1 /*
2 * G.729, G729 Annex D postfilter
3 * Copyright (c) 2008 Vladimir Voroshilov
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21 #include <inttypes.h>
22 #include <limits.h>
23
24 #include "avcodec.h"
25 #include "g729.h"
26 #include "acelp_pitch_delay.h"
27 #include "g729postfilter.h"
28 #include "celp_math.h"
29 #include "acelp_filters.h"
30 #include "acelp_vectors.h"
31 #include "celp_filters.h"
32
33 #define FRAC_BITS 15
34 #include "mathops.h"
35
36 /**
37 * short interpolation filter (of length 33, according to spec)
38 * for computing signal with non-integer delay
39 */
40 static const int16_t ff_g729_interp_filt_short[(ANALYZED_FRAC_DELAYS+1)*SHORT_INT_FILT_LEN] = {
41 0, 31650, 28469, 23705, 18050, 12266, 7041, 2873,
42 0, -1597, -2147, -1992, -1492, -933, -484, -188,
43 };
44
45 /**
46 * long interpolation filter (of length 129, according to spec)
47 * for computing signal with non-integer delay
48 */
49 static const int16_t ff_g729_interp_filt_long[(ANALYZED_FRAC_DELAYS+1)*LONG_INT_FILT_LEN] = {
50 0, 31915, 29436, 25569, 20676, 15206, 9639, 4439,
51 0, -3390, -5579, -6549, -6414, -5392, -3773, -1874,
52 0, 1595, 2727, 3303, 3319, 2850, 2030, 1023,
53 0, -887, -1527, -1860, -1876, -1614, -1150, -579,
54 0, 501, 859, 1041, 1044, 892, 631, 315,
55 0, -266, -453, -543, -538, -455, -317, -156,
56 0, 130, 218, 258, 253, 212, 147, 72,
57 0, -59, -101, -122, -123, -106, -77, -40,
58 };
59
60 /**
61 * formant_pp_factor_num_pow[i] = FORMANT_PP_FACTOR_NUM^(i+1)
62 */
63 static const int16_t formant_pp_factor_num_pow[10]= {
64 /* (0.15) */
65 18022, 9912, 5451, 2998, 1649, 907, 499, 274, 151, 83
66 };
67
68 /**
69 * formant_pp_factor_den_pow[i] = FORMANT_PP_FACTOR_DEN^(i+1)
70 */
71 static const int16_t formant_pp_factor_den_pow[10] = {
72 /* (0.15) */
73 22938, 16057, 11240, 7868, 5508, 3856, 2699, 1889, 1322, 925
74 };
75
76 /**
77 * \brief Residual signal calculation (4.2.1 if G.729)
78 * \param out [out] output data filtered through A(z/FORMANT_PP_FACTOR_NUM)
79 * \param filter_coeffs (3.12) A(z/FORMANT_PP_FACTOR_NUM) filter coefficients
80 * \param in input speech data to process
81 * \param subframe_size size of one subframe
82 *
83 * \note in buffer must contain 10 items of previous speech data before top of the buffer
84 * \remark It is safe to pass the same buffer for input and output.
