• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/numeric/int128.h"
16 
17 #include <stddef.h>
18 
19 #include <cassert>
20 #include <iomanip>
21 #include <ostream>  // NOLINT(readability/streams)
22 #include <sstream>
23 #include <string>
24 #include <type_traits>
25 
26 #include "absl/base/optimization.h"
27 #include "absl/numeric/bits.h"
28 
29 namespace absl {
30 ABSL_NAMESPACE_BEGIN
31 
32 ABSL_DLL const uint128 kuint128max = MakeUint128(
33     std::numeric_limits<uint64_t>::max(), std::numeric_limits<uint64_t>::max());
34 
35 namespace {
36 
37 // Returns the 0-based position of the last set bit (i.e., most significant bit)
38 // in the given uint128. The argument is not 0.
39 //
40 // For example:
41 //   Given: 5 (decimal) == 101 (binary)
42 //   Returns: 2
Fls128(uint128 n)43 inline ABSL_ATTRIBUTE_ALWAYS_INLINE int Fls128(uint128 n) {
44   if (uint64_t hi = Uint128High64(n)) {
45     ABSL_INTERNAL_ASSUME(hi != 0);
46     return 127 - countl_zero(hi);
47   }
48   const uint64_t low = Uint128Low64(n);
49   ABSL_INTERNAL_ASSUME(low != 0);
50   return 63 - countl_zero(low);
51 }
52 
53 // Long division/modulo for uint128 implemented using the shift-subtract
54 // division algorithm adapted from:
55 // https://stackoverflow.com/questions/5386377/division-without-using
DivModImpl(uint128 dividend,uint128 divisor,uint128 * quotient_ret,uint128 * remainder_ret)56 inline void DivModImpl(uint128 dividend, uint128 divisor, uint128* quotient_ret,
57                        uint128* remainder_ret) {
58   assert(divisor != 0);
59 
60   if (divisor > dividend) {
61     *quotient_ret = 0;
62     *remainder_ret = dividend;
63     return;
64   }
65 
66   if (divisor == dividend) {
67     *quotient_ret = 1;
68     *remainder_ret = 0;
69     return;
70   }
71 
72   uint128 denominator = divisor;
73   uint128 quotient = 0;
74 
75   // Left aligns the MSB of the denominator and the dividend.
76   const int shift = Fls128(dividend) - Fls128(denominator);
77   denominator <<= shift;
78 
79   // Uses shift-subtract algorithm to divide dividend by denominator. The
80   // remainder will be left in dividend.
81   for (int i = 0; i <= shift; ++i) {
82     quotient <<= 1;
83     if (dividend >= denominator) {
84       dividend -= denominator;
85       quotient |= 1;
86     }
87     denominator >>= 1;
88   }
89 
90   *quotient_ret = quotient;
91   *remainder_ret = dividend;
92 }
93 
94 template <typename T>
MakeUint128FromFloat(T v)95 uint128 MakeUint128FromFloat(T v) {
96   static_assert(std::is_floating_point<T>::value, "");
97 
98   // Rounding behavior is towards zero, same as for built-in types.
99 
100   // Undefined behavior if v is NaN or cannot fit into uint128.
101   assert(std::isfinite(v) && v > -1 &&
102          (std::numeric_limits<T>::max_exponent <= 128 ||
103           v < std::ldexp(static_cast<T>(1), 128)));
104 
105   if (v >= std::ldexp(static_cast<T>(1), 64)) {
106     uint64_t hi = static_cast<uint64_t>(std::ldexp(v, -64));
107     uint64_t lo = static_cast<uint64_t>(v - std::ldexp(static_cast<T>(hi), 64));
108     return MakeUint128(hi, lo);
109   }
110 
111   return MakeUint128(0, static_cast<uint64_t>(v));
112 }
113 
114 #if defined(__clang__) && !defined(__SSE3__)
115 // Workaround for clang bug: https://bugs.llvm.org/show_bug.cgi?id=38289
116 // Casting from long double to uint64_t is miscompiled and drops bits.
117 // It is more work, so only use when we need the workaround.
MakeUint128FromFloat(long double v)118 uint128 MakeUint128FromFloat(long double v) {
119   // Go 50 bits at a time, that fits in a double
120   static_assert(std::numeric_limits<double>::digits >= 50, "");
121   static_assert(std::numeric_limits<long double>::digits <= 150, "");
122   // Undefined behavior if v is not finite or cannot fit into uint128.
