• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2011 Marek Olšák <maraeo@gmail.com>
3  * Copyright © 2015 Advanced Micro Devices, Inc.
4  * Copyright © 2021 Valve Corporation
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining
8  * a copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
17  * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18  * NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS, AUTHORS
19  * AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22  * USE OR OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * The above copyright notice and this permission notice (including the
25  * next paragraph) shall be included in all copies or substantial portions
26  * of the Software.
27  *
28  * Authors:
29  *    Mike Blumenkrantz <michael.blumenkrantz@gmail.com>
30  */
31 
32 #include "zink_context.h"
33 #include "zink_bo.h"
34 #include "zink_resource.h"
35 #include "zink_screen.h"
36 #include "util/u_hash_table.h"
37 
38 #if !defined(__APPLE__) && !defined(_WIN32)
39 #define ZINK_USE_DMABUF
40 #include <xf86drm.h>
41 #endif
42 
43 struct zink_bo;
44 
45 struct zink_sparse_backing_chunk {
46    uint32_t begin, end;
47 };
48 
49 
50 /*
51  * Sub-allocation information for a real buffer used as backing memory of a
52  * sparse buffer.
53  */
54 struct zink_sparse_backing {
55    struct list_head list;
56 
57    struct zink_bo *bo;
58 
59    /* Sorted list of free chunks. */
60    struct zink_sparse_backing_chunk *chunks;
61    uint32_t max_chunks;
62    uint32_t num_chunks;
63 };
64 
65 struct zink_sparse_commitment {
66    struct zink_sparse_backing *backing;
67    uint32_t page;
68 };
69 
70 struct zink_slab {
71    struct pb_slab base;
72    unsigned entry_size;
73    struct zink_bo *buffer;
74    struct zink_bo *entries;
75 };
76 
77 
78 ALWAYS_INLINE static struct zink_slab *
zink_slab(struct pb_slab * pslab)79 zink_slab(struct pb_slab *pslab)
80 {
81    return (struct zink_slab*)pslab;
82 }
83 
84 static struct pb_slabs *
get_slabs(struct zink_screen * screen,uint64_t size,enum zink_alloc_flag flags)85 get_slabs(struct zink_screen *screen, uint64_t size, enum zink_alloc_flag flags)
86 {
87    //struct pb_slabs *bo_slabs = ((flags & RADEON_FLAG_ENCRYPTED) && screen->info.has_tmz_support) ?
88       //screen->bo_slabs_encrypted : screen->bo_slabs;
89 
90    struct pb_slabs *bo_slabs = screen->pb.bo_slabs;
91    /* Find the correct slab allocator for the given size. */
92    for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) {
93       struct pb_slabs *slabs = &bo_slabs[i];
94 
95       if (size <= 1ULL << (slabs->min_order + slabs->num_orders - 1))
96          return slabs;
97    }
98 
99    assert(0);
100    return NULL;
101 }
102 
103 /* Return the power of two size of a slab entry matching the input size. */
104 static unsigned
get_slab_pot_entry_size(struct zink_screen * screen,unsigned size)105 get_slab_pot_entry_size(struct zink_screen *screen, unsigned size)
106 {
107    unsigned entry_size = util_next_power_of_two(size);
108    unsigned min_entry_size = 1 << screen->pb.bo_slabs[0].min_order;
109 
110    return MAX2(entry_size, min_entry_size);
111 }
112 
113 /* Return the slab entry alignment. */
get_slab_entry_alignment(struct zink_screen * screen,unsigned size)114 static unsigned get_slab_entry_alignment(struct zink_screen *screen, unsigned size)
115 {
116    unsigned entry_size = get_slab_pot_entry_size(screen, size);
117 
118    if (size <= entry_size * 3 / 4)
119       return entry_size / 4;
120 
121    return entry_size;
122 }
123 
124 static void
bo_destroy(struct zink_screen * screen,struct pb_buffer * pbuf)125 bo_destroy(struct zink_screen *screen, struct pb_buffer *pbuf)
126 {
127    struct zink_bo *bo = zink_bo(pbuf);
128 
129 #ifdef ZINK_USE_DMABUF
130    if (bo->mem && !bo->u.real.use_reusable_pool) {
131       simple_mtx_lock(&bo->u.real.export_lock);
132       list_for_each_entry_safe(struct bo_export, export, &bo->u.real.exports, link) {
133          struct drm_gem_close args = { .handle = export->gem_handle };
134          drmIoctl(export->drm_fd, DRM_IOCTL_GEM_CLOSE, &args);
135          list_del(&export->link);
136          free(export);
137       }
138       simple_mtx_unlock(&bo->u.real.export_lock);
139       simple_mtx_destroy(&bo->u.real.export_lock);
140    }
141 #endif
142 
143    if (!bo->u.real.is_user_ptr && bo->u.real.cpu_ptr) {
144       bo->u.real.map_count = 1;
145       bo->u.real.cpu_ptr = NULL;
146       zink_bo_unmap(screen, bo);
147    }
148 
149    VKSCR(FreeMemory)(screen->dev, bo->mem, NULL);
150 
151    simple_mtx_destroy(&bo->lock);
152    FREE(bo);
153 }
154 
155 static bool
bo_can_reclaim(struct zink_screen * screen,struct pb_buffer * pbuf)156 bo_can_reclaim(struct zink_screen *screen, struct pb_buffer *pbuf)
157 {
158    struct zink_bo *bo = zink_bo(pbuf);
159 
160    return zink_screen_usage_check_completion(screen, bo->reads) && zink_screen_usage_check_completion(screen, bo->writes);
161 }
162 
163 static bool
bo_can_reclaim_slab(void * priv,struct pb_slab_entry * entry)164 bo_can_reclaim_slab(void *priv, struct pb_slab_entry *entry)
165 {
166    struct zink_bo *bo = container_of(entry, struct zink_bo, u.slab.entry);
167 
168    return bo_can_reclaim(priv, &bo->base);
169 }
170 
171 static void
bo_slab_free(struct zink_screen * screen,struct pb_slab * pslab)172 bo_slab_free(struct zink_screen *screen, struct pb_slab *pslab)
173 {
174    struct zink_slab *slab = zink_slab(pslab);
175    ASSERTED unsigned slab_size = slab->buffer->base.size;
176 
177    assert(slab->base.num_entries * slab->entry_size <= slab_size);
178    FREE(slab->entries);
179    zink_bo_unref(screen, slab->buffer);
180    FREE(slab);
181 }
182 
183 static void
bo_slab_destroy(struct zink_screen * screen,struct pb_buffer * pbuf)184 bo_slab_destroy(struct zink_screen *screen, struct pb_buffer *pbuf)
185 {
186    struct zink_bo *bo = zink_bo(pbuf);
187 
188    assert(!bo->mem);
189 
190    //if (bo->base.usage & RADEON_FLAG_ENCRYPTED)
191       //pb_slab_free(get_slabs(screen, bo->base.size, RADEON_FLAG_ENCRYPTED), &bo->u.slab.entry);
192    //else
193       pb_slab_free(get_slabs(screen, bo->base.size, 0), &bo->u.slab.entry);
194 }
195 
196 static void
clean_up_buffer_managers(struct zink_screen * screen)197 clean_up_buffer_managers(struct zink_screen *screen)
198 {
199    for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) {
200       pb_slabs_reclaim(&screen->pb.bo_slabs[i]);
201       //if (screen->info.has_tmz_support)
202          //pb_slabs_reclaim(&screen->bo_slabs_encrypted[i]);
203    }
204 
205    pb_cache_release_all_buffers(&screen->pb.bo_cache);
206 }
207 
208 static unsigned
get_optimal_alignment(struct zink_screen * screen,uint64_t size,unsigned alignment)209 get_optimal_alignment(struct zink_screen *screen, uint64_t size, unsigned alignment)
210 {
211    /* Increase the alignment for faster address translation and better memory
212     * access pattern.
