_op_umul_unorm_4x8_vc4:
1279                 result = qir_V8MULD(c, src[0], src[1]);
1280                 break;
1281 
1282         case nir_op_fddx:
1283         case nir_op_fddx_coarse:
1284         case nir_op_fddx_fine:
1285                 result = ntq_fddx(c, src[0]);
1286                 break;
1287 
1288         case nir_op_fddy:
1289         case nir_op_fddy_coarse:
1290         case nir_op_fddy_fine:
1291                 result = ntq_fddy(c, src[0]);
1292                 break;
1293 
1294         default:
1295                 fprintf(stderr, "unknown NIR ALU inst: ");
1296                 nir_print_instr(&instr->instr, stderr);
1297                 fprintf(stderr, "\n");
1298                 abort();
1299         }
1300 
1301         /* We have a scalar result, so the instruction should only have a
1302          * single channel written to.
1303          */
1304         assert(util_is_power_of_two_or_zero(instr->dest.write_mask));
1305         ntq_store_dest(c, &instr->dest.dest,
1306                        ffs(instr->dest.write_mask) - 1, result);
1307 }
1308 
1309 static void
emit_frag_end(struct vc4_compile * c)1310 emit_frag_end(struct vc4_compile *c)
1311 {
1312         struct qreg color;
1313         if (c->output_color_index != -1) {
1314                 color = c->outputs[c->output_color_index];
1315         } else {
1316                 color = qir_uniform_ui(c, 0);
1317         }
1318 
1319         uint32_t discard_cond = QPU_COND_ALWAYS;
1320         if (c->s->info.fs.uses_discard) {
1321                 qir_SF(c, c->discard);
1322                 discard_cond = QPU_COND_ZS;
1323         }
1324 
1325         if (c->fs_key->stencil_enabled) {
1326                 qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
1327                              qir_uniform(c, QUNIFORM_STENCIL, 0));
1328                 if (c->fs_key->stencil_twoside) {
1329                         qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
1330                                      qir_uniform(c, QUNIFORM_STENCIL, 1));
1331                 }
1332                 if (c->fs_key->stencil_full_writemasks) {
1333                         qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
1334                                      qir_uniform(c, QUNIFORM_STENCIL, 2));
1335                 }
1336         }
1337 
1338         if (c->output_sample_mask_index != -1) {
1339                 qir_MS_MASK(c, c->outputs[c->output_sample_mask_index]);
1340         }
1341 
1342         if (c->fs_key->depth_enabled) {
1343                 if (c->output_position_index != -1) {
1344                         qir_FTOI_dest(c, qir_reg(QFILE_TLB_Z_WRITE, 0),
1345                                       qir_FMUL(c,
1346                                                c->outputs[c->output_position_index],
1347                                                qir_uniform_f(c, 0xffffff)))->cond = discard_cond;
1348                 } else {
1349                         qir_MOV_dest(c, qir_reg(QFILE_TLB_Z_WRITE, 0),
1350                                      qir_FRAG_Z(c))->cond = discard_cond;
1351                 }
1352         }
1353 
1354         if (!c->msaa_per_sample_output) {
1355                 qir_MOV_dest(c, qir_reg(QFILE_TLB_COLOR_WRITE, 0),
1356                              color)->cond = discard_cond;
1357         } else {
1358                 for (int i = 0; i < VC4_MAX_SAMPLES; i++) {
1359                         qir_MOV_dest(c, qir_reg(QFILE_TLB_COLOR_WRITE_MS, 0),
1360                                      c->sample_colors[i])->cond = discard_cond;
1361                 }
1362         }
1363 }
1364 
1365 static void
emit_scaled_viewport_write(struct vc4_compile * c,struct qreg rcp_w)1366 emit_scaled_viewport_write(struct vc4_compile *c, struct qreg rcp_w)
1367 {
1368         struct qreg packed = qir_get_temp(c);
1369 
1370         for (int i = 0; i < 2; i++) {
1371                 struct qreg scale =
1372                         qir_uniform(c, QUNIFORM_VIEWPORT_X_SCALE + i, 0);
1373 
1374                 struct qreg packed_chan = packed;
1375                 packed_chan.pack = QPU_PACK_A_16A + i;
1376 
1377                 qir_FTOI_dest(c, packed_chan,
1378                               qir_FMUL(c,
1379                                        qir_FMUL(c,
1380                                                 c->outputs[c->output_position_index + i],
1381                                                 scale),
1382                                        rcp_w));
1383         }
1384 
1385         qir_VPM_WRITE(c, packed);
1386 }
1387 
1388 static void
emit_zs_write(struct vc4_compile * c,struct qreg rcp_w)1389 emit_zs_write(struct vc4_compile *c, struct qreg rcp_w)
1390 {
1391         struct qreg zscale = qir_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0);
1392         struct qreg zoffset = qir_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0);
1393 
1394         qir_VPM_WRITE(c, qir_FADD(c, qir_FMUL(c, qir_FMUL(c,
1395                                                           c->outputs[c->output_position_index + 2],
1396                                                           zscale),
1397                                               rcp_w),
1398                                   zoffset));
1399 }
1400 
1401 static void
emit_rcp_wc_write(struct vc4_compile * c,struct qreg rcp_w)1402 emit_rcp_wc_write(struct vc4_compile *c, struct qreg rcp_w)
1403 {
1404         qir_VPM_WRITE(c, rcp_w);
1405 }
1406 
1407 static void
emit_point_size_write(struct vc4_compile * c)1408 emit_point_size_write(struct vc4_compile *c)
1409 {
1410         struct qreg point_size;
1411 
1412         if (c->output_point_size_index != -1)
1413                 point_size = c->outputs[c->output_point_size_index];
1414         else
1415                 point_size = qir_uniform_f(c, 1.0);
1416 
1417         qir_VPM_WRITE(c, point_size);
1418 }
1419 
1420 /**
1421  * Emits a VPM read of the stub vertex attribute set up by vc4_draw.c.
1422  *
1423  * The simulator insists that there be at least one vertex attribute, so
1424  * vc4_draw.c will emit one if it wouldn't have otherwise.  The simulator also
1425  * insists that all vertex attributes loaded get read by the VS/CS, so we have
1426  * to consume it here.
1427  */
1428 static void
emit_stub_vpm_read(struct vc4_compile * c)1429 emit_stub_vpm_read(struct vc4_compile *c)
1430 {
1431         if (c->num_inputs)
1432                 return;
1433 
1434         c->vattr_sizes[0] = 4;
1435         (void)qir_MOV(c, qir_reg(QFILE_VPM, 0));
1436         c->num_inputs++;
1437 }
1438 
1439 static void
emit_vert_end(struct vc4_compile * c,struct vc4_varying_slot * fs_inputs,uint32_t num_fs_inputs)1440 emit_vert_end(struct vc4_compile *c,
1441               struct vc4_varying_slot *fs_inputs,
1442               uint32_t num_fs_inputs)
1443 {
1444         struct qreg rcp_w = ntq_rcp(c, c->outputs[c->output_position_index + 3]);
1445 
1446         emit_stub_vpm_read(c);
1447 
1448         emit_scaled_viewport_write(c, rcp_w);
1449         emit_zs_write(c, rcp_w);
1450         emit_rcp_wc_write(c, rcp_w);
1451         if (c->vs_key->per_vertex_point_size)
1452                 emit_point_size_write(c);
1453 
1454         for (int i = 0; i < num_fs_inputs; i++) {
1455                 struct vc4_varying_slot *input = &fs_inputs[i];
1456                 int j;
1457 
1458                 for (j = 0; j < c->num_outputs; j++) {
1459                         struct vc4_varying_slot *output =
1460                                 &c->output_slots[j];
1461 
1462                         if (input->slot == output->slot &&
1463                             input->swizzle == output->swizzle) {
1464                                 qir_VPM_WRITE(c, c->outputs[j]);
1465                                 break;
1466                         }
1467                 }
1468                 /* Emit padding if we didn't find a declared VS output for
1469                  * this FS input.
