1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23 #ifndef VK_UTIL_H
24 #define VK_UTIL_H
25
26 #include "util/bitscan.h"
27 #include "util/macros.h"
28 #include "compiler/shader_enums.h"
29 #include <stdlib.h>
30 #include <string.h>
31
32 #ifdef __cplusplus
33 extern "C" {
34 #endif
35
36 /* common inlines and macros for vulkan drivers */
37
38 #include <vulkan/vulkan.h>
39
40 struct vk_pnext_iterator {
41 VkBaseOutStructure *pos;
42 #ifndef NDEBUG
43 VkBaseOutStructure *half_pos;
44 unsigned idx;
45 #endif
46 bool done;
47 };
48
49 static inline struct vk_pnext_iterator
vk_pnext_iterator_init(void * start)50 vk_pnext_iterator_init(void *start)
51 {
52 struct vk_pnext_iterator iter;
53
54 iter.pos = (VkBaseOutStructure *)start;
55 #ifndef NDEBUG
56 iter.half_pos = (VkBaseOutStructure *)start;
57 iter.idx = 0;
58 #endif
59 iter.done = false;
60
61 return iter;
62 }
63
64 static inline struct vk_pnext_iterator
vk_pnext_iterator_init_const(const void * start)65 vk_pnext_iterator_init_const(const void *start)
66 {
67 return vk_pnext_iterator_init((void *)start);
68 }
69
70 static inline VkBaseOutStructure *
vk_pnext_iterator_next(struct vk_pnext_iterator * iter)71 vk_pnext_iterator_next(struct vk_pnext_iterator *iter)
72 {
73 iter->pos = iter->pos->pNext;
74
75 #ifndef NDEBUG
76 if (iter->idx++ & 1) {
77 /** This the "tortoise and the hare" algorithm. We increment
78 * chaser->pNext every other time *iter gets incremented. Because *iter
79 * is incrementing twice as fast as chaser->pNext, the distance between
80 * them in the list increases by one for each time we get here. If we
81 * have a loop, eventually, both iterators will be inside the loop and
82 * this distance will be an integer multiple of the loop length, at
83 * which point the two pointers will be equal.
84 */
85 iter->half_pos = iter->half_pos->pNext;
86 if (iter->half_pos == iter->pos)
87 assert(!"Vulkan input pNext chain has a loop!");
88 }
89 #endif
90
91 return iter->pos;
92 }
93
94 /* Because the outer loop only executes once, independently of what happens in
95 * the inner loop, breaks and continues should work exactly the same as if
96 * there were only one for loop.
97 */
98 #define vk_foreach_struct(__e, __start) \
99 for (struct vk_pnext_iterator __iter = vk_pnext_iterator_init(__start); \
100 !__iter.done; __iter.done = true) \
101 for (VkBaseOutStructure *__e = __iter.pos; \
102 __e; __e = vk_pnext_iterator_next(&__iter))
103
104 #define vk_foreach_struct_const(__e, __start) \
105 for (struct vk_pnext_iterator __iter = \
106 vk_pnext_iterator_init_const(__start); \
107 !__iter.done; __iter.done = true) \
108 for (const VkBaseInStructure *__e = (VkBaseInStructure *)__iter.pos; \
109 __e; __e = (VkBaseInStructure *)vk_pnext_iterator_next(&__iter))
110
111
112 /**
113 * A wrapper for a Vulkan output array. A Vulkan output array is one that
114 * follows the convention of the parameters to
115 * vkGetPhysicalDeviceQueueFamilyProperties().
116 *
117 * Example Usage:
118 *
119 * VkResult
120 * vkGetPhysicalDeviceQueueFamilyProperties(
121 * VkPhysicalDevice physicalDevice,
122 * uint32_t* pQueueFamilyPropertyCount,
123 * VkQueueFamilyProperties* pQueueFamilyProperties)
124 * {
125 * VK_OUTARRAY_MAKE_TYPED(VkQueueFamilyProperties, props,
126 * pQueueFamilyProperties,
127 * pQueueFamilyPropertyCount);
128 *
129 * vk_outarray_append_typed(VkQueueFamilyProperties, &props, p) {
130 * p->queueFlags = ...;
131 * p->queueCount = ...;
132 * }
133 *
134 * vk_outarray_append_typed(VkQueueFamilyProperties, &props, p) {
135 * p->queueFlags = ...;
136 * p->queueCount = ...;
137 * }
138 *
139 * return vk_outarray_status(&props);
140 * }
141 */
142 struct __vk_outarray {
143 /** May be null. */
144 void *data;
145
146 /**
147 * Capacity, in number of elements. Capacity is unlimited (UINT32_MAX) if
148 * data is null.