213     */
214    if (size >= 4096) {
215       alignment = MAX2(alignment, 4096);
216    } else if (size) {
217       unsigned msb = util_last_bit(size);
218 
219       alignment = MAX2(alignment, 1u << (msb - 1));
220    }
221    return alignment;
222 }
223 
224 static void
bo_destroy_or_cache(struct zink_screen * screen,struct pb_buffer * pbuf)225 bo_destroy_or_cache(struct zink_screen *screen, struct pb_buffer *pbuf)
226 {
227    struct zink_bo *bo = zink_bo(pbuf);
228 
229    assert(bo->mem); /* slab buffers have a separate vtbl */
230    bo->reads = NULL;
231    bo->writes = NULL;
232 
233    if (bo->u.real.use_reusable_pool)
234       pb_cache_add_buffer(bo->cache_entry);
235    else
236       bo_destroy(screen, pbuf);
237 }
238 
239 static const struct pb_vtbl bo_vtbl = {
240    /* Cast to void* because one of the function parameters is a struct pointer instead of void*. */
241    (void*)bo_destroy_or_cache
242    /* other functions are never called */
243 };
244 
245 static struct zink_bo *
bo_create_internal(struct zink_screen * screen,uint64_t size,unsigned alignment,enum zink_heap heap,unsigned flags,const void * pNext)246 bo_create_internal(struct zink_screen *screen,
247                    uint64_t size,
248                    unsigned alignment,
249                    enum zink_heap heap,
250                    unsigned flags,
251                    const void *pNext)
252 {
253    struct zink_bo *bo = NULL;
254    bool init_pb_cache;
255 
256    /* too big for vk alloc */
257    if (size > UINT32_MAX)
258       return NULL;
259 
260    alignment = get_optimal_alignment(screen, size, alignment);
261 
262    VkMemoryAllocateInfo mai;
263    mai.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
264    mai.pNext = pNext;
265    mai.allocationSize = size;
266    mai.memoryTypeIndex = screen->heap_map[heap];
267    if (screen->info.mem_props.memoryTypes[mai.memoryTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) {
268       alignment = MAX2(alignment, screen->info.props.limits.minMemoryMapAlignment);
269       mai.allocationSize = align64(mai.allocationSize, screen->info.props.limits.minMemoryMapAlignment);
270    }
271    unsigned heap_idx = screen->info.mem_props.memoryTypes[screen->heap_map[heap]].heapIndex;
272    if (mai.allocationSize > screen->info.mem_props.memoryHeaps[heap_idx].size) {
273       mesa_loge("zink: can't allocate %"PRIu64" bytes from heap that's only %"PRIu64" bytes!\n", mai.allocationSize, screen->info.mem_props.memoryHeaps[heap_idx].size);
274       return NULL;
275    }
276 
277    /* all non-suballocated bo can cache */
278    init_pb_cache = !pNext;
279 
280    if (!bo)
281       bo = CALLOC(1, sizeof(struct zink_bo) + init_pb_cache * sizeof(struct pb_cache_entry));
282    if (!bo) {
283       return NULL;
284    }
285 
286    VkResult ret = VKSCR(AllocateMemory)(screen->dev, &mai, NULL, &bo->mem);
287    if (!zink_screen_handle_vkresult(screen, ret)) {
288       mesa_loge("zink: couldn't allocate memory: heap=%u size=%" PRIu64, heap, size);
289       goto fail;
290    }
291 
292    if (init_pb_cache) {
293       bo->u.real.use_reusable_pool = true;
294       pb_cache_init_entry(&screen->pb.bo_cache, bo->cache_entry, &bo->base, heap);
295    } else {
296 #ifdef ZINK_USE_DMABUF
297       list_inithead(&bo->u.real.exports);
298       simple_mtx_init(&bo->u.real.export_lock, mtx_plain);
299 #endif
300    }
301 
302 
303    simple_mtx_init(&bo->lock, mtx_plain);
304    pipe_reference_init(&bo->base.reference, 1);
305    bo->base.alignment_log2 = util_logbase2(alignment);
306    bo->base.size = mai.allocationSize;
307    bo->base.vtbl = &bo_vtbl;
308    bo->base.placement = screen->heap_flags[heap];
309    bo->base.usage = flags;
310    bo->unique_id = p_atomic_inc_return(&screen->pb.next_bo_unique_id);
311 
312    return bo;
313 
314 fail:
315    bo_destroy(screen, (void*)bo);
316    return NULL;
317 }
318 
319 /*
320  * Attempt to allocate the given number of backing pages. Fewer pages may be
321  * allocated (depending on the fragmentation of existing backing buffers),
322  * which will be reflected by a change to *pnum_pages.