123   assert(std::isfinite(v) && v > -1 && v < std::ldexp(1.0L, 128));
124 
125   v = std::ldexp(v, -100);
126   uint64_t w0 = static_cast<uint64_t>(static_cast<double>(std::trunc(v)));
127   v = std::ldexp(v - static_cast<double>(w0), 50);
128   uint64_t w1 = static_cast<uint64_t>(static_cast<double>(std::trunc(v)));
129   v = std::ldexp(v - static_cast<double>(w1), 50);
130   uint64_t w2 = static_cast<uint64_t>(static_cast<double>(std::trunc(v)));
131   return (static_cast<uint128>(w0) << 100) | (static_cast<uint128>(w1) << 50) |
132          static_cast<uint128>(w2);
133 }
134 #endif  // __clang__ && !__SSE3__
135 }  // namespace
136 
uint128(float v)137 uint128::uint128(float v) : uint128(MakeUint128FromFloat(v)) {}
uint128(double v)138 uint128::uint128(double v) : uint128(MakeUint128FromFloat(v)) {}
uint128(long double v)139 uint128::uint128(long double v) : uint128(MakeUint128FromFloat(v)) {}
140 
141 #if !defined(ABSL_HAVE_INTRINSIC_INT128)
operator /(uint128 lhs,uint128 rhs)142 uint128 operator/(uint128 lhs, uint128 rhs) {
143   uint128 quotient = 0;
144   uint128 remainder = 0;
145   DivModImpl(lhs, rhs, &quotient, &remainder);
146   return quotient;
147 }
148 
operator %(uint128 lhs,uint128 rhs)149 uint128 operator%(uint128 lhs, uint128 rhs) {
150   uint128 quotient = 0;
151   uint128 remainder = 0;
152   DivModImpl(lhs, rhs, &quotient, &remainder);
153   return remainder;
154 }
155 #endif  // !defined(ABSL_HAVE_INTRINSIC_INT128)
156 
157 namespace {
158 
Uint128ToFormattedString(uint128 v,std::ios_base::fmtflags flags)159 std::string Uint128ToFormattedString(uint128 v, std::ios_base::fmtflags flags) {
160   // Select a divisor which is the largest power of the base < 2^64.
161   uint128 div;
162   int div_base_log;
163   switch (flags & std::ios::basefield) {
164     case std::ios::hex:
165       div = 0x1000000000000000;  // 16^15
166       div_base_log = 15;
167       break;
168     case std::ios::oct:
169       div = 01000000000000000000000;  // 8^21
170       div_base_log = 21;
171       break;
172     default:  // std::ios::dec
173       div = 10000000000000000000u;  // 10^19
174       div_base_log = 19;
175       break;
176   }
177 
178   // Now piece together the uint128 representation from three chunks of the
179   // original value, each less than "div" and therefore representable as a
180   // uint64_t.
181   std::ostringstream os;
182   std::ios_base::fmtflags copy_mask =
183       std::ios::basefield | std::ios::showbase | std::ios::uppercase;
184   os.setf(flags & copy_mask, copy_mask);
185   uint128 high = v;
186   uint128 low;
187   DivModImpl(high, div, &high, &low);
188   uint128 mid;
189   DivModImpl(high, div, &high, &mid);
190   if (Uint128Low64(high) != 0) {
191     os << Uint128Low64(high);
192     os << std::noshowbase << std::setfill('0') << std::setw(div_base_log);
193     os << Uint128Low64(mid);
194     os << std::setw(div_base_log);
195   } else if (Uint128Low64(mid) != 0) {
196     os << Uint128Low64(mid);
197     os << std::noshowbase << std::setfill('0') << std::setw(div_base_log);
198   }
199   os << Uint128Low64(low);
200   return os.str();
201 }
202 
203 }  // namespace
204 
operator <<(std::ostream & os,uint128 v)205 std::ostream& operator<<(std::ostream& os, uint128 v) {
206   std::ios_base::fmtflags flags = os.flags();
207   std::string rep = Uint128ToFormattedString(v, flags);
208 
209   // Add the requisite padding.