1470                  */
1471                 if (j == c->num_outputs)
1472                         qir_VPM_WRITE(c, qir_uniform_f(c, 0.0));
1473         }
1474 }
1475 
1476 static void
emit_coord_end(struct vc4_compile * c)1477 emit_coord_end(struct vc4_compile *c)
1478 {
1479         struct qreg rcp_w = ntq_rcp(c, c->outputs[c->output_position_index + 3]);
1480 
1481         emit_stub_vpm_read(c);
1482 
1483         for (int i = 0; i < 4; i++)
1484                 qir_VPM_WRITE(c, c->outputs[c->output_position_index + i]);
1485 
1486         emit_scaled_viewport_write(c, rcp_w);
1487         emit_zs_write(c, rcp_w);
1488         emit_rcp_wc_write(c, rcp_w);
1489         if (c->vs_key->per_vertex_point_size)
1490                 emit_point_size_write(c);
1491 }
1492 
1493 static void
vc4_optimize_nir(struct nir_shader * s)1494 vc4_optimize_nir(struct nir_shader *s)
1495 {
1496         bool progress;
1497         unsigned lower_flrp =
1498                 (s->options->lower_flrp16 ? 16 : 0) |
1499                 (s->options->lower_flrp32 ? 32 : 0) |
1500                 (s->options->lower_flrp64 ? 64 : 0);
1501 
1502         do {
1503                 progress = false;
1504 
1505                 NIR_PASS_V(s, nir_lower_vars_to_ssa);
1506                 NIR_PASS(progress, s, nir_lower_alu_to_scalar, NULL, NULL);
1507                 NIR_PASS(progress, s, nir_lower_phis_to_scalar, false);
1508                 NIR_PASS(progress, s, nir_copy_prop);
1509                 NIR_PASS(progress, s, nir_opt_remove_phis);
1510                 NIR_PASS(progress, s, nir_opt_dce);
1511                 NIR_PASS(progress, s, nir_opt_dead_cf);
1512                 NIR_PASS(progress, s, nir_opt_cse);
1513                 NIR_PASS(progress, s, nir_opt_peephole_select, 8, true, true);
1514                 NIR_PASS(progress, s, nir_opt_algebraic);
1515                 NIR_PASS(progress, s, nir_opt_constant_folding);
1516                 if (lower_flrp != 0) {
1517                         bool lower_flrp_progress = false;
1518 
1519                         NIR_PASS(lower_flrp_progress, s, nir_lower_flrp,
1520                                  lower_flrp,
1521                                  false /* always_precise */);
1522                         if (lower_flrp_progress) {
1523                                 NIR_PASS(progress, s, nir_opt_constant_folding);
1524                                 progress = true;
1525                         }
1526 
1527                         /* Nothing should rematerialize any flrps, so we only
1528                          * need to do this lowering once.
1529                          */
1530                         lower_flrp = 0;
1531                 }
1532 
1533                 NIR_PASS(progress, s, nir_opt_undef);
1534                 NIR_PASS(progress, s, nir_opt_loop_unroll);
1535         } while (progress);
1536 }
1537 
1538 static int
driver_location_compare(const void * in_a,const void * in_b)1539 driver_location_compare(const void *in_a, const void *in_b)
1540 {
1541         const nir_variable *const *a = in_a;
1542         const nir_variable *const *b = in_b;
1543 
1544         return (*a)->data.driver_location - (*b)->data.driver_location;
1545 }
1546 
1547 static void
ntq_setup_inputs(struct vc4_compile * c)1548 ntq_setup_inputs(struct vc4_compile *c)
1549 {
1550         unsigned num_entries = 0;
1551         nir_foreach_shader_in_variable(var, c->s)
1552                 num_entries++;
1553 
1554         nir_variable *vars[num_entries];
1555 
1556         unsigned i = 0;
1557         nir_foreach_shader_in_variable(var, c->s)
1558                 vars[i++] = var;
1559 
1560         /* Sort the variables so that we emit the input setup in
1561          * driver_location order.  This is required for VPM reads, whose data
1562          * is fetched into the VPM in driver_location (TGSI register index)
1563          * order.
1564          */
1565         qsort(&vars, num_entries, sizeof(*vars), driver_location_compare);
1566 
1567         for (unsigned i = 0; i < num_entries; i++) {
1568                 nir_variable *var = vars[i];
1569                 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1570                 unsigned loc = var->data.driver_location;
1571 
1572                 assert(array_len == 1);
1573                 (void)array_len;
1574                 resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
1575                                   (loc + 1) * 4);
1576 
1577                 if (c->stage == QSTAGE_FRAG) {
1578                         if (var->data.location == VARYING_SLOT_POS) {
1579                                 emit_fragcoord_input(c, loc);
1580                         } else if (util_varying_is_point_coord(var->data.location,
1581                                                                c->fs_key->point_sprite_mask)) {
1582                                 c->inputs[loc * 4 + 0] = c->point_x;
1583                                 c->inputs[loc * 4 + 1] = c->point_y;
1584                         } else {
1585                                 emit_fragment_input(c, loc, var->data.location);
1586                         }
1587                 } else {
1588                         emit_vertex_input(c, loc);
1589                 }
1590         }
1591 }
1592 
1593 static void
ntq_setup_outputs(struct vc4_compile * c)1594 ntq_setup_outputs(struct vc4_compile *c)
1595 {
1596         nir_foreach_shader_out_variable(var, c->s) {
1597                 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1598                 unsigned loc = var->data.driver_location * 4;
1599 
1600                 assert(array_len == 1);
1601                 (void)array_len;
1602 
1603                 for (int i = 0; i < 4; i++)
1604                         add_output(c, loc + i, var->data.location, i);
1605 
1606                 if (c->stage == QSTAGE_FRAG) {
1607                         switch (var->data.location) {
1608                         case FRAG_RESULT_COLOR:
1609                         case FRAG_RESULT_DATA0:
1610                                 c->output_color_index = loc;
1611                                 break;
1612                         case FRAG_RESULT_DEPTH:
1613                                 c->output_position_index = loc;
1614                                 break;
1615                         case FRAG_RESULT_SAMPLE_MASK:
1616                                 c->output_sample_mask_index = loc;
1617                                 break;
1618                         }
1619                 } else {
1620                         switch (var->data.location) {
1621                         case VARYING_SLOT_POS:
1622                                 c->output_position_index = loc;
1623                                 break;
1624                         case VARYING_SLOT_PSIZ:
1625                                 c->output_point_size_index = loc;
1626                                 break;
1627                         }
1628                 }
1629         }
1630 }
1631 
1632 /**
1633  * Sets up the mapping from nir_register to struct qreg *.
1634  *
1635  * Each nir_register gets a struct qreg per 32-bit component being stored.
1636  */
1637 static void
ntq_setup_registers(struct vc4_compile * c,struct exec_list * list)1638 ntq_setup_registers(struct vc4_compile *c, struct exec_list *list)
1639 {
1640         foreach_list_typed(nir_register, nir_reg, node, list) {
1641                 unsigned array_len = MAX2(nir_reg->num_array_elems, 1);
1642                 struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
1643                                                   array_len *
1644                                                   nir_reg->num_components);
1645 
1646                 _mesa_hash_table_insert(c->def_ht, nir_reg, qregs);
1647 
1648                 for (int i = 0; i < array_len * nir_reg->num_components; i++)
1649                         qregs[i] = qir_get_temp(c);
1650         }
1651 }
1652 
1653 static void
ntq_emit_load_const(struct vc4_compile * c,nir_load_const_instr * instr)1654 ntq_emit_load_const(struct vc4_compile *c, nir_load_const_instr *instr)
1655 {
1656         struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1657         for (int i = 0; i < instr->def.num_components; i++)
1658                 qregs[i] = qir_uniform_ui(c, instr->value[i].u32);
1659 
1660         _mesa_hash_table_insert(c->def_ht, &instr->def, qregs);
1661 }
1662 
1663 static void
ntq_emit_ssa_undef(struct vc4_compile * c,nir_ssa_undef_instr * instr)1664 ntq_emit_ssa_undef(struct vc4_compile *c, nir_ssa_undef_instr *instr)
1665 {
1666         struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1667 
1668         /* QIR needs there to be *some* value, so pick 0 (same as for
1669          * ntq_setup_registers().
1670          */
1671         for (int i = 0; i < instr->def.num_components; i++)
1672                 qregs[i] = qir_uniform_ui(c, 0);
1673 }
1674 
1675 static void
ntq_emit_color_read(struct vc4_compile * c,nir_intrinsic_instr * instr)1676 ntq_emit_color_read(struct vc4_compile *c, nir_intrinsic_instr *instr)
1677 {
1678         assert(nir_src_as_uint(instr->src[0]) == 0);
1679 
1680         /* Reads of the per-sample color need to be done in
1681          * order.