323  */
324 static struct zink_sparse_backing *
sparse_backing_alloc(struct zink_screen * screen,struct zink_bo * bo,uint32_t * pstart_page,uint32_t * pnum_pages)325 sparse_backing_alloc(struct zink_screen *screen, struct zink_bo *bo,
326                      uint32_t *pstart_page, uint32_t *pnum_pages)
327 {
328    struct zink_sparse_backing *best_backing;
329    unsigned best_idx;
330    uint32_t best_num_pages;
331 
332    best_backing = NULL;
333    best_idx = 0;
334    best_num_pages = 0;
335 
336    /* This is a very simple and inefficient best-fit algorithm. */
337    list_for_each_entry(struct zink_sparse_backing, backing, &bo->u.sparse.backing, list) {
338       for (unsigned idx = 0; idx < backing->num_chunks; ++idx) {
339          uint32_t cur_num_pages = backing->chunks[idx].end - backing->chunks[idx].begin;
340          if ((best_num_pages < *pnum_pages && cur_num_pages > best_num_pages) ||
341             (best_num_pages > *pnum_pages && cur_num_pages < best_num_pages)) {
342             best_backing = backing;
343             best_idx = idx;
344             best_num_pages = cur_num_pages;
345          }
346       }
347    }
348 
349    /* Allocate a new backing buffer if necessary. */
350    if (!best_backing) {
351       struct pb_buffer *buf;
352       uint64_t size;
353       uint32_t pages;
354 
355       best_backing = CALLOC_STRUCT(zink_sparse_backing);
356       if (!best_backing)
357          return NULL;
358 
359       best_backing->max_chunks = 4;
360       best_backing->chunks = CALLOC(best_backing->max_chunks,
361                                     sizeof(*best_backing->chunks));
362       if (!best_backing->chunks) {
363          FREE(best_backing);
364          return NULL;
365       }
366 
367       assert(bo->u.sparse.num_backing_pages < DIV_ROUND_UP(bo->base.size, ZINK_SPARSE_BUFFER_PAGE_SIZE));
368 
369       size = MIN3(bo->base.size / 16,
370                   8 * 1024 * 1024,
371                   bo->base.size - (uint64_t)bo->u.sparse.num_backing_pages * ZINK_SPARSE_BUFFER_PAGE_SIZE);
372       size = MAX2(size, ZINK_SPARSE_BUFFER_PAGE_SIZE);
373 
374       buf = zink_bo_create(screen, size, ZINK_SPARSE_BUFFER_PAGE_SIZE,
375                            ZINK_HEAP_DEVICE_LOCAL, 0, NULL);
376       if (!buf) {
377          FREE(best_backing->chunks);
378          FREE(best_backing);
379          return NULL;
380       }
381 
382       /* We might have gotten a bigger buffer than requested via caching. */
383       pages = buf->size / ZINK_SPARSE_BUFFER_PAGE_SIZE;
384 
385       best_backing->bo = zink_bo(buf);
386       best_backing->num_chunks = 1;
387       best_backing->chunks[0].begin = 0;
388       best_backing->chunks[0].end = pages;
389 
390       list_add(&best_backing->list, &bo->u.sparse.backing);
391       bo->u.sparse.num_backing_pages += pages;
392 
393       best_idx = 0;
394       best_num_pages = pages;
395    }
396 
397    *pnum_pages = MIN2(*pnum_pages, best_num_pages);
398    *pstart_page = best_backing->chunks[best_idx].begin;
399    best_backing->chunks[best_idx].begin += *pnum_pages;
400 
401    if (best_backing->chunks[best_idx].begin >= best_backing->chunks[best_idx].end) {
402       memmove(&best_backing->chunks[best_idx], &best_backing->chunks[best_idx + 1],
403               sizeof(*best_backing->chunks) * (best_backing->num_chunks - best_idx - 1));
404       best_backing->num_chunks--;
405    }
406 
407    return best_backing;
408 }
409 
410 static void
sparse_free_backing_buffer(struct zink_screen * screen,struct zink_bo * bo,struct zink_sparse_backing * backing)411 sparse_free_backing_buffer(struct zink_screen *screen, struct zink_bo *bo,
412                            struct zink_sparse_backing *backing)
413 {
414    bo->u.sparse.num_backing_pages -= backing->bo->base.size / ZINK_SPARSE_BUFFER_PAGE_SIZE;
415 
416    list_del(&backing->list);
417    zink_bo_unref(screen, backing->bo);
418    FREE(backing->chunks);
419    FREE(backing);
420 }
421 
422 /*
423  * Return a range of pages from the given backing buffer back into the
424  * free structure.
425  */
426 static bool
sparse_backing_free(struct zink_screen * screen,struct zink_bo * bo,struct zink_sparse_backing * backing,uint32_t start_page,uint32_t num_pages)427 sparse_backing_free(struct zink_screen *screen, struct zink_bo *bo,
428                     struct zink_sparse_backing *backing,
429                     uint32_t start_page, uint32_t num_pages)
430 {
431    uint32_t end_page = start_page + num_pages;
432    unsigned low = 0;
433    unsigned high = backing->num_chunks;
434 
435    /* Find the first chunk with begin >= start_page. */
436    while (low < high) {
437       unsigned mid = low + (high - low) / 2;
438 
439       if (backing->chunks[mid].begin >= start_page)
440          high = mid;
441       else
442          low = mid + 1;
443    }
444 
445    assert(low >= backing->num_chunks || end_page <= backing->chunks[low].begin);
446    assert(low == 0 || backing->chunks[low - 1].end <= start_page);
447 
448    if (low > 0 && backing->chunks[low - 1].end == start_page) {
449       backing->chunks[low - 1].end = end_page;
450 
451       if (low < backing->num_chunks && end_page == backing->chunks[low].begin) {
452          backing->chunks[low - 1].end = backing->chunks[low].end;
453          memmove(&backing->chunks[low], &backing->chunks[low + 1],
454                  sizeof(*backing->chunks) * (backing->num_chunks - low - 1));
455          backing->num_chunks--;
456       }
457    } else if (low < backing->num_chunks && end_page == backing->chunks[low].begin) {
458       backing->chunks[low].begin = start_page;
459    } else {
460       if (backing->num_chunks >= backing->max_chunks) {
461          unsigned new_max_chunks = 2 * backing->max_chunks;
462          struct zink_sparse_backing_chunk *new_chunks =
463             REALLOC(backing->chunks,
464                     sizeof(*backing->chunks) * backing->max_chunks,
465                     sizeof(*backing->chunks) * new_max_chunks);
466          if (!new_chunks)
467             return false;
468 
469          backing->max_chunks = new_max_chunks;
470          backing->chunks = new_chunks;
471       }
472 
473       memmove(&backing->chunks[low + 1], &backing->chunks[low],
474               sizeof(*backing->chunks) * (backing->num_chunks - low));
475       backing->chunks[low].begin = start_page;
476       backing->chunks[low].end = end_page;
477       backing->num_chunks++;
478    }
479 
480    if (backing->num_chunks == 1 && backing->chunks[0].begin == 0 &&
481        backing->chunks[0].end == backing->bo->base.size / ZINK_SPARSE_BUFFER_PAGE_SIZE)
482       sparse_free_backing_buffer(screen, bo, backing);
483 
484    return true;
485 }
486 
487 static void
bo_sparse_destroy(struct zink_screen * screen,struct pb_buffer * pbuf)488 bo_sparse_destroy(struct zink_screen *screen, struct pb_buffer *pbuf)
489 {
490    struct zink_bo *bo = zink_bo(pbuf);
491 
492    assert(!bo->mem && bo->base.usage & ZINK_ALLOC_SPARSE);
493 
494    while (!list_is_empty(&bo->u.sparse.backing)) {
495       sparse_free_backing_buffer(screen, bo,
496                                  container_of(bo->u.sparse.backing.next,
497                                               struct zink_sparse_backing, list));
498    }
499 
500    FREE(bo->u.sparse.commitments);
501    simple_mtx_destroy(&bo->lock);
502    FREE(bo);
503 }
504 
505 static const struct pb_vtbl bo_sparse_vtbl = {
506    /* Cast to void* because one of the function parameters is a struct pointer instead of void*. */
507    (void*)bo_sparse_destroy
508    /* other functions are never called */
509 };
510 
511 static struct pb_buffer *
bo_sparse_create(struct zink_screen * screen,uint64_t size)512 bo_sparse_create(struct zink_screen *screen, uint64_t size)
513 {
514    struct zink_bo *bo;
515 
516    /* We use 32-bit page numbers; refuse to attempt allocating sparse buffers
517     * that exceed this limit. This is not really a restriction: we don't have
518     * that much virtual address space anyway.
