• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * G.729, G729 Annex D postfilter
3  * Copyright (c) 2008 Vladimir Voroshilov
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 #include <inttypes.h>
22 #include <limits.h>
23 
24 #include "avcodec.h"
25 #include "g729.h"
26 #include "acelp_pitch_delay.h"
27 #include "g729postfilter.h"
28 #include "celp_math.h"
29 #include "acelp_filters.h"
30 #include "acelp_vectors.h"
31 #include "celp_filters.h"
32 
33 #define FRAC_BITS 15
34 #include "mathops.h"
35 
36 /**
37  * short interpolation filter (of length 33, according to spec)
38  * for computing signal with non-integer delay
39  */
40 static const int16_t ff_g729_interp_filt_short[(ANALYZED_FRAC_DELAYS+1)*SHORT_INT_FILT_LEN] = {
41       0, 31650, 28469, 23705, 18050, 12266,  7041,  2873,
42       0, -1597, -2147, -1992, -1492,  -933,  -484,  -188,
43 };
44 
45 /**
46  * long interpolation filter (of length 129, according to spec)
47  * for computing signal with non-integer delay
48  */
49 static const int16_t ff_g729_interp_filt_long[(ANALYZED_FRAC_DELAYS+1)*LONG_INT_FILT_LEN] = {
50    0, 31915, 29436, 25569, 20676, 15206,  9639,  4439,
51    0, -3390, -5579, -6549, -6414, -5392, -3773, -1874,
52    0,  1595,  2727,  3303,  3319,  2850,  2030,  1023,
53    0,  -887, -1527, -1860, -1876, -1614, -1150,  -579,
54    0,   501,   859,  1041,  1044,   892,   631,   315,
55    0,  -266,  -453,  -543,  -538,  -455,  -317,  -156,
56    0,   130,   218,   258,   253,   212,   147,    72,
57    0,   -59,  -101,  -122,  -123,  -106,   -77,   -40,
58 };
59 
60 /**
61  * formant_pp_factor_num_pow[i] = FORMANT_PP_FACTOR_NUM^(i+1)
62  */
63 static const int16_t formant_pp_factor_num_pow[10]= {
64   /* (0.15) */
65   18022, 9912, 5451, 2998, 1649, 907, 499, 274, 151, 83
66 };
67 
68 /**
69  * formant_pp_factor_den_pow[i] = FORMANT_PP_FACTOR_DEN^(i+1)
70  */
71 static const int16_t formant_pp_factor_den_pow[10] = {
72   /* (0.15) */
73   22938, 16057, 11240, 7868, 5508, 3856, 2699, 1889, 1322, 925
74 };
75 
76 /**
77  * \brief Residual signal calculation (4.2.1 if G.729)
78  * \param out [out] output data filtered through A(z/FORMANT_PP_FACTOR_NUM)
79  * \param filter_coeffs (3.12) A(z/FORMANT_PP_FACTOR_NUM) filter coefficients
80  * \param in input speech data to process
81  * \param subframe_size size of one subframe
82  *
83  * \note in buffer must contain 10 items of previous speech data before top of the buffer
84  * \remark It is safe to pass the same buffer for input and output.