85 */
residual_filter(int16_t * out,const int16_t * filter_coeffs,const int16_t * in,int subframe_size)86 static void residual_filter(int16_t* out, const int16_t* filter_coeffs, const int16_t* in,
87 int subframe_size)
88 {
89 int i, n;
90
91 for (n = subframe_size - 1; n >= 0; n--) {
92 int sum = 0x800;
93 for (i = 0; i < 10; i++)
94 sum += filter_coeffs[i] * in[n - i - 1];
95
96 out[n] = in[n] + (sum >> 12);
97 }
98 }
99
100 /**
101 * \brief long-term postfilter (4.2.1)
102 * \param dsp initialized DSP context
103 * \param pitch_delay_int integer part of the pitch delay in the first subframe
104 * \param residual filtering input data
105 * \param residual_filt [out] speech signal with applied A(z/FORMANT_PP_FACTOR_NUM) filter
106 * \param subframe_size size of subframe
107 *
108 * \return 0 if long-term prediction gain is less than 3dB, 1 - otherwise
109 */
long_term_filter(AudioDSPContext * adsp,int pitch_delay_int,const int16_t * residual,int16_t * residual_filt,int subframe_size)110 static int16_t long_term_filter(AudioDSPContext *adsp, int pitch_delay_int,
111 const int16_t* residual, int16_t *residual_filt,
112 int subframe_size)
113 {
114 int i, k, tmp, tmp2;
115 int sum;
116 int L_temp0;
117 int L_temp1;
118 int64_t L64_temp0;
119 int64_t L64_temp1;
120 int16_t shift;
121 int corr_int_num, corr_int_den;
122
123 int ener;
124 int16_t sh_ener;
125
126 int16_t gain_num,gain_den; //selected signal's gain numerator and denominator
127 int16_t sh_gain_num, sh_gain_den;
128 int gain_num_square;
129
130 int16_t gain_long_num,gain_long_den; //filtered through long interpolation filter signal's gain numerator and denominator
131 int16_t sh_gain_long_num, sh_gain_long_den;
132
133 int16_t best_delay_int, best_delay_frac;
134
135 int16_t delayed_signal_offset;
136 int lt_filt_factor_a, lt_filt_factor_b;
137
138 int16_t * selected_signal;
139 const int16_t * selected_signal_const; //Necessary to avoid compiler warning
140
141 int16_t sig_scaled[SUBFRAME_SIZE + RES_PREV_DATA_SIZE];
142 int16_t delayed_signal[ANALYZED_FRAC_DELAYS][SUBFRAME_SIZE+1];
143 int corr_den[ANALYZED_FRAC_DELAYS][2];
144
145 tmp = 0;
146 for(i=0; i<subframe_size + RES_PREV_DATA_SIZE; i++)
147 tmp |= FFABS(residual[i]);
148
149 if(!tmp)
150 shift = 3;
151 else
152 shift = av_log2(tmp) - 11;
153
154 if (shift > 0)
155 for (i = 0; i < subframe_size + RES_PREV_DATA_SIZE; i++)
156 sig_scaled[i] = residual[i] >> shift;
157 else
158 for (i = 0; i < subframe_size + RES_PREV_DATA_SIZE; i++)
159 sig_scaled[i] = (unsigned)residual[i] << -shift;
160
161 /* Start of best delay searching code */
162 gain_num = 0;
163
164 ener = adsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE,
165 sig_scaled + RES_PREV_DATA_SIZE,
166 subframe_size);
167 if (ener) {
168 sh_ener = av_log2(ener) - 14;
169 sh_ener = FFMAX(sh_ener, 0);
170 ener >>= sh_ener;
171 /* Search for best pitch delay.
172
173 sum{ r(n) * r(k,n) ] }^2
174 R'(k)^2 := -------------------------
175 sum{ r(k,n) * r(k,n) }
176
177
178 R(T) := sum{ r(n) * r(n-T) ] }
179
180
181 where
182 r(n-T) is integer delayed signal with delay T
183 r(k,n) is non-integer delayed signal with integer delay best_delay
184 and fractional delay k */
185
186 /* Find integer delay best_delay which maximizes correlation R(T).
187
188 This is also equals to numerator of R'(0),
189 since the fine search (second step) is done with 1/8
190 precision around best_delay. */
191 corr_int_num = 0;
192 best_delay_int = pitch_delay_int - 1;
193 for (i = pitch_delay_int - 1; i <= pitch_delay_int + 1; i++) {
194 sum = adsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE,
195 sig_scaled + RES_PREV_DATA_SIZE - i,
196 subframe_size);
197 if (sum > corr_int_num) {
198 corr_int_num = sum;
199 best_delay_int = i;
200 }
201 }
202 if (corr_int_num) {
203 /* Compute denominator of pseudo-normalized correlation R'(0). */
204 corr_int_den = adsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE - best_delay_int,
205 sig_scaled + RES_PREV_DATA_SIZE - best_delay_int,
206 subframe_size);
207
208 /* Compute signals with non-integer delay k (with 1/8 precision),
209 where k is in [0;6] range.