149 */
150 uint32_t cap;
151
152 /**
153 * Count of elements successfully written to the array. Every write is
154 * considered successful if data is null.
155 */
156 uint32_t *filled_len;
157
158 /**
159 * Count of elements that would have been written to the array if its
160 * capacity were sufficient. Vulkan functions often return VK_INCOMPLETE
161 * when `*filled_len < wanted_len`.
162 */
163 uint32_t wanted_len;
164 };
165
166 static inline void
__vk_outarray_init(struct __vk_outarray * a,void * data,uint32_t * restrict len)167 __vk_outarray_init(struct __vk_outarray *a,
168 void *data, uint32_t *restrict len)
169 {
170 a->data = data;
171 a->cap = *len;
172 a->filled_len = len;
173 *a->filled_len = 0;
174 a->wanted_len = 0;
175
176 if (a->data == NULL)
177 a->cap = UINT32_MAX;
178 }
179
180 static inline VkResult
__vk_outarray_status(const struct __vk_outarray * a)181 __vk_outarray_status(const struct __vk_outarray *a)
182 {
183 if (*a->filled_len < a->wanted_len)
184 return VK_INCOMPLETE;
185 else
186 return VK_SUCCESS;
187 }
188
189 static inline void *
__vk_outarray_next(struct __vk_outarray * a,size_t elem_size)190 __vk_outarray_next(struct __vk_outarray *a, size_t elem_size)
191 {
192 void *p = NULL;
193
194 a->wanted_len += 1;
195
196 if (*a->filled_len >= a->cap)
197 return NULL;
198
199 if (a->data != NULL)
200 p = (uint8_t *)a->data + (*a->filled_len) * elem_size;
201
202 *a->filled_len += 1;
203
204 return p;
205 }
206
207 #define vk_outarray(elem_t) \
208 struct { \
209 struct __vk_outarray base; \
210 elem_t meta[]; \
211 }
212
213 #define vk_outarray_typeof_elem(a) __typeof__((a)->meta[0])
214 #define vk_outarray_sizeof_elem(a) sizeof((a)->meta[0])
215
216 #define vk_outarray_init(a, data, len) \
217 __vk_outarray_init(&(a)->base, (data), (len))
218
219 #define VK_OUTARRAY_MAKE_TYPED(type, name, data, len) \
220 vk_outarray(type) name; \
221 vk_outarray_init(&name, (data), (len))
222
223 #define vk_outarray_status(a) \
224 __vk_outarray_status(&(a)->base)
225
226 #define vk_outarray_next(a) \
227 vk_outarray_next_typed(vk_outarray_typeof_elem(a), a)
228 #define vk_outarray_next_typed(type, a) \
229 ((type *) \
230 __vk_outarray_next(&(a)->base, vk_outarray_sizeof_elem(a)))
231
232 /**
233 * Append to a Vulkan output array.
234 *
235 * This is a block-based macro. For example:
236 *
237 * vk_outarray_append_typed(T, &a, elem) {
238 * elem->foo = ...;
239 * elem->bar = ...;
240 * }
241 *
242 * The array `a` has type `vk_outarray(elem_t) *`. It is usually declared with
243 * VK_OUTARRAY_MAKE_TYPED(). The variable `elem` is block-scoped and has type
244 * `elem_t *`.
245 *
246 * The macro unconditionally increments the array's `wanted_len`. If the array
247 * is not full, then the macro also increment its `filled_len` and then
248 * executes the block. When the block is executed, `elem` is non-null and
249 * points to the newly appended element.