85  */
residual_filter(int16_t * out,const int16_t * filter_coeffs,const int16_t * in,int subframe_size)86 static void residual_filter(int16_t* out, const int16_t* filter_coeffs, const int16_t* in,
87                             int subframe_size)
88 {
89     int i, n;
90 
91     for (n = subframe_size - 1; n >= 0; n--) {
92         int sum = 0x800;
93         for (i = 0; i < 10; i++)
94             sum += filter_coeffs[i] * in[n - i - 1];
95 
96         out[n] = in[n] + (sum >> 12);
97     }
98 }
99 
100 /**
101  * \brief long-term postfilter (4.2.1)
102  * \param dsp initialized DSP context
103  * \param pitch_delay_int integer part of the pitch delay in the first subframe
104  * \param residual filtering input data
105  * \param residual_filt [out] speech signal with applied A(z/FORMANT_PP_FACTOR_NUM) filter
106  * \param subframe_size size of subframe
107  *
108  * \return 0 if long-term prediction gain is less than 3dB, 1 -  otherwise
109  */
long_term_filter(AudioDSPContext * adsp,int pitch_delay_int,const int16_t * residual,int16_t * residual_filt,int subframe_size)110 static int16_t long_term_filter(AudioDSPContext *adsp, int pitch_delay_int,
111                                 const int16_t* residual, int16_t *residual_filt,
112                                 int subframe_size)
113 {
114     int i, k, tmp, tmp2;
115     int sum;
116     int L_temp0;
117     int L_temp1;
118     int64_t L64_temp0;
119     int64_t L64_temp1;
120     int16_t shift;
121     int corr_int_num, corr_int_den;
122 
123     int ener;
124     int16_t sh_ener;
125 
126     int16_t gain_num,gain_den; //selected signal's gain numerator and denominator
127     int16_t sh_gain_num, sh_gain_den;
128     int gain_num_square;
129 
130     int16_t gain_long_num,gain_long_den; //filtered through long interpolation filter signal's gain numerator and denominator
131     int16_t sh_gain_long_num, sh_gain_long_den;
132 
133     int16_t best_delay_int, best_delay_frac;
134 
135     int16_t delayed_signal_offset;
136     int lt_filt_factor_a, lt_filt_factor_b;
137 
138     int16_t * selected_signal;
139     const int16_t * selected_signal_const; //Necessary to avoid compiler warning
140 
141     int16_t sig_scaled[SUBFRAME_SIZE + RES_PREV_DATA_SIZE];
142     int16_t delayed_signal[ANALYZED_FRAC_DELAYS][SUBFRAME_SIZE+1];
143     int corr_den[ANALYZED_FRAC_DELAYS][2];
144 
145     tmp = 0;
146     for(i=0; i<subframe_size + RES_PREV_DATA_SIZE; i++)
147         tmp |= FFABS(residual[i]);
148 
149     if(!tmp)
150         shift = 3;
151     else
152         shift = av_log2(tmp) - 11;
153 
154     if (shift > 0)
155         for (i = 0; i < subframe_size + RES_PREV_DATA_SIZE; i++)
156             sig_scaled[i] = residual[i] >> shift;
157     else
158         for (i = 0; i < subframe_size + RES_PREV_DATA_SIZE; i++)
159             sig_scaled[i] = (unsigned)residual[i] << -shift;
160 
161     /* Start of best delay searching code */
162     gain_num = 0;
163 
164     ener = adsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE,
165                                     sig_scaled + RES_PREV_DATA_SIZE,
166                                     subframe_size);
167     if (ener) {
168         sh_ener = av_log2(ener) - 14;
169         sh_ener = FFMAX(sh_ener, 0);
170         ener >>= sh_ener;
171         /* Search for best pitch delay.
172 
173                        sum{ r(n) * r(k,n) ] }^2
174            R'(k)^2 := -------------------------
175                        sum{ r(k,n) * r(k,n) }
176 
177 
178            R(T)    :=  sum{ r(n) * r(n-T) ] }
179 
180 
181            where
182            r(n-T) is integer delayed signal with delay T
183            r(k,n) is non-integer delayed signal with integer delay best_delay
184            and fractional delay k */
185 
186         /* Find integer delay best_delay which maximizes correlation R(T).
187 
188            This is also equals to numerator of R'(0),
189            since the fine search (second step) is done with 1/8
190            precision around best_delay. */
191         corr_int_num = 0;
192         best_delay_int = pitch_delay_int - 1;
193         for (i = pitch_delay_int - 1; i <= pitch_delay_int + 1; i++) {
194             sum = adsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE,
195                                            sig_scaled + RES_PREV_DATA_SIZE - i,
196                                            subframe_size);
197             if (sum > corr_int_num) {
198                 corr_int_num = sum;
199                 best_delay_int = i;
200             }
201         }
202         if (corr_int_num) {
203             /* Compute denominator of pseudo-normalized correlation R'(0). */
204             corr_int_den = adsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE - best_delay_int,
205                                                      sig_scaled + RES_PREV_DATA_SIZE - best_delay_int,
206                                                     subframe_size);
207 
208             /* Compute signals with non-integer delay k (with 1/8 precision),
209                where k is in [0;6] range.