1682          */
1683         int sample_index = (nir_intrinsic_base(instr) -
1684                             VC4_NIR_TLB_COLOR_READ_INPUT);
1685         for (int i = 0; i <= sample_index; i++) {
1686                 if (c->color_reads[i].file == QFILE_NULL) {
1687                         c->color_reads[i] =
1688                                 qir_TLB_COLOR_READ(c);
1689                 }
1690         }
1691         ntq_store_dest(c, &instr->dest, 0,
1692                        qir_MOV(c, c->color_reads[sample_index]));
1693 }
1694 
1695 static void
ntq_emit_load_input(struct vc4_compile * c,nir_intrinsic_instr * instr)1696 ntq_emit_load_input(struct vc4_compile *c, nir_intrinsic_instr *instr)
1697 {
1698         assert(instr->num_components == 1);
1699         assert(nir_src_is_const(instr->src[0]) &&
1700                "vc4 doesn't support indirect inputs");
1701 
1702         if (c->stage == QSTAGE_FRAG &&
1703             nir_intrinsic_base(instr) >= VC4_NIR_TLB_COLOR_READ_INPUT) {
1704                 ntq_emit_color_read(c, instr);
1705                 return;
1706         }
1707 
1708         uint32_t offset = nir_intrinsic_base(instr) +
1709                           nir_src_as_uint(instr->src[0]);
1710         int comp = nir_intrinsic_component(instr);
1711         ntq_store_dest(c, &instr->dest, 0,
1712                        qir_MOV(c, c->inputs[offset * 4 + comp]));
1713 }
1714 
1715 static void
ntq_emit_intrinsic(struct vc4_compile * c,nir_intrinsic_instr * instr)1716 ntq_emit_intrinsic(struct vc4_compile *c, nir_intrinsic_instr *instr)
1717 {
1718         unsigned offset;
1719 
1720         switch (instr->intrinsic) {
1721         case nir_intrinsic_load_uniform:
1722                 assert(instr->num_components == 1);
1723                 if (nir_src_is_const(instr->src[0])) {
1724                         offset = nir_intrinsic_base(instr) +
1725                                  nir_src_as_uint(instr->src[0]);
1726                         assert(offset % 4 == 0);
1727                         /* We need dwords */
1728                         offset = offset / 4;
1729                         ntq_store_dest(c, &instr->dest, 0,
1730                                        qir_uniform(c, QUNIFORM_UNIFORM,
1731                                                    offset));
1732                 } else {
1733                         ntq_store_dest(c, &instr->dest, 0,
1734                                        indirect_uniform_load(c, instr));
1735                 }
1736                 break;
1737 
1738         case nir_intrinsic_load_ubo:
1739                 assert(instr->num_components == 1);
1740                 ntq_store_dest(c, &instr->dest, 0, vc4_ubo_load(c, instr));
1741                 break;
1742 
1743         case nir_intrinsic_load_user_clip_plane:
1744                 for (int i = 0; i < nir_intrinsic_dest_components(instr); i++) {
1745                         ntq_store_dest(c, &instr->dest, i,
1746                                        qir_uniform(c, QUNIFORM_USER_CLIP_PLANE,
1747                                                    nir_intrinsic_ucp_id(instr) *
1748                                                    4 + i));
1749                 }
1750                 break;
1751 
1752         case nir_intrinsic_load_blend_const_color_r_float:
1753         case nir_intrinsic_load_blend_const_color_g_float:
1754         case nir_intrinsic_load_blend_const_color_b_float:
1755         case nir_intrinsic_load_blend_const_color_a_float:
1756                 ntq_store_dest(c, &instr->dest, 0,
1757                                qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_X +
1758                                            (instr->intrinsic -
1759                                             nir_intrinsic_load_blend_const_color_r_float),
1760                                            0));
1761                 break;
1762 
1763         case nir_intrinsic_load_blend_const_color_rgba8888_unorm:
1764                 ntq_store_dest(c, &instr->dest, 0,
1765                                qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_RGBA,
1766                                            0));
1767                 break;
1768 
1769         case nir_intrinsic_load_blend_const_color_aaaa8888_unorm:
1770                 ntq_store_dest(c, &instr->dest, 0,
1771                                qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_AAAA,
1772                                            0));
1773                 break;
1774 
1775         case nir_intrinsic_load_sample_mask_in:
1776                 ntq_store_dest(c, &instr->dest, 0,
1777                                qir_uniform(c, QUNIFORM_SAMPLE_MASK, 0));
1778                 break;
1779 
1780         case nir_intrinsic_load_front_face:
1781                 /* The register contains 0 (front) or 1 (back), and we need to
1782                  * turn it into a NIR bool where true means front.
1783                  */
1784                 ntq_store_dest(c, &instr->dest, 0,
1785                                qir_ADD(c,
1786                                        qir_uniform_ui(c, -1),
1787                                        qir_reg(QFILE_FRAG_REV_FLAG, 0)));
1788                 break;
1789 
1790         case nir_intrinsic_load_input:
1791                 ntq_emit_load_input(c, instr);
1792                 break;
1793 
1794         case nir_intrinsic_store_output:
1795                 assert(nir_src_is_const(instr->src[1]) &&
1796                        "vc4 doesn't support indirect outputs");
1797                 offset = nir_intrinsic_base(instr) +
1798                          nir_src_as_uint(instr->src[1]);
1799 
1800                 /* MSAA color outputs are the only case where we have an
1801                  * output that's not lowered to being a store of a single 32
1802                  * bit value.
1803                  */
1804                 if (c->stage == QSTAGE_FRAG && instr->num_components == 4) {
1805                         assert(offset == c->output_color_index);
1806                         for (int i = 0; i < 4; i++) {
1807                                 c->sample_colors[i] =
1808                                         qir_MOV(c, ntq_get_src(c, instr->src[0],
1809                                                                i));
1810                         }
1811                 } else {
1812                         offset = offset * 4 + nir_intrinsic_component(instr);
1813                         assert(instr->num_components == 1);
1814                         c->outputs[offset] =
1815                                 qir_MOV(c, ntq_get_src(c, instr->src[0], 0));
1816                         c->num_outputs = MAX2(c->num_outputs, offset + 1);
1817                 }
1818                 break;
1819 
1820         case nir_intrinsic_discard:
1821                 if (c->execute.file != QFILE_NULL) {
1822                         qir_SF(c, c->execute);
1823                         qir_MOV_cond(c, QPU_COND_ZS, c->discard,
1824                                      qir_uniform_ui(c, ~0));
1825                 } else {
1826                         qir_MOV_dest(c, c->discard, qir_uniform_ui(c, ~0));
1827                 }
1828                 break;
1829 
1830         case nir_intrinsic_discard_if: {
1831                 /* true (~0) if we're discarding */
1832                 struct qreg cond = ntq_get_src(c, instr->src[0], 0);
1833 
1834                 if (c->execute.file != QFILE_NULL) {
1835                         /* execute == 0 means the channel is active.  Invert
1836                          * the condition so that we can use zero as "executing
1837                          * and discarding."
1838                          */
1839                         qir_SF(c, qir_AND(c, c->execute, qir_NOT(c, cond)));
1840                         qir_MOV_cond(c, QPU_COND_ZS, c->discard, cond);
1841                 } else {
1842                         qir_OR_dest(c, c->discard, c->discard,
1843                                     ntq_get_src(c, instr->src[0], 0));
1844                 }
1845 
1846                 break;
1847         }
1848 
1849         case nir_intrinsic_load_texture_rect_scaling: {
1850                 assert(nir_src_is_const(instr->src[0]));
1851                 int sampler = nir_src_as_int(instr->src[0]);
1852 
1853                 ntq_store_dest(c, &instr->dest, 0,
1854                                 qir_uniform(c, QUNIFORM_TEXRECT_SCALE_X, sampler));
1855                 ntq_store_dest(c, &instr->dest, 1,
1856                                 qir_uniform(c, QUNIFORM_TEXRECT_SCALE_Y, sampler));
1857                 break;
1858         }
1859 
1860         default:
1861                 fprintf(stderr, "Unknown intrinsic: ");
1862                 nir_print_instr(&instr->instr, stderr);
1863                 fprintf(stderr, "\n");
1864                 break;
1865         }
1866 }
1867 
1868 /* Clears (activates) the execute flags for any channels whose jump target
1869  * matches this block.
1870  */
1871 static void
ntq_activate_execute_for_block(struct vc4_compile * c)1872 ntq_activate_execute_for_block(struct vc4_compile *c)
1873 {
1874         qir_SF(c, qir_SUB(c,
1875                           c->execute,
1876                           qir_uniform_ui(c, c->cur_block->index)));
1877         qir_MOV_cond(c, QPU_COND_ZS, c->execute, qir_uniform_ui(c, 0));
1878 }
1879 
1880 static void
ntq_emit_if(struct vc4_compile * c,nir_if * if_stmt)1881 ntq_emit_if(struct vc4_compile *c, nir_if *if_stmt)
1882 {
1883         if (!c->vc4->screen->has_control_flow) {
1884                 fprintf(stderr,
1885                         "IF statement support requires updated kernel.\n");
1886                 return;
1887         }
1888 
1889         nir_block *nir_else_block = nir_if_first_else_block(if_stmt);
1890         bool empty_else_block =
1891                 (nir_else_block == nir_if_last_else_block(if_stmt) &&
1892                  exec_list_is_empty(&nir_else_block->instr_list));
1893 
1894         struct qblock *then_block = qir_new_block(c);
1895         struct qblock *after_block = qir_new_block(c);
1896         struct qblock *else_block;
1897         if (empty_else_block)
1898                 else_block = after_block;
1899         else
1900                 else_block = qir_new_block(c);
1901 
1902         bool was_top_level = false;
1903         if (c->execute.file == QFILE_NULL) {
1904                 c->execute = qir_MOV(c, qir_uniform_ui(c, 0));
1905                 was_top_level = true;
1906         }
1907 
1908         /* Set ZS for executing (execute == 0) and jumping (if->condition ==
1909          * 0) channels, and then update execute flags for those to point to
1910          * the ELSE block.