210 Entire delay is qual to best_delay+(k+1)/8
211 This is archieved by applying an interpolation filter of
212 legth 33 to source signal. */
213 for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) {
214 ff_acelp_interpolate(&delayed_signal[k][0],
215 &sig_scaled[RES_PREV_DATA_SIZE - best_delay_int],
216 ff_g729_interp_filt_short,
217 ANALYZED_FRAC_DELAYS+1,
218 8 - k - 1,
219 SHORT_INT_FILT_LEN,
220 subframe_size + 1);
221 }
222
223 /* Compute denominator of pseudo-normalized correlation R'(k).
224
225 corr_den[k][0] is square root of R'(k) denominator, for int(T) == int(T0)
226 corr_den[k][1] is square root of R'(k) denominator, for int(T) == int(T0)+1
227
228 Also compute maximum value of above denominators over all k. */
229 tmp = corr_int_den;
230 for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) {
231 sum = adsp->scalarproduct_int16(&delayed_signal[k][1],
232 &delayed_signal[k][1],
233 subframe_size - 1);
234 corr_den[k][0] = sum + delayed_signal[k][0 ] * delayed_signal[k][0 ];
235 corr_den[k][1] = sum + delayed_signal[k][subframe_size] * delayed_signal[k][subframe_size];
236
237 tmp = FFMAX3(tmp, corr_den[k][0], corr_den[k][1]);
238 }
239
240 sh_gain_den = av_log2(tmp) - 14;
241 if (sh_gain_den >= 0) {
242
243 sh_gain_num = FFMAX(sh_gain_den, sh_ener);
244 /* Loop through all k and find delay that maximizes
245 R'(k) correlation.
246 Search is done in [int(T0)-1; intT(0)+1] range
247 with 1/8 precision. */
248 delayed_signal_offset = 1;
249 best_delay_frac = 0;
250 gain_den = corr_int_den >> sh_gain_den;
251 gain_num = corr_int_num >> sh_gain_num;
252 gain_num_square = gain_num * gain_num;
253 for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) {
254 for (i = 0; i < 2; i++) {
255 int16_t gain_num_short, gain_den_short;
256 int gain_num_short_square;
257 /* Compute numerator of pseudo-normalized
258 correlation R'(k). */
259 sum = adsp->scalarproduct_int16(&delayed_signal[k][i],
260 sig_scaled + RES_PREV_DATA_SIZE,
261 subframe_size);
262 gain_num_short = FFMAX(sum >> sh_gain_num, 0);
263
264 /*
265 gain_num_short_square gain_num_square
266 R'(T)^2 = -----------------------, max R'(T)^2= --------------
267 den gain_den
268 */
269 gain_num_short_square = gain_num_short * gain_num_short;
270 gain_den_short = corr_den[k][i] >> sh_gain_den;
271
272 tmp = MULL(gain_num_short_square, gain_den, FRAC_BITS);
273 tmp2 = MULL(gain_num_square, gain_den_short, FRAC_BITS);
274
275 // R'(T)^2 > max R'(T)^2
276 if (tmp > tmp2) {
277 gain_num = gain_num_short;
278 gain_den = gain_den_short;
279 gain_num_square = gain_num_short_square;
280 delayed_signal_offset = i;
281 best_delay_frac = k + 1;
282 }
283 }
284 }
285
286 /*
287 R'(T)^2
288 2 * --------- < 1
289 R(0)
290 */
291 L64_temp0 = (int64_t)gain_num_square << ((sh_gain_num << 1) + 1);
292 L64_temp1 = ((int64_t)gain_den * ener) << (sh_gain_den + sh_ener);