210                Entire delay is qual to best_delay+(k+1)/8
211                This is archieved by applying an interpolation filter of
212                legth 33 to source signal. */
213             for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) {
214                 ff_acelp_interpolate(&delayed_signal[k][0],
215                                      &sig_scaled[RES_PREV_DATA_SIZE - best_delay_int],
216                                      ff_g729_interp_filt_short,
217                                      ANALYZED_FRAC_DELAYS+1,
218                                      8 - k - 1,
219                                      SHORT_INT_FILT_LEN,
220                                      subframe_size + 1);
221             }
222 
223             /* Compute denominator of pseudo-normalized correlation R'(k).
224 
225                  corr_den[k][0] is square root of R'(k) denominator, for int(T) == int(T0)
226                  corr_den[k][1] is square root of R'(k) denominator, for int(T) == int(T0)+1
227 
228               Also compute maximum value of above denominators over all k. */
229             tmp = corr_int_den;
230             for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) {
231                 sum = adsp->scalarproduct_int16(&delayed_signal[k][1],
232                                                &delayed_signal[k][1],
233                                                subframe_size - 1);
234                 corr_den[k][0] = sum + delayed_signal[k][0            ] * delayed_signal[k][0            ];
235                 corr_den[k][1] = sum + delayed_signal[k][subframe_size] * delayed_signal[k][subframe_size];
236 
237                 tmp = FFMAX3(tmp, corr_den[k][0], corr_den[k][1]);
238             }
239 
240             sh_gain_den = av_log2(tmp) - 14;
241             if (sh_gain_den >= 0) {
242 
243                 sh_gain_num =  FFMAX(sh_gain_den, sh_ener);
244                 /* Loop through all k and find delay that maximizes
245                    R'(k) correlation.
246                    Search is done in [int(T0)-1; intT(0)+1] range
247                    with 1/8 precision. */
248                 delayed_signal_offset = 1;
249                 best_delay_frac = 0;
250                 gain_den = corr_int_den >> sh_gain_den;
251                 gain_num = corr_int_num >> sh_gain_num;
252                 gain_num_square = gain_num * gain_num;
253                 for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) {
254                     for (i = 0; i < 2; i++) {
255                         int16_t gain_num_short, gain_den_short;
256                         int gain_num_short_square;
257                         /* Compute numerator of pseudo-normalized
258                            correlation R'(k). */
259                         sum = adsp->scalarproduct_int16(&delayed_signal[k][i],
260                                                        sig_scaled + RES_PREV_DATA_SIZE,
261                                                        subframe_size);
262                         gain_num_short = FFMAX(sum >> sh_gain_num, 0);
263 
264                         /*
265                                       gain_num_short_square                gain_num_square
266                            R'(T)^2 = -----------------------, max R'(T)^2= --------------
267                                            den                                 gain_den
268                         */
269                         gain_num_short_square = gain_num_short * gain_num_short;
270                         gain_den_short = corr_den[k][i] >> sh_gain_den;
271 
272                         tmp = MULL(gain_num_short_square, gain_den, FRAC_BITS);
273                         tmp2 = MULL(gain_num_square, gain_den_short, FRAC_BITS);
274 
275                         // R'(T)^2 > max R'(T)^2
276                         if (tmp > tmp2) {