1911          */
1912         qir_SF(c, qir_OR(c,
1913                          c->execute,
1914                          ntq_get_src(c, if_stmt->condition, 0)));
1915         qir_MOV_cond(c, QPU_COND_ZS, c->execute,
1916                      qir_uniform_ui(c, else_block->index));
1917 
1918         /* Jump to ELSE if nothing is active for THEN, otherwise fall
1919          * through.
1920          */
1921         qir_SF(c, c->execute);
1922         qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZC);
1923         qir_link_blocks(c->cur_block, else_block);
1924         qir_link_blocks(c->cur_block, then_block);
1925 
1926         /* Process the THEN block. */
1927         qir_set_emit_block(c, then_block);
1928         ntq_emit_cf_list(c, &if_stmt->then_list);
1929 
1930         if (!empty_else_block) {
1931                 /* Handle the end of the THEN block.  First, all currently
1932                  * active channels update their execute flags to point to
1933                  * ENDIF
1934                  */
1935                 qir_SF(c, c->execute);
1936                 qir_MOV_cond(c, QPU_COND_ZS, c->execute,
1937                              qir_uniform_ui(c, after_block->index));
1938 
1939                 /* If everything points at ENDIF, then jump there immediately. */
1940                 qir_SF(c, qir_SUB(c, c->execute, qir_uniform_ui(c, after_block->index)));
1941                 qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZS);
1942                 qir_link_blocks(c->cur_block, after_block);
1943                 qir_link_blocks(c->cur_block, else_block);
1944 
1945                 qir_set_emit_block(c, else_block);
1946                 ntq_activate_execute_for_block(c);
1947                 ntq_emit_cf_list(c, &if_stmt->else_list);
1948         }
1949 
1950         qir_link_blocks(c->cur_block, after_block);
1951 
1952         qir_set_emit_block(c, after_block);
1953         if (was_top_level) {
1954                 c->execute = c->undef;
1955                 c->last_top_block = c->cur_block;
1956         } else {
1957                 ntq_activate_execute_for_block(c);
1958         }
1959 }
1960 
1961 static void
ntq_emit_jump(struct vc4_compile * c,nir_jump_instr * jump)1962 ntq_emit_jump(struct vc4_compile *c, nir_jump_instr *jump)
1963 {
1964         struct qblock *jump_block;
1965         switch (jump->type) {
1966         case nir_jump_break:
1967                 jump_block = c->loop_break_block;
1968                 break;
1969         case nir_jump_continue:
1970                 jump_block = c->loop_cont_block;
1971                 break;
1972         default:
1973                 unreachable("Unsupported jump type\n");
1974         }
1975 
1976         qir_SF(c, c->execute);
1977         qir_MOV_cond(c, QPU_COND_ZS, c->execute,
1978                      qir_uniform_ui(c, jump_block->index));
1979 
1980         /* Jump to the destination block if everyone has taken the jump. */
1981         qir_SF(c, qir_SUB(c, c->execute, qir_uniform_ui(c, jump_block->index)));
1982         qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZS);
1983         struct qblock *new_block = qir_new_block(c);
1984         qir_link_blocks(c->cur_block, jump_block);
1985         qir_link_blocks(c->cur_block, new_block);
1986         qir_set_emit_block(c, new_block);
1987 }
1988 
1989 static void
ntq_emit_instr(struct vc4_compile * c,nir_instr * instr)1990 ntq_emit_instr(struct vc4_compile *c, nir_instr *instr)
1991 {
1992         switch (instr->type) {
1993         case nir_instr_type_alu:
1994                 ntq_emit_alu(c, nir_instr_as_alu(instr));
1995                 break;
1996 
1997         case nir_instr_type_intrinsic:
1998                 ntq_emit_intrinsic(c, nir_instr_as_intrinsic(instr));
1999                 break;
2000 
2001         case nir_instr_type_load_const:
2002                 ntq_emit_load_const(c, nir_instr_as_load_const(instr));
2003                 break;
2004 
2005         case nir_instr_type_ssa_undef:
2006                 ntq_emit_ssa_undef(c, nir_instr_as_ssa_undef(instr));
2007                 break;
2008 
2009         case nir_instr_type_tex:
2010                 ntq_emit_tex(c, nir_instr_as_tex(instr));
2011                 break;
2012 
2013         case nir_instr_type_jump:
2014                 ntq_emit_jump(c, nir_instr_as_jump(instr));
2015                 break;
2016 
2017         default:
2018                 fprintf(stderr, "Unknown NIR instr type: ");
2019                 nir_print_instr(instr, stderr);
2020                 fprintf(stderr, "\n");
2021                 abort();
2022         }
2023 }
2024 
2025 static void
ntq_emit_block(struct vc4_compile * c,nir_block * block)2026 ntq_emit_block(struct vc4_compile *c, nir_block *block)
2027 {
2028         nir_foreach_instr(instr, block) {
2029                 ntq_emit_instr(c, instr);
2030         }
2031 }
2032 
2033 static void ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list);
2034 
2035 static void
ntq_emit_loop(struct vc4_compile * c,nir_loop * loop)2036 ntq_emit_loop(struct vc4_compile *c, nir_loop *loop)
2037 {
2038         if (!c->vc4->screen->has_control_flow) {
2039                 fprintf(stderr,
2040                         "loop support requires updated kernel.\n");
2041                 ntq_emit_cf_list(c, &loop->body);
2042                 return;
2043         }
2044 
2045         bool was_top_level = false;
2046         if (c->execute.file == QFILE_NULL) {
2047                 c->execute = qir_MOV(c, qir_uniform_ui(c, 0));
2048                 was_top_level = true;
2049         }
2050 
2051         struct qblock *save_loop_cont_block = c->loop_cont_block;
2052         struct qblock *save_loop_break_block = c->loop_break_block;
2053 
2054         c->loop_cont_block = qir_new_block(c);
2055         c->loop_break_block = qir_new_block(c);
2056 
2057         qir_link_blocks(c->cur_block, c->loop_cont_block);
2058         qir_set_emit_block(c, c->loop_cont_block);
2059         ntq_activate_execute_for_block(c);
2060 
2061         ntq_emit_cf_list(c, &loop->body);
2062 
2063         /* If anything had explicitly continued, or is here at the end of the
2064          * loop, then we need to loop again.  SF updates are masked by the
2065          * instruction's condition, so we can do the OR of the two conditions
2066          * within SF.
2067          */
2068         qir_SF(c, c->execute);
2069         struct qinst *cont_check =
2070                 qir_SUB_dest(c,
2071                              c->undef,
2072                              c->execute,
2073                              qir_uniform_ui(c, c->loop_cont_block->index));
2074         cont_check->cond = QPU_COND_ZC;
2075         cont_check->sf = true;
2076 
2077         qir_BRANCH(c, QPU_COND_BRANCH_ANY_ZS);
2078         qir_link_blocks(c->cur_block, c->loop_cont_block);
2079         qir_link_blocks(c->cur_block, c->loop_break_block);
2080 
2081         qir_set_emit_block(c, c->loop_break_block);
2082         if (was_top_level) {
2083                 c->execute = c->undef;
2084                 c->last_top_block = c->cur_block;
2085         } else {
2086                 ntq_activate_execute_for_block(c);
2087         }
2088 
2089         c->loop_break_block = save_loop_break_block;
2090         c->loop_cont_block = save_loop_cont_block;
2091 }
2092 
2093 static void
ntq_emit_function(struct vc4_compile * c,nir_function_impl * func)2094 ntq_emit_function(struct vc4_compile *c, nir_function_impl *func)
2095 {
2096         fprintf(stderr, "FUNCTIONS not handled.\n");
2097         abort();
2098 }
2099 
2100 static void
ntq_emit_cf_list(struct vc4_compile * c,struct exec_list * list)2101 ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list)
2102 {
2103         foreach_list_typed(nir_cf_node, node, node, list) {
2104                 switch (node->type) {
2105                 case nir_cf_node_block:
2106                         ntq_emit_block(c, nir_cf_node_as_block(node));
2107                         break;
2108 
2109                 case nir_cf_node_if:
2110                         ntq_emit_if(c, nir_cf_node_as_if(node));
2111                         break;
2112 
2113                 case nir_cf_node_loop:
2114                         ntq_emit_loop(c, nir_cf_node_as_loop(node));
2115                         break;
2116 
2117                 case nir_cf_node_function:
2118                         ntq_emit_function(c, nir_cf_node_as_function(node));
2119                         break;
2120 
2121                 default:
2122                         fprintf(stderr, "Unknown NIR node type\n");
2123                         abort();
2124                 }
2125         }
2126 }
2127 
2128 static void
ntq_emit_impl(struct vc4_compile * c,nir_function_impl * impl)2129 ntq_emit_impl(struct vc4_compile *c, nir_function_impl *impl)
2130 {
2131         ntq_setup_registers(c, &impl->registers);
2132         ntq_emit_cf_list(c, &impl->body);
2133 }
2134 
2135 static void
nir_to_qir(struct vc4_compile * c)2136 nir_to_qir(struct vc4_compile *c)