519     */
520    if (size > (uint64_t)INT32_MAX * ZINK_SPARSE_BUFFER_PAGE_SIZE)
521       return NULL;
522 
523    bo = CALLOC_STRUCT(zink_bo);
524    if (!bo)
525       return NULL;
526 
527    simple_mtx_init(&bo->lock, mtx_plain);
528    pipe_reference_init(&bo->base.reference, 1);
529    bo->base.alignment_log2 = util_logbase2(ZINK_SPARSE_BUFFER_PAGE_SIZE);
530    bo->base.size = size;
531    bo->base.vtbl = &bo_sparse_vtbl;
532    bo->base.placement = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
533    bo->unique_id = p_atomic_inc_return(&screen->pb.next_bo_unique_id);
534    bo->base.usage = ZINK_ALLOC_SPARSE;
535 
536    bo->u.sparse.num_va_pages = DIV_ROUND_UP(size, ZINK_SPARSE_BUFFER_PAGE_SIZE);
537    bo->u.sparse.commitments = CALLOC(bo->u.sparse.num_va_pages,
538                                      sizeof(*bo->u.sparse.commitments));
539    if (!bo->u.sparse.commitments)
540       goto error_alloc_commitments;
541 
542    list_inithead(&bo->u.sparse.backing);
543 
544    return &bo->base;
545 
546 error_alloc_commitments:
547    simple_mtx_destroy(&bo->lock);
548    FREE(bo);
549    return NULL;
550 }
551 
552 struct pb_buffer *
zink_bo_create(struct zink_screen * screen,uint64_t size,unsigned alignment,enum zink_heap heap,enum zink_alloc_flag flags,const void * pNext)553 zink_bo_create(struct zink_screen *screen, uint64_t size, unsigned alignment, enum zink_heap heap, enum zink_alloc_flag flags, const void *pNext)
554 {
555    struct zink_bo *bo;
556    /* pull in sparse flag */
557    flags |= zink_alloc_flags_from_heap(heap);
558 
559    //struct pb_slabs *slabs = ((flags & RADEON_FLAG_ENCRYPTED) && screen->info.has_tmz_support) ?
560       //screen->bo_slabs_encrypted : screen->bo_slabs;
561    struct pb_slabs *slabs = screen->pb.bo_slabs;
562 
563    struct pb_slabs *last_slab = &slabs[NUM_SLAB_ALLOCATORS - 1];
564    unsigned max_slab_entry_size = 1 << (last_slab->min_order + last_slab->num_orders - 1);
565 
566    /* Sub-allocate small buffers from slabs. */
567    if (!(flags & (ZINK_ALLOC_NO_SUBALLOC | ZINK_ALLOC_SPARSE)) &&
568        size <= max_slab_entry_size) {
569       struct pb_slab_entry *entry;
570 
571       if (heap < 0 || heap >= ZINK_HEAP_MAX)
572          goto no_slab;
573 
574       unsigned alloc_size = size;
575 
576       /* Always use slabs for sizes less than 4 KB because the kernel aligns
577        * everything to 4 KB.
578        */
579       if (size < alignment && alignment <= 4 * 1024)
580          alloc_size = alignment;
581 
582       if (alignment > get_slab_entry_alignment(screen, alloc_size)) {
583          /* 3/4 allocations can return too small alignment. Try again with a power of two
584           * allocation size.
585           */
586          unsigned pot_size = get_slab_pot_entry_size(screen, alloc_size);
587 
588          if (alignment <= pot_size) {
589             /* This size works but wastes some memory to fulfil the alignment. */
590             alloc_size = pot_size;
591          } else {
592             goto no_slab; /* can't fulfil alignment requirements */
593          }
594       }
595 
596       struct pb_slabs *slabs = get_slabs(screen, alloc_size, flags);
597       bool reclaim_all = false;
598       if (heap == ZINK_HEAP_DEVICE_LOCAL_VISIBLE && !screen->resizable_bar) {
599          unsigned low_bound = 128 * 1024 * 1024; //128MB is a very small BAR
600          if (screen->info.driver_props.driverID == VK_DRIVER_ID_NVIDIA_PROPRIETARY)
601             low_bound *= 2; //nvidia has fat textures or something
602          unsigned heapidx = screen->info.mem_props.memoryTypes[screen->heap_map[heap]].heapIndex;
603          reclaim_all = screen->info.mem_props.memoryHeaps[heapidx].size <= low_bound;
604       }
605       entry = pb_slab_alloc_reclaimed(slabs, alloc_size, heap, reclaim_all);
606       if (!entry) {
607          /* Clean up buffer managers and try again. */
608          clean_up_buffer_managers(screen);
609 
610          entry = pb_slab_alloc_reclaimed(slabs, alloc_size, heap, true);
611       }
612       if (!entry)
613          return NULL;
614 
615       bo = container_of(entry, struct zink_bo, u.slab.entry);
616       pipe_reference_init(&bo->base.reference, 1);
617       bo->base.size = size;
618       assert(alignment <= 1 << bo->base.alignment_log2);
619 
620       return &bo->base;
621    }
622 no_slab:
623 
624    if (flags & ZINK_ALLOC_SPARSE) {
625       assert(ZINK_SPARSE_BUFFER_PAGE_SIZE % alignment == 0);
626 
627       return bo_sparse_create(screen, size);
628    }
629 
630    /* Align size to page size. This is the minimum alignment for normal
631     * BOs. Aligning this here helps the cached bufmgr. Especially small BOs,
632     * like constant/uniform buffers, can benefit from better and more reuse.
633     */
634    if (heap == ZINK_HEAP_DEVICE_LOCAL_VISIBLE) {
635       size = align64(size, screen->info.props.limits.minMemoryMapAlignment);
636       alignment = align(alignment, screen->info.props.limits.minMemoryMapAlignment);
637    }
638 
639    bool use_reusable_pool = !(flags & ZINK_ALLOC_NO_SUBALLOC);
640 
641    if (use_reusable_pool) {
642        /* Get a buffer from the cache. */
643        bo = (struct zink_bo*)
644             pb_cache_reclaim_buffer(&screen->pb.bo_cache, size, alignment, 0, heap);
645        if (bo)
646           return &bo->base;
647    }
648 
649    /* Create a new one. */
650    bo = bo_create_internal(screen, size, alignment, heap, flags, pNext);
651    if (!bo) {
652       /* Clean up buffer managers and try again. */
653       clean_up_buffer_managers(screen);
654 
655       bo = bo_create_internal(screen, size, alignment, heap, flags, pNext);
656       if (!bo)
657          return NULL;
658    }
659 
660    return &bo->base;
661 }
662 
663 void *
zink_bo_map(struct zink_screen * screen,struct zink_bo * bo)664 zink_bo_map(struct zink_screen *screen, struct zink_bo *bo)
665 {
666    void *cpu = NULL;
667    uint64_t offset = 0;
668    struct zink_bo *real;
669 
670    if (bo->mem) {
671       real = bo;
672    } else {
673       real = bo->u.slab.real;
674       offset = bo->offset - real->offset;
675    }
676 
677    cpu = p_atomic_read(&real->u.real.cpu_ptr);
678    if (!cpu) {
679       simple_mtx_lock(&real->lock);
680       /* Must re-check due to the possibility of a race. Re-check need not
681        * be atomic thanks to the lock. */
682       cpu = real->u.real.cpu_ptr;
683       if (!cpu) {
684          VkResult result = VKSCR(MapMemory)(screen->dev, real->mem, 0, real->base.size, 0, &cpu);
685          if (result != VK_SUCCESS) {
686             mesa_loge("ZINK: vkMapMemory failed (%s)", vk_Result_to_str(result));
687             simple_mtx_unlock(&real->lock);
688             return NULL;
689          }
690          p_atomic_set(&real->u.real.cpu_ptr, cpu);
691       }
692       simple_mtx_unlock(&real->lock);
693    }
694    p_atomic_inc(&real->u.real.map_count);
695 
696    return (uint8_t*)cpu + offset;
697 }
698 
699 void
zink_bo_unmap(struct zink_screen * screen,struct zink_bo * bo)700 zink_bo_unmap(struct zink_screen *screen, struct zink_bo *bo)
701 {