293 if (L64_temp0 < L64_temp1)
294 gain_num = 0;
295 } // if(sh_gain_den >= 0)
296 } // if(corr_int_num)
297 } // if(ener)
298 /* End of best delay searching code */
299
300 if (!gain_num) {
301 memcpy(residual_filt, residual + RES_PREV_DATA_SIZE, subframe_size * sizeof(int16_t));
302
303 /* Long-term prediction gain is less than 3dB. Long-term postfilter is disabled. */
304 return 0;
305 }
306 if (best_delay_frac) {
307 /* Recompute delayed signal with an interpolation filter of length 129. */
308 ff_acelp_interpolate(residual_filt,
309 &sig_scaled[RES_PREV_DATA_SIZE - best_delay_int + delayed_signal_offset],
310 ff_g729_interp_filt_long,
311 ANALYZED_FRAC_DELAYS + 1,
312 8 - best_delay_frac,
313 LONG_INT_FILT_LEN,
314 subframe_size + 1);
315 /* Compute R'(k) correlation's numerator. */
316 sum = adsp->scalarproduct_int16(residual_filt,
317 sig_scaled + RES_PREV_DATA_SIZE,
318 subframe_size);
319
320 if (sum < 0) {
321 gain_long_num = 0;
322 sh_gain_long_num = 0;
323 } else {
324 tmp = av_log2(sum) - 14;
325 tmp = FFMAX(tmp, 0);
326 sum >>= tmp;
327 gain_long_num = sum;
328 sh_gain_long_num = tmp;
329 }
330
331 /* Compute R'(k) correlation's denominator. */
332 sum = adsp->scalarproduct_int16(residual_filt, residual_filt, subframe_size);
333
334 tmp = av_log2(sum) - 14;
335 tmp = FFMAX(tmp, 0);
336 sum >>= tmp;
337 gain_long_den = sum;
338 sh_gain_long_den = tmp;
339
340 /* Select between original and delayed signal.
341 Delayed signal will be selected if it increases R'(k)
342 correlation. */
343 L_temp0 = gain_num * gain_num;
344 L_temp0 = MULL(L_temp0, gain_long_den, FRAC_BITS);
345
346 L_temp1 = gain_long_num * gain_long_num;
347 L_temp1 = MULL(L_temp1, gain_den, FRAC_BITS);
348
349 tmp = ((sh_gain_long_num - sh_gain_num) * 2) - (sh_gain_long_den - sh_gain_den);
350 if (tmp > 0)
351 L_temp0 >>= tmp;
352 else
353 L_temp1 >>= -tmp;
354
355 /* Check if longer filter increases the values of R'(k). */
356 if (L_temp1 > L_temp0) {
357 /* Select long filter. */
358 selected_signal = residual_filt;
359 gain_num = gain_long_num;
360 gain_den = gain_long_den;
361 sh_gain_num = sh_gain_long_num;
362 sh_gain_den = sh_gain_long_den;
363 } else
364 /* Select short filter. */
365 selected_signal = &delayed_signal[best_delay_frac-1][delayed_signal_offset];
366
367 /* Rescale selected signal to original value. */
368 if (shift > 0)
369 for (i = 0; i < subframe_size; i++)
370 selected_signal[i] *= 1 << shift;
371 else
372 for (i = 0; i < subframe_size; i++)
373 selected_signal[i] >>= -shift;
374
375 /* necessary to avoid compiler warning */
376 selected_signal_const = selected_signal;
377 } // if(best_delay_frac)
378 else
379 selected_signal_const = residual + RES_PREV_DATA_SIZE - (best_delay_int + 1 - delayed_signal_offset);
380 #ifdef G729_BITEXACT
381 tmp = sh_gain_num - sh_gain_den;
382 if (tmp > 0)
383 gain_den >>= tmp;
384 else