2137 {
2138         if (c->stage == QSTAGE_FRAG && c->s->info.fs.uses_discard)
2139                 c->discard = qir_MOV(c, qir_uniform_ui(c, 0));
2140 
2141         ntq_setup_inputs(c);
2142         ntq_setup_outputs(c);
2143 
2144         /* Find the main function and emit the body. */
2145         nir_foreach_function(function, c->s) {
2146                 assert(strcmp(function->name, "main") == 0);
2147                 assert(function->impl);
2148                 ntq_emit_impl(c, function->impl);
2149         }
2150 }
2151 
2152 static const nir_shader_compiler_options nir_options = {
2153         .lower_all_io_to_temps = true,
2154         .lower_extract_byte = true,
2155         .lower_extract_word = true,
2156         .lower_insert_byte = true,
2157         .lower_insert_word = true,
2158         .lower_fdiv = true,
2159         .lower_ffma16 = true,
2160         .lower_ffma32 = true,
2161         .lower_ffma64 = true,
2162         .lower_flrp32 = true,
2163         .lower_fmod = true,
2164         .lower_fpow = true,
2165         .lower_fsat = true,
2166         .lower_fsqrt = true,
2167         .lower_ldexp = true,
2168         .lower_fneg = true,
2169         .lower_ineg = true,
2170         .lower_rotate = true,
2171         .lower_to_scalar = true,
2172         .lower_umax = true,
2173         .lower_umin = true,
2174         .lower_isign = true,
2175         .has_fsub = true,
2176         .has_isub = true,
2177         .max_unroll_iterations = 32,
2178         .force_indirect_unrolling = (nir_var_shader_in | nir_var_shader_out | nir_var_function_temp),
2179 };
2180 
2181 const void *
vc4_screen_get_compiler_options(struct pipe_screen * pscreen,enum pipe_shader_ir ir,enum pipe_shader_type shader)2182 vc4_screen_get_compiler_options(struct pipe_screen *pscreen,
2183                                 enum pipe_shader_ir ir,
2184                                 enum pipe_shader_type shader)
2185 {
2186         return &nir_options;
2187 }
2188 
2189 static int
count_nir_instrs(nir_shader * nir)2190 count_nir_instrs(nir_shader *nir)
2191 {
2192         int count = 0;
2193         nir_foreach_function(function, nir) {
2194                 if (!function->impl)
2195                         continue;
2196                 nir_foreach_block(block, function->impl) {
2197                         nir_foreach_instr(instr, block)
2198                                 count++;
2199                 }
2200         }
2201         return count;
2202 }
2203 
2204 static struct vc4_compile *
vc4_shader_ntq(struct vc4_context * vc4,enum qstage stage,struct vc4_key * key,bool fs_threaded)2205 vc4_shader_ntq(struct vc4_context *vc4, enum qstage stage,
2206                struct vc4_key *key, bool fs_threaded)
2207 {
2208         struct vc4_compile *c = qir_compile_init();
2209 
2210         c->vc4 = vc4;
2211         c->stage = stage;
2212         c->shader_state = &key->shader_state->base;
2213         c->program_id = key->shader_state->program_id;
2214         c->variant_id =
2215                 p_atomic_inc_return(&key->shader_state->compiled_variant_count);
2216         c->fs_threaded = fs_threaded;
2217 
2218         c->key = key;
2219         switch (stage) {
2220         case QSTAGE_FRAG:
2221                 c->fs_key = (struct vc4_fs_key *)key;
2222                 if (c->fs_key->is_points) {
2223                         c->point_x = emit_fragment_varying(c, ~0, 0);
2224                         c->point_y = emit_fragment_varying(c, ~0, 0);
2225                 } else if (c->fs_key->is_lines) {
2226                         c->line_x = emit_fragment_varying(c, ~0, 0);
2227                 }
2228                 break;
2229         case QSTAGE_VERT:
2230                 c->vs_key = (struct vc4_vs_key *)key;
2231                 break;
2232         case QSTAGE_COORD:
2233                 c->vs_key = (struct vc4_vs_key *)key;
2234                 break;
2235         }
2236 
2237         c->s = nir_shader_clone(c, key->shader_state->base.ir.nir);
2238 
2239         if (stage == QSTAGE_FRAG) {
2240                 NIR_PASS_V(c->s, vc4_nir_lower_blend, c);
2241         }
2242 
2243         struct nir_lower_tex_options tex_options = {
2244                 .lower_txp = ~0,
2245 
2246                 /* Apply swizzles to all samplers. */
2247                 .swizzle_result = ~0,
2248                 .lower_invalid_implicit_lod = true,
2249         };
2250 
2251         /* Lower the format swizzle and ARB_texture_swizzle-style swizzle.
2252          * The format swizzling applies before sRGB decode, and
2253          * ARB_texture_swizzle is the last thing before returning the sample.
2254          */
2255         for (int i = 0; i < ARRAY_SIZE(key->tex); i++) {
2256                 enum pipe_format format = c->key->tex[i].format;
2257 
2258                 if (!format)
2259                         continue;
2260 
2261                 const uint8_t *format_swizzle = vc4_get_format_swizzle(format);
2262 
2263                 for (int j = 0; j < 4; j++) {
2264                         uint8_t arb_swiz = c->key->tex[i].swizzle[j];
2265 
2266                         if (arb_swiz <= 3) {
2267                                 tex_options.swizzles[i][j] =
2268                                         format_swizzle[arb_swiz];
2269                         } else {
2270                                 tex_options.swizzles[i][j] = arb_swiz;
2271                         }
2272                 }
2273 
2274                 if (util_format_is_srgb(format))
2275                         tex_options.lower_srgb |= (1 << i);
2276         }
2277 
2278         NIR_PASS_V(c->s, nir_lower_tex, &tex_options);
2279 
2280         if (c->key->ucp_enables) {
2281                 if (stage == QSTAGE_FRAG) {
2282                         NIR_PASS_V(c->s, nir_lower_clip_fs,
2283                                    c->key->ucp_enables, false);
2284                 } else {
2285                         NIR_PASS_V(c->s, nir_lower_clip_vs,
2286                                    c->key->ucp_enables, false, false, NULL);
2287                         NIR_PASS_V(c->s, nir_lower_io_to_scalar,
2288                                    nir_var_shader_out);
2289                 }
2290         }
2291 
2292         /* FS input scalarizing must happen after nir_lower_two_sided_color,
2293          * which only handles a vec4 at a time.  Similarly, VS output
2294          * scalarizing must happen after nir_lower_clip_vs.
2295          */
2296         if (c->stage == QSTAGE_FRAG)
2297                 NIR_PASS_V(c->s, nir_lower_io_to_scalar, nir_var_shader_in);
2298         else
2299                 NIR_PASS_V(c->s, nir_lower_io_to_scalar, nir_var_shader_out);
2300 
2301         NIR_PASS_V(c->s, vc4_nir_lower_io, c);
2302         NIR_PASS_V(c->s, vc4_nir_lower_txf_ms, c);
2303         nir_lower_idiv_options idiv_options = {
2304                 .imprecise_32bit_lowering = true,
2305                 .allow_fp16 = true,
2306         };
2307         NIR_PASS_V(c->s, nir_lower_idiv, &idiv_options);
2308 
2309         vc4_optimize_nir(c->s);
2310 
2311         /* Do late algebraic optimization to turn add(a, neg(b)) back into
2312          * subs, then the mandatory cleanup after algebraic.  Note that it may
2313          * produce fnegs, and if so then we need to keep running to squash
2314          * fneg(fneg(a)).
2315          */
2316         bool more_late_algebraic = true;
2317         while (more_late_algebraic) {
2318                 more_late_algebraic = false;
2319                 NIR_PASS(more_late_algebraic, c->s, nir_opt_algebraic_late);
2320                 NIR_PASS_V(c->s, nir_opt_constant_folding);
2321                 NIR_PASS_V(c->s, nir_copy_prop);
2322                 NIR_PASS_V(c->s, nir_opt_dce);
2323                 NIR_PASS_V(c->s, nir_opt_cse);
2324         }
2325 
2326         NIR_PASS_V(c->s, nir_lower_bool_to_int32);
2327 
2328         NIR_PASS_V(c->s, nir_convert_from_ssa, true);
2329 
2330         if (vc4_debug & VC4_DEBUG_SHADERDB) {
2331                 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d NIR instructions\n",
2332                         qir_get_stage_name(c->stage),
2333                         c->program_id, c->variant_id,
2334                         count_nir_instrs(c->s));
2335         }
2336 
2337         if (vc4_debug & VC4_DEBUG_NIR) {
2338                 fprintf(stderr, "%s prog %d/%d NIR:\n",
2339                         qir_get_stage_name(c->stage),
2340                         c->program_id, c->variant_id);
2341                 nir_print_shader(c->s, stderr);
2342         }
2343 
2344         nir_to_qir(c);
2345 
2346         switch (stage) {
2347         case QSTAGE_FRAG:
2348                 /* FS threading requires that the thread execute
2349                  * QPU_SIG_LAST_THREAD_SWITCH exactly once before terminating
2350                  * (with no other THRSW afterwards, obviously).  If we didn't
2351                  * fetch a texture at a top level block, this wouldn't be
2352                  * true.