250 */
251 #define vk_outarray_append_typed(type, a, elem) \
252 for (type *elem = vk_outarray_next_typed(type, a); \
253 elem != NULL; elem = NULL)
254
255 static inline void *
__vk_find_struct(void * start,VkStructureType sType)256 __vk_find_struct(void *start, VkStructureType sType)
257 {
258 vk_foreach_struct(s, start) {
259 if (s->sType == sType)
260 return s;
261 }
262
263 return NULL;
264 }
265
266 #define vk_find_struct(__start, __sType) \
267 __vk_find_struct((__start), VK_STRUCTURE_TYPE_##__sType)
268
269 #define vk_find_struct_const(__start, __sType) \
270 (const void *)__vk_find_struct((void *)(__start), VK_STRUCTURE_TYPE_##__sType)
271
272 static inline void
__vk_append_struct(void * start,void * element)273 __vk_append_struct(void *start, void *element)
274 {
275 vk_foreach_struct(s, start) {
276 if (s->pNext)
277 continue;
278
279 s->pNext = (struct VkBaseOutStructure *) element;
280 break;
281 }
282 }
283
284 uint32_t vk_get_driver_version(void);
285
286 uint32_t vk_get_version_override(void);
287
288 void vk_warn_non_conformant_implementation(const char *driver_name);
289
290 struct vk_pipeline_cache_header {
291 uint32_t header_size;
292 uint32_t header_version;
293 uint32_t vendor_id;
294 uint32_t device_id;
295 uint8_t uuid[VK_UUID_SIZE];
296 };
297
298 #define VK_EXT_OFFSET (1000000000UL)
299 #define VK_ENUM_EXTENSION(__enum) \
300 ((__enum) >= VK_EXT_OFFSET ? ((((__enum) - VK_EXT_OFFSET) / 1000UL) + 1) : 0)
301 #define VK_ENUM_OFFSET(__enum) \
302 ((__enum) >= VK_EXT_OFFSET ? ((__enum) % 1000) : (__enum))
303
304 #define typed_memcpy(dest, src, count) do { \
305 STATIC_ASSERT(sizeof(*(src)) == sizeof(*(dest))); \
306 memcpy((dest), (src), (count) * sizeof(*(src))); \
307 } while (0)
308
309 static inline gl_shader_stage
vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)310 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
311 {
312 assert(util_bitcount((uint32_t) vk_stage) == 1);
313 return (gl_shader_stage) (ffs((uint32_t) vk_stage) - 1);
314 }
315
316 static inline VkShaderStageFlagBits
mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)317 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
318 {
319 return (VkShaderStageFlagBits) (1 << ((uint32_t) mesa_stage));
320 }
321
322 /* iterate over a sequence of indexed multidraws for VK_EXT_multi_draw extension */
323 /* 'i' must be explicitly declared */
324 #define vk_foreach_multi_draw_indexed(_draw, _i, _pDrawInfo, _num_draws, _stride) \
325 for (const VkMultiDrawIndexedInfoEXT *_draw = (const void*)(_pDrawInfo); \
326 (_i) < (_num_draws); \
327 (_i)++, (_draw) = (const VkMultiDrawIndexedInfoEXT*)((const uint8_t*)(_draw) + (_stride)))
328
329 /* iterate over a sequence of multidraws for VK_EXT_multi_draw extension */
330 /* 'i' must be explicitly declared */
331 #define vk_foreach_multi_draw(_draw, _i, _pDrawInfo, _num_draws, _stride) \
332 for (const VkMultiDrawInfoEXT *_draw = (const void*)(_pDrawInfo); \
333 (_i) < (_num_draws); \
334 (_i)++, (_draw) = (const VkMultiDrawInfoEXT*)((const uint8_t*)(_draw) + (_stride)))
335
336
337 struct nir_spirv_specialization;
338
339 struct nir_spirv_specialization*
340 vk_spec_info_to_nir_spirv(const VkSpecializationInfo *spec_info,
341 uint32_t *out_num_spec_entries);
342
343 #define STACK_ARRAY_SIZE 8
344
345 #ifdef __cplusplus
346 #define STACK_ARRAY_ZERO_INIT {}
347 #else
348 #define STACK_ARRAY_ZERO_INIT {0}
349 #endif
350
351 #define STACK_ARRAY(type, name, size) \
352 type _stack_##name[STACK_ARRAY_SIZE] = STACK_ARRAY_ZERO_INIT; \
353 type *const name = \
354 ((size) <= STACK_ARRAY_SIZE ? _stack_##name : (type *)malloc((size) * sizeof(type)))
355
356 #define STACK_ARRAY_FINISH(name) \
357 if (name != _stack_##name) free(name)
358
359 #ifdef __cplusplus
360 }
361 #endif
362
363 #endif /* VK_UTIL_H */
364