385 gain_num >>= -tmp;
386
387 if (gain_num > gain_den)
388 lt_filt_factor_a = MIN_LT_FILT_FACTOR_A;
389 else {
390 gain_num >>= 2;
391 gain_den >>= 1;
392 lt_filt_factor_a = (gain_den << 15) / (gain_den + gain_num);
393 }
394 #else
395 L64_temp0 = (((int64_t)gain_num) << sh_gain_num) >> 1;
396 L64_temp1 = ((int64_t)gain_den) << sh_gain_den;
397 lt_filt_factor_a = FFMAX((L64_temp1 << 15) / (L64_temp1 + L64_temp0), MIN_LT_FILT_FACTOR_A);
398 #endif
399
400 /* Filter through selected filter. */
401 lt_filt_factor_b = 32767 - lt_filt_factor_a + 1;
402
403 ff_acelp_weighted_vector_sum(residual_filt, residual + RES_PREV_DATA_SIZE,
404 selected_signal_const,
405 lt_filt_factor_a, lt_filt_factor_b,
406 1<<14, 15, subframe_size);
407
408 // Long-term prediction gain is larger than 3dB.
409 return 1;
410 }
411
412 /**
413 * \brief Calculate reflection coefficient for tilt compensation filter (4.2.3).
414 * \param dsp initialized DSP context
415 * \param lp_gn (3.12) coefficients of A(z/FORMANT_PP_FACTOR_NUM) filter
416 * \param lp_gd (3.12) coefficients of A(z/FORMANT_PP_FACTOR_DEN) filter
417 * \param speech speech to update
418 * \param subframe_size size of subframe
419 *
420 * \return (3.12) reflection coefficient
421 *
422 * \remark The routine also calculates the gain term for the short-term
423 * filter (gf) and multiplies the speech data by 1/gf.
424 *
425 * \note All members of lp_gn, except 10-19 must be equal to zero.
426 */
get_tilt_comp(AudioDSPContext * adsp,int16_t * lp_gn,const int16_t * lp_gd,int16_t * speech,int subframe_size)427 static int16_t get_tilt_comp(AudioDSPContext *adsp, int16_t *lp_gn,
428 const int16_t *lp_gd, int16_t* speech,
429 int subframe_size)
430 {
431 int rh1,rh0; // (3.12)
432 int temp;
433 int i;
434 int gain_term;
435
436 lp_gn[10] = 4096; //1.0 in (3.12)
437
438 /* Apply 1/A(z/FORMANT_PP_FACTOR_DEN) filter to hf. */
439 ff_celp_lp_synthesis_filter(lp_gn + 11, lp_gd + 1, lp_gn + 11, 22, 10, 0, 0, 0x800);
440 /* Now lp_gn (starting with 10) contains impulse response
441 of A(z/FORMANT_PP_FACTOR_NUM)/A(z/FORMANT_PP_FACTOR_DEN) filter. */
442
443 rh0 = adsp->scalarproduct_int16(lp_gn + 10, lp_gn + 10, 20);
444 rh1 = adsp->scalarproduct_int16(lp_gn + 10, lp_gn + 11, 20);
445
446 /* downscale to avoid overflow */
447 temp = av_log2(rh0) - 14;
448 if (temp > 0) {
449 rh0 >>= temp;
450 rh1 >>= temp;
451 }
452
453 if (FFABS(rh1) > rh0 || !rh0)
454 return 0;
455
456 gain_term = 0;
457 for (i = 0; i < 20; i++)
458 gain_term += FFABS(lp_gn[i + 10]);
459 gain_term >>= 2; // (3.12) -> (5.10)
460
461 if (gain_term > 0x400) { // 1.0 in (5.10)
462 temp = 0x2000000 / gain_term; // 1.0/gain_term in (0.15)
463 for (i = 0; i < subframe_size; i++)
464 speech[i] = (speech[i] * temp + 0x4000) >> 15;
465 }
466
467 return -(rh1 * (1 << 15)) / rh0;
468 }
469
470 /**
471 * \brief Apply tilt compensation filter (4.2.3).