702    struct zink_bo *real = bo->mem ? bo : bo->u.slab.real;
703 
704    assert(real->u.real.map_count != 0 && "too many unmaps");
705 
706    if (p_atomic_dec_zero(&real->u.real.map_count)) {
707       p_atomic_set(&real->u.real.cpu_ptr, NULL);
708       VKSCR(UnmapMemory)(screen->dev, real->mem);
709    }
710 }
711 
712 static VkSemaphore
get_semaphore(struct zink_screen * screen)713 get_semaphore(struct zink_screen *screen)
714 {
715    VkSemaphoreCreateInfo sci = {
716       VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO,
717       NULL,
718       0
719    };
720    VkSemaphore sem;
721    VkResult ret = VKSCR(CreateSemaphore)(screen->dev, &sci, NULL, &sem);
722    return ret == VK_SUCCESS ? sem : VK_NULL_HANDLE;
723 }
724 
725 static VkSemaphore
buffer_commit_single(struct zink_screen * screen,struct zink_resource * res,struct zink_bo * bo,uint32_t bo_offset,uint32_t offset,uint32_t size,bool commit,VkSemaphore wait)726 buffer_commit_single(struct zink_screen *screen, struct zink_resource *res, struct zink_bo *bo, uint32_t bo_offset, uint32_t offset, uint32_t size, bool commit, VkSemaphore wait)
727 {
728    VkSemaphore sem = get_semaphore(screen);
729    VkBindSparseInfo sparse = {0};
730    sparse.sType = VK_STRUCTURE_TYPE_BIND_SPARSE_INFO;
731    sparse.bufferBindCount = res->obj->storage_buffer ? 2 : 1;
732    sparse.waitSemaphoreCount = !!wait;
733    sparse.pWaitSemaphores = &wait;
734    sparse.signalSemaphoreCount = 1;
735    sparse.pSignalSemaphores = &sem;
736 
737    VkSparseBufferMemoryBindInfo sparse_bind[2];
738    sparse_bind[0].buffer = res->obj->buffer;
739    sparse_bind[1].buffer = res->obj->storage_buffer;
740    sparse_bind[0].bindCount = 1;
741    sparse_bind[1].bindCount = 1;
742    sparse.pBufferBinds = sparse_bind;
743 
744    VkSparseMemoryBind mem_bind;
745    mem_bind.resourceOffset = offset;
746    mem_bind.size = MIN2(res->base.b.width0 - offset, size);
747    mem_bind.memory = commit ? (bo->mem ? bo->mem : bo->u.slab.real->mem) : VK_NULL_HANDLE;
748    mem_bind.memoryOffset = bo_offset * ZINK_SPARSE_BUFFER_PAGE_SIZE + (commit ? (bo->mem ? 0 : bo->offset) : 0);
749    mem_bind.flags = 0;
750    sparse_bind[0].pBinds = &mem_bind;
751    sparse_bind[1].pBinds = &mem_bind;
752 
753    VkResult ret = VKSCR(QueueBindSparse)(screen->queue_sparse, 1, &sparse, VK_NULL_HANDLE);
754    if (zink_screen_handle_vkresult(screen, ret))
755       return sem;
756    VKSCR(DestroySemaphore)(screen->dev, sem, NULL);
757    return VK_NULL_HANDLE;
758 }
759 
760 static bool
buffer_bo_commit(struct zink_screen * screen,struct zink_resource * res,uint32_t offset,uint32_t size,bool commit,VkSemaphore * sem)761 buffer_bo_commit(struct zink_screen *screen, struct zink_resource *res, uint32_t offset, uint32_t size, bool commit, VkSemaphore *sem)
762 {
763    bool ok = true;
764    struct zink_bo *bo = res->obj->bo;
765    assert(offset % ZINK_SPARSE_BUFFER_PAGE_SIZE == 0);
766    assert(offset <= bo->base.size);
767    assert(size <= bo->base.size - offset);
768    assert(size % ZINK_SPARSE_BUFFER_PAGE_SIZE == 0 || offset + size == bo->base.size);
769 
770    struct zink_sparse_commitment *comm = bo->u.sparse.commitments;
771 
772    uint32_t va_page = offset / ZINK_SPARSE_BUFFER_PAGE_SIZE;
773    uint32_t end_va_page = va_page + DIV_ROUND_UP(size, ZINK_SPARSE_BUFFER_PAGE_SIZE);
774    VkSemaphore cur_sem = VK_NULL_HANDLE;
775    if (commit) {
776       while (va_page < end_va_page) {
777          uint32_t span_va_page;
778 
779          /* Skip pages that are already committed. */
780          if (comm[va_page].backing) {
781             va_page++;
782             continue;
783          }
784 
785          /* Determine length of uncommitted span. */
786          span_va_page = va_page;
787          while (va_page < end_va_page && !comm[va_page].backing)
788             va_page++;
789 
790          /* Fill the uncommitted span with chunks of backing memory. */
791          while (span_va_page < va_page) {
792             struct zink_sparse_backing *backing;
793             uint32_t backing_start, backing_size;
794 
795             backing_size = va_page - span_va_page;
796             backing = sparse_backing_alloc(screen, bo, &backing_start, &backing_size);
797             if (!backing) {
798                ok = false;
799                goto out;
800             }
801             cur_sem = buffer_commit_single(screen, res, backing->bo, backing_start,
802                                            (uint64_t)span_va_page * ZINK_SPARSE_BUFFER_PAGE_SIZE,
803                                            (uint64_t)backing_size * ZINK_SPARSE_BUFFER_PAGE_SIZE, true, cur_sem);
804             if (!cur_sem) {
805                ok = sparse_backing_free(screen, bo, backing, backing_start, backing_size);
806                assert(ok && "sufficient memory should already be allocated");
807 
808                ok = false;
809                goto out;
810             }
811 
812             while (backing_size) {
813                comm[span_va_page].backing = backing;
814                comm[span_va_page].page = backing_start;
815                span_va_page++;
816                backing_start++;
817                backing_size--;
818             }
819          }
820       }
821    } else {
822       bool done = false;
823       uint32_t base_page = va_page;
824       while (va_page < end_va_page) {
825          struct zink_sparse_backing *backing;
826          uint32_t backing_start;
827          uint32_t span_pages;
828 
829          /* Skip pages that are already uncommitted. */
830          if (!comm[va_page].backing) {
831             va_page++;
832             continue;
833          }
834 
835          if (!done) {
836             cur_sem = buffer_commit_single(screen, res, NULL, 0,
837                                            (uint64_t)base_page * ZINK_SPARSE_BUFFER_PAGE_SIZE,
838                                            (uint64_t)(end_va_page - base_page) * ZINK_SPARSE_BUFFER_PAGE_SIZE, false, cur_sem);
839             if (!cur_sem) {
840                ok = false;
841                goto out;
842             }
843          }
844          done = true;
845 
846          /* Group contiguous spans of pages. */
847          backing = comm[va_page].backing;
848          backing_start = comm[va_page].page;
849          comm[va_page].backing = NULL;
850 
851          span_pages = 1;
852          va_page++;
853 
854          while (va_page < end_va_page &&
855                 comm[va_page].backing == backing &&
856                 comm[va_page].page == backing_start + span_pages) {
857             comm[va_page].backing = NULL;
858             va_page++;
859             span_pages++;
860          }
861 
862          if (!sparse_backing_free(screen, bo, backing, backing_start, span_pages)) {
863             /* Couldn't allocate tracking data structures, so we have to leak */
864             fprintf(stderr, "zink: leaking sparse backing memory\n");
865             ok = false;
866          }
867       }
868    }
869 out:
870    *sem = cur_sem;
871    return ok;
872 }
873 
874 static VkSemaphore