277                             gain_num = gain_num_short;
278                             gain_den = gain_den_short;
279                             gain_num_square = gain_num_short_square;
280                             delayed_signal_offset = i;
281                             best_delay_frac = k + 1;
282                         }
283                     }
284                 }
285 
286                 /*
287                        R'(T)^2
288                   2 * --------- < 1
289                         R(0)
290                 */
291                 L64_temp0 =  (int64_t)gain_num_square  << ((sh_gain_num << 1) + 1);
292                 L64_temp1 = ((int64_t)gain_den * ener) << (sh_gain_den + sh_ener);
293                 if (L64_temp0 < L64_temp1)
294                     gain_num = 0;
295             } // if(sh_gain_den >= 0)
296         } // if(corr_int_num)
297     } // if(ener)
298     /* End of best delay searching code  */
299 
300     if (!gain_num) {
301         memcpy(residual_filt, residual + RES_PREV_DATA_SIZE, subframe_size * sizeof(int16_t));
302 
303         /* Long-term prediction gain is less than 3dB. Long-term postfilter is disabled. */
304         return 0;
305     }
306     if (best_delay_frac) {
307         /* Recompute delayed signal with an interpolation filter of length 129. */
308         ff_acelp_interpolate(residual_filt,
309                              &sig_scaled[RES_PREV_DATA_SIZE - best_delay_int + delayed_signal_offset],
310                              ff_g729_interp_filt_long,
311                              ANALYZED_FRAC_DELAYS + 1,
312                              8 - best_delay_frac,
313                              LONG_INT_FILT_LEN,
314                              subframe_size + 1);
315         /* Compute R'(k) correlation's numerator. */
316         sum = adsp->scalarproduct_int16(residual_filt,
317                                        sig_scaled + RES_PREV_DATA_SIZE,
318                                        subframe_size);
319 
320         if (sum < 0) {
321             gain_long_num = 0;
322             sh_gain_long_num = 0;
323         } else {
324             tmp = av_log2(sum) - 14;
325             tmp = FFMAX(tmp, 0);
326             sum >>= tmp;
327             gain_long_num = sum;
328             sh_gain_long_num = tmp;
329         }
330 
331         /* Compute R'(k) correlation's denominator. */
332         sum = adsp->scalarproduct_int16(residual_filt, residual_filt, subframe_size);
333 
334         tmp = av_log2(sum) - 14;
335         tmp = FFMAX(tmp, 0);
336         sum >>= tmp;
337         gain_long_den = sum;
338         sh_gain_long_den = tmp;
339 
340         /* Select between original and delayed signal.
341            Delayed signal will be selected if it increases R'(k)
342            correlation. */
343         L_temp0 = gain_num * gain_num;
344         L_temp0 = MULL(L_temp0, gain_long_den, FRAC_BITS);
345 
346         L_temp1 = gain_long_num * gain_long_num;
347         L_temp1 = MULL(L_temp1, gain_den, FRAC_BITS);
348 
349         tmp = ((sh_gain_long_num - sh_gain_num) * 2) - (sh_gain_long_den - sh_gain_den);
350         if (tmp > 0)
351             L_temp0 >>= tmp;
352         else
353             L_temp1 >>= -tmp;
354 
355         /* Check if longer filter increases the values of R'(k). */
356         if (L_temp1 > L_temp0) {
357             /* Select long filter. */
358             selected_signal = residual_filt;
359             gain_num = gain_long_num;
360             gain_den = gain_long_den;
361             sh_gain_num = sh_gain_long_num;
362             sh_gain_den = sh_gain_long_den;
363         } else
364             /* Select short filter. */
365             selected_signal = &delayed_signal[best_delay_frac-1][delayed_signal_offset];
366 
367         /* Rescale selected signal to original value. */
368         if (shift > 0)
