• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31 
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/idtentry.h>
40 #include <asm/io.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mce.h>
45 #include <asm/mmu_context.h>
46 #include <asm/mshyperv.h>
47 #include <asm/mwait.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/virtext.h>
50 #include <asm/vmx.h>
51 
52 #include "capabilities.h"
53 #include "cpuid.h"
54 #include "evmcs.h"
55 #include "irq.h"
56 #include "kvm_cache_regs.h"
57 #include "lapic.h"
58 #include "mmu.h"
59 #include "nested.h"
60 #include "pmu.h"
61 #include "trace.h"
62 #include "vmcs.h"
63 #include "vmcs12.h"
64 #include "vmx.h"
65 #include "x86.h"
66 
67 MODULE_AUTHOR("Qumranet");
68 MODULE_LICENSE("GPL");
69 
70 #ifdef MODULE
71 static const struct x86_cpu_id vmx_cpu_id[] = {
72 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
73 	{}
74 };
75 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
76 #endif
77 
78 bool __read_mostly enable_vpid = 1;
79 module_param_named(vpid, enable_vpid, bool, 0444);
80 
81 static bool __read_mostly enable_vnmi = 1;
82 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
83 
84 bool __read_mostly flexpriority_enabled = 1;
85 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
86 
87 bool __read_mostly enable_ept = 1;
88 module_param_named(ept, enable_ept, bool, S_IRUGO);
89 
90 bool __read_mostly enable_unrestricted_guest = 1;
91 module_param_named(unrestricted_guest,
92 			enable_unrestricted_guest, bool, S_IRUGO);
93 
94 bool __read_mostly enable_ept_ad_bits = 1;
95 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
96 
97 static bool __read_mostly emulate_invalid_guest_state = true;
98 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
99 
100 static bool __read_mostly fasteoi = 1;
101 module_param(fasteoi, bool, S_IRUGO);
102 
103 bool __read_mostly enable_apicv = 1;
104 module_param(enable_apicv, bool, S_IRUGO);
105 
106 /*
107  * If nested=1, nested virtualization is supported, i.e., guests may use
108  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
109  * use VMX instructions.
110  */
111 static bool __read_mostly nested = 1;
112 module_param(nested, bool, S_IRUGO);
113 
114 bool __read_mostly enable_pml = 1;
115 module_param_named(pml, enable_pml, bool, S_IRUGO);
116 
117 static bool __read_mostly dump_invalid_vmcs = 0;
118 module_param(dump_invalid_vmcs, bool, 0644);
119 
120 #define MSR_BITMAP_MODE_X2APIC		1
121 #define MSR_BITMAP_MODE_X2APIC_APICV	2
122 
123 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
124 
125 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
126 static int __read_mostly cpu_preemption_timer_multi;
127 static bool __read_mostly enable_preemption_timer = 1;
128 #ifdef CONFIG_X86_64
129 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
130 #endif
131 
132 extern bool __read_mostly allow_smaller_maxphyaddr;
133 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
134 
135 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
136 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
137 #define KVM_VM_CR0_ALWAYS_ON				\
138 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | 	\
139 	 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
140 
141 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
142 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
143 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
144 
145 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
146 
147 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
148 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
149 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
150 	RTIT_STATUS_BYTECNT))
151 
152 /*
153  * List of MSRs that can be directly passed to the guest.
154  * In addition to these x2apic and PT MSRs are handled specially.
155  */
156 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
157 	MSR_IA32_SPEC_CTRL,
158 	MSR_IA32_PRED_CMD,
159 	MSR_IA32_TSC,
160 #ifdef CONFIG_X86_64
161 	MSR_FS_BASE,
162 	MSR_GS_BASE,
163 	MSR_KERNEL_GS_BASE,
164 #endif
165 	MSR_IA32_SYSENTER_CS,
166 	MSR_IA32_SYSENTER_ESP,
167 	MSR_IA32_SYSENTER_EIP,
168 	MSR_CORE_C1_RES,
169 	MSR_CORE_C3_RESIDENCY,
170 	MSR_CORE_C6_RESIDENCY,
171 	MSR_CORE_C7_RESIDENCY,
172 };
173 
174 /*
175  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
176  * ple_gap:    upper bound on the amount of time between two successive
177  *             executions of PAUSE in a loop. Also indicate if ple enabled.
178  *             According to test, this time is usually smaller than 128 cycles.
179  * ple_window: upper bound on the amount of time a guest is allowed to execute
180  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
181  *             less than 2^12 cycles
182  * Time is measured based on a counter that runs at the same rate as the TSC,
183  * refer SDM volume 3b section 21.6.13 & 22.1.3.
184  */
185 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
186 module_param(ple_gap, uint, 0444);
187 
188 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
189 module_param(ple_window, uint, 0444);
190 
191 /* Default doubles per-vcpu window every exit. */
192 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
193 module_param(ple_window_grow, uint, 0444);
194 
195 /* Default resets per-vcpu window every exit to ple_window. */
196 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
197 module_param(ple_window_shrink, uint, 0444);
198 
199 /* Default is to compute the maximum so we can never overflow. */
200 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
201 module_param(ple_window_max, uint, 0444);
202 
203 /* Default is SYSTEM mode, 1 for host-guest mode */
204 int __read_mostly pt_mode = PT_MODE_SYSTEM;
205 module_param(pt_mode, int, S_IRUGO);
206 
207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
209 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
210 
211 /* Storage for pre module init parameter parsing */
212 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
213 
214 static const struct {
215 	const char *option;
216 	bool for_parse;
217 } vmentry_l1d_param[] = {
218 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
219 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
220 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
221 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
222 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
223 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
224 };
225 
226 #define L1D_CACHE_ORDER 4
227 static void *vmx_l1d_flush_pages;
228 
229 /* Control for disabling CPU Fill buffer clear */
230 static bool __read_mostly vmx_fb_clear_ctrl_available;
231 
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)232 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
233 {
234 	struct page *page;
235 	unsigned int i;
236 
237 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
238 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
239 		return 0;
240 	}
241 
242 	if (!enable_ept) {
243 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
244 		return 0;
245 	}
246 
247 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
248 		u64 msr;
249 
250 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
251 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
252 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
253 			return 0;
254 		}
255 	}
256 
257 	/* If set to auto use the default l1tf mitigation method */
258 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
259 		switch (l1tf_mitigation) {
260 		case L1TF_MITIGATION_OFF:
261 			l1tf = VMENTER_L1D_FLUSH_NEVER;
262 			break;
263 		case L1TF_MITIGATION_FLUSH_NOWARN:
264 		case L1TF_MITIGATION_FLUSH:
265 		case L1TF_MITIGATION_FLUSH_NOSMT:
266 			l1tf = VMENTER_L1D_FLUSH_COND;
267 			break;
268 		case L1TF_MITIGATION_FULL:
269 		case L1TF_MITIGATION_FULL_FORCE:
270 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
271 			break;
272 		}
273 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
274 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
275 	}
276 
277 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
278 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
279 		/*
280 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
281 		 * lifetime and so should not be charged to a memcg.
282 		 */
283 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
284 		if (!page)
285 			return -ENOMEM;
286 		vmx_l1d_flush_pages = page_address(page);
287 
288 		/*
289 		 * Initialize each page with a different pattern in
290 		 * order to protect against KSM in the nested
291 		 * virtualization case.
292 		 */
293 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
294 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
295 			       PAGE_SIZE);
296 		}
297 	}
298 
299 	l1tf_vmx_mitigation = l1tf;
300 
301 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
302 		static_branch_enable(&vmx_l1d_should_flush);
303 	else
304 		static_branch_disable(&vmx_l1d_should_flush);
305 
306 	if (l1tf == VMENTER_L1D_FLUSH_COND)
307 		static_branch_enable(&vmx_l1d_flush_cond);
308 	else
309 		static_branch_disable(&vmx_l1d_flush_cond);
310 	return 0;
311 }
312 
vmentry_l1d_flush_parse(const char * s)313 static int vmentry_l1d_flush_parse(const char *s)
314 {
315 	unsigned int i;
316 
317 	if (s) {
318 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
319 			if (vmentry_l1d_param[i].for_parse &&
320 			    sysfs_streq(s, vmentry_l1d_param[i].option))
321 				return i;
322 		}
323 	}
324 	return -EINVAL;
325 }
326 
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)327 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
328 {
329 	int l1tf, ret;
330 
331 	l1tf = vmentry_l1d_flush_parse(s);
332 	if (l1tf < 0)
333 		return l1tf;
334 
335 	if (!boot_cpu_has(X86_BUG_L1TF))
336 		return 0;
337 
338 	/*
339 	 * Has vmx_init() run already? If not then this is the pre init
340 	 * parameter parsing. In that case just store the value and let
341 	 * vmx_init() do the proper setup after enable_ept has been
342 	 * established.
343 	 */
344 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
345 		vmentry_l1d_flush_param = l1tf;
346 		return 0;
347 	}
348 
349 	mutex_lock(&vmx_l1d_flush_mutex);
350 	ret = vmx_setup_l1d_flush(l1tf);
351 	mutex_unlock(&vmx_l1d_flush_mutex);
352 	return ret;
353 }
354 
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)355 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
356 {
357 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
358 		return sprintf(s, "???\n");
359 
360 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
361 }
362 
vmx_setup_fb_clear_ctrl(void)363 static void vmx_setup_fb_clear_ctrl(void)
364 {
365 	u64 msr;
366 
367 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) &&
368 	    !boot_cpu_has_bug(X86_BUG_MDS) &&
369 	    !boot_cpu_has_bug(X86_BUG_TAA)) {
370 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
371 		if (msr & ARCH_CAP_FB_CLEAR_CTRL)
372 			vmx_fb_clear_ctrl_available = true;
373 	}
374 }
375 
vmx_disable_fb_clear(struct vcpu_vmx * vmx)376 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
377 {
378 	u64 msr;
379 
380 	if (!vmx->disable_fb_clear)
381 		return;
382 
383 	msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
384 	msr |= FB_CLEAR_DIS;
385 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
386 	/* Cache the MSR value to avoid reading it later */
387 	vmx->msr_ia32_mcu_opt_ctrl = msr;
388 }
389 
vmx_enable_fb_clear(struct vcpu_vmx * vmx)390 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
391 {
392 	if (!vmx->disable_fb_clear)
393 		return;
394 
395 	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
396 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
397 }
398 
vmx_update_fb_clear_dis(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx)399 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
400 {
401 	vmx->disable_fb_clear = vmx_fb_clear_ctrl_available;
402 
403 	/*
404 	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
405 	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
406 	 * execute VERW.
407 	 */
408 	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
409 	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
410 	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
411 	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
412 	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
413 	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
414 		vmx->disable_fb_clear = false;
415 }
416 
417 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
418 	.set = vmentry_l1d_flush_set,
419 	.get = vmentry_l1d_flush_get,
420 };
421 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
422 
423 static u32 vmx_segment_access_rights(struct kvm_segment *var);
424 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
425 							  u32 msr, int type);
426 
427 void vmx_vmexit(void);
428 
429 #define vmx_insn_failed(fmt...)		\
430 do {					\
431 	WARN_ONCE(1, fmt);		\
432 	pr_warn_ratelimited(fmt);	\
433 } while (0)
434 
vmread_error(unsigned long field,bool fault)435 asmlinkage void vmread_error(unsigned long field, bool fault)
436 {
437 	if (fault)
438 		kvm_spurious_fault();
439 	else
440 		vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
441 }
442 
vmwrite_error(unsigned long field,unsigned long value)443 noinline void vmwrite_error(unsigned long field, unsigned long value)
444 {
445 	vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
446 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
447 }
448 
vmclear_error(struct vmcs * vmcs,u64 phys_addr)449 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
450 {
451 	vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
452 }
453 
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)454 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
455 {
456 	vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
457 }
458 
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)459 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
460 {
461 	vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
462 			ext, vpid, gva);
463 }
464 
invept_error(unsigned long ext,u64 eptp,gpa_t gpa)465 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
466 {
467 	vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
468 			ext, eptp, gpa);
469 }
470 
471 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
472 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
473 /*
474  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
475  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
476  */
477 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
478 
479 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
480 static DEFINE_SPINLOCK(vmx_vpid_lock);
481 
482 struct vmcs_config vmcs_config;
483 struct vmx_capability vmx_capability;
484 
485 #define VMX_SEGMENT_FIELD(seg)					\
486 	[VCPU_SREG_##seg] = {                                   \
487 		.selector = GUEST_##seg##_SELECTOR,		\
488 		.base = GUEST_##seg##_BASE,		   	\
489 		.limit = GUEST_##seg##_LIMIT,		   	\
490 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
491 	}
492 
493 static const struct kvm_vmx_segment_field {
494 	unsigned selector;
495 	unsigned base;
496 	unsigned limit;
497 	unsigned ar_bytes;
498 } kvm_vmx_segment_fields[] = {
499 	VMX_SEGMENT_FIELD(CS),
500 	VMX_SEGMENT_FIELD(DS),
501 	VMX_SEGMENT_FIELD(ES),
502 	VMX_SEGMENT_FIELD(FS),
503 	VMX_SEGMENT_FIELD(GS),
504 	VMX_SEGMENT_FIELD(SS),
505 	VMX_SEGMENT_FIELD(TR),
506 	VMX_SEGMENT_FIELD(LDTR),
507 };
508 
vmx_segment_cache_clear(struct vcpu_vmx * vmx)509 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
510 {
511 	vmx->segment_cache.bitmask = 0;
512 }
513 
514 static unsigned long host_idt_base;
515 
516 /*
517  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
518  * will emulate SYSCALL in legacy mode if the vendor string in guest
519  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
520  * support this emulation, IA32_STAR must always be included in
521  * vmx_uret_msrs_list[], even in i386 builds.
522  */
523 static const u32 vmx_uret_msrs_list[] = {
524 #ifdef CONFIG_X86_64
525 	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
526 #endif
527 	MSR_EFER, MSR_TSC_AUX, MSR_STAR,
528 	MSR_IA32_TSX_CTRL,
529 };
530 
531 #if IS_ENABLED(CONFIG_HYPERV)
532 static bool __read_mostly enlightened_vmcs = true;
533 module_param(enlightened_vmcs, bool, 0444);
534 
535 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
check_ept_pointer_match(struct kvm * kvm)536 static void check_ept_pointer_match(struct kvm *kvm)
537 {
538 	struct kvm_vcpu *vcpu;
539 	u64 tmp_eptp = INVALID_PAGE;
540 	int i;
541 
542 	kvm_for_each_vcpu(i, vcpu, kvm) {
543 		if (!VALID_PAGE(tmp_eptp)) {
544 			tmp_eptp = to_vmx(vcpu)->ept_pointer;
545 		} else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
546 			to_kvm_vmx(kvm)->ept_pointers_match
547 				= EPT_POINTERS_MISMATCH;
548 			return;
549 		}
550 	}
551 
552 	to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
553 }
554 
kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list * flush,void * data)555 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
556 		void *data)
557 {
558 	struct kvm_tlb_range *range = data;
559 
560 	return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
561 			range->pages);
562 }
563 
__hv_remote_flush_tlb_with_range(struct kvm * kvm,struct kvm_vcpu * vcpu,struct kvm_tlb_range * range)564 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
565 		struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
566 {
567 	u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
568 
569 	/*
570 	 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
571 	 * of the base of EPT PML4 table, strip off EPT configuration
572 	 * information.
573 	 */
574 	if (range)
575 		return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
576 				kvm_fill_hv_flush_list_func, (void *)range);
577 	else
578 		return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
579 }
580 
hv_remote_flush_tlb_with_range(struct kvm * kvm,struct kvm_tlb_range * range)581 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
582 		struct kvm_tlb_range *range)
583 {
584 	struct kvm_vcpu *vcpu;
585 	int ret = 0, i;
586 
587 	spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
588 
589 	if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
590 		check_ept_pointer_match(kvm);
591 
592 	if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
593 		kvm_for_each_vcpu(i, vcpu, kvm) {
594 			/* If ept_pointer is invalid pointer, bypass flush request. */
595 			if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
596 				ret |= __hv_remote_flush_tlb_with_range(
597 					kvm, vcpu, range);
598 		}
599 	} else {
600 		ret = __hv_remote_flush_tlb_with_range(kvm,
601 				kvm_get_vcpu(kvm, 0), range);
602 	}
603 
604 	spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
605 	return ret;
606 }
hv_remote_flush_tlb(struct kvm * kvm)607 static int hv_remote_flush_tlb(struct kvm *kvm)
608 {
609 	return hv_remote_flush_tlb_with_range(kvm, NULL);
610 }
611 
hv_enable_direct_tlbflush(struct kvm_vcpu * vcpu)612 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
613 {
614 	struct hv_enlightened_vmcs *evmcs;
615 	struct hv_partition_assist_pg **p_hv_pa_pg =
616 			&vcpu->kvm->arch.hyperv.hv_pa_pg;
617 	/*
618 	 * Synthetic VM-Exit is not enabled in current code and so All
619 	 * evmcs in singe VM shares same assist page.
620 	 */
621 	if (!*p_hv_pa_pg)
622 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
623 
624 	if (!*p_hv_pa_pg)
625 		return -ENOMEM;
626 
627 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
628 
629 	evmcs->partition_assist_page =
630 		__pa(*p_hv_pa_pg);
631 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
632 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
633 
634 	return 0;
635 }
636 
637 #endif /* IS_ENABLED(CONFIG_HYPERV) */
638 
639 /*
640  * Comment's format: document - errata name - stepping - processor name.
641  * Refer from
642  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
643  */
644 static u32 vmx_preemption_cpu_tfms[] = {
645 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
646 0x000206E6,
647 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
648 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
649 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
650 0x00020652,
651 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
652 0x00020655,
653 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
654 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
655 /*
656  * 320767.pdf - AAP86  - B1 -
657  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
658  */
659 0x000106E5,
660 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
661 0x000106A0,
662 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
663 0x000106A1,
664 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
665 0x000106A4,
666  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
667  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
668  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
669 0x000106A5,
670  /* Xeon E3-1220 V2 */
671 0x000306A8,
672 };
673 
cpu_has_broken_vmx_preemption_timer(void)674 static inline bool cpu_has_broken_vmx_preemption_timer(void)
675 {
676 	u32 eax = cpuid_eax(0x00000001), i;
677 
678 	/* Clear the reserved bits */
679 	eax &= ~(0x3U << 14 | 0xfU << 28);
680 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
681 		if (eax == vmx_preemption_cpu_tfms[i])
682 			return true;
683 
684 	return false;
685 }
686 
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)687 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
688 {
689 	return flexpriority_enabled && lapic_in_kernel(vcpu);
690 }
691 
report_flexpriority(void)692 static inline bool report_flexpriority(void)
693 {
694 	return flexpriority_enabled;
695 }
696 
possible_passthrough_msr_slot(u32 msr)697 static int possible_passthrough_msr_slot(u32 msr)
698 {
699 	u32 i;
700 
701 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
702 		if (vmx_possible_passthrough_msrs[i] == msr)
703 			return i;
704 
705 	return -ENOENT;
706 }
707 
is_valid_passthrough_msr(u32 msr)708 static bool is_valid_passthrough_msr(u32 msr)
709 {
710 	bool r;
711 
712 	switch (msr) {
713 	case 0x800 ... 0x8ff:
714 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
715 		return true;
716 	case MSR_IA32_RTIT_STATUS:
717 	case MSR_IA32_RTIT_OUTPUT_BASE:
718 	case MSR_IA32_RTIT_OUTPUT_MASK:
719 	case MSR_IA32_RTIT_CR3_MATCH:
720 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
721 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
722 		return true;
723 	}
724 
725 	r = possible_passthrough_msr_slot(msr) != -ENOENT;
726 
727 	WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
728 
729 	return r;
730 }
731 
__vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)732 static inline int __vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
733 {
734 	int i;
735 
736 	for (i = 0; i < vmx->nr_uret_msrs; ++i)
737 		if (vmx_uret_msrs_list[vmx->guest_uret_msrs[i].slot] == msr)
738 			return i;
739 	return -1;
740 }
741 
vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)742 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
743 {
744 	int i;
745 
746 	i = __vmx_find_uret_msr(vmx, msr);
747 	if (i >= 0)
748 		return &vmx->guest_uret_msrs[i];
749 	return NULL;
750 }
751 
vmx_set_guest_uret_msr(struct vcpu_vmx * vmx,struct vmx_uret_msr * msr,u64 data)752 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
753 				  struct vmx_uret_msr *msr, u64 data)
754 {
755 	int ret = 0;
756 
757 	u64 old_msr_data = msr->data;
758 	msr->data = data;
759 	if (msr - vmx->guest_uret_msrs < vmx->nr_active_uret_msrs) {
760 		preempt_disable();
761 		ret = kvm_set_user_return_msr(msr->slot, msr->data, msr->mask);
762 		preempt_enable();
763 		if (ret)
764 			msr->data = old_msr_data;
765 	}
766 	return ret;
767 }
768 
769 #ifdef CONFIG_KEXEC_CORE
crash_vmclear_local_loaded_vmcss(void)770 static void crash_vmclear_local_loaded_vmcss(void)
771 {
772 	int cpu = raw_smp_processor_id();
773 	struct loaded_vmcs *v;
774 
775 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
776 			    loaded_vmcss_on_cpu_link)
777 		vmcs_clear(v->vmcs);
778 }
779 #endif /* CONFIG_KEXEC_CORE */
780 
__loaded_vmcs_clear(void * arg)781 static void __loaded_vmcs_clear(void *arg)
782 {
783 	struct loaded_vmcs *loaded_vmcs = arg;
784 	int cpu = raw_smp_processor_id();
785 
786 	if (loaded_vmcs->cpu != cpu)
787 		return; /* vcpu migration can race with cpu offline */
788 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
789 		per_cpu(current_vmcs, cpu) = NULL;
790 
791 	vmcs_clear(loaded_vmcs->vmcs);
792 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
793 		vmcs_clear(loaded_vmcs->shadow_vmcs);
794 
795 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
796 
797 	/*
798 	 * Ensure all writes to loaded_vmcs, including deleting it from its
799 	 * current percpu list, complete before setting loaded_vmcs->vcpu to
800 	 * -1, otherwise a different cpu can see vcpu == -1 first and add
801 	 * loaded_vmcs to its percpu list before it's deleted from this cpu's
802 	 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
803 	 */
804 	smp_wmb();
805 
806 	loaded_vmcs->cpu = -1;
807 	loaded_vmcs->launched = 0;
808 }
809 
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)810 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
811 {
812 	int cpu = loaded_vmcs->cpu;
813 
814 	if (cpu != -1)
815 		smp_call_function_single(cpu,
816 			 __loaded_vmcs_clear, loaded_vmcs, 1);
817 }
818 
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)819 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
820 				       unsigned field)
821 {
822 	bool ret;
823 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
824 
825 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
826 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
827 		vmx->segment_cache.bitmask = 0;
828 	}
829 	ret = vmx->segment_cache.bitmask & mask;
830 	vmx->segment_cache.bitmask |= mask;
831 	return ret;
832 }
833 
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)834 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
835 {
836 	u16 *p = &vmx->segment_cache.seg[seg].selector;
837 
838 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
839 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
840 	return *p;
841 }
842 
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)843 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
844 {
845 	ulong *p = &vmx->segment_cache.seg[seg].base;
846 
847 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
848 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
849 	return *p;
850 }
851 
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)852 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
853 {
854 	u32 *p = &vmx->segment_cache.seg[seg].limit;
855 
856 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
857 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
858 	return *p;
859 }
860 
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)861 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
862 {
863 	u32 *p = &vmx->segment_cache.seg[seg].ar;
864 
865 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
866 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
867 	return *p;
868 }
869 
update_exception_bitmap(struct kvm_vcpu * vcpu)870 void update_exception_bitmap(struct kvm_vcpu *vcpu)
871 {
872 	u32 eb;
873 
874 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
875 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
876 	/*
877 	 * Guest access to VMware backdoor ports could legitimately
878 	 * trigger #GP because of TSS I/O permission bitmap.
879 	 * We intercept those #GP and allow access to them anyway
880 	 * as VMware does.
881 	 */
882 	if (enable_vmware_backdoor)
883 		eb |= (1u << GP_VECTOR);
884 	if ((vcpu->guest_debug &
885 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
886 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
887 		eb |= 1u << BP_VECTOR;
888 	if (to_vmx(vcpu)->rmode.vm86_active)
889 		eb = ~0;
890 	if (!vmx_need_pf_intercept(vcpu))
891 		eb &= ~(1u << PF_VECTOR);
892 
893 	/* When we are running a nested L2 guest and L1 specified for it a
894 	 * certain exception bitmap, we must trap the same exceptions and pass
895 	 * them to L1. When running L2, we will only handle the exceptions
896 	 * specified above if L1 did not want them.
897 	 */
898 	if (is_guest_mode(vcpu))
899 		eb |= get_vmcs12(vcpu)->exception_bitmap;
900         else {
901 		/*
902 		 * If EPT is enabled, #PF is only trapped if MAXPHYADDR is mismatched
903 		 * between guest and host.  In that case we only care about present
904 		 * faults.  For vmcs02, however, PFEC_MASK and PFEC_MATCH are set in
905 		 * prepare_vmcs02_rare.
906 		 */
907 		bool selective_pf_trap = enable_ept && (eb & (1u << PF_VECTOR));
908 		int mask = selective_pf_trap ? PFERR_PRESENT_MASK : 0;
909 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
910 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, mask);
911 	}
912 
913 	vmcs_write32(EXCEPTION_BITMAP, eb);
914 }
915 
916 /*
917  * Check if MSR is intercepted for currently loaded MSR bitmap.
918  */
msr_write_intercepted(struct vcpu_vmx * vmx,u32 msr)919 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
920 {
921 	unsigned long *msr_bitmap;
922 	int f = sizeof(unsigned long);
923 
924 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
925 		return true;
926 
927 	msr_bitmap = vmx->loaded_vmcs->msr_bitmap;
928 
929 	if (msr <= 0x1fff) {
930 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
931 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
932 		msr &= 0x1fff;
933 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
934 	}
935 
936 	return true;
937 }
938 
__vmx_vcpu_run_flags(struct vcpu_vmx * vmx)939 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
940 {
941 	unsigned int flags = 0;
942 
943 	if (vmx->loaded_vmcs->launched)
944 		flags |= VMX_RUN_VMRESUME;
945 
946 	/*
947 	 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
948 	 * to change it directly without causing a vmexit.  In that case read
949 	 * it after vmexit and store it in vmx->spec_ctrl.
950 	 */
951 	if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)))
952 		flags |= VMX_RUN_SAVE_SPEC_CTRL;
953 
954 	return flags;
955 }
956 
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)957 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
958 		unsigned long entry, unsigned long exit)
959 {
960 	vm_entry_controls_clearbit(vmx, entry);
961 	vm_exit_controls_clearbit(vmx, exit);
962 }
963 
vmx_find_loadstore_msr_slot(struct vmx_msrs * m,u32 msr)964 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
965 {
966 	unsigned int i;
967 
968 	for (i = 0; i < m->nr; ++i) {
969 		if (m->val[i].index == msr)
970 			return i;
971 	}
972 	return -ENOENT;
973 }
974 
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)975 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
976 {
977 	int i;
978 	struct msr_autoload *m = &vmx->msr_autoload;
979 
980 	switch (msr) {
981 	case MSR_EFER:
982 		if (cpu_has_load_ia32_efer()) {
983 			clear_atomic_switch_msr_special(vmx,
984 					VM_ENTRY_LOAD_IA32_EFER,
985 					VM_EXIT_LOAD_IA32_EFER);
986 			return;
987 		}
988 		break;
989 	case MSR_CORE_PERF_GLOBAL_CTRL:
990 		if (cpu_has_load_perf_global_ctrl()) {
991 			clear_atomic_switch_msr_special(vmx,
992 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
993 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
994 			return;
995 		}
996 		break;
997 	}
998 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
999 	if (i < 0)
1000 		goto skip_guest;
1001 	--m->guest.nr;
1002 	m->guest.val[i] = m->guest.val[m->guest.nr];
1003 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1004 
1005 skip_guest:
1006 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
1007 	if (i < 0)
1008 		return;
1009 
1010 	--m->host.nr;
1011 	m->host.val[i] = m->host.val[m->host.nr];
1012 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1013 }
1014 
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)1015 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1016 		unsigned long entry, unsigned long exit,
1017 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1018 		u64 guest_val, u64 host_val)
1019 {
1020 	vmcs_write64(guest_val_vmcs, guest_val);
1021 	if (host_val_vmcs != HOST_IA32_EFER)
1022 		vmcs_write64(host_val_vmcs, host_val);
1023 	vm_entry_controls_setbit(vmx, entry);
1024 	vm_exit_controls_setbit(vmx, exit);
1025 }
1026 
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)1027 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1028 				  u64 guest_val, u64 host_val, bool entry_only)
1029 {
1030 	int i, j = 0;
1031 	struct msr_autoload *m = &vmx->msr_autoload;
1032 
1033 	switch (msr) {
1034 	case MSR_EFER:
1035 		if (cpu_has_load_ia32_efer()) {
1036 			add_atomic_switch_msr_special(vmx,
1037 					VM_ENTRY_LOAD_IA32_EFER,
1038 					VM_EXIT_LOAD_IA32_EFER,
1039 					GUEST_IA32_EFER,
1040 					HOST_IA32_EFER,
1041 					guest_val, host_val);
1042 			return;
1043 		}
1044 		break;
1045 	case MSR_CORE_PERF_GLOBAL_CTRL:
1046 		if (cpu_has_load_perf_global_ctrl()) {
1047 			add_atomic_switch_msr_special(vmx,
1048 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1049 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1050 					GUEST_IA32_PERF_GLOBAL_CTRL,
1051 					HOST_IA32_PERF_GLOBAL_CTRL,
1052 					guest_val, host_val);
1053 			return;
1054 		}
1055 		break;
1056 	case MSR_IA32_PEBS_ENABLE:
1057 		/* PEBS needs a quiescent period after being disabled (to write
1058 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
1059 		 * provide that period, so a CPU could write host's record into
1060 		 * guest's memory.