texture_commit_single(struct zink_screen * screen,struct zink_resource * res,VkSparseImageMemoryBind * ibind,unsigned num_binds,bool commit,VkSemaphore wait)875 texture_commit_single(struct zink_screen *screen, struct zink_resource *res, VkSparseImageMemoryBind *ibind, unsigned num_binds, bool commit, VkSemaphore wait)
876 {
877    VkSemaphore sem = get_semaphore(screen);
878    VkBindSparseInfo sparse = {0};
879    sparse.sType = VK_STRUCTURE_TYPE_BIND_SPARSE_INFO;
880    sparse.imageBindCount = 1;
881    sparse.waitSemaphoreCount = !!wait;
882    sparse.pWaitSemaphores = &wait;
883    sparse.signalSemaphoreCount = 1;
884    sparse.pSignalSemaphores = &sem;
885 
886    VkSparseImageMemoryBindInfo sparse_ibind;
887    sparse_ibind.image = res->obj->image;
888    sparse_ibind.bindCount = num_binds;
889    sparse_ibind.pBinds = ibind;
890    sparse.pImageBinds = &sparse_ibind;
891 
892    VkResult ret = VKSCR(QueueBindSparse)(screen->queue_sparse, 1, &sparse, VK_NULL_HANDLE);
893    if (zink_screen_handle_vkresult(screen, ret))
894       return sem;
895    VKSCR(DestroySemaphore)(screen->dev, sem, NULL);
896    return VK_NULL_HANDLE;
897 }
898 
899 static VkSemaphore
texture_commit_miptail(struct zink_screen * screen,struct zink_resource * res,struct zink_bo * bo,uint32_t bo_offset,uint32_t offset,bool commit,VkSemaphore wait)900 texture_commit_miptail(struct zink_screen *screen, struct zink_resource *res, struct zink_bo *bo, uint32_t bo_offset, uint32_t offset, bool commit, VkSemaphore wait)
901 {
902    VkSemaphore sem = get_semaphore(screen);
903    VkBindSparseInfo sparse = {0};
904    sparse.sType = VK_STRUCTURE_TYPE_BIND_SPARSE_INFO;
905    sparse.imageOpaqueBindCount = 1;
906    sparse.waitSemaphoreCount = !!wait;
907    sparse.pWaitSemaphores = &wait;
908    sparse.signalSemaphoreCount = 1;
909    sparse.pSignalSemaphores = &sem;
910 
911    VkSparseImageOpaqueMemoryBindInfo sparse_bind;
912    sparse_bind.image = res->obj->image;
913    sparse_bind.bindCount = 1;
914    sparse.pImageOpaqueBinds = &sparse_bind;
915 
916    VkSparseMemoryBind mem_bind;
917    mem_bind.resourceOffset = offset;
918    mem_bind.size = MIN2(ZINK_SPARSE_BUFFER_PAGE_SIZE, res->sparse.imageMipTailSize - offset);
919    mem_bind.memory = commit ? (bo->mem ? bo->mem : bo->u.slab.real->mem) : VK_NULL_HANDLE;
920    mem_bind.memoryOffset = bo_offset + (commit ? (bo->mem ? 0 : bo->offset) : 0);
921    mem_bind.flags = 0;
922    sparse_bind.pBinds = &mem_bind;
923 
924    VkResult ret = VKSCR(QueueBindSparse)(screen->queue_sparse, 1, &sparse, VK_NULL_HANDLE);
925    if (zink_screen_handle_vkresult(screen, ret))
926       return sem;
927    VKSCR(DestroySemaphore)(screen->dev, sem, NULL);
928    return VK_NULL_HANDLE;
929 }
930 
931 bool
zink_bo_commit(struct zink_screen * screen,struct zink_resource * res,unsigned level,struct pipe_box * box,bool commit,VkSemaphore * sem)932 zink_bo_commit(struct zink_screen *screen, struct zink_resource *res, unsigned level, struct pipe_box *box, bool commit, VkSemaphore *sem)
933 {
934    bool ok = true;
935    struct zink_bo *bo = res->obj->bo;
936    VkSemaphore cur_sem = VK_NULL_HANDLE;
937 
938    if (screen->faked_e5sparse && res->base.b.format == PIPE_FORMAT_R9G9B9E5_FLOAT)
939       return true;
940 
941    simple_mtx_lock(&screen->queue_lock);
942    simple_mtx_lock(&bo->lock);
943    if (res->base.b.target == PIPE_BUFFER) {
944       ok = buffer_bo_commit(screen, res, box->x, box->width, commit, sem);
945       goto out;
946    }
947 
948    int gwidth, gheight, gdepth;
949    gwidth = res->sparse.formatProperties.imageGranularity.width;
950    gheight = res->sparse.formatProperties.imageGranularity.height;
951    gdepth = res->sparse.formatProperties.imageGranularity.depth;
952    assert(gwidth && gheight && gdepth);
953 
954    struct zink_sparse_commitment *comm = bo->u.sparse.commitments;
955    VkImageSubresource subresource = { res->aspect, level, 0 };
956    unsigned nwidth = DIV_ROUND_UP(box->width, gwidth);
957    unsigned nheight = DIV_ROUND_UP(box->height, gheight);
958    unsigned ndepth = DIV_ROUND_UP(box->depth, gdepth);
959    VkExtent3D lastBlockExtent = {
960 			   (box->width % gwidth) ? box->width % gwidth : gwidth,
961 			   (box->height % gheight) ? box->height % gheight : gheight,
962 			   (box->depth % gdepth) ? box->depth % gdepth : gdepth
963    };
964 #define NUM_BATCHED_BINDS 50
965    VkSparseImageMemoryBind ibind[NUM_BATCHED_BINDS];
966    uint32_t backing_start[NUM_BATCHED_BINDS], backing_size[NUM_BATCHED_BINDS];
967    struct zink_sparse_backing *backing[NUM_BATCHED_BINDS];
968    unsigned i = 0;
969    bool commits_pending = false;
970    uint32_t va_page_offset = 0;
971    for (unsigned l = 0; l < level; l++) {
972       unsigned mipwidth = DIV_ROUND_UP(MAX2(res->base.b.width0 >> l, 1), gwidth);
973       unsigned mipheight = DIV_ROUND_UP(MAX2(res->base.b.height0 >> l, 1), gheight);
974       unsigned mipdepth = DIV_ROUND_UP(res->base.b.array_size > 1 ? res->base.b.array_size : MAX2(res->base.b.depth0 >> l, 1), gdepth);
975       va_page_offset += mipwidth * mipheight * mipdepth;
976    }
977    for (unsigned d = 0; d < ndepth; d++) {
978       for (unsigned h = 0; h < nheight; h++) {
979          for (unsigned w = 0; w < nwidth; w++) {
980             ibind[i].subresource = subresource;
981             ibind[i].flags = 0;
982             // Offset
983             ibind[i].offset.x = w * gwidth;
984             ibind[i].offset.y = h * gheight;
985             if (res->base.b.array_size > 1) {
986                ibind[i].subresource.arrayLayer = d * gdepth;
987                ibind[i].offset.z = 0;
988             } else {
989                ibind[i].offset.z = d * gdepth;
990             }
991             // Size of the page
992             ibind[i].extent.width = (w == nwidth - 1) ? lastBlockExtent.width : gwidth;
993             ibind[i].extent.height = (h == nheight - 1) ? lastBlockExtent.height : gheight;
994             ibind[i].extent.depth = (d == ndepth - 1 && res->base.b.target != PIPE_TEXTURE_CUBE) ? lastBlockExtent.depth : gdepth;
995             uint32_t va_page = va_page_offset +
996                               (d + (box->z / gdepth)) * ((MAX2(res->base.b.width0 >> level, 1) / gwidth) * (MAX2(res->base.b.height0 >> level, 1) / gheight)) +
997                               (h + (box->y / gheight)) * (MAX2(res->base.b.width0 >> level, 1) / gwidth) +
998                               (w + (box->x / gwidth));
999 
1000             uint32_t end_va_page = va_page + 1;
1001 
1002             if (commit) {
1003                while (va_page < end_va_page) {
1004                   uint32_t span_va_page;
1005 
1006                   /* Skip pages that are already committed. */
1007                   if (comm[va_page].backing) {
1008                      va_page++;
1009                      continue;
1010                   }
1011 
1012                   /* Determine length of uncommitted span. */
1013                   span_va_page = va_page;
1014                   while (va_page < end_va_page && !comm[va_page].backing)
1015                      va_page++;
1016 