210   std::streamsize width = os.width(0);
211   if (static_cast<size_t>(width) > rep.size()) {
212     std::ios::fmtflags adjustfield = flags & std::ios::adjustfield;
213     if (adjustfield == std::ios::left) {
214       rep.append(width - rep.size(), os.fill());
215     } else if (adjustfield == std::ios::internal &&
216                (flags & std::ios::showbase) &&
217                (flags & std::ios::basefield) == std::ios::hex && v != 0) {
218       rep.insert(2, width - rep.size(), os.fill());
219     } else {
220       rep.insert(0, width - rep.size(), os.fill());
221     }
222   }
223 
224   return os << rep;
225 }
226 
227 namespace {
228 
UnsignedAbsoluteValue(int128 v)229 uint128 UnsignedAbsoluteValue(int128 v) {
230   // Cast to uint128 before possibly negating because -Int128Min() is undefined.
231   return Int128High64(v) < 0 ? -uint128(v) : uint128(v);
232 }
233 
234 }  // namespace
235 
236 #if !defined(ABSL_HAVE_INTRINSIC_INT128)
237 namespace {
238 
239 template <typename T>
MakeInt128FromFloat(T v)240 int128 MakeInt128FromFloat(T v) {
241   // Conversion when v is NaN or cannot fit into int128 would be undefined
242   // behavior if using an intrinsic 128-bit integer.
243   assert(std::isfinite(v) && (std::numeric_limits<T>::max_exponent <= 127 ||
244                               (v >= -std::ldexp(static_cast<T>(1), 127) &&
245                                v < std::ldexp(static_cast<T>(1), 127))));
246 
247   // We must convert the absolute value and then negate as needed, because
248   // floating point types are typically sign-magnitude. Otherwise, the
249   // difference between the high and low 64 bits when interpreted as two's
250   // complement overwhelms the precision of the mantissa.
251   uint128 result = v < 0 ? -MakeUint128FromFloat(-v) : MakeUint128FromFloat(v);
252   return MakeInt128(int128_internal::BitCastToSigned(Uint128High64(result)),
253                     Uint128Low64(result));
254 }
255 
256 }  // namespace
257 
int128(float v)258 int128::int128(float v) : int128(MakeInt128FromFloat(v)) {}
int128(double v)259 int128::int128(double v) : int128(MakeInt128FromFloat(v)) {}
int128(long double v)260 int128::int128(long double v) : int128(MakeInt128FromFloat(v)) {}
261 
operator /(int128 lhs,int128 rhs)262 int128 operator/(int128 lhs, int128 rhs) {
263   assert(lhs != Int128Min() || rhs != -1);  // UB on two's complement.
264 
265   uint128 quotient = 0;
266   uint128 remainder = 0;
267   DivModImpl(UnsignedAbsoluteValue(lhs), UnsignedAbsoluteValue(rhs),
268              &quotient, &remainder);
269   if ((Int128High64(lhs) < 0) != (Int128High64(rhs) < 0)) quotient = -quotient;
270   return MakeInt128(int128_internal::BitCastToSigned(Uint128High64(quotient)),
271                     Uint128Low64(quotient));
272 }
273 
operator %(int128 lhs,int128 rhs)274 int128 operator%(int128 lhs, int128 rhs) {
275   assert(lhs != Int128Min() || rhs != -1);  // UB on two's complement.
276 
277   uint128 quotient = 0;
278   uint128 remainder = 0;
279   DivModImpl(UnsignedAbsoluteValue(lhs), UnsignedAbsoluteValue(rhs),
280              &quotient, &remainder);
281   if (Int128High64(lhs) < 0) remainder = -remainder;
282   return MakeInt128(int128_internal::BitCastToSigned(Uint128High64(remainder)),
283                     Uint128Low64(remainder));
284 }
285 #endif  // ABSL_HAVE_INTRINSIC_INT128
286 
operator <<(std::ostream & os,int128 v)287 std::ostream& operator<<(std::ostream& os, int128 v) {
288   std::ios_base::fmtflags flags = os.flags();
289   std::string rep;
290 
291   // Add the sign if needed.
292   bool print_as_decimal =
293       (flags & std::ios::basefield) == std::ios::dec ||
294       (flags & std::ios::basefield) == std::ios_base::fmtflags();
295   if (print_as_decimal) {
296     if (Int128High64(v) < 0) {
297       rep = "-";
298     } else if (flags & std::ios::showpos) {
299       rep = "+";
300     }
301   }
302 
303   rep.append(Uint128ToFormattedString(
304       print_as_decimal ? UnsignedAbsoluteValue(v) : uint128(v), os.flags()));
305 
306   // Add the requisite padding.