1061 		 */
1062 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1063 	}
1064 
1065 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1066 	if (!entry_only)
1067 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
1068 
1069 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1070 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1071 		printk_once(KERN_WARNING "Not enough msr switch entries. "
1072 				"Can't add msr %x\n", msr);
1073 		return;
1074 	}
1075 	if (i < 0) {
1076 		i = m->guest.nr++;
1077 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1078 	}
1079 	m->guest.val[i].index = msr;
1080 	m->guest.val[i].value = guest_val;
1081 
1082 	if (entry_only)
1083 		return;
1084 
1085 	if (j < 0) {
1086 		j = m->host.nr++;
1087 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1088 	}
1089 	m->host.val[j].index = msr;
1090 	m->host.val[j].value = host_val;
1091 }
1092 
update_transition_efer(struct vcpu_vmx * vmx)1093 static bool update_transition_efer(struct vcpu_vmx *vmx)
1094 {
1095 	u64 guest_efer = vmx->vcpu.arch.efer;
1096 	u64 ignore_bits = 0;
1097 	int i;
1098 
1099 	/* Shadow paging assumes NX to be available.  */
1100 	if (!enable_ept)
1101 		guest_efer |= EFER_NX;
1102 
1103 	/*
1104 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1105 	 */
1106 	ignore_bits |= EFER_SCE;
1107 #ifdef CONFIG_X86_64
1108 	ignore_bits |= EFER_LMA | EFER_LME;
1109 	/* SCE is meaningful only in long mode on Intel */
1110 	if (guest_efer & EFER_LMA)
1111 		ignore_bits &= ~(u64)EFER_SCE;
1112 #endif
1113 
1114 	/*
1115 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1116 	 * On CPUs that support "load IA32_EFER", always switch EFER
1117 	 * atomically, since it's faster than switching it manually.
1118 	 */
1119 	if (cpu_has_load_ia32_efer() ||
1120 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1121 		if (!(guest_efer & EFER_LMA))
1122 			guest_efer &= ~EFER_LME;
1123 		if (guest_efer != host_efer)
1124 			add_atomic_switch_msr(vmx, MSR_EFER,
1125 					      guest_efer, host_efer, false);
1126 		else
1127 			clear_atomic_switch_msr(vmx, MSR_EFER);
1128 		return false;
1129 	}
1130 
1131 	i = __vmx_find_uret_msr(vmx, MSR_EFER);
1132 	if (i < 0)
1133 		return false;
1134 
1135 	clear_atomic_switch_msr(vmx, MSR_EFER);
1136 
1137 	guest_efer &= ~ignore_bits;
1138 	guest_efer |= host_efer & ignore_bits;
1139 
1140 	vmx->guest_uret_msrs[i].data = guest_efer;
1141 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1142 
1143 	return true;
1144 }
1145 
1146 #ifdef CONFIG_X86_32
1147 /*
1148  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1149  * VMCS rather than the segment table.  KVM uses this helper to figure
1150  * out the current bases to poke them into the VMCS before entry.
1151  */
segment_base(u16 selector)1152 static unsigned long segment_base(u16 selector)
1153 {
1154 	struct desc_struct *table;
1155 	unsigned long v;
1156 
1157 	if (!(selector & ~SEGMENT_RPL_MASK))
1158 		return 0;
1159 
1160 	table = get_current_gdt_ro();
1161 
1162 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1163 		u16 ldt_selector = kvm_read_ldt();
1164 
1165 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1166 			return 0;
1167 
1168 		table = (struct desc_struct *)segment_base(ldt_selector);
1169 	}
1170 	v = get_desc_base(&table[selector >> 3]);
1171 	return v;
1172 }
1173 #endif
1174 
pt_can_write_msr(struct vcpu_vmx * vmx)1175 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1176 {
1177 	return vmx_pt_mode_is_host_guest() &&
1178 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1179 }
1180 
pt_output_base_valid(struct kvm_vcpu * vcpu,u64 base)1181 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1182 {
1183 	/* The base must be 128-byte aligned and a legal physical address. */
1184 	return !kvm_vcpu_is_illegal_gpa(vcpu, base) && !(base & 0x7f);
1185 }
1186 
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1187 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1188 {
1189 	u32 i;
1190 
1191 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1192 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1193 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1194 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1195 	for (i = 0; i < addr_range; i++) {
1196 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1197 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1198 	}
1199 }
1200 
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1201 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1202 {
1203 	u32 i;
1204 
1205 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1206 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1207 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1208 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1209 	for (i = 0; i < addr_range; i++) {
1210 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1211 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1212 	}
1213 }
1214 
pt_guest_enter(struct vcpu_vmx * vmx)1215 static void pt_guest_enter(struct vcpu_vmx *vmx)
1216 {
1217 	if (vmx_pt_mode_is_system())
1218 		return;
1219 
1220 	/*
1221 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1222 	 * Save host state before VM entry.
1223 	 */
1224 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1225 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1226 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1227 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1228 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1229 	}
1230 }
1231 
pt_guest_exit(struct vcpu_vmx * vmx)1232 static void pt_guest_exit(struct vcpu_vmx *vmx)
1233 {
1234 	if (vmx_pt_mode_is_system())
1235 		return;
1236 
1237 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1238 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1239 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1240 	}
1241 
1242 	/* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1243 	wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1244 }
1245 
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1246 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1247 			unsigned long fs_base, unsigned long gs_base)
1248 {
1249 	if (unlikely(fs_sel != host->fs_sel)) {
1250 		if (!(fs_sel & 7))
1251 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1252 		else
1253 			vmcs_write16(HOST_FS_SELECTOR, 0);
1254 		host->fs_sel = fs_sel;
1255 	}
1256 	if (unlikely(gs_sel != host->gs_sel)) {
1257 		if (!(gs_sel & 7))
1258 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1259 		else
1260 			vmcs_write16(HOST_GS_SELECTOR, 0);
1261 		host->gs_sel = gs_sel;
1262 	}
1263 	if (unlikely(fs_base != host->fs_base)) {
1264 		vmcs_writel(HOST_FS_BASE, fs_base);
1265 		host->fs_base = fs_base;
1266 	}
1267 	if (unlikely(gs_base != host->gs_base)) {
1268 		vmcs_writel(HOST_GS_BASE, gs_base);
1269 		host->gs_base = gs_base;
1270 	}
1271 }
1272 
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1273 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1274 {
1275 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1276 	struct vmcs_host_state *host_state;
1277 #ifdef CONFIG_X86_64
1278 	int cpu = raw_smp_processor_id();
1279 #endif
1280 	unsigned long fs_base, gs_base;
1281 	u16 fs_sel, gs_sel;
1282 	int i;
1283 
1284 	vmx->req_immediate_exit = false;
1285 
1286 	/*
1287 	 * Note that guest MSRs to be saved/restored can also be changed
1288 	 * when guest state is loaded. This happens when guest transitions
1289 	 * to/from long-mode by setting MSR_EFER.LMA.
1290 	 */
1291 	if (!vmx->guest_uret_msrs_loaded) {
1292 		vmx->guest_uret_msrs_loaded = true;
1293 		for (i = 0; i < vmx->nr_active_uret_msrs; ++i)
1294 			kvm_set_user_return_msr(vmx->guest_uret_msrs[i].slot,
1295 						vmx->guest_uret_msrs[i].data,
1296 						vmx->guest_uret_msrs[i].mask);
1297 
1298 	}
1299 
1300     	if (vmx->nested.need_vmcs12_to_shadow_sync)
1301 		nested_sync_vmcs12_to_shadow(vcpu);
1302 
1303 	if (vmx->guest_state_loaded)
1304 		return;
1305 
1306 	host_state = &vmx->loaded_vmcs->host_state;
1307 
1308 	/*
1309 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1310 	 * allow segment selectors with cpl > 0 or ti == 1.
1311 	 */
1312 	host_state->ldt_sel = kvm_read_ldt();
1313 
1314 #ifdef CONFIG_X86_64
1315 	savesegment(ds, host_state->ds_sel);
1316 	savesegment(es, host_state->es_sel);
1317 
1318 	gs_base = cpu_kernelmode_gs_base(cpu);
1319 	if (likely(is_64bit_mm(current->mm))) {
1320 		current_save_fsgs();
1321 		fs_sel = current->thread.fsindex;
1322 		gs_sel = current->thread.gsindex;
1323 		fs_base = current->thread.fsbase;
1324 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1325 	} else {
1326 		savesegment(fs, fs_sel);
1327 		savesegment(gs, gs_sel);
1328 		fs_base = read_msr(MSR_FS_BASE);
1329 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1330 	}
1331 
1332 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1333 #else
1334 	savesegment(fs, fs_sel);
1335 	savesegment(gs, gs_sel);
1336 	fs_base = segment_base(fs_sel);
1337 	gs_base = segment_base(gs_sel);
1338 #endif
1339 
1340 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1341 	vmx->guest_state_loaded = true;
1342 }
1343 
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1344 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1345 {
1346 	struct vmcs_host_state *host_state;
1347 
1348 	if (!vmx->guest_state_loaded)
1349 		return;
1350 
1351 	host_state = &vmx->loaded_vmcs->host_state;
1352 
1353 	++vmx->vcpu.stat.host_state_reload;
1354 
1355 #ifdef CONFIG_X86_64
1356 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1357 #endif
1358 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1359 		kvm_load_ldt(host_state->ldt_sel);
1360 #ifdef CONFIG_X86_64
1361 		load_gs_index(host_state->gs_sel);
1362 #else
1363 		loadsegment(gs, host_state->gs_sel);
1364 #endif
1365 	}
1366 	if (host_state->fs_sel & 7)
1367 		loadsegment(fs, host_state->fs_sel);
1368 #ifdef CONFIG_X86_64
1369 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1370 		loadsegment(ds, host_state->ds_sel);
1371 		loadsegment(es, host_state->es_sel);
1372 	}
1373 #endif
1374 	invalidate_tss_limit();
1375 #ifdef CONFIG_X86_64
1376 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1377 #endif
1378 	load_fixmap_gdt(raw_smp_processor_id());
1379 	vmx->guest_state_loaded = false;
1380 	vmx->guest_uret_msrs_loaded = false;
1381 }
1382 
1383 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1384 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1385 {
1386 	preempt_disable();
1387 	if (vmx->guest_state_loaded)
1388 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1389 	preempt_enable();
1390 	return vmx->msr_guest_kernel_gs_base;
1391 }
1392 
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1393 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1394 {
1395 	preempt_disable();
1396 	if (vmx->guest_state_loaded)
1397 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1398 	preempt_enable();
1399 	vmx->msr_guest_kernel_gs_base = data;
1400 }
1401 #endif
1402 
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu,struct loaded_vmcs * buddy)1403 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1404 			struct loaded_vmcs *buddy)
1405 {
1406 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1407 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1408 	struct vmcs *prev;
1409 
1410 	if (!already_loaded) {
1411 		loaded_vmcs_clear(vmx->loaded_vmcs);
1412 		local_irq_disable();
1413 
1414 		/*
1415 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1416 		 * this cpu's percpu list, otherwise it may not yet be deleted
1417 		 * from its previous cpu's percpu list.  Pairs with the
1418 		 * smb_wmb() in __loaded_vmcs_clear().
1419 		 */
1420 		smp_rmb();
1421 
1422 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1423 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1424 		local_irq_enable();
1425 	}
1426 
1427 	prev = per_cpu(current_vmcs, cpu);
1428 	if (prev != vmx->loaded_vmcs->vmcs) {
1429 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1430 		vmcs_load(vmx->loaded_vmcs->vmcs);
1431 
1432 		/*
1433 		 * No indirect branch prediction barrier needed when switching
1434 		 * the active VMCS within a vCPU, unless IBRS is advertised to
1435 		 * the vCPU.  To minimize the number of IBPBs executed, KVM
1436 		 * performs IBPB on nested VM-Exit (a single nested transition
1437 		 * may switch the active VMCS multiple times).
1438 		 */
1439 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1440 			indirect_branch_prediction_barrier();
1441 	}
1442 
1443 	if (!already_loaded) {
1444 		void *gdt = get_current_gdt_ro();
1445 		unsigned long sysenter_esp;
1446 
1447 		/*
1448 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1449 		 * TLB entries from its previous association with the vCPU.
1450 		 */
1451 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1452 
1453 		/*
1454 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1455 		 * processors.  See 22.2.4.
1456 		 */
1457 		vmcs_writel(HOST_TR_BASE,
1458 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1459 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1460 
1461 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1462 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1463 
1464 		vmx->loaded_vmcs->cpu = cpu;
1465 	}
1466 
1467 	/* Setup TSC multiplier */
1468 	if (kvm_has_tsc_control &&
1469 	    vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1470 		decache_tsc_multiplier(vmx);
1471 }
1472 
1473 /*
1474  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1475  * vcpu mutex is already taken.
1476  */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1477 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1478 {
1479 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1480 
1481 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1482 
1483 	vmx_vcpu_pi_load(vcpu, cpu);
1484 
1485 	vmx->host_debugctlmsr = get_debugctlmsr();
1486 }
1487 
vmx_vcpu_put(struct kvm_vcpu * vcpu)1488 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1489 {
1490 	vmx_vcpu_pi_put(vcpu);
1491 
1492 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1493 }
1494 
emulation_required(struct kvm_vcpu * vcpu)1495 static bool emulation_required(struct kvm_vcpu *vcpu)
1496 {
1497 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1498 }
1499 
vmx_get_rflags(struct kvm_vcpu * vcpu)1500 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1501 {
1502 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1503 	unsigned long rflags, save_rflags;
1504 
1505 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1506 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1507 		rflags = vmcs_readl(GUEST_RFLAGS);
1508 		if (vmx->rmode.vm86_active) {
1509 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1510 			save_rflags = vmx->rmode.save_rflags;
1511 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1512 		}
1513 		vmx->rflags = rflags;
1514 	}
1515 	return vmx->rflags;
1516 }
1517 
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1518 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1519 {
1520 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1521 	unsigned long old_rflags;
1522 
1523 	if (is_unrestricted_guest(vcpu)) {
1524 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1525 		vmx->rflags = rflags;
1526 		vmcs_writel(GUEST_RFLAGS, rflags);
1527 		return;
1528 	}
1529 
1530 	old_rflags = vmx_get_rflags(vcpu);
1531 	vmx->rflags = rflags;
1532 	if (vmx->rmode.vm86_active) {
1533 		vmx->rmode.save_rflags = rflags;
1534 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1535 	}
1536 	vmcs_writel(GUEST_RFLAGS, rflags);
1537 
1538 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1539 		vmx->emulation_required = emulation_required(vcpu);
1540 }
1541 
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1542 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1543 {
1544 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1545 	int ret = 0;
1546 
1547 	if (interruptibility & GUEST_INTR_STATE_STI)
1548 		ret |= KVM_X86_SHADOW_INT_STI;
1549 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1550 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1551 
1552 	return ret;
1553 }
1554 
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1555 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1556 {
1557 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1558 	u32 interruptibility = interruptibility_old;
1559 
1560 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1561 
1562 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1563 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1564 	else if (mask & KVM_X86_SHADOW_INT_STI)
1565 		interruptibility |= GUEST_INTR_STATE_STI;
1566 
1567 	if ((interruptibility != interruptibility_old))
1568 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1569 }
1570 
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1571 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1572 {
1573 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1574 	unsigned long value;
1575 
1576 	/*
1577 	 * Any MSR write that attempts to change bits marked reserved will
1578 	 * case a #GP fault.
1579 	 */
1580 	if (data & vmx->pt_desc.ctl_bitmask)
1581 		return 1;
1582 
1583 	/*
1584 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1585 	 * result in a #GP unless the same write also clears TraceEn.
1586 	 */
1587 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1588 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1589 		return 1;
1590 
1591 	/*
1592 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1593 	 * and FabricEn would cause #GP, if
1594 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1595 	 */
1596 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1597 		!(data & RTIT_CTL_FABRIC_EN) &&
1598 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1599 					PT_CAP_single_range_output))
1600 		return 1;
1601 
1602 	/*
1603 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1604 	 * utilize encodings marked reserved will casue a #GP fault.
1605 	 */
1606 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1607 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1608 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1609 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1610 		return 1;
1611 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1612 						PT_CAP_cycle_thresholds);
1613 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1614 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1615 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1616 		return 1;
1617 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1618 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1619 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1620 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1621 		return 1;
1622 
1623 	/*
1624 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1625 	 * cause a #GP fault.
1626 	 */
1627 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1628 	if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1629 		return 1;
1630 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1631 	if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1632 		return 1;
1633 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1634 	if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1635 		return 1;
1636 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1637 	if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1638 		return 1;
1639 
1640 	return 0;
1641 }
1642 
vmx_can_emulate_instruction(struct kvm_vcpu * vcpu,void * insn,int insn_len)1643 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
1644 {
1645 	return true;
1646 }
1647 
skip_emulated_instruction(struct kvm_vcpu * vcpu)1648 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1649 {
1650 	unsigned long rip, orig_rip;
1651 
1652 	/*
1653 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1654 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1655 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1656 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1657 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1658 	 * i.e. we end up advancing IP with some random value.
1659 	 */
1660 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1661 	    to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1662 		orig_rip = kvm_rip_read(vcpu);
1663 		rip = orig_rip + vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1664 #ifdef CONFIG_X86_64
1665 		/*
1666 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1667 		 * mode, but just finding out that we are in 64-bit mode is
1668 		 * quite expensive.  Only do it if there was a carry.
1669 		 */
1670 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1671 			rip = (u32)rip;
1672 #endif
1673 		kvm_rip_write(vcpu, rip);
1674 	} else {
1675 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1676 			return 0;
1677 	}
1678 
1679 	/* skipping an emulated instruction also counts */
1680 	vmx_set_interrupt_shadow(vcpu, 0);
1681 
1682 	return 1;
1683 }
1684 
1685 /*
1686  * Recognizes a pending MTF VM-exit and records the nested state for later
1687  * delivery.
1688  */
vmx_update_emulated_instruction(struct kvm_vcpu * vcpu)1689 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1690 {
1691 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1692 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1693 
1694 	if (!is_guest_mode(vcpu))
1695 		return;
1696 
1697 	/*
1698 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1699 	 * T-bit traps. As instruction emulation is completed (i.e. at the
1700 	 * instruction boundary), any #DB exception pending delivery must be a
1701 	 * debug-trap. Record the pending MTF state to be delivered in
1702 	 * vmx_check_nested_events().
1703 	 */
1704 	if (nested_cpu_has_mtf(vmcs12) &&
1705 	    (!vcpu->arch.exception.pending ||
1706 	     vcpu->arch.exception.nr == DB_VECTOR))
1707 		vmx->nested.mtf_pending = true;
1708 	else
1709 		vmx->nested.mtf_pending = false;
1710 }
1711 
vmx_skip_emulated_instruction(struct kvm_vcpu * vcpu)1712 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1713 {
1714 	vmx_update_emulated_instruction(vcpu);
1715 	return skip_emulated_instruction(vcpu);
1716 }
1717 
vmx_clear_hlt(struct kvm_vcpu * vcpu)1718 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1719 {
1720 	/*
1721 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1722 	 * explicitly skip the instruction because if the HLT state is set,
1723 	 * then the instruction is already executing and RIP has already been
1724 	 * advanced.
1725 	 */
1726 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1727 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1728 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1729 }
1730 
vmx_queue_exception(struct kvm_vcpu * vcpu)1731 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1732 {
1733 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1734 	unsigned nr = vcpu->arch.exception.nr;
1735 	bool has_error_code = vcpu->arch.exception.has_error_code;
1736 	u32 error_code = vcpu->arch.exception.error_code;
1737 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1738 
1739 	kvm_deliver_exception_payload(vcpu);
1740 
1741 	if (has_error_code) {
1742 		/*
1743 		 * Despite the error code being architecturally defined as 32
1744 		 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1745 		 * VMX don't actually supporting setting bits 31:16.  Hardware
1746 		 * will (should) never provide a bogus error code, but AMD CPUs
1747 		 * do generate error codes with bits 31:16 set, and so KVM's
1748 		 * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1749 		 * the upper bits to avoid VM-Fail, losing information that
1750 		 * does't really exist is preferable to killing the VM.
1751 		 */
1752 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)error_code);
1753 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1754 	}
1755 
1756 	if (vmx->rmode.vm86_active) {
1757 		int inc_eip = 0;
1758 		if (kvm_exception_is_soft(nr))
1759 			inc_eip = vcpu->arch.event_exit_inst_len;
1760 		kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1761 		return;
1762 	}
1763 
1764 	WARN_ON_ONCE(vmx->emulation_required);
1765 
1766 	if (kvm_exception_is_soft(nr)) {
1767 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1768 			     vmx->vcpu.arch.event_exit_inst_len);
1769 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1770 	} else
1771 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1772 
1773 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1774 
1775 	vmx_clear_hlt(vcpu);
1776 }
1777 
vmx_setup_uret_msr(struct vcpu_vmx * vmx,unsigned int msr)1778 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr)
1779 {
1780 	struct vmx_uret_msr tmp;
1781 	int from, to;
1782 
1783 	from = __vmx_find_uret_msr(vmx, msr);
1784 	if (from < 0)
1785 		return;
1786 	to = vmx->nr_active_uret_msrs++;
1787 
1788 	tmp = vmx->guest_uret_msrs[to];
1789 	vmx->guest_uret_msrs[to] = vmx->guest_uret_msrs[from];
1790 	vmx->guest_uret_msrs[from] = tmp;
1791 }
1792 
1793 /*
1794  * Set up the vmcs to automatically save and restore system
1795  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1796  * mode, as fiddling with msrs is very expensive.
1797  */
setup_msrs(struct vcpu_vmx * vmx)1798 static void setup_msrs(struct vcpu_vmx *vmx)
1799 {
1800 	vmx->guest_uret_msrs_loaded = false;
1801 	vmx->nr_active_uret_msrs = 0;
1802 #ifdef CONFIG_X86_64
1803 	/*
1804 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1805 	 * when EFER.SCE is set.
1806 	 */
1807 	if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1808 		vmx_setup_uret_msr(vmx, MSR_STAR);
1809 		vmx_setup_uret_msr(vmx, MSR_LSTAR);
1810 		vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK);
1811 	}
1812 #endif
1813 	if (update_transition_efer(vmx))
1814 		vmx_setup_uret_msr(vmx, MSR_EFER);
1815 
1816 	if (guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1817 		vmx_setup_uret_msr(vmx, MSR_TSC_AUX);
1818 
1819 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL);
1820 
1821 	if (cpu_has_vmx_msr_bitmap())
1822 		vmx_update_msr_bitmap(&vmx->vcpu);
1823 }
1824 
vmx_write_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1825 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1826 {
1827 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1828 	u64 g_tsc_offset = 0;
1829 
1830 	/*
1831 	 * We're here if L1 chose not to trap WRMSR to TSC. According
1832 	 * to the spec, this should set L1's TSC; The offset that L1
1833 	 * set for L2 remains unchanged, and still needs to be added
1834 	 * to the newly set TSC to get L2's TSC.
1835 	 */
1836 	if (is_guest_mode(vcpu) &&
1837 	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1838 		g_tsc_offset = vmcs12->tsc_offset;
1839 
1840 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1841 				   vcpu->arch.tsc_offset - g_tsc_offset,
1842 				   offset);
1843 	vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1844 	return offset + g_tsc_offset;
1845 }
1846 
1847 /*
1848  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1849  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1850  * all guests if the "nested" module option is off, and can also be disabled
1851  * for a single guest by disabling its VMX cpuid bit.
1852  */
nested_vmx_allowed(struct kvm_vcpu * vcpu)1853 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1854 {
1855 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1856 }
1857 
vmx_feature_control_msr_valid(struct kvm_vcpu * vcpu,uint64_t val)1858 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1859 						 uint64_t val)
1860 {
1861 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1862 
1863 	return !(val & ~valid_bits);
1864 }
1865 
vmx_get_msr_feature(struct kvm_msr_entry * msr)1866 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1867 {
1868 	switch (msr->index) {
1869 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1870 		if (!nested)
1871 			return 1;
1872 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1873 	case MSR_IA32_PERF_CAPABILITIES:
1874 		msr->data = vmx_get_perf_capabilities();
1875 		return 0;
1876 	default:
1877 		return KVM_MSR_RET_INVALID;
1878 	}
1879 }
1880 
1881 /*
1882  * Reads an msr value (of 'msr_index') into 'pdata'.
1883  * Returns 0 on success, non-0 otherwise.
1884  * Assumes vcpu_load() was already called.
1885  */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1886 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1887 {
1888 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1889 	struct vmx_uret_msr *msr;
1890 	u32 index;
1891 
1892 	switch (msr_info->index) {
1893 #ifdef CONFIG_X86_64
1894 	case MSR_FS_BASE:
1895 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1896 		break;
1897 	case MSR_GS_BASE:
1898 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1899 		break;
1900 	case MSR_KERNEL_GS_BASE:
1901 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1902 		break;
1903 #endif
1904 	case MSR_EFER:
1905 		return kvm_get_msr_common(vcpu, msr_info);
1906 	case MSR_IA32_TSX_CTRL:
1907 		if (!msr_info->host_initiated &&
1908 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1909 			return 1;
1910 		goto find_uret_msr;
1911 	case MSR_IA32_UMWAIT_CONTROL:
1912 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1913 			return 1;
1914 
1915 		msr_info->data = vmx->msr_ia32_umwait_control;
1916 		break;
1917 	case MSR_IA32_SPEC_CTRL:
1918 		if (!msr_info->host_initiated &&
1919 		    !guest_has_spec_ctrl_msr(vcpu))
1920 			return 1;
1921 
1922 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1923 		break;
1924 	case MSR_IA32_SYSENTER_CS:
1925 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1926 		break;
1927 	case MSR_IA32_SYSENTER_EIP:
1928 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1929 		break;
1930 	case MSR_IA32_SYSENTER_ESP:
1931 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1932 		break;
1933 	case MSR_IA32_BNDCFGS:
1934 		if (!kvm_mpx_supported() ||
1935 		    (!msr_info->host_initiated &&
1936 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1937 			return 1;
1938 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1939 		break;
1940 	case MSR_IA32_MCG_EXT_CTL:
1941 		if (!msr_info->host_initiated &&
1942 		    !(vmx->msr_ia32_feature_control &
1943 		      FEAT_CTL_LMCE_ENABLED))
1944 			return 1;
1945 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1946 		break;
1947 	case MSR_IA32_FEAT_CTL:
1948 		msr_info->data = vmx->msr_ia32_feature_control;
1949 		break;
1950 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1951 		if (!nested_vmx_allowed(vcpu))
1952 			return 1;
1953 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1954 				    &msr_info->data))
1955 			return 1;
1956 		/*
1957 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
1958 		 * instead of just ignoring the features, different Hyper-V
1959 		 * versions are either trying to use them and fail or do some
1960 		 * sanity checking and refuse to boot. Filter all unsupported
1961 		 * features out.
1962 		 */
1963 		if (!msr_info->host_initiated &&
1964 		    vmx->nested.enlightened_vmcs_enabled)
1965 			nested_evmcs_filter_control_msr(msr_info->index,
1966 							&msr_info->data);
1967 		break;
1968 	case MSR_IA32_RTIT_CTL:
1969 		if (!vmx_pt_mode_is_host_guest())
1970 			return 1;
1971 		msr_info->data = vmx->pt_desc.guest.ctl;
1972 		break;
1973 	case MSR_IA32_RTIT_STATUS:
1974 		if (!vmx_pt_mode_is_host_guest())
1975 			return 1;
1976 		msr_info->data = vmx->pt_desc.guest.status;
1977 		break;
1978 	case MSR_IA32_RTIT_CR3_MATCH:
1979 		if (!vmx_pt_mode_is_host_guest() ||
1980 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1981 						PT_CAP_cr3_filtering))
1982 			return 1;
1983 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1984 		break;
1985 	case MSR_IA32_RTIT_OUTPUT_BASE:
1986 		if (!vmx_pt_mode_is_host_guest() ||
1987 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1988 					PT_CAP_topa_output) &&
1989 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1990 					PT_CAP_single_range_output)))
1991 			return 1;
1992 		msr_info->data = vmx->pt_desc.guest.output_base;
1993 		break;
1994 	case MSR_IA32_RTIT_OUTPUT_MASK:
1995 		if (!vmx_pt_mode_is_host_guest() ||
1996 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1997 					PT_CAP_topa_output) &&
1998 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1999 					PT_CAP_single_range_output)))
2000 			return 1;
2001 		msr_info->data = vmx->pt_desc.guest.output_mask;
2002 		break;
2003 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2004 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2005 		if (!vmx_pt_mode_is_host_guest() ||
2006 			(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2007 					PT_CAP_num_address_ranges)))
2008 			return 1;
2009 		if (index % 2)
2010 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2011 		else
2012 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2013 		break;
2014 	case MSR_TSC_AUX:
2015 		if (!msr_info->host_initiated &&
2016 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2017 			return 1;
2018 		goto find_uret_msr;
2019 	default:
2020 	find_uret_msr:
2021 		msr = vmx_find_uret_msr(vmx, msr_info->index);
2022 		if (msr) {
2023 			msr_info->data = msr->data;
2024 			break;
2025 		}
2026 		return kvm_get_msr_common(vcpu, msr_info);
2027 	}
2028 
2029 	return 0;
2030 }
2031 
nested_vmx_truncate_sysenter_addr(struct kvm_vcpu * vcpu,u64 data)2032 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2033 						    u64 data)
2034 {
2035 #ifdef CONFIG_X86_64
2036 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2037 		return (u32)data;
2038 #endif
2039 	return (unsigned long)data;
2040 }
2041 
2042 /*
2043  * Writes msr value into the appropriate "register".
2044  * Returns 0 on success, non-0 otherwise.
2045  * Assumes vcpu_load() was already called.