369             for (i = 0; i < subframe_size; i++)
370                 selected_signal[i] *= 1 << shift;
371         else
372             for (i = 0; i < subframe_size; i++)
373                 selected_signal[i] >>= -shift;
374 
375         /* necessary to avoid compiler warning */
376         selected_signal_const = selected_signal;
377     } // if(best_delay_frac)
378     else
379         selected_signal_const = residual + RES_PREV_DATA_SIZE - (best_delay_int + 1 - delayed_signal_offset);
380 #ifdef G729_BITEXACT
381     tmp = sh_gain_num - sh_gain_den;
382     if (tmp > 0)
383         gain_den >>= tmp;
384     else
385         gain_num >>= -tmp;
386 
387     if (gain_num > gain_den)
388         lt_filt_factor_a = MIN_LT_FILT_FACTOR_A;
389     else {
390         gain_num >>= 2;
391         gain_den >>= 1;
392         lt_filt_factor_a = (gain_den << 15) / (gain_den + gain_num);
393     }
394 #else
395     L64_temp0 = (((int64_t)gain_num) << sh_gain_num) >> 1;
396     L64_temp1 = ((int64_t)gain_den) << sh_gain_den;
397     lt_filt_factor_a = FFMAX((L64_temp1 << 15) / (L64_temp1 + L64_temp0), MIN_LT_FILT_FACTOR_A);
398 #endif
399 
400     /* Filter through selected filter. */
401     lt_filt_factor_b = 32767 - lt_filt_factor_a + 1;
402 
403     ff_acelp_weighted_vector_sum(residual_filt, residual + RES_PREV_DATA_SIZE,
404                                  selected_signal_const,
405                                  lt_filt_factor_a, lt_filt_factor_b,
406                                  1<<14, 15, subframe_size);
407 
408     // Long-term prediction gain is larger than 3dB.
409     return 1;
410 }
411 
412 /**
413  * \brief Calculate reflection coefficient for tilt compensation filter (4.2.3).
414  * \param dsp initialized DSP context
415  * \param lp_gn (3.12) coefficients of A(z/FORMANT_PP_FACTOR_NUM) filter
416  * \param lp_gd (3.12) coefficients of A(z/FORMANT_PP_FACTOR_DEN) filter
417  * \param speech speech to update
418  * \param subframe_size size of subframe
419  *
420  * \return (3.12) reflection coefficient
421  *
422  * \remark The routine also calculates the gain term for the short-term
423  *         filter (gf) and multiplies the speech data by 1/gf.
424  *
425  * \note All members of lp_gn, except 10-19 must be equal to zero.
426  */
get_tilt_comp(AudioDSPContext * adsp,int16_t * lp_gn,const int16_t * lp_gd,int16_t * speech,int subframe_size)427 static int16_t get_tilt_comp(AudioDSPContext *adsp, int16_t *lp_gn,
428                              const int16_t *lp_gd, int16_t* speech,
429                              int subframe_size)
430 {
431     int rh1,rh0; // (3.12)
432     int temp;
433     int i;
434     int gain_term;
435 
436     lp_gn[10] = 4096; //1.0 in (3.12)
437 
438     /* Apply 1/A(z/FORMANT_PP_FACTOR_DEN) filter to hf. */
439     ff_celp_lp_synthesis_filter(lp_gn + 11, lp_gd + 1, lp_gn + 11, 22, 10, 0, 0, 0x800);
440     /* Now lp_gn (starting with 10) contains impulse response
441        of A(z/FORMANT_PP_FACTOR_NUM)/A(z/FORMANT_PP_FACTOR_DEN) filter. */
442 
443     rh0 = adsp->scalarproduct_int16(lp_gn + 10, lp_gn + 10, 20);
444     rh1 = adsp->scalarproduct_int16(lp_gn + 10, lp_gn + 11, 20);
445 
446     /* downscale to avoid overflow */
447     temp = av_log2(rh0) - 14;
448     if (temp > 0) {
449         rh0 >>= temp;
450         rh1 >>= temp;
451     }
452 
453     if (FFABS(rh1) > rh0 || !rh0)
454         return 0;
455 
456     gain_term = 0;
457     for (i = 0; i < 20; i++)
458         gain_term += FFABS(lp_gn[i + 10]);
459     gain_term >>= 2; // (3.12) -> (5.10)
460 
461     if (gain_term > 0x400) { // 1.0 in (5.10)
462         temp = 0x2000000 / gain_term; // 1.0/gain_term in (0.15)
463         for (i = 0; i < subframe_size; i++)
464             speech[i] = (speech[i] * temp + 0x4000) >> 15;
465     }
466 
467     return -(rh1 * (1 << 15)) / rh0;
468 }
469 
470 /**
471  * \brief Apply tilt compensation filter (4.2.3).