1017                   /* Fill the uncommitted span with chunks of backing memory. */
1018                   while (span_va_page < va_page) {
1019                      backing_size[i] = va_page - span_va_page;
1020                      backing[i] = sparse_backing_alloc(screen, bo, &backing_start[i], &backing_size[i]);
1021                      if (!backing[i]) {
1022                         ok = false;
1023                         goto out;
1024                      }
1025                      if (level >= res->sparse.imageMipTailFirstLod) {
1026                         uint32_t offset = res->sparse.imageMipTailOffset + d * res->sparse.imageMipTailStride;
1027                         cur_sem = texture_commit_miptail(screen, res, backing[i]->bo, backing_start[i], offset, commit, cur_sem);
1028                         if (!cur_sem)
1029                            goto out;
1030                      } else {
1031                         ibind[i].memory = backing[i]->bo->mem ? backing[i]->bo->mem : backing[i]->bo->u.slab.real->mem;
1032                         ibind[i].memoryOffset = backing_start[i] * ZINK_SPARSE_BUFFER_PAGE_SIZE +
1033                                                 (backing[i]->bo->mem ? 0 : backing[i]->bo->offset);
1034                         commits_pending = true;
1035                      }
1036 
1037                      while (backing_size[i]) {
1038                         comm[span_va_page].backing = backing[i];
1039                         comm[span_va_page].page = backing_start[i];
1040                         span_va_page++;
1041                         backing_start[i]++;
1042                         backing_size[i]--;
1043                      }
1044                      i++;
1045                   }
1046                }
1047             } else {
1048                ibind[i].memory = VK_NULL_HANDLE;
1049                ibind[i].memoryOffset = 0;
1050 
1051                while (va_page < end_va_page) {
1052                   /* Skip pages that are already uncommitted. */
1053                   if (!comm[va_page].backing) {
1054                      va_page++;
1055                      continue;
1056                   }
1057 
1058                   /* Group contiguous spans of pages. */
1059                   backing[i] = comm[va_page].backing;
1060                   backing_start[i] = comm[va_page].page;
1061                   comm[va_page].backing = NULL;
1062 
1063                   backing_size[i] = 1;
1064                   va_page++;
1065 
1066                   while (va_page < end_va_page &&
1067                          comm[va_page].backing == backing[i] &&
1068                          comm[va_page].page == backing_start[i] + backing_size[i]) {
1069                      comm[va_page].backing = NULL;
1070                      va_page++;
1071                      backing_size[i]++;
1072                   }
1073                   if (level >= res->sparse.imageMipTailFirstLod) {
1074                      uint32_t offset = res->sparse.imageMipTailOffset + d * res->sparse.imageMipTailStride;
1075                      cur_sem = texture_commit_miptail(screen, res, NULL, 0, offset, commit, cur_sem);
1076                      if (!cur_sem)
1077                         goto out;
1078                   } else {
1079                      commits_pending = true;
1080                   }
1081                   i++;
1082                }
1083             }
1084             if (i == ARRAY_SIZE(ibind)) {
1085                cur_sem = texture_commit_single(screen, res, ibind, ARRAY_SIZE(ibind), commit, cur_sem);
1086                if (!cur_sem) {
1087                   for (unsigned s = 0; s < i; s++) {
1088                      ok = sparse_backing_free(screen, backing[s]->bo, backing[s], backing_start[s], backing_size[s]);
1089                      if (!ok) {
1090                         /* Couldn't allocate tracking data structures, so we have to leak */
1091                         fprintf(stderr, "zink: leaking sparse backing memory\n");
1092                      }
1093                   }
1094                   ok = false;
1095                   goto out;
1096                }
1097                commits_pending = false;
1098                i = 0;
1099             }
1100          }
1101       }
1102    }
1103    if (commits_pending) {
1104       cur_sem = texture_commit_single(screen, res, ibind, i, commit, cur_sem);
1105       if (!cur_sem) {
1106          for (unsigned s = 0; s < i; s++) {
1107             ok = sparse_backing_free(screen, backing[s]->bo, backing[s], backing_start[s], backing_size[s]);
1108             if (!ok) {
1109                /* Couldn't allocate tracking data structures, so we have to leak */
1110                fprintf(stderr, "zink: leaking sparse backing memory\n");
1111             }
1112          }
1113       }
1114       ok = false;
1115    }
1116 out:
1117 
1118    simple_mtx_unlock(&bo->lock);
1119    simple_mtx_unlock(&screen->queue_lock);
1120    *sem = cur_sem;
1121    return ok;
1122 }
1123 
1124 bool
zink_bo_get_kms_handle(struct zink_screen * screen,struct zink_bo * bo,int fd,uint32_t * handle)1125 zink_bo_get_kms_handle(struct zink_screen *screen, struct zink_bo *bo, int fd, uint32_t *handle)
1126 {
1127 #ifdef ZINK_USE_DMABUF
1128    assert(bo->mem && !bo->u.real.use_reusable_pool);
1129    simple_mtx_lock(&bo->u.real.export_lock);
1130    list_for_each_entry(struct bo_export, export, &bo->u.real.exports, link) {
1131       if (export->drm_fd == fd) {
1132          simple_mtx_unlock(&bo->u.real.export_lock);
1133          *handle = export->gem_handle;
1134          return true;
1135       }
1136    }
1137    struct bo_export *export = CALLOC_STRUCT(bo_export);
1138    if (!export) {
1139       simple_mtx_unlock(&bo->u.real.export_lock);
1140       return false;
1141    }
1142    bool success = drmPrimeFDToHandle(screen->drm_fd, fd, handle) == 0;
1143    if (success) {
1144       list_addtail(&export->link, &bo->u.real.exports);
1145       export->gem_handle = *handle;
1146       export->drm_fd = screen->drm_fd;
1147    } else {
1148       mesa_loge("zink: failed drmPrimeFDToHandle %s", strerror(errno));
1149       FREE(export);
1150    }
1151    simple_mtx_unlock(&bo->u.real.export_lock);
1152    return success;
1153 #else
1154    return false;
1155 #endif
1156 }
1157 
1158 static const struct pb_vtbl bo_slab_vtbl = {
1159    /* Cast to void* because one of the function parameters is a struct pointer instead of void*. */
1160    (void*)bo_slab_destroy
1161    /* other functions are never called */
1162 };
1163 
1164 static struct pb_slab *
bo_slab_alloc(void * priv,unsigned heap,unsigned entry_size,unsigned group_index,bool encrypted)1165 bo_slab_alloc(void *priv, unsigned heap, unsigned entry_size, unsigned group_index, bool encrypted)
1166 {
1167    struct zink_screen *screen = priv;
1168    uint32_t base_id;
1169    unsigned slab_size = 0;
1170    struct zink_slab *slab = CALLOC_STRUCT(zink_slab);
1171 
1172    if (!slab)
1173       return NULL;
1174 
1175    //struct pb_slabs *slabs = ((flags & RADEON_FLAG_ENCRYPTED) && screen->info.has_tmz_support) ?