2353                  */
2354                 if (c->fs_threaded && !c->last_thrsw_at_top_level) {
2355                         c->failed = true;
2356                         return c;
2357                 }
2358 
2359                 emit_frag_end(c);
2360                 break;
2361         case QSTAGE_VERT:
2362                 emit_vert_end(c,
2363                               c->vs_key->fs_inputs->input_slots,
2364                               c->vs_key->fs_inputs->num_inputs);
2365                 break;
2366         case QSTAGE_COORD:
2367                 emit_coord_end(c);
2368                 break;
2369         }
2370 
2371         if (vc4_debug & VC4_DEBUG_QIR) {
2372                 fprintf(stderr, "%s prog %d/%d pre-opt QIR:\n",
2373                         qir_get_stage_name(c->stage),
2374                         c->program_id, c->variant_id);
2375                 qir_dump(c);
2376                 fprintf(stderr, "\n");
2377         }
2378 
2379         qir_optimize(c);
2380         qir_lower_uniforms(c);
2381 
2382         qir_schedule_instructions(c);
2383         qir_emit_uniform_stream_resets(c);
2384 
2385         if (vc4_debug & VC4_DEBUG_QIR) {
2386                 fprintf(stderr, "%s prog %d/%d QIR:\n",
2387                         qir_get_stage_name(c->stage),
2388                         c->program_id, c->variant_id);
2389                 qir_dump(c);
2390                 fprintf(stderr, "\n");
2391         }
2392 
2393         qir_reorder_uniforms(c);
2394         vc4_generate_code(vc4, c);
2395 
2396         if (vc4_debug & VC4_DEBUG_SHADERDB) {
2397                 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d instructions\n",
2398                         qir_get_stage_name(c->stage),
2399                         c->program_id, c->variant_id,
2400                         c->qpu_inst_count);
2401                 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d uniforms\n",
2402                         qir_get_stage_name(c->stage),
2403                         c->program_id, c->variant_id,
2404                         c->num_uniforms);
2405         }
2406 
2407         ralloc_free(c->s);
2408 
2409         return c;
2410 }
2411 
2412 static void *
vc4_shader_state_create(struct pipe_context * pctx,const struct pipe_shader_state * cso)2413 vc4_shader_state_create(struct pipe_context *pctx,
2414                         const struct pipe_shader_state *cso)
2415 {
2416         struct vc4_context *vc4 = vc4_context(pctx);
2417         struct vc4_uncompiled_shader *so = CALLOC_STRUCT(vc4_uncompiled_shader);
2418         if (!so)
2419                 return NULL;
2420 
2421         so->program_id = vc4->next_uncompiled_program_id++;
2422 
2423         nir_shader *s;
2424 
2425         if (cso->type == PIPE_SHADER_IR_NIR) {
2426                 /* The backend takes ownership of the NIR shader on state
2427                  * creation.
2428                  */
2429                 s = cso->ir.nir;
2430        } else {
2431                 assert(cso->type == PIPE_SHADER_IR_TGSI);
2432 
2433                 if (vc4_debug & VC4_DEBUG_TGSI) {
2434                         fprintf(stderr, "prog %d TGSI:\n",
2435                                 so->program_id);
2436                         tgsi_dump(cso->tokens, 0);
2437                         fprintf(stderr, "\n");
2438                 }
2439                 s = tgsi_to_nir(cso->tokens, pctx->screen, false);
2440         }
2441 
2442         if (s->info.stage == MESA_SHADER_VERTEX)
2443                 NIR_PASS_V(s, nir_lower_point_size, 1.0f, 0.0f);
2444 
2445         NIR_PASS_V(s, nir_lower_io,
2446                    nir_var_shader_in | nir_var_shader_out | nir_var_uniform,
2447                    type_size, (nir_lower_io_options)0);
2448 
2449         NIR_PASS_V(s, nir_lower_regs_to_ssa);
2450         NIR_PASS_V(s, nir_normalize_cubemap_coords);
2451 
2452         NIR_PASS_V(s, nir_lower_load_const_to_scalar);
2453 
2454         vc4_optimize_nir(s);
2455 
2456         NIR_PASS_V(s, nir_remove_dead_variables, nir_var_function_temp, NULL);
2457 
2458         /* Garbage collect dead instructions */
2459         nir_sweep(s);
2460 
2461         so->base.type = PIPE_SHADER_IR_NIR;
2462         so->base.ir.nir = s;
2463 
2464         if (vc4_debug & VC4_DEBUG_NIR) {
2465                 fprintf(stderr, "%s prog %d NIR:\n",
2466                         gl_shader_stage_name(s->info.stage),
2467                         so->program_id);
2468                 nir_print_shader(s, stderr);
2469                 fprintf(stderr, "\n");
2470         }
2471 
2472         return so;
2473 }
2474 
2475 static void
copy_uniform_state_to_shader(struct vc4_compiled_shader * shader,struct vc4_compile * c)2476 copy_uniform_state_to_shader(struct vc4_compiled_shader *shader,
2477                              struct vc4_compile *c)
2478 {
2479         int count = c->num_uniforms;
2480         struct vc4_shader_uniform_info *uinfo = &shader->uniforms;
2481 
2482         uinfo->count = count;
2483         uinfo->data = ralloc_array(shader, uint32_t, count);
2484         memcpy(uinfo->data, c->uniform_data,
2485                count * sizeof(*uinfo->data));
2486         uinfo->contents = ralloc_array(shader, enum quniform_contents, count);
2487         memcpy(uinfo->contents, c->uniform_contents,
2488                count * sizeof(*uinfo->contents));
2489         uinfo->num_texture_samples = c->num_texture_samples;
2490 
2491         vc4_set_shader_uniform_dirty_flags(shader);
2492 }
2493 
2494 static void
vc4_setup_compiled_fs_inputs(struct vc4_context * vc4,struct vc4_compile * c,struct vc4_compiled_shader * shader)2495 vc4_setup_compiled_fs_inputs(struct vc4_context *vc4, struct vc4_compile *c,
2496                              struct vc4_compiled_shader *shader)
2497 {
2498         struct vc4_fs_inputs inputs;
2499 
2500         memset(&inputs, 0, sizeof(inputs));
2501         inputs.input_slots = ralloc_array(shader,
2502                                           struct vc4_varying_slot,
2503                                           c->num_input_slots);
2504 
2505         bool input_live[c->num_input_slots];
2506 
2507         memset(input_live, 0, sizeof(input_live));
2508         qir_for_each_inst_inorder(inst, c) {
2509                 for (int i = 0; i < qir_get_nsrc(inst); i++) {
2510                         if (inst->src[i].file == QFILE_VARY)
2511                                 input_live[inst->src[i].index] = true;
2512                 }
2513         }
2514 
2515         for (int i = 0; i < c->num_input_slots; i++) {
2516                 struct vc4_varying_slot *slot = &c->input_slots[i];
2517 
2518                 if (!input_live[i])
2519                         continue;
2520 
2521                 /* Skip non-VS-output inputs. */
2522                 if (slot->slot == (uint8_t)~0)
2523                         continue;
2524 
2525                 if (slot->slot == VARYING_SLOT_COL0 ||
2526                     slot->slot == VARYING_SLOT_COL1 ||
2527                     slot->slot == VARYING_SLOT_BFC0 ||
2528                     slot->slot == VARYING_SLOT_BFC1) {
2529                         shader->color_inputs |= (1 << inputs.num_inputs);
2530                 }
2531 
2532                 inputs.input_slots[inputs.num_inputs] = *slot;
2533                 inputs.num_inputs++;
2534         }
2535         shader->num_inputs = inputs.num_inputs;
2536 
2537         /* Add our set of inputs to the set of all inputs seen.  This way, we
2538          * can have a single pointer that identifies an FS inputs set,
2539          * allowing VS to avoid recompiling when the FS is recompiled (or a
2540          * new one is bound using separate shader objects) but the inputs
2541          * don't change.