472  * \param res_pst [in/out] residual signal (partially filtered)
473  * \param k1 (3.12) reflection coefficient
474  * \param subframe_size size of subframe
475  * \param ht_prev_data previous data for 4.2.3, equation 86
476  *
477  * \return new value for ht_prev_data
478 */
apply_tilt_comp(int16_t * out,int16_t * res_pst,int refl_coeff,int subframe_size,int16_t ht_prev_data)479 static int16_t apply_tilt_comp(int16_t* out, int16_t* res_pst, int refl_coeff,
480                                int subframe_size, int16_t ht_prev_data)
481 {
482     int tmp, tmp2;
483     int i;
484     int gt, ga;
485     int fact, sh_fact;
486 
487     if (refl_coeff > 0) {
488         gt = (refl_coeff * G729_TILT_FACTOR_PLUS + 0x4000) >> 15;
489         fact = 0x2000; // 0.5 in (0.15)
490         sh_fact = 14;
491     } else {
492         gt = (refl_coeff * G729_TILT_FACTOR_MINUS + 0x4000) >> 15;
493         fact = 0x400; // 0.5 in (3.12)
494         sh_fact = 11;
495     }
496     ga = (fact << 16) / av_clip_int16(32768 - FFABS(gt));
497     gt >>= 1;
498 
499     /* Apply tilt compensation filter to signal. */
500     tmp = res_pst[subframe_size - 1];
501 
502     for (i = subframe_size - 1; i >= 1; i--) {
503         tmp2 = (gt * res_pst[i-1]) * 2 + 0x4000;
504         tmp2 = res_pst[i] + (tmp2 >> 15);
505 
506         tmp2 = (tmp2 * ga + fact) >> sh_fact;
507         out[i] = tmp2;
508     }
509     tmp2 = (gt * ht_prev_data) * 2 + 0x4000;
510     tmp2 = res_pst[0] + (tmp2 >> 15);
511     tmp2 = (tmp2 * ga + fact) >> sh_fact;
512     out[0] = tmp2;
513 
514     return tmp;
515 }
516 
ff_g729_postfilter(AudioDSPContext * adsp,int16_t * ht_prev_data,int * voicing,const int16_t * lp_filter_coeffs,int pitch_delay_int,int16_t * residual,int16_t * res_filter_data,int16_t * pos_filter_data,int16_t * speech,int subframe_size)517 void ff_g729_postfilter(AudioDSPContext *adsp, int16_t* ht_prev_data, int* voicing,
518                      const int16_t *lp_filter_coeffs, int pitch_delay_int,
519                      int16_t* residual, int16_t* res_filter_data,
520                      int16_t* pos_filter_data, int16_t *speech, int subframe_size)
521 {
522     int16_t residual_filt_buf[SUBFRAME_SIZE+11];
523     int16_t lp_gn[33]; // (3.12)
524     int16_t lp_gd[11]; // (3.12)
525     int tilt_comp_coeff;
526     int i;
527 
528     /* Zero-filling is necessary for tilt-compensation filter. */
529     memset(lp_gn, 0, 33 * sizeof(int16_t));
530 
531     /* Calculate A(z/FORMANT_PP_FACTOR_NUM) filter coefficients. */
532     for (i = 0; i < 10; i++)
533         lp_gn[i + 11] = (lp_filter_coeffs[i + 1] * formant_pp_factor_num_pow[i] + 0x4000) >> 15;
534 
535     /* Calculate A(z/FORMANT_PP_FACTOR_DEN) filter coefficients. */
536     for (i = 0; i < 10; i++)
537         lp_gd[i + 1] = (lp_filter_coeffs[i + 1] * formant_pp_factor_den_pow[i] + 0x4000) >> 15;
538 
539     /* residual signal calculation (one-half of short-term postfilter) */
540     memcpy(speech - 10, res_filter_data, 10 * sizeof(int16_t));
541     residual_filter(residual + RES_PREV_DATA_SIZE, lp_gn + 11, speech, subframe_size);
542     /* Save data to use it in the next subframe. */
543     memcpy(res_filter_data, speech + subframe_size - 10, 10 * sizeof(int16_t));