1176       //screen->bo_slabs_encrypted : screen->bo_slabs;
1177    struct pb_slabs *slabs = screen->pb.bo_slabs;
1178 
1179    /* Determine the slab buffer size. */
1180    for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) {
1181       unsigned max_entry_size = 1 << (slabs[i].min_order + slabs[i].num_orders - 1);
1182 
1183       if (entry_size <= max_entry_size) {
1184          /* The slab size is twice the size of the largest possible entry. */
1185          slab_size = max_entry_size * 2;
1186 
1187          if (!util_is_power_of_two_nonzero(entry_size)) {
1188             assert(util_is_power_of_two_nonzero(entry_size * 4 / 3));
1189 
1190             /* If the entry size is 3/4 of a power of two, we would waste space and not gain
1191              * anything if we allocated only twice the power of two for the backing buffer:
1192              *   2 * 3/4 = 1.5 usable with buffer size 2
1193              *
1194              * Allocating 5 times the entry size leads us to the next power of two and results
1195              * in a much better memory utilization:
1196              *   5 * 3/4 = 3.75 usable with buffer size 4
1197              */
1198             if (entry_size * 5 > slab_size)
1199                slab_size = util_next_power_of_two(entry_size * 5);
1200          }
1201 
1202          break;
1203       }
1204    }
1205    assert(slab_size != 0);
1206 
1207    slab->buffer = zink_bo(zink_bo_create(screen, slab_size, slab_size, heap, 0, NULL));
1208    if (!slab->buffer)
1209       goto fail;
1210 
1211    slab_size = slab->buffer->base.size;
1212 
1213    slab->base.num_entries = slab_size / entry_size;
1214    slab->base.num_free = slab->base.num_entries;
1215    slab->entry_size = entry_size;
1216    slab->entries = CALLOC(slab->base.num_entries, sizeof(*slab->entries));
1217    if (!slab->entries)
1218       goto fail_buffer;
1219 
1220    list_inithead(&slab->base.free);
1221 
1222    base_id = p_atomic_fetch_add(&screen->pb.next_bo_unique_id, slab->base.num_entries);
1223    for (unsigned i = 0; i < slab->base.num_entries; ++i) {
1224       struct zink_bo *bo = &slab->entries[i];
1225 
1226       simple_mtx_init(&bo->lock, mtx_plain);
1227       bo->base.alignment_log2 = util_logbase2(get_slab_entry_alignment(screen, entry_size));
1228       bo->base.size = entry_size;
1229       bo->base.vtbl = &bo_slab_vtbl;
1230       bo->offset = slab->buffer->offset + i * entry_size;
1231       bo->unique_id = base_id + i;
1232       bo->u.slab.entry.slab = &slab->base;
1233       bo->u.slab.entry.group_index = group_index;
1234       bo->u.slab.entry.entry_size = entry_size;
1235 
1236       if (slab->buffer->mem) {
1237          /* The slab is not suballocated. */
1238          bo->u.slab.real = slab->buffer;
1239       } else {
1240          /* The slab is allocated out of a bigger slab. */
1241          bo->u.slab.real = slab->buffer->u.slab.real;
1242          assert(bo->u.slab.real->mem);
1243       }
1244       bo->base.placement = bo->u.slab.real->base.placement;
1245 
1246       list_addtail(&bo->u.slab.entry.head, &slab->base.free);
1247    }
1248 
1249    /* Wasted alignment due to slabs with 3/4 allocations being aligned to a power of two. */
1250    assert(slab->base.num_entries * entry_size <= slab_size);
1251 
1252    return &slab->base;
1253 
1254 fail_buffer:
1255    zink_bo_unref(screen, slab->buffer);
1256 fail:
1257    FREE(slab);
1258    return NULL;
1259 }
1260 
1261 static struct pb_slab *
bo_slab_alloc_normal(void * priv,unsigned heap,unsigned entry_size,unsigned group_index)1262 bo_slab_alloc_normal(void *priv, unsigned heap, unsigned entry_size, unsigned group_index)
1263 {
1264    return bo_slab_alloc(priv, heap, entry_size, group_index, false);
1265 }
1266 
1267 bool
zink_bo_init(struct zink_screen * screen)1268 zink_bo_init(struct zink_screen *screen)
1269 {
1270    uint64_t total_mem = 0;
1271    for (uint32_t i = 0; i < screen->info.mem_props.memoryHeapCount; ++i)
1272       total_mem += screen->info.mem_props.memoryHeaps[i].size;
1273    /* Create managers. */
1274    pb_cache_init(&screen->pb.bo_cache, ZINK_HEAP_MAX,
1275                  500000, 2.0f, 0,
1276                  total_mem / 8, screen,
1277                  (void*)bo_destroy, (void*)bo_can_reclaim);
1278 
1279    unsigned min_slab_order = MIN_SLAB_ORDER;  /* 256 bytes */
1280    unsigned max_slab_order = 20; /* 1 MB (slab size = 2 MB) */
1281    unsigned num_slab_orders_per_allocator = (max_slab_order - min_slab_order) /
1282                                             NUM_SLAB_ALLOCATORS;
1283 
1284    /* Divide the size order range among slab managers. */
1285    for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) {
1286       unsigned min_order = min_slab_order;
1287       unsigned max_order = MIN2(min_order + num_slab_orders_per_allocator,
1288                                 max_slab_order);
1289 
1290       if (!pb_slabs_init(&screen->pb.bo_slabs[i],
1291                          min_order, max_order,
1292                          ZINK_HEAP_MAX, true,
1293                          screen,
1294                          bo_can_reclaim_slab,
1295                          bo_slab_alloc_normal,
1296                          (void*)bo_slab_free)) {
1297          return false;
1298       }
1299       min_slab_order = max_order + 1;
1300    }
1301    screen->pb.min_alloc_size = 1 << screen->pb.bo_slabs[0].min_order;
1302    return true;
1303 }
1304 
1305 void
zink_bo_deinit(struct zink_screen * screen)1306 zink_bo_deinit(struct zink_screen *screen)
1307 {
1308    for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) {
1309       if (screen->pb.bo_slabs[i].groups)
1310          pb_slabs_deinit(&screen->pb.bo_slabs[i]);
1311    }
1312    pb_cache_deinit(&screen->pb.bo_cache);
1313 }
1314