2542          */
2543         struct set_entry *entry = _mesa_set_search(vc4->fs_inputs_set, &inputs);
2544         if (entry) {
2545                 shader->fs_inputs = entry->key;
2546                 ralloc_free(inputs.input_slots);
2547         } else {
2548                 struct vc4_fs_inputs *alloc_inputs;
2549 
2550                 alloc_inputs = rzalloc(vc4->fs_inputs_set, struct vc4_fs_inputs);
2551                 memcpy(alloc_inputs, &inputs, sizeof(inputs));
2552                 ralloc_steal(alloc_inputs, inputs.input_slots);
2553                 _mesa_set_add(vc4->fs_inputs_set, alloc_inputs);
2554 
2555                 shader->fs_inputs = alloc_inputs;
2556         }
2557 }
2558 
2559 static struct vc4_compiled_shader *
vc4_get_compiled_shader(struct vc4_context * vc4,enum qstage stage,struct vc4_key * key)2560 vc4_get_compiled_shader(struct vc4_context *vc4, enum qstage stage,
2561                         struct vc4_key *key)
2562 {
2563         struct hash_table *ht;
2564         uint32_t key_size;
2565         bool try_threading;
2566 
2567         if (stage == QSTAGE_FRAG) {
2568                 ht = vc4->fs_cache;
2569                 key_size = sizeof(struct vc4_fs_key);
2570                 try_threading = vc4->screen->has_threaded_fs;
2571         } else {
2572                 ht = vc4->vs_cache;
2573                 key_size = sizeof(struct vc4_vs_key);
2574                 try_threading = false;
2575         }
2576 
2577         struct vc4_compiled_shader *shader;
2578         struct hash_entry *entry = _mesa_hash_table_search(ht, key);
2579         if (entry)
2580                 return entry->data;
2581 
2582         struct vc4_compile *c = vc4_shader_ntq(vc4, stage, key, try_threading);
2583         /* If the FS failed to compile threaded, fall back to single threaded. */
2584         if (try_threading && c->failed) {
2585                 qir_compile_destroy(c);
2586                 c = vc4_shader_ntq(vc4, stage, key, false);
2587         }
2588 
2589         shader = rzalloc(NULL, struct vc4_compiled_shader);
2590 
2591         shader->program_id = vc4->next_compiled_program_id++;
2592         if (stage == QSTAGE_FRAG) {
2593                 vc4_setup_compiled_fs_inputs(vc4, c, shader);
2594 
2595                 /* Note: the temporary clone in c->s has been freed. */
2596                 nir_shader *orig_shader = key->shader_state->base.ir.nir;
2597                 if (orig_shader->info.outputs_written & (1 << FRAG_RESULT_DEPTH))
2598                         shader->disable_early_z = true;
2599         } else {
2600                 shader->num_inputs = c->num_inputs;
2601 
2602                 shader->vattr_offsets[0] = 0;
2603                 for (int i = 0; i < 8; i++) {
2604                         shader->vattr_offsets[i + 1] =
2605                                 shader->vattr_offsets[i] + c->vattr_sizes[i];
2606 
2607                         if (c->vattr_sizes[i])
2608                                 shader->vattrs_live |= (1 << i);
2609                 }
2610         }
2611 
2612         shader->failed = c->failed;
2613         if (c->failed) {
2614                 shader->failed = true;
2615         } else {
2616                 copy_uniform_state_to_shader(shader, c);
2617                 shader->bo = vc4_bo_alloc_shader(vc4->screen, c->qpu_insts,
2618                                                  c->qpu_inst_count *
2619                                                  sizeof(uint64_t));
2620         }
2621 
2622         shader->fs_threaded = c->fs_threaded;
2623 
2624         if ((vc4_debug & VC4_DEBUG_SHADERDB) && stage == QSTAGE_FRAG) {
2625                 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d FS threads\n",
2626                         qir_get_stage_name(c->stage),
2627                         c->program_id, c->variant_id,
2628                         1 + shader->fs_threaded);
2629         }
2630 
2631         qir_compile_destroy(c);
2632 
2633         struct vc4_key *dup_key;
2634         dup_key = rzalloc_size(shader, key_size); /* TODO: don't use rzalloc */
2635         memcpy(dup_key, key, key_size);
2636         _mesa_hash_table_insert(ht, dup_key, shader);
2637 
2638         return shader;
2639 }
2640 
2641 static void
vc4_setup_shared_key(struct vc4_context * vc4,struct vc4_key * key,struct vc4_texture_stateobj * texstate)2642 vc4_setup_shared_key(struct vc4_context *vc4, struct vc4_key *key,
2643                      struct vc4_texture_stateobj *texstate)
2644 {
2645         for (int i = 0; i < texstate->num_textures; i++) {
2646                 struct pipe_sampler_view *sampler = texstate->textures[i];
2647                 struct vc4_sampler_view *vc4_sampler = vc4_sampler_view(sampler);
2648                 struct pipe_sampler_state *sampler_state =
2649                         texstate->samplers[i];
2650 
2651                 if (!sampler)
2652                         continue;
2653 
2654                 key->tex[i].format = sampler->format;
2655                 key->tex[i].swizzle[0] = sampler->swizzle_r;
2656                 key->tex[i].swizzle[1] = sampler->swizzle_g;
2657                 key->tex[i].swizzle[2] = sampler->swizzle_b;
2658                 key->tex[i].swizzle[3] = sampler->swizzle_a;
2659 
2660                 if (sampler->texture->nr_samples > 1) {
2661                         key->tex[i].msaa_width = sampler->texture->width0;
2662                         key->tex[i].msaa_height = sampler->texture->height0;
2663                 } else if (sampler){
2664                         key->tex[i].compare_mode = sampler_state->compare_mode;
2665                         key->tex[i].compare_func = sampler_state->compare_func;
2666                         key->tex[i].wrap_s = sampler_state->wrap_s;
2667                         key->tex[i].wrap_t = sampler_state->wrap_t;
2668                         key->tex[i].force_first_level =
2669                                 vc4_sampler->force_first_level;
2670                 }
2671         }
2672 
2673         key->ucp_enables = vc4->rasterizer->base.clip_plane_enable;
2674 }
2675 
2676 static void
vc4_update_compiled_fs(struct vc4_context * vc4,uint8_t prim_mode)2677 vc4_update_compiled_fs(struct vc4_context *vc4, uint8_t prim_mode)
2678 {
2679         struct vc4_job *job = vc4->job;
2680         struct vc4_fs_key local_key;
2681         struct vc4_fs_key *key = &local_key;
2682 
2683         if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2684                             VC4_DIRTY_BLEND |
2685                             VC4_DIRTY_FRAMEBUFFER |
2686                             VC4_DIRTY_ZSA |
2687                             VC4_DIRTY_RASTERIZER |
2688                             VC4_DIRTY_SAMPLE_MASK |
2689                             VC4_DIRTY_FRAGTEX |
2690                             VC4_DIRTY_UNCOMPILED_FS |
2691                             VC4_DIRTY_UBO_1_SIZE))) {
2692                 return;
2693         }
2694 
2695         memset(key, 0, sizeof(*key));
2696         vc4_setup_shared_key(vc4, &key->base, &vc4->fragtex);
2697         key->base.shader_state = vc4->prog.bind_fs;
2698         key->is_points = (prim_mode == PIPE_PRIM_POINTS);
2699         key->is_lines = (prim_mode >= PIPE_PRIM_LINES &&
2700                          prim_mode <= PIPE_PRIM_LINE_STRIP);
2701         key->blend = vc4->blend->rt[0];
2702         if (vc4->blend->logicop_enable) {
2703                 key->logicop_func = vc4->blend->logicop_func;
2704         } else {
2705                 key->logicop_func = PIPE_LOGICOP_COPY;
2706         }
2707         if (job->msaa) {
2708                 key->msaa = vc4->rasterizer->base.multisample;
2709                 key->sample_coverage = (vc4->sample_mask != (1 << VC4_MAX_SAMPLES) - 1);
2710                 key->sample_alpha_to_coverage = vc4->blend->alpha_to_coverage;
2711                 key->sample_alpha_to_one = vc4->blend->alpha_to_one;
2712         }
2713 
2714         if (vc4->framebuffer.cbufs[0])
2715                 key->color_format = vc4->framebuffer.cbufs[0]->format;
2716 
2717         key->stencil_enabled = vc4->zsa->stencil_uniforms[0] != 0;
2718         key->stencil_twoside = vc4->zsa->stencil_uniforms[1] != 0;
2719         key->stencil_full_writemasks = vc4->zsa->stencil_uniforms[2] != 0;
2720         key->depth_enabled = (vc4->zsa->base.depth_enabled ||
2721                               key->stencil_enabled);
2722 
2723         if (key->is_points) {
2724                 key->point_sprite_mask =
2725                         vc4->rasterizer->base.sprite_coord_enable;
2726                 key->point_coord_upper_left =
2727                         (vc4->rasterizer->base.sprite_coord_mode ==
2728                          PIPE_SPRITE_COORD_UPPER_LEFT);
2729         }
2730 