2046  */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2047 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2048 {
2049 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2050 	struct vmx_uret_msr *msr;
2051 	int ret = 0;
2052 	u32 msr_index = msr_info->index;
2053 	u64 data = msr_info->data;
2054 	u32 index;
2055 
2056 	switch (msr_index) {
2057 	case MSR_EFER:
2058 		ret = kvm_set_msr_common(vcpu, msr_info);
2059 		break;
2060 #ifdef CONFIG_X86_64
2061 	case MSR_FS_BASE:
2062 		vmx_segment_cache_clear(vmx);
2063 		vmcs_writel(GUEST_FS_BASE, data);
2064 		break;
2065 	case MSR_GS_BASE:
2066 		vmx_segment_cache_clear(vmx);
2067 		vmcs_writel(GUEST_GS_BASE, data);
2068 		break;
2069 	case MSR_KERNEL_GS_BASE:
2070 		vmx_write_guest_kernel_gs_base(vmx, data);
2071 		break;
2072 #endif
2073 	case MSR_IA32_SYSENTER_CS:
2074 		if (is_guest_mode(vcpu))
2075 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2076 		vmcs_write32(GUEST_SYSENTER_CS, data);
2077 		break;
2078 	case MSR_IA32_SYSENTER_EIP:
2079 		if (is_guest_mode(vcpu)) {
2080 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2081 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2082 		}
2083 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2084 		break;
2085 	case MSR_IA32_SYSENTER_ESP:
2086 		if (is_guest_mode(vcpu)) {
2087 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2088 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2089 		}
2090 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2091 		break;
2092 	case MSR_IA32_DEBUGCTLMSR:
2093 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2094 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2095 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2096 
2097 		ret = kvm_set_msr_common(vcpu, msr_info);
2098 		break;
2099 
2100 	case MSR_IA32_BNDCFGS:
2101 		if (!kvm_mpx_supported() ||
2102 		    (!msr_info->host_initiated &&
2103 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2104 			return 1;
2105 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2106 		    (data & MSR_IA32_BNDCFGS_RSVD))
2107 			return 1;
2108 		vmcs_write64(GUEST_BNDCFGS, data);
2109 		break;
2110 	case MSR_IA32_UMWAIT_CONTROL:
2111 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2112 			return 1;
2113 
2114 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2115 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2116 			return 1;
2117 
2118 		vmx->msr_ia32_umwait_control = data;
2119 		break;
2120 	case MSR_IA32_SPEC_CTRL:
2121 		if (!msr_info->host_initiated &&
2122 		    !guest_has_spec_ctrl_msr(vcpu))
2123 			return 1;
2124 
2125 		if (kvm_spec_ctrl_test_value(data))
2126 			return 1;
2127 
2128 		vmx->spec_ctrl = data;
2129 		if (!data)
2130 			break;
2131 
2132 		/*
2133 		 * For non-nested:
2134 		 * When it's written (to non-zero) for the first time, pass
2135 		 * it through.
2136 		 *
2137 		 * For nested:
2138 		 * The handling of the MSR bitmap for L2 guests is done in
2139 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2140 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2141 		 * in the merging. We update the vmcs01 here for L1 as well
2142 		 * since it will end up touching the MSR anyway now.
2143 		 */
2144 		vmx_disable_intercept_for_msr(vcpu,
2145 					      MSR_IA32_SPEC_CTRL,
2146 					      MSR_TYPE_RW);
2147 		break;
2148 	case MSR_IA32_TSX_CTRL:
2149 		if (!msr_info->host_initiated &&
2150 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2151 			return 1;
2152 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2153 			return 1;
2154 		goto find_uret_msr;
2155 	case MSR_IA32_PRED_CMD:
2156 		if (!msr_info->host_initiated &&
2157 		    !guest_has_pred_cmd_msr(vcpu))
2158 			return 1;
2159 
2160 		if (data & ~PRED_CMD_IBPB)
2161 			return 1;
2162 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2163 			return 1;
2164 		if (!data)
2165 			break;
2166 
2167 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2168 
2169 		/*
2170 		 * For non-nested:
2171 		 * When it's written (to non-zero) for the first time, pass
2172 		 * it through.
2173 		 *
2174 		 * For nested:
2175 		 * The handling of the MSR bitmap for L2 guests is done in
2176 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2177 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2178 		 * in the merging.
2179 		 */
2180 		vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2181 		break;
2182 	case MSR_IA32_CR_PAT:
2183 		if (!kvm_pat_valid(data))
2184 			return 1;
2185 
2186 		if (is_guest_mode(vcpu) &&
2187 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2188 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2189 
2190 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2191 			vmcs_write64(GUEST_IA32_PAT, data);
2192 			vcpu->arch.pat = data;
2193 			break;
2194 		}
2195 		ret = kvm_set_msr_common(vcpu, msr_info);
2196 		break;
2197 	case MSR_IA32_TSC_ADJUST:
2198 		ret = kvm_set_msr_common(vcpu, msr_info);
2199 		break;
2200 	case MSR_IA32_MCG_EXT_CTL:
2201 		if ((!msr_info->host_initiated &&
2202 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2203 		       FEAT_CTL_LMCE_ENABLED)) ||
2204 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2205 			return 1;
2206 		vcpu->arch.mcg_ext_ctl = data;
2207 		break;
2208 	case MSR_IA32_FEAT_CTL:
2209 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
2210 		    (to_vmx(vcpu)->msr_ia32_feature_control &
2211 		     FEAT_CTL_LOCKED && !msr_info->host_initiated))
2212 			return 1;
2213 		vmx->msr_ia32_feature_control = data;
2214 		if (msr_info->host_initiated && data == 0)
2215 			vmx_leave_nested(vcpu);
2216 		break;
2217 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2218 		if (!msr_info->host_initiated)
2219 			return 1; /* they are read-only */
2220 		if (!nested_vmx_allowed(vcpu))
2221 			return 1;
2222 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2223 	case MSR_IA32_RTIT_CTL:
2224 		if (!vmx_pt_mode_is_host_guest() ||
2225 			vmx_rtit_ctl_check(vcpu, data) ||
2226 			vmx->nested.vmxon)
2227 			return 1;
2228 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2229 		vmx->pt_desc.guest.ctl = data;
2230 		pt_update_intercept_for_msr(vcpu);
2231 		break;
2232 	case MSR_IA32_RTIT_STATUS:
2233 		if (!pt_can_write_msr(vmx))
2234 			return 1;
2235 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2236 			return 1;
2237 		vmx->pt_desc.guest.status = data;
2238 		break;
2239 	case MSR_IA32_RTIT_CR3_MATCH:
2240 		if (!pt_can_write_msr(vmx))
2241 			return 1;
2242 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2243 					   PT_CAP_cr3_filtering))
2244 			return 1;
2245 		vmx->pt_desc.guest.cr3_match = data;
2246 		break;
2247 	case MSR_IA32_RTIT_OUTPUT_BASE:
2248 		if (!pt_can_write_msr(vmx))
2249 			return 1;
2250 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2251 					   PT_CAP_topa_output) &&
2252 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2253 					   PT_CAP_single_range_output))
2254 			return 1;
2255 		if (!pt_output_base_valid(vcpu, data))
2256 			return 1;
2257 		vmx->pt_desc.guest.output_base = data;
2258 		break;
2259 	case MSR_IA32_RTIT_OUTPUT_MASK:
2260 		if (!pt_can_write_msr(vmx))
2261 			return 1;
2262 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2263 					   PT_CAP_topa_output) &&
2264 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2265 					   PT_CAP_single_range_output))
2266 			return 1;
2267 		vmx->pt_desc.guest.output_mask = data;
2268 		break;
2269 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2270 		if (!pt_can_write_msr(vmx))
2271 			return 1;
2272 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2273 		if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2274 						       PT_CAP_num_address_ranges))
2275 			return 1;
2276 		if (is_noncanonical_address(data, vcpu))
2277 			return 1;
2278 		if (index % 2)
2279 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2280 		else
2281 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2282 		break;
2283 	case MSR_TSC_AUX:
2284 		if (!msr_info->host_initiated &&
2285 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2286 			return 1;
2287 		/* Check reserved bit, higher 32 bits should be zero */
2288 		if ((data >> 32) != 0)
2289 			return 1;
2290 		goto find_uret_msr;
2291 
2292 	default:
2293 	find_uret_msr:
2294 		msr = vmx_find_uret_msr(vmx, msr_index);
2295 		if (msr)
2296 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2297 		else
2298 			ret = kvm_set_msr_common(vcpu, msr_info);
2299 	}
2300 
2301 	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2302 	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2303 		vmx_update_fb_clear_dis(vcpu, vmx);
2304 
2305 	return ret;
2306 }
2307 
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2308 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2309 {
2310 	unsigned long guest_owned_bits;
2311 
2312 	kvm_register_mark_available(vcpu, reg);
2313 
2314 	switch (reg) {
2315 	case VCPU_REGS_RSP:
2316 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2317 		break;
2318 	case VCPU_REGS_RIP:
2319 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2320 		break;
2321 	case VCPU_EXREG_PDPTR:
2322 		if (enable_ept)
2323 			ept_save_pdptrs(vcpu);
2324 		break;
2325 	case VCPU_EXREG_CR0:
2326 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2327 
2328 		vcpu->arch.cr0 &= ~guest_owned_bits;
2329 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2330 		break;
2331 	case VCPU_EXREG_CR3:
2332 		if (is_unrestricted_guest(vcpu) ||
2333 		    (enable_ept && is_paging(vcpu)))
2334 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2335 		break;
2336 	case VCPU_EXREG_CR4:
2337 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2338 
2339 		vcpu->arch.cr4 &= ~guest_owned_bits;
2340 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2341 		break;
2342 	default:
2343 		WARN_ON_ONCE(1);
2344 		break;
2345 	}
2346 }
2347 
cpu_has_kvm_support(void)2348 static __init int cpu_has_kvm_support(void)
2349 {
2350 	return cpu_has_vmx();
2351 }
2352 
vmx_disabled_by_bios(void)2353 static __init int vmx_disabled_by_bios(void)
2354 {
2355 	return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2356 	       !boot_cpu_has(X86_FEATURE_VMX);
2357 }
2358 
kvm_cpu_vmxon(u64 vmxon_pointer)2359 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2360 {
2361 	u64 msr;
2362 
2363 	cr4_set_bits(X86_CR4_VMXE);
2364 	intel_pt_handle_vmx(1);
2365 
2366 	asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2367 			  _ASM_EXTABLE(1b, %l[fault])
2368 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2369 			  : : fault);
2370 	return 0;
2371 
2372 fault:
2373 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2374 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2375 	intel_pt_handle_vmx(0);
2376 	cr4_clear_bits(X86_CR4_VMXE);
2377 
2378 	return -EFAULT;
2379 }
2380 
hardware_enable(void)2381 static int hardware_enable(void)
2382 {
2383 	int cpu = raw_smp_processor_id();
2384 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2385 	int r;
2386 
2387 	if (cr4_read_shadow() & X86_CR4_VMXE)
2388 		return -EBUSY;
2389 
2390 	/*
2391 	 * This can happen if we hot-added a CPU but failed to allocate
2392 	 * VP assist page for it.
2393 	 */
2394 	if (static_branch_unlikely(&enable_evmcs) &&
2395 	    !hv_get_vp_assist_page(cpu))
2396 		return -EFAULT;
2397 
2398 	r = kvm_cpu_vmxon(phys_addr);
2399 	if (r)
2400 		return r;
2401 
2402 	if (enable_ept)
2403 		ept_sync_global();
2404 
2405 	return 0;
2406 }
2407 
vmclear_local_loaded_vmcss(void)2408 static void vmclear_local_loaded_vmcss(void)
2409 {
2410 	int cpu = raw_smp_processor_id();
2411 	struct loaded_vmcs *v, *n;
2412 
2413 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2414 				 loaded_vmcss_on_cpu_link)
2415 		__loaded_vmcs_clear(v);
2416 }
2417 
2418 
2419 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2420  * tricks.
2421  */
kvm_cpu_vmxoff(void)2422 static void kvm_cpu_vmxoff(void)
2423 {
2424 	asm volatile (__ex("vmxoff"));
2425 
2426 	intel_pt_handle_vmx(0);
2427 	cr4_clear_bits(X86_CR4_VMXE);
2428 }
2429 
hardware_disable(void)2430 static void hardware_disable(void)
2431 {
2432 	vmclear_local_loaded_vmcss();
2433 	kvm_cpu_vmxoff();
2434 }
2435 
2436 /*
2437  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2438  * directly instead of going through cpu_has(), to ensure KVM is trapping
2439  * ENCLS whenever it's supported in hardware.  It does not matter whether
2440  * the host OS supports or has enabled SGX.
2441  */
cpu_has_sgx(void)2442 static bool cpu_has_sgx(void)
2443 {
2444 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2445 }
2446 
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2447 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2448 				      u32 msr, u32 *result)
2449 {
2450 	u32 vmx_msr_low, vmx_msr_high;
2451 	u32 ctl = ctl_min | ctl_opt;
2452 
2453 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2454 
2455 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2456 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2457 
2458 	/* Ensure minimum (required) set of control bits are supported. */
2459 	if (ctl_min & ~ctl)
2460 		return -EIO;
2461 
2462 	*result = ctl;
2463 	return 0;
2464 }
2465 
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2466 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2467 				    struct vmx_capability *vmx_cap)
2468 {
2469 	u32 vmx_msr_low, vmx_msr_high;
2470 	u32 min, opt, min2, opt2;
2471 	u32 _pin_based_exec_control = 0;
2472 	u32 _cpu_based_exec_control = 0;
2473 	u32 _cpu_based_2nd_exec_control = 0;
2474 	u32 _vmexit_control = 0;
2475 	u32 _vmentry_control = 0;
2476 
2477 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2478 	min = CPU_BASED_HLT_EXITING |
2479 #ifdef CONFIG_X86_64
2480 	      CPU_BASED_CR8_LOAD_EXITING |
2481 	      CPU_BASED_CR8_STORE_EXITING |
2482 #endif
2483 	      CPU_BASED_CR3_LOAD_EXITING |
2484 	      CPU_BASED_CR3_STORE_EXITING |
2485 	      CPU_BASED_UNCOND_IO_EXITING |
2486 	      CPU_BASED_MOV_DR_EXITING |
2487 	      CPU_BASED_USE_TSC_OFFSETTING |
2488 	      CPU_BASED_MWAIT_EXITING |
2489 	      CPU_BASED_MONITOR_EXITING |
2490 	      CPU_BASED_INVLPG_EXITING |
2491 	      CPU_BASED_RDPMC_EXITING;
2492 
2493 	opt = CPU_BASED_TPR_SHADOW |
2494 	      CPU_BASED_USE_MSR_BITMAPS |
2495 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2496 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2497 				&_cpu_based_exec_control) < 0)
2498 		return -EIO;
2499 #ifdef CONFIG_X86_64
2500 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2501 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2502 					   ~CPU_BASED_CR8_STORE_EXITING;
2503 #endif
2504 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2505 		min2 = 0;
2506 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2507 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2508 			SECONDARY_EXEC_WBINVD_EXITING |
2509 			SECONDARY_EXEC_ENABLE_VPID |
2510 			SECONDARY_EXEC_ENABLE_EPT |
2511 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2512 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2513 			SECONDARY_EXEC_DESC |
2514 			SECONDARY_EXEC_ENABLE_RDTSCP |
2515 			SECONDARY_EXEC_ENABLE_INVPCID |
2516 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
2517 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2518 			SECONDARY_EXEC_SHADOW_VMCS |
2519 			SECONDARY_EXEC_XSAVES |
2520 			SECONDARY_EXEC_RDSEED_EXITING |
2521 			SECONDARY_EXEC_RDRAND_EXITING |
2522 			SECONDARY_EXEC_ENABLE_PML |
2523 			SECONDARY_EXEC_TSC_SCALING |
2524 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2525 			SECONDARY_EXEC_PT_USE_GPA |
2526 			SECONDARY_EXEC_PT_CONCEAL_VMX |
2527 			SECONDARY_EXEC_ENABLE_VMFUNC;
2528 		if (cpu_has_sgx())
2529 			opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2530 		if (adjust_vmx_controls(min2, opt2,
2531 					MSR_IA32_VMX_PROCBASED_CTLS2,
2532 					&_cpu_based_2nd_exec_control) < 0)
2533 			return -EIO;
2534 	}
2535 #ifndef CONFIG_X86_64
2536 	if (!(_cpu_based_2nd_exec_control &
2537 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2538 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2539 #endif
2540 
2541 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2542 		_cpu_based_2nd_exec_control &= ~(
2543 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2544 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2545 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2546 
2547 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2548 		&vmx_cap->ept, &vmx_cap->vpid);
2549 
2550 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2551 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2552 		   enabled */
2553 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2554 					     CPU_BASED_CR3_STORE_EXITING |
2555 					     CPU_BASED_INVLPG_EXITING);
2556 	} else if (vmx_cap->ept) {
2557 		vmx_cap->ept = 0;
2558 		pr_warn_once("EPT CAP should not exist if not support "
2559 				"1-setting enable EPT VM-execution control\n");
2560 	}
2561 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2562 		vmx_cap->vpid) {
2563 		vmx_cap->vpid = 0;
2564 		pr_warn_once("VPID CAP should not exist if not support "
2565 				"1-setting enable VPID VM-execution control\n");
2566 	}
2567 
2568 	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2569 #ifdef CONFIG_X86_64
2570 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2571 #endif
2572 	opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2573 	      VM_EXIT_LOAD_IA32_PAT |
2574 	      VM_EXIT_LOAD_IA32_EFER |
2575 	      VM_EXIT_CLEAR_BNDCFGS |
2576 	      VM_EXIT_PT_CONCEAL_PIP |
2577 	      VM_EXIT_CLEAR_IA32_RTIT_CTL;
2578 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2579 				&_vmexit_control) < 0)
2580 		return -EIO;
2581 
2582 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2583 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2584 		 PIN_BASED_VMX_PREEMPTION_TIMER;
2585 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2586 				&_pin_based_exec_control) < 0)
2587 		return -EIO;
2588 
2589 	if (cpu_has_broken_vmx_preemption_timer())
2590 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2591 	if (!(_cpu_based_2nd_exec_control &
2592 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2593 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2594 
2595 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2596 	opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2597 	      VM_ENTRY_LOAD_IA32_PAT |
2598 	      VM_ENTRY_LOAD_IA32_EFER |
2599 	      VM_ENTRY_LOAD_BNDCFGS |
2600 	      VM_ENTRY_PT_CONCEAL_PIP |
2601 	      VM_ENTRY_LOAD_IA32_RTIT_CTL;
2602 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2603 				&_vmentry_control) < 0)
2604 		return -EIO;
2605 
2606 	/*
2607 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2608 	 * can't be used due to an errata where VM Exit may incorrectly clear
2609 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2610 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2611 	 */
2612 	if (boot_cpu_data.x86 == 0x6) {
2613 		switch (boot_cpu_data.x86_model) {
2614 		case 26: /* AAK155 */
2615 		case 30: /* AAP115 */
2616 		case 37: /* AAT100 */
2617 		case 44: /* BC86,AAY89,BD102 */
2618 		case 46: /* BA97 */
2619 			_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2620 			_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2621 			pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2622 					"does not work properly. Using workaround\n");
2623 			break;
2624 		default:
2625 			break;
2626 		}
2627 	}
2628 
2629 
2630 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2631 
2632 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2633 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2634 		return -EIO;
2635 
2636 #ifdef CONFIG_X86_64
2637 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2638 	if (vmx_msr_high & (1u<<16))
2639 		return -EIO;
2640 #endif
2641 
2642 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2643 	if (((vmx_msr_high >> 18) & 15) != 6)
2644 		return -EIO;
2645 
2646 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2647 	vmcs_conf->order = get_order(vmcs_conf->size);
2648 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2649 
2650 	vmcs_conf->revision_id = vmx_msr_low;
2651 
2652 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2653 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2654 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2655 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2656 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2657 
2658 #if IS_ENABLED(CONFIG_HYPERV)
2659 	if (enlightened_vmcs)
2660 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2661 #endif
2662 
2663 	return 0;
2664 }
2665 
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2666 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2667 {
2668 	int node = cpu_to_node(cpu);
2669 	struct page *pages;
2670 	struct vmcs *vmcs;
2671 
2672 	pages = __alloc_pages_node(node, flags, vmcs_config.order);
2673 	if (!pages)
2674 		return NULL;
2675 	vmcs = page_address(pages);
2676 	memset(vmcs, 0, vmcs_config.size);
2677 
2678 	/* KVM supports Enlightened VMCS v1 only */
2679 	if (static_branch_unlikely(&enable_evmcs))
2680 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2681 	else
2682 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2683 
2684 	if (shadow)
2685 		vmcs->hdr.shadow_vmcs = 1;
2686 	return vmcs;
2687 }
2688 
free_vmcs(struct vmcs * vmcs)2689 void free_vmcs(struct vmcs *vmcs)
2690 {
2691 	free_pages((unsigned long)vmcs, vmcs_config.order);
2692 }
2693 
2694 /*
2695  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2696  */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2697 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2698 {
2699 	if (!loaded_vmcs->vmcs)
2700 		return;
2701 	loaded_vmcs_clear(loaded_vmcs);
2702 	free_vmcs(loaded_vmcs->vmcs);
2703 	loaded_vmcs->vmcs = NULL;
2704 	if (loaded_vmcs->msr_bitmap)
2705 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2706 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2707 }
2708 
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2709 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2710 {
2711 	loaded_vmcs->vmcs = alloc_vmcs(false);
2712 	if (!loaded_vmcs->vmcs)
2713 		return -ENOMEM;
2714 
2715 	vmcs_clear(loaded_vmcs->vmcs);
2716 
2717 	loaded_vmcs->shadow_vmcs = NULL;
2718 	loaded_vmcs->hv_timer_soft_disabled = false;
2719 	loaded_vmcs->cpu = -1;
2720 	loaded_vmcs->launched = 0;
2721 
2722 	if (cpu_has_vmx_msr_bitmap()) {
2723 		loaded_vmcs->msr_bitmap = (unsigned long *)
2724 				__get_free_page(GFP_KERNEL_ACCOUNT);
2725 		if (!loaded_vmcs->msr_bitmap)
2726 			goto out_vmcs;
2727 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2728 	}
2729 
2730 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2731 	memset(&loaded_vmcs->controls_shadow, 0,
2732 		sizeof(struct vmcs_controls_shadow));
2733 
2734 	return 0;
2735 
2736 out_vmcs:
2737 	free_loaded_vmcs(loaded_vmcs);
2738 	return -ENOMEM;
2739 }
2740 
free_kvm_area(void)2741 static void free_kvm_area(void)
2742 {
2743 	int cpu;
2744 
2745 	for_each_possible_cpu(cpu) {
2746 		free_vmcs(per_cpu(vmxarea, cpu));
2747 		per_cpu(vmxarea, cpu) = NULL;
2748 	}
2749 }
2750 
alloc_kvm_area(void)2751 static __init int alloc_kvm_area(void)
2752 {
2753 	int cpu;
2754 
2755 	for_each_possible_cpu(cpu) {
2756 		struct vmcs *vmcs;
2757 
2758 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2759 		if (!vmcs) {
2760 			free_kvm_area();
2761 			return -ENOMEM;
2762 		}
2763 
2764 		/*
2765 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2766 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2767 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2768 		 *
2769 		 * However, even though not explicitly documented by
2770 		 * TLFS, VMXArea passed as VMXON argument should
2771 		 * still be marked with revision_id reported by
2772 		 * physical CPU.
2773 		 */
2774 		if (static_branch_unlikely(&enable_evmcs))
2775 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2776 
2777 		per_cpu(vmxarea, cpu) = vmcs;
2778 	}
2779 	return 0;
2780 }
2781 
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)2782 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2783 		struct kvm_segment *save)
2784 {
2785 	if (!emulate_invalid_guest_state) {
2786 		/*
2787 		 * CS and SS RPL should be equal during guest entry according
2788 		 * to VMX spec, but in reality it is not always so. Since vcpu
2789 		 * is in the middle of the transition from real mode to
2790 		 * protected mode it is safe to assume that RPL 0 is a good
2791 		 * default value.
2792 		 */
2793 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2794 			save->selector &= ~SEGMENT_RPL_MASK;
2795 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2796 		save->s = 1;
2797 	}
2798 	vmx_set_segment(vcpu, save, seg);
2799 }
2800 
enter_pmode(struct kvm_vcpu * vcpu)2801 static void enter_pmode(struct kvm_vcpu *vcpu)
2802 {
2803 	unsigned long flags;
2804 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2805 
2806 	/*
2807 	 * Update real mode segment cache. It may be not up-to-date if sement
2808 	 * register was written while vcpu was in a guest mode.
2809 	 */
2810 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2811 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2812 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2813 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2814 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2815 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2816 
2817 	vmx->rmode.vm86_active = 0;
2818 
2819 	vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2820 
2821 	flags = vmcs_readl(GUEST_RFLAGS);
2822 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2823 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2824 	vmcs_writel(GUEST_RFLAGS, flags);
2825 
2826 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2827 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2828 
2829 	update_exception_bitmap(vcpu);
2830 
2831 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2832 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2833 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2834 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2835 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2836 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2837 }
2838 
fix_rmode_seg(int seg,struct kvm_segment * save)2839 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2840 {
2841 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2842 	struct kvm_segment var = *save;
2843 
2844 	var.dpl = 0x3;
2845 	if (seg == VCPU_SREG_CS)
2846 		var.type = 0x3;
2847 
2848 	if (!emulate_invalid_guest_state) {
2849 		var.selector = var.base >> 4;
2850 		var.base = var.base & 0xffff0;
2851 		var.limit = 0xffff;
2852 		var.g = 0;
2853 		var.db = 0;
2854 		var.present = 1;
2855 		var.s = 1;
2856 		var.l = 0;
2857 		var.unusable = 0;
2858 		var.type = 0x3;
2859 		var.avl = 0;
2860 		if (save->base & 0xf)
2861 			printk_once(KERN_WARNING "kvm: segment base is not "
2862 					"paragraph aligned when entering "
2863 					"protected mode (seg=%d)", seg);
2864 	}
2865 
2866 	vmcs_write16(sf->selector, var.selector);
2867 	vmcs_writel(sf->base, var.base);
2868 	vmcs_write32(sf->limit, var.limit);
2869 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2870 }
2871 
enter_rmode(struct kvm_vcpu * vcpu)2872 static void enter_rmode(struct kvm_vcpu *vcpu)
2873 {
2874 	unsigned long flags;
2875 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2876 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2877 
2878 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2879 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2880 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2881 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2882 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2883 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2884 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2885 
2886 	vmx->rmode.vm86_active = 1;
2887 
2888 	/*
2889 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2890 	 * vcpu. Warn the user that an update is overdue.
2891 	 */
2892 	if (!kvm_vmx->tss_addr)
2893 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2894 			     "called before entering vcpu\n");
2895 
2896 	vmx_segment_cache_clear(vmx);
2897 
2898 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2899 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2900 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2901 
2902 	flags = vmcs_readl(GUEST_RFLAGS);
2903 	vmx->rmode.save_rflags = flags;
2904 
2905 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2906 
2907 	vmcs_writel(GUEST_RFLAGS, flags);
2908 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2909 	update_exception_bitmap(vcpu);
2910 
2911 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2912 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2913 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2914 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2915 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2916 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2917 
2918 	kvm_mmu_reset_context(vcpu);
2919 }
2920 
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)2921 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2922 {
2923 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2924 	struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2925 
2926 	/* Nothing to do if hardware doesn't support EFER. */
2927 	if (!msr)
2928 		return 0;
2929 
2930 	vcpu->arch.efer = efer;
2931 	if (efer & EFER_LMA) {
2932 		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2933 		msr->data = efer;
2934 	} else {
2935 		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2936 
2937 		msr->data = efer & ~EFER_LME;
2938 	}
2939 	setup_msrs(vmx);
2940 	return 0;
2941 }
2942 
2943 #ifdef CONFIG_X86_64
2944 
enter_lmode(struct kvm_vcpu * vcpu)2945 static void enter_lmode(struct kvm_vcpu *vcpu)
2946 {
2947 	u32 guest_tr_ar;
2948 
2949 	vmx_segment_cache_clear(to_vmx(vcpu));
2950 
2951 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2952 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2953 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2954 				     __func__);
2955 		vmcs_write32(GUEST_TR_AR_BYTES,
2956 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2957 			     | VMX_AR_TYPE_BUSY_64_TSS);
2958 	}
2959 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2960 }
2961 
exit_lmode(struct kvm_vcpu * vcpu)2962 static void exit_lmode(struct kvm_vcpu *vcpu)
2963 {
2964 	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2965 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2966 }
2967 
2968 #endif
2969 
vmx_flush_tlb_all(struct kvm_vcpu * vcpu)2970 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2971 {
2972 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2973 
2974 	/*
2975 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2976 	 * the CPU is not required to invalidate guest-physical mappings on
2977 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
2978 	 * associated with the root EPT structure and not any particular VPID
2979 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
2980 	 */
2981 	if (enable_ept) {
2982 		ept_sync_global();
2983 	} else if (enable_vpid) {
2984 		if (cpu_has_vmx_invvpid_global()) {
2985 			vpid_sync_vcpu_global();
2986 		} else {
2987 			vpid_sync_vcpu_single(vmx->vpid);
2988 			vpid_sync_vcpu_single(vmx->nested.vpid02);
2989 		}
2990 	}
2991 }
2992 
vmx_get_current_vpid(struct kvm_vcpu * vcpu)2993 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
2994 {
2995 	if (is_guest_mode(vcpu))
2996 		return nested_get_vpid02(vcpu);
2997 	return to_vmx(vcpu)->vpid;
2998 }
2999 
vmx_flush_tlb_current(struct kvm_vcpu * vcpu)3000 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3001 {
3002 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3003 	u64 root_hpa = mmu->root_hpa;
3004 
3005 	/* No flush required if the current context is invalid. */
3006 	if (!VALID_PAGE(root_hpa))
3007 		return;
3008 
3009 	if (enable_ept)
3010 		ept_sync_context(construct_eptp(vcpu, root_hpa,
3011 						mmu->shadow_root_level));
3012 	else
3013 		vpid_sync_context(vmx_get_current_vpid(vcpu));
3014 }
3015 
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)3016 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3017 {
3018 	/*
3019 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3020 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3021 	 */
3022 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3023 }
3024 
vmx_flush_tlb_guest(struct kvm_vcpu * vcpu)3025 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3026 {
3027 	/*
3028 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3029 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3030 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3031 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3032 	 * i.e. no explicit INVVPID is necessary.