544 
545     /* long-term filter. If long-term prediction gain is larger than 3dB (returned value is
546        nonzero) then declare current subframe as periodic. */
547     i = long_term_filter(adsp, pitch_delay_int,
548                                                 residual, residual_filt_buf + 10,
549                                                 subframe_size);
550     *voicing = FFMAX(*voicing, i);
551 
552     /* shift residual for using in next subframe */
553     memmove(residual, residual + subframe_size, RES_PREV_DATA_SIZE * sizeof(int16_t));
554 
555     /* short-term filter tilt compensation */
556     tilt_comp_coeff = get_tilt_comp(adsp, lp_gn, lp_gd, residual_filt_buf + 10, subframe_size);
557 
558     /* Apply second half of short-term postfilter: 1/A(z/FORMANT_PP_FACTOR_DEN) */
559     ff_celp_lp_synthesis_filter(pos_filter_data + 10, lp_gd + 1,
560                                 residual_filt_buf + 10,
561                                 subframe_size, 10, 0, 0, 0x800);
562     memcpy(pos_filter_data, pos_filter_data + subframe_size, 10 * sizeof(int16_t));
563 
564     *ht_prev_data = apply_tilt_comp(speech, pos_filter_data + 10, tilt_comp_coeff,
565                                     subframe_size, *ht_prev_data);
566 }
567 
568 /**
569  * \brief Adaptive gain control (4.2.4)
570  * \param gain_before gain of speech before applying postfilters
571  * \param gain_after  gain of speech after applying postfilters
572  * \param speech [in/out] signal buffer
573  * \param subframe_size length of subframe
574  * \param gain_prev (3.12) previous value of gain coefficient
575  *
576  * \return (3.12) last value of gain coefficient
577  */
ff_g729_adaptive_gain_control(int gain_before,int gain_after,int16_t * speech,int subframe_size,int16_t gain_prev)578 int16_t ff_g729_adaptive_gain_control(int gain_before, int gain_after, int16_t *speech,
579                                    int subframe_size, int16_t gain_prev)
580 {
581     int gain; // (3.12)
582     int n;
583     int exp_before, exp_after;
584 
585     if(!gain_after && gain_before)
586         return 0;
587 
588     if (gain_before) {
589 
590         exp_before  = 14 - av_log2(gain_before);
591         gain_before = bidir_sal(gain_before, exp_before);
592 
593         exp_after  = 14 - av_log2(gain_after);
594         gain_after = bidir_sal(gain_after, exp_after);
595 
596         if (gain_before < gain_after) {
597             gain = (gain_before << 15) / gain_after;
598             gain = bidir_sal(gain, exp_after - exp_before - 1);
599         } else {
600             gain = ((gain_before - gain_after) << 14) / gain_after + 0x4000;
601             gain = bidir_sal(gain, exp_after - exp_before);
602         }
603         gain = av_clip_int16(gain);
604         gain = (gain * G729_AGC_FAC1 + 0x4000) >> 15; // gain * (1-0.9875)
605     } else
606         gain = 0;
607 
608     for (n = 0; n < subframe_size; n++) {
609         // gain_prev = gain + 0.9875 * gain_prev
610         gain_prev = (G729_AGC_FACTOR * gain_prev + 0x4000) >> 15;
611         gain_prev = av_clip_int16(gain + gain_prev);
612         speech[n] = av_clip_int16((speech[n] * gain_prev + 0x2000) >> 14);
613     }
614     return gain_prev;
615 }
616