2731         key->ubo_1_size = vc4->constbuf[PIPE_SHADER_FRAGMENT].cb[1].buffer_size;
2732 
2733         struct vc4_compiled_shader *old_fs = vc4->prog.fs;
2734         vc4->prog.fs = vc4_get_compiled_shader(vc4, QSTAGE_FRAG, &key->base);
2735         if (vc4->prog.fs == old_fs)
2736                 return;
2737 
2738         vc4->dirty |= VC4_DIRTY_COMPILED_FS;
2739 
2740         if (vc4->rasterizer->base.flatshade &&
2741             (!old_fs || vc4->prog.fs->color_inputs != old_fs->color_inputs)) {
2742                 vc4->dirty |= VC4_DIRTY_FLAT_SHADE_FLAGS;
2743         }
2744 
2745         if (!old_fs || vc4->prog.fs->fs_inputs != old_fs->fs_inputs)
2746                 vc4->dirty |= VC4_DIRTY_FS_INPUTS;
2747 }
2748 
2749 static void
vc4_update_compiled_vs(struct vc4_context * vc4,uint8_t prim_mode)2750 vc4_update_compiled_vs(struct vc4_context *vc4, uint8_t prim_mode)
2751 {
2752         struct vc4_vs_key local_key;
2753         struct vc4_vs_key *key = &local_key;
2754 
2755         if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2756                             VC4_DIRTY_RASTERIZER |
2757                             VC4_DIRTY_VERTTEX |
2758                             VC4_DIRTY_VTXSTATE |
2759                             VC4_DIRTY_UNCOMPILED_VS |
2760                             VC4_DIRTY_FS_INPUTS))) {
2761                 return;
2762         }
2763 
2764         memset(key, 0, sizeof(*key));
2765         vc4_setup_shared_key(vc4, &key->base, &vc4->verttex);
2766         key->base.shader_state = vc4->prog.bind_vs;
2767         key->fs_inputs = vc4->prog.fs->fs_inputs;
2768 
2769         for (int i = 0; i < ARRAY_SIZE(key->attr_formats); i++)
2770                 key->attr_formats[i] = vc4->vtx->pipe[i].src_format;
2771 
2772         key->per_vertex_point_size =
2773                 (prim_mode == PIPE_PRIM_POINTS &&
2774                  vc4->rasterizer->base.point_size_per_vertex);
2775 
2776         struct vc4_compiled_shader *vs =
2777                 vc4_get_compiled_shader(vc4, QSTAGE_VERT, &key->base);
2778         if (vs != vc4->prog.vs) {
2779                 vc4->prog.vs = vs;
2780                 vc4->dirty |= VC4_DIRTY_COMPILED_VS;
2781         }
2782 
2783         key->is_coord = true;
2784         /* Coord shaders don't care what the FS inputs are. */
2785         key->fs_inputs = NULL;
2786         struct vc4_compiled_shader *cs =
2787                 vc4_get_compiled_shader(vc4, QSTAGE_COORD, &key->base);
2788         if (cs != vc4->prog.cs) {
2789                 vc4->prog.cs = cs;
2790                 vc4->dirty |= VC4_DIRTY_COMPILED_CS;
2791         }
2792 }
2793 
2794 bool
vc4_update_compiled_shaders(struct vc4_context * vc4,uint8_t prim_mode)2795 vc4_update_compiled_shaders(struct vc4_context *vc4, uint8_t prim_mode)
2796 {
2797         vc4_update_compiled_fs(vc4, prim_mode);
2798         vc4_update_compiled_vs(vc4, prim_mode);
2799 
2800         return !(vc4->prog.cs->failed ||
2801                  vc4->prog.vs->failed ||
2802                  vc4->prog.fs->failed);
2803 }
2804 
2805 static uint32_t
fs_cache_hash(const void * key)2806 fs_cache_hash(const void *key)
2807 {
2808         return _mesa_hash_data(key, sizeof(struct vc4_fs_key));
2809 }
2810 
2811 static uint32_t
vs_cache_hash(const void * key)2812 vs_cache_hash(const void *key)
2813 {
2814         return _mesa_hash_data(key, sizeof(struct vc4_vs_key));
2815 }
2816 
2817 static bool
fs_cache_compare(const void * key1,const void * key2)2818 fs_cache_compare(const void *key1, const void *key2)
2819 {
2820         return memcmp(key1, key2, sizeof(struct vc4_fs_key)) == 0;
2821 }
2822 
2823 static bool
vs_cache_compare(const void * key1,const void * key2)2824 vs_cache_compare(const void *key1, const void *key2)
2825 {
2826         return memcmp(key1, key2, sizeof(struct vc4_vs_key)) == 0;
2827 }
2828 
2829 static uint32_t
fs_inputs_hash(const void * key)2830 fs_inputs_hash(const void *key)
2831 {
2832         const struct vc4_fs_inputs *inputs = key;
2833 
2834         return _mesa_hash_data(inputs->input_slots,
2835                                sizeof(*inputs->input_slots) *
2836                                inputs->num_inputs);
2837 }
2838 
2839 static bool
fs_inputs_compare(const void * key1,const void * key2)2840 fs_inputs_compare(const void *key1, const void *key2)
2841 {
2842         const struct vc4_fs_inputs *inputs1 = key1;
2843         const struct vc4_fs_inputs *inputs2 = key2;
2844 
2845         return (inputs1->num_inputs == inputs2->num_inputs &&
2846                 memcmp(inputs1->input_slots,
2847                        inputs2->input_slots,
2848                        sizeof(*inputs1->input_slots) *
2849                        inputs1->num_inputs) == 0);
2850 }
2851 
2852 static void
delete_from_cache_if_matches(struct hash_table * ht,struct vc4_compiled_shader ** last_compile,struct hash_entry * entry,struct vc4_uncompiled_shader * so)2853 delete_from_cache_if_matches(struct hash_table *ht,
2854                              struct vc4_compiled_shader **last_compile,
2855                              struct hash_entry *entry,
2856                              struct vc4_uncompiled_shader *so)
2857 {
2858         const struct vc4_key *key = entry->key;
2859 
2860         if (key->shader_state == so) {
2861                 struct vc4_compiled_shader *shader = entry->data;
2862                 _mesa_hash_table_remove(ht, entry);
2863                 vc4_bo_unreference(&shader->bo);
2864 
2865                 if (shader == *last_compile)
2866                         *last_compile = NULL;
2867 
2868                 ralloc_free(shader);
2869         }
2870 }
2871 
2872 static void
vc4_shader_state_delete(struct pipe_context * pctx,void * hwcso)2873 vc4_shader_state_delete(struct pipe_context *pctx, void *hwcso)
2874 {
2875         struct vc4_context *vc4 = vc4_context(pctx);
2876         struct vc4_uncompiled_shader *so = hwcso;
2877 
2878         hash_table_foreach(vc4->fs_cache, entry) {
2879                 delete_from_cache_if_matches(vc4->fs_cache, &vc4->prog.fs,
2880                                              entry, so);
2881         }
2882         hash_table_foreach(vc4->vs_cache, entry) {
2883                 delete_from_cache_if_matches(vc4->vs_cache, &vc4->prog.vs,
2884                                              entry, so);
2885         }
2886 
2887         ralloc_free(so->base.ir.nir);
2888         free(so);
2889 }
2890 
2891 static void
vc4_fp_state_bind(struct pipe_context * pctx,void * hwcso)2892 vc4_fp_state_bind(struct pipe_context *pctx, void *hwcso)
2893 {
2894         struct vc4_context *vc4 = vc4_context(pctx);
2895         vc4->prog.bind_fs = hwcso;
2896         vc4->dirty |= VC4_DIRTY_UNCOMPILED_FS;
2897 }
2898 
2899 static void
vc4_vp_state_bind(struct pipe_context * pctx,void * hwcso)2900 vc4_vp_state_bind(struct pipe_context *pctx, void *hwcso)
2901 {
2902         struct vc4_context *vc4 = vc4_context(pctx);
2903         vc4->prog.bind_vs = hwcso;
2904         vc4->dirty |= VC4_DIRTY_UNCOMPILED_VS;
2905 }
2906 
2907 void
vc4_program_init(struct pipe_context * pctx)2908 vc4_program_init(struct pipe_context *pctx)
2909 {
2910         struct vc4_context *vc4 = vc4_context(pctx);
2911 
2912         pctx->create_vs_state = vc4_shader_state_create;
2913         pctx->delete_vs_state = vc4_shader_state_delete;
2914 
2915         pctx->create_fs_state = vc4_shader_state_create;
2916         pctx->delete_fs_state = vc4_shader_state_delete;
2917 
2918         pctx->bind_fs_state = vc4_fp_state_bind;
2919         pctx->bind_vs_state = vc4_vp_state_bind;
2920 
2921         vc4->fs_cache = _mesa_hash_table_create(pctx, fs_cache_hash,
2922                                                 fs_cache_compare);
2923         vc4->vs_cache = _mesa_hash_table_create(pctx, vs_cache_hash,
2924                                                 vs_cache_compare);
2925         vc4->fs_inputs_set = _mesa_set_create(pctx, fs_inputs_hash,
2926                                               fs_inputs_compare);
2927 }
2928 
2929 void
vc4_program_fini(struct pipe_context * pctx)2930 vc4_program_fini(struct pipe_context *pctx)
2931 {
2932         struct vc4_context *vc4 = vc4_context(pctx);
2933 
2934         hash_table_foreach(vc4->fs_cache, entry) {
2935                 struct vc4_compiled_shader *shader = entry->data;
2936                 vc4_bo_unreference(&shader->bo);
2937                 ralloc_free(shader);
2938                 _mesa_hash_table_remove(vc4->fs_cache, entry);
2939         }
2940 
2941         hash_table_foreach(vc4->vs_cache, entry) {
2942                 struct vc4_compiled_shader *shader = entry->data;
2943                 vc4_bo_unreference(&shader->bo);
2944                 ralloc_free(shader);
2945                 _mesa_hash_table_remove(vc4->vs_cache, entry);
2946         }
2947 }
2948