3033 	 */
3034 	vpid_sync_context(vmx_get_current_vpid(vcpu));
3035 }
3036 
vmx_ept_load_pdptrs(struct kvm_vcpu * vcpu)3037 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3038 {
3039 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3040 
3041 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3042 		return;
3043 
3044 	if (is_pae_paging(vcpu)) {
3045 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3046 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3047 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3048 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3049 	}
3050 }
3051 
ept_save_pdptrs(struct kvm_vcpu * vcpu)3052 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3053 {
3054 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3055 
3056 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3057 		return;
3058 
3059 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3060 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3061 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3062 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3063 
3064 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
3065 }
3066 
ept_update_paging_mode_cr0(unsigned long * hw_cr0,unsigned long cr0,struct kvm_vcpu * vcpu)3067 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3068 					unsigned long cr0,
3069 					struct kvm_vcpu *vcpu)
3070 {
3071 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3072 
3073 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3074 		vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3075 	if (!(cr0 & X86_CR0_PG)) {
3076 		/* From paging/starting to nonpaging */
3077 		exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3078 					  CPU_BASED_CR3_STORE_EXITING);
3079 		vcpu->arch.cr0 = cr0;
3080 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3081 	} else if (!is_paging(vcpu)) {
3082 		/* From nonpaging to paging */
3083 		exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3084 					    CPU_BASED_CR3_STORE_EXITING);
3085 		vcpu->arch.cr0 = cr0;
3086 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3087 	}
3088 
3089 	if (!(cr0 & X86_CR0_WP))
3090 		*hw_cr0 &= ~X86_CR0_WP;
3091 }
3092 
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3093 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3094 {
3095 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3096 	unsigned long hw_cr0;
3097 
3098 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3099 	if (is_unrestricted_guest(vcpu))
3100 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3101 	else {
3102 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3103 
3104 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3105 			enter_pmode(vcpu);
3106 
3107 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3108 			enter_rmode(vcpu);
3109 	}
3110 
3111 #ifdef CONFIG_X86_64
3112 	if (vcpu->arch.efer & EFER_LME) {
3113 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3114 			enter_lmode(vcpu);
3115 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3116 			exit_lmode(vcpu);
3117 	}
3118 #endif
3119 
3120 	if (enable_ept && !is_unrestricted_guest(vcpu))
3121 		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3122 
3123 	vmcs_writel(CR0_READ_SHADOW, cr0);
3124 	vmcs_writel(GUEST_CR0, hw_cr0);
3125 	vcpu->arch.cr0 = cr0;
3126 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3127 
3128 	/* depends on vcpu->arch.cr0 to be set to a new value */
3129 	vmx->emulation_required = emulation_required(vcpu);
3130 }
3131 
vmx_get_max_tdp_level(void)3132 static int vmx_get_max_tdp_level(void)
3133 {
3134 	if (cpu_has_vmx_ept_5levels())
3135 		return 5;
3136 	return 4;
3137 }
3138 
construct_eptp(struct kvm_vcpu * vcpu,unsigned long root_hpa,int root_level)3139 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa,
3140 		   int root_level)
3141 {
3142 	u64 eptp = VMX_EPTP_MT_WB;
3143 
3144 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3145 
3146 	if (enable_ept_ad_bits &&
3147 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3148 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3149 	eptp |= (root_hpa & PAGE_MASK);
3150 
3151 	return eptp;
3152 }
3153 
vmx_load_mmu_pgd(struct kvm_vcpu * vcpu,unsigned long pgd,int pgd_level)3154 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long pgd,
3155 			     int pgd_level)
3156 {
3157 	struct kvm *kvm = vcpu->kvm;
3158 	bool update_guest_cr3 = true;
3159 	unsigned long guest_cr3;
3160 	u64 eptp;
3161 
3162 	if (enable_ept) {
3163 		eptp = construct_eptp(vcpu, pgd, pgd_level);
3164 		vmcs_write64(EPT_POINTER, eptp);
3165 
3166 		if (kvm_x86_ops.tlb_remote_flush) {
3167 			spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3168 			to_vmx(vcpu)->ept_pointer = eptp;
3169 			to_kvm_vmx(kvm)->ept_pointers_match
3170 				= EPT_POINTERS_CHECK;
3171 			spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3172 		}
3173 
3174 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3175 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3176 		else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3177 			guest_cr3 = vcpu->arch.cr3;
3178 		else /* vmcs01.GUEST_CR3 is already up-to-date. */
3179 			update_guest_cr3 = false;
3180 		vmx_ept_load_pdptrs(vcpu);
3181 	} else {
3182 		guest_cr3 = pgd;
3183 	}
3184 
3185 	if (update_guest_cr3)
3186 		vmcs_writel(GUEST_CR3, guest_cr3);
3187 }
3188 
vmx_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3189 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3190 {
3191 	/*
3192 	 * We operate under the default treatment of SMM, so VMX cannot be
3193 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all is
3194 	 * handled by kvm_valid_cr4().
3195 	 */
3196 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3197 		return false;
3198 
3199 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3200 		return false;
3201 
3202 	return true;
3203 }
3204 
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3205 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3206 {
3207 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3208 	/*
3209 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3210 	 * is in force while we are in guest mode.  Do not let guests control
3211 	 * this bit, even if host CR4.MCE == 0.
3212 	 */
3213 	unsigned long hw_cr4;
3214 
3215 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3216 	if (is_unrestricted_guest(vcpu))
3217 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3218 	else if (vmx->rmode.vm86_active)
3219 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3220 	else
3221 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3222 
3223 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3224 		if (cr4 & X86_CR4_UMIP) {
3225 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3226 			hw_cr4 &= ~X86_CR4_UMIP;
3227 		} else if (!is_guest_mode(vcpu) ||
3228 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3229 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3230 		}
3231 	}
3232 
3233 	vcpu->arch.cr4 = cr4;
3234 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3235 
3236 	if (!is_unrestricted_guest(vcpu)) {
3237 		if (enable_ept) {
3238 			if (!is_paging(vcpu)) {
3239 				hw_cr4 &= ~X86_CR4_PAE;
3240 				hw_cr4 |= X86_CR4_PSE;
3241 			} else if (!(cr4 & X86_CR4_PAE)) {
3242 				hw_cr4 &= ~X86_CR4_PAE;
3243 			}
3244 		}
3245 
3246 		/*
3247 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3248 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3249 		 * to be manually disabled when guest switches to non-paging
3250 		 * mode.
3251 		 *
3252 		 * If !enable_unrestricted_guest, the CPU is always running
3253 		 * with CR0.PG=1 and CR4 needs to be modified.
3254 		 * If enable_unrestricted_guest, the CPU automatically
3255 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3256 		 */
3257 		if (!is_paging(vcpu))
3258 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3259 	}
3260 
3261 	vmcs_writel(CR4_READ_SHADOW, cr4);
3262 	vmcs_writel(GUEST_CR4, hw_cr4);
3263 }
3264 
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3265 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3266 {
3267 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3268 	u32 ar;
3269 
3270 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3271 		*var = vmx->rmode.segs[seg];
3272 		if (seg == VCPU_SREG_TR
3273 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3274 			return;
3275 		var->base = vmx_read_guest_seg_base(vmx, seg);
3276 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3277 		return;
3278 	}
3279 	var->base = vmx_read_guest_seg_base(vmx, seg);
3280 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3281 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3282 	ar = vmx_read_guest_seg_ar(vmx, seg);
3283 	var->unusable = (ar >> 16) & 1;
3284 	var->type = ar & 15;
3285 	var->s = (ar >> 4) & 1;
3286 	var->dpl = (ar >> 5) & 3;
3287 	/*
3288 	 * Some userspaces do not preserve unusable property. Since usable
3289 	 * segment has to be present according to VMX spec we can use present
3290 	 * property to amend userspace bug by making unusable segment always
3291 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3292 	 * segment as unusable.
3293 	 */
3294 	var->present = !var->unusable;
3295 	var->avl = (ar >> 12) & 1;
3296 	var->l = (ar >> 13) & 1;
3297 	var->db = (ar >> 14) & 1;
3298 	var->g = (ar >> 15) & 1;
3299 }
3300 
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3301 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3302 {
3303 	struct kvm_segment s;
3304 
3305 	if (to_vmx(vcpu)->rmode.vm86_active) {
3306 		vmx_get_segment(vcpu, &s, seg);
3307 		return s.base;
3308 	}
3309 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3310 }
3311 
vmx_get_cpl(struct kvm_vcpu * vcpu)3312 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3313 {
3314 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3315 
3316 	if (unlikely(vmx->rmode.vm86_active))
3317 		return 0;
3318 	else {
3319 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3320 		return VMX_AR_DPL(ar);
3321 	}
3322 }
3323 
vmx_segment_access_rights(struct kvm_segment * var)3324 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3325 {
3326 	u32 ar;
3327 
3328 	ar = var->type & 15;
3329 	ar |= (var->s & 1) << 4;
3330 	ar |= (var->dpl & 3) << 5;
3331 	ar |= (var->present & 1) << 7;
3332 	ar |= (var->avl & 1) << 12;
3333 	ar |= (var->l & 1) << 13;
3334 	ar |= (var->db & 1) << 14;
3335 	ar |= (var->g & 1) << 15;
3336 	ar |= (var->unusable || !var->present) << 16;
3337 
3338 	return ar;
3339 }
3340 
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3341 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3342 {
3343 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3344 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3345 
3346 	vmx_segment_cache_clear(vmx);
3347 
3348 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3349 		vmx->rmode.segs[seg] = *var;
3350 		if (seg == VCPU_SREG_TR)
3351 			vmcs_write16(sf->selector, var->selector);
3352 		else if (var->s)
3353 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3354 		goto out;
3355 	}
3356 
3357 	vmcs_writel(sf->base, var->base);
3358 	vmcs_write32(sf->limit, var->limit);
3359 	vmcs_write16(sf->selector, var->selector);
3360 
3361 	/*
3362 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3363 	 * qemu binaries.
3364 	 *   IA32 arch specifies that at the time of processor reset the
3365 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3366 	 * is setting it to 0 in the userland code. This causes invalid guest
3367 	 * state vmexit when "unrestricted guest" mode is turned on.
3368 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3369 	 * tree. Newer qemu binaries with that qemu fix would not need this
3370 	 * kvm hack.
3371 	 */
3372 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3373 		var->type |= 0x1; /* Accessed */
3374 
3375 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3376 
3377 out:
3378 	vmx->emulation_required = emulation_required(vcpu);
3379 }
3380 
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3381 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3382 {
3383 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3384 
3385 	*db = (ar >> 14) & 1;
3386 	*l = (ar >> 13) & 1;
3387 }
3388 
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3389 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3390 {
3391 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3392 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3393 }
3394 
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3395 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3396 {
3397 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3398 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3399 }
3400 
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3401 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3402 {
3403 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3404 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3405 }
3406 
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3407 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3408 {
3409 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3410 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3411 }
3412 
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3413 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3414 {
3415 	struct kvm_segment var;
3416 	u32 ar;
3417 
3418 	vmx_get_segment(vcpu, &var, seg);
3419 	var.dpl = 0x3;
3420 	if (seg == VCPU_SREG_CS)
3421 		var.type = 0x3;
3422 	ar = vmx_segment_access_rights(&var);
3423 
3424 	if (var.base != (var.selector << 4))
3425 		return false;
3426 	if (var.limit != 0xffff)
3427 		return false;
3428 	if (ar != 0xf3)
3429 		return false;
3430 
3431 	return true;
3432 }
3433 
code_segment_valid(struct kvm_vcpu * vcpu)3434 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3435 {
3436 	struct kvm_segment cs;
3437 	unsigned int cs_rpl;
3438 
3439 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3440 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3441 
3442 	if (cs.unusable)
3443 		return false;
3444 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3445 		return false;
3446 	if (!cs.s)
3447 		return false;
3448 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3449 		if (cs.dpl > cs_rpl)
3450 			return false;
3451 	} else {
3452 		if (cs.dpl != cs_rpl)
3453 			return false;
3454 	}
3455 	if (!cs.present)
3456 		return false;
3457 
3458 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3459 	return true;
3460 }
3461 
stack_segment_valid(struct kvm_vcpu * vcpu)3462 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3463 {
3464 	struct kvm_segment ss;
3465 	unsigned int ss_rpl;
3466 
3467 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3468 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3469 
3470 	if (ss.unusable)
3471 		return true;
3472 	if (ss.type != 3 && ss.type != 7)
3473 		return false;
3474 	if (!ss.s)
3475 		return false;
3476 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3477 		return false;
3478 	if (!ss.present)
3479 		return false;
3480 
3481 	return true;
3482 }
3483 
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3484 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3485 {
3486 	struct kvm_segment var;
3487 	unsigned int rpl;
3488 
3489 	vmx_get_segment(vcpu, &var, seg);
3490 	rpl = var.selector & SEGMENT_RPL_MASK;
3491 
3492 	if (var.unusable)
3493 		return true;
3494 	if (!var.s)
3495 		return false;
3496 	if (!var.present)
3497 		return false;
3498 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3499 		if (var.dpl < rpl) /* DPL < RPL */
3500 			return false;
3501 	}
3502 
3503 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3504 	 * rights flags
3505 	 */
3506 	return true;
3507 }
3508 
tr_valid(struct kvm_vcpu * vcpu)3509 static bool tr_valid(struct kvm_vcpu *vcpu)
3510 {
3511 	struct kvm_segment tr;
3512 
3513 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3514 
3515 	if (tr.unusable)
3516 		return false;
3517 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3518 		return false;
3519 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3520 		return false;
3521 	if (!tr.present)
3522 		return false;
3523 
3524 	return true;
3525 }
3526 
ldtr_valid(struct kvm_vcpu * vcpu)3527 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3528 {
3529 	struct kvm_segment ldtr;
3530 
3531 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3532 
3533 	if (ldtr.unusable)
3534 		return true;
3535 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3536 		return false;
3537 	if (ldtr.type != 2)
3538 		return false;
3539 	if (!ldtr.present)
3540 		return false;
3541 
3542 	return true;
3543 }
3544 
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3545 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3546 {
3547 	struct kvm_segment cs, ss;
3548 
3549 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3550 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3551 
3552 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3553 		 (ss.selector & SEGMENT_RPL_MASK));
3554 }
3555 
3556 /*
3557  * Check if guest state is valid. Returns true if valid, false if
3558  * not.
3559  * We assume that registers are always usable
3560  */
__vmx_guest_state_valid(struct kvm_vcpu * vcpu)3561 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3562 {
3563 	/* real mode guest state checks */
3564 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3565 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3566 			return false;
3567 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3568 			return false;
3569 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3570 			return false;
3571 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3572 			return false;
3573 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3574 			return false;
3575 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3576 			return false;
3577 	} else {
3578 	/* protected mode guest state checks */
3579 		if (!cs_ss_rpl_check(vcpu))
3580 			return false;
3581 		if (!code_segment_valid(vcpu))
3582 			return false;
3583 		if (!stack_segment_valid(vcpu))
3584 			return false;
3585 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3586 			return false;
3587 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3588 			return false;
3589 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3590 			return false;
3591 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3592 			return false;
3593 		if (!tr_valid(vcpu))
3594 			return false;
3595 		if (!ldtr_valid(vcpu))
3596 			return false;
3597 	}
3598 	/* TODO:
3599 	 * - Add checks on RIP
3600 	 * - Add checks on RFLAGS
3601 	 */
3602 
3603 	return true;
3604 }
3605 
init_rmode_tss(struct kvm * kvm)3606 static int init_rmode_tss(struct kvm *kvm)
3607 {
3608 	gfn_t fn;
3609 	u16 data = 0;
3610 	int idx, r;
3611 
3612 	idx = srcu_read_lock(&kvm->srcu);
3613 	fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3614 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3615 	if (r < 0)
3616 		goto out;
3617 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3618 	r = kvm_write_guest_page(kvm, fn++, &data,
3619 			TSS_IOPB_BASE_OFFSET, sizeof(u16));
3620 	if (r < 0)
3621 		goto out;
3622 	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3623 	if (r < 0)
3624 		goto out;
3625 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3626 	if (r < 0)
3627 		goto out;
3628 	data = ~0;
3629 	r = kvm_write_guest_page(kvm, fn, &data,
3630 				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3631 				 sizeof(u8));
3632 out:
3633 	srcu_read_unlock(&kvm->srcu, idx);
3634 	return r;
3635 }
3636 
init_rmode_identity_map(struct kvm * kvm)3637 static int init_rmode_identity_map(struct kvm *kvm)
3638 {
3639 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3640 	int i, r = 0;
3641 	kvm_pfn_t identity_map_pfn;
3642 	u32 tmp;
3643 
3644 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3645 	mutex_lock(&kvm->slots_lock);
3646 
3647 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3648 		goto out;
3649 
3650 	if (!kvm_vmx->ept_identity_map_addr)
3651 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3652 	identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3653 
3654 	r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3655 				    kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3656 	if (r < 0)
3657 		goto out;
3658 
3659 	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3660 	if (r < 0)
3661 		goto out;
3662 	/* Set up identity-mapping pagetable for EPT in real mode */
3663 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3664 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3665 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3666 		r = kvm_write_guest_page(kvm, identity_map_pfn,
3667 				&tmp, i * sizeof(tmp), sizeof(tmp));
3668 		if (r < 0)
3669 			goto out;
3670 	}
3671 	kvm_vmx->ept_identity_pagetable_done = true;
3672 
3673 out:
3674 	mutex_unlock(&kvm->slots_lock);
3675 	return r;
3676 }
3677 
seg_setup(int seg)3678 static void seg_setup(int seg)
3679 {
3680 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3681 	unsigned int ar;
3682 
3683 	vmcs_write16(sf->selector, 0);
3684 	vmcs_writel(sf->base, 0);
3685 	vmcs_write32(sf->limit, 0xffff);
3686 	ar = 0x93;
3687 	if (seg == VCPU_SREG_CS)
3688 		ar |= 0x08; /* code segment */
3689 
3690 	vmcs_write32(sf->ar_bytes, ar);
3691 }
3692 
alloc_apic_access_page(struct kvm * kvm)3693 static int alloc_apic_access_page(struct kvm *kvm)
3694 {
3695 	struct page *page;
3696 	int r = 0;
3697 
3698 	mutex_lock(&kvm->slots_lock);
3699 	if (kvm->arch.apic_access_page_done)
3700 		goto out;
3701 	r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3702 				    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3703 	if (r)
3704 		goto out;
3705 
3706 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3707 	if (is_error_page(page)) {
3708 		r = -EFAULT;
3709 		goto out;
3710 	}
3711 
3712 	/*
3713 	 * Do not pin the page in memory, so that memory hot-unplug
3714 	 * is able to migrate it.
3715 	 */
3716 	put_page(page);
3717 	kvm->arch.apic_access_page_done = true;
3718 out:
3719 	mutex_unlock(&kvm->slots_lock);
3720 	return r;
3721 }
3722 
allocate_vpid(void)3723 int allocate_vpid(void)
3724 {
3725 	int vpid;
3726 
3727 	if (!enable_vpid)
3728 		return 0;
3729 	spin_lock(&vmx_vpid_lock);
3730 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3731 	if (vpid < VMX_NR_VPIDS)
3732 		__set_bit(vpid, vmx_vpid_bitmap);
3733 	else
3734 		vpid = 0;
3735 	spin_unlock(&vmx_vpid_lock);
3736 	return vpid;
3737 }
3738 
free_vpid(int vpid)3739 void free_vpid(int vpid)
3740 {
3741 	if (!enable_vpid || vpid == 0)
3742 		return;
3743 	spin_lock(&vmx_vpid_lock);
3744 	__clear_bit(vpid, vmx_vpid_bitmap);
3745 	spin_unlock(&vmx_vpid_lock);
3746 }
3747 
vmx_clear_msr_bitmap_read(ulong * msr_bitmap,u32 msr)3748 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3749 {
3750 	int f = sizeof(unsigned long);
3751 
3752 	if (msr <= 0x1fff)
3753 		__clear_bit(msr, msr_bitmap + 0x000 / f);
3754 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3755 		__clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3756 }
3757 
vmx_clear_msr_bitmap_write(ulong * msr_bitmap,u32 msr)3758 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3759 {
3760 	int f = sizeof(unsigned long);
3761 
3762 	if (msr <= 0x1fff)
3763 		__clear_bit(msr, msr_bitmap + 0x800 / f);
3764 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3765 		__clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3766 }
3767 
vmx_set_msr_bitmap_read(ulong * msr_bitmap,u32 msr)3768 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3769 {
3770 	int f = sizeof(unsigned long);
3771 
3772 	if (msr <= 0x1fff)
3773 		__set_bit(msr, msr_bitmap + 0x000 / f);
3774 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3775 		__set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3776 }
3777 
vmx_set_msr_bitmap_write(ulong * msr_bitmap,u32 msr)3778 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3779 {
3780 	int f = sizeof(unsigned long);
3781 
3782 	if (msr <= 0x1fff)
3783 		__set_bit(msr, msr_bitmap + 0x800 / f);
3784 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3785 		__set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3786 }
3787 
vmx_msr_bitmap_l01_changed(struct vcpu_vmx * vmx)3788 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3789 {
3790 	/*
3791 	 * When KVM is a nested hypervisor on top of Hyper-V and uses
3792 	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3793 	 * bitmap has changed.
3794 	 */
3795 	if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs)) {
3796 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3797 
3798 		if (evmcs->hv_enlightenments_control.msr_bitmap)
3799 			evmcs->hv_clean_fields &=
3800 				~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3801 	}
3802 }
3803 
vmx_disable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3804 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
3805 							  u32 msr, int type)
3806 {
3807 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3808 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3809 
3810 	if (!cpu_has_vmx_msr_bitmap())
3811 		return;
3812 
3813 	vmx_msr_bitmap_l01_changed(vmx);
3814 
3815 	/*
3816 	 * Mark the desired intercept state in shadow bitmap, this is needed
3817 	 * for resync when the MSR filters change.
3818 	*/
3819 	if (is_valid_passthrough_msr(msr)) {
3820 		int idx = possible_passthrough_msr_slot(msr);
3821 
3822 		if (idx != -ENOENT) {
3823 			if (type & MSR_TYPE_R)
3824 				clear_bit(idx, vmx->shadow_msr_intercept.read);
3825 			if (type & MSR_TYPE_W)
3826 				clear_bit(idx, vmx->shadow_msr_intercept.write);
3827 		}
3828 	}
3829 
3830 	if ((type & MSR_TYPE_R) &&
3831 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3832 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3833 		type &= ~MSR_TYPE_R;
3834 	}
3835 
3836 	if ((type & MSR_TYPE_W) &&
3837 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3838 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3839 		type &= ~MSR_TYPE_W;
3840 	}
3841 
3842 	if (type & MSR_TYPE_R)
3843 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3844 
3845 	if (type & MSR_TYPE_W)
3846 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3847 }
3848 
vmx_enable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3849 static __always_inline void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu,
3850 							 u32 msr, int type)
3851 {
3852 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3853 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3854 
3855 	if (!cpu_has_vmx_msr_bitmap())
3856 		return;
3857 
3858 	vmx_msr_bitmap_l01_changed(vmx);
3859 
3860 	/*
3861 	 * Mark the desired intercept state in shadow bitmap, this is needed
3862 	 * for resync when the MSR filter changes.
3863 	*/
3864 	if (is_valid_passthrough_msr(msr)) {
3865 		int idx = possible_passthrough_msr_slot(msr);
3866 
3867 		if (idx != -ENOENT) {
3868 			if (type & MSR_TYPE_R)
3869 				set_bit(idx, vmx->shadow_msr_intercept.read);
3870 			if (type & MSR_TYPE_W)
3871 				set_bit(idx, vmx->shadow_msr_intercept.write);
3872 		}
3873 	}
3874 
3875 	if (type & MSR_TYPE_R)
3876 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3877 
3878 	if (type & MSR_TYPE_W)
3879 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3880 }
3881 
vmx_set_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type,bool value)3882 static __always_inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu,
3883 						      u32 msr, int type, bool value)
3884 {
3885 	if (value)
3886 		vmx_enable_intercept_for_msr(vcpu, msr, type);
3887 	else
3888 		vmx_disable_intercept_for_msr(vcpu, msr, type);
3889 }
3890 
vmx_msr_bitmap_mode(struct kvm_vcpu * vcpu)3891 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3892 {
3893 	u8 mode = 0;
3894 
3895 	if (cpu_has_secondary_exec_ctrls() &&
3896 	    (secondary_exec_controls_get(to_vmx(vcpu)) &
3897 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3898 		mode |= MSR_BITMAP_MODE_X2APIC;
3899 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3900 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3901 	}
3902 
3903 	return mode;
3904 }
3905 
vmx_reset_x2apic_msrs(struct kvm_vcpu * vcpu,u8 mode)3906 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3907 {
3908 	unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3909 	unsigned long read_intercept;
3910 	int msr;
3911 
3912 	read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3913 
3914 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3915 		unsigned int read_idx = msr / BITS_PER_LONG;
3916 		unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3917 
3918 		msr_bitmap[read_idx] = read_intercept;
3919 		msr_bitmap[write_idx] = ~0ul;
3920 	}
3921 }
3922 
vmx_update_msr_bitmap_x2apic(struct kvm_vcpu * vcpu,u8 mode)3923 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu, u8 mode)
3924 {
3925 	if (!cpu_has_vmx_msr_bitmap())
3926 		return;
3927 
3928 	vmx_reset_x2apic_msrs(vcpu, mode);
3929 
3930 	/*
3931 	 * TPR reads and writes can be virtualized even if virtual interrupt
3932 	 * delivery is not in use.
3933 	 */
3934 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3935 				  !(mode & MSR_BITMAP_MODE_X2APIC));
3936 
3937 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3938 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3939 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3940 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3941 	}
3942 }
3943 
vmx_update_msr_bitmap(struct kvm_vcpu * vcpu)3944 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3945 {
3946 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3947 	u8 mode = vmx_msr_bitmap_mode(vcpu);
3948 	u8 changed = mode ^ vmx->msr_bitmap_mode;
3949 
3950 	if (!changed)
3951 		return;
3952 
3953 	if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3954 		vmx_update_msr_bitmap_x2apic(vcpu, mode);
3955 
3956 	vmx->msr_bitmap_mode = mode;
3957 }
3958 
pt_update_intercept_for_msr(struct kvm_vcpu * vcpu)3959 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3960 {
3961 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3962 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3963 	u32 i;
3964 
3965 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3966 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3967 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3968 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3969 	for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3970 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3971 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3972 	}
3973 }
3974 
vmx_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)3975 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3976 {
3977 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3978 	void *vapic_page;
3979 	u32 vppr;
3980 	int rvi;
3981 
3982 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3983 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3984 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3985 		return false;
3986 
3987 	rvi = vmx_get_rvi();
3988 
3989 	vapic_page = vmx->nested.virtual_apic_map.hva;
3990 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3991 
3992 	return ((rvi & 0xf0) > (vppr & 0xf0));
3993 }
3994 
vmx_msr_filter_changed(struct kvm_vcpu * vcpu)3995 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3996 {
3997 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3998 	u32 i;
3999 
4000 	/*
4001 	 * Set intercept permissions for all potentially passed through MSRs
4002 	 * again. They will automatically get filtered through the MSR filter,
4003 	 * so we are back in sync after this.
4004 	 */
4005 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4006 		u32 msr = vmx_possible_passthrough_msrs[i];
4007 		bool read = test_bit(i, vmx->shadow_msr_intercept.read);
4008 		bool write = test_bit(i, vmx->shadow_msr_intercept.write);
4009 
4010 		vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
4011 		vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
4012 	}
4013 
4014 	pt_update_intercept_for_msr(vcpu);
4015 	vmx_update_msr_bitmap_x2apic(vcpu, vmx_msr_bitmap_mode(vcpu));
4016 }
4017 
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu,bool nested)4018 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4019 						     bool nested)
4020 {
4021 #ifdef CONFIG_SMP
4022 	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
4023 
4024 	if (vcpu->mode == IN_GUEST_MODE) {
4025 		/*
4026 		 * The vector of interrupt to be delivered to vcpu had
4027 		 * been set in PIR before this function.
4028 		 *
4029 		 * Following cases will be reached in this block, and
4030 		 * we always send a notification event in all cases as
4031 		 * explained below.
4032 		 *
4033 		 * Case 1: vcpu keeps in non-root mode. Sending a
4034 		 * notification event posts the interrupt to vcpu.
4035 		 *
4036 		 * Case 2: vcpu exits to root mode and is still
4037 		 * runnable. PIR will be synced to vIRR before the
4038 		 * next vcpu entry. Sending a notification event in
4039 		 * this case has no effect, as vcpu is not in root
4040 		 * mode.
4041 		 *
4042 		 * Case 3: vcpu exits to root mode and is blocked.
4043 		 * vcpu_block() has already synced PIR to vIRR and
4044 		 * never blocks vcpu if vIRR is not cleared. Therefore,
4045 		 * a blocked vcpu here does not wait for any requested
4046 		 * interrupts in PIR, and sending a notification event
4047 		 * which has no effect is safe here.
4048 		 */
4049 
4050 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4051 		return true;
4052 	}
4053 #endif
4054 	return false;
4055 }
4056 
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4057 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4058 						int vector)
4059 {
4060 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4061 
4062 	if (is_guest_mode(vcpu) &&
4063 	    vector == vmx->nested.posted_intr_nv) {
4064 		/*
4065 		 * If a posted intr is not recognized by hardware,
4066 		 * we will accomplish it in the next vmentry.
4067 		 */
4068 		vmx->nested.pi_pending = true;
4069 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4070 		/* the PIR and ON have been set by L1. */
4071 		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
4072 			kvm_vcpu_kick(vcpu);
4073 		return 0;
4074 	}
4075 	return -1;
4076 }
4077 /*
4078  * Send interrupt to vcpu via posted interrupt way.
4079  * 1. If target vcpu is running(non-root mode), send posted interrupt
4080  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4081  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4082  * interrupt from PIR in next vmentry.
4083  */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4084 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4085 {
4086 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4087 	int r;
4088 
4089 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4090 	if (!r)
4091 		return 0;
4092 
4093 	if (!vcpu->arch.apicv_active)
4094 		return -1;
4095 
4096 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4097 		return 0;
4098 
4099 	/* If a previous notification has sent the IPI, nothing to do.  */
4100 	if (pi_test_and_set_on(&vmx->pi_desc))
4101 		return 0;
4102 
4103 	if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
4104 		kvm_vcpu_kick(vcpu);
4105 
4106 	return 0;
4107 }
4108 
4109 /*
4110  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4111  * will not change in the lifetime of the guest.
4112  * Note that host-state that does change is set elsewhere. E.g., host-state
4113  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4114  */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4115 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4116 {
4117 	u32 low32, high32;
4118 	unsigned long tmpl;
4119 	unsigned long cr0, cr3, cr4;
4120 
4121 	cr0 = read_cr0();
4122 	WARN_ON(cr0 & X86_CR0_TS);
4123 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4124 
4125 	/*
4126 	 * Save the most likely value for this task's CR3 in the VMCS.