472 * \param res_pst [in/out] residual signal (partially filtered)
473 * \param k1 (3.12) reflection coefficient
474 * \param subframe_size size of subframe
475 * \param ht_prev_data previous data for 4.2.3, equation 86
476 *
477 * \return new value for ht_prev_data
478 */
apply_tilt_comp(int16_t * out,int16_t * res_pst,int refl_coeff,int subframe_size,int16_t ht_prev_data)479 static int16_t apply_tilt_comp(int16_t* out, int16_t* res_pst, int refl_coeff,
480 int subframe_size, int16_t ht_prev_data)
481 {
482 int tmp, tmp2;
483 int i;
484 int gt, ga;
485 int fact, sh_fact;
486
487 if (refl_coeff > 0) {
488 gt = (refl_coeff * G729_TILT_FACTOR_PLUS + 0x4000) >> 15;
489 fact = 0x2000; // 0.5 in (0.15)
490 sh_fact = 14;
491 } else {
492 gt = (refl_coeff * G729_TILT_FACTOR_MINUS + 0x4000) >> 15;
493 fact = 0x400; // 0.5 in (3.12)
494 sh_fact = 11;
495 }
496 ga = (fact << 16) / av_clip_int16(32768 - FFABS(gt));
497 gt >>= 1;
498
499 /* Apply tilt compensation filter to signal. */
500 tmp = res_pst[subframe_size - 1];
501
502 for (i = subframe_size - 1; i >= 1; i--) {
503 tmp2 = (gt * res_pst[i-1]) * 2 + 0x4000;
504 tmp2 = res_pst[i] + (tmp2 >> 15);
505
506 tmp2 = (tmp2 * ga + fact) >> sh_fact;
507 out[i] = tmp2;
508 }
509 tmp2 = (gt * ht_prev_data) * 2 + 0x4000;
510 tmp2 = res_pst[0] + (tmp2 >> 15);
511 tmp2 = (tmp2 * ga + fact) >> sh_fact;
512 out[0] = tmp2;
513
514 return tmp;
515 }
516
ff_g729_postfilter(AudioDSPContext * adsp,int16_t * ht_prev_data,int * voicing,const int16_t * lp_filter_coeffs,int pitch_delay_int,int16_t * residual,int16_t * res_filter_data,int16_t * pos_filter_data,int16_t * speech,int subframe_size)517 void ff_g729_postfilter(AudioDSPContext *adsp, int16_t* ht_prev_data, int* voicing,
518 const int16_t *lp_filter_coeffs, int pitch_delay_int,
519 int16_t* residual, int16_t* res_filter_data,
520 int16_t* pos_filter_data, int16_t *speech, int subframe_size)
521 {
522 int16_t residual_filt_buf[SUBFRAME_SIZE+11];
523 int16_t lp_gn[33]; // (3.12)
524 int16_t lp_gd[11]; // (3.12)
525 int tilt_comp_coeff;
526 int i;
527
528 /* Zero-filling is necessary for tilt-compensation filter. */
529 memset(lp_gn, 0, 33 * sizeof(int16_t));
530
531 /* Calculate A(z/FORMANT_PP_FACTOR_NUM) filter coefficients. */
532 for (i = 0; i < 10; i++)
533 lp_gn[i + 11] = (lp_filter_coeffs[i + 1] * formant_pp_factor_num_pow[i] + 0x4000) >> 15;
534
535 /* Calculate A(z/FORMANT_PP_FACTOR_DEN) filter coefficients. */
536 for (i = 0; i < 10; i++)
537 lp_gd[i + 1] = (lp_filter_coeffs[i + 1] * formant_pp_factor_den_pow[i] + 0x4000) >> 15;
538
539 /* residual signal calculation (one-half of short-term postfilter) */
540 memcpy(speech - 10, res_filter_data, 10 * sizeof(int16_t));
541 residual_filter(residual + RES_PREV_DATA_SIZE, lp_gn + 11, speech, subframe_size);
542 /* Save data to use it in the next subframe. */