307   std::streamsize width = os.width(0);
308   if (static_cast<size_t>(width) > rep.size()) {
309     switch (flags & std::ios::adjustfield) {
310       case std::ios::left:
311         rep.append(width - rep.size(), os.fill());
312         break;
313       case std::ios::internal:
314         if (print_as_decimal && (rep[0] == '+' || rep[0] == '-')) {
315           rep.insert(1, width - rep.size(), os.fill());
316         } else if ((flags & std::ios::basefield) == std::ios::hex &&
317                    (flags & std::ios::showbase) && v != 0) {
318           rep.insert(2, width - rep.size(), os.fill());
319         } else {
320           rep.insert(0, width - rep.size(), os.fill());
321         }
322         break;
323       default:  // std::ios::right
324         rep.insert(0, width - rep.size(), os.fill());
325         break;
326     }
327   }
328 
329   return os << rep;
330 }
331 
332 ABSL_NAMESPACE_END
333 }  // namespace absl
334 
335 namespace std {
336 constexpr bool numeric_limits<absl::uint128>::is_specialized;
337 constexpr bool numeric_limits<absl::uint128>::is_signed;
338 constexpr bool numeric_limits<absl::uint128>::is_integer;
339 constexpr bool numeric_limits<absl::uint128>::is_exact;
340 constexpr bool numeric_limits<absl::uint128>::has_infinity;
341 constexpr bool numeric_limits<absl::uint128>::has_quiet_NaN;
342 constexpr bool numeric_limits<absl::uint128>::has_signaling_NaN;
343 constexpr float_denorm_style numeric_limits<absl::uint128>::has_denorm;
344 constexpr bool numeric_limits<absl::uint128>::has_denorm_loss;
345 constexpr float_round_style numeric_limits<absl::uint128>::round_style;
346 constexpr bool numeric_limits<absl::uint128>::is_iec559;
347 constexpr bool numeric_limits<absl::uint128>::is_bounded;
348 constexpr bool numeric_limits<absl::uint128>::is_modulo;
349 constexpr int numeric_limits<absl::uint128>::digits;
350 constexpr int numeric_limits<absl::uint128>::digits10;
351 constexpr int numeric_limits<absl::uint128>::max_digits10;
352 constexpr int numeric_limits<absl::uint128>::radix;
353 constexpr int numeric_limits<absl::uint128>::min_exponent;
354 constexpr int numeric_limits<absl::uint128>::min_exponent10;
355 constexpr int numeric_limits<absl::uint128>::max_exponent;
356 constexpr int numeric_limits<absl::uint128>::max_exponent10;
357 constexpr bool numeric_limits<absl::uint128>::traps;
358 constexpr bool numeric_limits<absl::uint128>::tinyness_before;
359 
360 constexpr bool numeric_limits<absl::int128>::is_specialized;
361 constexpr bool numeric_limits<absl::int128>::is_signed;
362 constexpr bool numeric_limits<absl::int128>::is_integer;
363 constexpr bool numeric_limits<absl::int128>::is_exact;
364 constexpr bool numeric_limits<absl::int128>::has_infinity;
365 constexpr bool numeric_limits<absl::int128>::has_quiet_NaN;
366 constexpr bool numeric_limits<absl::int128>::has_signaling_NaN;
367 constexpr float_denorm_style numeric_limits<absl::int128>::has_denorm;
368 constexpr bool numeric_limits<absl::int128>::has_denorm_loss;
369 constexpr float_round_style numeric_limits<absl::int128>::round_style;
370 constexpr bool numeric_limits<absl::int128>::is_iec559;
371 constexpr bool numeric_limits<absl::int128>::is_bounded;
372 constexpr bool numeric_limits<absl::int128>::is_modulo;
373 constexpr int numeric_limits<absl::int128>::digits;
374 constexpr int numeric_limits<absl::int128>::digits10;
375 constexpr int numeric_limits<absl::int128>::max_digits10;
376 constexpr int numeric_limits<absl::int128>::radix;
377 constexpr int numeric_limits<absl::int128>::min_exponent;
378 constexpr int numeric_limits<absl::int128>::min_exponent10;
379 constexpr int numeric_limits<absl::int128>::max_exponent;
380 constexpr int numeric_limits<absl::int128>::max_exponent10;
381 constexpr bool numeric_limits<absl::int128>::traps;
382 constexpr bool numeric_limits<absl::int128>::tinyness_before;
383 }  // namespace std
384