4127 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4128 	 */
4129 	cr3 = __read_cr3();
4130 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4131 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4132 
4133 	/* Save the most likely value for this task's CR4 in the VMCS. */
4134 	cr4 = cr4_read_shadow();
4135 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4136 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4137 
4138 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4139 #ifdef CONFIG_X86_64
4140 	/*
4141 	 * Load null selectors, so we can avoid reloading them in
4142 	 * vmx_prepare_switch_to_host(), in case userspace uses
4143 	 * the null selectors too (the expected case).
4144 	 */
4145 	vmcs_write16(HOST_DS_SELECTOR, 0);
4146 	vmcs_write16(HOST_ES_SELECTOR, 0);
4147 #else
4148 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4149 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4150 #endif
4151 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4152 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4153 
4154 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4155 
4156 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4157 
4158 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4159 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4160 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4161 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4162 
4163 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4164 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4165 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4166 	}
4167 
4168 	if (cpu_has_load_ia32_efer())
4169 		vmcs_write64(HOST_IA32_EFER, host_efer);
4170 }
4171 
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4172 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4173 {
4174 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4175 
4176 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4177 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4178 	if (!enable_ept)
4179 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4180 	if (is_guest_mode(&vmx->vcpu))
4181 		vcpu->arch.cr4_guest_owned_bits &=
4182 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4183 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4184 }
4185 
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4186 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4187 {
4188 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4189 
4190 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4191 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4192 
4193 	if (!enable_vnmi)
4194 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4195 
4196 	if (!enable_preemption_timer)
4197 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4198 
4199 	return pin_based_exec_ctrl;
4200 }
4201 
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)4202 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4203 {
4204 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4205 
4206 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4207 	if (cpu_has_secondary_exec_ctrls()) {
4208 		if (kvm_vcpu_apicv_active(vcpu))
4209 			secondary_exec_controls_setbit(vmx,
4210 				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
4211 				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4212 		else
4213 			secondary_exec_controls_clearbit(vmx,
4214 					SECONDARY_EXEC_APIC_REGISTER_VIRT |
4215 					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4216 	}
4217 
4218 	if (cpu_has_vmx_msr_bitmap())
4219 		vmx_update_msr_bitmap(vcpu);
4220 }
4221 
vmx_exec_control(struct vcpu_vmx * vmx)4222 u32 vmx_exec_control(struct vcpu_vmx *vmx)
4223 {
4224 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4225 
4226 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4227 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4228 
4229 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4230 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4231 #ifdef CONFIG_X86_64
4232 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4233 				CPU_BASED_CR8_LOAD_EXITING;
4234 #endif
4235 	}
4236 	if (!enable_ept)
4237 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
4238 				CPU_BASED_CR3_LOAD_EXITING  |
4239 				CPU_BASED_INVLPG_EXITING;
4240 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4241 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4242 				CPU_BASED_MONITOR_EXITING);
4243 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4244 		exec_control &= ~CPU_BASED_HLT_EXITING;
4245 	return exec_control;
4246 }
4247 
4248 /*
4249  * Adjust a single secondary execution control bit to intercept/allow an
4250  * instruction in the guest.  This is usually done based on whether or not a
4251  * feature has been exposed to the guest in order to correctly emulate faults.
4252  */
4253 static inline void
vmx_adjust_secondary_exec_control(struct vcpu_vmx * vmx,u32 * exec_control,u32 control,bool enabled,bool exiting)4254 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4255 				  u32 control, bool enabled, bool exiting)
4256 {
4257 	/*
4258 	 * If the control is for an opt-in feature, clear the control if the
4259 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4260 	 * control is opt-out, i.e. an exiting control, clear the control if
4261 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4262 	 * disabled for the associated instruction.  Note, the caller is
4263 	 * responsible presetting exec_control to set all supported bits.
4264 	 */
4265 	if (enabled == exiting)
4266 		*exec_control &= ~control;
4267 
4268 	/*
4269 	 * Update the nested MSR settings so that a nested VMM can/can't set
4270 	 * controls for features that are/aren't exposed to the guest.
4271 	 */
4272 	if (nested) {
4273 		if (enabled)
4274 			vmx->nested.msrs.secondary_ctls_high |= control;
4275 		else
4276 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4277 	}
4278 }
4279 
4280 /*
4281  * Wrapper macro for the common case of adjusting a secondary execution control
4282  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4283  * verifies that the control is actually supported by KVM and hardware.
4284  */
4285 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4286 ({									 \
4287 	bool __enabled;							 \
4288 									 \
4289 	if (cpu_has_vmx_##name()) {					 \
4290 		__enabled = guest_cpuid_has(&(vmx)->vcpu,		 \
4291 					    X86_FEATURE_##feat_name);	 \
4292 		vmx_adjust_secondary_exec_control(vmx, exec_control,	 \
4293 			SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4294 	}								 \
4295 })
4296 
4297 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4298 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4299 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4300 
4301 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4302 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4303 
vmx_compute_secondary_exec_control(struct vcpu_vmx * vmx)4304 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4305 {
4306 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4307 
4308 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4309 
4310 	if (vmx_pt_mode_is_system())
4311 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4312 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4313 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4314 	if (vmx->vpid == 0)
4315 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4316 	if (!enable_ept) {
4317 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4318 		enable_unrestricted_guest = 0;
4319 	}
4320 	if (!enable_unrestricted_guest)
4321 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4322 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4323 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4324 	if (!kvm_vcpu_apicv_active(vcpu))
4325 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4326 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4327 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4328 
4329 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4330 	 * in vmx_set_cr4.  */
4331 	exec_control &= ~SECONDARY_EXEC_DESC;
4332 
4333 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4334 	   (handle_vmptrld).
4335 	   We can NOT enable shadow_vmcs here because we don't have yet
4336 	   a current VMCS12
4337 	*/
4338 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4339 
4340 	if (!enable_pml)
4341 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4342 
4343 	if (cpu_has_vmx_xsaves()) {
4344 		/* Exposing XSAVES only when XSAVE is exposed */
4345 		bool xsaves_enabled =
4346 			boot_cpu_has(X86_FEATURE_XSAVE) &&
4347 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4348 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4349 
4350 		vcpu->arch.xsaves_enabled = xsaves_enabled;
4351 
4352 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4353 						  SECONDARY_EXEC_XSAVES,
4354 						  xsaves_enabled, false);
4355 	}
4356 
4357 	vmx_adjust_sec_exec_feature(vmx, &exec_control, rdtscp, RDTSCP);
4358 
4359 	/*
4360 	 * Expose INVPCID if and only if PCID is also exposed to the guest.
4361 	 * INVPCID takes a #UD when it's disabled in the VMCS, but a #GP or #PF
4362 	 * if CR4.PCIDE=0.  Enumerating CPUID.INVPCID=1 would lead to incorrect
4363 	 * behavior from the guest perspective (it would expect #GP or #PF).
4364 	 */
4365 	if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
4366 		guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4367 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4368 
4369 
4370 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4371 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4372 
4373 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4374 				    ENABLE_USR_WAIT_PAUSE, false);
4375 
4376 	vmx->secondary_exec_control = exec_control;
4377 }
4378 
ept_set_mmio_spte_mask(void)4379 static void ept_set_mmio_spte_mask(void)
4380 {
4381 	/*
4382 	 * EPT Misconfigurations can be generated if the value of bits 2:0
4383 	 * of an EPT paging-structure entry is 110b (write/execute).
4384 	 */
4385 	kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE, 0);
4386 }
4387 
4388 #define VMX_XSS_EXIT_BITMAP 0
4389 
4390 /*
4391  * Noting that the initialization of Guest-state Area of VMCS is in
4392  * vmx_vcpu_reset().
4393  */
init_vmcs(struct vcpu_vmx * vmx)4394 static void init_vmcs(struct vcpu_vmx *vmx)
4395 {
4396 	if (nested)
4397 		nested_vmx_set_vmcs_shadowing_bitmap();
4398 
4399 	if (cpu_has_vmx_msr_bitmap())
4400 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4401 
4402 	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4403 
4404 	/* Control */
4405 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4406 
4407 	exec_controls_set(vmx, vmx_exec_control(vmx));
4408 
4409 	if (cpu_has_secondary_exec_ctrls()) {
4410 		vmx_compute_secondary_exec_control(vmx);
4411 		secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4412 	}
4413 
4414 	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4415 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4416 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4417 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4418 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4419 
4420 		vmcs_write16(GUEST_INTR_STATUS, 0);
4421 
4422 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4423 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4424 	}
4425 
4426 	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4427 		vmcs_write32(PLE_GAP, ple_gap);
4428 		vmx->ple_window = ple_window;
4429 		vmx->ple_window_dirty = true;
4430 	}
4431 
4432 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4433 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4434 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4435 
4436 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4437 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4438 	vmx_set_constant_host_state(vmx);
4439 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4440 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4441 
4442 	if (cpu_has_vmx_vmfunc())
4443 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4444 
4445 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4446 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4447 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4448 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4449 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4450 
4451 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4452 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4453 
4454 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4455 
4456 	/* 22.2.1, 20.8.1 */
4457 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4458 
4459 	vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4460 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4461 
4462 	set_cr4_guest_host_mask(vmx);
4463 
4464 	if (vmx->vpid != 0)
4465 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4466 
4467 	if (cpu_has_vmx_xsaves())
4468 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4469 
4470 	if (enable_pml) {
4471 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4472 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4473 	}
4474 
4475 	if (cpu_has_vmx_encls_vmexit())
4476 		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4477 
4478 	if (vmx_pt_mode_is_host_guest()) {
4479 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4480 		/* Bit[6~0] are forced to 1, writes are ignored. */
4481 		vmx->pt_desc.guest.output_mask = 0x7F;
4482 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4483 	}
4484 }
4485 
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4486 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4487 {
4488 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4489 	struct msr_data apic_base_msr;
4490 	u64 cr0;
4491 
4492 	vmx->rmode.vm86_active = 0;
4493 	vmx->spec_ctrl = 0;
4494 
4495 	vmx->msr_ia32_umwait_control = 0;
4496 
4497 	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4498 	vmx->hv_deadline_tsc = -1;
4499 	kvm_set_cr8(vcpu, 0);
4500 
4501 	if (!init_event) {
4502 		apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4503 				     MSR_IA32_APICBASE_ENABLE;
4504 		if (kvm_vcpu_is_reset_bsp(vcpu))
4505 			apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4506 		apic_base_msr.host_initiated = true;
4507 		kvm_set_apic_base(vcpu, &apic_base_msr);
4508 	}
4509 
4510 	vmx_segment_cache_clear(vmx);
4511 
4512 	seg_setup(VCPU_SREG_CS);
4513 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4514 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4515 
4516 	seg_setup(VCPU_SREG_DS);
4517 	seg_setup(VCPU_SREG_ES);
4518 	seg_setup(VCPU_SREG_FS);
4519 	seg_setup(VCPU_SREG_GS);
4520 	seg_setup(VCPU_SREG_SS);
4521 
4522 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4523 	vmcs_writel(GUEST_TR_BASE, 0);
4524 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4525 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4526 
4527 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4528 	vmcs_writel(GUEST_LDTR_BASE, 0);
4529 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4530 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4531 
4532 	if (!init_event) {
4533 		vmcs_write32(GUEST_SYSENTER_CS, 0);
4534 		vmcs_writel(GUEST_SYSENTER_ESP, 0);
4535 		vmcs_writel(GUEST_SYSENTER_EIP, 0);
4536 		vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4537 	}
4538 
4539 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4540 	kvm_rip_write(vcpu, 0xfff0);
4541 
4542 	vmcs_writel(GUEST_GDTR_BASE, 0);
4543 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4544 
4545 	vmcs_writel(GUEST_IDTR_BASE, 0);
4546 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4547 
4548 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4549 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4550 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4551 	if (kvm_mpx_supported())
4552 		vmcs_write64(GUEST_BNDCFGS, 0);
4553 
4554 	setup_msrs(vmx);
4555 
4556 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4557 
4558 	if (cpu_has_vmx_tpr_shadow() && !init_event) {
4559 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4560 		if (cpu_need_tpr_shadow(vcpu))
4561 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4562 				     __pa(vcpu->arch.apic->regs));
4563 		vmcs_write32(TPR_THRESHOLD, 0);
4564 	}
4565 
4566 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4567 
4568 	cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4569 	vmx->vcpu.arch.cr0 = cr0;
4570 	vmx_set_cr0(vcpu, cr0); /* enter rmode */
4571 	vmx_set_cr4(vcpu, 0);
4572 	vmx_set_efer(vcpu, 0);
4573 
4574 	update_exception_bitmap(vcpu);
4575 
4576 	vpid_sync_context(vmx->vpid);
4577 	if (init_event)
4578 		vmx_clear_hlt(vcpu);
4579 
4580 	vmx_update_fb_clear_dis(vcpu, vmx);
4581 }
4582 
enable_irq_window(struct kvm_vcpu * vcpu)4583 static void enable_irq_window(struct kvm_vcpu *vcpu)
4584 {
4585 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4586 }
4587 
enable_nmi_window(struct kvm_vcpu * vcpu)4588 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4589 {
4590 	if (!enable_vnmi ||
4591 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4592 		enable_irq_window(vcpu);
4593 		return;
4594 	}
4595 
4596 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4597 }
4598 
vmx_inject_irq(struct kvm_vcpu * vcpu)4599 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4600 {
4601 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4602 	uint32_t intr;
4603 	int irq = vcpu->arch.interrupt.nr;
4604 
4605 	trace_kvm_inj_virq(irq);
4606 
4607 	++vcpu->stat.irq_injections;
4608 	if (vmx->rmode.vm86_active) {
4609 		int inc_eip = 0;
4610 		if (vcpu->arch.interrupt.soft)
4611 			inc_eip = vcpu->arch.event_exit_inst_len;
4612 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4613 		return;
4614 	}
4615 	intr = irq | INTR_INFO_VALID_MASK;
4616 	if (vcpu->arch.interrupt.soft) {
4617 		intr |= INTR_TYPE_SOFT_INTR;
4618 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4619 			     vmx->vcpu.arch.event_exit_inst_len);
4620 	} else
4621 		intr |= INTR_TYPE_EXT_INTR;
4622 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4623 
4624 	vmx_clear_hlt(vcpu);
4625 }
4626 
vmx_inject_nmi(struct kvm_vcpu * vcpu)4627 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4628 {
4629 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4630 
4631 	if (!enable_vnmi) {
4632 		/*
4633 		 * Tracking the NMI-blocked state in software is built upon
4634 		 * finding the next open IRQ window. This, in turn, depends on
4635 		 * well-behaving guests: They have to keep IRQs disabled at
4636 		 * least as long as the NMI handler runs. Otherwise we may
4637 		 * cause NMI nesting, maybe breaking the guest. But as this is
4638 		 * highly unlikely, we can live with the residual risk.
4639 		 */
4640 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4641 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4642 	}
4643 
4644 	++vcpu->stat.nmi_injections;
4645 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4646 
4647 	if (vmx->rmode.vm86_active) {
4648 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4649 		return;
4650 	}
4651 
4652 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4653 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4654 
4655 	vmx_clear_hlt(vcpu);
4656 }
4657 
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)4658 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4659 {
4660 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4661 	bool masked;
4662 
4663 	if (!enable_vnmi)
4664 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4665 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4666 		return false;
4667 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4668 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4669 	return masked;
4670 }
4671 
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)4672 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4673 {
4674 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4675 
4676 	if (!enable_vnmi) {
4677 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4678 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4679 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4680 		}
4681 	} else {
4682 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4683 		if (masked)
4684 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4685 				      GUEST_INTR_STATE_NMI);
4686 		else
4687 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4688 					GUEST_INTR_STATE_NMI);
4689 	}
4690 }
4691 
vmx_nmi_blocked(struct kvm_vcpu * vcpu)4692 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4693 {
4694 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4695 		return false;
4696 
4697 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4698 		return true;
4699 
4700 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4701 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4702 		 GUEST_INTR_STATE_NMI));
4703 }
4704 
vmx_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4705 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4706 {
4707 	if (to_vmx(vcpu)->nested.nested_run_pending)
4708 		return -EBUSY;
4709 
4710 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4711 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4712 		return -EBUSY;
4713 
4714 	return !vmx_nmi_blocked(vcpu);
4715 }
4716 
vmx_interrupt_blocked(struct kvm_vcpu * vcpu)4717 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4718 {
4719 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4720 		return false;
4721 
4722 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4723 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4724 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4725 }
4726 
vmx_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)4727 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4728 {
4729 	if (to_vmx(vcpu)->nested.nested_run_pending)
4730 		return -EBUSY;
4731 
4732        /*
4733         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4734         * e.g. if the IRQ arrived asynchronously after checking nested events.
4735         */
4736 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4737 		return -EBUSY;
4738 
4739 	return !vmx_interrupt_blocked(vcpu);
4740 }
4741 
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)4742 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4743 {
4744 	int ret;
4745 
4746 	if (enable_unrestricted_guest)
4747 		return 0;
4748 
4749 	mutex_lock(&kvm->slots_lock);
4750 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4751 				      PAGE_SIZE * 3);
4752 	mutex_unlock(&kvm->slots_lock);
4753 
4754 	if (ret)
4755 		return ret;
4756 	to_kvm_vmx(kvm)->tss_addr = addr;
4757 	return init_rmode_tss(kvm);
4758 }
4759 
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)4760 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4761 {
4762 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4763 	return 0;
4764 }
4765 
rmode_exception(struct kvm_vcpu * vcpu,int vec)4766 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4767 {
4768 	switch (vec) {
4769 	case BP_VECTOR:
4770 		/*
4771 		 * Update instruction length as we may reinject the exception
4772 		 * from user space while in guest debugging mode.
4773 		 */
4774 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4775 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4776 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4777 			return false;
4778 		fallthrough;
4779 	case DB_VECTOR:
4780 		return !(vcpu->guest_debug &
4781 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4782 	case DE_VECTOR:
4783 	case OF_VECTOR:
4784 	case BR_VECTOR:
4785 	case UD_VECTOR:
4786 	case DF_VECTOR:
4787 	case SS_VECTOR:
4788 	case GP_VECTOR:
4789 	case MF_VECTOR:
4790 		return true;
4791 	}
4792 	return false;
4793 }
4794 
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)4795 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4796 				  int vec, u32 err_code)
4797 {
4798 	/*
4799 	 * Instruction with address size override prefix opcode 0x67
4800 	 * Cause the #SS fault with 0 error code in VM86 mode.
4801 	 */
4802 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4803 		if (kvm_emulate_instruction(vcpu, 0)) {
4804 			if (vcpu->arch.halt_request) {
4805 				vcpu->arch.halt_request = 0;
4806 				return kvm_vcpu_halt(vcpu);
4807 			}
4808 			return 1;
4809 		}
4810 		return 0;
4811 	}
4812 
4813 	/*
4814 	 * Forward all other exceptions that are valid in real mode.
4815 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4816 	 *        the required debugging infrastructure rework.
4817 	 */
4818 	kvm_queue_exception(vcpu, vec);
4819 	return 1;
4820 }
4821 
4822 /*
4823  * Trigger machine check on the host. We assume all the MSRs are already set up
4824  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4825  * We pass a fake environment to the machine check handler because we want
4826  * the guest to be always treated like user space, no matter what context
4827  * it used internally.
4828  */
kvm_machine_check(void)4829 static void kvm_machine_check(void)
4830 {
4831 #if defined(CONFIG_X86_MCE)
4832 	struct pt_regs regs = {
4833 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
4834 		.flags = X86_EFLAGS_IF,
4835 	};
4836 
4837 	do_machine_check(&regs);
4838 #endif
4839 }
4840 
handle_machine_check(struct kvm_vcpu * vcpu)4841 static int handle_machine_check(struct kvm_vcpu *vcpu)
4842 {
4843 	/* handled by vmx_vcpu_run() */
4844 	return 1;
4845 }
4846 
4847 /*
4848  * If the host has split lock detection disabled, then #AC is
4849  * unconditionally injected into the guest, which is the pre split lock
4850  * detection behaviour.
4851  *
4852  * If the host has split lock detection enabled then #AC is
4853  * only injected into the guest when:
4854  *  - Guest CPL == 3 (user mode)
4855  *  - Guest has #AC detection enabled in CR0
4856  *  - Guest EFLAGS has AC bit set
4857  */
vmx_guest_inject_ac(struct kvm_vcpu * vcpu)4858 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
4859 {
4860 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4861 		return true;
4862 
4863 	return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4864 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4865 }
4866 
handle_exception_nmi(struct kvm_vcpu * vcpu)4867 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4868 {
4869 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4870 	struct kvm_run *kvm_run = vcpu->run;
4871 	u32 intr_info, ex_no, error_code;
4872 	unsigned long cr2, rip, dr6;
4873 	u32 vect_info;
4874 
4875 	vect_info = vmx->idt_vectoring_info;
4876 	intr_info = vmx_get_intr_info(vcpu);
4877 
4878 	if (is_machine_check(intr_info) || is_nmi(intr_info))
4879 		return 1; /* handled by handle_exception_nmi_irqoff() */
4880 
4881 	if (is_invalid_opcode(intr_info))
4882 		return handle_ud(vcpu);
4883 
4884 	error_code = 0;
4885 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4886 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4887 
4888 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4889 		WARN_ON_ONCE(!enable_vmware_backdoor);
4890 
4891 		/*
4892 		 * VMware backdoor emulation on #GP interception only handles
4893 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4894 		 * error code on #GP.
4895 		 */
4896 		if (error_code) {
4897 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4898 			return 1;
4899 		}
4900 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4901 	}
4902 
4903 	/*
4904 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4905 	 * MMIO, it is better to report an internal error.
4906 	 * See the comments in vmx_handle_exit.
4907 	 */
4908 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4909 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4910 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4911 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4912 		vcpu->run->internal.ndata = 4;
4913 		vcpu->run->internal.data[0] = vect_info;
4914 		vcpu->run->internal.data[1] = intr_info;
4915 		vcpu->run->internal.data[2] = error_code;
4916 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4917 		return 0;
4918 	}
4919 
4920 	if (is_page_fault(intr_info)) {
4921 		cr2 = vmx_get_exit_qual(vcpu);
4922 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4923 			/*
4924 			 * EPT will cause page fault only if we need to
4925 			 * detect illegal GPAs.
4926 			 */
4927 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4928 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4929 			return 1;
4930 		} else
4931 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4932 	}
4933 
4934 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4935 
4936 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4937 		return handle_rmode_exception(vcpu, ex_no, error_code);
4938 
4939 	switch (ex_no) {
4940 	case DB_VECTOR:
4941 		dr6 = vmx_get_exit_qual(vcpu);
4942 		if (!(vcpu->guest_debug &
4943 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4944 			/*
4945 			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
4946 			 * instruction.  ICEBP generates a trap-like #DB, but
4947 			 * despite its interception control being tied to #DB,
4948 			 * is an instruction intercept, i.e. the VM-Exit occurs
4949 			 * on the ICEBP itself.  Note, skipping ICEBP also
4950 			 * clears STI and MOVSS blocking.
4951 			 *
4952 			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
4953 			 * if single-step is enabled in RFLAGS and STI or MOVSS
4954 			 * blocking is active, as the CPU doesn't set the bit
4955 			 * on VM-Exit due to #DB interception.  VM-Entry has a
4956 			 * consistency check that a single-step #DB is pending
4957 			 * in this scenario as the previous instruction cannot
4958 			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
4959 			 * don't modify RFLAGS), therefore the one instruction
4960 			 * delay when activating single-step breakpoints must
4961 			 * have already expired.  Note, the CPU sets/clears BS
4962 			 * as appropriate for all other VM-Exits types.
4963 			 */
4964 			if (is_icebp(intr_info))
4965 				WARN_ON(!skip_emulated_instruction(vcpu));
4966 			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
4967 				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4968 				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
4969 				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
4970 					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
4971 
4972 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4973 			return 1;
4974 		}
4975 		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
4976 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4977 		fallthrough;
4978 	case BP_VECTOR:
4979 		/*
4980 		 * Update instruction length as we may reinject #BP from
4981 		 * user space while in guest debugging mode. Reading it for
4982 		 * #DB as well causes no harm, it is not used in that case.
4983 		 */
4984 		vmx->vcpu.arch.event_exit_inst_len =
4985 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4986 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
4987 		rip = kvm_rip_read(vcpu);
4988 		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4989 		kvm_run->debug.arch.exception = ex_no;
4990 		break;
4991 	case AC_VECTOR:
4992 		if (vmx_guest_inject_ac(vcpu)) {
4993 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4994 			return 1;
4995 		}
4996 
4997 		/*
4998 		 * Handle split lock. Depending on detection mode this will
4999 		 * either warn and disable split lock detection for this
5000 		 * task or force SIGBUS on it.
5001 		 */
5002 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5003 			return 1;
5004 		fallthrough;
5005 	default:
5006 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5007 		kvm_run->ex.exception = ex_no;
5008 		kvm_run->ex.error_code = error_code;
5009 		break;
5010 	}
5011 	return 0;
5012 }
5013 
handle_external_interrupt(struct kvm_vcpu * vcpu)5014 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5015 {
5016 	++vcpu->stat.irq_exits;
5017 	return 1;
5018 }
5019 
handle_triple_fault(struct kvm_vcpu * vcpu)5020 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5021 {
5022 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5023 	vcpu->mmio_needed = 0;
5024 	return 0;
5025 }
5026 
handle_io(struct kvm_vcpu * vcpu)5027 static int handle_io(struct kvm_vcpu *vcpu)
5028 {
5029 	unsigned long exit_qualification;
5030 	int size, in, string;
5031 	unsigned port;
5032 
5033 	exit_qualification = vmx_get_exit_qual(vcpu);
5034 	string = (exit_qualification & 16) != 0;
5035 
5036 	++vcpu->stat.io_exits;
5037 
5038 	if (string)
5039 		return kvm_emulate_instruction(vcpu, 0);
5040 
5041 	port = exit_qualification >> 16;
5042 	size = (exit_qualification & 7) + 1;
5043 	in = (exit_qualification & 8) != 0;
5044 
5045 	return kvm_fast_pio(vcpu, size, port, in);
5046 }
5047 
5048 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5049 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5050 {
5051 	/*
5052 	 * Patch in the VMCALL instruction:
5053 	 */
5054 	hypercall[0] = 0x0f;
5055 	hypercall[1] = 0x01;
5056 	hypercall[2] = 0xc1;
5057 }
5058 
5059 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5060 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5061 {
5062 	if (is_guest_mode(vcpu)) {
5063 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5064 		unsigned long orig_val = val;
5065 
5066 		/*
5067 		 * We get here when L2 changed cr0 in a way that did not change
5068 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5069 		 * but did change L0 shadowed bits. So we first calculate the
5070 		 * effective cr0 value that L1 would like to write into the
5071 		 * hardware. It consists of the L2-owned bits from the new
5072 		 * value combined with the L1-owned bits from L1's guest_cr0.
5073 		 */
5074 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5075 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5076 
5077 		if (!nested_guest_cr0_valid(vcpu, val))
5078 			return 1;
5079 
5080 		if (kvm_set_cr0(vcpu, val))
5081 			return 1;
5082 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5083 		return 0;
5084 	} else {
5085 		if (to_vmx(vcpu)->nested.vmxon &&
5086 		    !nested_host_cr0_valid(vcpu, val))
5087 			return 1;
5088 
5089 		return kvm_set_cr0(vcpu, val);
5090 	}
5091 }
5092 
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5093 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5094 {
5095 	if (is_guest_mode(vcpu)) {
5096 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5097 		unsigned long orig_val = val;
5098 
5099 		/* analogously to handle_set_cr0 */
5100 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5101 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5102 		if (kvm_set_cr4(vcpu, val))
5103 			return 1;
5104 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5105 		return 0;
5106 	} else
5107 		return kvm_set_cr4(vcpu, val);
5108 }
5109 
handle_desc(struct kvm_vcpu * vcpu)5110 static int handle_desc(struct kvm_vcpu *vcpu)
5111 {
5112 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
5113 	return kvm_emulate_instruction(vcpu, 0);
5114 }
5115 
handle_cr(struct kvm_vcpu * vcpu)5116 static int handle_cr(struct kvm_vcpu *vcpu)
5117 {
5118 	unsigned long exit_qualification, val;
5119 	int cr;
5120 	int reg;
5121 	int err;
5122 	int ret;
5123 
5124 	exit_qualification = vmx_get_exit_qual(vcpu);
5125 	cr = exit_qualification & 15;
5126 	reg = (exit_qualification >> 8) & 15;
5127 	switch ((exit_qualification >> 4) & 3) {
5128 	case 0: /* mov to cr */
5129 		val = kvm_register_readl(vcpu, reg);
5130 		trace_kvm_cr_write(cr, val);
5131 		switch (cr) {
5132 		case 0:
5133 			err = handle_set_cr0(vcpu, val);
5134 			return kvm_complete_insn_gp(vcpu, err);
5135 		case 3:
5136 			WARN_ON_ONCE(enable_unrestricted_guest);
5137 			err = kvm_set_cr3(vcpu, val);
5138 			return kvm_complete_insn_gp(vcpu, err);
5139 		case 4:
5140 			err = handle_set_cr4(vcpu, val);
5141 			return kvm_complete_insn_gp(vcpu, err);
5142 		case 8: {
5143 				u8 cr8_prev = kvm_get_cr8(vcpu);
5144 				u8 cr8 = (u8)val;
5145 				err = kvm_set_cr8(vcpu, cr8);
5146 				ret = kvm_complete_insn_gp(vcpu, err);
5147 				if (lapic_in_kernel(vcpu))
5148 					return ret;
5149 				if (cr8_prev <= cr8)
5150 					return ret;
5151 				/*
5152 				 * TODO: we might be squashing a
5153 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5154 				 * KVM_EXIT_DEBUG here.