543 memcpy(res_filter_data, speech + subframe_size - 10, 10 * sizeof(int16_t));
544
545 /* long-term filter. If long-term prediction gain is larger than 3dB (returned value is
546 nonzero) then declare current subframe as periodic. */
547 i = long_term_filter(adsp, pitch_delay_int,
548 residual, residual_filt_buf + 10,
549 subframe_size);
550 *voicing = FFMAX(*voicing, i);
551
552 /* shift residual for using in next subframe */
553 memmove(residual, residual + subframe_size, RES_PREV_DATA_SIZE * sizeof(int16_t));
554
555 /* short-term filter tilt compensation */
556 tilt_comp_coeff = get_tilt_comp(adsp, lp_gn, lp_gd, residual_filt_buf + 10, subframe_size);
557
558 /* Apply second half of short-term postfilter: 1/A(z/FORMANT_PP_FACTOR_DEN) */
559 ff_celp_lp_synthesis_filter(pos_filter_data + 10, lp_gd + 1,
560 residual_filt_buf + 10,
561 subframe_size, 10, 0, 0, 0x800);
562 memcpy(pos_filter_data, pos_filter_data + subframe_size, 10 * sizeof(int16_t));
563
564 *ht_prev_data = apply_tilt_comp(speech, pos_filter_data + 10, tilt_comp_coeff,
565 subframe_size, *ht_prev_data);
566 }
567
568 /**
569 * \brief Adaptive gain control (4.2.4)
570 * \param gain_before gain of speech before applying postfilters
571 * \param gain_after gain of speech after applying postfilters
572 * \param speech [in/out] signal buffer
573 * \param subframe_size length of subframe
574 * \param gain_prev (3.12) previous value of gain coefficient
575 *
576 * \return (3.12) last value of gain coefficient
577 */
ff_g729_adaptive_gain_control(int gain_before,int gain_after,int16_t * speech,int subframe_size,int16_t gain_prev)578 int16_t ff_g729_adaptive_gain_control(int gain_before, int gain_after, int16_t *speech,
579 int subframe_size, int16_t gain_prev)
580 {
581 int gain; // (3.12)
582 int n;
583 int exp_before, exp_after;
584
585 if(!gain_after && gain_before)
586 return 0;
587
588 if (gain_before) {
589
590 exp_before = 14 - av_log2(gain_before);
591 gain_before = bidir_sal(gain_before, exp_before);
592
593 exp_after = 14 - av_log2(gain_after);
594 gain_after = bidir_sal(gain_after, exp_after);
595
596 if (gain_before < gain_after) {
597 gain = (gain_before << 15) / gain_after;
598 gain = bidir_sal(gain, exp_after - exp_before - 1);
599 } else {
600 gain = ((gain_before - gain_after) << 14) / gain_after + 0x4000;
601 gain = bidir_sal(gain, exp_after - exp_before);
602 }
603 gain = av_clip_int16(gain);
604 gain = (gain * G729_AGC_FAC1 + 0x4000) >> 15; // gain * (1-0.9875)
605 } else
606 gain = 0;
607
608 for (n = 0; n < subframe_size; n++) {
609 // gain_prev = gain + 0.9875 * gain_prev
610 gain_prev = (G729_AGC_FACTOR * gain_prev + 0x4000) >> 15;
611 gain_prev = av_clip_int16(gain + gain_prev);
612 speech[n] = av_clip_int16((speech[n] * gain_prev + 0x2000) >> 14);
613 }
614 return gain_prev;
615 }
616