5155 				 */
5156 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5157 				return 0;
5158 			}
5159 		}
5160 		break;
5161 	case 2: /* clts */
5162 		WARN_ONCE(1, "Guest should always own CR0.TS");
5163 		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5164 		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5165 		return kvm_skip_emulated_instruction(vcpu);
5166 	case 1: /*mov from cr*/
5167 		switch (cr) {
5168 		case 3:
5169 			WARN_ON_ONCE(enable_unrestricted_guest);
5170 			val = kvm_read_cr3(vcpu);
5171 			kvm_register_write(vcpu, reg, val);
5172 			trace_kvm_cr_read(cr, val);
5173 			return kvm_skip_emulated_instruction(vcpu);
5174 		case 8:
5175 			val = kvm_get_cr8(vcpu);
5176 			kvm_register_write(vcpu, reg, val);
5177 			trace_kvm_cr_read(cr, val);
5178 			return kvm_skip_emulated_instruction(vcpu);
5179 		}
5180 		break;
5181 	case 3: /* lmsw */
5182 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5183 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5184 		kvm_lmsw(vcpu, val);
5185 
5186 		return kvm_skip_emulated_instruction(vcpu);
5187 	default:
5188 		break;
5189 	}
5190 	vcpu->run->exit_reason = 0;
5191 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5192 	       (int)(exit_qualification >> 4) & 3, cr);
5193 	return 0;
5194 }
5195 
handle_dr(struct kvm_vcpu * vcpu)5196 static int handle_dr(struct kvm_vcpu *vcpu)
5197 {
5198 	unsigned long exit_qualification;
5199 	int dr, dr7, reg;
5200 
5201 	exit_qualification = vmx_get_exit_qual(vcpu);
5202 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5203 
5204 	/* First, if DR does not exist, trigger UD */
5205 	if (!kvm_require_dr(vcpu, dr))
5206 		return 1;
5207 
5208 	/* Do not handle if the CPL > 0, will trigger GP on re-entry */
5209 	if (!kvm_require_cpl(vcpu, 0))
5210 		return 1;
5211 	dr7 = vmcs_readl(GUEST_DR7);
5212 	if (dr7 & DR7_GD) {
5213 		/*
5214 		 * As the vm-exit takes precedence over the debug trap, we
5215 		 * need to emulate the latter, either for the host or the
5216 		 * guest debugging itself.
5217 		 */
5218 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5219 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_RTM | DR6_FIXED_1;
5220 			vcpu->run->debug.arch.dr7 = dr7;
5221 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5222 			vcpu->run->debug.arch.exception = DB_VECTOR;
5223 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5224 			return 0;
5225 		} else {
5226 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5227 			return 1;
5228 		}
5229 	}
5230 
5231 	if (vcpu->guest_debug == 0) {
5232 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5233 
5234 		/*
5235 		 * No more DR vmexits; force a reload of the debug registers
5236 		 * and reenter on this instruction.  The next vmexit will
5237 		 * retrieve the full state of the debug registers.
5238 		 */
5239 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5240 		return 1;
5241 	}
5242 
5243 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5244 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5245 		unsigned long val;
5246 
5247 		if (kvm_get_dr(vcpu, dr, &val))
5248 			return 1;
5249 		kvm_register_write(vcpu, reg, val);
5250 	} else
5251 		if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5252 			return 1;
5253 
5254 	return kvm_skip_emulated_instruction(vcpu);
5255 }
5256 
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5257 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5258 {
5259 	get_debugreg(vcpu->arch.db[0], 0);
5260 	get_debugreg(vcpu->arch.db[1], 1);
5261 	get_debugreg(vcpu->arch.db[2], 2);
5262 	get_debugreg(vcpu->arch.db[3], 3);
5263 	get_debugreg(vcpu->arch.dr6, 6);
5264 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5265 
5266 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5267 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5268 }
5269 
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5270 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5271 {
5272 	vmcs_writel(GUEST_DR7, val);
5273 }
5274 
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5275 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5276 {
5277 	kvm_apic_update_ppr(vcpu);
5278 	return 1;
5279 }
5280 
handle_interrupt_window(struct kvm_vcpu * vcpu)5281 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5282 {
5283 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5284 
5285 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5286 
5287 	++vcpu->stat.irq_window_exits;
5288 	return 1;
5289 }
5290 
handle_vmcall(struct kvm_vcpu * vcpu)5291 static int handle_vmcall(struct kvm_vcpu *vcpu)
5292 {
5293 	return kvm_emulate_hypercall(vcpu);
5294 }
5295 
handle_invd(struct kvm_vcpu * vcpu)5296 static int handle_invd(struct kvm_vcpu *vcpu)
5297 {
5298 	/* Treat an INVD instruction as a NOP and just skip it. */
5299 	return kvm_skip_emulated_instruction(vcpu);
5300 }
5301 
handle_invlpg(struct kvm_vcpu * vcpu)5302 static int handle_invlpg(struct kvm_vcpu *vcpu)
5303 {
5304 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5305 
5306 	kvm_mmu_invlpg(vcpu, exit_qualification);
5307 	return kvm_skip_emulated_instruction(vcpu);
5308 }
5309 
handle_rdpmc(struct kvm_vcpu * vcpu)5310 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5311 {
5312 	int err;
5313 
5314 	err = kvm_rdpmc(vcpu);
5315 	return kvm_complete_insn_gp(vcpu, err);
5316 }
5317 
handle_wbinvd(struct kvm_vcpu * vcpu)5318 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5319 {
5320 	return kvm_emulate_wbinvd(vcpu);
5321 }
5322 
handle_xsetbv(struct kvm_vcpu * vcpu)5323 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5324 {
5325 	u64 new_bv = kvm_read_edx_eax(vcpu);
5326 	u32 index = kvm_rcx_read(vcpu);
5327 
5328 	if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5329 		return kvm_skip_emulated_instruction(vcpu);
5330 	return 1;
5331 }
5332 
handle_apic_access(struct kvm_vcpu * vcpu)5333 static int handle_apic_access(struct kvm_vcpu *vcpu)
5334 {
5335 	if (likely(fasteoi)) {
5336 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5337 		int access_type, offset;
5338 
5339 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5340 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5341 		/*
5342 		 * Sane guest uses MOV to write EOI, with written value
5343 		 * not cared. So make a short-circuit here by avoiding
5344 		 * heavy instruction emulation.
5345 		 */
5346 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5347 		    (offset == APIC_EOI)) {
5348 			kvm_lapic_set_eoi(vcpu);
5349 			return kvm_skip_emulated_instruction(vcpu);
5350 		}
5351 	}
5352 	return kvm_emulate_instruction(vcpu, 0);
5353 }
5354 
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5355 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5356 {
5357 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5358 	int vector = exit_qualification & 0xff;
5359 
5360 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5361 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5362 	return 1;
5363 }
5364 
handle_apic_write(struct kvm_vcpu * vcpu)5365 static int handle_apic_write(struct kvm_vcpu *vcpu)
5366 {
5367 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5368 	u32 offset = exit_qualification & 0xfff;
5369 
5370 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
5371 	kvm_apic_write_nodecode(vcpu, offset);
5372 	return 1;
5373 }
5374 
handle_task_switch(struct kvm_vcpu * vcpu)5375 static int handle_task_switch(struct kvm_vcpu *vcpu)
5376 {
5377 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5378 	unsigned long exit_qualification;
5379 	bool has_error_code = false;
5380 	u32 error_code = 0;
5381 	u16 tss_selector;
5382 	int reason, type, idt_v, idt_index;
5383 
5384 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5385 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5386 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5387 
5388 	exit_qualification = vmx_get_exit_qual(vcpu);
5389 
5390 	reason = (u32)exit_qualification >> 30;
5391 	if (reason == TASK_SWITCH_GATE && idt_v) {
5392 		switch (type) {
5393 		case INTR_TYPE_NMI_INTR:
5394 			vcpu->arch.nmi_injected = false;
5395 			vmx_set_nmi_mask(vcpu, true);
5396 			break;
5397 		case INTR_TYPE_EXT_INTR:
5398 		case INTR_TYPE_SOFT_INTR:
5399 			kvm_clear_interrupt_queue(vcpu);
5400 			break;
5401 		case INTR_TYPE_HARD_EXCEPTION:
5402 			if (vmx->idt_vectoring_info &
5403 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5404 				has_error_code = true;
5405 				error_code =
5406 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5407 			}
5408 			fallthrough;
5409 		case INTR_TYPE_SOFT_EXCEPTION:
5410 			kvm_clear_exception_queue(vcpu);
5411 			break;
5412 		default:
5413 			break;
5414 		}
5415 	}
5416 	tss_selector = exit_qualification;
5417 
5418 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5419 		       type != INTR_TYPE_EXT_INTR &&
5420 		       type != INTR_TYPE_NMI_INTR))
5421 		WARN_ON(!skip_emulated_instruction(vcpu));
5422 
5423 	/*
5424 	 * TODO: What about debug traps on tss switch?
5425 	 *       Are we supposed to inject them and update dr6?
5426 	 */
5427 	return kvm_task_switch(vcpu, tss_selector,
5428 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5429 			       reason, has_error_code, error_code);
5430 }
5431 
handle_ept_violation(struct kvm_vcpu * vcpu)5432 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5433 {
5434 	unsigned long exit_qualification;
5435 	gpa_t gpa;
5436 	u64 error_code;
5437 
5438 	exit_qualification = vmx_get_exit_qual(vcpu);
5439 
5440 	/*
5441 	 * EPT violation happened while executing iret from NMI,
5442 	 * "blocked by NMI" bit has to be set before next VM entry.
5443 	 * There are errata that may cause this bit to not be set:
5444 	 * AAK134, BY25.
5445 	 */
5446 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5447 			enable_vnmi &&
5448 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5449 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5450 
5451 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5452 	trace_kvm_page_fault(gpa, exit_qualification);
5453 
5454 	/* Is it a read fault? */
5455 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5456 		     ? PFERR_USER_MASK : 0;
5457 	/* Is it a write fault? */
5458 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5459 		      ? PFERR_WRITE_MASK : 0;
5460 	/* Is it a fetch fault? */
5461 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5462 		      ? PFERR_FETCH_MASK : 0;
5463 	/* ept page table entry is present? */
5464 	error_code |= (exit_qualification &
5465 		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5466 			EPT_VIOLATION_EXECUTABLE))
5467 		      ? PFERR_PRESENT_MASK : 0;
5468 
5469 	error_code |= (exit_qualification & 0x100) != 0 ?
5470 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5471 
5472 	vcpu->arch.exit_qualification = exit_qualification;
5473 
5474 	/*
5475 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5476 	 * a guest page fault.  We have to emulate the instruction here, because
5477 	 * if the illegal address is that of a paging structure, then
5478 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5479 	 * would also use advanced VM-exit information for EPT violations to
5480 	 * reconstruct the page fault error code.
5481 	 */
5482 	if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5483 		return kvm_emulate_instruction(vcpu, 0);
5484 
5485 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5486 }
5487 
handle_ept_misconfig(struct kvm_vcpu * vcpu)5488 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5489 {
5490 	gpa_t gpa;
5491 
5492 	/*
5493 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5494 	 * nGPA here instead of the required GPA.
5495 	 */
5496 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5497 	if (!is_guest_mode(vcpu) &&
5498 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5499 		trace_kvm_fast_mmio(gpa);
5500 		return kvm_skip_emulated_instruction(vcpu);
5501 	}
5502 
5503 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5504 }
5505 
handle_nmi_window(struct kvm_vcpu * vcpu)5506 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5507 {
5508 	WARN_ON_ONCE(!enable_vnmi);
5509 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5510 	++vcpu->stat.nmi_window_exits;
5511 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5512 
5513 	return 1;
5514 }
5515 
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5516 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5517 {
5518 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5519 	bool intr_window_requested;
5520 	unsigned count = 130;
5521 
5522 	intr_window_requested = exec_controls_get(vmx) &
5523 				CPU_BASED_INTR_WINDOW_EXITING;
5524 
5525 	while (vmx->emulation_required && count-- != 0) {
5526 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5527 			return handle_interrupt_window(&vmx->vcpu);
5528 
5529 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5530 			return 1;
5531 
5532 		if (!kvm_emulate_instruction(vcpu, 0))
5533 			return 0;
5534 
5535 		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5536 		    vcpu->arch.exception.pending) {
5537 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5538 			vcpu->run->internal.suberror =
5539 						KVM_INTERNAL_ERROR_EMULATION;
5540 			vcpu->run->internal.ndata = 0;
5541 			return 0;
5542 		}
5543 
5544 		if (vcpu->arch.halt_request) {
5545 			vcpu->arch.halt_request = 0;
5546 			return kvm_vcpu_halt(vcpu);
5547 		}
5548 
5549 		/*
5550 		 * Note, return 1 and not 0, vcpu_run() will invoke
5551 		 * xfer_to_guest_mode() which will create a proper return
5552 		 * code.
5553 		 */
5554 		if (__xfer_to_guest_mode_work_pending())
5555 			return 1;
5556 	}
5557 
5558 	return 1;
5559 }
5560 
grow_ple_window(struct kvm_vcpu * vcpu)5561 static void grow_ple_window(struct kvm_vcpu *vcpu)
5562 {
5563 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5564 	unsigned int old = vmx->ple_window;
5565 
5566 	vmx->ple_window = __grow_ple_window(old, ple_window,
5567 					    ple_window_grow,
5568 					    ple_window_max);
5569 
5570 	if (vmx->ple_window != old) {
5571 		vmx->ple_window_dirty = true;
5572 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5573 					    vmx->ple_window, old);
5574 	}
5575 }
5576 
shrink_ple_window(struct kvm_vcpu * vcpu)5577 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5578 {
5579 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5580 	unsigned int old = vmx->ple_window;
5581 
5582 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5583 					      ple_window_shrink,
5584 					      ple_window);
5585 
5586 	if (vmx->ple_window != old) {
5587 		vmx->ple_window_dirty = true;
5588 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5589 					    vmx->ple_window, old);
5590 	}
5591 }
5592 
vmx_enable_tdp(void)5593 static void vmx_enable_tdp(void)
5594 {
5595 	kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5596 		enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5597 		enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5598 		0ull, VMX_EPT_EXECUTABLE_MASK,
5599 		cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5600 		VMX_EPT_RWX_MASK, 0ull);
5601 
5602 	ept_set_mmio_spte_mask();
5603 }
5604 
5605 /*
5606  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5607  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5608  */
handle_pause(struct kvm_vcpu * vcpu)5609 static int handle_pause(struct kvm_vcpu *vcpu)
5610 {
5611 	if (!kvm_pause_in_guest(vcpu->kvm))
5612 		grow_ple_window(vcpu);
5613 
5614 	/*
5615 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5616 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5617 	 * never set PAUSE_EXITING and just set PLE if supported,
5618 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5619 	 */
5620 	kvm_vcpu_on_spin(vcpu, true);
5621 	return kvm_skip_emulated_instruction(vcpu);
5622 }
5623 
handle_nop(struct kvm_vcpu * vcpu)5624 static int handle_nop(struct kvm_vcpu *vcpu)
5625 {
5626 	return kvm_skip_emulated_instruction(vcpu);
5627 }
5628 
handle_mwait(struct kvm_vcpu * vcpu)5629 static int handle_mwait(struct kvm_vcpu *vcpu)
5630 {
5631 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5632 	return handle_nop(vcpu);
5633 }
5634 
handle_invalid_op(struct kvm_vcpu * vcpu)5635 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5636 {
5637 	kvm_queue_exception(vcpu, UD_VECTOR);
5638 	return 1;
5639 }
5640 
handle_monitor_trap(struct kvm_vcpu * vcpu)5641 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5642 {
5643 	return 1;
5644 }
5645 
handle_monitor(struct kvm_vcpu * vcpu)5646 static int handle_monitor(struct kvm_vcpu *vcpu)
5647 {
5648 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5649 	return handle_nop(vcpu);
5650 }
5651 
handle_invpcid(struct kvm_vcpu * vcpu)5652 static int handle_invpcid(struct kvm_vcpu *vcpu)
5653 {
5654 	u32 vmx_instruction_info;
5655 	unsigned long type;
5656 	gva_t gva;
5657 	struct {
5658 		u64 pcid;
5659 		u64 gla;
5660 	} operand;
5661 
5662 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5663 		kvm_queue_exception(vcpu, UD_VECTOR);
5664 		return 1;
5665 	}
5666 
5667 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5668 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5669 
5670 	if (type > 3) {
5671 		kvm_inject_gp(vcpu, 0);
5672 		return 1;
5673 	}
5674 
5675 	/* According to the Intel instruction reference, the memory operand
5676 	 * is read even if it isn't needed (e.g., for type==all)
5677 	 */
5678 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5679 				vmx_instruction_info, false,
5680 				sizeof(operand), &gva))
5681 		return 1;
5682 
5683 	return kvm_handle_invpcid(vcpu, type, gva);
5684 }
5685 
handle_pml_full(struct kvm_vcpu * vcpu)5686 static int handle_pml_full(struct kvm_vcpu *vcpu)
5687 {
5688 	unsigned long exit_qualification;
5689 
5690 	trace_kvm_pml_full(vcpu->vcpu_id);
5691 
5692 	exit_qualification = vmx_get_exit_qual(vcpu);
5693 
5694 	/*
5695 	 * PML buffer FULL happened while executing iret from NMI,
5696 	 * "blocked by NMI" bit has to be set before next VM entry.
5697 	 */
5698 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5699 			enable_vnmi &&
5700 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5701 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5702 				GUEST_INTR_STATE_NMI);
5703 
5704 	/*
5705 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5706 	 * here.., and there's no userspace involvement needed for PML.
5707 	 */
5708 	return 1;
5709 }
5710 
handle_fastpath_preemption_timer(struct kvm_vcpu * vcpu)5711 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5712 {
5713 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5714 
5715 	if (!vmx->req_immediate_exit &&
5716 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5717 		kvm_lapic_expired_hv_timer(vcpu);
5718 		return EXIT_FASTPATH_REENTER_GUEST;
5719 	}
5720 
5721 	return EXIT_FASTPATH_NONE;
5722 }
5723 
handle_preemption_timer(struct kvm_vcpu * vcpu)5724 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5725 {
5726 	handle_fastpath_preemption_timer(vcpu);
5727 	return 1;
5728 }
5729 
5730 /*
5731  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5732  * are overwritten by nested_vmx_setup() when nested=1.
5733  */
handle_vmx_instruction(struct kvm_vcpu * vcpu)5734 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5735 {
5736 	kvm_queue_exception(vcpu, UD_VECTOR);
5737 	return 1;
5738 }
5739 
handle_encls(struct kvm_vcpu * vcpu)5740 static int handle_encls(struct kvm_vcpu *vcpu)
5741 {
5742 	/*
5743 	 * SGX virtualization is not yet supported.  There is no software
5744 	 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5745 	 * to prevent the guest from executing ENCLS.
5746 	 */
5747 	kvm_queue_exception(vcpu, UD_VECTOR);
5748 	return 1;
5749 }
5750 
5751 /*
5752  * The exit handlers return 1 if the exit was handled fully and guest execution
5753  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5754  * to be done to userspace and return 0.
5755  */
5756 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5757 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5758 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5759 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5760 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5761 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5762 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5763 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5764 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5765 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5766 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5767 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5768 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
5769 	[EXIT_REASON_INVD]		      = handle_invd,
5770 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5771 	[EXIT_REASON_RDPMC]                   = handle_rdpmc,
5772 	[EXIT_REASON_VMCALL]                  = handle_vmcall,
5773 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
5774 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
5775 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
5776 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
5777 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
5778 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
5779 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
5780 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
5781 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
5782 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5783 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5784 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5785 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5786 	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
5787 	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
5788 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5789 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5790 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
5791 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
5792 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5793 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5794 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5795 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_mwait,
5796 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5797 	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5798 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5799 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5800 	[EXIT_REASON_RDRAND]                  = handle_invalid_op,
5801 	[EXIT_REASON_RDSEED]                  = handle_invalid_op,
5802 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
5803 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
5804 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
5805 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
5806 	[EXIT_REASON_ENCLS]		      = handle_encls,
5807 };
5808 
5809 static const int kvm_vmx_max_exit_handlers =
5810 	ARRAY_SIZE(kvm_vmx_exit_handlers);
5811 
vmx_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)5812 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
5813 			      u32 *intr_info, u32 *error_code)
5814 {
5815 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5816 
5817 	*info1 = vmx_get_exit_qual(vcpu);
5818 	if (!(vmx->exit_reason.failed_vmentry)) {
5819 		*info2 = vmx->idt_vectoring_info;
5820 		*intr_info = vmx_get_intr_info(vcpu);
5821 		if (is_exception_with_error_code(*intr_info))
5822 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5823 		else
5824 			*error_code = 0;
5825 	} else {
5826 		*info2 = 0;
5827 		*intr_info = 0;
5828 		*error_code = 0;
5829 	}
5830 }
5831 
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)5832 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5833 {
5834 	if (vmx->pml_pg) {
5835 		__free_page(vmx->pml_pg);
5836 		vmx->pml_pg = NULL;
5837 	}
5838 }
5839 
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)5840 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5841 {
5842 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5843 	u64 *pml_buf;
5844 	u16 pml_idx;
5845 
5846 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
5847 
5848 	/* Do nothing if PML buffer is empty */
5849 	if (pml_idx == (PML_ENTITY_NUM - 1))
5850 		return;
5851 
5852 	/* PML index always points to next available PML buffer entity */
5853 	if (pml_idx >= PML_ENTITY_NUM)
5854 		pml_idx = 0;
5855 	else
5856 		pml_idx++;
5857 
5858 	pml_buf = page_address(vmx->pml_pg);
5859 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5860 		u64 gpa;
5861 
5862 		gpa = pml_buf[pml_idx];
5863 		WARN_ON(gpa & (PAGE_SIZE - 1));
5864 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5865 	}
5866 
5867 	/* reset PML index */
5868 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5869 }
5870 
5871 /*
5872  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5873  * Called before reporting dirty_bitmap to userspace.
5874  */
kvm_flush_pml_buffers(struct kvm * kvm)5875 static void kvm_flush_pml_buffers(struct kvm *kvm)
5876 {
5877 	int i;
5878 	struct kvm_vcpu *vcpu;
5879 	/*
5880 	 * We only need to kick vcpu out of guest mode here, as PML buffer
5881 	 * is flushed at beginning of all VMEXITs, and it's obvious that only
5882 	 * vcpus running in guest are possible to have unflushed GPAs in PML
5883 	 * buffer.
5884 	 */
5885 	kvm_for_each_vcpu(i, vcpu, kvm)
5886 		kvm_vcpu_kick(vcpu);
5887 }
5888 
vmx_dump_sel(char * name,uint32_t sel)5889 static void vmx_dump_sel(char *name, uint32_t sel)
5890 {
5891 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5892 	       name, vmcs_read16(sel),
5893 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5894 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5895 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5896 }
5897 
vmx_dump_dtsel(char * name,uint32_t limit)5898 static void vmx_dump_dtsel(char *name, uint32_t limit)
5899 {
5900 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5901 	       name, vmcs_read32(limit),
5902 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5903 }
5904 
dump_vmcs(void)5905 void dump_vmcs(void)
5906 {
5907 	u32 vmentry_ctl, vmexit_ctl;
5908 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5909 	unsigned long cr4;
5910 
5911 	if (!dump_invalid_vmcs) {
5912 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5913 		return;
5914 	}
5915 
5916 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5917 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5918 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5919 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5920 	cr4 = vmcs_readl(GUEST_CR4);
5921 	secondary_exec_control = 0;
5922 	if (cpu_has_secondary_exec_ctrls())
5923 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5924 
5925 	pr_err("*** Guest State ***\n");
5926 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5927 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5928 	       vmcs_readl(CR0_GUEST_HOST_MASK));
5929 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5930 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5931 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5932 	if (cpu_has_vmx_ept()) {
5933 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5934 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5935 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5936 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5937 	}
5938 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5939 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5940 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5941 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5942 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5943 	       vmcs_readl(GUEST_SYSENTER_ESP),
5944 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5945 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5946 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5947 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5948 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5949 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5950 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5951 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5952 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5953 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5954 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5955 	if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5956 	    (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5957 		pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5958 		       vmcs_read64(GUEST_IA32_EFER),
5959 		       vmcs_read64(GUEST_IA32_PAT));
5960 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5961 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
5962 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5963 	if (cpu_has_load_perf_global_ctrl() &&
5964 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5965 		pr_err("PerfGlobCtl = 0x%016llx\n",
5966 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5967 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5968 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5969 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5970 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5971 	       vmcs_read32(GUEST_ACTIVITY_STATE));
5972 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5973 		pr_err("InterruptStatus = %04x\n",
5974 		       vmcs_read16(GUEST_INTR_STATUS));
5975 
5976 	pr_err("*** Host State ***\n");
5977 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5978 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5979 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5980 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5981 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5982 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5983 	       vmcs_read16(HOST_TR_SELECTOR));
5984 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5985 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5986 	       vmcs_readl(HOST_TR_BASE));
5987 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5988 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5989 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5990 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5991 	       vmcs_readl(HOST_CR4));
5992 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5993 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
5994 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
5995 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
5996 	if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5997 		pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5998 		       vmcs_read64(HOST_IA32_EFER),
5999 		       vmcs_read64(HOST_IA32_PAT));
6000 	if (cpu_has_load_perf_global_ctrl() &&
6001 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6002 		pr_err("PerfGlobCtl = 0x%016llx\n",
6003 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6004 
6005 	pr_err("*** Control State ***\n");
6006 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
6007 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
6008 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
6009 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6010 	       vmcs_read32(EXCEPTION_BITMAP),
6011 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6012 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6013 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6014 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6015 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6016 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6017 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6018 	       vmcs_read32(VM_EXIT_INTR_INFO),
6019 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6020 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6021 	pr_err("        reason=%08x qualification=%016lx\n",
6022 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6023 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6024 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
6025 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
6026 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6027 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6028 		pr_err("TSC Multiplier = 0x%016llx\n",
6029 		       vmcs_read64(TSC_MULTIPLIER));
6030 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6031 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6032 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
6033 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6034 		}
6035 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6036 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6037 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6038 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6039 	}
6040 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6041 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6042 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6043 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6044 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6045 		pr_err("PLE Gap=%08x Window=%08x\n",
6046 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6047 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6048 		pr_err("Virtual processor ID = 0x%04x\n",
6049 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6050 }
6051 
6052 /*
6053  * The guest has exited.  See if we can fix it or if we need userspace
6054  * assistance.
6055  */
vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6056 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6057 {
6058 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6059 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6060 	u32 vectoring_info = vmx->idt_vectoring_info;
6061 	u16 exit_handler_index;
6062 
6063 	/*
6064 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6065 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6066 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6067 	 * mode as if vcpus is in root mode, the PML buffer must has been
6068 	 * flushed already.
6069 	 */
6070 	if (enable_pml)
6071 		vmx_flush_pml_buffer(vcpu);
6072 
6073 	/*
6074 	 * We should never reach this point with a pending nested VM-Enter, and
6075 	 * more specifically emulation of L2 due to invalid guest state (see
6076 	 * below) should never happen as that means we incorrectly allowed a
6077 	 * nested VM-Enter with an invalid vmcs12.
6078 	 */
6079 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
6080 
6081 	/* If guest state is invalid, start emulating */
6082 	if (vmx->emulation_required)
6083 		return handle_invalid_guest_state(vcpu);
6084 
6085 	if (is_guest_mode(vcpu)) {
6086 		/*
6087 		 * The host physical addresses of some pages of guest memory
6088 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6089 		 * Page). The CPU may write to these pages via their host
6090 		 * physical address while L2 is running, bypassing any
6091 		 * address-translation-based dirty tracking (e.g. EPT write
6092 		 * protection).
6093 		 *
6094 		 * Mark them dirty on every exit from L2 to prevent them from
6095 		 * getting out of sync with dirty tracking.
6096 		 */
6097 		nested_mark_vmcs12_pages_dirty(vcpu);
6098 
6099 		if (nested_vmx_reflect_vmexit(vcpu))
6100 			return 1;
6101 	}
6102 
6103 	if (exit_reason.failed_vmentry) {
6104 		dump_vmcs();
6105 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6106 		vcpu->run->fail_entry.hardware_entry_failure_reason
6107 			= exit_reason.full;
6108 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6109 		return 0;
6110 	}
6111 
6112 	if (unlikely(vmx->fail)) {
6113 		dump_vmcs();
6114 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6115 		vcpu->run->fail_entry.hardware_entry_failure_reason
6116 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6117 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6118 		return 0;
6119 	}
6120 
6121 	/*
6122 	 * Note:
6123 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6124 	 * delivery event since it indicates guest is accessing MMIO.
6125 	 * The vm-exit can be triggered again after return to guest that
6126 	 * will cause infinite loop.
6127 	 */
6128 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6129 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6130 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6131 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6132 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6133 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
6134 		int ndata = 3;
6135 
6136 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6137 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6138 		vcpu->run->internal.data[0] = vectoring_info;
6139 		vcpu->run->internal.data[1] = exit_reason.full;
6140 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6141 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6142 			vcpu->run->internal.data[ndata++] =
6143 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6144 		}
6145 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6146 		vcpu->run->internal.ndata = ndata;
6147 		return 0;
6148 	}
6149 
6150 	if (unlikely(!enable_vnmi &&
6151 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6152 		if (!vmx_interrupt_blocked(vcpu)) {
6153 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6154 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6155 			   vcpu->arch.nmi_pending) {
6156 			/*
6157 			 * This CPU don't support us in finding the end of an
6158 			 * NMI-blocked window if the guest runs with IRQs
6159 			 * disabled. So we pull the trigger after 1 s of
6160 			 * futile waiting, but inform the user about this.
6161 			 */
6162 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6163 			       "state on VCPU %d after 1 s timeout\n",
6164 			       __func__, vcpu->vcpu_id);
6165 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6166 		}
6167 	}
6168 
6169 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6170 		return 1;
6171 
6172 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6173 		goto unexpected_vmexit;
6174 #ifdef CONFIG_RETPOLINE
6175 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6176 		return kvm_emulate_wrmsr(vcpu);
6177 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6178 		return handle_preemption_timer(vcpu);
6179 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6180 		return handle_interrupt_window(vcpu);
6181 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6182 		return handle_external_interrupt(vcpu);
6183 	else if (exit_reason.basic == EXIT_REASON_HLT)
6184 		return kvm_emulate_halt(vcpu);
6185 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6186 		return handle_ept_misconfig(vcpu);
6187 #endif
6188 
6189 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6190 						kvm_vmx_max_exit_handlers);
6191 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6192 		goto unexpected_vmexit;
6193 
6194 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6195 
6196 unexpected_vmexit:
6197 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6198 		    exit_reason.full);
6199 	dump_vmcs();
6200 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6201 	vcpu->run->internal.suberror =
6202 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6203 	vcpu->run->internal.ndata = 2;
6204 	vcpu->run->internal.data[0] = exit_reason.full;
6205 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6206 	return 0;
6207 }
6208 
6209 /*
6210  * Software based L1D cache flush which is used when microcode providing
6211  * the cache control MSR is not loaded.
6212  *
6213  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6214  * flush it is required to read in 64 KiB because the replacement algorithm
6215  * is not exactly LRU. This could be sized at runtime via topology
6216  * information but as all relevant affected CPUs have 32KiB L1D cache size
6217  * there is no point in doing so.
6218  */
vmx_l1d_flush(struct kvm_vcpu * vcpu)6219 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6220 {
6221 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6222 
6223 	/*
6224 	 * This code is only executed when the the flush mode is 'cond' or
6225 	 * 'always'
6226 	 */
6227 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6228 		bool flush_l1d;
6229 
6230 		/*
6231 		 * Clear the per-vcpu flush bit, it gets set again
6232 		 * either from vcpu_run() or from one of the unsafe
6233 		 * VMEXIT handlers.
6234 		 */
6235 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6236 		vcpu->arch.l1tf_flush_l1d = false;
6237 
6238 		/*
6239 		 * Clear the per-cpu flush bit, it gets set again from
6240 		 * the interrupt handlers.
6241 		 */
6242 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6243 		kvm_clear_cpu_l1tf_flush_l1d();
6244 
6245 		if (!flush_l1d)
6246 			return;
6247 	}
6248 
6249 	vcpu->stat.l1d_flush++;
6250 
6251 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6252 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6253 		return;
6254 	}
6255 
6256 	asm volatile(
6257 		/* First ensure the pages are in the TLB */
6258 		"xorl	%%eax, %%eax\n"
6259 		".Lpopulate_tlb:\n\t"
6260 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6261 		"addl	$4096, %%eax\n\t"
6262 		"cmpl	%%eax, %[size]\n\t"
6263 		"jne	.Lpopulate_tlb\n\t"
6264 		"xorl	%%eax, %%eax\n\t"
6265 		"cpuid\n\t"
6266 		/* Now fill the cache */
6267 		"xorl	%%eax, %%eax\n"
6268 		".Lfill_cache:\n"
6269 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6270 		"addl	$64, %%eax\n\t"
6271 		"cmpl	%%eax, %[size]\n\t"
6272 		"jne	.Lfill_cache\n\t"
6273 		"lfence\n"
6274 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6275 		    [size] "r" (size)
6276 		: "eax", "ebx", "ecx", "edx");
6277 }
6278 
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6279 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6280 {
6281 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6282 	int tpr_threshold;
6283 
6284 	if (is_guest_mode(vcpu) &&
6285 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6286 		return;
6287 
6288 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6289 	if (is_guest_mode(vcpu))
6290 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6291 	else
6292 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6293 }
6294 
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6295 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6296 {
6297 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6298 	u32 sec_exec_control;
6299 
6300 	if (!lapic_in_kernel(vcpu))
6301 		return;
6302 
6303 	if (!flexpriority_enabled &&
6304 	    !cpu_has_vmx_virtualize_x2apic_mode())
6305 		return;
6306 
6307 	/* Postpone execution until vmcs01 is the current VMCS. */
6308 	if (is_guest_mode(vcpu)) {
6309 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6310 		return;
6311 	}
6312 
6313 	sec_exec_control = secondary_exec_controls_get(vmx);
6314 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6315 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6316 
6317 	switch (kvm_get_apic_mode(vcpu)) {
6318 	case LAPIC_MODE_INVALID:
6319 		WARN_ONCE(true, "Invalid local APIC state");
6320 	case LAPIC_MODE_DISABLED:
6321 		break;
6322 	case LAPIC_MODE_XAPIC:
6323 		if (flexpriority_enabled) {
6324 			sec_exec_control |=
6325 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6326 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6327 
6328 			/*
6329 			 * Flush the TLB, reloading the APIC access page will
6330 			 * only do so if its physical address has changed, but
6331 			 * the guest may have inserted a non-APIC mapping into
6332 			 * the TLB while the APIC access page was disabled.
6333 			 */
6334 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6335 		}
6336 		break;
6337 	case LAPIC_MODE_X2APIC:
6338 		if (cpu_has_vmx_virtualize_x2apic_mode())
6339 			sec_exec_control |=
6340 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6341 		break;
6342 	}
6343 	secondary_exec_controls_set(vmx, sec_exec_control);
6344 
6345 	vmx_update_msr_bitmap(vcpu);
6346 }
6347 
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu)6348 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6349 {
6350 	struct page *page;
6351 
6352 	/* Defer reload until vmcs01 is the current VMCS. */
6353 	if (is_guest_mode(vcpu)) {
6354 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6355 		return;
6356 	}
6357 
6358 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6359 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6360 		return;
6361 
6362 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6363 	if (is_error_page(page))
6364 		return;
6365 
6366 	vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6367 	vmx_flush_tlb_current(vcpu);
6368 
6369 	/*
6370 	 * Do not pin apic access page in memory, the MMU notifier
6371 	 * will call us again if it is migrated or swapped out.
6372 	 */
6373 	put_page(page);
6374 }
6375 
vmx_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)6376 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6377 {
6378 	u16 status;
6379 	u8 old;
6380 
6381 	if (max_isr == -1)
6382 		max_isr = 0;
6383 
6384 	status = vmcs_read16(GUEST_INTR_STATUS);
6385 	old = status >> 8;
6386 	if (max_isr != old) {
6387 		status &= 0xff;
6388 		status |= max_isr << 8;
6389 		vmcs_write16(GUEST_INTR_STATUS, status);
6390 	}
6391 }
6392 
vmx_set_rvi(int vector)6393 static void vmx_set_rvi(int vector)
6394 {
6395 	u16 status;
6396 	u8 old;
6397 
6398 	if (vector == -1)
6399 		vector = 0;
6400 
6401 	status = vmcs_read16(GUEST_INTR_STATUS);
6402 	old = (u8)status & 0xff;
6403 	if ((u8)vector != old) {
6404 		status &= ~0xff;
6405 		status |= (u8)vector;
6406 		vmcs_write16(GUEST_INTR_STATUS, status);
6407 	}
6408 }
6409 
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)6410 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6411 {
6412 	/*
6413 	 * When running L2, updating RVI is only relevant when
6414 	 * vmcs12 virtual-interrupt-delivery enabled.
6415 	 * However, it can be enabled only when L1 also
6416 	 * intercepts external-interrupts and in that case
6417 	 * we should not update vmcs02 RVI but instead intercept
6418 	 * interrupt. Therefore, do nothing when running L2.
6419 	 */
6420 	if (!is_guest_mode(vcpu))
6421 		vmx_set_rvi(max_irr);
6422 }
6423 
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6424 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6425 {
6426 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6427 	int max_irr;
6428 	bool max_irr_updated;
6429 
6430 	WARN_ON(!vcpu->arch.apicv_active);
6431 	if (pi_test_on(&vmx->pi_desc)) {
6432 		pi_clear_on(&vmx->pi_desc);
6433 		/*
6434 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6435 		 * But on x86 this is just a compiler barrier anyway.
6436 		 */
6437 		smp_mb__after_atomic();
6438 		max_irr_updated =
6439 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6440 
6441 		/*
6442 		 * If we are running L2 and L1 has a new pending interrupt
6443 		 * which can be injected, this may cause a vmexit or it may
6444 		 * be injected into L2.  Either way, this interrupt will be
6445 		 * processed via KVM_REQ_EVENT, not RVI, because we do not use
6446 		 * virtual interrupt delivery to inject L1 interrupts into L2.
6447 		 */
6448 		if (is_guest_mode(vcpu) && max_irr_updated)
6449 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6450 	} else {
6451 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6452 	}
6453 	vmx_hwapic_irr_update(vcpu, max_irr);
6454 	return max_irr;
6455 }
6456 
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)6457 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6458 {
6459 	if (!kvm_vcpu_apicv_active(vcpu))
6460 		return;
6461 
6462 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6463 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6464 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6465 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6466 }
6467 
vmx_apicv_post_state_restore(struct kvm_vcpu * vcpu)6468 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6469 {
6470 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6471 
6472 	pi_clear_on(&vmx->pi_desc);
6473 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6474 }
6475 
6476 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6477 
handle_interrupt_nmi_irqoff(struct kvm_vcpu * vcpu,unsigned long entry)6478 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6479 					unsigned long entry)
6480 {
6481 	kvm_before_interrupt(vcpu);
6482 	vmx_do_interrupt_nmi_irqoff(entry);
6483 	kvm_after_interrupt(vcpu);
6484 }
6485 
handle_exception_nmi_irqoff(struct vcpu_vmx * vmx)6486 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6487 {
6488 	const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6489 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6490 
6491 	/* if exit due to PF check for async PF */
6492 	if (is_page_fault(intr_info))
6493 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6494 	/* Handle machine checks before interrupts are enabled */
6495 	else if (is_machine_check(intr_info))
6496 		kvm_machine_check();
6497 	/* We need to handle NMIs before interrupts are enabled */
6498 	else if (is_nmi(intr_info))
6499 		handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6500 }
6501 
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu)6502 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6503 {
6504 	u32 intr_info = vmx_get_intr_info(vcpu);
6505 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6506 	gate_desc *desc = (gate_desc *)host_idt_base + vector;
6507 
6508 	if (WARN_ONCE(!is_external_intr(intr_info),
6509 	    "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6510 		return;
6511 
6512 	handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6513 	vcpu->arch.at_instruction_boundary = true;
6514 }
6515 
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)6516 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6517 {
6518 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6519 
6520 	if (vmx->emulation_required)
6521 		return;
6522 
6523 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6524 		handle_external_interrupt_irqoff(vcpu);
6525 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6526 		handle_exception_nmi_irqoff(vmx);
6527 }
6528 
vmx_has_emulated_msr(u32 index)6529 static bool vmx_has_emulated_msr(u32 index)
6530 {
6531 	switch (index) {
6532 	case MSR_IA32_SMBASE:
6533 		/*
6534 		 * We cannot do SMM unless we can run the guest in big
6535 		 * real mode.
6536 		 */
6537 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6538 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6539 		return nested;
6540 	case MSR_AMD64_VIRT_SPEC_CTRL:
6541 		/* This is AMD only.  */
6542 		return false;
6543 	default:
6544 		return true;
6545 	}
6546 }
6547 
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)6548 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6549 {
6550 	u32 exit_intr_info;
6551 	bool unblock_nmi;
6552 	u8 vector;
6553 	bool idtv_info_valid;
6554 
6555 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6556 
6557 	if (enable_vnmi) {
6558 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6559 			return;
6560 
6561 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6562 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6563 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6564 		/*
6565 		 * SDM 3: 27.7.1.2 (September 2008)
6566 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6567 		 * a guest IRET fault.
6568 		 * SDM 3: 23.2.2 (September 2008)
6569 		 * Bit 12 is undefined in any of the following cases:
6570 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6571 		 *   information field.
6572 		 *  If the VM exit is due to a double fault.
6573 		 */
6574 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6575 		    vector != DF_VECTOR && !idtv_info_valid)
6576 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6577 				      GUEST_INTR_STATE_NMI);
6578 		else
6579 			vmx->loaded_vmcs->nmi_known_unmasked =
6580 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6581 				  & GUEST_INTR_STATE_NMI);
6582 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6583 		vmx->loaded_vmcs->vnmi_blocked_time +=
6584 			ktime_to_ns(ktime_sub(ktime_get(),
6585 					      vmx->loaded_vmcs->entry_time));
6586 }
6587 
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)6588 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6589 				      u32 idt_vectoring_info,
6590 				      int instr_len_field,
6591 				      int error_code_field)
6592 {
6593 	u8 vector;
6594 	int type;
6595 	bool idtv_info_valid;
6596 
6597 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6598 
6599 	vcpu->arch.nmi_injected = false;
6600 	kvm_clear_exception_queue(vcpu);
6601 	kvm_clear_interrupt_queue(vcpu);
6602 
6603 	if (!idtv_info_valid)
6604 		return;
6605 
6606 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6607 
6608 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6609 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6610 
6611 	switch (type) {
6612 	case INTR_TYPE_NMI_INTR:
6613 		vcpu->arch.nmi_injected = true;
6614 		/*
6615 		 * SDM 3: 27.7.1.2 (September 2008)
6616 		 * Clear bit "block by NMI" before VM entry if a NMI
6617 		 * delivery faulted.
6618 		 */
6619 		vmx_set_nmi_mask(vcpu, false);
6620 		break;
6621 	case INTR_TYPE_SOFT_EXCEPTION:
6622 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6623 		fallthrough;
6624 	case INTR_TYPE_HARD_EXCEPTION:
6625 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6626 			u32 err = vmcs_read32(error_code_field);
6627 			kvm_requeue_exception_e(vcpu, vector, err);
6628 		} else
6629 			kvm_requeue_exception(vcpu, vector);
6630 		break;
6631 	case INTR_TYPE_SOFT_INTR:
6632 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6633 		fallthrough;
6634 	case INTR_TYPE_EXT_INTR:
6635 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6636 		break;
6637 	default:
6638 		break;
6639 	}
6640 }
6641 
vmx_complete_interrupts(struct vcpu_vmx * vmx)6642 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6643 {
6644 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6645 				  VM_EXIT_INSTRUCTION_LEN,
6646 				  IDT_VECTORING_ERROR_CODE);
6647 }
6648 
vmx_cancel_injection(struct kvm_vcpu * vcpu)6649 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6650 {
6651 	__vmx_complete_interrupts(vcpu,
6652 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6653 				  VM_ENTRY_INSTRUCTION_LEN,
6654 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6655 
6656 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6657 }
6658 
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)6659 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6660 {
6661 	int i, nr_msrs;
6662 	struct perf_guest_switch_msr *msrs;
6663 
6664 	msrs = perf_guest_get_msrs(&nr_msrs);
6665 
6666 	if (!msrs)
6667 		return;
6668 
6669 	for (i = 0; i < nr_msrs; i++)
6670 		if (msrs[i].host == msrs[i].guest)
6671 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6672 		else
6673 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6674 					msrs[i].host, false);
6675 }
6676 
vmx_update_hv_timer(struct kvm_vcpu * vcpu)6677 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6678 {
6679 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6680 	u64 tscl;
6681 	u32 delta_tsc;
6682 
6683 	if (vmx->req_immediate_exit) {
6684 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6685 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6686 	} else if (vmx->hv_deadline_tsc != -1) {
6687 		tscl = rdtsc();
6688 		if (vmx->hv_deadline_tsc > tscl)
6689 			/* set_hv_timer ensures the delta fits in 32-bits */
6690 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6691 				cpu_preemption_timer_multi);
6692 		else
6693 			delta_tsc = 0;
6694 
6695 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6696 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6697 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6698 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6699 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6700 	}
6701 }
6702 
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)6703 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6704 {
6705 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6706 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
6707 		vmcs_writel(HOST_RSP, host_rsp);
6708 	}
6709 }
6710 
vmx_spec_ctrl_restore_host(struct vcpu_vmx * vmx,unsigned int flags)6711 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
6712 					unsigned int flags)
6713 {
6714 	u64 hostval = this_cpu_read(x86_spec_ctrl_current);
6715 
6716 	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
6717 		return;
6718 
6719 	if (flags & VMX_RUN_SAVE_SPEC_CTRL)
6720 		vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
6721 
6722 	/*
6723 	 * If the guest/host SPEC_CTRL values differ, restore the host value.
6724 	 *
6725 	 * For legacy IBRS, the IBRS bit always needs to be written after
6726 	 * transitioning from a less privileged predictor mode, regardless of
6727 	 * whether the guest/host values differ.
6728 	 */
6729 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
6730 	    vmx->spec_ctrl != hostval)
6731 		native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
6732 
6733 	barrier_nospec();
6734 }
6735 
vmx_exit_handlers_fastpath(struct kvm_vcpu * vcpu)6736 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6737 {
6738 	switch (to_vmx(vcpu)->exit_reason.basic) {
6739 	case EXIT_REASON_MSR_WRITE:
6740 		return handle_fastpath_set_msr_irqoff(vcpu);
6741 	case EXIT_REASON_PREEMPTION_TIMER:
6742 		return handle_fastpath_preemption_timer(vcpu);
6743 	default:
6744 		return EXIT_FASTPATH_NONE;
6745 	}
6746 }
6747 
vmx_vcpu_enter_exit(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx,unsigned long flags)6748 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6749 					struct vcpu_vmx *vmx,
6750 					unsigned long flags)
6751 {
6752 	/*
6753 	 * VMENTER enables interrupts (host state), but the kernel state is
6754 	 * interrupts disabled when this is invoked. Also tell RCU about
6755 	 * it. This is the same logic as for exit_to_user_mode().
6756 	 *
6757 	 * This ensures that e.g. latency analysis on the host observes
6758 	 * guest mode as interrupt enabled.
6759 	 *
6760 	 * guest_enter_irqoff() informs context tracking about the
6761 	 * transition to guest mode and if enabled adjusts RCU state
6762 	 * accordingly.
6763 	 */
6764 	instrumentation_begin();
6765 	trace_hardirqs_on_prepare();
6766 	lockdep_hardirqs_on_prepare(CALLER_ADDR0);
6767 	instrumentation_end();
6768 
6769 	guest_enter_irqoff();
6770 	lockdep_hardirqs_on(CALLER_ADDR0);
6771 
6772 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
6773 	if (static_branch_unlikely(&vmx_l1d_should_flush))
6774 		vmx_l1d_flush(vcpu);
6775 	else if (static_branch_unlikely(&mds_user_clear))
6776 		mds_clear_cpu_buffers();
6777 	else if (static_branch_unlikely(&mmio_stale_data_clear) &&
6778 		 kvm_arch_has_assigned_device(vcpu->kvm))
6779 		mds_clear_cpu_buffers();
6780 
6781 	vmx_disable_fb_clear(vmx);
6782 
6783 	if (vcpu->arch.cr2 != native_read_cr2())
6784 		native_write_cr2(vcpu->arch.cr2);
6785 
6786 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6787 				   flags);
6788 
6789 	vcpu->arch.cr2 = native_read_cr2();
6790 
6791 	vmx_enable_fb_clear(vmx);
6792 
6793 	/*
6794 	 * VMEXIT disables interrupts (host state), but tracing and lockdep
6795 	 * have them in state 'on' as recorded before entering guest mode.
6796 	 * Same as enter_from_user_mode().
6797 	 *
6798 	 * context_tracking_guest_exit() restores host context and reinstates
6799 	 * RCU if enabled and required.
6800 	 *
6801 	 * This needs to be done before the below as native_read_msr()
6802 	 * contains a tracepoint and x86_spec_ctrl_restore_host() calls
6803 	 * into world and some more.
6804 	 */
6805 	lockdep_hardirqs_off(CALLER_ADDR0);
6806 	context_tracking_guest_exit();
6807 
6808 	instrumentation_begin();
6809 	trace_hardirqs_off_finish();
6810 	instrumentation_end();
6811 }
6812 
vmx_vcpu_run(struct kvm_vcpu * vcpu)6813 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6814 {
6815 	fastpath_t exit_fastpath;
6816 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6817 	unsigned long cr3, cr4;
6818 
6819 reenter_guest:
6820 	/* Record the guest's net vcpu time for enforced NMI injections. */
6821 	if (unlikely(!enable_vnmi &&
6822 		     vmx->loaded_vmcs->soft_vnmi_blocked))
6823 		vmx->loaded_vmcs->entry_time = ktime_get();
6824 
6825 	/* Don't enter VMX if guest state is invalid, let the exit handler
6826 	   start emulation until we arrive back to a valid state */
6827 	if (vmx->emulation_required)
6828 		return EXIT_FASTPATH_NONE;
6829 
6830 	if (vmx->ple_window_dirty) {
6831 		vmx->ple_window_dirty = false;
6832 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
6833 	}
6834 
6835 	/*
6836 	 * We did this in prepare_switch_to_guest, because it needs to
6837 	 * be within srcu_read_lock.
6838 	 */
6839 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6840 
6841 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6842 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6843 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6844 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6845 
6846 	cr3 = __get_current_cr3_fast();
6847 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6848 		vmcs_writel(HOST_CR3, cr3);
6849 		vmx->loaded_vmcs->host_state.cr3 = cr3;
6850 	}
6851 
6852 	cr4 = cr4_read_shadow();
6853 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6854 		vmcs_writel(HOST_CR4, cr4);
6855 		vmx->loaded_vmcs->host_state.cr4 = cr4;
6856 	}
6857 
6858 	/* When single-stepping over STI and MOV SS, we must clear the
6859 	 * corresponding interruptibility bits in the guest state. Otherwise
6860 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
6861 	 * exceptions being set, but that's not correct for the guest debugging
6862 	 * case. */
6863 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6864 		vmx_set_interrupt_shadow(vcpu, 0);
6865 
6866 	kvm_load_guest_xsave_state(vcpu);
6867 
6868 	pt_guest_enter(vmx);
6869 
6870 	atomic_switch_perf_msrs(vmx);
6871 
6872 	if (enable_preemption_timer)
6873 		vmx_update_hv_timer(vcpu);
6874 
6875 	kvm_wait_lapic_expire(vcpu);
6876 
6877 	/*
6878 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6879 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6880 	 * is no need to worry about the conditional branch over the wrmsr
6881 	 * being speculatively taken.
6882 	 */
6883 	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6884 
6885 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
6886 	vmx_vcpu_enter_exit(vcpu, vmx, __vmx_vcpu_run_flags(vmx));
6887 
6888 	/* All fields are clean at this point */
6889 	if (static_branch_unlikely(&enable_evmcs))
6890 		current_evmcs->hv_clean_fields |=
6891 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6892 
6893 	if (static_branch_unlikely(&enable_evmcs))
6894 		current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6895 
6896 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6897 	if (vmx->host_debugctlmsr)
6898 		update_debugctlmsr(vmx->host_debugctlmsr);
6899 
6900 #ifndef CONFIG_X86_64
6901 	/*
6902 	 * The sysexit path does not restore ds/es, so we must set them to
6903 	 * a reasonable value ourselves.
6904 	 *
6905 	 * We can't defer this to vmx_prepare_switch_to_host() since that
6906 	 * function may be executed in interrupt context, which saves and
6907 	 * restore segments around it, nullifying its effect.
6908 	 */
6909 	loadsegment(ds, __USER_DS);
6910 	loadsegment(es, __USER_DS);
6911 #endif
6912 
6913 	vmx_register_cache_reset(vcpu);
6914 
6915 	pt_guest_exit(vmx);
6916 
6917 	kvm_load_host_xsave_state(vcpu);
6918 
6919 	vmx->nested.nested_run_pending = 0;
6920 	vmx->idt_vectoring_info = 0;
6921 
6922 	if (unlikely(vmx->fail)) {
6923 		vmx->exit_reason.full = 0xdead;
6924 		return EXIT_FASTPATH_NONE;
6925 	}
6926 
6927 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
6928 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
6929 		kvm_machine_check();
6930 
6931 	trace_kvm_exit(vmx->exit_reason.full, vcpu, KVM_ISA_VMX);
6932 
6933 	if (unlikely(vmx->exit_reason.failed_vmentry))
6934 		return EXIT_FASTPATH_NONE;
6935 
6936 	vmx->loaded_vmcs->launched = 1;
6937 	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6938 
6939 	vmx_recover_nmi_blocking(vmx);
6940 	vmx_complete_interrupts(vmx);
6941 
6942 	if (is_guest_mode(vcpu))
6943 		return EXIT_FASTPATH_NONE;
6944 
6945 	exit_fastpath = vmx_exit_handlers_fastpath(vcpu);
6946 	if (exit_fastpath == EXIT_FASTPATH_REENTER_GUEST) {
6947 		if (!kvm_vcpu_exit_request(vcpu)) {
6948 			/*
6949 			 * FIXME: this goto should be a loop in vcpu_enter_guest,
6950 			 * but it would incur the cost of a retpoline for now.
6951 			 * Revisit once static calls are available.
6952 			 */
6953 			if (vcpu->arch.apicv_active)
6954 				vmx_sync_pir_to_irr(vcpu);
6955 			goto reenter_guest;
6956 		}
6957 		exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
6958 	}
6959 
6960 	return exit_fastpath;
6961 }
6962 
vmx_free_vcpu(struct kvm_vcpu * vcpu)6963 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6964 {
6965 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6966 
6967 	if (enable_pml)
6968 		vmx_destroy_pml_buffer(vmx);
6969 	free_vpid(vmx->vpid);
6970 	nested_vmx_free_vcpu(vcpu);
6971 	free_loaded_vmcs(vmx->loaded_vmcs);
6972 }
6973 
vmx_create_vcpu(struct kvm_vcpu * vcpu)6974 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6975 {
6976 	struct vcpu_vmx *vmx;
6977 	int i, cpu, err;
6978 
6979 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6980 	vmx = to_vmx(vcpu);
6981 
6982 	err = -ENOMEM;
6983 
6984 	vmx->vpid = allocate_vpid();
6985 
6986 	/*
6987 	 * If PML is turned on, failure on enabling PML just results in failure
6988 	 * of creating the vcpu, therefore we can simplify PML logic (by
6989 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
6990 	 * for the guest), etc.
6991 	 */
6992 	if (enable_pml) {
6993 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6994 		if (!vmx->pml_pg)
6995 			goto free_vpid;
6996 	}
6997 
6998 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
6999 
7000 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) {
7001 		u32 index = vmx_uret_msrs_list[i];
7002 		int j = vmx->nr_uret_msrs;
7003 
7004 		if (kvm_probe_user_return_msr(index))
7005 			continue;
7006 
7007 		vmx->guest_uret_msrs[j].slot = i;
7008 		vmx->guest_uret_msrs[j].data = 0;
7009 		switch (index) {
7010 		case MSR_IA32_TSX_CTRL:
7011 			/*
7012 			 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID
7013 			 * interception.  Keep the host value unchanged to avoid
7014 			 * changing CPUID bits under the host kernel's feet.
7015 			 *
7016 			 * hle=0, rtm=0, tsx_ctrl=1 can be found with some
7017 			 * combinations of new kernel and old userspace.  If
7018 			 * those guests run on a tsx=off host, do allow guests
7019 			 * to use TSX_CTRL, but do not change the value on the
7020 			 * host so that TSX remains always disabled.
7021 			 */
7022 			if (boot_cpu_has(X86_FEATURE_RTM))
7023 				vmx->guest_uret_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7024 			else
7025 				vmx->guest_uret_msrs[j].mask = 0;
7026 			break;
7027 		default:
7028 			vmx->guest_uret_msrs[j].mask = -1ull;
7029 			break;
7030 		}
7031 		++vmx->nr_uret_msrs;
7032 	}
7033 
7034 	err = alloc_loaded_vmcs(&vmx->vmcs01);
7035 	if (err < 0)
7036 		goto free_pml;
7037 
7038 	/*
7039 	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7040 	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7041 	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7042 	 * performance benefits from enabling it for vmcs02.
7043 	 */
7044 	if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs) &&
7045 	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7046 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7047 
7048 		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7049 	}
7050 
7051 	/* The MSR bitmap starts with all ones */
7052 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7053 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7054 
7055 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7056 #ifdef CONFIG_X86_64
7057 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7058 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7059 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7060 #endif
7061 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7062 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7063 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7064 	if (kvm_cstate_in_guest(vcpu->kvm)) {
7065 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7066 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7067 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7068 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7069 	}
7070 	vmx->msr_bitmap_mode = 0;
7071 
7072 	vmx->loaded_vmcs = &vmx->vmcs01;
7073 	cpu = get_cpu();
7074 	vmx_vcpu_load(vcpu, cpu);
7075 	vcpu->cpu = cpu;
7076 	init_vmcs(vmx);
7077 	vmx_vcpu_put(vcpu);
7078 	put_cpu();
7079 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7080 		err = alloc_apic_access_page(vcpu->kvm);
7081 		if (err)
7082 			goto free_vmcs;
7083 	}
7084 
7085 	if (enable_ept && !enable_unrestricted_guest) {
7086 		err = init_rmode_identity_map(vcpu->kvm);
7087 		if (err)
7088 			goto free_vmcs;
7089 	}
7090 
7091 	if (nested)
7092 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
7093 	else
7094 		memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
7095 
7096 	vmx->nested.posted_intr_nv = -1;
7097 	vmx->nested.current_vmptr = -1ull;
7098 
7099 	vcpu->arch.microcode_version = 0x100000000ULL;
7100 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
7101 
7102 	/*
7103 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
7104 	 * or POSTED_INTR_WAKEUP_VECTOR.
7105 	 */
7106 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
7107 	vmx->pi_desc.sn = 1;
7108 
7109 	vmx->ept_pointer = INVALID_PAGE;
7110 
7111 	return 0;
7112 
7113 free_vmcs:
7114 	free_loaded_vmcs(vmx->loaded_vmcs);
7115 free_pml:
7116 	vmx_destroy_pml_buffer(vmx);
7117 free_vpid:
7118 	free_vpid(vmx->vpid);
7119 	return err;
7120 }
7121 
7122 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7123 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7124 
vmx_vm_init(struct kvm * kvm)7125 static int vmx_vm_init(struct kvm *kvm)
7126 {
7127 	spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
7128 
7129 	if (!ple_gap)
7130 		kvm->arch.pause_in_guest = true;
7131 
7132 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7133 		switch (l1tf_mitigation) {
7134 		case L1TF_MITIGATION_OFF:
7135 		case L1TF_MITIGATION_FLUSH_NOWARN:
7136 			/* 'I explicitly don't care' is set */
7137 			break;
7138 		case L1TF_MITIGATION_FLUSH:
7139 		case L1TF_MITIGATION_FLUSH_NOSMT:
7140 		case L1TF_MITIGATION_FULL:
7141 			/*
7142 			 * Warn upon starting the first VM in a potentially
7143 			 * insecure environment.
7144 			 */
7145 			if (sched_smt_active())
7146 				pr_warn_once(L1TF_MSG_SMT);
7147 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7148 				pr_warn_once(L1TF_MSG_L1D);
7149 			break;
7150 		case L1TF_MITIGATION_FULL_FORCE:
7151 			/* Flush is enforced */
7152 			break;
7153 		}
7154 	}
7155 	kvm_apicv_init(kvm, enable_apicv);
7156 	return 0;
7157 }
7158 
vmx_check_processor_compat(void)7159 static int __init vmx_check_processor_compat(void)
7160 {
7161 	struct vmcs_config vmcs_conf;
7162 	struct vmx_capability vmx_cap;
7163 
7164 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7165 	    !this_cpu_has(X86_FEATURE_VMX)) {
7166 		pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7167 		return -EIO;
7168 	}
7169 
7170 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7171 		return -EIO;
7172 	if (nested)
7173 		nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
7174 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7175 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7176 				smp_processor_id());
7177 		return -EIO;
7178 	}
7179 	return 0;
7180 }
7181 
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)7182 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7183 {
7184 	u8 cache;
7185 	u64 ipat = 0;
7186 
7187 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7188 	 * memory aliases with conflicting memory types and sometimes MCEs.
7189 	 * We have to be careful as to what are honored and when.
7190 	 *
7191 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7192 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
7193 	 * This was historically the source of MCEs and we want to be
7194 	 * conservative.
7195 	 *
7196 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7197 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7198 	 * EPT memory type is set to WB.  The effective memory type is forced
7199 	 * WB.
7200 	 *
7201 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7202 	 * EPT memory type is used to emulate guest CD/MTRR.
7203 	 */
7204 
7205 	if (is_mmio) {
7206 		cache = MTRR_TYPE_UNCACHABLE;
7207 		goto exit;
7208 	}
7209 
7210 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
7211 		ipat = VMX_EPT_IPAT_BIT;
7212 		cache = MTRR_TYPE_WRBACK;
7213 		goto exit;
7214 	}
7215 
7216 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7217 		ipat = VMX_EPT_IPAT_BIT;
7218 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7219 			cache = MTRR_TYPE_WRBACK;
7220 		else
7221 			cache = MTRR_TYPE_UNCACHABLE;
7222 		goto exit;
7223 	}
7224 
7225 	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7226 
7227 exit:
7228 	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7229 }
7230 
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx)7231 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
7232 {
7233 	/*
7234 	 * These bits in the secondary execution controls field
7235 	 * are dynamic, the others are mostly based on the hypervisor
7236 	 * architecture and the guest's CPUID.  Do not touch the
7237 	 * dynamic bits.
7238 	 */
7239 	u32 mask =
7240 		SECONDARY_EXEC_SHADOW_VMCS |
7241 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7242 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7243 		SECONDARY_EXEC_DESC;
7244 
7245 	u32 new_ctl = vmx->secondary_exec_control;
7246 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7247 
7248 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7249 }
7250 
7251 /*
7252  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7253  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7254  */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)7255 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7256 {
7257 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7258 	struct kvm_cpuid_entry2 *entry;
7259 
7260 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7261 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7262 
7263 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7264 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7265 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7266 } while (0)
7267 
7268 	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7269 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7270 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7271 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7272 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7273 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7274 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7275 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7276 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7277 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7278 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7279 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7280 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7281 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7282 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7283 
7284 	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7285 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7286 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7287 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7288 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7289 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7290 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7291 
7292 #undef cr4_fixed1_update
7293 }
7294 
nested_vmx_entry_exit_ctls_update(struct kvm_vcpu * vcpu)7295 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7296 {
7297 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7298 
7299 	if (kvm_mpx_supported()) {
7300 		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7301 
7302 		if (mpx_enabled) {
7303 			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7304 			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7305 		} else {
7306 			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7307 			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7308 		}
7309 	}
7310 }
7311 
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7312 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7313 {
7314 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7315 	struct kvm_cpuid_entry2 *best = NULL;
7316 	int i;
7317 
7318 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7319 		best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7320 		if (!best)
7321 			return;
7322 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7323 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7324 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7325 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7326 	}
7327 
7328 	/* Get the number of configurable Address Ranges for filtering */
7329 	vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7330 						PT_CAP_num_address_ranges);
7331 
7332 	/* Initialize and clear the no dependency bits */
7333 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7334 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7335 
7336 	/*
7337 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7338 	 * will inject an #GP
7339 	 */
7340 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7341 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7342 
7343 	/*
7344 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7345 	 * PSBFreq can be set
7346 	 */
7347 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7348 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7349 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7350 
7351 	/*
7352 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7353 	 * MTCFreq can be set
7354 	 */
7355 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7356 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7357 				RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7358 
7359 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7360 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7361 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7362 							RTIT_CTL_PTW_EN);
7363 
7364 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7365 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7366 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7367 
7368 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7369 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7370 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7371 
7372 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7373 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7374 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7375 
7376 	/* unmask address range configure area */
7377 	for (i = 0; i < vmx->pt_desc.addr_range; i++)
7378 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7379 }
7380 
vmx_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)7381 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7382 {
7383 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7384 
7385 	/* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7386 	vcpu->arch.xsaves_enabled = false;
7387 
7388 	if (cpu_has_secondary_exec_ctrls()) {
7389 		vmx_compute_secondary_exec_control(vmx);
7390 		vmcs_set_secondary_exec_control(vmx);
7391 	}
7392 
7393 	if (nested_vmx_allowed(vcpu))
7394 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7395 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7396 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7397 	else
7398 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7399 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7400 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7401 
7402 	if (nested_vmx_allowed(vcpu)) {
7403 		nested_vmx_cr_fixed1_bits_update(vcpu);
7404 		nested_vmx_entry_exit_ctls_update(vcpu);
7405 	}
7406 
7407 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7408 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7409 		update_intel_pt_cfg(vcpu);
7410 
7411 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7412 		struct vmx_uret_msr *msr;
7413 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7414 		if (msr) {
7415 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7416 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7417 		}
7418 	}
7419 
7420 	set_cr4_guest_host_mask(vmx);
7421 
7422 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7423 	update_exception_bitmap(vcpu);
7424 }
7425 
vmx_set_cpu_caps(void)7426 static __init void vmx_set_cpu_caps(void)
7427 {
7428 	kvm_set_cpu_caps();
7429 
7430 	/* CPUID 0x1 */
7431 	if (nested)
7432 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7433 
7434 	/* CPUID 0x7 */
7435 	if (kvm_mpx_supported())
7436 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7437 	if (cpu_has_vmx_invpcid())
7438 		kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
7439 	if (vmx_pt_mode_is_host_guest())
7440 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7441 
7442 	if (vmx_umip_emulated())
7443 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7444 
7445 	/* CPUID 0xD.1 */
7446 	supported_xss = 0;
7447 	if (!cpu_has_vmx_xsaves())
7448 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7449 
7450 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7451 	if (!cpu_has_vmx_rdtscp()) {
7452 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7453 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7454 	}
7455 
7456 	if (cpu_has_vmx_waitpkg())
7457 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7458 }
7459 
vmx_request_immediate_exit(struct kvm_vcpu * vcpu)7460 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7461 {
7462 	to_vmx(vcpu)->req_immediate_exit = true;
7463 }
7464 
vmx_check_intercept_io(struct kvm_vcpu * vcpu,struct x86_instruction_info * info)7465 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7466 				  struct x86_instruction_info *info)
7467 {
7468 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7469 	unsigned short port;
7470 	bool intercept;
7471 	int size;
7472 
7473 	if (info->intercept == x86_intercept_in ||
7474 	    info->intercept == x86_intercept_ins) {
7475 		port = info->src_val;
7476 		size = info->dst_bytes;
7477 	} else {
7478 		port = info->dst_val;
7479 		size = info->src_bytes;
7480 	}
7481 
7482 	/*
7483 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7484 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7485 	 * control.
7486 	 *
7487 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7488 	 */
7489 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7490 		intercept = nested_cpu_has(vmcs12,
7491 					   CPU_BASED_UNCOND_IO_EXITING);
7492 	else
7493 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7494 
7495 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7496 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7497 }
7498 
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)7499 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7500 			       struct x86_instruction_info *info,
7501 			       enum x86_intercept_stage stage,
7502 			       struct x86_exception *exception)
7503 {
7504 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7505 
7506 	switch (info->intercept) {
7507 	/*
7508 	 * RDPID causes #UD if disabled through secondary execution controls.
7509 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7510 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7511 	 */
7512 	case x86_intercept_rdpid:
7513 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7514 			exception->vector = UD_VECTOR;
7515 			exception->error_code_valid = false;
7516 			return X86EMUL_PROPAGATE_FAULT;
7517 		}
7518 		break;
7519 
7520 	case x86_intercept_in:
7521 	case x86_intercept_ins:
7522 	case x86_intercept_out:
7523 	case x86_intercept_outs:
7524 		return vmx_check_intercept_io(vcpu, info);
7525 
7526 	case x86_intercept_lgdt:
7527 	case x86_intercept_lidt:
7528 	case x86_intercept_lldt:
7529 	case x86_intercept_ltr:
7530 	case x86_intercept_sgdt:
7531 	case x86_intercept_sidt:
7532 	case x86_intercept_sldt:
7533 	case x86_intercept_str:
7534 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7535 			return X86EMUL_CONTINUE;
7536 
7537 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7538 		break;
7539 
7540 	case x86_intercept_pause:
7541 		/*
7542 		 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
7543 		 * with vanilla NOPs in the emulator.  Apply the interception
7544 		 * check only to actual PAUSE instructions.  Don't check
7545 		 * PAUSE-loop-exiting, software can't expect a given PAUSE to
7546 		 * exit, i.e. KVM is within its rights to allow L2 to execute
7547 		 * the PAUSE.
7548 		 */
7549 		if ((info->rep_prefix != REPE_PREFIX) ||
7550 		    !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
7551 			return X86EMUL_CONTINUE;
7552 
7553 		break;
7554 
7555 	/* TODO: check more intercepts... */
7556 	default:
7557 		break;
7558 	}
7559 
7560 	return X86EMUL_UNHANDLEABLE;
7561 }
7562 
7563 #ifdef CONFIG_X86_64
7564 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)7565 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7566 				  u64 divisor, u64 *result)
7567 {
7568 	u64 low = a << shift, high = a >> (64 - shift);
7569 
7570 	/* To avoid the overflow on divq */
7571 	if (high >= divisor)
7572 		return 1;
7573 
7574 	/* Low hold the result, high hold rem which is discarded */
7575 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7576 	    "rm" (divisor), "0" (low), "1" (high));
7577 	*result = low;
7578 
7579 	return 0;
7580 }
7581 
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)7582 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7583 			    bool *expired)
7584 {
7585 	struct vcpu_vmx *vmx;
7586 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7587 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7588 
7589 	vmx = to_vmx(vcpu);
7590 	tscl = rdtsc();
7591 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7592 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7593 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7594 						    ktimer->timer_advance_ns);
7595 
7596 	if (delta_tsc > lapic_timer_advance_cycles)
7597 		delta_tsc -= lapic_timer_advance_cycles;
7598 	else
7599 		delta_tsc = 0;
7600 
7601 	/* Convert to host delta tsc if tsc scaling is enabled */
7602 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7603 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7604 				kvm_tsc_scaling_ratio_frac_bits,
7605 				vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7606 		return -ERANGE;
7607 
7608 	/*
7609 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7610 	 * we can't use the preemption timer.
7611 	 * It's possible that it fits on later vmentries, but checking
7612 	 * on every vmentry is costly so we just use an hrtimer.
7613 	 */
7614 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7615 		return -ERANGE;
7616 
7617 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7618 	*expired = !delta_tsc;
7619 	return 0;
7620 }
7621 
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)7622 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7623 {
7624 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7625 }
7626 #endif
7627 
vmx_sched_in(struct kvm_vcpu * vcpu,int cpu)7628 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7629 {
7630 	if (!kvm_pause_in_guest(vcpu->kvm))
7631 		shrink_ple_window(vcpu);
7632 }
7633 
vmx_slot_enable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)7634 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7635 				     struct kvm_memory_slot *slot)
7636 {
7637 	if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
7638 		kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7639 	kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7640 }
7641 
vmx_slot_disable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)7642 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7643 				       struct kvm_memory_slot *slot)
7644 {
7645 	kvm_mmu_slot_set_dirty(kvm, slot);
7646 }
7647 
vmx_flush_log_dirty(struct kvm * kvm)7648 static void vmx_flush_log_dirty(struct kvm *kvm)
7649 {
7650 	kvm_flush_pml_buffers(kvm);
7651 }
7652 
vmx_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t offset,unsigned long mask)7653 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7654 					   struct kvm_memory_slot *memslot,
7655 					   gfn_t offset, unsigned long mask)
7656 {
7657 	kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7658 }
7659 
vmx_pre_block(struct kvm_vcpu * vcpu)7660 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7661 {
7662 	if (pi_pre_block(vcpu))
7663 		return 1;
7664 
7665 	if (kvm_lapic_hv_timer_in_use(vcpu))
7666 		kvm_lapic_switch_to_sw_timer(vcpu);
7667 
7668 	return 0;
7669 }
7670 
vmx_post_block(struct kvm_vcpu * vcpu)7671 static void vmx_post_block(struct kvm_vcpu *vcpu)
7672 {
7673 	if (kvm_x86_ops.set_hv_timer)
7674 		kvm_lapic_switch_to_hv_timer(vcpu);
7675 
7676 	pi_post_block(vcpu);
7677 }
7678 
vmx_setup_mce(struct kvm_vcpu * vcpu)7679 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7680 {
7681 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7682 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7683 			FEAT_CTL_LMCE_ENABLED;
7684 	else
7685 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7686 			~FEAT_CTL_LMCE_ENABLED;
7687 }
7688 
vmx_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)7689 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7690 {
7691 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7692 	if (to_vmx(vcpu)->nested.nested_run_pending)
7693 		return -EBUSY;
7694 	return !is_smm(vcpu);
7695 }
7696 
vmx_pre_enter_smm(struct kvm_vcpu * vcpu,char * smstate)7697 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7698 {
7699 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7700 
7701 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7702 	if (vmx->nested.smm.guest_mode)
7703 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7704 
7705 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7706 	vmx->nested.vmxon = false;
7707 	vmx_clear_hlt(vcpu);
7708 	return 0;
7709 }
7710 
vmx_pre_leave_smm(struct kvm_vcpu * vcpu,const char * smstate)7711 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7712 {
7713 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7714 	int ret;
7715 
7716 	if (vmx->nested.smm.vmxon) {
7717 		vmx->nested.vmxon = true;
7718 		vmx->nested.smm.vmxon = false;
7719 	}
7720 
7721 	if (vmx->nested.smm.guest_mode) {
7722 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
7723 		if (ret)
7724 			return ret;
7725 
7726 		vmx->nested.smm.guest_mode = false;
7727 	}
7728 	return 0;
7729 }
7730 
enable_smi_window(struct kvm_vcpu * vcpu)7731 static void enable_smi_window(struct kvm_vcpu *vcpu)
7732 {
7733 	/* RSM will cause a vmexit anyway.  */
7734 }
7735 
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)7736 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7737 {
7738 	return to_vmx(vcpu)->nested.vmxon;
7739 }
7740 
vmx_migrate_timers(struct kvm_vcpu * vcpu)7741 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7742 {
7743 	if (is_guest_mode(vcpu)) {
7744 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7745 
7746 		if (hrtimer_try_to_cancel(timer) == 1)
7747 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7748 	}
7749 }
7750 
hardware_unsetup(void)7751 static void hardware_unsetup(void)
7752 {
7753 	kvm_set_posted_intr_wakeup_handler(NULL);
7754 
7755 	if (nested)
7756 		nested_vmx_hardware_unsetup();
7757 
7758 	free_kvm_area();
7759 }
7760 
vmx_check_apicv_inhibit_reasons(ulong bit)7761 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7762 {
7763 	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7764 			  BIT(APICV_INHIBIT_REASON_HYPERV);
7765 
7766 	return supported & BIT(bit);
7767 }
7768 
7769 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7770 	.hardware_unsetup = hardware_unsetup,
7771 
7772 	.hardware_enable = hardware_enable,
7773 	.hardware_disable = hardware_disable,
7774 	.cpu_has_accelerated_tpr = report_flexpriority,
7775 	.has_emulated_msr = vmx_has_emulated_msr,
7776 
7777 	.vm_size = sizeof(struct kvm_vmx),
7778 	.vm_init = vmx_vm_init,
7779 
7780 	.vcpu_create = vmx_create_vcpu,
7781 	.vcpu_free = vmx_free_vcpu,
7782 	.vcpu_reset = vmx_vcpu_reset,
7783 
7784 	.prepare_guest_switch = vmx_prepare_switch_to_guest,
7785 	.vcpu_load = vmx_vcpu_load,
7786 	.vcpu_put = vmx_vcpu_put,
7787 
7788 	.update_exception_bitmap = update_exception_bitmap,
7789 	.get_msr_feature = vmx_get_msr_feature,
7790 	.get_msr = vmx_get_msr,
7791 	.set_msr = vmx_set_msr,
7792 	.get_segment_base = vmx_get_segment_base,
7793 	.get_segment = vmx_get_segment,
7794 	.set_segment = vmx_set_segment,
7795 	.get_cpl = vmx_get_cpl,
7796 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7797 	.set_cr0 = vmx_set_cr0,
7798 	.is_valid_cr4 = vmx_is_valid_cr4,
7799 	.set_cr4 = vmx_set_cr4,
7800 	.set_efer = vmx_set_efer,
7801 	.get_idt = vmx_get_idt,
7802 	.set_idt = vmx_set_idt,
7803 	.get_gdt = vmx_get_gdt,
7804 	.set_gdt = vmx_set_gdt,
7805 	.set_dr7 = vmx_set_dr7,
7806 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7807 	.cache_reg = vmx_cache_reg,
7808 	.get_rflags = vmx_get_rflags,
7809 	.set_rflags = vmx_set_rflags,
7810 
7811 	.tlb_flush_all = vmx_flush_tlb_all,
7812 	.tlb_flush_current = vmx_flush_tlb_current,
7813 	.tlb_flush_gva = vmx_flush_tlb_gva,
7814 	.tlb_flush_guest = vmx_flush_tlb_guest,
7815 
7816 	.run = vmx_vcpu_run,
7817 	.handle_exit = vmx_handle_exit,
7818 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
7819 	.update_emulated_instruction = vmx_update_emulated_instruction,
7820 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
7821 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
7822 	.patch_hypercall = vmx_patch_hypercall,
7823 	.set_irq = vmx_inject_irq,
7824 	.set_nmi = vmx_inject_nmi,
7825 	.queue_exception = vmx_queue_exception,
7826 	.cancel_injection = vmx_cancel_injection,
7827 	.interrupt_allowed = vmx_interrupt_allowed,
7828 	.nmi_allowed = vmx_nmi_allowed,
7829 	.get_nmi_mask = vmx_get_nmi_mask,
7830 	.set_nmi_mask = vmx_set_nmi_mask,
7831 	.enable_nmi_window = enable_nmi_window,
7832 	.enable_irq_window = enable_irq_window,
7833 	.update_cr8_intercept = update_cr8_intercept,
7834 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7835 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7836 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7837 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
7838 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
7839 	.check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7840 	.hwapic_irr_update = vmx_hwapic_irr_update,
7841 	.hwapic_isr_update = vmx_hwapic_isr_update,
7842 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7843 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
7844 	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7845 	.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7846 
7847 	.set_tss_addr = vmx_set_tss_addr,
7848 	.set_identity_map_addr = vmx_set_identity_map_addr,
7849 	.get_mt_mask = vmx_get_mt_mask,
7850 
7851 	.get_exit_info = vmx_get_exit_info,
7852 
7853 	.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7854 
7855 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7856 
7857 	.write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7858 
7859 	.load_mmu_pgd = vmx_load_mmu_pgd,
7860 
7861 	.check_intercept = vmx_check_intercept,
7862 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
7863 
7864 	.request_immediate_exit = vmx_request_immediate_exit,
7865 
7866 	.sched_in = vmx_sched_in,
7867 
7868 	.slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7869 	.slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7870 	.flush_log_dirty = vmx_flush_log_dirty,
7871 	.enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7872 
7873 	.pre_block = vmx_pre_block,
7874 	.post_block = vmx_post_block,
7875 
7876 	.pmu_ops = &intel_pmu_ops,
7877 	.nested_ops = &vmx_nested_ops,
7878 
7879 	.update_pi_irte = pi_update_irte,
7880 
7881 #ifdef CONFIG_X86_64
7882 	.set_hv_timer = vmx_set_hv_timer,
7883 	.cancel_hv_timer = vmx_cancel_hv_timer,
7884 #endif
7885 
7886 	.setup_mce = vmx_setup_mce,
7887 
7888 	.smi_allowed = vmx_smi_allowed,
7889 	.pre_enter_smm = vmx_pre_enter_smm,
7890 	.pre_leave_smm = vmx_pre_leave_smm,
7891 	.enable_smi_window = enable_smi_window,
7892 
7893 	.can_emulate_instruction = vmx_can_emulate_instruction,
7894 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7895 	.migrate_timers = vmx_migrate_timers,
7896 
7897 	.msr_filter_changed = vmx_msr_filter_changed,
7898 };
7899 
hardware_setup(void)7900 static __init int hardware_setup(void)
7901 {
7902 	unsigned long host_bndcfgs;
7903 	struct desc_ptr dt;
7904 	int r, i, ept_lpage_level;
7905 
7906 	store_idt(&dt);
7907 	host_idt_base = dt.address;
7908 
7909 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7910 		kvm_define_user_return_msr(i, vmx_uret_msrs_list[i]);
7911 
7912 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7913 		return -EIO;
7914 
7915 	if (boot_cpu_has(X86_FEATURE_NX))
7916 		kvm_enable_efer_bits(EFER_NX);
7917 
7918 	if (boot_cpu_has(X86_FEATURE_MPX)) {
7919 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7920 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7921 	}
7922 
7923 	if (!cpu_has_vmx_mpx())
7924 		supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7925 				    XFEATURE_MASK_BNDCSR);
7926 
7927 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7928 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7929 		enable_vpid = 0;
7930 
7931 	if (!cpu_has_vmx_ept() ||
7932 	    !cpu_has_vmx_ept_4levels() ||
7933 	    !cpu_has_vmx_ept_mt_wb() ||
7934 	    !cpu_has_vmx_invept_global())
7935 		enable_ept = 0;
7936 
7937 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7938 		enable_ept_ad_bits = 0;
7939 
7940 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7941 		enable_unrestricted_guest = 0;
7942 
7943 	if (!cpu_has_vmx_flexpriority())
7944 		flexpriority_enabled = 0;
7945 
7946 	if (!cpu_has_virtual_nmis())
7947 		enable_vnmi = 0;
7948 
7949 	/*
7950 	 * set_apic_access_page_addr() is used to reload apic access
7951 	 * page upon invalidation.  No need to do anything if not
7952 	 * using the APIC_ACCESS_ADDR VMCS field.
7953 	 */
7954 	if (!flexpriority_enabled)
7955 		vmx_x86_ops.set_apic_access_page_addr = NULL;
7956 
7957 	if (!cpu_has_vmx_tpr_shadow())
7958 		vmx_x86_ops.update_cr8_intercept = NULL;
7959 
7960 #if IS_ENABLED(CONFIG_HYPERV)
7961 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7962 	    && enable_ept) {
7963 		vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7964 		vmx_x86_ops.tlb_remote_flush_with_range =
7965 				hv_remote_flush_tlb_with_range;
7966 	}
7967 #endif
7968 
7969 	if (!cpu_has_vmx_ple()) {
7970 		ple_gap = 0;
7971 		ple_window = 0;
7972 		ple_window_grow = 0;
7973 		ple_window_max = 0;
7974 		ple_window_shrink = 0;
7975 	}
7976 
7977 	if (!cpu_has_vmx_apicv()) {
7978 		enable_apicv = 0;
7979 		vmx_x86_ops.sync_pir_to_irr = NULL;
7980 	}
7981 
7982 	if (cpu_has_vmx_tsc_scaling()) {
7983 		kvm_has_tsc_control = true;
7984 		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7985 		kvm_tsc_scaling_ratio_frac_bits = 48;
7986 	}
7987 
7988 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7989 
7990 	if (enable_ept)
7991 		vmx_enable_tdp();
7992 
7993 	if (!enable_ept)
7994 		ept_lpage_level = 0;
7995 	else if (cpu_has_vmx_ept_1g_page())
7996 		ept_lpage_level = PG_LEVEL_1G;
7997 	else if (cpu_has_vmx_ept_2m_page())
7998 		ept_lpage_level = PG_LEVEL_2M;
7999 	else
8000 		ept_lpage_level = PG_LEVEL_4K;
8001 	kvm_configure_mmu(enable_ept, vmx_get_max_tdp_level(), ept_lpage_level);
8002 
8003 	/*
8004 	 * Only enable PML when hardware supports PML feature, and both EPT
8005 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8006 	 */
8007 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8008 		enable_pml = 0;
8009 
8010 	if (!enable_pml) {
8011 		vmx_x86_ops.slot_enable_log_dirty = NULL;
8012 		vmx_x86_ops.slot_disable_log_dirty = NULL;
8013 		vmx_x86_ops.flush_log_dirty = NULL;
8014 		vmx_x86_ops.enable_log_dirty_pt_masked = NULL;
8015 	}
8016 
8017 	if (!cpu_has_vmx_preemption_timer())
8018 		enable_preemption_timer = false;
8019 
8020 	if (enable_preemption_timer) {
8021 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8022 		u64 vmx_msr;
8023 
8024 		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
8025 		cpu_preemption_timer_multi =
8026 			vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8027 
8028 		if (tsc_khz)
8029 			use_timer_freq = (u64)tsc_khz * 1000;
8030 		use_timer_freq >>= cpu_preemption_timer_multi;
8031 
8032 		/*
8033 		 * KVM "disables" the preemption timer by setting it to its max
8034 		 * value.  Don't use the timer if it might cause spurious exits
8035 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8036 		 */
8037 		if (use_timer_freq > 0xffffffffu / 10)
8038 			enable_preemption_timer = false;
8039 	}
8040 
8041 	if (!enable_preemption_timer) {
8042 		vmx_x86_ops.set_hv_timer = NULL;
8043 		vmx_x86_ops.cancel_hv_timer = NULL;
8044 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8045 	}
8046 
8047 	kvm_mce_cap_supported |= MCG_LMCE_P;
8048 
8049 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8050 		return -EINVAL;
8051 	if (!enable_ept || !cpu_has_vmx_intel_pt())
8052 		pt_mode = PT_MODE_SYSTEM;
8053 
8054 	if (nested) {
8055 		nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
8056 					   vmx_capability.ept);
8057 
8058 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8059 		if (r)
8060 			return r;
8061 	}
8062 
8063 	vmx_set_cpu_caps();
8064 
8065 	r = alloc_kvm_area();
8066 	if (r)
8067 		nested_vmx_hardware_unsetup();
8068 
8069 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8070 
8071 	return r;
8072 }
8073 
8074 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8075 	.cpu_has_kvm_support = cpu_has_kvm_support,
8076 	.disabled_by_bios = vmx_disabled_by_bios,
8077 	.check_processor_compatibility = vmx_check_processor_compat,
8078 	.hardware_setup = hardware_setup,
8079 	.intel_pt_intr_in_guest = vmx_pt_mode_is_host_guest,
8080 
8081 	.runtime_ops = &vmx_x86_ops,
8082 };
8083 
vmx_cleanup_l1d_flush(void)8084 static void vmx_cleanup_l1d_flush(void)
8085 {
8086 	if (vmx_l1d_flush_pages) {
8087 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8088 		vmx_l1d_flush_pages = NULL;
8089 	}
8090 	/* Restore state so sysfs ignores VMX */
8091 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8092 }
8093 
vmx_exit(void)8094 static void vmx_exit(void)
8095 {
8096 #ifdef CONFIG_KEXEC_CORE
8097 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8098 	synchronize_rcu();
8099 #endif
8100 
8101 	kvm_exit();
8102 
8103 #if IS_ENABLED(CONFIG_HYPERV)
8104 	if (static_branch_unlikely(&enable_evmcs)) {
8105 		int cpu;
8106 		struct hv_vp_assist_page *vp_ap;
8107 		/*
8108 		 * Reset everything to support using non-enlightened VMCS
8109 		 * access later (e.g. when we reload the module with
8110 		 * enlightened_vmcs=0)
8111 		 */
8112 		for_each_online_cpu(cpu) {
8113 			vp_ap =	hv_get_vp_assist_page(cpu);
8114 
8115 			if (!vp_ap)
8116 				continue;
8117 
8118 			vp_ap->nested_control.features.directhypercall = 0;
8119 			vp_ap->current_nested_vmcs = 0;
8120 			vp_ap->enlighten_vmentry = 0;
8121 		}
8122 
8123 		static_branch_disable(&enable_evmcs);
8124 	}
8125 #endif
8126 	vmx_cleanup_l1d_flush();
8127 }
8128 module_exit(vmx_exit);
8129 
vmx_init(void)8130 static int __init vmx_init(void)
8131 {
8132 	int r, cpu;
8133 
8134 #if IS_ENABLED(CONFIG_HYPERV)
8135 	/*
8136 	 * Enlightened VMCS usage should be recommended and the host needs
8137 	 * to support eVMCS v1 or above. We can also disable eVMCS support
8138 	 * with module parameter.
8139 	 */
8140 	if (enlightened_vmcs &&
8141 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8142 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8143 	    KVM_EVMCS_VERSION) {
8144 		int cpu;
8145 
8146 		/* Check that we have assist pages on all online CPUs */
8147 		for_each_online_cpu(cpu) {
8148 			if (!hv_get_vp_assist_page(cpu)) {
8149 				enlightened_vmcs = false;
8150 				break;
8151 			}
8152 		}
8153 
8154 		if (enlightened_vmcs) {
8155 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8156 			static_branch_enable(&enable_evmcs);
8157 		}
8158 
8159 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8160 			vmx_x86_ops.enable_direct_tlbflush
8161 				= hv_enable_direct_tlbflush;
8162 
8163 	} else {
8164 		enlightened_vmcs = false;
8165 	}
8166 #endif
8167 
8168 	r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8169 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
8170 	if (r)
8171 		return r;
8172 
8173 	/*
8174 	 * Must be called after kvm_init() so enable_ept is properly set
8175 	 * up. Hand the parameter mitigation value in which was stored in
8176 	 * the pre module init parser. If no parameter was given, it will
8177 	 * contain 'auto' which will be turned into the default 'cond'
8178 	 * mitigation mode.
8179 	 */
8180 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8181 	if (r) {
8182 		vmx_exit();
8183 		return r;
8184 	}
8185 
8186 	vmx_setup_fb_clear_ctrl();
8187 
8188 	for_each_possible_cpu(cpu) {
8189 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8190 
8191 		pi_init_cpu(cpu);
8192 	}
8193 
8194 #ifdef CONFIG_KEXEC_CORE
8195 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8196 			   crash_vmclear_local_loaded_vmcss);
8197 #endif
8198 	vmx_check_vmcs12_offsets();
8199 
8200 	/*
8201 	 * Shadow paging doesn't have a (further) performance penalty
8202 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8203 	 * by default
8204 	 */
8205 	if (!enable_ept)
8206 		allow_smaller_maxphyaddr = true;
8207 
8208 	return 0;
8209 }
8210 module_init(vmx_init);
8211